高一数学必修三模块测试题(人教A版)[1]

合集下载

人教A版高中数学必修三试卷高一:综合模块测试(18).docx

人教A版高中数学必修三试卷高一:综合模块测试(18).docx

必修3综合模块测试18(人教A 版必修3)第I 卷(选择题,共42分)一.选择题(共14小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.将两个数a=8,b=17交换,使a=17,b=8,下面语句正确一组是 ( )A . a=b ;b=aB . c=b ;b=a ;a=cC . b=a ;a=bD . a=c ;c=b ;b=a2. 给出以下四个问题,①输入一个数x ,输出它的相反数。

②求面积为6的正方形的周长。

③求三个数a,b,c 中的最大数。

④求函数1,0()2,0x x f x x x -≥⎧=⎨+<⎩的函数值. 其中不需要用条件语句来描述其算法的有( )A. 1个B. 2个C. 3个D. 4个 3.下列命题是真命题的是( ) ①必然事件的概率等于1,不可能事件的概率等于0 ②某事件的概率等于1.1 ③互斥事件一定是对立事件 ④概率是频率的稳定值,频率是概率的近似值 ⑤在适宜的条件下种下一粒种子,观察它是否发芽,这个试验为古典概型 A.①③ B. ①④ C.①③⑤ D.①④⑤ 4.用秦九韶算法计算多项式654323567983512)(x x x x x x x f ++++-+=在4-=x 时的值时,3V 的值为 ( )A.-845B.220C.-57D.345.用系统抽样法从编号160:的60辆车中随机抽出6辆进行试验,则可能选取的车的编号是( ) A.5,10,15,20,25,30 B.3,13,23,33,43,53 C .1,2,3,4,5,6 D .2,4,8,16,32,486.某小组有2名男生和2名女生,从中任选2名同学去参加演讲比赛,那么互斥而不对立的两个事件是( )A .“至少有1名女生”与“都是女生”B .“至少有1名女生”与“至多1名女生”C .“至少有1名男生”与“都是女生”D .“恰有1名女生”与“恰有2名女生”7、我市对上下班交通情况作抽样调查,作出上下班时间各抽取12辆机动车行驶时速(单位:km/h )的茎叶图(如下):上班时间 下班时间 8 1 6 7 9 8 7 6 1 0 2 2 5 7 8 6 5 3 2 0 3 0 0 2 6 7 0 4则上下班时间行驶时速的中位数分别为( )A.28与28.5 B.29与28.5 C.28与27.5 D.29与27.5 8.甲,乙两人在相同条件下练习射击,每人打5发子弹,命中环数如下甲68998乙 10 7 7 7 9则两人射击成绩的稳定程度是( )。

高中数学人教A版必修3综合测试题及答案 9

高中数学人教A版必修3综合测试题及答案 9

必修3综合模块测试(人教A 版必修3)卷 Ⅰ(选择题,共60分)一、选择题:本大题共12小题,在下列每小题给出的四个结论中有且只有一个是正确的,请把正确的结论填涂在答题卡上.每小题5分,共60分 1.下列给出的赋值语句中正确的是:( )A.x+3=y-2B.d=d+2C.0=xD.x-y=5 2.在算法的逻辑结构中,要求进行逻辑判断,并根据结果进行不同处理的是哪种结构 ( ) A.顺序结构 B.条件结构和循环结构 C.顺序结构和条件结构 D.没有任何结构 3. 将389化成四进位制数的末位是 A 、0 B 、1 C 、2 D 、34. 当3a =时,右边的程序段输出的结果是 A 、9 B 、3 C 、10 D 、65.下面程序框图的基本结构中,当型循环结构指的是A B C D6.右面框图表示计算1×3×5×7×…×99的算法 在空白框中应填入A .2i i =+B .21i i =-C .21i i =+D .1i i =+7. 一个单位有职工160人,其中有业务员104人,管理人员32人,后勤服务人员24人,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,则在20人的样本中应抽取管理人员人数为 ( )A. 3B. 4C. 5D. 68.一个容量为20的样本数据,分组后组距为10,区间与频数分布如下:(]10,20,2; (]20,30,3; (]30,40,4; (]40,50,5;(]50,60,4; (]60,70,2. 则样本在(],50-∞上的频率为 ( )A.120 B. 14 C.12 D.7109.把红、蓝、黑、白4张纸牌随机分给甲、乙、丙、丁4个人,每人分得一张,事件“甲分得红牌”与事件“乙分得红牌”是( ) A. 对立事件B. 互斥但不对立事件C. 不可能事件D. 以上都不对10. 从区间()0,1内任取两个数,则这两个数的和小于56的概率是A 、35B 、45C 、1625D 、257211.如图,在正方形中撒一粒豆子,则豆子落在正方形内切圆内部的概率为A .4πB .44π-C .41π-D .4π12.同时上抛三枚硬币,落地后,三枚硬币图案两正一反的概率是A .34 B .14 C .38 D .12二、填空题(每小题4分,共16分)13. 某初级中学领导采用系统抽样方法,从该校预备年级全体800名学生中抽50名学生做 牙齿健康检查。

