第15章 整式的乘除与因式分解单元测试(含答案)-

合集下载

整式的乘除与因式分解单元测试卷及答案参考

整式的乘除与因式分解单元测试卷及答案参考

整式的乘除与因式分解单元测试卷及答案参考因式分解同步练习(解答题)解答题把下列各式分解因式:①a2+10a+25 ②m2-12mn+36n2③xy3-2x2y2+x3y ④(x2+4y2)2-16x2y2已知x=-19,y=12,求代数式4x2+12xy+9y2的值.已知│x-y+1│与x2+8x+16互为相反数,求x2+2xy+y2的值.答案:①(a+5)2;②(m-6n)2;③xy(x-y)2;④(x+2y)2(x-2y)2通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(填空题)填空题已知9x2-6xy+k是完全平方式,则k的值是________.9a2+(________)+25b2=(3a-5b)2-4x2+4xy+(_______)=-(_______).已知a2+14a+49=25,则a的值是_________.答案:y2 6.-30ab 7.-y2;2x-y 8.-2或-12通过上面对因式分解同步练习题目的学习,相信同学们已经能很好的掌握了吧,预祝同学们在考试中取得很好的成绩。

因式分解同步练习(选择题)选择题1.已知y2+my+16是完全平方式,则m的值是()A.8 B.4 C.±8 D.±42.下列多项式能用完全平方公式分解因式的是()A.x2-6x-9 B.a2-16a+32 C.x2-2xy+4y2 D.4a2-4a+13.下列各式属于正确分解因式的是()A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)24.把x4-2x2y2+y4分解因式,结果是()A.(x-y)4 B.(x2-y2)4 C.[(x+y)(x-y)]2 D.(x+y)2(x-y)2答案:1.C 2.D 3.B 4.D填空题(每小题4分,共28分)7.(4分)(1)当x _________ 时,(x﹣4)0=1;(2)(2/3)2002×(1.5)2021÷(﹣1)2021= _________8.(4分)分解因式:a2﹣1+b2﹣2ab= _________ .9.(4分)(2021万州区)如图,要给这个长、宽、高分别为x、y、z的箱子打包,其打包方式如图所示,则打包带的长至少要 _________ .(单位:mm)(用含x、y、z的代数式表示)10.(4分)(2021郑州)如果(2a+2b+1)(2a+2b﹣1)=63,那么a+b的值为_________ .11.(4分)(2002长沙)如图为杨辉三角表,它可以帮助我们按规律写出(a+b)n (其中n为正整数)展开式的系数,请仔细观察表中规律,填出(a+b)4的展开式中所缺的系数.(a+b)1=a+b;(a+b)2=a2+2ab+b2;(a+b)3=a3+3a2b+3ab2+b3;(a+b)4=a4+ _________ a3b+ _________ a2b2+ _________ ab3+b4.12.(4分)(2021荆门)某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a)第n年12345…老芽率aa2a3a5a…新芽率0aa2a3a…总芽率a2a3a5a8a…照这样下去,第8年老芽数与总芽数的比值为 _________ (精确到0.001).13.(4分)若a的值使得x2+4x+a=(x+2)2﹣1成立,则a的值为 _________ .答案:7.考点:零指数幂;有理数的乘方。

整式的乘除与因式分解测试题(有答案)

整式的乘除与因式分解测试题(有答案)

整式的乘除与因式分解测试题(有答案)乘法公式是整式乘法的特殊情形,是在学习了一般的整式乘法知识的基础上学习的,运用乘法公式能简化一些特定类型的整式相乘的运算问题。

因式分解是解析式的一种恒等变形,因式分解不但在解方程等问题中极其重要,在数学科学其他问题和一般科学研究中也具有广泛应用,是重要的数学基础知识。

因式分解的方法一般包括提公因式法、公式法、分组分解法、十字相乘法、待定系数法等第十五章整式的乘除与因式分解阶段测试(有答案)整式的乘法测试题(总分:100分时间:60分钟)班级姓名学号得分一、填空题(每小题2分,共28分)1.计算(直接写出结果)①abull;a3=.③(b3)4=.④(2ab)3=.⑤3x2ybull; =.2.计算: = .3.计算: = .4.( ) =__________.5. ,求 = .6.若,求 = .7.若x2n=4,则x6n=___.8.若,,则 = .9.-12 =-6abbull;().10.计算:(2× )×(-4× )=.11.计算: = .12.①2a2(3a2-5b)=.②(5x+2y)(3x-2y)=.13.计算: = .14.若15.化简的结果是()A.0B. C. D.16.下列计算中,正确的是()A. B. C. D.17.下列运算正确的是()(A) (B)(C) (D)18.计算: bull; 等于().(A)-2(B)2(C)- (D)19.(-5x)2bull; xy的运算结果是().(A)10 (B)-10 (C)-2x2y(D)2x2y20.下列各式从左到右的变形,正确的是().(A) -x-y=-(x-y)(B)-a+b=-(a+b)(C) (D)21.若的积中不含有的一次项,则的值是()A.0B.5C.-5D.-5或522.若,则的值为()(A)-5(B)5(C)-2(D)223.若,,则等于()(A)-5(B)-3(C)-1(D)124.如果,,,那么()(A) gt; gt; (B) gt; gt; (C) gt; gt; (D) gt; gt;三、解答题:25.计算:(每小题4分,共8分)(1) ;(2) ;26.先化简,再求值:(每小题5分,共10分)(1)x(x-1)+2x(x+1)-(3x-1)(2x-5),其中x=2.(2) ,其中 =27.解方程(3x-2)(2x-3)=(6x+5)(x-1)+15.(5分)28.①已知求的值,(4分)②若值.(4分)29.若,求的值.(6分)30.说明:对于任意的正整数n,代数式n(n+7)-(n+3)(n-2)的值是否总能被6整除.(7分)31.整式的乘法运算(x+4)(x+m),m为何值时,乘积中不含x项?m为何值时,乘积中x项的系数为6?你能提出哪些问题?并求出你提出问题的结论.(8分)参考答案:一.填空题:1.a4,b4,8a3b3,-6x5y3;2.0;3.-12x7y9;4.a18;5.2;6.1;7.64;8.180;9.2ab4c;10.-8×108,11. ;12.6a4-10a2b;15x2-4xy-4y2;13.2x-40;14.4二.选择题:15.C;16.D;17C;18.A;19.A;20.C;21.B;22.C;23.B;24.B;三.解答题:25.(1)x2y+3xy;(2)6a3-35a2+13a;26.(1)-3x2+18x-5,19;(2)m9,-512;27.x=- ;28.① ;②56;29.8;30.6(n+1);31.m=-4;m=2,可以提出多种问题..初二数学下册期末测试题及答案苏州市初二第二学期期末数学试题及答案初二数学第八章分式及分式方程单元复习题。

