2021高考数学浙江专用一轮习题:专题6+第38练+等差数列

合集下载

2021年高考数学一轮复习讲练测(浙江版)专题6.2 等差数列及其前n项和(测)

2021年高考数学一轮复习讲练测(浙江版)专题6.2 等差数列及其前n项和(测)

班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1.【浙江省高三第一次五校联考】在等差数列{}n a 中,53a =,62a =-,则348a a a ++等于( )A. 1B. 2C. 3D. 4 【答案】C. 【解析】试题分析:∵等差数列{}n a ,∴3847561a a a a a a +=+=+=,∴3483a a a ++=.2.【辽宁省沈阳市东北育才学校高三八模】等差数列{}n a 中,564a a +=,则10122log (222)a a a⋅=( )A.10B.20C.40D.22log 5+【答案】B 【解析】试题分析:由于10121056125()54222222a a a a a a a a ++++⨯⋅⋅⋅===,所以10125422log (222)log 220.a a a ⨯⋅⋅⋅==选B.3. 数列{}n a 为等差数列,满足242010a a a +++=,则数列{}n a 前21项的和等于( )A .212B .21C .42D .84 【答案】B 【解析】4.各项均为正数的等差数列}{n a 中,4936a a =,则前12项和12S 的最小值为( ) (A )78 (B )48 (C )60 (D )72 【答案】D 【解析】试题分析:由于11212494912()6()12722a a S a a a a +==+≥=,当且仅当496a a ==时取等号,所以12S 的最小值为72,选D.5.【改编题】已知n S 是等差数列{}n a 的前n 项和,则=-nnn S S S 32( ) A. 30 B. 3 C. 300 D.31【答案】D【解析】由于)(2)(231212n n n n n a a n a a n S S +=+=-+,)(23313n n a a n S +=,所以3132=-n n n S S S .6.【改编题】已知n S 是公差d 不为零的等差数列}{n a 的前n 项和,且83S S =,k S S =7(7≠k ),则k 的值为( )A. 3B.4C.5D.6 【答案】B7.【2022新课标I 学易大联考二】已知数列{}n a 的前n 项和n S 满足21(1)22n n nS n S n n +-+=+*()n N ∈,13a =,则数列{}n a 的通项n a =( )A .41n -B .21n +C .3nD .2n +【命题意图】本题考查数列前n 项和n S 与通项n a 间的关系、等差数列通项公式等基础学问,意在考查同学的规律思维力量、运算求解力量,以及转化思想的应用. 【答案】A【解析】由21(1)22n n nS n S n n +-+=+,得121n n S S n n+-=+,则数列{}n S n 是首项为131S=,公差为2的等差数列,则32(1)21nS n n n=+-=+,即22n S n n =+,则当2n ≥时,1n n n a S S -=-=2222(1)(1)41n n n n n +----=-.又当1n =时,113a S ==,满足41n a n =-,故选A .8.【2022新课标II 学易大联考一】《九章算术》有这样一个问题:今有女子善织,日增等尺,七日织二十一尺,其次日、第五日、第八日所织之和为十五尺,问第十日所织尺数为( ) A .6 B .9 C .12 D .15【命题意图】本题主要考查等差数列的通项公式与前n 项和公式,是基础题.【答案】D【解析】由题知该女每天所织尺数等差数列,设为{}n a ,n S 是其前n 项和,则7S =177()2a a +=47a =21,所以4a =3,由于258a a a ++=53a =15,所以5a =5,所以公差54d a a =-=2,所以10a =55a d +=15,故选D.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从其次年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( )A.4B.5C.6D.7 【答案】A10.【原创题】已知等差数列}{n a 中,59914,90a a S +==, 则12a 的值是( ) A . 15 B .12-C .32-D .32【答案】B【解析】由已知得,597214a a a +==,故77a =,又19959()9902a a S a +===,故510a =,则7532a a d -=-=,32d =-,故125217102a a d =+=-12=-.11.【原创题】已知等差数列765)1()1()1(53}{x x x n a a n n +++++-=,则,的开放式中4x 项的系数是数列}{n a 中的 ( )A .第9项B .第10项C .第19项D .第20项 【答案】D .【解析】由二项式定理得567(1)(1)(1)x x x +++++的开放式中4x 项的系数为44456776551555123C C C ⨯⨯++=++=⨯⨯,由3555n -=,得20n =,故选D .12.【2022浙江理6】如图所示,点列{}{},n n A B 分别在某锐角的两边上,且1n n A A +=12n n A A ++,2n n A A +≠,n ∈*N ,112n n n n B B B B +++=,2n n B B +≠,n ∈*N (P Q ≠表示点P 与点Q 不重合).若n n n d A B =,n S 为1n n n A B B +△的面积,则( ).S nB 1B 2B nB 3B n+1A n+1A 3A nS 1S 2A 2A 1••••••••••••••••••A. {}n S 是等差数列B.2{}n S 是等差数列C.{}n d 是等差数列D.2{}n d 是等差数列 【答案】A .那么11121(tan )2n n S h A A B B θ=+⋅.由题目中条件知112n n n n A A A A +++=,则()1121n A A n A A =-. 所以()1121211tan 2n S h n A A B B θ=⎡+-⋅⎤⎣⎦,其中θ为定值,所以n S 为等差数列.故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2022江苏8】已知{}n a 是等差数列,n S 是其前n 项和.若2123a a +=-,510S =,则9a 的值是 . 【答案】20【解析】设公差为d ,则由题意可得()2111351010a a d a d ⎧++=-⎪⎨+=⎪⎩,解得143a d =-⎧⎨=⎩,则948320a =-+⨯=.14.【2022北京理12】已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6S =__________. 【答案】615.如图,有一个形如六边形的点阵,它的中心是一个点(算第..1.层.),第2层每边有两个点,第3层每边有三个点,依次类推.(1) 试问第n 层()2n N n *∈≥且的点数为___________个; (2) 假如一个六边形点阵共有169个点,那么它一共有_____层.【答案】(1) ()61n -;(2)8.【解析】试题分析: (1)由题意知:11a =,26a =,312a =,418a =,…, ∴数列{}n a 是从第2项起成等差数列,∴2(2)66n a a n d n =+-=-.(2)由(1)(666)11692n n n S -+-=+=,∴8n =.16.【2021届江苏省盐城市高三第三次模拟考试】设n S 是等差数列{}n a 的前n 项和,若数列{}n a 满足2n n a S An Bn C +=++且0A >,则1B C A+-的最小值为 .【答案】23 【解析】所以1B C A+-的最小值为23故答案为3三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2022届广东省惠州市高三第一次调研考试】(本题10分)已知{}n a 为等差数列,且满足138a a +=,2412a a +=.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)记{}n a 的前n 项和为n S ,若31,,k k a a S +成等比数列,求正整数k 的值. 【答案】(Ⅰ)2n a n =;(Ⅱ)2k = 【解析】∴3236a =⨯=,12(1)k a k +=+,2k S k k =+因 31,,k k a a S + 成等比数列,所以213k ka a S +=,从而22(22)6()k k k +=+, 即 220k k --=,*k N ∈,解得2k = 或1k =-(舍去) ∴ 2k =18.【2022届宁夏银川一中高三上学期第一次月考】等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b = (1)求n a 与n b ;(2)求nS S S 11121+++ . 【答案】(1)n n a n 3)1(33=-+=,13-=n n b (2)23(1)n nS n =+【解析】试题分析:(1)由{}n b 的公比22S q b =及2212b S +=可解得3,q =由11b =则n b 可求,又由22Sq b = 可得3,6,91222=-===a a d a S 则n a 可求;(2)由(1)可得3(1)2n n n S +=则12211()3(1)31)n S n n n n ==-++,故由裂项相消法可求n S S S 11121+++12111211111(1)32231n S S S n n +++=-+-++-+ 212(1)313(1)n n n =-=++ 19.【2022全国甲理17】n S 为等差数列{}n a 的前n 项和,且11a =,728S =.记[]lg n n b a =,其中[]x 表示不超过的最大整数,如[]0.90=,[]lg 991=. (1)求1b ,11b ,101b ;(2)求数列{}n b 的前1000项和.【答案】(1)0,1,2;(2)1893. 【解析】(1)设{}n a 的公差为d ,74728S a ==,所以44a =,所以4113a a d -==,所以1(1)n a a n d n =+-=. 所以[][]11lg lg10b a ===,[][]1111lg lg111b a ===,[][]101101lg lg1012b a ===.(2)当0lg 1n a <≤时,129n =⋅⋅⋅,,,;当1lg 2n a <≤时,101199n =⋅⋅⋅,,,; 当2lg 3n a <≤时,100101999n =⋅⋅⋅,,,;当lg 3n a =时,1000n =. 所以1000121000=T b b b =++⋅⋅⋅+[][][]121000lg lg lg =a a a ++⋅⋅⋅+091902900311893⨯+⨯+⨯+⨯=. 20.【江苏省盐城市高三第三次模拟考试】设函数21()1+f x px qx=+(其中220p q +≠),且存在无穷数列{}n a ,使得函数在其定义域内还可以表示为212()1n n f x a x a x a x =+++++.(1)求2a (用,p q 表示); (2)当1,1p q =-=-时,令12n n n n a b a a ++=,设数列{}n b 的前n 项和为n S ,求证:32n S <;(3)若数列{}n a 是公差不为零的等差数列,求{}n a 的通项公式.【答案】(1)22a p q =-;(2)证明见解析;(3)1n a n =+.【解析】列{}n a 的通项公式.试题解析:(1)由题意,得2212(1)(1)1n n px qx a x a x a x +++++++=,明显2,x x 的系数为0,所以121+0++0a p a a p q =⎧⎨=⎩,从而1a p =-,22a p q =-.(2)由1,1p q =-=-,考虑(3)nx n ≥的系数,则有120n n n a pa qa --++=,得1212120(3)n n n a a a a a n --=⎧⎪=⎨⎪--=≥⎩,即21n n n a a a ++=+,所以210p q +=-=,即2,1p q =-=,由(1)知12a =,23a =,所以1n a n =+. 21.【2022年山西高三四校联考】(本小题满分12分)在等差数列}{n a 中,11,552==a a ,数列}{n b 的前n 项和n n a n S +=2.(Ⅰ)求数列}{n a ,}{n b 的通项公式;(Ⅱ)求数列⎩⎨⎧⎭⎬⎫+11n n b b 的前n 项和n T .【答案】(I )12+=n a n ,⎩⎨⎧≥+==)2(,12)1(,4n n n b n ;(II ))32(2016+-=n n T n .【解析】(I )由11,552==a a 可求得数列}{n a 的首项及公差,从而求得n a ,对于数列}{n b ,可先令1=n ,由1111b a S =+=,先求得1b ,再由1,1>-=-n S S b n n n 来求得}{n b 的通项;(II )有第一问可求得⎩⎨⎧≥+==)2(,12)1(,4n n n b n ,可先求得⎩⎨⎧⎭⎬⎫+11n n b b 的通项公式,在利用拆项法求n T .试题解析:(1)设等差数列}{n a 的首项为1a ,公差为d ,则⎩⎨⎧=+==+=11451512d a a d a a∴⎩⎨⎧==231d a ∴122)1(3+=⨯-+=n n a n …………(3分)所以)32(201615101201)32151(21201)32112191717151(21201+-=+-+=+-+=+-+++-+-+=n n n n n n n T nn=1仍旧适合上式, …………(10分) 综上,)32(201615101201+-=+-+=n n n n T n …………(12分)22.【2022年江西师大附中高三二模】(本小题满分12分) 在公比为2的等比数列{}n a 中,2a 与5a 的等差中项是93. (Ⅰ)求1a 的值; (Ⅱ)若函数1sin 4y a x πφ⎛⎫=+⎪⎝⎭,φπ<,的一部分图像如图所示,()11,M a -,()13,N a -为图像 上的两点,设MPN β∠=,其中P 与坐标原点O 重合,πβ<<0,求()tan φβ-的值.【答案】(I )13a =;(II )32-+. 【解析】试题分析:(I )n a 为公比为2的等比数列,所以258a a =代入等差中项关系式31825=+a a 中,求出2a ,如图,连接MN ,在MPN ∆中,由余弦定理得222412283cos 2283PM PN MNPM PNβ+-+-===-又∵πβ<<0 ∴ 56βπ= -------------9分∴ 12πφβ-=-∴ ()tan tantan 231246πππφβ⎛⎫-=-=--=-+ ⎪⎝⎭-------------12分。