人教A版高中数学必修三测试题及答案全套

人教A版高中数学必修三测试题及答案全套

人教A版高中数学必修三测试题及答案全套阶段质量检测(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数输入自变量x的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是()A.顺序结构B.条件结构C.顺序结构、条件结构D.顺序结构、循环结构2.下列赋值语句正确的是()A.M=a+1 B.a+1=MC.M-1=a D.M-a=13.若十进制数26等于k进制数32,则k等于()A.4 B.5 C.6 D.84.用“辗转相除法”求得360和504的最大公约数是()A.72 B.36 C.24 D.2 5205.程序框图(如图所示)能判断任意输入的数x的奇偶性,其中判断框内的条件是()A.m=0? B.x=0?C.x=1? D.m=1?6.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A .S =S *(n +1)B .S =S*x n +1C .S =S * nD .S =S*x n7.已知一个k 进制的数132与十进制的数30相等,那么k 等于( ) A .7或4 B .-7 C .4 D .以上都不对8.用秦九韶算法求多项式:f (x )=12+35 x -8 x 2+79 x 3+6 x 4+5 x 5+3 x 6在x =-4的值时,v 4的值为( )A .-57B .220C .-845D .3 392 9.对于下列算法:如果在运行时,输入2,那么输出的结果是( ) A .2,5 B .2,4 C .2,3 D .2,9 10.下列程序的功能是( ) S =1i =1WHILE S <=10 000 i =i +2S =S*i WEND PRINT i ENDA .求1×2×3×4×…×10 000的值B .求2×4×6×8×…×10 000的值C .求3×5×7×9×…×10 001的值D .求满足1×3×5×…×n >10 000的最小正整数n11.(2015·新课标全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a ,b 分别为14,18,则输出的a =( )A .0B .2C .4D .1412.如果执行如图所示的程序框图,输入正整数N (N ≥2)和实数a 1,a 2,…,a N ,输出A ,B ,则( )A .A +B 为a 1,a 2,…,a N 的和 B.A +B 2为a 1,a 2,…,a N 的算术平均数C .A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数D .A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数 二、填空题(本大题共4小题,每小题5分,共20分)13.用更相减损术求三个数168,54,264的最大公约数为________. 14.将258化成四进制数是________.15.阅读如图所示的程序框图,运用相应的程序,若输入m 的值为2,则输出的结果i =________.16.下面程序执行后输出的结果是________,若要求画出对应的程序框图,则选择的程序框有________________.T=1S=0WHILE S<=50S=S+1T=T+1WENDPRINT TEND三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)画出函数的程序框图.18.(12分)用“更相减损术”求(1)中两数的最大公约数;用“辗转相除法”求(2)中两数的最大公约数.(1)72,168;(2)98,280.19.(12分)利用秦九韶算法判断函数f(x)=x 5+x 3+x 2-1在[0,2]上是否存在零点.20.(12分)已知某算法的程序框图如图所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…(1)若程序运行中输出的一个数组是(9,t),求t的值.(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.21.(12分)设计算法求11×2+12×3+13×4+…+199×100的值.要求画出程序框图,并用基本语句编写程序.22.(12分)如图甲所示在边长为4的正方形ABCD的边上有一点P,沿着折线BCDA由点B(起点)向点A(终点)运动.设点P运动的路程为x,△APB的面积为y,且y与x之间的函数关系式用如图乙所示的程序框图给出.图甲图乙(1)写出程序框图中①,②,③处应填充的式子;(2)若输出的面积y值为6,则路程x的值为多少?并指出此时点P在正方形的什么位置上.答案1. 答案:C2. 解析:选A根据赋值语句的功能知,A正确.3. 解析:选D由题意知,26=3×k1+2,解得k=8.4. 解析:选A504=360×1+144,360=144×2+72,144=72×2,故最大公约数是72.5. 解析:选D阅读程序易知,判断框内应填m=1?,应选D.6. 解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.7. 解析:选C132(k)=1×k2+3×k+2=k 2+3 k+2=30,即k=-7或k=4.∵k>0,∴k=4.8. 解析:选B f(x)=(((((3 x+5) x+6) x+79) x-8) x+35) x+12,当x=-4时,v0=3;∴v 1=3×(-4)+5=-7;v 2=-7×(-4)+6=34,v 3=34×(-4)+79=-57;v 4=-57×(-4)-8=220.9. 解析:选A输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.10. 解析:选D法一:S是累乘变量,i是计数变量,每循环一次,S乘以i一次且i增加2. 当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.法二:最后输出的是计数变量i,而不是累乘变量S.11. 解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.12. 解析:选C由于x=a k,且a>A时,将x值赋给A,因此最后输出的A值是a1,a2,…,a N 中最大的数;由于x=a k,且x<B时,将x值赋给B,因此最后输出的B值是a1,a2,…,a N中最小的数,故选C.13. 解析:为简化运算,先将3个数用2约简为84,27,132.由更相减损术,先求84与27的最大公约数.84-27=57,57-27=30,30-27=3,27-3=24,24-3=21,21-3=18,18-3=15,15-3=12,12-3=9,9-3=6,6-3=3.故84与27的最大公约数为3.再求3与132的最大公约数,易知132=3×44,所以3与132的最大公约数就是3.故84,27,132的最大公约数为3;168,54,264的最大公约数为6.答案:614. 解析:利用除4取余法.则258=10 002(4).答案:10 002(4)15. 解析:由程序框图,i=1后:A=1×2,B=1×1,A<B?否;i=2后:A=2×2,B=1×2,A <B?否;i=3后:A=4×2,B=2×3,A<B?否;i=4后:A=8×2,B=6×4,A<B?是,输出i=4.答案:416. 解析:本题为当型循环语句,可以先用特例循环几次,观察规律可得:S=1,T=2;S=2,T=3;S=3,T=4;…;依此循环下去,S=49,T=50;S=50,T=51;S=51,T=52.终止循环,输出的结果为52.本题使用了输出语句、赋值语句和循环语句,故用如下的程序框:起止框、处理框、判断框、输出框.答案:52起止框、处理框、判断框、输出框17. 解:程序框图如图所示.18. 解:(1)用“更相减损术”168-72=96,96-72=24,72-24=48,48-24=24.∴72与168的最大公约数是24.(2)用“辗转相除法”280=98×2+84,98=84×1+14,84=14×6.∴98与280的最大公约数是14.19. 解:f (0)=-1<0,下面用秦九韶算法求x=2时,多项式f(x)=x 5+x 3+x 2-1的值.多项式变形为f (x)=((((x+0) x+1) x+1) x+0) x-1,v0=1,v 1=1×2+0=2,v 2=2×2+1=5,v 3=5×2+1=11,v 4=11×2+0=22,v 5=22×2-1=43,所以f(2)=43>0,即f (0)·f (2)<0,又函数f (x)在[0,2]上连续,所以函数f(x)=x 5+x 3+x 2-1在[0,2]上存在零点.20. 解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4.(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 008.(3)程序框图的程序语句如下:21. 解:程序框图如图.程序如下. S =0k =1DOS =S +1/(k*(k +1)) k =k +1LOOP UNTIL k >99PRINT S END22. 解:(1)由题意,得y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,8,4<x ≤8,24-2x ,8<x ≤12,故程序框图中①,②,③处应填充的式子分别为:y =2x ,y =8,y =24-2x .(2)若输出的y 值为6,则2x =6或24-2x =6,解得x =3或x =9.当x =3时,此时点P 在正方形的边BC 上,距C 点的距离为1;当x =9时,此时点P 在正方形的边DA 上,距D 点的距离为1.阶段质量检测(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列各选项中的两个变量具有相关关系的是( ) A .长方体的体积与边长 B .大气压强与水的沸点 C .人们着装越鲜艳,经济越景气 D .球的半径与表面积 2.下列说法错误的是( )A .在统计里,最常用的简单随机抽样方法有抽签法和随机数法B .一组数据的平均数一定大于这组数据中的每个数据C .平均数、众数与中位数从不同的角度描述了一组数据的集中趋势D .一组数据的方差越大,说明这组数据的波动越大3.(2016·开封高一检测)某学校有老师200人,男学生1 200人,女学生1 000人,现用分层抽样的方法从全体师生中抽取一个容量为n 的样本,已知女学生一共抽取了80人,则n 的值是( )A .193B .192C .191D .1904.某班学生父母年龄的茎叶图如图,左边是父亲年龄,右边是母亲年龄,则该班同学父亲的平均年龄比母亲的平均年龄大( )A .2.7岁B .3.1岁C .3.2岁D .4岁5.如果在一次实验中,测得(x ,y )的四组数值分别是A (1,3),B (2,3.8),C (3,5.2),D (4,6),则y 与x 之间的回归直线方程是( )A.y ^=x +1.9B.y ^=1.04x +1.9 C.y ^=0.95x +1.04 D.y ^=1.05x -0.96.观察新生婴儿的体重,其频率分布直方图如图,则新生婴儿体重在(2 700,3 000)的频率为( )A .0.001B .0.1C .0.2D .0.37.某班级有50名学生,其中有30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测验中的成绩,五名男生的成绩分别为86,94,88,92,90,五名女生的成绩分别为88,93,93,88,93,下列说法正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数大于该班女生成绩的平均数8.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为( )图1图2A .1%B .2%C .3%D .5%9.某校高一、高二年级各有7个班参加歌咏比赛,他们的得分的茎叶图如图所示,对这组数据分析正确的是( )A .高一的中位数大,高二的平均数大B .高一的平均数大,高二的中位数大C .高一的平均数、中位数都大D .高二的平均数、中位数都大10.在样本频率分布直方图中,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且样本容量为160,则中间一组的频数为( )A .32B .0.2C .40D .0.2511.为了研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别分段为第一组,第二组,…,第五组,如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为( )A .6B .8C .12D .1812.设矩形的长为a ,宽为b ,若其比满足ba =5-12≈0.618,则这种矩形称为黄金矩形.黄金矩形给人以美感,常应用于工艺品设计中.下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.598 0.625 0.628 0.595 0.639 乙批次:0.618 0.613 0.592 0.622 0.620根据上述两个样本来估计两个批次的总体平均数与标准值0.618比较,正确结论是( ) A .甲批次的总体平均数与标准值更接近 B .乙批次的总体平均数与标准值更接近 C .两个批次总体平均数与标准值接近程度相同 D .两个批次总体平均数与标准值接近程度不能确定 二、填空题(本大题共4小题,每小题5分,共20分)13.甲、乙、丙、丁四名射击手在选拔赛中的平均环数x 及其标准差s 如下表所示,则选送决赛的最佳人选应是________.14.在某次测量中得到的A 若B 样本数据恰好是A 样本数据每个都加2后所得数据,则A ,B 两样本的数字特征(众数、中位数、平均数、方差)对应相同的是________.15.某校开展“爱我母校,爱我家乡”摄影比赛,9位评委为参赛作品A 给出的分数茎叶图如图,记分员去掉一个最高分和一个最低分后,算得平均分为91分,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是________.16.某校从参加高一年级期中考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后得到如图所示的部分频率分布直方图.在统计方法中,同一组数据常用该组区间的中点值作为代表,观察图形的信息,据此估计本次考试的平均分为________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)已知一组数据从小到大的顺序排列,得到-1,0,4,x,7,14,中位数为5,求这组数据的平均数与方差.18.(12分)2015年春节前,有超过20万名来自广西、四川的外来务工人员选择驾乘摩托车沿321国道返乡过年,为防止摩托车驾驶人员因长途疲劳驾驶而引发交通事故,肇庆市公安交警部门在321国道沿线设立了多个休息站,让过往的摩托车驾驶人员有一个停车休息的场所.交警小李在某休息站连续5天对进站休息的摩托车驾驶人员每隔50人询问一次省籍,询问结果如图所示:(1)交警小李对进站休息的驾驶人员的省籍询问采用的是什么抽样方法?(2)用分层抽样的方法对被询问了省籍的驾驶人员进行抽样,若广西籍的有5名,则四川籍的应抽取几名?19.(12分)某制造商为运动会生产一批直径为40 mm的乒乓球,现随机抽样检查20只,测得每只球的直径(单位:mm,保留两位小数)如下:40.0240.0039.9840.0039.9940.0039.9840.0139.9839.9940.0039.9939.9540.0140.0239.9840.0039.9940.0039.96(1)完成下面的频率分布表,并画出频率分布直方图;(2)假定乒乓球的直径误差不超过0.02 mm 为合格品,若这批乒乓球的总数为10 000只,试根据抽样检查结果估计这批产品的合格只数.20.(12分)某零售店近5个月的销售额和利润额资料如下表:(1)(2)用最小二乘法计算利润额y 关于销售额x 的回归直线方程;(3)当销售额为4千万元时,利用(2)的结论估计该零售店的利润额(百万元).⎣⎢⎢⎡⎦⎥⎥⎤参考公式:b ^=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a ^=y -b ^x 21.