第15章 整式的乘除与因式分解单元测试(六)及答案

第15章 整式的乘除与因式分解单元测试(六)及答案

第15章 整式的乘除与因式分解单元测试(六)角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每小题3分。

共30分) 1、下列运算正确的是( )A 、633x 2x x =+B 、248x x x •= C 、mnm nx x x +•=D 、2045x )x (-=-2、下列关系式中,正确的是( ) A 、222b a )b a (-=- B 、22b a )b a )(b a (-=-+ C 、222b a )b a (+=+D 、222b ab 2a )b a (+-=+3、若5)a)(x (x --展开式中不含有x 的一次项,则a 的值为 ( )A 、0B 、5C 、5-D 、5或5-4、下列因式分解错误的是 ( )A 、)6a 4a (a 2a 12a 8a 2223+-=+-B 、)3x )(2x (6x 5x 2--=+-C 、)c b a )(c b a (c )b a (22--+-=--D 、22)1a (22a 4a 2+=-+- 5、为了应用平方差公式计算)1y 2x )(1y 2x (+--+下列变形正确的是( ) A 、2)]1y 2(x [+-B 、2)]1y 2(x [++C 、)]1y 2(x [--)]1y 2(x [-+D 、]1)y 2x ][(1)y 2x [(--+-6、 化简代数式(3)(4)(1)(3)x x x x -----结果是( )A 、39x -+B 、39x --C 、1115x -+D 、1115x -- 7、下列多项式:①22y xy 2x -+ ②xy 2y x 22+-- ③22y xy x ++ ④2x 41x 1++,其中能用完全平方公式分解因式的有 ( ) A 、1个 B 、2个 C 、3个D 、4个8、下列各式中,代数式( )是3223xy 4y x 4y x ++的一个因式A 、22y xB 、y x +C 、y 2x +D 、y x -9、下面是某同学在一次测验中的计算摘录①y y y =÷33;②2(2)2x x x x +÷=;③3253(2)6x x x •-=-;④324(2)2a b a b a ÷-=-;⑤()235aa =; ⑥()()32a a a -÷-=-.其中错误的个数有( )A 、1个B 、2个C 、3个D 、4个 10、若0)5y x ()3y x (22=+-+-+,则22y x -的值是 ( ) A 、15- B 、8- C 、15D 、8二、填空题:(每空 3 分,共 30 分)11、当x 时,()04x -等于 .12、 23_______x x •= ;________)y 2(32=-. 13、234222(3)()_________3x y xy -•-= 14、)y x 3()y x y x 6y x (232234÷-+=_________ 15、22)4x (k 218x 8x +=-++,则______k =.16、()()2010201120122 1.513⎛⎫⨯÷-= ⎪⎝⎭17、分解因式:2212a b ab -+-=18、如果()()22122163a b a b +++-=,那么a b +的值为 .19、下表为杨辉三角系数表的一部分,它的作用是指导读者按规律写出形如()na b +(n为正整数)展开式的系数,请你仔细观察下表中的规律,填出()4a b +展开式中所缺的系数.()a b a b +=+()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++则()4432234a b a a b a b ab b +=++++ … … … …20、某些植物发芽有这样一种规律:当年所发新芽第二年不发芽,老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去,第8年老芽数与总芽数的比值为 (精确到0.001)三、解答题(共60分) 21、(9分)计算:(1))xy xy 3y x 2)(y x 7(322+--; (2))5.1x 5)(23x 5(--+-(3)运用乘法公式计算:2200019962004-⨯22、(9分)分解因式(1)3223xy y x 4y x 4++; (2)23xy 25x 9-; (3)32x 3x 6x 3-+-;23、(10分)先化简再求值:2222111[()()](2)222a b a b a b ++-•-,其中3a -=,4b =.24、(8分)已知4y x =+,2xy =,求xy 3y x 22++的值。

完整版初二第15章整式的乘除与因式分解综合复习测试3及答案

完整版初二第15章整式的乘除与因式分解综合复习测试3及答案

第十五章 整式的乘除与因式分解综合复习测试一、选择题1、以下计算正确的选项是()A 、3x - 2x = 1B 、 3x+2x=5x 2C 、 3x ·2x=6xD 、 3x - 2x=x 2、如图,阴影部分的面积是()A 、 7xyB 、 9xyC 、 4xyD 、 2xy第2题图223、以下计算中正确的选项是()A 、2x+3y=5xyB 、 x ·x 4=x 4C 、 x 8÷x 2=x 4D 、(x 2y ) 3=x 6y 34、在以下的计算中正确的选项是()A 、2x + 3y = 5xy ;B 、( a + 2)(a - 2)= a 2+4;C 、 a 2?ab = a 3b ;D 、( x -3) 2= x 2+ 6x +9 5、以下运算中结果正确的选项是()A 、 x 3 ·x 3 x 6 ;B 、 3x 2 2x 2 5x 4 ;C 、 ( x 2 ) 3 x 5 ;D 、 (x y)2x 2 y 2 .6、以下说法中正确的选项是( )。

A 、 t不是整式; B 、3x 3 y 的次数是 4; C 、 4ab 与 4xy 是同类项; D 、1是单项式2y7、 ab 减去 a 2ab b 2 等于 ( )。

A 、a 22ab b 2 ;B 、 a 2 2ab b 2 ; C 、 a 2 2ab 8、以下各式中与 a -b - c 的值不相等的是( )A 、 a -( b+c )B 、 a -( b -c )C 、( a - b ) +(- c )9、已知 x 2+kxy+64y 2 是一个圆满式,则k 的值是( )A 、 8B 、 ±8C 、16D 、±16 10、以以以下列图( 1),边长为 a 的大正方形中一个边长为 b 的小正方形,小明将图( 1)的阴影部分拼成了一个矩形,如图( 2)。

这一过程能够考证( )A 、 a 2+b 2- 2ab=(a - b)2 ;B 、a 2+b 2 +2ab=(a+b)2 ;C 、 2a 2- 3ab+b 2=(2a - b)(a - b) ;D 、a 2-b 2=( a+b) (a - b) 二、填空题32;(2)计算: ( 3a 3 )211、(1)计算: ( x) ·x12、单项式 3x 2 y n 1z 是对于 x 、 y 、 z 的五次单项式,则 nb 2 ;D 、 a 2 2ab b 2D 、(- c )-( b - a )a abb图1图2(第 10题图)a 2.;13、若 x 24x 4 (x2)( x n) ,则 n_______14、当 2y –x=5 时, 5 x 2 y 23 x 2 y60 =;15、若 a 2+ b 2= 5,ab = 2,则 (a + b)2=。