2021年高中数学一轮复习第六章数列6.2等差数列及其前n项和学案

2021年高中数学一轮复习第六章数列6.2等差数列及其前n项和学案

§6.2 等差数列及其前n 项和考纲展示►1.理解等差数列的概念.2.掌握等差数列的通项公式与前n 项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题.4.了解等差数列与一次函数、二次函数的关系.考点1 等差数列的基本运算1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第________项起,每一项与它的前一项的差等于________,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母________表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *).(2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2.答案:(1)2 同一个常数 d 2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是________. (2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n n -12d 或S n =n a 1+a n2.答案:(1)a n =a 1+(n -1)d(1)[教材习题改编]已知等差数列-5,-2,1,…,则该数列的第20项为________. 答案:52(2)[教材习题改编]在100以内的正整数中有________个能被6整除的数. 答案:16 知三求二.等差数列中,有五个基本量,a 1,d ,n ,a n ,S n ,这五个基本量通过________,____________联系起来,如果已知其中三个量,利用这些公式,便可以求出其余两个的值,这其间主要是通过方程思想,列方程组求解.答案:通项公式 前n 项和公式[典题1] (1)设S n 为等差数列{a n }的前n 项和,S 8=4a 3,a 7=-2,则a 9=( ) A .-6B .-4C .-2D .2[答案] A[解析] 解法一(常规解法):设公差为d ,则8a 1+28d =4a 1+8d ,即a 1=-5d ,a 7=a 1+6d =-5d +6d =d =-2,所以a 9=a 7+2d =-6.解法二(结合性质求解):根据等差数列的定义和性质,可得S 8=4(a 3+a 6),又S 8=4a 3, 所以a 6=0,又a 7=-2,所以a 8=-4,a 9=-6.(2)[2017·河北武邑中学高三期中]等差数列{a n }中,S n 是其前n 项和,a 1=-9,S 99-S 77=2,则S 10=( )A .0B .-9C .10D .-10[答案] A[解析] 因为⎩⎨⎧⎭⎬⎫S n n 是等差数列,且公差为d =1,故S 1010=a 11+1×(10-1)=-9+9=0,故选A.(3)[2017·河北唐山模拟]设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.[答案] 30[解析] 解法一:设数列{a n }的首项为a 1,公差为d ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,则S 6=6a 1+15d =30.解法二:∵等差数列{a n },故可设S n =An 2+Bn ,由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1, 即S n =n 2-n ,则S 6=36-6=30.[点石成金] 等差数列运算的解题思路及答题步骤 (1)解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中的三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.(2)答题步骤步骤一:结合所求结论,寻找已知与未知的关系; 步骤二:根据已知条件列方程求出未知量; 步骤三:利用前n 项和公式求得结果.考点2 等差数列的判断与证明等差数列的概念的两个易误点:同一个常数;常数.(1)在数列{a n }中,若a 1=1,a n +1=a n +2,则该数列的通项公式为a n =__________. 答案:2n -1解析:由a n +1=a n +2,知{a n }为等差数列,其公差为2,故a n =1+(n -1)×2=2n -1. (2)若数列{a n }满足a 1=1,a n +1-a n =n ,则数列{a n }的通项公式为a n =__________. 答案:1+n n -12解析:由a n +1-a n =n ,得a 2-a 1=1,a 3-a 2=2,…,a n -a n -1=n -1,各式相加,得a n-a 1=1+2+…+n -1=n -11+n -12=nn -12,故a n =1+n n -12.[典题2] 若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求数列{a n }的通项公式.(1)[证明] 当n ≥2时,由a n +2S n S n -1=0,得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2.又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)[解] 由(1),可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12n -1=n -1-n2n n -1=-12n n -1.当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n n -1,n ≥2.[题点发散1] 若将母题条件变为:数列{a n }的前n 项和为S n (n ∈N *),2S n -na n =n .求证:{a n}为等差数列.证明:∵2S n-na n=n,①∴当n≥2时,2S n-1-(n-1)a n-1=n-1,②①-②,得(2-n)a n+(n-1)a n-1=1,则(1-n)a n+1+na n=1,∴2a n=a n-1+a n+1(n≥2),∴数列{a n}为等差数列.[题点发散2] 若母题变为:已知数列{a n}中,a1=2,a n=2-1a n-1(n≥2,n∈N*),设b n=1a n-1(n∈N*).求证:数列{b n}是等差数列.证明:∵a n=2-1a n-1,∴a n+1=2-1a n.∴b n+1-b n=1a n+1-1-1a n-1=12-1a n-1-1a n-1=a n-1a n-1=1,∴{b n}是首项为b1=12-1=1,公差为1的等差数列.[点石成金] 等差数列的判定与证明方法n n34 117,a2+a5=22.(1)求数列{a n}的通项公式;(2)若数列{b n }满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c的值;若不存在,请说明理由.解:(1)设等差数列{a n }的公差为d ,且d >0,由等差数列的性质,得a 2+a 5=a 3+a 4=22, 所以a 3,a 4是关于x 的方程x 2-22x +117=0的解, 所以a 3=9,a 4=13,易知a 1=1,d =4, 故通项为a n =1+(n -1)×4=4n -3. (2)由(1)知,S n =n 1+4n -32=2n 2-n ,所以b n =S nn +c =2n 2-n n +c.解法一:所以b 1=11+c ,b 2=62+c,b 3=153+c(c ≠0). 由2b 2=b 1+b 3,解得c =-12.当c =-12时,b n =2n 2-nn -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.解法二:由b n =S nn +c=n 1+4n -32n +c=2n ⎝ ⎛⎭⎪⎫n -12n +c,∵c ≠0,∴可令c =-12,得到b n =2n .∵b n +1-b n =2(n +1)-2n =2(n ∈N *), ∴数列{b n }是公差为2的等差数列.即存在一个非零常数c =-12,使数列{b n }为等差数列.考点3 等差数列的性质及应用等差数列的常用性质(1)通项公式的推广:a n =a m +________(n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则____________. (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为________. (4)若{a n },{b n }是等差数列,公差为d ,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为________的等差数列.(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列. (7)S 2n -1=(2n -1)a n .(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项). 答案:(1)(n -m )d (2)a k +a l =a m +a n (3)2d (5)md等差数列的基本公式:通项公式;前n 项和公式.(1)等差数列{a n }中,a 2+a 3=1,a 5-2a 1=27,则a 5=________. 答案:13解析:设等差数列的公差为d ,则有2a 1+3d =1,4d -a 1=27,解得d =5,a 1=-7,所以a 5=a 1+4d =13.(2)等差数列{a n }的首项为1,公差为4,前n 项和为120,则n =________. 答案:8解析:a n =1+(n -1)×4=4n -3,所以S n =n 1+4n -32=120,解得n =8或n =-152(舍去).等差数列运算的两个方法:应用性质;巧妙设元.(1)在等差数列{a n }中,已知a 4+a 10=12,则该数列前13项和S 13=__________. 答案:78解析:由等差数列的性质与前n 项和公式,得S 13=13a 1+a 132=13a 4+a 102=78.(2)已知等差数列{a n }前三项的和为-3,前三项的积为8,则{a n }的通项公式是__________.答案:a n =-3n +5或a n =3n -7解析:设等差数列{a n }的前三项为a 2-d ,a 2,a 2+d ,由题意得⎩⎪⎨⎪⎧3a 2=-3,a 2-d a 2a 2+d =8,解得⎩⎪⎨⎪⎧a 2=-1,d =-3 或⎩⎪⎨⎪⎧a 2=-1,d =3,所以a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.[典题3] [2017·河南洛阳统考]设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9=( )A .63B .45C .36D .27[答案] B[解析] 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列,即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45,故选B.[点石成金] 在等差数列{a n }中,数列S m ,S 2m -S m ,S 3m -S 2m 也成等差数列.等差数列的性质是解题的重要工具.1.[2017·宁夏银川模拟]已知等差数列{a n }的公差为d (d ≠0),且a 3+a 6+a 10+a 13=32.若a m =8,则m =( )A .8B .12C .6D .4答案:A解析:由a 3+a 6+a 10+a 13=32,得 (a 3+a 13)+(a 6+a 10)=32,即4a 8=32, ∴a 8=8,∴m =8.故选A.2.已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 答案:60解析:∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60.考点4 等差数列前n 项和的最值问题[典题4] 在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15 B .S 16 C .S 15或S 16 D .S 17 [答案] A[解析]∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n n -12×(-2)=-n 2+30n=-(n -15)2+225.∴当n =15时,S n 取得最大值.[题点发散1] 若将条件“a 1=29,S 10=S 20”改为“a 1>0,S 5=S 12”,如何求解? 解:解法一:设等差数列{a n }的公差为d , 由S 5=S 12,得5a 1+10d =12a 1+66d , 解得d =-18a 1<0.所以S n =na 1+n n -12d=na 1+n n -12·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1.因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 解法二:设等差数列{a n }的公差为d , 同解法一得d =-18a 1<0.设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n=a 1+n -1·⎝ ⎛⎭⎪⎫-18a 1≥0,a n +1=a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值. 解法三:设等差数列{a n }的公差为d , 同解法一得d =-18a 1<0.由于S n =na 1+n n -12d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =172(如图所示),由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.[题点发散2] 若将条件“a 1=29,S 10=S 20”改为“a 3=12,S 12>0,S 13<0”,如何求解? 解:因为a 3=a 1+2d =12, 所以a 1=12-2d ,所以⎩⎪⎨⎪⎧S 12=12a 1+66d >0,S 13=13a 1+78d <0,即⎩⎪⎨⎪⎧144+42d >0,156+52d <0,解得-247<d <-3.故公差d 的取值范围为⎝ ⎛⎭⎪⎫-247,-3. 解法一:由d <0可知,{a n }为递减数列,因此,在1≤n ≤12中,必存在一个自然数n ,使得a n ≥0,a n +1<0, 此时对应的S n 就是S 1,S 2,…,S 12中的最大值.由于⎩⎪⎨⎪⎧S 12=6a 6+a 7>0,S 13=13a 7<0,于是a 7<0,从而a 6>0,因此S 6最大.解法二:由d <0可知{a n }是递减数列,令⎩⎪⎨⎪⎧a n =a 3+n -3d ≥0,a n +1=a 3+n -2d <0,可得⎩⎪⎨⎪⎧n ≤3-12d ,n >2-12d.由-247<d <-3,可得⎩⎨⎧n ≤3-12d <3+123=7,n >2-12d >2+12247=5.5,所以5.5<n <7,故n =6,即S 6最大.[题点发散3] 若将“a 1=29,S 10=S 20”改为“a 5>0,a 4+a 7<0”,如何求解?解:∵⎩⎪⎨⎪⎧a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5.[点石成金] 求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 的值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则①若p +q 为偶数,则当n =p +q2时,S n 最大; ②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.1.等差数列{a n }的前n 项和为S n ,已知a 5+a 7=4,a 6+a 8=-2,则当S n 取最大值时,n =( )A .5B .6C .7D .8答案:B解析:依题意,得2a 6=4,2a 7=-2,a 6=2>0,a 7=-1<0.又数列{a n }是等差数列,因此在该数列中,前6项均为正数,自第7项起以后各项均为负数,于是当S n 取最大值时,n =6,故选B.2.[2017·安徽望江中学模拟]设数列{a n }是公差d <0的等差数列,S n 为前n 项和,若S 6=5a 1+10d ,则S n 取最大值时,n =( )A .5B .6C .5或6D .11 答案:C解析:由题意,得S 6=6a 1+15d =5a 1+10d ,所以a 6=0,故当n =5或6时,S n 最大,故选C.[方法技巧] 1.在遇到三个数成等差数列问题时,可设三个数为:(1)a ,a +d ,a +2d ;(2)a -d ,a ,a +d ;(3)a -d ,a +d ,a +3d 等,可视具体情况而定.2.数列{a n }为等差数列.(1)若项数为偶数2n ,则S 2n =n (a 1+a 2n )=n (a n +a n +1);S 偶-S 奇=nd ;S 奇S 偶=a na n +1. (2)若项数为奇数2n -1,则S 2n -1=(2n -1)a n ;S 奇-S 偶=a n ;S 奇S 偶=n n -1.3.若数列{a n }与{b n }均为等差数列,且前n 项和分别是S n 和T n ,则S 2m -1T 2m -1=a m b m. 4.若a m =n ,a n =m (m ≠0),则a m +n =0. [易错防范] 1.公差不为0的等差数列的前n 项和公式是n 的二次函数,且常数项为0.若某数列的前n 项和公式是常数项不为0的二次函数,则该数列不是等差数列,它从第二项起成等差数列.2.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件.若对称轴取不到,需考虑最接近对称轴的自变量n (n 为正整数);若对称轴对应在两个正整数的中间,此时应有两个符合题意的n 值.真题演练集训1.[2016·新课标全国卷Ⅰ]已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97 答案:C解析:由等差数列性质知,S 9=9a 1+a 92=9×2a 52=9a 5=27, 解得a 5=3,而a 10=8,因此公差d =a 10-a 510-5=1,∴a 100=a 10+90d =98,故选C.2.[2015·北京卷]设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0答案:C解析:A ,B 选项易举反例.C 中若0<a 1<a 2,∴a 3>a 2>a 1>0,∵a 1+a 3>2a 1a 3,又2a 2=a 1+a 3,∴2a 2>2a 1a 3,即a 2>a 1a 3成立.D 中,若a 1<0,则(a 2-a 1)(a 2-a 3)=d ·(-d )=-d 2≤0,故D 选项错误.故选C.3.[2016·江苏卷]已知{a n }是等差数列,S n 是其前n 项和.若a 1+a 22=-3,S 5=10,则a 9的值是________.答案:20解析:设等差数列{a n }公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+a 1+d 2=-3,5a 1+5×42d =10, 解得⎩⎪⎨⎪⎧ a 1=-4,d =3,则a 9=a 1+8d =-4+8×3=20.4.[2016·新课标全国卷Ⅱ]S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.(1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和.解:(1)设{a n }的公差为d ,据已知有7+21d =28,解得d =1.所以{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2.(2)因为b n =⎩⎪⎨⎪⎧ 0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.课外拓展阅读巧用三点共线解等差数列问题1.等差数列的求解由等差数列与一次函数的关系可知:对于公差为d (d ≠0)的等差数列{a n },其通项公式为a n =dn +(a 1-d ),则点(n ,a n )(n ∈N *)共线,又d =a n -a m n -m(n ≠m ),所以d 为过(m ,a m ),(n ,a n )两点的直线的斜率.由此可用三点共线解决等差数列问题.[典例1] 若数列{a n }为等差数列,a p =q ,a q =p (p ≠q ),则a p +q =________.[思路分析][解析] 解法一:设数列{a n }的公差为d ,因为a p =a q +(p -q )d ,所以q =p +(p -q )d ,即q -p =(p -q )d .因为p ≠q ,所以d =-1.所以a p +q =a p +(p +q -p )d =q +q (-1)=0.解法二:因为数列{a n }为等差数列,所以点(n ,a n )(n ∈N *)在一条直线上.不妨设p <q ,记点A (p ,q ),B (q ,p ),则直线AB的斜率k =p -q q -p=-1,如图所示, 由图知OC =p +q ,即点C 的坐标为(p +q,0),故a p +q =0.[答案] 0[典例2] 已知{a n }为等差数列,且a 100=304,a 300=904,求a 1 000.[思路分析][解] 因为{a n }为等差数列,则(100,304),(300,904),(1 000,a 1 000)三点共线,所以904-304300-100=a 1 000-9041 000-300, 解得a 1 000=3 004.2.等差数列前n 项和的求解在等差数列前n 项和公式的变形S n =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n 中,两边同除以n 得S n n =d 2n +⎝ ⎛⎭⎪⎫a 1-d 2.该式说明对任意n ∈N *,所有的点⎝ ⎛⎭⎪⎫n ,S n n 都在同一条直线上,从而对m ,n ∈N *(m ≠n )有S n n -S m m n -m =d 2(常数),即数列⎩⎨⎧⎭⎬⎫S n n 是一个等差数列. [典例3] 已知在等差数列{a n }中,S n =33,S 2n =44,求这个数列的前3n 项的和S 3n .[解] 由题意知,⎝⎛⎭⎪⎫n ,33n ,⎝ ⎛⎭⎪⎫2n ,442n ,⎝ ⎛⎭⎪⎫3n ,S 3n 3n 三点在同一条直线上, 从而有442n -33n 2n -n =S 3n 3n -442n 3n -2n,解得S 3n =33. 所以该数列的前3n 项的和为33.。