(12分)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:甲:82 81 79 78 95 88 93 84 乙:92 95 80 75 83 80 90 85 (1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.22.(12分)已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出这两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据制作成如图甲所示的茎叶图.(1)根据茎叶图计算有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量; (2)为了估计池塘中鱼的总重量,现按照(1)中的比例对100条鱼进行称重,根据称重鱼的重量介于[0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图乙是按上述分组方法得到的频率分布直方图的一部分.①估汁池塘中鱼的重量在3千克以上(含3千克)的条数;②若第三组鱼的条数比第二组多7条、第四组鱼的条数也比第三组多7条,请将频率分布直方图补充完整;③在②的条件下估计池塘中鱼的重量的众数及池塘中鱼的总重量.图甲 图乙答 案1. 解析:选C A 、B 、D 均为函数关系,C 是相关关系.2. 解析:选B 平均数不大于最大值,不小于最小值.3. 解析:选B1 000×n200+1 200+1 000=80,解得n =192.4. 解析:选C 分别求出父亲年龄和母亲年龄的平均值,可得父亲的平均年龄比母亲的平均年龄大3.2岁,故选C.5. 解析:选Bx =14(1+2+3+4)=2.5,y =14(3+3.8+5.2+6)=4.5.因为回归直线方程过样本点中心(x ,y ),代入验证知,应选B.6. 解析:选D 由直方图可知,所求频率为0.001×300=0.3.7. 解析:选C A 不是分层抽样,因为抽样比不同.B 不是系统抽样,因为是随机询问,抽样间隔未知.C 中五名男生成绩的平均数是x =86+94+88+92+905=90,五名女生成绩的平均数是y =88+93+93+88+935=91,五名男生成绩的方差为s 21=15(16+16+4+4+0)=8,五名女生成绩的方差为s 22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D 中由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.8. 解析:选C 由图2知,小波一星期的食品开支为300元,其中鸡蛋开支为30元,占食品开支的10%,而食品开支占总开支的30%,所以小波一星期的鸡蛋开支占总开支的百分比为3%,故选C.9. 解析:选A 由茎叶图可以看出,高一的中位数为93,高二的中位数为89,所以高一的中位数大.由计算得,高一的平均数为91,高二的平均数为6477,所以高二的平均数大.故选A.10. 解析:选A 由频率分布直方图的性质,可设中间一组的频率为x ,则x +4x =1,∴x =0.2,故中间一组的频数为160×0.2=32,选A.11. 解析:选C 志愿者的总人数为20(0.16+0.24)×1=50,所以第三组人数为50×0.36=18,有疗效的人数为18-6=12.12. 解析:选A 甲批次的样本平均数为15×(0.598+0.625+0.628+0.595+0.639)=0.617;乙批次的样本平均数为15×(0.618+0.613+0.592+0.622+0.620)=0.613.所以可估计:甲批次的总体平均数与标准值更接近.13. 解析:平均数反映平均水平大小,标准差表明稳定性.标准差越小,稳定性越好. 答案:乙14. 解析:由s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],可知B 样本数据每个变量增加2,平均数也增加了,但s 2 不变,故方差不变.答案:方差15. 解析:由于需要去掉一个最高分和一个最低分,故需要讨论:①若x ≤4,∵平均分为91,∴总分应为637分.即89+89+92+93+92+91+90+x =637,∴x =1. ②若x >4,则89+89+92+93+92+91+94=640≠637,不符合题意,故填1. 答案:116. 解析:在频率分布直方图中,所有小长方形的面积和为1,设[70,80)的小长方形面积为x ,则(0.01+0.015×2+0.025+0.005)×10+x =1,解得x =0.3,即该组频率为0.3,所以本次考试的平均分为45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.答案:7117. 解:由于数据-1,0,4,x,7,14的中位数为5, 所以4+x 2=5,x =6.设这组数据的平均数为x ,方差为s 2,由题意得 x =16×(-1+0+4+6+7+14)=5,s 2=16×[(-1-5)2+(0-5)2+(4-5)2+(6-5)2+(7-5)2+(14-5)2]=743.18. 解:(1)根据题意,因为有相同的间隔,符合系统抽样的特点,所以交警小李对进站休息的驾驶人员的省籍询问采用的是系统抽样方法.(2)从图中可知,被询问了省籍的驾驶人员中 广西籍的有5+20+25+20+30=100(人), 四川籍的有15+10+5+5+5=40(人),设四川籍的驾驶人员应抽取x 名,依题意得5100=x40,解得x =2,即四川籍的应抽取2名. 19. 解:(1)(2)∵抽样的20只产品中在[39.98,40.02]范围内有18只,∴合格率为1820×100%=90%,∴10 000×90%=9 000(只).即根据抽样检查结果,可以估计这批产品的合格只数为9 000. 20. 解:(1)散点图如图所示,两个变量有线性相关关系.(2)设回归直线方程是y ^=b ^x +a ^. 由题中的数据可知y =3.4,x =6.所以b ^=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=(-3)×(-1.4)+(-1)×(-0.4)+1×0.6+3×1.69+1+1+9=1020=0.5. a ^=y -b ^x =3.4-0.5×6=0.4.所以利润额y 关于销售额x 的回归直线方程为 y ^=0.5x +0.4.(3)由(2)知,当x =4时,y =0.5×4+0.4=2.4,所以当销售额为4千万元时,可以估计该商场的利润额为2.4百万元.21. 解:(1)作出茎叶图:(2)x 甲=18(78+79+81+82+84+88+93+95)=85, x乙=18(75+80+80+83+85+90+92+95)=85. s 2甲=18[(78-85)2+(79-85)2+(81-85)2+(82-85)2+(84-85)2+(88-85)2+(93-85)2+(95-85)2]=35.5,s 2乙=18[(75-85)2+(80-85)2+(80-85)2+(83-85)2+(85-85)2+(90-85)2+(92-85)2+(95-85)2]=41.∵x甲=x 乙,s 2甲<s 2乙,∴甲的成绩较稳定,派甲参赛比较合适.22. 解:(1)根据茎叶图可知,鲤鱼与鲫鱼的平均数目分别为80,20. 由题意知,池塘中鱼的总数目为1 000÷80+202 000=20 000(条),则估计鲤鱼数目为20 000×80100=16 000(条),鲫鱼数目为20 000-16 000=4 000(条).(2)①根据题意,结合直方图可知,池塘中鱼的重量在3千克以上(含3千克)的条数约为20 000×(0.12+0.08+0.04)×0.5=2 400(条).②设第二组鱼的条数为x ,则第三、四组鱼的条数分别为x +7、x +14,则有x +x +7+x +14=100×(1-0.55),解得x =8,故第二、三、四组的频率分别为0.08、0.15、0.22,它们在频率分布直方图中的小矩形的高度分别为0.16,0.30,0.44,据此可将频率分布直方图补充完整(如图).③众数为2.25千克,平均数为0.25×0.04+0.75×0.08+1.25×0.15+…+4.25×0.02=2.02(千克), 所以鱼的总重量为2.02×20 000=40 400(千克).阶段质量检测(三)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( ) A .随机事件的概率总在[0,1]内 B .不可能事件的概率不一定为0 C .必然事件的概率一定为1 D .以上均不对2.下列事件中,随机事件的个数为( )①在某学校校庆的田径运动会上,学生张涛获得100米短跑冠军;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,抽到李凯; ③从标有1,2,3,4的4张号签中任取一张,恰为1号签; ④在标准大气压下,水在4 ℃时结冰. A .1 B .2 C .3 D .43.甲、乙、丙三人随意坐一排座位,乙正好坐中间的概率为( ) A.12 B.13 C.14 D.164.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品不全是次品”,则下列结论正确的是( )A .A 与C 互斥B .B 与C 互斥C .任何两个均互斥D .任何两个均不互斥5.(2016·郑州高一检测)函数f (x )=x 2-x -2,x ∈[-5,5],那么任取一点x 0,使得f (x 0)≤0的概率是( ) A.310 B.15 C.25 D.456.如图,在矩形ABCD 中,点E 为边CD 的中点.若在矩形ABCD 内部随机取一个点Q ,则点Q 取自△ABE 内部的概率等于( )A.14B.13C.12D.237.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是( ) A.16 B.13 C.12 D.238.如图,EFGH 是以O 为圆心、半径为1的圆的内接正方形.将一颗豆子随机地扔到该圆内,用A 表示事件“豆子落在正方形EFGH 内”,则P (A )=( )A.4πB.1π C .2 D.2π9.在区间[-π,π]内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π2 有零点的概率为( )A.π4 B .1-π4 C.4π D.4π-1 10.如图所示,茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中有一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率是( )A.25B.710C.45D.91011.掷一枚均匀的正六面体骰子,设A 表示事件“出现2点”,B 表示“出现奇数点”,则P (A ∪B )等于( )A.12B.23C.13D.2512.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯以4秒为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率是( )A.14B.12C.34D.78二、填空题(本大题共4小题,每小题5分,共20分)13.(2016·青岛高一检测)一个口袋内装有大小相同的10个白球,5个黑球,5个红球,从中任取一球是白球或黑球的概率为________.14.如图所示,在正方形内有一扇形(见阴影部分),点P 随意等可能落在正方形内,则这点落在扇形外且在正方形内的概率为________.15.已知集合A ={(x ,y )|x 2+y 2=1},集合B ={(x ,y )|x +y +a =0},若A ∩B ≠∅的概率为1,则a 的取值范围是________.16.从1,2,3,4这四个数字中,任取两个,这两个数字都是奇数的概率是________,这两个数字之和是偶数的概率是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)从甲、乙、丙、丁四个人中选两名代表.求:(1)甲被选中的概率;(2)丁没被选中的概率.18.(12分)袋子中装有大小和形状相同的小球,其中红球与黑球各1个,白球n 个.从袋子中随机取出1个小球,取到白球的概率是12. (1)求n 的值;(2)记从袋中随机取出的一个小球为白球得2分,为黑球得1分,为红球不得分.现从袋子中取出2个小球,求总得分为2分的概率.19.(12分)一个袋中装有四个形状、大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机抽取两个球,求取出的球的编号之和不大于4的概率.(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.20.(12分)已知集合Z ={(x ,y )|x ∈[0,2],y ∈[-1,1]}.(1)若x ,y ∈Z ,求x +y ≥0的概率;(2)若x ,y ∈R ,求x +y ≥0的概率.21.(12分)(2015·福建高考)全网传播的融合指数是衡量电视媒体在中国网民中影响力的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.(1)现从融合指数在[4,5)和[7,8]2家进行调研,求至少有1家的融合指数在[7,8]内的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数.22.(12分)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两种卡片颜色不同且标号之和小于4的概率.答案1. 解析:选C随机事件的概率总在(0,1)内,不可能事件的概率为0,必然事件的概率为1.2. 解析:选C①在某学校校庆的田径运动会上,学生张涛有可能获得100米短跑冠军,也有可能未获得冠军,是随机事件;②在明天下午体育课上,体育老师随机抽取一名学生去拿体育器材,李凯不一定被抽到,是随机事件;③从标有1,2,3,4的4张号签中任取一张,不一定恰为1号签,是随机事件;④在标准大气压下,水在4 ℃时结冰是不可能事件.故选C.3. 解析:选B甲、乙、丙三人随意坐有6个基本事件,乙正好坐中间,甲、丙坐左右两侧有2个基本事件,故乙正好坐中间的概率为26=1 3.4. 解析:选B因为事件B是表示“三件产品全是次品”,事件C是表示“三件产品不全是次品”,显然这两个事件不可能同时发生,故它们是互斥的,所以选B.5. 解析:选A由f(x0)≤0,即x20-x0-2≤0,得-1≤x0≤2,其区间长度为3,由x∈[-5,5],区间长度为10,所以所求概率为P=310.6. 解析:选C不妨设矩形的长、宽分别为a、b,于是S矩形=ab,S△ABE=12ab,由几何概型的概率公式可知P =S △ABE S 矩形=12. 7. 解析:选B 给三人打电话的不同顺序有6种可能,其中第一个给甲打电话的可能有2种,故所求概率为P =26=13.故选B. 8. 解析:选D 豆子落在正方形EFGH 内是随机的,故可以认为豆子落在正方形EFGH 内任一点是等可能的,属于几何概型.因为圆的半径为1,所以正方形EFGH 的边长是2,则正方形EFGH 的面积是2,又圆的面积是π,所以P (A )=2π. 9. 解析:选B 要使函数有零点,则Δ=(2a )2-4(-b 2+π2)≥0,a 2+b 2≥π2,又-π≤a ≤π,-π≤b ≤π,所以基本事件的范围是2π·2π=4π2,函数有零点所包含的基本事件的范围是4π2-π3.所以所求概率为4π2-π34π2=1-π4.故选B. 10. 解析:选C 设被污损的数字是x ,则x ∈{0,1,2,3,4,5,6,7,8,9}.甲的平均成绩为x 甲=15(88+89+90+91+92)=90,x 乙=15[83+83+87+(90+x )+99]=442+x 5,设甲的平均成绩超过乙的平均成绩为事件A ,则此时有90>442+x 5,解得x <8,则事件A 包含x =0,1,2,3,4,5,6,7,共8个基本事件,则P (A )=810=45. 11. 解析:选B 由古典概型的概率公式得P (A )=16,P (B )=36=12. 又事件A 与B 为互斥事件,由互斥事件的概率和公式得P (A ∪B )=P (A )+P (B )=16+12=23. 12. 解析:选C 由于两串彩灯第一次闪亮相互独立且4秒内任一时刻等可能发生,所以总的基本事件为如图所示的正方形的面积,而要求的是第一次闪亮的时刻相差不超过2秒的基本事件,即如图所示的阴影部分的面积,根据几何概型的计算公式可知它们第一次闪亮的时刻相差不超过2秒的概率是1216=34,故选C. 13. 解析:记“任取一球为白球”为事件A ,“任取一球为黑球”为事件B ,则P (A +B )=P (A)+P (B)。