《整式的乘法与因式分解》单元检测题(含答案)

《整式的乘法与因式分解》单元检测题(含答案)
D、原式=a4,错误,
故选A.
【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.
2.下列等式成立的是( )
A.3a2-2a2=1B.(2x+y)2=4x2+y2C.a2-4=(a-2)2D.2a2b·3a2b2=6a4b3
【答案】D
【解析】
【分析】
考点:因式分解-运用公式法.
12.如果实数x、y满足方程组 那么x2-y2的值为______.
【答案】﹣ .
【解析】
,
由②得x+y= ,
则x2﹣y2=(x+y)(x﹣y)= ,
故答案为 .
13.已知m﹣n=2,mn=﹣1,则(1+2m)(1﹣2n)的值为__.
【答案】9
【解析】
∵m−n=2,mn=−1,
【详解】A.原式=−m(a+1),故A错误;
B.原式=(a+1)(a−1),故B错误;
C.原式=(a−3)2,故C正确;
D.该多项式不能因式分解,故D错误,
故选:C
【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.
4.计算1.252 017× 的值是( )
A. B. C. 1D. -1
故选A.
【点睛】此题是因式分解的应用,主要考查了完全平方公式,提公因式,解本题的关键是用完全平方公式a2+2ab+b2=(a+b)2.
8.n是整数,式子 [1﹣(﹣1)n](n2﹣1)计算的结果()
A.是0
B.总是奇数
C.总是偶数
D.可能是奇数也可能是偶数
【答案】C
【解析】

整式的乘除及因式分解综合检测(人教版)(含答案)

整式的乘除及因式分解综合检测(人教版)(含答案)

整式的乘除及因式分解综合检测(人教版)一、单选题(共10道,每道10分)1.当时,的值为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:代入求值2.的相反数是( )A.4B.C. D.答案:D解题思路:试题难度:三颗星知识点:负指数幂的运算3.下列各式运算正确的是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:整式的运算4.要计算的值,小明是这么思考的:令,则,因此.仿照以上推理,计算出的值为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:同底数幂的乘法5.将分解因式,结果是( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:因式分解--运用公式法6.把分解因式,结果正确的是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解--分组分解法7.已知,则的值是( )A.4B.2C.1D.答案:A解题思路:试题难度:三颗星知识点:整体代入8.若,则的值为( )A.0B.3C.9D.12答案:D解题思路:试题难度:三颗星知识点:整体代入9.已知实数满足条件:,那么的平方根是( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:因式分解的应用10.若,则的值为( )A.0B.1C.-1D.无法确定答案:A解题思路:试题难度:三颗星知识点:因式分解的应用。

《整式的乘法与因式分解》单元测试(带答案)

《整式的乘法与因式分解》单元测试(带答案)
[解析]
[分析]
先分别进行幂的乘方与积的乘方运算,然后再根据单项式乘除法的法则进行计算即可得.
[详解]原式=A6•A6B2÷A2B
=A12B2÷A2B
=A10B,
故答案 A10B.
[点睛]本题考查了单项式乘除混合运算,熟练掌握各运算的运算法则以及确定好运算顺序是解题的关键.
12.目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米= 米,用科学记数法将16纳米表示为__________________米.
4.已知多项式2x2+Bx+C分解因式为2(x-3)(x+1),则B,C的值为().
A.B=3,C=-1B.B=-6,C=2
C.B=-6,C=-4D.B=-4,C=-6
[答案]D
[解析]
[分析]
利用整式的乘法计算出2(x-3)(x+1)的结果,与2x2+Bx+C对应找到一次项的系数和常数项即可解题.
考点:因式分解.
10.已知 则 的大小关系是()
A. B. C. D.
[答案]A
[解析]
[分析]
先把A,B,C化成以3为底数的幂的形式,再比较大小.
[详解]解:
故选A.
[点睛]此题重点考察学生对幂的大小比较,掌握同底数幂的大小比较方法是解题的关键.
二、填空题
11. =____________
[答案]
C.两数和的完全平方公式D.两数差的完全平方公式
(2)该同学在第四步将y用所设中的x的代数式代换,得到因式分解的最后结果.这个结果是否分解到最后?.(填“是”或“否”)如果否,直接写出最后的结果.
(3)请你模仿以上方法尝试对多项式(x2﹣2x)(x2﹣2x+2)+1进行因式分解.

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案

整式的乘除与因式分解测试题及答案整式的乘除与因式分解测试题及答案题目:1.(4分)下列计算正确的是()A.a2+b3=2a5B.a4÷a=a4C.a2a3=a6D.(﹣a2)3=﹣a6 2.(4分)(x﹣a)(x2+ax+a2)的计算结果是()A.x3+2ax+a3B.x3﹣a3C.x3+2a2x+a3D.x2+2ax2+a33.(4分)下面是某同学在一次检测中的计算摘录:①3x3(﹣2x2)=﹣6x5 ②4a3b÷(﹣2a2b)=﹣2a ③(a3)2=a5④(﹣a)3÷(﹣a)=﹣a2其中正确的个数有()A.1个B.2个C.3个D.4个4.(4分)若x2是一个正整数的平方,则它后面一个整数的平方应当是()A.x2+1B.x+1C.x2+2x+1D.x2﹣2x+15.(4分)下列分解因式正确的是()A.x3﹣x=x(x2﹣1)B.m2+m﹣6=(m+3)(m﹣2)C.(a+4)(a﹣4)=a2﹣16D.x2+y2=(x+y)(x﹣y)6.(4分)(2003常州)如图:矩形花园ABCD中,AB=a,AD=b,花园中建有一条矩形道路LMPQ及一条平行四边形道路RSTK.若LM=RS=c,则花园中可绿化部分的面积为()A.bc﹣ab+ac+b2B.a2+ab+bc﹣acC.ab﹣bc﹣ac+c2D.b2﹣bc+a2﹣ab答案:1,考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。

1923992分析:根据同底数相除,底数不变指数相减;同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a2与b3不是同类项,不能合并,故本选项错误;B、应为a4÷a=a3,故本选项错误;C、应为a3a2=a5,故本选项错误;D、(﹣a2)3=﹣a6,正确.故选D.点评:本题考查合并同类项,同底数幂的除法,同底数幂的乘法,幂的乘方的性质,熟练掌握运算性质是解题的关键.2.考点:多项式乘多项式。