2021版高考数学一轮复习浙江专用精练:6.3 等比数列(试题部分) Word版含解析

2021版高考数学一轮复习浙江专用精练:6.3 等比数列(试题部分) Word版含解析

姓名,年级:时间:6.3 等比数列探考情悟真题【考情探究】考点内容解读5年考情预测热度考题示例考向关联考点等比数列的有关概念及运算1.理解等比数列的有关概念.2.掌握等比数列的通项公式.3。

掌握等比数列的前n项和公式。

4.了解等比数列与指数函数之间的关系.2015浙江文,10,6分等比数列的通项公式★★★等比数列的性质及应用能利用等比数列的性质解决有关问题.2018浙江,10,4分等比数列的性质不等式的性质★★★分析解读1。

考查等比数列的定义与判定,通项公式,前n项和公式,等比数列的性质等知识。

2.预计2021年高考试题中,对等比数列的考查仍以概念、性质、通项公式、前n项和公式等知识为主,以中档题形式出现,复习时要足够重视。

破考点练考向【考点集训】考点一等比数列的有关概念及运算1.(2019浙江衢州、湖州、丽水三地教学质量检测,4)已知等比数列{a n}满足a1+a3=—2a2,则公比q=()A.—1 B。

1 C.—2 D。

2答案 A2.(2018浙江嘉兴期末,11)各项均为实数的等比数列{a n},若a1=1,a5=9,则a3= ,公比q= .答案3;±√3考点二 等比数列的性质及应用1。

(2019浙江高考信息优化卷(一),4)已知等比数列{a n }的公比为q,前n 项和为S n ,则“q>1”是“S 4+S 6〉2S 5”的( )A 。

充分不必要条件B 。

必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 答案 D2.(2018浙江杭州二中期中,6)已知等比数列{a n }的前n 项积为T n ,log 2a 3+log 2a 7=2,则T 9的值为( ) A 。

±512 B.512 C 。

±1 024 D 。

1 024 答案 B3.(2020届浙江镇海中学期中,15)已知{a n }是等比数列,且a n 〉0,a 2a 4+2a 3a 5+a 4a 6=25,则a 4的最大值为 . 答案52炼技法 提能力 【方法集训】方法1 等比数列中“基本量法”的解题方法1.(2019浙江高考“超级全能生”联考,11)中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还。

2021届高三数学总复习第一轮——等差数列

2021届高三数学总复习第一轮——等差数列

等差数列高考大纲思维导图讲义导航知识梳理一、等差数列的定义如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列.这个常数叫做等差数列的公差,公差常用字母d表示二、等差数列的通项公式等差数列是常见数列的一种,数列从第二项起,每一项与它的前一项的差等于同一个常数,已知等差数列的首项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.三、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与首末两端“等距离”的两项和相等,并且等于首末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第二项开始起,每一项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(首项不一定选a1).四、等差数列的求和公式等差数列的前n项和公式等差数列的前n项和的公式:①()12nnn a aS+=;②()112nn nS na d-=+.五、等差数列最值求解等差数列前n项和的最值问题可转化为项的正负问题,也可转化为二次函数最值问题.例题讲解一、等差数列定义的理解例1.下面数列中,是等差数列的有( ) ①4,5,6,7,8…②3,0,-3,0,-6,…③0,0,0,0…④110,210,310,410,… A .1个 B .2个C .3个D .4个例2.下列数列中不是等差数列的为( ) A.0,0,0,0,0 B.0,1-,2-,3-,4- C.2,3,4,5,6 D.0,1,2,1,0二、等差数列通项公式例1.在等差数列{}n a 中,已知32a =,5815a a +=,则10(a = ) A .64 B .26C .18D .13例2.在等差数列{}n a 中,214a =,55a =,则公差(d = )A .2-B .3-C .2D .3例3.已知{}n a 是等差数列,124a a +=,7828a a +=,则公差等于( ) A .2 B .4 C .6 D .8三、等差数列的性质例1.等差数列{}n a 中,已知21016a a +=,则468(a a a ++= ) A .16 B .20 C .24 D .28例2.等差数列{}n a 中,若4681012120a a a a a ++++=,则91113a a -的值是( )A .14B .15C .16D .17例3.已知等差数列{}n a 单调递增且满足1104a a +=,则8a 的取值范围是( )A .(2,4)B .(,2)-∞C .(2,)+∞D .(4,)+∞四、等差数列的求和公式例1.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43(S S = ) A .1B .53C .83D .3例2.等差数列{}n a 中,14739a a a ++=,36927a a a ++=,则数列{}n a 前9项的和9S 等于( ) A .99 B .66C .144D .297例3.设{}n a 是任意等差数列,它的前n 项和、前2n 项和与前4n 项和分别为X ,Y ,Z ,则下列等式中恒成立的是( )A .23X Z Y +=B .44X Z Y +=C .237X Z Y +=D .86X Z Y +=六、等差数列最值求解例1.已知等差数列{}n a 中,39a a =,公差0d <,则使其前n 项和n S 取得最大值的自然数n 是( ). A.4或5 B.5或6 C.6或7 D.不存在例2.设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值_______.例3.在各项均为正数的等比数列{a n }中,214a =,且a 4+a 5=6a 3.练习A1.下列说法中正确的是( )A.若a ,b ,c 成等差数列,则222,,a b c 成等差数列B.若a ,b ,c 成等差数列,则222log ,log ,log a b c 成等差数列C.若a ,b ,c 成等差数列,则a+2,b+2,c+2成等差数列D.若a ,b ,c 成等差数列,则2,2,2a b c 成等差数列2.已知下列各数列,其中为等差数列的个数为( ) 1 4,5,6,7,8,... 2 3,0,-3,0,-6,... 3 0,0,0,0, (4)1234,,,,10101010… A.1 B.2C.3D.43.已若{}n a 是等差数列,则由下列关系确定的数列{}n b 也一定是等差数列的是( )A. 2n n b a =B. 2n n b a n =+C. 1n n n b a a +=+D. n n b na =4.已知数列{}n a 为等差数列,且39a =,53a =,则9a 等于( )A .9-B .6-C .3-D .275.已知等差数列{}n a 中,1232a a a ++=,3456a a a ++=,则91011a a a ++的值为( ) A .18 B .16 C .14 D .126.等差数列{}n a 中,若46101290a a a a +++=,则10141(3a a -= )A .15B .30C .45D .607.等差数列{}n a 中,31a =-,1117a =-,则7a 等于( )A .9-B .8-C .92-D .4-8.在等差数列{}n a 中,公差为12,1359960a a a a +++⋯+=,则246100(a a a a +++⋯+= ) A .60 B .70 C .75 D .859.已知等差数列{}n a 满足12910a a a ++⋯+=,则有( )A .3890a a +=B .2900a a +<C .1910a a +>D .4646a =10.已知数列{}n a 为等差数列,且17132a a a π++=,则7tan (a = )A.BC. D.11.已知0a >,0b >,并且1a ,12,1b成等差数列,则9a b +的最小值为( ) A .16 B .9C .5D .412.等差数列{}n a 中,已知21016a a +=,则468(a a a ++= ) A .16 B .20C .24D .2813.在等差数列{}n a 中,若4681012120a a a a a ++++=,则10122a a -的值为( ) A .20 B .22C .24D .2814.等差数列{}n a 中,156a a +=,65a =,那么9a 的值是( ) A .7- B .7 C .113-D .11315.已知等比数列{}n a 中,各项都是正数,且1321,,22a a a 成等差数列,则8967a a a a ++等于( )A.1+B.1-C.3+D.3-16.已知等差数列{}n a 的前n 项和为n S ,若33S a =,且30a ≠,则43(S S = ) A .1B .53C .83D .317.设等差数列{}n a 的前n 项和n S ,若4104a a +=,则13(S = ) A .13 B .14C .26D .5218.设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5(S = ) A .5 B .7C .9D .1019.在等差数列{}n a 中,若351024a a a ++=,则此数列的前13项的和等于( ) A .8 B .13C .16D .2620.在等差数列{}n a 中,若14739a a a ++=,36927a a a ++=,则9(S = ) A .66 B .99C .144D .29721.已知{}n a 为等差数列,n S 为其前n 项和.若312S =,244a a +=,则6(S = ) A .6 B .12C .15D .1822.等差数列{}n a 前n 项和为n S ,111a =-,466a a +=-.则当n S 取最小值时,(n = ) A .6 B .7C .8D .923.数列{}n a 的通项公式为2328n a n n =-,则数列{}n a 各项中最小项是( )A .第4项B .第5项C .第6项D .第7项24.已知数列{}n a 是等差数列,若91130a a +<,10110a a <,且数列{}n a 的前n 项和n S 有最大值,那么当n S 得最小正值时,n 等于( ) A .20 B .17 C .19 D .2125.已知n S 是等差数列*{}()n a n N ∈的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d < ③100S >④110S <其中正确的序号是( )A .②③B .②③④C .②④D .①③④26.在等差数列{}n a 中,128a =-,公差4d =,若前n 项和n S 取得最小值,则n 的值为( ) A .7 B .8C .7或8D .8或927.数列{}n a 是首项为111a =,公差为2d =-的等差数列,那么使前n 项和n S 最大的n 值为( ) A .4 B .5C .6D .7练习B1.设{}n a 为等差数列,则下列数列中,成等差数列的个数为( )①2{}na ②{}n pa ③{}n pa q + ④{}(n na p 、q 为非零常数) A .1 B .2C .3D .42.等差数列{}n a 的公差0d >,前n 项和为n S ,则对2n >时有( ) A .1nn S a a n<< B .1nn S a a n <<C .1n n Sa a n<<D .1,,n n Sa a n的大小不确定3.设等差数列{}n a 的前n 项和为n S ,在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )A .当4n =时,n S 取得最大值B .当3n =时,n S 取得最大值C .当4n =时,n S 取得最小值D .当3n =时,n S 取得最小值4.已知数列{}n a 是等差数列,n S 为其前n 项和.若3916S S =,则612(S S = )A .110B .310C .510D .7105.设等差数列{}n a 的前n 项和为n S ,且满足100S >,110S <,则下列数值最大的是( )A .4SB .5SC .6SD .7S6.等差数列{}n a 与{}n b 的前n 项和分别为n S 与n T ,若3221n n S n T n -=+,则77(ab = ) A .3727B .3828C .3929D .40307.一个有限项的等差数列,前4项之和为40,最后4项之和是80,所有项之和是210,则此数列的项数为( ) A .10 B .12 C .14 D .168.已知点(n ,*)()n a n N ∈都在直线3240x y --=上,那么在数列n a 中有79(a a += )A .790a a +>B .790a a +<C .790a a +=D .790a a =9.已知等差数列{}n a 满足3243a a =,则{}n a 中一定为零的项是( )A .6aB .8aC .10aD .12a10.在等差数列{}n a 中,15a =,470a a +=,则数列{}n a 中为正数的项的个数为( ) A .4 B .5 C .6 D .711.已知数列{}n a 中,132(3n n a a ++= *)n N ∈,且356820a a a a +++=,那么10a 等于( ) A .8 B .5 C .263D .712.若等差数列{}n a 的公差为d ,前n 项和为n S ,记nn S b n=,则( ) A .数列{}n b 是等差数列,{}n b 的公差也为dB .数列{}n b 是等差数列,{}n b 的公差为2dC .数列{}n n a b +是等差数列,{}n n a b +的公差为dD .数列{}n n a b -是等差数列,{}n n a b -的公差为2d13.等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为( )A .48B .49C .50D .5114.若等差数列的首项是24-,且从第10项开始大于零,则公差d 的取值范围是( )A .83d > B .3d < C .833d < D .833d <15.在数列{}n a 中,若1332()n n a a n N +=+∈,且247920a a a a +++=,则10a 为( ) A .5 B .7C .8D .1016.等差数列{}n a 前n 项和为n S ,111a =-,466a a +=-.则当n S 取最小值时,(n = ) A .6 B .7C .8D .917.在各项均为正数的等比数列{}n a 中,63a =,则48(a a += )A .有最小值6B .有最大值6C .有最大值9D .有最小值318.已知实数序列1a ,2a ,⋯,n a 满足:任何连续3项之和均为负数,且任何4项之和均为正数,则n 的最大值是( ) A .4 B .5C .6D .719.已知n S 是等差数列*{}()n a n N ∈的前n 项和,且564S S S >>,以下有四个命题:①数列{}n a 中的最大项为10S ②数列{}n a 的公差0d < ③100S >④110S <其中正确的序号是( )A .②③B .②③④C .②④D .①③④20.已知各项均为正数的等比数列{}n a 中,如果21a =,那么这个数列前3项的和3S 的取值范围是( )A .(-∞,1]-B .[1,)+∞C .[2,)+∞D .[3,)+∞21.已知等差数列{}n a 的前n 项和为n S ,且110a =,56S S ,下列四个命题中,假命题是( )A .公差d 的最大值为2-B .70S <C .记n S 的最大值为K ,K 的最大值为30D .20162017a a >练习C1.已知||0x y >>.将四个数,,x x y x y -+( )A .当0x >时,存在满足已知条件的x ,y ,四个数构成等比数列B .当0x >时,存在满足已知条件的x ,y ,四个数构成等差数列C .当0x <时,存在满足已知条件的x ,y ,四个数构成等比数列D .当0x <时,存在满足已知条件的x ,y ,四个数构成等差数列2.等差数列{}n a 的公差0d >,前n 项和为n S ,则对2n >时有( )A .1nn S a a n<< B .1nn S a a n<<C .1nn S a a n<< D .1,,nn S a a n的大小不确定3.设等差数列{}n a 的前n 项和为n S ,在同一个坐标系中,()n a f n =及()n S g n =的部分图象如图所示,则( )A .当4n =时,n S 取得最大值B .当3n =时,n S 取得最大值C .当4n =时,n S 取得最小值D .当3n =时,n S 取得最小值4.等差数列,的前项和分别为,,若,则 A . B .C .D .5.在等差数列中,,其前项和为,若,则 A . B .C .2008D .20096.设为等差数列,则下列数列中,成等差数列的个数为① ② ③ ④、为非零常数) A .1 B .2 C .3 D .47.设表示等差数列的前项和,已知,那么等于 A .B .C .D .8.等差数列中,,,则该数列前项之和为{}n a {}n b n n S n T 231n n S n T n =+(n na b =)232131n n --2131n n ++2134n n -+{}n a 12007a =-n n S 20082006220082006S S -=2009(S =)2009-2008-{}n a ()2{}na {}n pa {}n pa q +{}(n na p q n S {}n a n 51013S S =1020SS ()193101813{}n a 1m a k =1()k a m k m=≠mk ()A .B .C .D .9.设数列为等差数列,其前项和为,已知,,若对任意,都有成立,则的值为A .22B .21C .20D .1910.设等差数列的公差为,前项和为.若,则的最小值为 A .10 B .C .D .二.填空题(共2小题) 11.在等差数列中,,若它的前项和有最大值,则使取得最小正数的 19 .12.已知两个等差数列、的前项和分别为和,若,则使为整数的正整数的个数是 5个 .课后练习1.等差数列中,若,则 .2.设等差数列的前项和为,若,,则 0 ,的最小值为 .3.等差数列中,,,则取最大值时, 6或7 .4.已知等差数列的前项和为,能够说明“若数列是递减数列,则数列是递减数列”是假命题的数列的一个通项公式为 (答案不唯一) .5.设等差数列的前项和为,若,,则数列的公差等于 .6.若等差数列满足,则12mk-2mk12mk +12mk+{}n a n n S 14799a a a ++=25893a a a ++=*n N ∈n k S S k (){}n a d n n S 11a d ==8n nS a +()927212+{}n a 11101a a <-n n S n S n ={}n a {}n b n n A n B 7453n n A n B n +=+n na b {}n a 31110a a +=678a a a ++={}n a n n S 23a =-510S =-5a =n S {}n a 10a >49S S =n S n ={}n a n n S {}n a {}n S {}n a 27n a n =-+{}n a n n S 1122S =71a ={}n a 1-{}n a 1461,52a a a =+=2019a =20192二.解答题(共3小题)7.在等差数列中,已知,,. (Ⅰ)求数列的通项公式; (Ⅱ)求.8.设等差数列满足,. (1)求的通项公式;(2)求的前项和及使得最大的序号的值.9.已知为等差数列,,. ( I ) 求数列的通项公式以及前项和. (Ⅱ)求使得的最小正整数的值.{}n a 1312a a +=2418a a +=*n N ∈{}n a 3693n a a a a +++⋯+{}n a 35a =109a =-{}n a {}n a n n S n S n {}n a 112a =-562a a ={}n a n n S 14n S >n。