高中数学人教A版必修3综合测试题及答案 4

高中数学人教A版必修3综合测试题及答案 4

必修3综合模块测试(人教A 版必修3)时间120分钟,满分150分。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )A .每层等可能抽样B .每层不等可能抽样C .所有层用同一抽样比等可能抽样D .所有层抽同样多个体,每层都是等可能抽样 [答案] C[解析] 由分层抽样的定义可知,选C . 2.下列说法正确的有( )①随机事件A 的概率是频率的稳定性,频率是概率的近似值. ②一次试验中不同的基本事件不可能同时发生. ③任意事件A 发生的概率P(A)总满足0<P(A)<1. ④若事件A 的概率为0,则A 是不可能事件. A .0个 B .1个 C .2个 D .3个 [答案] C[解析] 不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概型中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A 发生的概率P (A )满足0≤P (A )≤1,∴③错误;又①正确.∴选C.3.如图是计算12+14+16+…+120的值的一个程序框图,其中在判断框中应填入的条件是( )A .i <10B .i>10C .i <20D .i >20[答案] B[解析] 最后一次执行循环体时i 的值为10,又条件不满足时执行循环体,∴i =11>10时跳出循环.4.一组数据的方差为s 2,将这组数据中的每一个数都乘以2所得到的一组新数据的方差为( )[答案] C5.在100个零件中,有一级品20个、二级品30个、三级品50个,从中抽取20个作为样本.①将零件编号为00,01,…,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下面说法正确的是( )A .不论采用哪一种抽样方法,这100个零件中每一个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每一个被抽到的概率为15,③并非如此C .①③两种抽样方法,这100个零件中每一个被抽到的概率为15,②并非如此D .采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的 [答案] A [解析] 由于随机抽样、系统抽样、分层抽样的共同特点是:每个个体被抽到的概率都相等,所以无论采用哪种抽样方法,这100个零件中每个零件被抽到的概率都是15.6.用秦九韶算法求多项式f(x)=0.5x 5+4x 4-3x 2+x -1当x =3的值时,先算的是( ) A .3×3=9 B .0.5×35=121.5 C .0.5×3+4=5.5 D .(0.5×3+4)×3=16.5 [答案] C [解析] 按递推方法,从里到外先算0.5x +4的值. 7.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )A.19B.29C.49D.89 [答案] D[解析] 设2个人分别在x 层,y 层离开,则记为(x ,y )基本事件构成集合Ω={(2,2),(2,3),(2,4)…(2,10)(3,2),(3,3),(3,4)…(3,10) ⋮(10,2),(10,3),(10,4)…(10,10)},所以除了(2,2),(3,3),(4,4),…,(10,10)以外,都是2个人在不同层离开,故所求概率P =9×9-99×9=89.解法2:其中一个人在某一层离开,考虑另一个人,也在这一层离开的概率为19,故不在这一层离开的概率为89.8.下列程序计算的数学式是( )[答案] C[解析] 本题是一个递推累加问题,由T =T*i 经过循环依次得到1!,2!,3!,…,n !,由s =s +1/T 实现累加.故选C .[答案] C10.下面一段程序的目的是( )[答案] B[解析] 程序中,当m ≠n 时总是用较大的数减去较小的数,直到相等时跳出循环,显然是“更相减损术”.11.在所有两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( ) A.56 B.45 C.23 D.12 [答案] C12.运行如图的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素α,则函数y =x α x ∈[0,+∞)是增函数的概率为( )A.37 B.45 C.35D.34[答案] C[解析] 当x 依次取值-3,-2,-1,0,1,2,3时,对应的y 的值依次为:3,0,-1,0,3,8,15, ∴集合A ={-1,0,3,8,15},∵α∈A ,∴使y =x α在x ∈[0,+∞)上为增函数的α的值为3,8,15,故所求概率P =35.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知直线l过点(-1,0),l与圆C:(x-1)2+y2=3相交于A、B两点,则弦长|AB|≥2的概率为________.[答案]3 3[解析]设直线方程为y=k(x+1),代入(x-1)2+y2=3中得,(k2+1)x2+2(k2-1)x+k2-1=0,∵l与⊙C相交于A、B两点,∴Δ=4(k2-1)2-4(k2+1)(k2-2)>0,∴k2<3,∴-3 <k<3,又当弦长|AB|≥2时,∵圆半径r=3,∴圆心到直线的距离d≤2,即|2k|1+k2≤2,∴k2≤1,∴-1≤k≤1.由几何概型知,事件M:“直线l与圆C相交弦长|AB|≥2”的概率P(M)=1-(-1) 3-(-3)=33.14.把七进制数305(7)化为五进制数,则305(7)=______(5).[答案]1102[解析]∵305(7)=3×72+5=152,又152=30×5+2,30=6×5+0,6=1×5+1,1=0×5+1,∴152=1102(5),即305(7)=1102(5).15.若以连续掷两次骰子得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16外的概率是________.[答案]7 9[解析]基本事件组成集合Ω={(m,n)|1≤m≤6,1≤n≤6,m,n∈N}中共36个元素.事件A=“点P(m,n)落在圆x2+y2=16外”的对立事件中含有基本事件(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,∴P(A)=1-836=7 9.16.在半径为1的圆周上有一定点A,以A为端点任作一弦,另一端点在圆周上等可能的选取,则弦长超过1的概率为________.[答案]2 3[解析]如图,作半径为1的圆的内接正六边形ABCDEF,则其边长为AB=AF=1,当另一端点落在上时,弦长小于1,当另一端点落在上时,弦长大于1,由几何概型定义可知,概率P=23.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)(08·广东文)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373x y男生377370z(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.[解析](1)∵x2000=0.19,∴x=380.(2)初三年级人数为y+z=2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482000×500=12名.(3)设初三年级女生比男生多的事件为A,初三年级女生、男生数记为(y,z),由(2)知y+z=500,且y、z∈N,基本事件有:(245,255)、(246,254)、(247,253),…,(255,245)共11个,事件A包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个,∴P(A)=511.18.(本题满分12分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.[分析]对于(1)可利用各组的频率和等于1,从而可求第四小组的频率;而(2)则是利用组中值求平均分;(3)利用古典概型的概率公式可求其概率.[解析](1)因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.03.其频率分布直方图如图所示.(2)依题意,60分及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.030+0.025+0.005)×10=0.75.所以,估计这次考试的合格率是75%. 利用组中值估算这次考试的平均分,可得: 45·f 1+55·f 2+65·f 3+75·f 4+85·f 5+95·f 6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71. 所以估计这次考试的平均分是71分.(3)[40,50)与[90.100]的人数分别是6和3,所以从成绩是[40,50)与[90,100]的学生中选两人,将[40,50]分数段的6人编号为A 1,A 2,…A 6,将[90,100]分数段的3人编号为B 1,B 2,B 3,从中任取两人,则基本事件构成集合Ω={(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,A 4),…,(B 2,B 3)}共有36个,其中,在同一分数段内的事件所含基本事件为(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 2,A 3)…(A 5,A 6),(B 1,B 2),(B 1,B 3),(B 2,B 3)共18个,故概率P =1836=12.19.(本题满分12分)有人提出如下的圆周率的近似算法:在右图的单位正方形内均匀地取n 个点P i (x i ,y i )(i ∈{1,2,…,n }),然后统计出以x i 、y i 、1为边长的三角形中锐角三角形的个数m ,则当n 充分大时,π≈4(n -m )n,试分析这种算法是否正确.[解析] 根据题中提出的算法, 有0<x i <1,0<y i <1,所以以x i ,y i,1为边长的三角形中,长为1的边所对的角A 为最大角,当且仅当0°<A <90°时,以x i ,y i,1为边长的三角形为锐角三角形,x 2i +y 2i >1,此时点P 在以O 为圆心,1为半径的圆的外部,即图中阴影部分.所以在图中的单位正方形内任意取一点P i ,满足以x i ,y i,1为边长的三角形为锐角三角形的概率为P =阴影部分的面积/单位正方形的面积=1-π4,当n 充分大时,m n ≈P =1-π4,∴π≈4⎝⎛⎭⎫1-m n =4(n -m )n ,所以题中给出的圆周率的近似算法是正确的.20.(本题满分12分)编写程序求1~1000的所有不能被3整除的整数之和. [解析] S =0 i =1WHILE i <=1000r =i MOD 3IF r <>0 THEN S =S +i END IF i =i +1 WEND PRINT S END21.(本题满分12分)一次掷两粒骰子,得到的点数为m 和n ,求关于x 的方程x 2+(m +n )x +4=0有实数根的概率.[解析] 基本事件共36个,∵方程有实根,∴Δ=(m +n )2-16≥0, 又∵m ,n ∈N ,∴m +n ≥4,其对立事件是m +n <4,其中有(1,1),(1,2),(2,1)共3个基本事件,∴所求概率为P =1-336=1112.22.(本题满分14分)某化工厂的原料中含有两种有效成份A 和B .测得原料中A 和B 的i 1 2 3 4 5 6 7 8 9 10 x i :A (%) 24 15 23 19 16 11 20 16 17 13 y i :B (%) 67 54 72 64 39 22 58 43 46 34 (1)作出散点图;(2)求出回归直线方程:y ^=ax +b ;(3)计算回归直线y ^=ax +b 对应的Q =∑i =110[y i -(ax i +b )]2,并和另一条直线y ^=a ′x +b ′(a ′=2a ,b ′=2b )对应的Q ′=∑i =110[y i -(a ′x i +b ′)]2比较大小.(可使用计算器)[解析] (1)散点图见下图(2)把数据代入公式,计算可知,x -=17.4,y -=49.9,∑i =110x 2i =3182,∑i =110x i y i =9228,b =∑i =110x i y i -10x -y-∑i =110x 2i -10x-2=9228-8682.63182-3027.6≈3.5324,a =y --b x -≈-11.5635,回归线方程为y ^=3.5324x -11.5635.(3)经计算:Q =∑i =110[y i -(ax i +b )]2=353.8593,Q ′=∑i =110[y i -(2ax i +2b )]2=27175.6120,∴Q <Q ′.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。

人教A版高中数学必修三试卷高一:综合模块测试.docx

人教A版高中数学必修三试卷高一:综合模块测试.docx

s=0 i=2 Do s=s+i i= i+2LoopuntilPrint sEnd 第5题必修3综合模块测试10(人教A版必修3)一、选择:(共12小题,每题5分,共60分)1. 算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、条件结构、循环结构D. 模块结构、条件结构、循环结构2下列说法正确的是()A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定3.用二分法求方程022=-x的近似根的算法中要用哪种算法结构()A.顺序结构 B.条件结构 C.循环结构 D.以上都用4.若)(BAP Y=1)()(=+BPAP,则事件A与B的关系是() A 互斥不对立 B 对立不互斥 C互斥且对立 D以上都不对5.有下面的程序,运行该程序,要使输出的结果是30,在处应添加的条件是()A. i>12B. i>10C. i=14D. i=106.用“辗转相除法”求得459和357的最大公约数是:()A.3 B.9 C.17 D.517.线性回归方程bxay+=ˆ所表示的直线必经过点()A.(0,0) B.(0,x) C.(y,0) D.(yx,)8.下面有三个游戏规则,袋子中分别装有球,从袋中无放回地取球,问其中不公平的游戏是( )游戏1 游戏2 游戏3 3个黑球和一个白球一个黑球和一个白球2个黑球和2个白球取1个球,再取1个球取1个球取1个球,再取1个球取出的两个球同色→甲胜取出的球是黑球→甲胜取出的两个球同色→甲胜取出的两个球不同色→乙胜取出的球是白球→乙胜取出的两个球不同色→乙胜9.在下列各图中,每个图的两个变量具有相关关系的图是 ( )(1)(2)(3)(4)A.(1)(2) B.(1)(3) C.(2)(4) D.(2)(3)10.现有五个球分别记为A ,C ,J ,K ,S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是 ( ) A.101 B. 53 C. 103 D. 10911.在用样本频率估计总体分布的过程中,下列说法正确的是 ( ) A.总体容量越大,估计越精确 B.总体容量越小,估计越精确 C.样本容量越大,估计越精确 D.样本容量越小,估计越精确12、某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2, ……,270;使用系统抽样时,将学生统一随机编号1,2, ……,270,并将整个编号依次分为10段 如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250; ②5,9,100,107,111,121,180,195,200,265; ③11,38,65,92,119,146,173,200,227,254; ④30,57,84,111,138,165,192,219,246,270;关于上述样本的下列结论中,正确的是 ( )A 、 ②、③都不能为系统抽样B 、 ②、④都不能为分层抽样C 、 ①、④都可能为系统抽样D 、 ①、③都可能为分层抽样二 填空:(共4小题,每题5分,共20分) 13.右图给出的是计算201614121++++Λ的值的一个 流程图,其中判断框内应填入的条件是____________ 14、数据 128,,,x x x L 平均数为6,标准差为2,则数 据 12826,26,,26x x x ---L 的平均数为 , 方差为 。

人教A版高中数学必修三试卷高中新课程必修模块③测试卷

人教A版高中数学必修三试卷高中新课程必修模块③测试卷

高中数学新课程必修模块③测试卷参考公式:线性回归方程为ˆybx a =+,其中⎪⎪⎪⎩⎪⎪⎪⎨⎧-=--=---=∑∑∑∑====xb y a xn x yx n yx x x y y x x b ni i ni ii ni i ni i i 1221121)())((说明:本试卷满分100分,考试时间90分钟。

学生答题时可使用学生专用计算器。

一、选择题(本题有22小题,每小题2分,共44分.选出各题中一个符合题意的正确选项,不选、多选、错选都不给分)1. 程序框图中表示判断的是 ( ▲ )2. 以下哪一个不属于算法的基本结构:( )A. 顺序结构B. 判断结构C. 循环结构D. 条件结构3.从2005个编号中抽取20个号码入样,采用系统抽样的方法,则抽样的间隔为 ( ▲ ) A. 99 B. 99.5 C. 100 D. 100.54. 从一批产品中取出三件,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是 ( ▲ )A .A 与C 互斥B .B 与C 互斥 C .任两个均互斥D .任两个均不互斥5. 下列事件中是随机事件的个数有( ▲ )①连续两次抛掷两个骰子,两次都出现2点; ②在地球上,树上掉下的雪梨不抓住就往下掉; ③某人买彩票中奖; ④已经有一个女儿,那么第二次生男孩; ⑤在标准大气压下,水加热到90℃是会沸腾。

A. 1B. 2C. 3D. 46.已知甲、乙两名同学在五次数学测验中的得分如下:甲:85,91,90,89,95;乙:95,80,98,82,95.则甲、乙两名同学数学学习成绩 ( ▲ )A. 甲比乙稳定B. 甲、乙稳定程度相同C. 比甲稳定D. 无法确定7. 用秦九韶算法计算多项式1)(23456++++++=x x x x x x x f 当2=x 时的值时,需要做乘法和加法的次数分别是 ( ▲ )A. 6,5B. 5,6C. 5,5D. 6,68.一个容量为40的样本数据分组后组数与频数如下:(25,253],6;(25.3,25.6],4;(25.6,25.9],10;(25.9,26.2],8;(26.2,26.5],8;(26.5,26.8],4;则样本在(25,25.9]上的频率为( ▲ )A 203B 101C 41D 219.以下程序运行后输出的结果是( ▲ )A.-5 ,3B.3 , 3C.-5 ,-5 D.3 ,-510. 如图程序运行后,输出的值是( ▲ )A . -4 B. 5 C. 9 D. 411. 某校有教师150人,后勤工作人员20人,高中生1200人,初中生1800人,现要了解该校全体人员对学校的某项规定的看法,抽取一个容量为317的样本进行调查.设计一个合适的抽样方案.否 条件成立吗?P As=0 n=1DO s=s+n n=n+1 LOOPUNTILEn>100 PRINTs s=0 n=100WHILEn>0 s=s+n n=n-1 WEND PRINTs 你会在初中生中抽取( ▲ )人。