第15章《整式的乘除与因式分解》单元测试题(含答案)[

第15章《整式的乘除与因式分解》单元测试题(含答案)[

《整式的乘除与因式分解》单元测试题一、选择题(共5小题,每小题4分,共20分)1、下列运算正确的是 ( )A 、 933842x x x ÷=B 、2323440a b a b ÷=C 、22m m aa a ÷= D 、2212()42abc ab c ÷-=- 2、计算(32)2013×1.52012×(-1)2014的结果是( ) A 、32 B 、23 C 、-32 D 、-23 3、下列多项式乘法中可以用平方差公式计算的是( ) A 、))((b a b a -+- B 、)2)(2(x x ++ C 、)31)(31(x y y x -+ D 、)1)(2(+-x x 4、 把代数式ax ²- 4ax +4a ²分解因式,下列结果中正确的是( )A 、a (x -2) 2B 、 a (x +2) 2C 、a (x -4) 2D 、a (x -2) (x +2)5、在边长为a 的正方形中挖去一个边长为b 的小正方形(a >b ),再沿虚线剪开,如图①,然后拼成一个梯形,如图②,根据这两个图形的面积关系,表明下列式子成立的是( )。

A 、a 2+b 2=(a +b )(a -b )B 、(a +b )2=a 2+2abC 、(a -b )2=a 2-2ab +b 2D 、a 2-b 2=(a -b )2二、填空题(共5小题,每小题4分,共20分)6、运用乘法公式计算:(32a -b )(32a +b )= ;(-2x -5)(2x -5)= 7、计算:534515a b c a b -÷=8、若a +b =1,a -b =2006,则a 2-b 2=9、在多项式4x 2+1中添加一个单项式,使其成为完全平方式,则添加的单项式为 (只写出一个即可)10、小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x 2y -2xy 2,商式必须是2xy ,则小亮报一个除式是 。

第15章 整式的乘除与因式分解测试卷(含答案)

第15章 整式的乘除与因式分解测试卷(含答案)

第15章 整式的乘除与因式分解 测试卷注意事项:本卷共八大题,计23小题,满分150分.考试时间120分钟. 一、选择题(本题共10小题,每小题4分,满分40分)每小题都给出代号为A ,B ,C ,D 的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内,每一小题;选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分. 1.若32144mnx y x y x ÷=,则m 、n 满足条件的取值为 ( ). A .m =6,n =1 B .m =5,n =1 C .m =5,n =0 D .m =6,n =0 2.下列各式可以用平方差公式的是( ).A .(4)(4)a c a c -+-B .(2)(2)x y x y -+C .(31)(13)a a ---D . 11()()22x y x y --+ 3.下列各式中是完全平方公式的是( ).A .224a x + B .2244x ax a +-- C .2444x x ++ D . 2412x x ++-4.在(1)623[()]a a -⋅-;(2)34)(a a -⋅;(3)2332)()(a a ⋅-;(4)43()a --中,计算结果为12a -的有( ).A .(1)和(3)B .(1)和(2)C .(2)和(3)D .(3)和(4)5.为了应用平方差公式计算()()a b c a b c -++-,必须先适当变形,下列各变形中,正确的是( ).A .()()a c b a c b +--+⎡⎤⎡⎤⎣⎦⎣⎦B .()()a b c a b c -++-⎡⎤⎡⎤⎣⎦⎣⎦C .()()b c a b c a +--+⎡⎤⎡⎤⎣⎦⎣⎦D .()()a b c a b c --+-⎡⎤⎡⎤⎣⎦⎣⎦ 6.下列多项式相乘的结果为1242--x x 的是( ).A .)4)(3(-+x xB .)6)(2(-+x xC .)4)(3(+-x xD .)2)(6(-+x x 7.计算24(1)(1)(1)(1)x x x x -++-+的结果是( ).A .0B .2C .-2D .-5 8. 下列多项式中,含有因式)1(+y 的多项式是( ). A .2232x xy y --B .22)1()1(--+y yC .)1()1(22--+y yD .1)1(2)1(2++++y y9.如图:(如图①)在边长为a 的正方形中挖掉一个边长为b 的小正方形(a >b ),把余下的部分剪拼成一个矩形(如图②),通过计算两个图形阴影部分的面积,验证了一个等式,则这个等式是( ).图 ① 图 ② A . a 2-b 2 =(a +b )(a -b ) B .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .(a +2b )(a -b )= a 2+ab -2b 210.观察下列等式:170=,771=,4972=,34373=,240174=,…,由此可判断1007的个位数字是( ).A .3B .7C .1D .9二、填空题(本题共4小题,每小题5分,满分20分)11.不等式22(21)(21)x x --+≤2(3)x -的解集是_______________.12.已知2ma =,16nb =,则382m n+=____________.13.已知)3)(8(22q x x px x +-++的展开式中不含2x 项和3x 项,则q p +的值=______.14.如图,从直径是2x y +的圆中挖去一个直径为x 的圆和两个直径为y 的圆,则剩余部分的面积是_______________. 三、(本题共2小题,每小题8分,满分16分) 15.化简:(1)82()()mn mn ÷ (2) )9()15()3(24322y x xy y x -⋅-÷16.用乘法公式计算:(1)49.850.2⨯; (2)2298.四、(本题共2小题,每小题8分,共16分)17.已知x 是有理数,y 是无理数,请先化简下面的式子,再在相应的圆圈内选择你喜欢的数代入求值:2()(2)x y y x y -+-.18.利用简便方法计算:222111(1)(1)(1)234--- (22)11(1)(1)910--五、(本大题共2小题,每小题10分,满分20分) 19.因式分解:(1)x x x 2718323+- (2)()222164x x -+20.先化简,再求值:22(1)(2)22()ab ab a b ab ⎡⎤+--+÷-⎣⎦;其中3,2a b 4==-3.13-,, 121.223,,, 1.50-,六、(本题满分12分)21.一个正方形的一边增加3cm ,另一边减少3cm ,所得到的长方形与这个正方形的每一边减少1cm 所得到的正方形的面积相等,求原来正方形的面积. 七、(本题满分12分)22.如图,图1是一个长为2 m 、宽为2 n 的长方形, 沿图中虚线用剪刀均分成四块小长方形, 然后按图2的形状拼成一个正方形。

