2020-2021全国各地中考数学分类:一元二次方程组综合题汇编含详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021全国各地中考数学分类:一元二次方程组综合题汇编含详细答案
一、一元二次方程
1.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2008年底全市汽车拥有量为14.4万辆.已知2006年底全市汽车拥有量为10万辆.
(1)求2006年底至2008年底我市汽车拥有量的年平均增长率;
(2)为保护城市环境,要求我市到2010年底汽车拥有量不超过15.464万辆,据估计从2008年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)
【答案】详见解析
【解析】
试题分析:(1)主要考查增长率问题,一般用增长后的量=增长前的量×(1+增长率)解决问题;
(2)参照增长率问题的一般规律,表示出2010年的汽车拥有量,然后根据关键语列出不等式来判断正确的解.
试题解析:(1)设年平均增长率为x,根据题意得:
10(1+x)2=14.4,
解得x=﹣2.2(不合题意舍去)x=0.2,
答:年平均增长率为20%;
(2)设每年新增汽车数量最多不超过y万辆,根据题意得:
2009年底汽车数量为14.4×90%+y,
2010年底汽车数量为(14.4×90%+y)×90%+y,
∴(14.4×90%+y)×90%+y≤15.464,
∴y≤2.
答:每年新增汽车数量最多不超过2万辆.
考点:一元二次方程—增长率的问题
2.阅读下列材料
计算:(1﹣﹣)×(+)﹣(1﹣﹣)(+),令+=t,则:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣+t2=
在上面的问题中,用一个字母代表式子中的某一部分,能达到简化计算的目的,这种思想方法叫做“换元法”,请用“换元法”解决下列问题:
(1)计算:(1﹣﹣)×(+)﹣(1﹣﹣)×(+)
(2)因式分解:(a2﹣5a+3)(a2﹣5a+7)+4
(3)解方程:(x2+4x+1)(x2+4x+3)=3
【答案】(1);(2)(a2﹣5a+5)2;(3)x1=0,x2=﹣4,x3=x4=﹣2
【解析】
【分析】
(1)仿照材料内容,令+=t代入原式计算.
(2)观察式子找相同部分进行换元,令a2﹣5a=t代入原式进行因式分解,最后要记得把t换为a.
(3)观察式子找相同部分进行换元,令x2+4x=t代入原方程,即得到关于t的一元二次方程,得到t的两个解后要代回去求出4个x的解.
【详解】
(1)令+=t,则:
原式=(1﹣t)(t+)﹣(1﹣t﹣)t=t+﹣t2﹣﹣t+t2+=
(2)令a2﹣5a=t,则:
原式=(t+3)(t+7)+4=t2+7t+3t+21+4=t2+10t+25=(t+5)2=(a2﹣5a+5)2
(3)令x2+4x=t,则原方程转化为:
(t+1)(t+3)=3
t2+4t+3=3
t(t+4)=0
∴t1=0,t2=﹣4
当x2+4x=0时,
x(x+4)=0
解得:x1=0,x2=﹣4
当x2+4x=﹣4时,
x2+4x+4=0
(x+2)2=0
解得:x3=x4=﹣2
【点睛】
本题考查用换元法进行整式的运算,因式分解,解一元二次方程.利用换元法一般可达到降次效果,从而简便运算.
3.已知:关于x的方程x2-4mx+4m2-1=0.
(1)不解方程,判断方程的根的情况;
(2)若△ABC为等腰三角形,BC=5,另外两条边是方程的根,求此三角形的周长.2
【答案】(1) 有两个不相等的实数根(2)周长为13或17
【解析】
试题分析:(1)根据方程的系数结合根的判别式,可得出△=4>0,由此可得出:无论m 为何值,该方程总有两个不相等的实数根;
(2)根据等腰三角形的性质及△>0,可得出5是方程x 2﹣4mx +4m 2﹣1=0的根,将x =5代入原方程可求出m 值,通过解方程可得出方程的解,在利用三角形的周长公式即可求出结论.
试题解析:解:(1)∵△=(﹣4m )2﹣4(4m 2﹣1)=4>0,∴无论m 为何值,该方程总有两个不相等的实数根.