最新人教版高中数学必修三模块综合测试卷(附解析)

最新人教版高中数学必修三模块综合测试卷(附解析)

最新人教版高中数学必修三模块综合测试卷(附解析)最新人教版高中数学必修三模块综合测试卷班级:____ 姓名:____ 考号:____ 分数:____本试卷满分150分,考试时间120分钟。

一、选择题:本大题共12题,每题5分,共60分。

在下列各题的四个选项中,只有一个选项是符合题目要求的。

1.下列选项中,正确的赋值语句是()A.A=x2-1=(x-1)(x+1)B.55=AC.A=A*A+A-3D.4=2×2-3=1答案:C解析:赋值语句的表达式“变量=表达式”,因此C正确。

2.用秦九韶算法求n次多项式f(x)=anxn+an-1xn-1+…+a1x+a0,当x=x时,求f(x)需要算乘方、乘法、加法的次数分别为()A.n,2n,nB.n。

n+1,nC.0,2n,nD.n,n,n答案:D3.在20袋牛奶中,有3袋已过了保质期,从中任取一袋,取到已过保质期的牛奶的概率为()A.10/173B.20/173C.37/173D.10/20答案:C4.甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,计划采用分层抽样法,抽取一个样本容量为90人的样本,应在这三校分别抽取学生()A.30人,30人,30人B.30人,45人,15人C.20人,30人,10人D.30人,50人,10人答案:B解析:根据题意,由于分层抽样的方法适合于差异比较明显的个体,而甲校有3600名学生,乙校有5400名学生,丙校有1800名学生,为统计三校学生某方面的情况,即可知90∶=1∶120,则可知应在这三校分别抽取学生3600×120=30,5400×120=45,1800×120=15,故答案为B。

5.已知一个样本x1,y5,其中x,y是方程组x+y=4。

2x+2y=10。

解,则这个样本的标准差是()A.5B.2C.3D.2/11答案:D解析:由方程组得x=3或x=1,因此这个样本为1,1,3,5.平均数为(1+1+3+5)/4=2.5,标准差为√[(2.5-1)²+(2.5-1)²+(2.5-3)²+(2.5-5)²]/4=2/11.88+93+93+88+93=455,平均成绩为91.五名男生的成绩方差为s1= (16+16+4+4+0)/5=8,五名女生的成绩方差为s2= (9+4+4+9+4)/5=6.显然,五名男生的成绩方差大于五名女生的成绩方差。

高中数学人教A版必修三课时习题:模块综合测试卷含答案

高中数学人教A版必修三课时习题:模块综合测试卷含答案

模 合 卷班 ____ 姓名____ 考号 ____ 分数 ____本 卷 分 150 分,考 120 分 .一、 :本大 共 12 ,每 5 分,共 60 分.在以下各 的四个 中,只有一个 是切合 目要求的.1.以下 中,正确的 句是 ( )A .A =x 2-1=(x -1)(x +1) B .55=AC .A =A* A +A -3D .4=2×2-3=1 答案: C分析: 句的表达式 “ 量=表达式 ”,故 C 正确.0 2.用秦九韶算法求 n 次多 式 f(x)=a n x n +a n - 1xn -1+⋯+ a 1x +,当 x =x 0,求 f(x 0需要算乘方、乘法、加法的次数分()a)A.n n +1,n ,nB .n,2n ,n2C .0,2n ,nD .0,n ,n 答案: D3.在 20 袋牛奶中,有 3 袋已 了保 期,从中任取一袋,取到已 保 期的牛奶的概率 ( )173A. 20B.103 7C.20D.10答案: C4.甲校有 3600 名学生,乙校有 5400 名学生,丙校有 1800 名学生, 三校学生某方面的状况, 划采纳分 抽 法,抽取一个 本容量 90 人的 本, 在 三校分 抽取学生 ( )A .30 人, 30 人, 30 人B .30 人, 45 人, 15 人C .20 人, 30 人, 10 人D .30 人, 50 人, 10 人 答案: B分析:依据 意,因为分 抽 的方法合适于差别比 明 的个体,而甲校有 3600 名学生,乙校有 5400 名学生,丙校有 1800 名学生,三校学生某方面的状况,即可知 90∶10800=1∶120,11可知在三校分抽取学生 3600×120= 30,5400×120=145,1800×120=15,故答案 B.x+ y=4,5.已知一个本 x,1,y,5,此中 x,y 是方程的x2+y2=10,解,个本的准差是 ()A. 5 B.2C.3D.11 2答案: D分析:由x+y=4,x=3,x=1,得或所以个本x2+y2=10,y=1,y=3.1,1,3,5.1+1+3+5均匀数=2.5,4准差2.5-1 2+ 2.5-1 2+⋯+ 2.5-5 2411= 2 .6.某同学认识秋冬天用量(y 度)与气温 (x℃)的关系曾由下表数据算出回直方程^y=- 2x+ 60,表中有一个数据被.被的数据 ()气温181310- 1用量 (度) 24 34*64A.40 B.39C.38 D.37答案: C18+13+10-124+34+* +64分析:剖析: x ==,=.410 y4^24+34+* +644=- 2×10+60,解得 * =38.应选 C.7.以下各数中最大的数是 () A .85(9) B .210(6)C .1000(4)D .111111(2) 答案: B分析: 85(9)=8×9+5=77,210(6)= 2×62+1×6+0= 78,1000(4)=1×43=64,111111(2)=1×25+1×24+1×23+1×22+1×2+1=63,故选 B..在棱长为 的正方体-1 1 1 1 内任取一点 P ,则点 P8 a ABCDABCD到点 A 的距离小于等于 a 的概率为 ()2 2A. 2B. 2 π1 1 C.6 D.6π答案: D1分析: 知足条件的点在半径为 a 的8球内,所以所求概率为 p =1×4πa 3 8 3 πa 3=6,选 D.9.阅读以下图的程序框图,运转相应的程序,则输出 i 的值为( )A .3B .4C .5D .6 答案: B分析:因为该程序框图履行 4 次后结束,所以输出的 i 的值等于4.10.某班级有 50 名学生,此中 30 名男生和 20 名女生,随机询问了该班五名男生和五名女生在某次数学测试中的成绩,五名男生的成绩分别是 86,94,88,92,90五名女生的成绩分别为 88,93,93,88,93,下列说法必定正确的选项是 ()A.这类抽样方法是一种分层抽样B.这类抽样方法是一种系统抽样C.这五名男生成绩的方差大于这五名女生成绩的方差D.该班男生成绩的均匀数小于该班女生成绩的均匀数答案: C分析:依据分层抽样和系统抽样定义判断A,B,求出五名男生和五名女生成绩的方差判断 C.A,不是分层抽样,因为抽样比不一样.B,不是系统抽样,因为随机咨询,抽样间隔未知.C,五名男生成绩的均匀数是x =86+94+88+92+90,=590五名女生成绩的均匀数是y =88+93+93+88+93,=591五名男生成绩的方差为 s21=15(16+16+4+4+0)=8,五名女生成绩的方差为 s22=15(9+4+4+9+4)=6,明显,五名男生成绩的方差大于五名女生成绩的方差.D,因为五名男生和五名女生的成绩无代表性,不可以确立该班男生和女生的均匀成绩.11.问题:①有 1 000 个乒乓球分别装在 3 个箱子内,此中红色箱子内有500 个,蓝色箱子内有200 个,黄色箱子内有300 个,现从中抽取一个容量为 100 的样本;②从 20 名学生中选出 3 名参加会谈会.方法:Ⅰ .随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.此中问题与方法能配对的是 ()A .①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ答案: B分析:此题观察三种抽样方法的定义及特色.12.某中学呼吁学生在暑期期起码参加一次社会公益活 (以下称活 ).校文学社共有 100 名学生,他参加活的次数如所示,从文学社中随意 1 名学生,他参加活次数 3 的概率是()1 3A. 10B.1067C.10D.10答案: B30分析:从中随意 1 名学生,他参加活次数 3 的概率是100=3.10二、填空:本大共 4 小,每小 5 分,共 20 分.把答案填在中横上.13.假要观察某企业生的 500 克袋装牛奶的量能否达,从 800 袋牛奶中抽取 60 袋行.利用随机数表抽取本,先将 800 袋牛奶按000,001,⋯,799 行号,假如从随机数表第 8行第 7 列的数开始向右,你挨次写出最初的 5 袋牛奶的号________.(下边摘取了随机数表第7行至第 9行)8442 17 53 3157 24 55 06 8877 04 74 47 6721 76 33 50 25 83 92 12 06 766301 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 07 44 39 52 38 793321 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 42 99 66 02 79 54答案: 785、567、199、507、175分析:第一找到第 8 行第 7 列的数 7 向右第一个三位数 785,而后是916>799 舍去,接着是 955,同舍去,接着取567、199,而后是810>799 舍去,接着是 507、175,所以最初的 5 袋牛奶的号 785、567、199、507、175.14.以下所示的框表示算法的功能是________.答案:乞降 S=1+2+22+23+⋯+ 26415.甲、乙两人在 10 天中每日加工部件的个数用茎叶表示如,中一列的数字表示部件个数的十位数,两的数字表示部件个数的个位数,10 天甲、乙两人日加工部件的均匀数分________和________.答案: 24,23分析:甲的均匀数:18+19+20+22+23+21+20+35+31+3110=24,乙的均匀数:19+17+11+21+24+22+24+30+32+3010=23.16.行如所示的程序框,若 P=0.8,出的 n=________.答案: 4三、解答题:本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.17.(10 分)为了对某课题进行研究, 用分层抽样的方法从三所高校 A , B ,C 的有关人员中,抽取若干人构成研究小组,有关数据以下表 (单位:人 )有关人 抽取人高校数 数 A 18 x B 36 2 C54 y(1)求 x ,y ;(2)若从高校 B 、C 抽取的人中选 2 人作专题讲话, 求这 2 人都来自高校 C 的概率.解: (1)由题意得 x = 2 = y,∴x =1,y =3.18 36 54(2)记从高校 B 抽取的 2 人为 b 1, 2,从高校C 抽取3 人为c 1、bc 2、c 3,则从高校 B 、C 抽取的 5 人中选 2 人作专题讲话的基本领件有:(b 1,b 2),(b 1,c 1),(b 1,c 2),(b 1,c 3),(b 2,c 1),(b 2,c 2),(b 2,c 3),(c 1, 2),(c 1, 3),(c 2, 3)共 10 种,设选中的 2 人都来自高校 Cc c c的事件为 ,则A 包括的基本领件为(c1, 2),(c 1 , 3),(c 2,3)3 种.Accc所以 P(A)= 33,应选中的 2 人都来自高校 C 的概率为 .1010 18.(12 分)某工厂甲、乙两个车间包装同一种产品,在自动包装传递带上每隔 30 分钟抽一包产品,称其重量能否合格,剖析记录抽查 数 据 如 下 : 甲 车 间 : 102,101,99,98,103,98,99; 乙 车 间 : 110,115,90,85,75,115,110.(1)这是什么抽样方法?(2)预计甲、乙两个车间的均值和方差,并说明哪个车间产品较稳固?解: (1)这是系统抽样;(2)甲车间均值 x 1=100,方差 S 12= 3.4287;乙车间均值 x 2=100,方差 S 22=228.5714;x =x ,S 2<S 2,甲车间产品稳固.1 2 1 219.(12 分)2012 年部分省份高考加试体育,某校 5 月测试的男子 50 米跑的成绩 (单位: s)以下: 6.4,6.5,7.0,6.8,7.1,7.3,6.9,7.4,7.5,设计一个算法,从这些成绩中搜寻出小于 6.8 s 的成绩,并画出程序框图.解:算法步骤以下:第一步: i=1;第二步:输入一个数据a:第三步:假如 a<6.8,则输出 a,不然,履行第四步;第四步: i=i +1;第五步:假如i>9,则结束算法,不然履行第二步.程度框图如图:20.(12 分)有一容量为 50 的样本,数据的分组及各组的频数如下: [10,15),4;[15,20),5;[20,25), 10;[25,30),11;[30,35),9;[35,40),8;[40,45],3.(1)列出样本的频次散布表;(2)画出频次散布直方图和频次散布折线图;(3)预计整体在 [20,35)以内的概率.解: (1)样本频次散布表:分组频数频次4[10,15)4501[15,20)510[20,25)101 5 11[25,30)11509[30,35)950[35,40)84253[40,45]350(2)频次散布直方图与折线图以下:10 11 9 3(3)P=50+50+50=5.21.(12 分)某电脑企业有 6 名产品销售员,此中 5 名产品销售职工作年限与年销售金额数据以下表:销售员编号12345工作年限 /年35679销售金额 /万23345元(1)求年销售金额对于工作年限的线性回归方程;(2)若第 6 名销售员的工作年限为11 年,试预计他的年销售金额.解: (1)设所求的线性回归方程为^y=bx+a,nx i- x y i- yi= 110则 b=n=20=0.5,x i- x 2i= 1a= y -b x =0.4.^∴年销售金额 y 对于工作年限 x 的线性回归方程为 y=0.5x+0.4.^+=×+=万(2)由(1)可知,当 x=11 时,y=0.5x0.40.5110.4 5.9(元).∴能够预计第 6 名销售员的年销售金额为 5.9 万元.22.(12 分)先后 2 次投掷一次骰子,将获得的点数分别记为a,b.求直线++=与圆2+y2=1 相切的概率;(1)0ax by 5x(2)将 a,b,5 的值分别作为三条线段的长,求这三条线段能围成等腰三角形 (含等边三角形 )的概率.解: (1)先后 2 次投掷一枚骰子,将获得的点数分别记为a,b,事件总数为 6×6=36.∵直线 ax+by+5=0 与圆 x2+y2=1 相切的充要条件是5 a2+b2=1,即: a2+b2=25,因为 a,b∈{1,2,3,4,5,6} ,∴知足条件的状况只有a=3,b=4;或 a=4,b=3 两种状况.21高中数学人教A 版必修三课时习题:模块综合测试卷含答案(2)先后 2 次投掷一枚骰子,将获得的点数分别记为 a ,b ,事件 总数为 6×6=36.∵ 三角形的一边长为 5,∴ 当 a =1 时, b =5,(1,5,5)1 种当 a =2 时, b =5,(2,5,5)1 种当 a =3 时, b =3,5,(3,3,5),(3,5,5)2 种当 a =4 时, b =4,5,(4,4,5),(4,5,5)2 种当 a =5 时,b =1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),(5,4,5),(5,5,5),(5,6,5)6 种当 a =6 时, b =5,6,(6,5,5),(6,6,5)2 种故知足条件的不一样状况共有 14 种.答:三条线段能围成不一样的等腰三角形的概率为 14736 =18.11。