八年级数学上册第十五章整式的乘除与因式分解单元测试题

八年级数学上册第十五章整式的乘除与因式分解单元测试题

第十五章 整式的乘除与因式分解 单元测试题一、选择题(每小题3分;共36分)1.下列各单项式中;与42x y 是同类项的为( ) (A) 42x . (B) 2xy . (C) 4x y . (D)232x y 2.()()22x a xax a -++的计算结果是( )(A) 3232x ax a +-.(B) 33x a -.(C) 3232x a x a +-.(D)222322x ax a a ++- 3.下面是某同学在一次测验中的计算摘录 ①325a b ab +=; ②33345m n mn m n -=-; ③3253(2)6x x x -=-; ④324(2)2a b a b a ÷-=-; ⑤()235a a =;⑥()()32a a a -÷-=-.其中正确的个数有( )(A)1个. (B)2个. (C)3个. (D)4个.4.小亮从一列火车的第m 节车厢数起;一直数到第2m 节车厢;他数过的车厢节数是( ) (A)23m m m +=. (B)2m m m -=. (C)211m m m --=-.(D)211m m m -+=+. 5.下列分解因式正确的是( )(A)32(1)x x x x -=-. (B)26(3)(2)m m m m +-=+-. (C)2(4)(4)16a a a +-=-. (D)22()()x y x y x y +=+-.6.如图:矩形花园ABCD 中;a AB =;b AD =;花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK 。

若c RS LM ==;则花园中可绿化部分的面积为( )DQ P 铜陵第七中学 初二( )班 姓名: 编号:装 订 线(A)2bc ab ac b -++. (B)2a ab bc ac ++-. (C)2ab bc ac c --+. (D)22b bc a ab -+-.二、填空题(每小题4分;共28分)7.(1)当x 时;()04x -等于 .(2)()()2002200320042 1.513⎛⎫⨯÷-= ⎪⎝⎭8.分解因式:2212a b ab -+-=9.如图;要给这个长、宽、高分别为x 、y 、z 的箱子打包;其打包方式如图所示;则打包带的长至少要 (单位:mm) (用含z 、y 、z 的代数式表示)(第9题)10.如果()()22122163a b a b +++-=;那么a b +的值为 .11.下表为杨辉三角系数表的一部分;它的作用是指导读者按规律写出形如()na b +(n 为正整数)展开式的系数;请你仔细观察下表中的规律;填出()4a b +展开式中所缺的系数.()a b a b +=+()2222a b a ab b +=++ ()3322333a b a a b ab b +=+++则()4432234a b a a b a b ab b +=++++ … … … …12.某些植物发芽有这样一种规律;当年所发新芽第二年不发芽;老芽在以后每年都发芽.发芽规律见下表(设第一年前的新芽数为a )照这样下去;第8年老芽数与总芽数的比值为 (精确到0.001)第×年 1 2 3 4 老芽数Za3a5a13.某体育馆用大小相同的长方形木板镶嵌地面;第1次铺2块;如图(1);第2次把第1次铺的完全围起来;如图(2);第3次把第2次铺的完全围起来;如图(3);….依此方法;第”次铺完后;用字母”表示第”次镶嵌所使用的木板数——(1)(2)(3)三、解答题14.(10分)计算:()22232()3x x y xy y x x y x y⎡⎤---÷⎣⎦15.(18分)已知:()222,2m n n m m n=+=+≠;求:332m mn n-+的值.16.(18分)某商店积压了100件某种商品;为使这批货物尽快脱手;该商店采取了如下销售方案;将价格提高到原来的倍;再作3次降价处理;第一次降价30%;标出“亏本价”;第二次降价30%;标出“破产价”;第三次降价30%;标出“跳楼价”.3次降价处理销售结果如下表:(1)跳楼价占原价的百分比是多少?(2)该商品按新销售方案销售;相比原价全部售完;哪种方案更盈利?测试题题答案l. C ;2.B ;3.B ;4.D ;5.B ;6.C ; 7.(1)≠4;1;(2)32.8.()()11a b a b ---+.9.(2x+4y+6z)mm . 10.士4.11.4.6.4.12.0.618.提示:由题意易知;后一年的老芽数是前一年老芽数和新芽数的和;后一年的新芽数是前一年的老芽数.所以第8年的老芽数为21a ;新芽数为13a ;总芽数为34a ;老芽数与总芽数的比值约为0·618. 13.()221242n n n n -=-.提示:第1次铺有2=1×2块; 第2次铺有12=3×4块; 第3次铺有30=5×6块; ……第n 次铺完后共有()()221242n n n n -=-块.2233xy =- 15.解:∵332(2)2(2)2()m mn n m n mn n m m n -+=+-++=+ ∵22(2)(2)m n n m n m -=+-+=- 又∵22()()m n m n m n -=+- ∴()()m n m n n m +-=- ∵m n ≠∴1m n +=- 故原式=2(1)2⨯-=-.16.解(1)设原价为x ;则跳楼价为2.50.70.70.7x ⨯⨯⨯所以跳楼价占原价的百分比为32.50.785.75%x x ⨯÷=.(2)原价出售:销售金额100x =新价出售: 销售金额32.50.710 2.50.70.740 2.50.750x x x =⨯⨯+⨯⨯⨯+⨯⨯109.375x =∵109.375100x x >; ∴新方案销售更盈利.。

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷(含答案)