(2)∵△>0,△ABC 为等腰三角形,另外两条边是方程的根,∴5是方程x 2﹣4mx +4m 2﹣1=0的根.
将x =5代入原方程,得:25﹣20m +4m 2﹣1=0,解得:m 1=2,m 2=3.
当m =2时,原方程为x 2﹣8x +15=0,解得:x 1=3,x 2=5.∵3、5、5能够组成三角形,∴该三角形的周长为3+5+5=13;
当m =3时,原方程为x 2﹣12x +35=0,解得:x 1=5,x 2=7.∵5、5、7能够组成三角形,∴该三角形的周长为5+5+7=17.
综上所述:此三角形的周长为13或17.
点睛:本题考查了根的判别式、等腰三角形的性质、三角形的三边关系以及解一元二次方程,解题的关键是:(1)牢记“当△>0时,方程有两个不相等的实数根”;(2)代入x =5求出m 值.
4.解方程:(2x+1)2=2x+1.
【答案】x=0或x=12
-. 【解析】试题分析:根据因式分解法解一元二次方程的解法,直接先移项,再利用ab=0的关系求解方程即可.
试题解析:∵(2x+1)2﹣(2x+1)=0,
∴(2x+1)(2x+1﹣1)=0,即2x (2x+1)=0,
则x=0或2x+1=0,
解得:x=0或x=﹣12
. 5.已知关于x 的一元二次方程()222130x k x k --+-=有两个实数根.
()1求k 的取值范围;
()2设方程两实数根分别为1x ,2x ,且满足221223x x +=,求k 的值.
【答案】(1)134
k ≤
;(2)2k =-. 【解析】
【分析】 ()1根据方程有实数根得出()()22[2k 1]41k 38k 50=---⨯⨯-=-+≥V ,解之可得.
()2利用根与系数的关系可用k 表示出12x x +和12x x 的值,根据条件可得到关于k 的方程,可求得k 的值,注意利用根的判别式进行取舍.
【详解】
解:()1Q 关于x 的一元二次方程()22
2130x k x k --+-=有两个实数根, 0∴≥V ,即()()22[21]4134130k k k ---⨯⨯-=-+≥, 解得134k ≤. ()2由根与系数的关系可得1221x x k +=-,2123x x k =-,
()
222222121212()2(21)23247x x x x x x k k k k ∴+=+-=---=-+,
221223x x +=Q , 224723k k ∴-+=,解得4k =,或2k =-,
134
k ≤Q , 4k ∴=舍去,
2k ∴=-.
【点睛】
本题考查了一元二次方程2
ax bx c 0(a 0,++=≠a ,b ,c 为常数)根的判别式.当0V >,方程有两个不相等的实数根;当0=V ,方程有两个相等的实数根;当0<V ,方程没有实数根.以及根与系数的关系.
6.解方程: 2212x x 6x 9-=-+()
【答案】124x x 23
==-, 【解析】试题分析:先对方程的右边因式分解,直接开平方或移项之后再因式分解法求解即可.
试题解析:因式分解,得
2212x x 3-=-()()
开平方,得
12x x 3-=-,或12x x 3-=--()
解得124x x 23
==-, 7.将m 看作已知量,分别写出当0<x<m 和x>m 时,
与之间的函数关系式;
8.由图看出,用水量在m 吨之内,水费按每吨1.7元收取,超过m 吨,需要加收.
9.已知关于x 的一元二次方程()2211204
x m x m +++-=. ()1若此方程有两个实数根,求m 的最小整数值;
()2若此方程的两个实数根为1x ,2x ,且满足22212121184
x x x x m ++=-,求m 的值. 【答案】(1)m 的最小整数值为4-;(2)3m =
【解析】
【分析】
(1)根据方程有两个实数根得0∆≥,列式即可求解,(2)利用韦达定理即可解题.
【详解】
(1)解:()22114124m m ⎛⎫∆=+-⨯⨯- ⎪⎝⎭
22218m m m =++-+
29m =+
Q 方程有两个实数根
0∴∆≥,即290m +≥
92
m ∴≥- ∴ m 的最小整数值为4-
(2)由根与系数的关系得:()121x x m +=-+,212124x x m =
- 由22212121184x x x x m ++=-得:()22211121844m m m ⎛⎫⎡⎤-+--=- ⎪⎣⎦⎝⎭
13m ∴=,25m =-
92
m Q ≥- 3m ∴=
【点睛】
本题考查了根的判别式和韦达定理,中等难度,熟悉韦达定理是解题关键.