高一数学人教a版必修三练习:模块质量检测(a)

高一数学人教a版必修三练习:模块质量检测(a)

模块质量检测(A)(本栏目内容,在学生用书中以独立形式分册装订)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个射手进行射击,记事件E 1:“脱靶”,E 2:“中靶”,E 3:“中靶环数大于4”,E 4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( )A .1对B .2对C .3对D .4对解析: E 1与E 3,E 1与E 4均为互斥而不对立的事件. 答案: B2.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析: 由题意知,26=3×k 1+2,解得k =8. 答案: D3.已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为( )A .36B .30C .40D .无法确定解析: 设样本容量为n ,则n 120=2790,∴n =36. 答案: A4.集合A ={2,3},B ={1,2,3},从A ,B 中各任取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13D.16 解析: 从A ,B 中各任取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)6个基本事件,满足两数之和等于4的有(2,2),(3,1)2个基本事件,所以P =26=13.答案: C5.对一批产品的长度(单位:毫米)进行抽样检测,下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45解析: 由图可知抽得一等品的概率为0.3,抽得三等品的概率为0.25,则抽得二等品的概率为1-0.3-0.25=0.45.答案: D6.如图所示是计算函数y =⎩⎪⎨⎪⎧-x ,x ≤-1,0,-1<x ≤2,x 2,x >2的值的程序框图,则在①②③处应分别填入的是( )A .y =-x ,y =0,y =x 2B .y =-x ,y =x 2,y =0C .y =0,y =x 2,y =-xD .y =0,y =-x ,y =x 2解析: 框图为求分段函数的函数值,当x ≤-1时,y =-x ,故①y =-x ,当-1<x ≤2时,y =0,故③为y =0,那么②为y =x 2.答案: B7.已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率为( ) A.15 B.25 C.35D.45解析: 根据几何概型的概率公式,P =3-13-(-2)=25.答案: B8.(2014·浙江卷)在3张奖券中有一、二等奖各1张,另一张无奖,甲、乙两人各抽取1张,两人都中奖的概率是( )A.16B.13C.12D.23解析: 设三张奖券分别用A ,B ,C 代替,A 一等奖;B 二等奖;C 无奖,甲、乙各抽一张共包括(A ,B ),(A ,C ),(B ,A ),(B ,C ),(C ,A ),(C ,B ),6种基本事件,其中甲、乙都中奖包括两种,P =26=13,故选B.答案: B9.(2015·重庆卷)重庆市2013年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是( ) A .19 B .20 C .21.5D .23解析: 由中位数的概念可知,该组数据按从小到大顺序排列的第6和第7个数据的平均数即为要求的中位数,为20.答案: B10.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )A.19B.29C.49D.89解析: 设2个人分别在x 层,y 层离开,则记为(x ,y )基本事件构成集合Ω={(2,2),(2,3),(2,4),…,(2,10),(3,2),(3,3),(3,4),…,(3,10),…,(10,2),(10,3),(10,4),…,(10,10)},所以除了(2,2),(3,3),(4,4),…,(10,10)以外,都是2个人在不同层离开,故所求概率P =9×9-99×9=89.答案: D11.如果数据x 1,x 2,…,x n 的平均数为x ,方差为s 2,则5x 1+2,5x 2+2,…,5x n +2的平均数和方差分别为( )A.x ,s 2 B .5x +2,s 2 C .5x +2,25s 2D.x ,25s 2解析: 由平均数与方差的计算公式分析可得5x 1+2,5x 2+2,…,5x n +2的平均数为5x +2,方差为25s 2,故选C.答案: C12.(2015·开封高一检测)设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 与b ,确定平面上一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N ),若事件C n 的概率最大,则n 的所有可能值为( )A .3B .4C .2和5D .3和4解析: 点P (a ,b )共有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)6种情况,得x +y 分别等于2,3,4,3,4,5,所以出现3与4的概率最大,故n 的所有可能值为3和4.答案: D二、填空题(本大题共4小题,每小题4分,共16分.请把正确答案填在题中横线上)13.(2015·福建卷)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析: 由题意知,男生人数=900-400=500,所以抽取比例为男生∶女生=500∶400=5∶4,样本容量为45,所以抽取的男生人数为45×59=25.答案: 2514.(2015·沈阳高一检测)在区间[-1,1]内随机取一个数k ,则直线y =k (x +2)与圆x 2+y 2=1有公共点的概率为________.解析: 由题意知,d =|2k |1+k 2≤1⇒-33≤k ≤33,所以有公共点的概率P =33-⎝⎛⎭⎫-331-(-1)=33.答案:3315.102,238的最大公约数是________.解析: 238-102=136,136-102=34,102-34=68,68-34=34. 答案: 3416.阅读如图所示的程序框图,运行相应的程序,输出的结果i =________.解析: 按照程序框图的执行流程分析循环过程,得到输出结果. 程序框图的执行流程及中间结果如下:第一步:a =10,i =1,a ≠4,a 不是奇数,a =102=5,i =2;第二步:a ≠4,a 是奇数,a =3×5+1=16,i =3;第三步:a ≠4,a 不是奇数,a =162=8,i =4;第四步:a ≠4,a 不是奇数,a =82=4,i =5;第五步,a =4,这时跳出循环,输出i =5.答案: 5三、解答题(本大题共6小题,共74分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分12分)甲、乙两人玩一种游戏,每次由甲、乙各出1到5根手指头,若和为偶数则算甲赢,否则算乙赢.(1)若以A 表示“和为6”的事件,求P (A );(2)现连玩三次,以B 表示“甲至少赢一次”的事件,C 表示“乙至少赢两次”的事件,则B 与C 是否为互斥事件?试说明理由.(3)这种游戏规则公平吗?试说明理由.解析: (1)令x ,y 分别表示甲、乙出的手指数,则基本事件空间可表示为S ={(x ,y )|x ∈N *,y ∈N *,1≤x ≤5,1≤y ≤5}.因为S 中点的总数为5×5=25, 所以基本事件总数n =25.事件A 包含的基本事件为(1,5),(2,4),(3,3),(4,2),(5,1),共5个,所以P (A )=525=15. (2)B 与C 不是互斥事件,如“甲赢一次,乙赢两次”的事件中,事件B 与C 是同时发生的. (3)由(1)知,和为偶数的基本事件数为13,即甲赢的概率为1325,乙赢的概率为1225,所以这种游戏规则不公平.18.(本小题满分12分)已知某算法的程序框图如图所示,若将输出的(x ,y )值依次记为(x 1,y 1),(x 2,y 2),…,(x n ,y n ),….(1)若程序运行中输出的一个数组是(9,t ),求t 的值; (2)程序结束时,共输出(x ,y )的组数为多少; (3)写出程序框图的程序语句.解析: (1)开始时x =1时,y =0;接着x =3,y =-2;最后x =9,y =-4,所以t =-4;(2)当n =1时,输出一对,当n =3时,又输出一对,…,当n =2 011时,输出最后一对,共输出(x ,y )的组数为1 006;(3)程序框图的程序语句如下:)海关对同时从A ,B ,C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.(1)求这6件样品中来自A ,B ,(2)若在这6件样品中随机抽取2件送往甲机构进行进一步检测,求这2件商品来自相同地区的概率. 解析: (1)因为工作人员是按分层抽样抽取商品,所以各地区抽取商品比例为: A ∶B ∶C =50∶150∶100=1∶3∶2,所以各地区抽取商品数为A :6×16=1,B :6×36=3,C :6×26=2.(2)设各地区商品分别为A ,B 1,B 2,B 3,C 1,C 2,基本事件空间Ω为:(A ,B 1),(A ,B 2),(A ,B 3),(A ,C 1),(A ,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2),共15个.样本事件空间为:(B 1,B 2),(B 1,B 3),(B 2,B 3),(C 1,C 2), 所以这两件商品来自同一地区的概率为P (A )=415.20.(本小题满分12分)(2015·枣庄高一检测)A ,B ,C ,D ,E 五位学生的数学成绩x 与物理成绩y (单位:分)如表:(1)请根据上表提供的数据,b ∧x +a ∧;(参考数值:80×70+75×66+70×68+65×64+60×62=23 190,802+752+702+652+602=24 750)(2)若学生F 的数学成绩为90分,试根据(1)求出的回归方程,预测其物理成绩(结果保留整数). 解析: (1)因为x =80+75+70+65+605=70,y =70+66+68+64+625=66,i =15x i y i =80×70+75×66+70×68+65×64+60×62=23 190,∑i =15x 2i =802+752+702+652+602=24 750,所以b ∧=∑i =15x i y i -5x y ∑i =15x 2i -5x2=23 190-5×70×6624 750-5×702=0.36,a ∧=y -b ∧x =66-0.36×70=40.8.故所求线性回归方程为y ∧=0.36x +40.8.(2)由(1),当x =90时,y ∧=0.36×90+40.8=73.2≈73, 所以预测学生F 的物理成绩为73分.21.(本小题满分13分)(2015·四川绵阳高三二诊)2014年11月12日,科幻片《星际穿越》上映,上映至今,全球累计票房高达6亿美金.为了了解绵阳观众的满意度,某影院随机调查了本市观看影片的观众,并用“10分制”对满意度进行评分,分数越高满意度越高,若分数不低于9分,则称该观众为“满意观众”.现从调查人群中随机抽取12名.如图所示的茎叶图记录了他们的满意度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶).(1)求从这12人中随机选取1人,该人不是“满意观众”的概率;(2)从本次所记录的满意度评分大于9.1的“满意观众”中随机抽取2人,求这2人得分不同的概率. 解析: (1)由茎叶图可知,所抽取12人中有4人低于9分,即有4人不是“满意观众”, 所以P =412=13,即从这12人中随机选取1人,该人不是“满意观众”的概率为13.(2)设本次符合条件的满意观众分别为A 1(9.2),A 2(9.2),A 3(9.2),A 4(9.2),B 1(9.3),B 2(9.3),其中括号内为该人的分数.则从中任意选取两人的可能有(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 1,B 1),(A 1,B 2),(A 2,A 3),(A 2,A 4),(A 2,B 1),(A 2,B 2),(A 3,A 4),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),(B 1,B 2),共15种,其中,分数不同的有(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(A 4,B 1),(A 4,B 2),共8种,所以所求的概率为815.22.(本小题满分13分)甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?解析: 如果顾客去甲商场,试验的全部结果构成的区域为圆盘的面积πR 2,阴影部分的面积为4×15πR 2360=πR 26, 则在甲商场中奖的概率为P 1=πR 26πR 2=16; 如果顾客去乙商场,记3个白球为a 1,a 2,a 3,3个红球为b 1,b 2,b 3,记(x ,y )为一次摸球的结果,则一切可能的结果有:(a 1,a 2),(a 1,a 3),(a 1,b 1),(a 1,b 2),(a 1,b 3),(a 2,a 3),(a 2,b 1),(a 2,b 2),(a 2,b 3),(a 3,b 1),(a 3,b 2),(a 3,b 3),(b 1,b 2),(b 1,b 3),(b 2,b 3),共15种,摸到的是2个红球有(b 1,b 2),(b 1,b 3),(b 2,b 3),共3种, 则在乙商场中奖的概率为P 2=315=15,又P 1<P 2,则购买该商品的顾客在乙商场中奖的可能性大.。