人教版八年级上册数学《整式的乘除与因式分解》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知(19x ﹣31)(13x ﹣17)﹣(13x ﹣17)(11x ﹣23)可因式分解成(ax+b )(8x+c ),其中a ,b ,c 均为整数,则a+b+c=( )A 、﹣12B 、﹣32C 、38D 、722.利用因式分解计算:2100﹣2101=( )A 、﹣2B 、2C 、2100D 、﹣21003.设x 为正整数,若1x +是完全平方数,则它前面的一个完全平方数是( )A.xB.1x -C.1x -D.2x -4.如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( )A.1a +B.21a +C.221a a ++D.1a +5.因式分解:1﹣4x 2﹣4y 2+8xy ,正确的分组是( )A 、(1﹣4x 2)+(8xy ﹣4y 2)B 、(1﹣4x 2﹣4y 2)+8xyC 、(1+8xy )﹣(4x 2+4y 2)D 、1﹣(4x 2+4y 2﹣8xy )6.观察下列各式:①abx ﹣adx ;②2x 2y+6xy 2;③8m 3﹣4m 2+2m+1;④a 3+a 2b+ab 2﹣b 3;⑤(p+q )x 2y ﹣5x 2(p+q )+6(p+q )2;⑥a 2(x+y )(x ﹣y )﹣4b (y+x ).其中可以用提公因式法分解因式的有( )A 、①②⑤B 、②④⑤C 、②④⑥D 、①②⑤⑥7.如果ax (3x ﹣4x 2y+by 2)=6x 2﹣8x 3y+6xy 2成立,则a 、b 的值为( )A 、a=3,b=2B 、a=2,b=3C 、a=﹣3,b=2D 、a=﹣2,b=38.把多项式ac ﹣bc+a 2﹣b 2分解因式的结果是( )A 、(a ﹣b )(a+b+c )B 、(a ﹣b )(a+b ﹣c )C 、(a+b )(a ﹣b ﹣c )D 、(a+b )(a ﹣b+c )9.下列哪项是x 4+x 3+x 2的因式分解的结果( )A 、x 2(x 2+x )B 、x (x 3+x 2+x )C 、x 3(x+1)+x 2D 、x 2(x 2+x+1)10.直角三角形的三条边的长度是正整数,其中一条直角边的长度是13,那么它的周长为( )A 、182B 、180C 、32D 、30二 、填空题(本大题共5小题,每小题3分,共15分)11.计算:332(3)_____a a ⋅=12.已知248﹣1可以被60到70之间的某两个整数整除,则这两个数分别是 、 .13.如果2(1)(5)x x ax a +-+的乘积中不含2x 项,则a 为_________.14.2111111111124162562n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=15.若2310x x x +++=,那么220081x x x +++⋅⋅⋅+=三 、解答题(本大题共7小题,共55分)16.计算:⑴222(30.5)a b ab + ⑵2(1113)m n a b - ⑶2(25)(52)(25)x x x ----17.⑴化简:()()2121x x ++- ⑵化简:()()()12282a b a b b a b +---18.分解因式:⑴256x x ++⑵256x x -+ ⑶276x x ++ ⑷276x x -+19.分解因式:22(1)1a b b b b -+-+-20.分解因式:325153x x x --+21.比较n a 与2n a +(a 为正数,n 为正整数)的大小.22.分解因式:22()4a b ab c -+-人教版八年级上册数学《整式的乘除与因式分解》单元测试卷答案解析一、选择题1.原式=(13x﹣17)(19x﹣31﹣11x+23)=(13x﹣17)(8x﹣8)∵可以分解成(ax+b)(8x+c),∴a=13,b=﹣17,c=﹣8,∴a+b+c=﹣12.故选A.2.D;2100﹣2101=2100﹣2100×2=2100(1﹣2)=﹣2100.故选D.3.D;设21y x=+,则y=22(1)21112y y y x x-=-+=+-=-,故选D.4.D;∵自然数a是一个完全平方数,∴a a的算术平方根大11,∴这个平方数为:21)1a=+.故选D.5.D;1﹣4x2﹣4y2+8xy=1﹣(4x2+4y2﹣8xy).6.D7.B8.A;ac﹣bc+a2﹣b2=c(a﹣b)+(a﹣b)(a+b)=(a﹣b)(a+b+c).9.D10.A;设另一条直角边的长度为x,斜边的长度z,则z2﹣x2=132,且z>x,∴(z+x)(z﹣x)=169×1,∴{z+x=169z﹣x=1,∴三角形的周长=z+x+13=169+13=182.故选A.二、填空题11.546a12.248﹣1=(224+1)(224﹣1),=(224+1)(212+1)(212﹣1),=(224+1)(212+1)(26+1)(26﹣1);∵26=64,∴26﹣1=63,26+1=65,∴这两个数是65、63.13.解:原式=32(15)4x a x ax a +--+∵不含2x 项,∴150a -=,解得15a =14.原式211111************n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-++++ ⎪⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭4411121222n n -⎛⎫=-=- ⎪⎝⎭.15.解:原式235232005231(1)(1)(1)1x x x x x x x x x x x x =+++++++++⋅⋅⋅++++=三 、解答题16.⑴222423324(30.5)930.25a b ab a b a b a b +=++;⑵222(1113)121286169m n m m n n a b a a n b -=-+;⑶22222(25)(52)(25)(25)(25)2(25)84050x x x x x x x x ----=----=--=-+-.17.⑴23x +;⑵ 212a ab -18.⑴(2)(3)x x ++;⑵(2)(3)x x --;⑶(1)(6)x x ++;⑷(1)(6)x x --19.222(1)1(1)(1)a b b b b a b b -+-+-=--+20.322251535(3)(3)(51)(3)x x x x x x x x --+=---=--或322225153(51)3(51)(51)(3)x x x x x x x x --+=---=--21.方法1∵0a >,n 为正整数,∴0n a >,∵22n n a a a +=⋅,∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=③当01a <<,则21a <,则2n n a a +<.方法2∵0a >,n 为正整数,∴0na >,∵22n n a a a +=, ∴分三种情况:①当1a >,则21a >,2n n a a +>;②当1a =,则21a =,2n n a a +=; ③当01a <<,则21a <,则2n n a a +<.22.22()4a b ab c -+- 22224a ab b ab c =-++-222222()a ab b c a b c =++-=+- ()()a b c a b c =+-++。

《整式的乘法与因式分解》单元测试题(带答案)

《整式的乘法与因式分解》单元测试题(带答案)
9.下列算式能用平方差公式计算的是
A. B. C. D.
[答案]D
[解析]
[分析]
根据平方差公式(A+B)(A-B)=A2-B2对各选项分别进行判断即可.
[详解]能用平方差公式计算的是 ,
故选D.
[点睛]本题考查了平方差公式,熟练掌握平方差公式(A+B)(A-B)=A2-B2是解本题的关键.
10.下列从左到右的变形,是因式分解的是
4.下列计算正确的是()
A 3A2﹣4A2=A2B.A2•A3=A6C.A10÷A5=A2D.(A2)3=A6
5.下列各式中,运算正确的是()
A. B. C. D.
6.下列运算错误的是()
A.(m2)3=m6B.A10÷A9=AC.x3•x5=x8D.A4+A3=A7
7.化简(A2)A3所得 结果是()
(2)用两种不同的方法求图中阴影部分的面积.
11.下列运算正确的是()
A. B. C. D.
[答案]D
[解析]
[分析]
根据同底数幂的乘除法法则,幂的乘方,积的乘方一一判断即可.
[详解]解:A、错误.应该是x3•x3=x6;
B、错误.应该是x8÷x4=x4;
C、错误.(A B3)2=A2B6.
D、正确.
故选D.
[点睛]本题考查同底数幂的乘除法法则,幂的乘方,积的乘方等知识,解题的关键是熟练掌握基本知识.
∴A2﹣4A+4+B2﹣8B+16=0,
∴(A﹣2)2+(B﹣4)2=0,
又∵(A﹣2)2≥0,(B﹣4)2≥0,
∴A﹣2=0,B﹣4=0,
∴A=2,B=4,
∴△A B C的周长为A+B+C=2+4+3=9,