(浙江版)高考数学一轮复习专题6.2等差数列及其前n项和(练)(2021学年)

(浙江版)高考数学一轮复习专题6.2等差数列及其前n项和(练)(2021学年)

(浙江版)2018年高考数学一轮复习专题6.2等差数列及其前n项和(练)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江版)2018年高考数学一轮复习专题6.2 等差数列及其前n项和(练))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江版)2018年高考数学一轮复习专题6.2 等差数列及其前n项和(练)的全部内容。

第02节 等差数列及其前n 项和A 基础巩固训练1。

设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A.74B.145C.7 D .14 【答案】C.2.【2018届宁夏银川一中高三上第二次月考】等差数列{a }n 中, n S 为n a 的前n 项和, 820a =, 756S =,则12a =( )A。

28 B. 32 C . 36 D。

40 【答案】B 【解析】()177412847565682408322a a S a a a a +=⇒=⇒=∴=-=-=,选B 。

3.【2017届江西省上饶市二模】已知数列{}n a 的前 n 项和记为 n S ,满足1785,3a a ==,且122n n n a a a ++=+,要使得n S 取到最大值,则n =( )A 。

13 B. 14 C. 15或16 D 。

16 【答案】C【解析】由于122n n n a a a ++=+,故数列为等差数列,依题意有7181757,33a a d d d =+=+==-,所以()21131266n n n n n S na d -=+⋅=-+,开口向下且对称轴为312n =,故15n =或16时取得最大值.4.【2018届福建省德化一中、永安一中、漳平一中高三上三校联考】已知等差数列{}n a 中, 315,a a 是方程2610x x --=的两根,则9a =_____【答案】3【解析】等差数列{}n a 中, 315962a a a +==,93a ∴=,故填3。

2021年高考数学一轮复习讲练测(浙江版)专题6.1 数列的概念及其简单表示(测)

2021年高考数学一轮复习讲练测(浙江版)专题6.1 数列的概念及其简单表示(测)

第01节 数列的概念与简洁表示法班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1. 已知数列:2,0,2,0,2,0, .前六项不适合...下列哪个通项公式( ) A .n a =()111n ++- B .n a =2|sin2n π| C .n a =()11n-- D .n a =2sin 2n π 【答案】D故选D.2.【改编题】已知数列{}n a ,则“11n n a a +>-”是“数列{}n a 为递增数列”的( ) (A )充分而不必要条件 (B )必要而不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】B【解析】由题意,若“数列{}n a 为递增数列”,则11n n n a a a +>>-,但11n n a a +>-不能推出1n n a a +>,如11, 1.5n n a a +==,则不能推出“数列{}n a 为递增数列”,所以“11n n a a +>-”是“数列{}n a 为递增数列”的必要而不充分条件.故选B.3. 【改编题】已知数列}{n a 的前n 项和为nS ,且)1(2+=n n a S ,则5a = ( )A .16-B .32-C .32D .64-【答案】B . 【解析】当1n =时,111122,2a S a a ==+∴=-.当2n ≥时,由22n n S a =+得1122n n S a --=+,两式作差得:12n n a a -=,∴数列{}n a 是以2-为首项,2为公比的等比数列,∴452232a =-⨯=-,故选B .4.【山西晋城市2022届高三下学期第三次模拟考试】已知数列{}n a 的前n 项和为n S ,且满足111,2nn n a a a +==,则20S =( )A .3066B .3063C .3060D .3069 【答案】D 【解析】5.【太原市2022年高三班级模拟试题(三)】设等差数列{}n a 的前n 项和为n S ,若6726a a =+,则9S 的值为( )A .27B .36C .45D .54 【答案】D 【解析】试题分析:由6726a a =+得641=+d a ,故54)4(92899119=+=⨯+=d a d a S ,故应选D. 6.【太原市2022年高三班级模拟试题(三)】已知{}n a 满足11a =,*11()()4n n n a a n N ++=∈,21123444n n n S a a a a -=++++,则54n n n S a -=( )A .1n -B .nC .2nD .2n 【答案】B 【解析】试题分析:由*11()()4n n n a a n N ++=∈得:1441=++n n n n a a ,取n n ,,3,2,1⋅⋅⋅=,得到n 个等式并两边相加得:n a a a a a a a n nn n =+⋅⋅⋅++++⋅⋅⋅++++)444()4444(132233221,由于21123444n n n S a a a a -=++++,则n a S S n n n n =+-++)41(41,而n n n n a a 4141-=+,所以n a S n n n =-45,应选B.7.【原创题】已知函数()f x 满足:(1)3,(2)6,(3)10,(4)15,f f f f ====,则(12)f 的值为( )A .54B .65C .77D .91【答案】D .故选D .8.【2022年安庆市高三二模】数列{}n a 满足:11n n a a λ+=-(n *∈Ν,λ∈R 且0λ≠),若数列{}1n a -是等比数列,则λ的值等于( )A .1B .1-C .12D .2 【答案】D【解析】由11n n a a λ+=-,得1212()n n n a a a λλλ+-=-=-.由于数列{1}n a -是等比数列,所以21λ=,得2λ=.故选D.9.【浙江省杭州外国语学校高三上学期期中考试】已知函数()f x =⎩⎨⎧>+-≤-)0(,1)1()0(,12x x f x x ,把函数()()g x f x x =-的零点按从小到大的挨次排列成一个数列,则该数列的通项公式为( )A .2)1(-=n n a nB .1-=n a nC .)1(-=n n a nD .22-=n n a【答案】B 【解析】试题分析:当(]0,∞-∈x 时,由()()012=--=-=x x x f x g x,得12+=x x,令x y 2=,1+=x y ,在同一个坐标系内作出两函数在区间(]0,∞-上的图象,由图象易知交点为()1,0,故得到函数的零点为0=x .当(]1,0∈x 时,(]0,11-∈-x ,()()11211211--=+-=+-=x x x f x f ,由()()021=-=-=-x x x f x g x ,得x x =-12,令12-=x y ,x y =,在同一个坐标系内作出两函数在区间(]1,0上的图象,由图象易知交点为()1,1,故函数的零点为1=x .当(]2,1∈x 时,(]1,01∈-x ,10.【2022年江西省四校高三一模测试】已知数列{}n a 是等比数列,数列{}n b 是等差数列,若1611161133,7a a a b b b π⋅⋅=-++=,则3948tan 1b b a a +-⋅的值是( )A.1B. 22 C . 22- D. 3【答案】D 【解析】试题分析:数列{}n a 是等比数列,数列{}n b 是等差数列,,且1611161133,7a a a b b b π⋅⋅=-++=(3366667,3,37,3,3a b a b ππ∴=-=∴=-=,3948tan 1b b a a +-⋅6262tan1b a =-()2723tan13π⨯=-7tantan 2tan 3333ππππ⎛⎫==--=-= ⎪⎝⎭11.【2022年江西师大附中鹰潭一中联考】已知等差数列}{n a 的前n 项和为n S ,满足95S S =,且01>a ,则n S 中最大的是( )A .6SB .7SC .8SD .15S 【答案】B【解析】由95S S =,得()67897820a a a a a a +++=+=,由01>a 知,0,087<>a a ,所以7S 最大,故B 正确. 12.【浙江省桐乡第一等四校高三上学期期中理考】已知函数()121f x x =--,[0,1]x ∈.定义:1()()f x f x =,21()(())f x f f x =,……,1()(())n n f x f f x -=,2,3,4,n =满足()n f x x =的点[0,1]x ∈称为()f x 的n 阶不动点.则()f x 的n 阶不动点的个数是( )A.2n 个B.22n 个 C.2(21)n -个 D.2n 个【答案】D. 【解析】二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13.【2022年河北石家庄高三二模】数列{}n a 满足:1132,51++⋅=-=n n n n a a a a a ,则数列{}1+⋅n n a a 前10项的和为______.【答案】1021【解析】令2n =,23232a a a a -=⋅,解得213a =,令1n =,则12122a a a a -=⋅,解得11a =,对112n n n n a a a a ++-=⋅两边除以1n n a a +⋅,得1112n na a +-=,故数列1n a ⎧⎫⎨⎬⎩⎭是以111a =为首项,公差为2的等差数列,所以()()111111121,,21212122121n n n n n a a a a n n n n n +⎛⎫=-=⋅==- ⎪--⋅+-+⎝⎭,故其前10项的和为1111111110112335192122121⎛⎫⎛⎫-+-++-=-= ⎪ ⎪⎝⎭⎝⎭. 14.【2022年江西九江高三模拟】已知数列{}n a 各项均不为0,其前n 项和为n S ,且112,1+==n n n a a S a ,则=n S ______.【答案】2)1(+n n15.【陕西省西安长安区一中高三上学期第三次质检】把正整数按肯定的规章排成了如图所示的三角形数表.124357681012911131517141618202224设(),ij a i j N +∈是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如5211a =.则87a = .【答案】38【解析】试题分析由三角形数表可以看出其奇数行为奇数列,偶数行为偶数列,故87a 表示第8行的第7个数字,即第2+4+6+7=19个正偶数.故8721938a =⨯=.16.【2022年4月湖北省七市(州)教科研协作体高三联合考试】已知数列{}n a 的首项11a =,且对任意*n N ∈,1,n n a a +是方程230n x nx b -+=的两实根,则21n b -= .【答案】(31)(32)n n -- 【解析】三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 【湖南省2022届高考冲刺卷数学(理)试题(三)】(本小题满分10分)已知数列{}n a 中,()111,3nn n a a a n N a *+==∈+.(1)求证:112n a ⎧⎫+⎨⎬⎩⎭是等比数列, 并求{}n a 的通项公式n a ; (2)数列{}n b 满足()312nn n n n b a =-,数列{}nb 的前n 项和为n T ,若不等式()112n n n n T λ--<+对一切n N *∈恒成立, 求λ的取值范围. 【答案】(1)231n n a =-(2)()2,3- 【解析】试题分析:(1)证明等比数列,一般从定义动身,即证相邻项的比值是一个与项数无关的非零常数,即1311122=3111122n n n n n a a a a a ++++=++,由112n a ⎧⎫+⎨⎬⎩⎭通项11133,22n n a -+=⨯得231n n a =-(2)先代入化简得12n n nb -=,所以用错位相减法求和1242n n n T -+=-,对不等式恒成立问题,一般转化为对应函数最值问题,由于有符号数列,所以分类争辩:若n 为偶数, 则min 12(4)32n λ-<-=;若n 为奇数, 则min 12(4)222n λλ--<-=⇒>-,因此求交集得λ的取值范围试题解析:(1)由数列{}n a 中, ()111,3nn n a a a n N a *+==∈+,可得1131311111,322n n n n n n a a a a a a ++⎛⎫+==+∴+=+ ⎪⎝⎭,112n a ⎛⎫∴+ ⎪⎝⎭是首项为32,公比为3的等比数18.【2022届高三班级第四次四校联考】(本小题满分12分) 已知数列}{n a 的前n 项和为n S ,且)(12*∈-=N n S n n(1) 求数列}{n a 的通项公式;(2) 若1232212+⨯-=+nn nn b ,且数列{n b }的前n 项和为n T ,求证:1<n T 。