人教版高中数学高一 综合模块测试25(人教A版必修3)

人教版高中数学高一 综合模块测试25(人教A版必修3)

必修3综合模块测试25(人教A 版必修3)第Ⅰ卷一. 选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的1. 从装有红球、黑球和白球的口袋中摸出一个球,若摸出的球是红球的概率是0.4,摸出的球是黑球的概率是0.25,那么摸出的球是白球的概率是( ) (A) 0.35 (B) 0.65 (C) 0.1 (D) 不能确定 2. 下列说法中,正确的是(A) 频率分布直方图中各小长方形的面积不等于相应各组的频率 (B) 一组数据的标准差是这组数据的方差的平方(C) 数据2,3,4,5的方差是数据4,6,8,10的方差的一半 (D) 一组数据的方差越大,说明这组数据的波动越大 3. 下列关于算法的说法中正确的个数是( )①求解某一类问题的算法是唯一的; ②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊; ④算法执行后一定产生确定的结果。

(A) 1 (B) 2 (C) 3 (D) 4 4. 程序a=3;b=-5;c=8;a=b;b=c;c=a;Print(%in(2),a,b,c)输出的结果是(A) 8,3,-5 (B) -5,8,3 (C) -5,8,-5 (D) -5,8,8 5. 有60件产品,编号为01至60,现从中抽取5件检验,用系统抽样的方法所确定的抽样编号是( )(A) 5,10,15,20,25 (B) 5,12,31,39,57 (C) 5,15,25,35,45 (D) 5,17,29,41,536. 在等边三角形内任取一点,则点M 落在其内切圆内部的概率是( )(A)123 (B)93 (C)123π (D)93π 7. 从2011名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2011人中剔除11人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率为( )(A) 不全相等 (B) 均不相等 (C) 都相等,且为100225(D) 都相等,且为401 8.用秦九韶算法计算多项式2345()1510105f x x x x x x =+++++在2x =-时的值时,3v 的值为(A) 1 (B) 2 (C) 3 (D) 49.甲、乙、丙、丁4人分乘两辆车,每辆车乘两人,则甲、乙同车的概率为( )(A) 21 (B)31(C) 41(D) 3210. 有下面的程序,运行该程序,要使输出的结果是30,在处 应添加的条件是 ( ) A. i>12 B. i>10 C. i=14 D. i=10第Ⅱ卷二. 填空题:本大题共4小题,每小题4分,共16分.11.已知2012年某省经教育部批准自主命题高考题,为慎重起见,该省提前制定了两套方案,且对这两套方案在全省14个地级市分别召集专家进行研讨,并对认为合理的方案进行了投票表决,统计结果如茎叶图所示,试说明方案比较稳妥的是。

高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题

高中数学 章末检测试卷(一)(含解析)新人教A版必修3-新人教A版高一必修3数学试题

章末检测试卷(一)(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是( ) A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合答案 D解析任何一种算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种、两种或三种.2.下面一段程序执行后的结果是( )A.6B.4C.8D.10答案 A解析由程序知a=2,2×2=4,4+2=6,故最后输出a的值为6,故选A.3.执行如图所示的程序框图,若输出的结果为11,则M处可填入的条件为( )A.k≥31B.k≥15C.k>31D.k>15答案 B解析依题意k=1,S=0,进入循环,循环过程依次为:S=0+1=1,k=2×1+1=3;S=1+3=4,k=2×3+1=7;S=4+7=11,k=2×7+1=15,终止循环,输出S=11.结合选项知,M处可填k≥15.4.中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s为( )A.7B.12C.17D.34答案 C解析由框图可知,输入x=2,n=2,a=2,s=2,k=1,不满足条件;a=2,s=4+2=6,k=2,不满足条件;a=5,s=12+5=17,k=3,满足条件输出s=17,故选C.5.执行如图所示的程序框图,输出的S值为( )A.1B.3C.7D.15答案 C解析由程序框图得S=0+20=1,k=1;S=1+21=3,k=2;S=3+22=7,k=3,输出S的值为7.6.运行如图所示的程序,当输入的数据为75,45时,输出的值为( ) INPUT “输入两个不同正整数m,n=”;m,nDOIF m>n THENm=m-nELSEn=n-mEND IFLOOP UNTIL m=nPRINT mENDA.24B.18C.12D.15答案 D解析由程序语句知,此程序是用更相减损术求75,45的最大公约数.7.执行如图所示的框图,输入N=5,则输出S的值为( )A.54B.45C.65D.56 答案 D解析 第一次循环,S =0+11×2=12,k =2; 第二次循环,S =12+12×3=23,k =3;第三次循环,S =23+13×4=34,k =4;第四次循环,S =34+14×5=45,k =5;第五次循环,S =45+15×6=56,此时k =5不满足判断框内的条件,跳出循环, 输出S =56,故选D.8.若如图所示的程序框图的功能是计算1×12×13×14×15的结果,则在空白的执行框中应该填入( )A .T =T ·(i +1)B .T =T ·iC .T =T ·1i +1D .T =T ·1i答案 C解析 程序框图的功能是计算1×12×13×14×15的结果,依次验证选项可得C 正确.9.如图所示的程序运行时,从键盘输入-3,则输出值为( ) INPUT “x=”;x IF x >0 THEN y =1 ELSEIF x =0 THENy =0 ELSEy =-1 END IF END IF PRINT y END A .-3B .3C .1D .-1 答案 D解析 由程序知,当x >0时,y =1;否则,当x =0时,y =0;当x <0时,y =-1. 即y =⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0.10.执行如图所示的程序框图,若输出的k =5,则输入的整数p 的最大值为( )A .7B .15C .31D .63 答案 B解析 由程序框图可知:①S =0,k =1;②S =1,k =2;③S =3,k =3;④S =7,k =4;⑤S =15,k =5,输出k ,此时S =15≥p ,则p 的最大值为15,故选B.11.执行如图所示的程序框图,若输出的结果是4,则判断框内实数m 的取值X 围是( )A .(2,6]B .(6,12]C .(12,20]D .(2,20] 答案 B解析 由程序框图,知第一次循环后,S =0+2=2,k =2; 第二次循环后,S =2+4=6,k =3; 第三次循环后,S =6+6=12,k =4.∵输出k =4,∴循环体执行了3次,此时S =12,∴6<m ≤12,故选B.12.执行如图所示的程序框图,若输出的结果为2,则输入的正整数a 的取值的集合是( )A.{1,2,3,4,5}B.{1,2,3,4,5,6}C.{2,3,4,5}D.{2,3,4,5,6}答案 C解析若输入a=1,则a=2×1+3=5,i=0+1=1,因为5>13不成立,所以继续循环;a =2×5+3=13,i=1+1=2,因为13>13不成立,所以继续循环;a=2×13+3=29,i=2+1=3,因为29>13成立,所以结束循环,输出的结果为3,不为2,所以a≠1,排除A,B,若输入a=6,则a=2×6+3=15,i=0+1=1,因为15>13成立,所以结束循环,输出的结果为1,不为2,所以a≠6,排除D,故选C.二、填空题(本大题共4小题,每小题5分,共20分)13.执行如图程序框图,若输入的a,b的值分别为0和9,则输出的i的值为________.答案 3解析第1次循环:i=1,a=1,b=8,a<b;第2次循环:i=2,a=3,b=6,a<b;第3次循环:i=3,a=6,b=3,a>b,输出i的值为3.14.将二进制数110101(2)化成十进制数,结果为________,再将该结果化成七进制数,结果为________.答案53 104(7)解析110101(2)=1×25+1×24+0×23+1×22+0×21+1×20=53,然后用除7取余法得53=104(7).15.执行如图所示的程序框图,则输出结果S=________.答案1010解析根据程序框图知,S=(-1+2)+(-3+4)+…+(-2019+2020)=1010,故输出的S 的值为1010.16.阅读下面的程序,该算法的功能是_____________________.S=0t=1i=1DOS=S+it=t*ii=i+1LOOP UNTIL i>20PRINT S,tEND答案求S=1+2+3+…+20,t=1×2×3×…×20三、解答题(本大题共6小题,共70分)17.(10分)分别用辗转相除法和更相减损术求282与470的最大公约数.解辗转相除法:470=1×282+188,282=1×188+94,188=2×94,所以282与470的最大公约数为94.更相减损术:470与282分别除以2得235和141.235-141=94,141-94=47,94-47=47,所以470与282的最大公约数为47×2=94.18.(12分)下面给出一个用循环语句编写的程序:(1)指出程序所用的是何种循环语句,并指出该程序的算法功能;(2)请用另一种循环语句的形式把该程序写出来.解(1)本程序所用的循环语句是WHILE循环语句,其功能是计算12+22+32+…+92的值.(2)用UNTIL语句改写程序如下:19.(12分)下列是某个问题的算法,将其改为程序语言,并画出程序框图. 算法:第一步,令i =1,S =0.第二步,若i ≤999成立,则执行第三步; 否则,输出S ,结束算法. 第三步,S =S +1i.第四步,i =i +2,返回第二步. 解 程序如下: i =1 S =0WHILE i<=999 S =S +1/i i =i +2 WEND PRINT S END程序框图如图:20.(12分)下列语句是求S =2+3+4+…+99的一个程序,请回答问题: i =1 S =0DOS =S +ii =i +1LOOP UNTIL i >=99PRINT SEND(1)程序中是否有错误?若有,请加以改正;(2)把程序改成另一种类型的循环语句.解 (1)错误有两处:第一处:语句i =1应改为i =2.第二处:语句LOOPUNTIL i >=99应改为LOOPUNTIL i >99.(2)改为当型循环语句为:i =2S =0WHILE i <=99S =S +ii =i +1WENDPRINT SEND21.(12分)输入x ,求函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2的值的程序框图如图所示.(1)指出程序框图中的错误之处并写出正确的算法步骤;(2)重新绘制程序框图,并回答下面提出的问题.①要使输出的值为7,则输入的x 的值应为多少?②要使输出的值为正数,则输入的x 应满足什么条件?解 (1)函数y =⎩⎪⎨⎪⎧ 3x -2,x ≥2,-2,x <2是分段函数,其程序框图中应该有判断框,应该有条件结构,不应该只用顺序结构.正确的算法步骤如下所示:第一步,输入x .第二步,判断x ≥2是否成立.若是,则y =3x -2;否则y =-2.第三步,输出y .(2)根据(1)中的算法步骤,可以画出程序框图如图所示.①要使输出的值为7,则3x -2=7,故x =3,即输入的x 的值应为3.②要使输出的值为正数,则⎩⎪⎨⎪⎧ x ≥2,3x -2>0,得x ≥2.故当x ≥2时,输出的值为正数.22.(12分)为了节约用水,学校改革澡堂收费制度,开始实行计时收费,30min 以内每分钟收费0.1元,30min 以上超过部分每分钟收费0.2元,编写程序并画出程序框图,要求输入洗澡时间,输出洗澡费用.解 用y (单位:元)表示洗澡费用,x (单位:min)表示洗澡时间,则y =⎩⎪⎨⎪⎧ 0.1x ,0<x ≤30,3+0.2x -30,x >30.程序如下:INPUT xIF x <=30 THENy =0.1*xELSEy =3+0.2*x -30END IFPRINT yEND程序框图如图所示.。