《整式的乘法与因式分解》单元测试(含答案)

《整式的乘法与因式分解》单元测试(含答案)
A. B.
C.x2-xy+y2=(x-y)2D.2x-2y=2(x-y)
5.若 ,那么 值是
A. B. C. D.
6.如果 ,那么 的值为
A. B. C. D.
7.计算 的结果是
A. B. C. D.
8.已知 ,则 的值等于 .
A. B. C. D.
9.下列各式中与 相等的是
A. B. C. D.
10.如果 的左边是一个关于 的完全平方式,则 的值为
【点睛】本题考查了提公因式法和运用公式法因式分解的综合运用,分解因式时,要分解到每一个因式都不能够在分解即可.
12.计算 _______________.
【答案】
【解析】
【分析】
把(-2)2014写成(-2)×(-2)2013,然后根据有理数的乘方的定义,先乘积再乘方进行计算即可得解.
【详解】原式=
故答案为2.
【点睛】考查有理数的乘方运算,掌握乘方运算法则是解题的关键.
13.分解因式: ____________________________.
【答案】(x-6)(x+1)
【解析】
因为-6×1=-6,-6+1=-5,所以利用十字相乘法分解因式为: =(x-6)(x+1).
故答案为(x-6)(x+1)
【解析】
【分析】
(1)先利用完全平方公式和多项式除单项式的方法计算,再合并同类项,再进一步代入求得数值即可;
(2)利用平方差公式和单项式乘以多项式进行计算,再进一步合并同类项,最后代入求得数值即可.
【详解】(1)原式=
=
当 , 时,原式=
(2) ,
当 , 时, .
【点睛】考查整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.

第15章 整式的乘除与因式分解综合复习测试(二)及答案

第15章 整式的乘除与因式分解综合复习测试(二)及答案

第十五章 整式的乘除与因式分解综合复习测试度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每题3分,共30分)1、44221625)(______)45(b a b a -=+-括号内应填( )A 、2245b a +B 、2245b a +C 、2245b a +-D 、2245b a -- 2、下列计算正确的是( )A 、22))((y x x y y x -=-+ B 、22244)2(y xy x y x +-=+- C 、222414)212(y xy x y x +-=-D 、2224129)23(y xy x y x +-=-- 3、在2222222)())(3(,)()2(),5)(5()5()1(b a b a y x y x x x x +=--+=+-+=-+ (4)ab ab ab a b b a =-=--23)2)(3(中错误的有( ) A 、1个 B 、2个 C 、3个 D 、4个4、下列各式中,能用平方差公式计算的是( )A 、))((b a b a +--B 、))((b a b a ---C 、))((c b a c b a +---+-D 、))((b a b a -+- 5、如果:=-==+-222)32,5,0168y x x y xy x 则(且( )A 、425 B 、16625 C 、163025 D 、16225 6、计算:1.992-1.98×1.99+0.992得( )A 、0B 、1C 、8.8804D 、3.9601 7、如果k x x ++82可运用完全平方公式进行因式分解,则k 的值是( )A 、8B 、16C 、32D 、64 8、(x 2+px+8)(x 2-3x+q)乘积中不含x 2项和x 3项,则p,q 的值 ()A 、p=0,q=0B 、p=3,q=1C 、p=–3,–9D 、p=–3,q=1 9、对于任何整数m ,多项式9)54(2-+m 都能( )A 、被8整除B 、被m 整除C 、被m -1整除D 、被(2m -1)整除10.已知多项式2222z y x A -+=,222234z y x B ++-=且A+B+C=0,则C 为( )A 、2225z y x -- B 、22253z y x -- C 、22233z y x -- D 、22253z y x +-二、填空题(每题3分,共30分) 11、++xy x 1292=(3x + )212、2012= , 48×52= 。

人教版八年级上第十五章《整式的乘除与因式分解》单元测试.doc

人教版八年级上第十五章《整式的乘除与因式分解》单元测试.doc

初中数学试卷桑水出品第十五章《整式的乘除与因式分解》单元测试一、选择题:(每小题3分,满分33)1.下列算式中结果等于的是()A.B.C.D.2.下列运算中错误的是()A.B.C.D.3.下列因式分解错误的是( )A .B .C .D .4.下列式子中是完全平方式的是()A .B .C .D .5.任意给定一个非零数,按下列程序计算,最后输出的结果是()A.B.C.+1 D.-1 6.把多项式2-8x+8分解因式,结果正确的是()A . B.2 C.2D.27.下列各式,不能用平方差公式化简的是()A .B .C .D .8.当x=3,y=1时,代数式(x+y )(x-y )+的值是( )A .6B .8C .9D .129.若+M=,则M 的值为 ( )A.xy B. 0 C.2xy D.3xy 10.如图,长方形的面积有四种表示方法:(1)(m+n)(a+b) (2)m(a+b)+n(a+b) (3)a(m+n)+b(m+n)(4)ma+mb+na+nb其中正确的表达式有( )A.(1)(4) B.(1)(2)C.(1)(3)(4) D.(1)(2)(3)(4) 11.a 、b 、c 是三角形的三条边长,则代数式,a 2-2ab- c 2+b2的值:A 、 大于零B 、小于零C 、等于零D 、与零的大小无关二、填空题:(每小题3分,满分30分) 11.代数式是一个完全平方式,则k的值是( )12.若=1,则x的取值范围是 .13.若的展开式中,不含有项,则-1的值为 .14.+ =.15.在等式÷()=,则括号里的整式为.16.若(x+m)(x+n)=-7x+mn,则-m-n的值为17若,则.=.18.分解因式:= _____________.19若a>0且=2,=3,则的值为___20.边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图甲),把余下的部分拼成一个矩形(如图乙)根据两个图形中阴影部分的面积相等,可以验证的公式是.21、代数式是一个完全平方式,则k的值是()三、解答题:(本题共7个题,满分5722(满分7)已知:=3,=2,求的值.23(满分7)观察下列各式:3×5=15,15=-15×7=35,35=-1…………………………………11×13=143,143=-1…………………………………你会发现什么规律?请将你猜想到的规律,用只含一个字母n的式子表示出来.24(满分8分)先化简,再求值:÷b-(a+b)(a-b),其中,b=-1.25(满分8分)因式分解:(1)3-27(2)26(满分8分)已知a+b=10,ab=24.,求:(1)+;(2)的值.27(满分10分)按图中所示的两种防水剂分割正方形,你能分别得出什么结论?28(满分9分)在三个整式+2xy ,+2xy,中,请你任意选出两个进行加(或减)运算,使所得整式可以因式分解,并进行因式分解.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第15章 整式的乘除与因式分解单元测试
(总分:100分,时间:100分钟)
角度的反复训练才能取得跟多的收获,我们设计的试卷主要就是从这点出发,所以从你下载这张试卷开始,就与知识接近了一步。