2021年高考数学一轮复习讲练测(浙江版)专题6.1 数列的概念及其简单表示(练)

2021年高考数学一轮复习讲练测(浙江版)专题6.1 数列的概念及其简单表示(练)

A 基础巩固训练1.数列{}n a 的前n 项积为2n ,那么当2n ≥时,{}n a 的通项公式为( )A .n a =21n -B .n a =2n C .na =()221n n+ D .n a =()221n n -【答案】D【解析】设数列{}n a 的前n 项积为n T ,则n T =2n ,当2n ≥时,n a =1n n T T -=()221n n -. 2.设函数()f x )定义为如下数表,且对任意自然数n 均有x n+1=02014(),6,n f x x x =若则的值为( )A .1B .2C .4D .5 【答案】D 【解析】3.【2022辽宁大连双基测试】数列{}n a 前n 项和2nn S =,则n a = .【答案】12,12,2n n n -=⎧⎨≥⎩【解析】当2n ≥时,2n n S =,112n n S --=,两式相减,得11222n n n n a --=-=.又当1n =时,12a =,不满足12n n a -=,所以n a =12,12,2n n n -=⎧⎨≥⎩. 4.【2021届山东枣庄市第三高三其次次模考】观看下列等式1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49照此规律,第n 个等式为 . 【答案】()()()()2123221n n n n n +++++⋅⋅⋅+-=-【解析】由题意可知第1行,第1个数是1,共1个,和是1的平方;第2行,第1个数是2,连续3个数, 和是3的平方;第3行,第1个数是3,连续5个数,和是5的平方,照此规律,第n 个等式,第1个数是n ,连续2n-1个数,和是2n-1的平方,即()()()()2123221n n n n n +++++⋅⋅⋅+-=-.5.【2021届甘肃兰州第一高三12月月考数学试卷】数列{}n a 满足*32132(,1)23n na a a a n N n n++++=-∈≥,则n a =________. 【答案】11, 123,2n n n n -=⎧⎨⋅≥⎩【解析】B 力量提升训练1.若在数列{}n a 中,对任意正整数n ,都有221n n a a p ++=(常数),则称数列{}n a 为“等方和数列”,称p 为“公方和”,若数列{}n a 为“等方和数列”,其前n 项和为n S ,且“公方和”为1,首项11a =,则2014S 的最大值与最小值之和为( )A 、2014B 、1007C 、1-D 、2 【答案】D【解析】由221n n a a p ++=得2212n n a a p +++=,两等式相减得:222n n a a +=.又“公方和”为1,首项11a =,所以2222223520132420141,0a a a a a a ========.所以2014S 的最大值为1007,最小值为-1005,其和为2.选D.2.【2022新课标II 押题卷1】已知数列{}n a 的首项1a m =,其前n 项和为n S ,且满足2132n n S S n n ++=+,若对n N *∀∈,1n n a a +<恒成立,则m 的取值范围是_______.【命题意图】本题考查数列递推公式、数列性质等基础学问,意在考查转化与化归、规律思维力量和基本运算力量.【答案】15(,)43-3.【2022北京东城区二模】成等差数列的三个正数的和等于,并且这三个数分别加上、、后成为等比数列中的、、,则数列的通项公式为( )A .B .C .D .【答案】A【解析】设三个数为:由题得:所以所以。

高考数学一轮复习(浙江版)专题6.2等差数列及其前n项和(测)含解析

高考数学一轮复习(浙江版)专题6.2等差数列及其前n项和(测)含解析

一、选择题(本大题共10小题,每小题4分,在每小题给出的四个选择中,只有一个是符合题目要求的.)1.【2018届河南省郑州外国语学校调研】在等差数列中,已知是函数的两个零点,则的前10项和等于( )A. -18 B. 9 C. 18 D. 20【答案】D【解析】2.【2018届福建省三明市第一中学适应性练习(一)】已知是等差数列的前项和,且,,则()A. 2 B. 3 C. 4 D. 5【答案】B【解析】,解得或者(舍去)3.【2018届安徽省六安市第一中学适应性考试】已知等差数列的前项和为,若,则()A. B. C. D.【答案】D【解析】设等差数列的公差为d,,化为.则.故选:D.4.【2018届河北省武邑中学四模】设等差数列的前项和为.若,,则()A. B. C. D.【答案】D【解析】又.可得,则故选D.5.【黑龙江省2018年仿真模拟(七)】在数列中,若,且对任意正整数、,总有,则的前项和为()A. B. C. D.【答案】C【解析】6.【2018届陕西省黄陵中学6月模拟】已知等差数列的前项和为,且,,则“取得最小值”的一个充分不必要条件是( )A .或 B .或或 C .D .【答案】C 【解析】7.已知等差数列{}n a 中, 1311,1a a ==-,则{}n a 的前n 项和n S 的最大值是( ) A. 15 B. 20 C. 26 D. 30 【答案】C 【解析】51351a a d -==-- ,所以通项公式()11314n a a n d n =+-=-+,当101430{{01130n n a n a n +≥-≥⇒≤-≤ ,解得111433n ≤≤ 即4n = ,即前4项和最大, ()4434113262S ⨯=⨯+⨯-=,故选C. 8.【2018届广东省珠海市高三摸底考试】对大于1的自然数 m 的三次幂可用奇数进行以下形式的“分裂”:3331373152{ 3{9 4{ (517)1119,,,.仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )A. 44B. 45C. 46D. 47 【答案】C【解析】由题意,从23到m 3,正好用去从3开始的连续奇数共()()212342m m m +-+++⋯+=个,2017从3开始的第1008个奇数, 据此可得46m = . 本题选择C 选项.9.某企业为节能减排,用9万元购进一台新设备用于生产. 第一年需运营费用2万元,从第二年起,每年运营费用均比上一年增加2万元,该设备每年生产的收入均为11万元. 设该设备使用了()n n N *∈年后,盈利总额达到最大值(盈利额等于收入减去成本),则n 等于( ) A.4 B.5 C.6 D.7 【答案】A10.【2018届湖北省荆州市荆州中学高考模拟】已知等差数列的前项和为.若,,则( )A . 35B . 42C . 49D . 63 【答案】B 【解析】 已知数列为等差数列,则其前项和性质有、、也是等差, 由题意得,,则,,故选.二、填空题(本大题共7小题,共36分.把答案填在题中的横线上.) 11.【2018届江苏省扬州树人学校模拟(四)】已知等差数列的前项和为,且,则__________.【答案】.【解析】∵等差数列中,∴,∴.设等差数列的公差为,则.12.已知{}n a是等差数列,n S是其前n项和.若2123a a+=-,510S=,则9a的值是.【答案】20【解析】设公差为d,则由题意可得()21113 51010a a da d⎧++=-⎪⎨+=⎪⎩,解得14 3a d =-⎧⎨=⎩,则948320a=-+⨯=.13.【上海市2018年5月高考模练习(一)】等差数列,,记,则当__________时,取得最大值【答案】4【解析】14.【2018届浙江省台州中学高考模拟】已知数列为等差数列,为的前项和,,若,,则__________.__________.【答案】 -12【解析】分析:首先根据题中的条件,结合等差数列的通项公式和求和公式,建立关于其首项与公差所满足的等量关系式,解方程组,求得其值,之后再借助于等差数列的通项公式和求和公式求得相应的结果.详解:设等差数列的公差为,则由已知得:,即,解得, 所以,.15.【2018届江西省赣州市崇义中学高三上第二次月考】等差数列{}n a 满足113n n n a a a n -+++= ()2n ≥,函数()2xf x =, ()2log n n b f a =,则数列{}n b 的前项和为________【答案】()12n n +【解析】等差数列{}n a 满足()1132,33n n n n a a a n n a n -+++=≥∴=,即n a n =,函数()()2,2x n n f x f a =∴=,则12...n b b b +++= ()()()()22122log ...log 22...2nn f a f a f a ⎡⎤⋅=⨯⨯⨯⎣⎦()12...21log 22nn n ++++==,故答案为()12n n +.16.【2017届四川省广元市高三第三次统考】若数列是正项数列,且,则等于____________. A. B.C.D.【答案】17.【2018届宁夏平罗中学第四次(5月)模拟】已知数列的前项和为,且,,时,,则的通项公式___________.【答案】.【解析】由得.又,,∴.二、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)18.【福建省闽侯第二中学、连江华侨中学等五校教学联合体联考】已知为等差数列的前项和,且,.(1)求数列的通项公式;(2)设,求数列的前项和.【答案】(1);(2)【解析】(1)设等差数列的公差为,则由已知,得,解得,故;(2)由已知可得,.19.【2018届江西省横峰中学、铅山一中、德兴一中第一次月考】已知等差数列{}n a 的前n 项和为n S ,且5645,60S S ==.(Ⅰ)求数列{}n a 的通项公式n a ;(Ⅱ)若数列{}n b 满足()1*n n n b b a n N +-=∈,且13b =,求1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T . 【答案】(1) 23n a n =+ (2) 222352,4128n n n nb n n T n n +=+=++20.【2018届山东省临沂市沂水县第一中学第三轮考试】已知公差不为0的等差数列的前三项的和为15,且.(1)求数列的通项公式;(2)设,数列的前项和为,若恒成立,求实数的最小值.【答案】(1);(2)【解析】(1)依题意,即,即,故.又,即,故.故数列的通项公式.(2)依题意,.则,故恒成立,则,所以实数的最小值为.21.【2018届江苏省盐城中学全仿真模拟】已知正项数列的前项和为,其中.(I)若,求数列的通项公式;(I)若,求证: 是等差数列.【答案】(1);(2)证明见解析.【解析】当时有.两式相减得,整理得.又恒成立,则,所以是等差数列.22.【2018届黑龙江省齐齐哈尔八中高三第二次月考】(1)在等差数列中,已知,前项和为,且,求当取何值时,取得最大值,并求出它的最大值;(2)已知数列的通项公式是,求数列的前项和.【答案】(1);(2).。

2021年高考数学一轮复习讲练测(浙江版)专题6.3 等比数列及其前n项和(测)

2021年高考数学一轮复习讲练测(浙江版)专题6.3 等比数列及其前n项和(测)

班级__________ 姓名_____________ 学号___________ 得分__________一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的.) 1. 【2022届陕西省高三下学期教学质检二数学(理)】已知等比数列{}n a 的前n 项和为n S .若321510,9S a a a =+=,则1a =( )。

A .19 B .19- C .13D .13-【答案】A 【解析】试题分析:由已知可得⎪⎩⎪⎨⎧==+91041211q a q a a ,解之得⎪⎩⎪⎨⎧==3911q a ,应选A 。

2.【2022届福建厦门外国语学校高三5月适应性数学】我国明朝有名数学家程大位在其名著《算法统宗》中记载了如下数学问题:“远看巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”。