10.淘宝网举办“双十一”购物活动许多商家都会利用这个契机进行打折让利的促销活动.甲网店销售的A 商品的成本为30元/件,网上标价为80元/件.
(1)“双十一”购物活动当天,甲网店连续两次降价销售A 商品吸引顾客,问该店平均每次降价率为多少时,才能使A 商品的售价为39.2元/件?
(2)据媒体爆料,有一些淘宝商家在“双十一”购物活动当天先提高商品的网上标价后再推出促销活动,存在欺诈行为.“双十一”活动之前,乙网店销售A 商品的成本、网上标价与甲网店一致,一周可售出1000件A 商品.在“双十一”购物活动当天,乙网店先将A 商品的网上标价提高a %,再推出五折促销活动,吸引了大量顾客,乙网店在“双十一”购物活动
当天卖出的A商品数量相比原来一周增加了2a%,“双十一”活动当天乙网店的利润达到了3万元,求乙网店在“双十一”购物活动这天的网上标价.
【答案】(1)平均每次降价率为30%,才能使这件A商品的售价为39.2元;(2)乙网店在“双十一”购物活动这天的网上标价为100元.
【解析】
【分析】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,根据原标价及经过两次降价后的价格,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)根据总利润=每件的利润×销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出a的值,再将其代入80(1+a%)中即可求出结论.
【详解】
(1)设平均每次降价率为x,才能使这件A商品的售价为39.2元,
根据题意得:80(1﹣x)2=39.2,
解得:x1=0.3=30%,x2=1.7(不合题意,舍去).
答:平均每次降价率为30%,才能使这件A商品的售价为39.2元.
(2)根据题意得:[0.5×80(1+a%)﹣30]×1000(1+2a%)=30000,
整理得:a2+75a﹣2500=0,
解得:a1=25,a2=﹣100(不合题意,舍去),
∴80(1+a%)=80×(1+25%)=100.
答:乙网店在“双十一”购物活动这天的网上标价为100元.
【点睛】
本题考查一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
11.阅读下面的材料,回答问题:
解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:
设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.
当y=1时,x2=1,∴x=±1;
当y=4时,x2=4,∴x=±2;
∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.
(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.
(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.
【答案】(1)换元,降次;(2)x1=﹣3,x2=2.
【解析】
【详解】
解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;
(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.
由x2+x=6,得x1=﹣3,x2=2.
由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.
12.已知关于x的方程x2﹣(2k+1)x+4(k﹣1
2
)=0.
(1)求证:无论k取何值,此方程总有实数根;
(2)若等腰△ABC的一边长a=3,另两边b、c恰好是这个方程的两个根,求k值多少?
【答案】(1)详见解析;(2)k=3
2
或2.
【解析】
【分析】
(1)计算判别式的值,利用完全平方公式得到△=(2k﹣3)2≥0,然后根据判别式的意义得到结论;
(2)利用求根公式解方程得到x1=2k﹣1,x2=2,再根据等腰三角形的性质得到2k﹣1=2或2k﹣1=3,然后分别解关于k的方程即可.
【详解】
(1)∵△=(2k+1)2﹣4×4(k﹣1
2
)=4k2﹣12k+9=(2k﹣3)2≥0,
∴该方程总有实数根;
(2)
() 2k12k3 x=
2
±
+﹣
∴x1=2k﹣1,x2=2,
∵a、b、c为等腰三角形的三边,
∴2k﹣1=2或2k﹣1=3,
∴k=3
2
或2.
【点睛】
本题考查了根的判别式以及等腰三角形的性质,分a是等腰三角形的底和腰两种情况是解题的关键.
13.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.
()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元;()2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有多少名员工参加旅游?
【答案】(1)2280;(2)15
【解析】
【分析】
对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;
对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值.
【详解】
(1)2280
()2因为1020020002625⨯=<.