一、选择题(每小题2分,共20分) 1.下列计算正确的是( )
A .x 2+x 3=x 5
B .x 2·x 3=x 6
C .(-x 3)2=-x 6
D .x 6÷x 3=x 3 2.计算6m 3÷(-3m 2)的结果是( )
A .-3m
B .-2m
C .2m
D .3m
3.现规定一种运算a ※b=ab+a -b ,其中a ,b 为实数,则a ※b+(b -a )※b 等于( ) A .a 2-b B .b 2-b C .b 2 D .b 2-a 4.利用因式分解简便计算57×99+44×99-99正确的是( )
A .99×(57+44)=99×101=9999
B .99×(57+44-1)=99×100=9900
C .99×(57+44+1)=99×102=10098
D .99×(57+44-99)=99×2=198 5.把多项式x 2-4x+4分解因式,结果是( )
A .(x+2)2
B .(x -2)2
C .x (x -4)+4
D .(x+2)(x -2) 6.与(
2x -2y
)2的结果一样的是( ) A .14(x+y )2-xy B .(2x +2y )2+xy
C .12(x -y )2
D .1
2
(x+y )2-xy
7.(6x 2y 4-3x 4y 2-3x 2y 2)÷3x 2y 2的计算结果是( )
A .2y 2-x 2-1
B .2y 2-x 2y
C .3y 2-xy 2-1
D .-x 8+x 6
8.当a=-1时,代数式(a+1)2+a (a -3)的值为( ) A .-4 B .4 C .-2 D .2 9.若4x 2+pxy 3+
116
y 6
是完全平方式,则p 等于( ) A .1 B .±2 C .±1 D .±4
10.如果(x 2+px+q )(x 2-5x+7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p=5,q=18 B .p=-5,q=18 C .p=-5,q=-18 D .p=5,q=-18 二、填空题(每小题3分,共18分)
11.多项式ax 2-4a 与x 2-4x+4的公因式是_______. 12.分解因式:9x 2(m -n )+y 2(n -m )=______.
13.一个矩形的面积为a 3-2ab+a ,宽为a ,则矩形的长为______.
14.如图,沿大正三角形的对称轴对折,•则互相重合的两个小正三角形内的单项式的乘积为________.
15.若ax 3m y 12÷3x 3y 2n =4x 6y 8,则a=_____,m=______,n=______.
16.定义一种对正整数n 的“F ”运算:(1)当n 为奇数时,结果是3n+5;(2)当n 为偶数时,
结果为
2k n (其中k 是使2
k n
为奇数的正整数),并且运算重复进行,例如,取26,则:(2)(1)(2)
126134411F F F −−−→−−−→−−−→⋅⋅⋅第次第2次第3次
若n=449,则第449次“F ”运算的结果是_________. 三、解答题(共62分)
17.计算(每题5分,共20分):
(1)(a 2+3)(a -2)-a (a 2-2a -2);(2)(-53ab 3c )·310
a 2
bc ·(-8abc )2;
(3)(a+b)(a-b)+(a+b)2-2(a-b)2;(4)(3
5
a5b3+
9
5
a7b4-
9
2
a5b5)÷
3
4
a5b3.
18.分解因式(每题4分,共16分):
(1)4a2-25; (2)m3-9m; (3)4x3-8x2+4x; (4)x2-2x+1-y2.
19.(8分)已知:当x=1,y=1
2
时,求代数式(3x+2y)(3x-2y)-(x-y)2的值.
20.(10分)阅读下列材料,并解答相应问题:
对于二次三项式x2+2ax+a2这样的完全平方式,可以用公式法将它分解成(x+a)2•的形式,但是对于二次三项式x2+2ax-3a2,就不能直接应用完全平方公式了,•我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使其成为完全平方式,再减去a这项,•使整个式子的值不变,于是有:
x2+2ax-3a2=x2+2ax+a2-a2-3a2
=(x+a)2-(2a)2
=(x+2a+a)(x+a-2a)
=(x+3a)(x-a).
(1)像上面这样把二次三项式分解因式的数学方法是_______.
(2)这种方法的关键是_______.
(3)用上述方法把m2-6m+8分解因式.
21.(8分)有多张如图①所示的长方形和正方形卡片(代号为Ⅰ,Ⅱ,Ⅲ),•现用这些长方形可以拼成如图②的正方形,以验证公式(a+b)2=a2+2ab+b2.
请你选择图①中相应种类的卡片若干张,拼成一个长方形,用以验证:2a2+5ab+2b2=(2a+b)·(a+2b),并仿照图②标上每一张卡片的代号.
答案:
1.D 2.B 3.B 4.B 5.B 6.A 7.A 8.B 9.C 10.A 11.x -2 12.(m -n )(3x+y )(3x -y ) 13.a 2-2b+1 14.2a 2b 或a 或2a 3b 15.12 3 2 16.8 (点拨:
(1)(2)(1)(2)(1)(2)
1449135216951281F F F F F F −−−→−−−→−−−→−−−→−−−→−−−→⋅⋅⋅第次第2次第3次第4次第5次第6次
1 第奇数次“F 运算”的结果为8,第偶数次“F 运算”的结果是1) 17.(1)5a -6 (2)-32a 5b 6c 4 (3)6ab -2b
2 (4)45+125
a 2
b -6b 2 18.(1)(2a+5)(2a -5) (2)m (m+3)(m -3) (3)4x (x -1)2 (4)(x -1+y )(x -1-y ) 19.原式=8x 2+2xy -5y 2,值为7
34
. 20.(1)配方法 (2)配成完全平方式 (3)m 2-6m+8=m 2-6m+32-32+8 =(m -3)2-1
=(m -3+1)(m -3-1) =(m -2)(m -4). 21.如图所示.
This document is collected from the Internet, which is convenient for readers to use. If there is any infringement, please contact the author and delete it immediately.
可以编辑的试卷(可以删除)。

相关文档
最新文档