诗中描述的这个宝塔古称浮屠,本题说它一共有7层,每层悬挂的红灯数是上一层的2倍,共有381盏灯,那么塔顶有( )盏灯。

A .2B .3C .5D .6【答案】B【解析】3. 【海淀区高三年纪其次学期其中练习】在数列{}n a 中,“12,2,3,4,n n a a n -==”是“{}n a 是公比为2的等比数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【答案】B4. 【原创题】设等比数列{}n a 的前n 项和为n S ,满足0,1n a q >>,且3520a a +=,2664a a ⋅=,则5S =( )A .31B .36C .42D .48 【答案】A【解析】由已知得,3564a a ⋅=,又3520a a +=,则354,16a a ==,故24q =,2q =,11a =,所以55123112S -==-.5. 【改编题】函数21(3)y x =--图象上存在不同的三点到原点的距离构成等比数列,则以下不行能...成为公比的数是( ) A .21B 2.1 D .33【答案】A【解析】函数21(3)y x =--2,最大值为4,故2122q ≤≤,即22q ≤≤122<,因此选A. 6.【2022届四川凉山州高三第三次诊断数学】《庄子·天下篇》中记述了一个有名命题:“一尺之棰,日取其半,万世不竭.”反映这个命题本质的式子是( )A .21111122222n n +++⋅⋅⋅+=- B .211112222n +++⋅⋅⋅++⋅⋅⋅<C .21111222n ++⋅⋅⋅+=D .21111222n ++⋅⋅⋅++⋅⋅⋅<【答案】D 【解析】试题分析:据已知可得每次截取的长度构造一个以12为首项,以12为公比的等比数列, 21111112222n n ++⋅⋅⋅++⋅⋅⋅=-<.故反映这个命题本质的式子是21111222n ++⋅⋅⋅++⋅⋅⋅<.故选D7.【2022届安徽省安庆市高三第三次模拟考试数学】在等比数列{}n a 中,若720,2n a a >=,则31112a a +的最小值为( )A .22B .4C .8D .16 【答案】B 【解析】试题分析:由于720,2n a a >=,所以由基本不等式可得,231131171222224a a a a a +≥==,故选B. 8.【2022年高考冲刺卷(5)【浙江卷】理科】已知S n 是单调递减的等比数列{a n }的前n 项和,则( )A .S 2m ·S 2n ≤2n m S +,S 2m +S 2n ≤2S m +n B .S 2m ·S 2n ≤2n m S +,S 2m +S 2n ≥2S m +n C .S 2m ·S 2n ≥2n m S +,S 2m +S 2n ≤2S m +nD .S 2m ·S 2n ≥2n m S +,S 2m +S 2n ≥2S m +n【命题意图】这是一道数列的问题,主要考查了等比数列的概念、通项公式和前n 项和公式以及不等式等基础学问,还考查了基本运算力量. 【答案】B9.设等比数列}{n a 的前n 项和为n S ,若15m S -=,-11m S =,121m S +=,则=m ( ) A.3 B.4C.5D. 6【答案】C【解析】由已知得,116m m m S S a --==-,1132m m m S S a ++-==,故公比2q =-,又11m m a a qS q-=-11=-,故11a =-,又1116m m a a q-=⋅=-,代入可求得5m =. 10.【2022届河北省衡水高三下练习五】在等比数列{}n a 中,若25234535,44a a a a a a =-+++=,则23451111a a a a +++=( ) A .1 B .34- C .53- D .43- 【答案】C 【解析】试题分析:由于数列{}n a 为等比数列,所以2534234523452534251111a a a a a a a a a a a a a a a a a a ++++++++=+=⋅⋅⋅ 554334==--,故选C .11.若数列{}n a 满足211n n n na a k a a ++++=(k 为常数),则称数列{}n a 为“等比和数列”,k 称为公比和,已知数列{}n a 是以3为公比和的等比和数列,其中11a =,22a =,则2015a = ( )A. 1B. 2C. 10062D. 10072【答案】D 【解析】所以100720152=a .12.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11,n a S =是数列{}n a 的前n 项的和,则*216()3n n S n N a +∈+的最小值为 ( )A .4B .3C .232-D .92【答案】A . 【解析】试题分析:∵11a =,1313,,a a a 成等比数列,∴2(12)1(112)d d +=⋅+.得2d =或0d =(舍去),∴21n a n =-,∴2(121)2nn n S n +-==,∴2216216322n n S n a n ++=++.令1t n =+,则216926243n n S t a t +=+-≥-=+,故选A. 二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.)13. 【改编题】设n S 是等比数列}{n a 的前n 项和,若,13221=+a a 433a a =,则=+n n a S 2 . 【答案】1【解析】设等比数列}{n a 的公比为q ,由已知得,4313a q a ==,故1112313a a +⋅=,解得113a =,故 11332211113nn n n n n a S a a a a -+=+=-+=-.14. 【改编题】已知数列1,,9a 是等比数列,数列121,,,9b b 是等差数列,则12ab b +的值为 .【答案】310. 【解析】1,,9a 成等比数列,219,3a a ∴=⨯∴=.又121,,,9b b 是等差数列,121231910,10a b b b b +=+=∴=+. 15.【2022届上海市七宝高三模拟理科数学试卷】设()cos 2()cxf x ax bx x R =++∈,,,a b c R ∈且为常数,若存在一公差大于0的等差数列{}n x (*n N ∈),使得{()}n f x 为一公比大于1的等比数列,请写出满足条件的一组,,a b c 的值________.【答案】0,0,0a b c ≠=>(答案不唯一,一组即可) 【解析】试题分析:由题设可取1,0,1===c b a ,此时xx x f 2cos )(+=,存在数列25,23,2πππ,满足题设,应填答案1,0,1===c b a .16.已知{}n a 满足()*+∈⎪⎭⎫⎝⎛=+=N n a a a nn n 41,111, +⋅+⋅+=232144a a a S n 14-⋅n n a 类比课本中推导等比数列前项和公式的方法,可求得=-n n n a S 45___________. 【答案】n . 【解析】三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2022全国丙17】(本题满分10分)已知数列{}n a 的前n 项和1n S a =+,1n n S a λ=+.其中0λ≠. (1)证明{}n a 是等比数列,并求其通项公式; (2)若53132S =,求λ. 【答案】(1)()1*111n n a n λλλ-⎛⎫=∈ ⎪--⎝⎭N ;(2)1λ=-.【解析】(1)由题意得1111a S a λ==+,故1λ≠,111a λ=-,10a ≠. 由1n n S a λ=+,111n n S a λ++=+,得11n n n a a a λλ++=-,即()11n n a a λλ+-=.由10a ≠,0λ≠,得0n a ≠,所以11n n a a λλ+=-.因此{}n a 是首项为11λ-,公比为1λλ-的等比数列. 于是()1*111n n a n λλλ-⎛⎫=∈ ⎪--⎝⎭N .(2)由(1)得11nn S λλ⎛⎫=- ⎪-⎝⎭.由53132S =,得5311132λλ⎛⎫-= ⎪-⎝⎭,即51132λλ⎛⎫= ⎪-⎝⎭,解得1λ=-. 18.【改编题】已知等比数列{n a }的公比为q ,且满足1n n a a +<,1a +2a +3a =913,1a 2a 3a =271.(1)求数列{n a }的通项公式;(2)记数列{n a n ⋅-)12(}的前n 项和为n T ,求.n T故数列{n a }的通项公式为n a =131-n (n *N ∈) ………………6分(2)由(1)知n a n ⋅-)12(=1312--n n ,所以n T =1+33+235+⋯+1312--n n ①31n T =31+233+335+…+1332--n n +n n 312- ② ①-② 得:32n T =1+32+232+332+⋯+132-n -nn 312-=12+(31+231+331+⋯+131-n )-nn 312- =12+311)311(311--⋅-n -n n 312-=2-131-n -n n 312-,所以nT =3-131-+n n . 19.各项为正的数列{}n a 满足112a =,21,()n n n a a a n λ*+=+∈N , (1)取1n a λ+=,求证:数列1n n a a +⎧⎫⎨⎬⎩⎭是等比数列,并求其公比;(2)取2λ=时令12n n b a =+,记数列{}n b 的前n 项和为n S ,数列{}n b 的前n 项之积为n T ,求证:对任 意正整数n ,12n n n T S ++为定值.【答案】(1) 证明见解析,公比为1+52(2)定值为2 【解析】(2)由21111122222()n nn n n n n n n n a a a a a a a b a a +++=+⇒=+⇒==+ 所以+1121122311111111122222()()()()()()()n n n n n n n n a a a a T b b b a a a a a +++=⋅=== 211+1+1122111===222n n n n n n n n n n n n a a a a b a a a a a a a +++-=-所以12111111=2n n n n S a a a a a a ++=+++=--,故+12n n n T S +2=为定值. 20.已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++=,*n ∈N .(Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线112x y n n -=+上,若不等式1212911122n n nb b bm a a a a +++≥-++++对于*n ∈N 恒成立,求实数m 的最大值. 【答案】(Ⅰ)详见解析; (Ⅱ) 6116. 【解析】试题解析:(Ⅰ)由1231n n a a a a n a ++++++=,得12311(2)n n a a a a n a n -+++++-=≥ ,两式相减得121n n a a +=+, 所以112(1)n n a a ++=+ (2n ≥), 由于10a =,所以111a +=,21211a a =+=,2112(1)a a +=+ 所以{1}n a +是以1为首项,公比为2的等比数列 (Ⅱ)由(Ⅰ)得121n n a -=-,由于点1(,)n n T T +在直线112x y n n -=+上,所以1112n n T T n n +-=+,又11232527(4)(4)222n n n n n n ++------=, 故当3n ≤时,25{4}2nn --单调递减;当3n =时,323531428⨯--=; 当4n ≥时,25{4}2nn --单调递增;当4n =时,4245614216⨯--=; 则2542nn --的最小值为6116,所以实数m的最大值是6116 21.【2022届河南新乡名校学术联盟高三高考押题四理数学试卷】已知等比数列{}n a 中,11a =,且()24331a a a +=+.(1)求数列{}n a 的通项公式;(2)设32333431log log log log n n b a a a a +=+++⋅⋅⋅+,求数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和. 【答案】(1)13n n a -=;(2)21nn +. 【解析】试题分析:(1)用公比q 表示出234,,a a a ,即可求出q ,从而得通项公式;(2)由(1)13n n a -=,因此故()1211211n b n n n n ⎛⎫==- ⎪++⎝⎭12111111111122211223111n n b b b n n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-=-=⎪ ⎪ ⎪ ⎪⎢⎥+++⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,所以数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和为21nn +. 22.【2022届湖南师大附中高三上学期月考六数学(理)试卷】设数列{}n x 的前n 项和为n S ,若存在非零常数p ,使对任意n *∈N 都有2nnS p S =成立,则称数列{}n x 为“和比数列”.(1)若数列{}n a 是首项为2,公比为4的等比数列,推断数列{}2log n a 是否为“和比数列”; (2)设数列{}n b 是首项为2,且各项互不相等的等差数列,若数列{}n b 是“和比数列”,求数列{}n b 的 通项公式.【答案】(1)是,证明见解析;(2)()24142n b n n =+-=- 【解析】试题分析:(1)已知可得121242n n n a --=⋅=2log 21n a n ⇒=-()21212n n S n n +-⇒=⋅=24n n SS ⇒=;(2)由已知可得前n 项和()122n n n n d -T =+()()()()222148*********n n n n n d n d p n n n d n d-++-T ⇒===-T +-+恒成立()222142n n n n d -T =+,所以()()()()222148*********n n n n n d n d n n n d n d-++-T ==-T +-+由于{}n b 是“和比数列”,则存在非零常数p ,使()()822141n dp n d+-=+-恒成立.即()()822141n d p n d +-=+-⎡⎤⎣⎦,即()()()4240p dn p d -+--=恒成立.所以()()()40240p d p d -=⎧⎪⎨--=⎪⎩由于0d ≠,则4p =,4d =所以数列{}n b 的通项公式是()24142n b n n =+-=-。