因此参加人比10人多,
设在10人基础上再增加x 人,
由题意得:()()1020052625x x +-=.
解得 15x = 225x =,
∵2005150x -≥,
∴010x <≤,
经检验 15x =是方程的解且符合题意,225x =(舍去).
1010515x +=+=
答:该单位共有15名员工参加旅游.
【点睛】
本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一元二次方程,求解方程,舍去不符合题意的解,从而得出结果.
14.如图,在△ABC 中,∠B =90°,AB =6 cm ,BC =8 cm ,若点P 从点A 沿AB 边向B 点以1 cm/s 的速度移动,点Q 从B 点沿BC 边向点C 以2 cm/s 的速度移动,两点同时出发.
(1)问几秒后,△PBQ 的面积为8cm²?
(2)出发几秒后,线段PQ 的长为42cm ?
(3)△PBQ 的面积能否为10 cm 2?若能,求出时间;若不能,请说明理由.
【答案】(1) 2或4秒2 cm ;(3)见解析.
【解析】
【分析】
(1)由题意,可设P 、Q 经过t 秒,使△PBQ 的面积为8cm 2,则PB=6-t ,BQ=2t ,根据三角形面积的计算公式,S △PBQ=12
BP×BQ ,列出表达式,解答出即可;
(2)设经过x秒后线段PQ的长为cm,依题意得AP=x,BP=6-x,BQ=2x,利用勾股定理列方程求解;
(3)将△PBQ的面积表示出来,根据△=b2-4ac来判断.
【详解】
(1)设P,Q经过t秒时,△PBQ的面积为8 cm2,
则PB=6-t,BQ=2t,
∵∠B=90°,
∴1
2
(6-t)× 2t=8,
解得t1=2,t2=4,
∴当P,Q经过2或4秒时,△PBQ的面积为8 cm2;
(2)设x秒后,PQ= cm,
由题意,得(6-x)2+4x2=32,
解得x1=2
5
,x2=2,
故经过2
5
秒或2秒后,线段PQ的长为 cm;
(3)设经过y秒,△PBQ的面积等于10 cm2,
S△PBQ=1
2
×(6-y)× 2y=10,
即y2-6y+10=0,
∵Δ=b2-4ac=36-4× 10=-4< 0,
∴△PBQ的面积不会等于10 cm2.
【点睛】
本题考查了一元二次方程的应用,熟练的掌握一元二次方程的应用是本题解题的关键.
15.如图,一艘轮船以30km/h的速度沿既定航线由南向北航行,途中接到台风警报,某台风中心正以10km/h的速度由东向西移动,距台风中心200km的圆形区域(包括边界)都属台风影响区,当这艘轮船接到台风警报时,它与台风中心的距离BC=500km,此时台风中心与轮船既定航线的最近距离AB=300km.
(1)如果这艘船不改变航向,那么它会不会进入台风影响区?
(2)如果你认为这艘轮船会进入台风影响区,那么从接到警报开始,经过多长时间它就会进入台风影响区?
(3)假设轮船航向不变,轮船航行速度不变,求受到台风影响的时间为多少小时?
【答案】(1)如果这艘船不改变航向,那么它会进入台风影响区.(2)经过15﹣15h 就会进入台风影响区;(3)215小时.
【解析】
【分析】
(1)作出肯定回答:这艘轮船不改变航向,那么它能进入台风影响区.
(2)首先假设轮船能进入台风影响区,进而利用勾股定理得出等式求出即可.
(3)将轮船刚好进入台风影响区和刚好离开台风影响的两个时间节点相减,即能得出受影响的时间长.
【详解】
解:(1)如图易知AB′=300﹣10t,AC′=400﹣30t,
当B′C′=200时,将受到台风影响,
根据勾股定理可得:(300﹣10t)2+(400﹣30t)2=2002,
整理得到:t2﹣30t+210=0,
解得t15
由此可知,如果这艘船不改变航向,那么它会进入台风影响区.
(2)由(1)可知经过(1515h就会进入台风影响区;
(3)由(1)可知受到台风影响的时间为15151515h.
【点睛】
此题主要考查了一元二次方程的应用以及勾股定理等知识,根据题意得出关于x的等式是解题关键.。