浙江专用2021届高考数学一轮复习专题六数列6.2等差数列试题含解析

浙江专用2021届高考数学一轮复习专题六数列6.2等差数列试题含解析

§6.2 等差数列基础篇固本夯基【基础集训】考点一 等差数列的有关概念及运算1.已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3 B.-52 C.-2 D.-4答案 D2.已知在等差数列{a n }中,a 1=1,a 3=2a+1,a 5=3a+2,若S n =a 1+a 2+…+a n ,且S k =66,则k 的值为 ( ) A.9 B.11 C.10 D.12 答案 B3.设等差数列{a n }满足3a 8=5a 15,且a 1>0,S n 为其前n 项和,则数列{S n }的最大项为( ) A.S 23 B.S 24 C.S 25 D.S 26 答案 C4.已知数列{a n }满足a 1=12,且a n+1=2an2+a n.(1)求证:数列{1a n}是等差数列;(2)若b n =a n a n+1,求数列{b n }的前n 项和S n . 解析 (1)证明:易知a n ≠0,∵a n+1=2a n 2+a n,∴1an+1=2+a n 2a n,∴1an+1-1a n=12,又∵a 1=12,∴1a 1=2,∴数列{1a n}是以2为首项,12为公差的等差数列.(2)由(1)知,1a n=2+12(n-1)=n+32,即a n =2n+3,∴b n =4(n+3)(n+4)=4(1n+3-1n+4),∴S n =4[(14-15)+(15-16)+…+(1n+3-1n+4)] =4(14-1n+4)=nn+4.考点二 等差数列的性质5.设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S11S 9=( )A.1B.-1C.2D.12答案 A6.(2018河北唐山第二次模拟,7)设{a n }是任意等差数列,它的前n 项和、前2n 项和与前4n 项和分别为X,Y,Z,则下列等式中恒成立的是( ) A.2X+Z=3Y B.4X+Z=4YC.2X+3Z=7YD.8X+Z=6Y 答案 D7.已知数列{a n }是公差为d 的等差数列,S n 为其前n 项和,若S 2 0172 017-S 1717=100,则d 的值为( )A.120B.110C.10D.20答案 B8.在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8= . 答案 749.已知A n 及B n 是等差数列{a n }、{b n }的前n 项和,且An B n =3n+14n+1,则a 11b 11= .答案648510.已知数列{a n }是等差数列.(1)前四项和为21,末四项和为67,且各项和为286,求项数;(2)项数为奇数,奇数项和为44,偶数项和为33.求数列的中间项和项数.解析 (1)由已知得a 1+a 2+a 3+a 4=21,a n-3+a n-2+a n-1+a n =67,∴a 1+a 2+a 3+a 4+a n-3+a n-2+a n-1+a n =88,∴a 1+a n =884=22.∵S n =286,∴n (a 1+a n )2=286,∴11n=286,∴n=26.(2)解法一:设项数为2k+1,则a 1+a 3+…+a 2k+1=44=k+12(a 1+a 2k+1),a 2+a 4+…+a 2k =33=k2(a 2+a 2k ),又∵a 1+a 2k+1=a 2+a 2k ,∴k+1k=4433,∴k=3,项数为7,∴中间项为a 1+a 2k+12=11.解法二:记等差数列{a n }的中间项为a 中,奇数项和为S 奇,偶数项和为S 偶,前n 项和为S n .根据题意得{S 偶+S 奇=S n ,S 奇-S 偶=a 中,∴S n =77,a 中=11,又na 中=S n ,∴n=7.综合篇知能转换【综合集训】考法一 等差数列的判定与证明1.(2018山东济宁一模,11)设数列{a n }满足a 1=1,a 2=2,且2na n =(n-1)a n-1+(n+1)a n+1(n≥2且n∈N *),则a 18=( ) A.259 B.269 C.3 D.289答案 B2.(2019河北冀州模拟,9)已知{a n },{b n }均为等差数列,且a 2=4,a 4=6,b 3=3,b 7=9,由{a n },{b n }的公共项组成新数列{c n },则c 10=( )A.18B.24C.30D.36 答案 C3.设数列{a n }的前n 项和为S n ,且S n =2n-1.数列{b n }满足b 1=2,b n+1-2b n =8a n . (1)求数列{a n }的通项公式;(2)证明数列{bn2n }为等差数列,并求{b n }的通项公式. 解析 (1)当n=1时,a 1=S 1=21-1=1;当n≥2时,a n=S n-S n-1=(2n-1)-(2n-1-1)=2n-1. 因为a1=1适合上式,所以a n=2n-1(n∈N*).(2)因为b n+1-2b n=8a n,所以b n+1-2b n=2n+2,即b n+12n+1-b n2n=2.又b121=1,所以{b n2n}是首项为1,公差为2的等差数列,所以b n2n=1+2(n-1)=2n-1.所以b n=(2n-1)×2n.考法二等差数列前n项和的最值问题4.(2018江西赣中南五校联考,4)在等差数列{a n}中,已知a3+a8>0,且S9<0,则S1、S2、…、S9中最小的是( )A.S5B.S6C.S7D.S8答案 A5.(2018广东汕头模拟,8)已知等差数列{a n}的前n项和为S n,a1=9,S99-S55=-4,则S n取最大值时的n为( )A.4B.5C.6D.4或5答案 B6.(2018湖南永州三模,11)已知数列{a n}是等差数列,前n项和为S n,满足a1+5a3=S8,给出下列结论:①a10=0;②S10最小;③S7=S12;④S20=0.其中一定正确的结论是( )A.①②B.①③④C.①③D.①②④答案 C7.(2018广东深圳期末,14)设等差数列{a n}的前n项和为S n,若a1=-11,a4+a6=-6,则当S n取最小值时,n= .答案 6【五年高考】考点一等差数列的有关概念及运算1.(2016课标Ⅰ,3,5分)已知等差数列{a n}前9项的和为27,a10=8,则a100=( )A.100B.99C.98D.97答案 C2.(2018课标Ⅰ,4,5分)记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=( )A.-12B.-10C.10D.12答案 B3.(2017课标Ⅰ,4,5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为( )A.1B.2C.4D.8答案 C4.(2017课标Ⅲ,9,5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为( )A.-24B.-3C.3D.8答案 A5.(2019课标Ⅰ,9,5分)记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则( )A.a n=2n-5B.a n=3n-10C.S n=2n2-8nD.S n=12n2-2n答案 A6.(2019课标Ⅲ,14,5分)记S n为等差数列{a n}的前n项和,若a1≠0,a2=3a1,则S10S5= .答案 47.(2018北京,9,5分)设{a n}是等差数列,且a1=3,a2+a5=36,则{a n}的通项公式为.答案 a n =6n-38.(2019江苏,8,5分)已知数列{a n }(n∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是 . 答案 169.(2019北京,10,5分)设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5= ,S n 的最小值为 . 答案 0;-1010.(2018课标Ⅱ,17,12分)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15. (1)求{a n }的通项公式; (2)求S n ,并求S n 的最小值.解析 (1)设{a n }的公差为d,由题意得3a 1+3d=-15. 由a 1=-7得d=2.所以{a n }的通项公式为a n =2n-9.(2)由(1)得S n =n 2-8n=(n-4)2-16.所以当n=4时,S n 取得最小值,最小值为-16.11.(2016天津,18,13分)已知{a n }是各项均为正数的等差数列,公差为d.对任意的n∈N *,b n 是a n 和a n+1的等比中项.(1)设c n =b n+12-b n 2,n∈N *,求证:数列{c n }是等差数列; (2)设a 1=d,T n =∑k=12n(-1)kb k 2,n∈N *,求证:∑k=1n1T k<12d 2.证明 (1)由题意得b n 2=a n a n+1,有c n =b n+12-b n 2=a n+1·a n+2-a n a n+1=2da n+1,因此c n+1-c n =2d(a n+2-a n+1)=2d 2, 所以{c n }是等差数列.(2)T n =(-b 12+b 22)+(-b 32+b 42)+…+(-b 2n -12+b 2n 2) =2d(a 2+a 4+…+a 2n )=2d·n (a 2+a 2n )2=2d 2n(n+1). 所以∑k=1n1T k =12d 2∑k=1n1k (k+1)=12d 2∑k=1n(1k -1k+1)=12d 2·(1-1n+1)<12d 2. 考点二 等差数列的性质12.(2015广东,10,5分)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8= . 答案 10教师专用题组考点一 等差数列的有关概念及运算1.(2016浙江,6,5分)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n+1|=|A n+1A n+2|,A n ≠A n+2,n∈N *,|B n B n+1|=|B n+1B n+2|,B n ≠B n+2,n∈N *.(P≠Q 表示点P 与Q 不重合)若d n =|A n B n |,S n 为△A n B n B n+1的面积,则( )A.{S n }是等差数列B.{S n 2}是等差数列C.{d n }是等差数列D.{d n 2}是等差数列答案 A2.(2015浙江,3,5分)已知{a n }是等差数列,公差d 不为零,前n 项和是S n .若a 3,a 4,a 8成等比数列,则( )A.a1d>0,dS4>0B.a1d<0,dS4<0C.a1d>0,dS4<0D.a1d<0,dS4>0答案 B3.(2013课标Ⅰ,7,5分)设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,S m+1=3,则m=( )A.3B.4C.5D.6答案 C4.(2016江苏,8,5分)已知{a n}是等差数列,S n是其前n项和.若a1+a22=-3,S5=10,则a9的值是.答案205.(2014课标Ⅰ,17,12分)已知数列{a n}的前n项和为S n,a1=1,a n≠0,a n a n+1=λS n-1,其中λ为常数,(1)证明:a n+2-a n=λ;(2)是否存在λ,使得{a n}为等差数列?并说明理由.解析(1)证明:由题设a n a n+1=λS n-1,知a n+1a n+2=λS n+1-1.两式相减得,a n+1(a n+2-a n)=λa n+1.由于a n+1≠0,所以a n+2-a n=λ.(2)存在.由a1=1,a1a2=λa1-1,可得a2=λ-1,由(1)知,a3=λ+1.令2a2=a1+a3,解得λ=4.故a n+2-a n=4,由此可得,{a2n-1}是首项为1,公差为4的等差数列,a2n-1=1+(n-1)·4=4n-3;{a2n}是首项为3,公差为4的等差数列,a2n=3+(n-1)·4=4n-1.所以a n=2n-1,a n+1-a n=2.因此存在λ=4,使得{a n}为等差数列.思路分析(1)已知a n a n+1=λS n-1,用n+1代替n得a n+1·a n+2=λS n+1-1,两式相减得结论.(2)利用a1=1,a2=λ-1,a3=λ+1及2a2=a1+a3,得λ=4.进而得a n+2-a n=4.故数列{a n}的奇数项和偶数项分别组成公差为4的等差数列,分别求通项公式,进而求出{a n}的通项公式,从而证出等差数列.方法总结对于含a n、S n的等式的处理,往往可转换为关于a n的递推式或关于S n的递推式;对于存在性问题,可先探求参数的值再证明.考点二等差数列的性质6.(2015陕西,13,5分)中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为.答案 57.(2013课标Ⅱ,16,5分)等差数列{a n}的前n项和为S n.已知S10=0,S15=25,则nS n的最小值为.答案-49【三年模拟】一、单项选择题(每题5分,共40分)1.(2020届云南陆良第二次教学质量摸底考,3)已知{a n}为等差数列,若a3+a4+a8=12,则S9=( )A.24B.27C.36D.54答案 C2.(2020届四川宜宾四中开学考,4)已知等差数列{a n}中,a2、a2 016是方程x2-2x-2=0的两根,则S2 017=( )A.-2 017B.-1 008C.1 008D.2 017答案 D3.(2020届河北邯郸大名一中第六周周测,4)设{a n}是等差数列,则下列结论一定正确的是( )A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a2+a3<0C.若0<a1<a2,则a2>√a1a3D.(a2-a1)(a2-a3)<0答案 C4.(2019 5·3原创冲刺卷一,4)已知等差数列{a n}的前n项和为S n,S2=3,S3=6,则S2n+1=( )A.(2n+1)(n+1)B.(2n+1)(n-1)C.(2n-1)(n+1)D.(2n+1)(n+2)答案 A5.(2018安徽合肥第二次教学质量检测,5)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤答案 B6.(2019湖北宜昌一模,8)等差数列{a n}的前n项和为S n,若公差d>0,(S8-S5)(S9-S5)<0,则( )A.a7=0B.|a7|=|a8|C.|a7|>|a8|D.|a7|<|a8|答案 D7.(2018湖南三湘名校教育联盟第三次联考,5)已知等差数列{a n}的各项都为整数,且a1=-5,a3a4=-1,则|a1|+|a2|+…+|a10|=( )A.70B.58C.51D.40答案 B8.(2018安徽淮北一模,9)S n是等差数列{a n}的前n项和,S2 018<S2 016,S2 017<S2 018,则S n<0时n的最大值是( )A.2 017B.2 018C.4 033D.4 034答案 D二、多项选择题(每题5分,共10分)9.(改编题)设等差数列{a n}满足a3+a7=36,a4a6=275,则( )A.a n=7n-17B.a n=-7n+53C.a n a n+1的最小值为-12D.a n a n+1无最小值答案ABC10.(改编题)记S n为等比数列{a n}的前n项和,已知S2=2,S3=-6,则( )A.a n=(-2)nB.S n+1,S n,S n+2成等差数列C.a n=-2nD.S n+1,S n,S n+2不成等差数列答案AB三、填空题(每题5分,共15分)11.(2020届河北邯郸大名一中周测,14)设等差数列{a n}的前n项和为S n,若a2=3,S4=16,则数列{a n}的公差d= .答案 212.(2019上海嘉定(长宁)二模,11)已知有穷数列{a n}共有m项,记数列{a n}的所有项的和为S(1),第二项及以后所有项的和为S(2),……,第n(1≤n≤m)项及以后所有项的和为S(n),若S(n)是首项为1,公差为2的等差数列的前n项和,则当1≤n<m时,a n= .答案-2n-113.(2018河南六市第一次联考,16)已知正项数列{a n}的前n项和为S n,若{a n}和{√S n}都是等差数列,且公差相等,则a2= .答案34四、解答题(共25分)14.(2020届四川宜宾四中开学考,18)已知数列{a n}的首项a1=1,2a n a n+1=a n-a n+1(n∈N*).(1)证明:数列{1a n}是等差数列;(2)设b n=a n a n+1,数列{b n}的前n项和为S n,求证:S n<12.证明(1)由于a1=1,2a n a n+1=a n-a n+1,显然a n a n+1≠0,所以两边同除以a n a n+1可得,1a n+1-1a n=2,所以数列{1a n}是1为首项,2为公差的等差数列.(2)由(1)知,1a n=1+(n-1)×2=2n -1,所以a n =12n -1.所以b n =a n a n+1=1(2n -1)(2n+1)=12(12n -1-12n+1),所以S n =12[(1-13)+(13-15)+…+(12n -1-12n+1)]=12(1-12n+1)<12.15.(2019湖北武汉外国语学校3月模拟,17)若数列{a n }的前n 项和为S n ,首项a 1>0且2S n =a n 2+a n (n∈N *). (1)求数列{a n }的通项公式;(2)若a n >0(n∈N *),令b n =1a n (a n +2),求数列{b n }的前n 项和T n .解析 (1)当n=1时,2S 1=a 12+a 1=2a 1,又a 1>0,则a 1=1,当n≥2时,a n =S n -S n-1=a n 2+a n 2-a n -12+a n -12,即(a n +a n-1)(a n -a n-1-1)=0⇒a n =-a n-1或a n =a n-1+1,∴a n =(-1)n-1或a n =n. (2)∵a n >0,∴a n =n,∴b n =1n (n+2)=12(1n -1n+2),∴T n =12[(1-13)+(12-14)+…+(1n -1n+2)]=121+12-1n+1-1n+2=34-2n+32(n+1)(n+2).。

浙江专用高考数学一轮总复习专题6数列6.2等差数列课件

浙江专用高考数学一轮总复习专题6数列6.2等差数列课件

(3)数列{an}的前n项和Sn=An2+Bn(A,B为常数)是{an}成等差数列的② 充要条件 .
(4)等差数列的单调性
③ d>0 ⇔{an}为递增数列,Sn有最小值. ④ d<0 ⇔{an}为递减数列,Sn有最大值.
d=0⇔{an}为常数列. (5)若{an}和{bn}均是等差数列,则{man+kbn}仍为等差数列,m,k为常数. (6)等差数列中依次k项的和成等差数列,即Sk,S2k-Sk,S3k-S2k,…成等差数列, 公差为k2d. (7)项数为偶数2n的非零等差数列{an},有 S2n=n(a1+a2n)=n(a2+a2n-1)=…=n(an+an+1)(an与an+1为中间的两项),
3n 6
4
.
解题导引
(1)
(2) (3)
解析 (1)证明:当b=1时,an+1= an2 2an 3 +1,由题意得(an+1-1)2-(an-1)2=2, 又(a1-1)2=0,∴数列{(an-1)2}是首项为0,公差为2的等差数列.
(2)显然an>0,an+1= an2 2an 3 -1. ∵f(x)= x2 2x 3 -1在x∈[0,1]上单调递减,
2 2
5 2 3 2
2
2
a2n1
1 2
<
1 4
a2
n1
1 2
,

a1
1 2
+
a3
1 2
+…+
a2n1
1 2
<
1 2
+
1 2
×
1 4
+…+

2021届高考数学(浙江专用)一轮试题:§6.1 数列的概念及其表示 Word版含解析

2021届高考数学(浙江专用)一轮试题:§6.1 数列的概念及其表示 Word版含解析

专题六数列【考情探究】课标解读考情分析备考指导主题内容一、数列的概念及其表示1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类函数.从近几年高考情况来看,数列问题每年都考查,难度中等.考查内容主要集中在两个方面:一是以选择题或填空题的形式考查等差、等比数列的运算和性质,题目多为常规试题;二是等差、等比数列的通项与求和问题,近两年结合概率、统计、函数、不等式等进行综合考查,涉及内容较为全面,题型新颖、方法灵活多变.1.解决等差(比)数列的基本问题时,要灵活利用等差、等比数列的定义、通项公式及前n项和公式,利用基本量法求解.2.数列的通项与求和是高考常考内容,其中求通项是求和的基础.3.重视方程、函数、分类讨论思想的应用.(1)方程思想:等差(比)数列中,由五个量a1,d(q),n,a n,S n中的三个量可求出其余两个量,要求选用公式要恰当,善于应用性质,减少计算量.(2)函数思想:在等差数列中,当d≠0时,a n与自变量n为一次函数关系.S n与n的关系:当d=0时,S n=na1为一次函数;当d≠0时,S n=d2n2+(a1-d2)n为二次函数.在等比数列中,通项公式a n=a1q n-1可化为a n=a1q·q n,这是指数型函数.(3)分类讨论思想:当q=1时,{a n}的前n项和S n=na1;当q≠1时,{a n}的前n项和S n=a1(1-q n)1-q=a1-a n q1-q.等比数列的前n项和公式涉及对公比q的分类讨论,此处是易错点.二、等差数列1.理解等差数列的概念.2.掌握等差数列的通项公式与前n项和公式.3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应问题.4.了解等差数列与一次函数的关系.三、等比数列1.理解等比数列的概念.2.掌握等比数列的通项公式与前n项和公式.3.能在具体问题情境中识别数列的等比关系,并能用等比数列的有关知识解决相应问题.4.了解等比数列与指数函数的关系.四、数列求和及综合应用1.掌握数列求和的几种常见方法.2.能在具体的问题情境中识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.【真题探秘】§6.1 数列的概念及其表示基础篇固本夯基【基础集训】考点 数列的概念及其表示1.数列1,23,35,47,59,…的一个通项公式a n =( ) A.n2n+1B.n 2n -1 C.n 2n -3D.n2n+3答案 B2.已知数列{a n }满足:∀m,n ∈N *,都有a n ·a m =a n+m ,且a 1=12,那么a 5=( ) A.132B.116C.14D.12答案 A3.已知数列{a n }的前n 项和为S n ,且a 1=1,S n =(n+1)a n2,则a 2 017=( )A.2 016B.2 017C.4 032D.4 034 答案 B4.在数列{a n }中,a 1=-14,a n =1-1a n -1(n ≥2,n ∈N *),则a 2 018的值为( )A.-14B.5C.45D.54答案 B5.已知数列{a n }满足a n+1=a n -a n-1(n ≥2),a 1=m,a 2=n,S n 为数列{a n }的前n 项和,则S 2 017的值为( ) A.2 017n-m B.n-2 017m C.m D.n 答案 C综合篇知能转换【综合集训】考法一 利用S n 与a n 的关系求通项公式1.(2018山东省实验中学期中,5)若数列{a n }满足a 1+a 2+a 3+…+a n =3n-2,那么这个数列的通项公式为( ) A.a n =2×3n-1B.a n =3×(12)n -1C.a n =3n-2D.a n ={1,n =12×3n -1,n ≥2。

[创新方案](浙江专版)2021届高考数学一轮复习 5.5 数列的综合

[创新方案](浙江专版)2021届高考数学一轮复习 5.5 数列的综合

[创新方案](浙江专版)2021届高考数学一轮复习 5.5 数列的综合[创新方案](浙江专版)2021届高考数学一轮复习5.5数列的综合限时训练(31)序列的综合(限时:50分钟满分:106分)一、多项选择题(本大题共8个子题,每个子题5分,共40分)1.等差数列{an}中,a3+a11=8,数列{bn}是等比数列,且b7=a7,则b6b8的值()a.2c.8b、 4d.1622.让项数为8的等比序列的中间两项等于2x+7x+4=0的两项,则序列项的乘积为()a.64c.32b、 3d.163.数列{an}是公差不为0的等差数列,且a1,a3,a7为等比数列{bn}中连续的三项,则数列{bn}的公比为()a、 2c.2b.41d.二*4.(2022年泉州模拟)如果A1=1,log2an+1=log2an+1(n∈ n),其前n项之和为Sn,则Sn>1025的最小n值为()a.9c.11b、 10d.12*5.(2022杭州模拟)在正项比例序列{an}中,有两项am,an(m,n)∈ n)所以aman=4a1,15且a7=a6+2a5,则+的最小值是()mn7a。

4c。

二百五十六b.1+25d.三536.根据市场调查结果,预测从年初开始的n个月内,一种家用商品的累计需求Sn (10000件)大致满足Sn=(21n-n-5)(n=1,2,?,12)的关系。

根据这一预测,今年的需求90超过1.5万件的月份是()a、 5月和6月约7日和8月b.6、7月d.8、9月n217.序列{an}an=n的一般项?cosa.470c.49522nπ3-sin2nπ?3.,其前n项和为sn,则s30为()b、公元490年510*8.(2022株洲模拟)在序列{an}中,对于任何n∈ n、有一种叫做“等差比序列”的序列。

以下是“等差比序列”的判断:①k不可能为0;② 算术序列必须是算术比率序列;③ 等比序列必须是等差比序列;an+2-an+1=K(K是常数),那么an+1-an④通项公式为an=ab+c(a≠0,b≠0,1)的数列一定是等差比数列.其中正确的判断为()a.①②b。

2021年高考数学分项汇编 专题6 数列(含解析)文

2021年高考数学分项汇编 专题6 数列(含解析)文

2021年高考数学分项汇编专题6 数列(含解析)文一.基础题组1. 【xx课标全国Ⅰ,文6】设首项为1,公比为的等比数列{a n}的前n项和为S n,则( ).A.S n=2a n-1 B.S n=3a n-2 C.S n=4-3a n D.S n=3-2a n【答案】:D2. 【xx全国1,文6】已知数列{a n}的前n项和为S n,a1=1,S n=2a n+1,则S n=( )A.2n-1 B. C. D.【答案】B3. 【2011全国1,文6】设为等差数列的前项和,若,公差,,则 ( )(A)8 (B)7 (C)6 (D)5【答案】D4. 【xx全国1,文4】已知各项均为正数的等比数列{a n}中,a1a2a3=5,a7a8a9=10,则a4a5a6等于( ) A.5 B.7 C.6 D.4【答案】:A5. 【xx全国1,文7】已知等比数列满足,则()A.64 B.81 C.128 D.243【答案】A6. 【xx全国卷Ⅰ,文14】设等差数列{a n}的前n项和为S n.若S9=72,则a2+a4+a9=__________. 【答案】:247. 【xx全国1,文17】已知是递增的等差数列,,是方程的根。

(I)求的通项公式;(II)求数列的前项和.8. 【xx全国1,文18】已知数列{a n}中,a1=1,前n项和.(1)求a2,a3;(2)求{a n}的通项公式.9. 【2011全国1,文17】10. 【xx全国1,文17】记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.11. 【xx全国卷Ⅰ,文17】设等差数列{a n}的前n项和为S n,公比是正数的等比数列{b n}的前n项和为T n,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{a n},{b n}的通项公式.12. 【xx全国1,文19】在数列中,,.(Ⅰ)设.证明:数列是等差数列;(Ⅱ)求数列的前项和.13. 【xx全国1,文21】(本小题满分12分)设是等差数列,是各项都为正数的等比数列,且,,(Ⅰ)求、的通项公式;(Ⅱ)求数列的前n项和。

(浙江版)高考数学一轮复习专题6.2等差数列及其前n项和(讲)(2021学年)

(浙江版)高考数学一轮复习专题6.2等差数列及其前n项和(讲)(2021学年)

(浙江版)2018年高考数学一轮复习专题6.2 等差数列及其前n项和(讲) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((浙江版)2018年高考数学一轮复习专题6.2等差数列及其前n项和(讲))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(浙江版)2018年高考数学一轮复习专题6.2 等差数列及其前n项和(讲)的全部内容。

第02节 等差数列及其前n项和【考纲解读】【知识清单】一.等差数列的有关概念1.定义:等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示.用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥。

2.等差数列的通项公式:1(1)n a a n d =+-;说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列.3。

等差中项的概念:定义:如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项,其中2a bA += 。

a ,A ,b 成等差数列⇔2a bA +=。

4。

等差数列的前n 和的求和公式:11()(1)22n n n a a n n S na d +-==+。

5。

要注意概念中的“从第2项起".如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列. 6。

注意区分等差数列定义中同一个常数与常数的区别. 对点练习:【2017届浙江省温州市二模】在等差数列中,若,则_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10.(2019·丽水模拟)已知等差数列{an}的公差 d≠0,且 a1,a3,a9 构成等比数列{bn}的前 3
1
项,则 a1+a3+a9 =______;若 d=2,则数列{bn}的前 n 项的和 Sn=______. a2+a4+a10
11.设公差不为零的等差数列{an}的前 n 项和为 Sn,若 a2+am=18,S13=117,则 m 等于( )
∴a2+am=a1+a13,∵数列{an}的公差不为零,∴am=a12,即 m=12.] 12.D [由 an+2=2an+1-an(n∈N*),得 an+2-an+1=an+1-an, ∴数列{an}为等差数列,设其公差为 d, ∵a1=8,a4=2,∴3d=2-8=-6, 解得 d=-2,
∴a10=a1+9d=8-18=-10,S5=5a1+5×4d=40-20=20, 2
A.10 B.6 C.8 D.12
4.在等差数列{an}中,Sn 是其前 n 项和,若 a3+a8=5,S9=45,则 S11 等于( )
A.0 B.10 C.20 D.25
5.在等差数列{an}中,若 S1=1,S5=15,则2S2001199 等于(
)
A.2 019
B.1
C.1 009
D.1 010
∴λ=aS150=-2100=-2.] 13.A [由等差数列的求和公式及性质,
可得
S2
020=2
020(a1+a2 2
020)
=1 010(a1 010+a1 011)>0,
所以 a1 010+a1 011>0, 同理可得 a1 011<0, 所以 a1 010>0,a1 011<0,且 a1 010>|a1 011|,d<0, 对任意正整数 n,都有|an|≥|ak|, 则 k=1 011.]
020= 4×2
3

020-1 8
3 .] 079
15.2 2 7 6n-5
16.an= n 119 解析 由题意得数列{a2n}为等差数列,首项为 1,公差为 1,an>0. ∴a2n=1+(n-1)=n. 则数列{an}的通项公式为 an= n.
又1= an+an+1
1= n+ n+1
n+1-
n.
6.设
Sn
是等差数列{an}的前
n
项和,若S4=1,则 S8 等于( S8 5 S16
)
A.1 B.1 C. 5 D. 5 3 5 13 22
7.(2020·温州模拟)在等差数列{an}中,已知 a7>0,a3+a9<0,则{an}的前 n 项和 Sn 的最小值
为( )
A.S4 B.S5 C.S6 D.S7
14.A [由题意知数列{an}满足:
an=2aann--22-ana-n1-1(n∈N*,n>2),
可得 1 + 1 = 2 , an an-2 an-1
1 所以数列 an 是等差数列,
其公差 d= 1 - 1 =7-1=4,
a2 a1 3
3
所以 1 =1+4(n-1)=4n-1,
an
3
3
3
a2
数 n,都有|an|≥|ak|,则 k 的值为( )
A.1 011 B.1 007 C.1 008 D.1 009
14.(2020·浙江省宁波市慈溪市月考)已知数列{an}满足:an= an-2an-1 (n∈N*,n>2),若 a1 2an-2-an-1
=1,a2=37,则 a2 020 等于(
)
A. 3 B. 3 C. 5 D. 5 8 079 6 054 6 058 4 036
15.在数列{an}中,已知 a1=2,an+1=3aan+n 1(n∈N*),则 a2=________,an=________.
16.(2019·浙江省名校协作体联考)已知数列{an}中,a1=1,an= a2n-1+1(n≥2,n∈N*),则
8.将正整数按如图所示进行排列,则图中
B.第 45 行第 83 列
C.第 44 行第 84 列
D.第 45 行第 84 列
9.已知数列{an}满足:a1=1,a2=1, 2 = 1 + 1 (n∈N*),则 a2 020=________. 2 an+1 an an+2
1.已知数列{an}是等差数列,数列{bn}分别满足下列各式,其中数列{bn}必为等差数列的是
() A.bn=|an|
B.bn=a2n
C.bn=a1n
D.bn=-a2n
2.在等差数列{an}中,已知 a1=2,a2+a3=16,则 a4+a5+a6 等于( )
A.50 B.52 C.54 D.56
3.等差数列 1+x,2x+2,5x+1,…的第四项等于( )
A.10 B.11 C.12 D.13
12.已知数列{an}的前 n 项和为 Sn,a1=8,a4=2 且满足 an+2=2an+1-an(n∈N*),若 S5=λa10,
则λ的值为( )
A.-1 B.-3 C.-1 D.-2
3
2
13.(2020·杭州调研)设等差数列{an}的前 n 项和为 Sn,且满足 S2 020>0,S2 021<0,对任意正整
数列{an}的通项公式为________;若 1 + 1 +…+ 1 <10,则 n 的最大值为
a1+a2 a2+a3
an+an+1
________.
2
答案精析
1.D 2.C 3.C 4.A 5.D 6.D 7.C
8.D 9. 1 10.13 3n-1 2 020 16
11.C [∵S13=117,∴13a1+a13=117,∴a1+a13=18.∵a2+am=18, 2
∴ 1 + 1 +…+ 1
a1+a2 a2+a3
an+an+1
= 2-1+ 3- 2+…+ n+1- n
= n+1-1<10,
∴ n+1<11,解得 n<120,则 n 的最大值为 119.
4
相关文档
最新文档