人教A版高中数学必修三试卷模块综合测评.doc

人教A版高中数学必修三试卷模块综合测评.doc

模块综合测评(时间:120分钟满分:150分)一、选择题(每小题5分,共60分)1.(2012辽宁高考,文10)执行如图所示的程序框图,则输出的S值是( )A.4B.C.D.-1解析:初始:S=4,i=1,第一次循环:1<6,S==-1,i=2;第二次循环:2<6,S=,i=3;第三次循环:3<6,S=,i=4;第四次循环:4<6,S==4,i=5;第五次循环:5<6,S==-1,i=6.6<6不成立,此时跳出循环,输出S值,S值为-1.故选D.答案:D2.把十进制数15化为二进制数为( )A.1011B.1001(2)C.1111(2)D.1101解析:由除k取余法可得15=1111(2).答案:CINPUT a,bIF a>b THENm=aELSEm=bEND IFPRINT mENDC.3D.4解析:∵a=2,b=3,且2<3,∴m=3.答案:C4.(2012山东高考,文4)在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是( )A.众数B.平均数C.中位数D.标准差解析:由s=,可知B样本数据每个变量增加2,平均数也增加2,但(x n-)2不变,故选D.答案:D5.下列有四种说法:①概率就是频率;②分层抽样时,每个个体被抽到的可能性不一样;③某厂产品的次品率为3%,是指“从该厂产品中任意地抽取100件,其中一定有3件次品”;④从一批准备出厂的灯泡中随机抽取15只进行质量检测,其中有1只是次品,说明这批灯泡中次品的概率为.其中正确说法的个数是( )A.0B.1C.2D.3答案:A6.(2012辽宁高考,文11)在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为( )A. B.C. D.解析:此概型为几何概型,由于在长为12cm的线段AB上任取一点C,因此总的几何度量为12,满足矩形面积大于20cm2的点在C1与C2之间的部分,如图所示.因此所求概率为,即,故选C.答案:C7.一枚硬币连掷2次,恰好出现一次正面的概率是…( )A. B.C. D.0解析:列举出所有基本事件,找出“只出现一次正面”包含的结果;一枚硬币连掷2次,基本事件有(正,正),(正,反),(反,正),(反,反)共4个,而“只有一次出现正面”包含(正,反),(反,正)2个,故其概率为.答案:A8.(2012福建高考,文6)阅读下图所示的程序框图,运行相应的程序,输出的s值等于( )A.-3B.-10C.0D.-2解析:(1)k=1,1<4,s=2×1-1=1;(2)k=2,2<4,s=2×1-2=0;(3)k=3,3<4,s=2×0-3=-3;(4)k=4,直接输出s=-3.答案:A9.用秦九韶算法计算函数f(x)=2x4+3x3+5x-4当x=2时的函数值是( )A.26B.62C.14D.33解析:根据秦九韶算法,把多项式改写成如下形式:f(x)=(((2x+3)x+0)x+5)x-4,按从内到外的顺序依次计算一次多项式当x=2时的值:v 0=2,v1=2×2+3=7,v2=7×2+0=14,v3=14×2+5=33,v4=33×2-4=62,所以,当x=2时,多项式的值等于62.答案:B10.从2008名学生中选取50名学生参加英语比赛,若采用下面的方法选取:先用简单随机抽样从2008人中剔除8人,剩下的2000人中再按系统抽样的方法抽取50人,则在2008人中,每人入选的概率( )A.不全相等B.均不相等C.都相等,且为D.都相等,且为答案:C11.已知样本:10 8 6 10 13 8 10 12 11 78 9 11 9 12 9 10 11 12 12那么频率为0.3的范围是( )A.5.5~7.5B.7.5~9.5C.9.5~11.5D.11.5~13.5解析:在7.5~9.5内的值为8,9,频数为6,所以频率为=0.3.答案:B12.暑假中的一天小华准备用简单随机抽样的方法从6套模拟题中抽取其中的两套来训练,则第二套模拟题“第一次被抽到的概率”、“第二次被抽到的概率”、“在整个抽样过程中被抽到”的概率分别是( ).A. B.C. D.解析:第二套模拟题不管第几次被抽到的概率都是,在“整个抽样过程中被抽到”包括“第一次被抽到”和“第二次被抽到”,因此概率为.答案:C二、填空题(每小题4分,共16分)13.在三棱锥的六条棱中任意选择两条,则这两条棱是一对异面直线的概率为.解析:如图,在三棱锥S-ABC中,任选两条棱,所有选法有:(SA,SB),(SA,SC),(SA,AC),(SA,AB),(SA,BC),(SB,SC),(SB,AC),(SB,AB),(SB,BC), (SC,AC),(SC,AB),(SC,BC),(AB,AC),(AB,BC),(AC,BC)共15种.其中异面直线的有:(SA,BC),(SC,AB),(SB,AC)共3种.∴P=.答案:14.将一枚骰子先后抛掷2次,观察向上的点数,则以第一次向上点数为横坐标x,第二次向上的点数为纵坐标y的点(x,y)在圆x2+y2=27的内部的概率是.解析:基本事件总数为36,点(x,y)在圆x2+y2=27的内部记为事件D,D包含17个事件,所以P(D)=.答案:15.(2012天津高考,文3改编)阅读下边的程序框图,运行相应的程序,则输出S的值为.解析:n=1,S=0+31-30=2,n=2;n=2<4,S=2+32-31=8,n=3;n=3<4,S=8+33-32=26,n=4;4≥4,输出S=26.答案:26年降[100,150) [150,200) [200,250) [250,300] 水量/mm概率0.21 0.16 0.13 0.12范围内的概率是.解析:设年降水量在[200,300](mm),[200,250)(mm),[250,300](mm)的事件分别为A,B,C,则A=B∪C,且B,C为互斥事件,∴P(A)=P(B)+P(C)=0.13+0.12=0.25.答案:0.25三、解答题(本大题共6小题,满分74分.解答时应写出文字说明、证明过程或演算步骤)17.(12分)同时抛掷四枚均匀硬币.求:(1)“恰有2枚正面向上”的概率;(2)“至少有2枚正面向上”的概率.解:设掷一枚硬币“正面朝上”用1表示,“反面朝上”用0表示,掷四枚硬币的结果用(x1,x2,x3,x4)表示,其中x i(i=1,2,3,4)仅取0,1两个值,那么该试验的可能结果有:(0,0,0,0),(0,0,0,1),(0,0,1,0),(0,1,0,0),(1,0,0,0),(0,0,1,1),(0,1,1,0),(1,1,0,0),(0,1,0,1),(1,0,0,1),(1,0,1,0),(0,1,1,1),(1,0,1,1,1),(1,1,0,1),(1,1, 1,0),(1,1,1,1),共16种.(1)记“恰有2枚正面朝上”为事件A,那么A发生,只需(x1,x2,x3,x4)中两个取1,另外两个取值为0即可,故包含(0,0,1,1),(0,1,1,0),(1,1,0,0),(0,1,0,1),(1,0,0,1),(1,0,1,0)6种情况,所以P(A)=.(2)记“至少2枚正面朝上”为事件B,则B包含的基本事件有:(0,0,1,1),(0,1,1,0),(1,1,0,0),(0,1,0,1),(1,0,0,1),(1,0,1,0),(0,1,1,1),(1 ,0,1,1),(1,1,0,1),(1,1,1,0),(1,1,1,1),共11种,所以P(B)=.18.(12分)已知正方体ABCD-A1B1C1D1的棱长为1,在正方体内随机取一点M,求使四棱锥M-ABCD的体积小于的概率.解:设M到平面ABCD的距离为h,则四棱锥M-ABCD的体积V=Sh=×1×h=,所以h=.故只需点M到平面ABCD的距离小于即可.所以满足点M到平面ABCD的距离小于的点组成以ABCD为底,高为的不含上下底面的长方体,如图所示,即为长方体ABCD-EFGH.所以所求概率为P=.19.(12分)为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6甲27 38 30 37 35 31 乙33 29 38 34 28 36(2)求甲、乙二人这6次测试最大速度的标准差,并说明谁参加这项重大比赛更合适.解:(1)=33,=33.(2)s甲=,s乙=,因为,s甲>s乙,所以乙的成绩更稳定,乙参加比赛更合适.20.(12分)(2012山东高考,文18)袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.解:(1)标号为1,2,3的三张红色卡片分别记为A,B,C,标号为1,2的两张蓝色卡片分别记为D,E,从五张卡片中任取两张的所有可能的结果为:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E),共10种.由于每一张卡片被取到的机会均等,因此这些基本事件的出现是等可能的.从五张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),共3种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.(2)记F 为标号为0的绿色卡片,从六张卡片中任取两张的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.由于每一张卡片被取到的机会均等, 因此这些基本事件的出现是等可能的.从六张卡片中任取两张,这两张卡片颜色不同且它们的标号之和小于4的结果为:(A ,D ),(A ,E ),(B ,D ),(A ,F ),(B ,F ),(C ,F ),(D ,F ),(E ,F ),共8种.所以这两张卡片颜色不同且它们的标号之和小于4的概率为.21.(12分)(2012湖南高考,文17)某超市为了解顾客的购物量及结算时间等信息,(1)确定x ,y 的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率) 解:(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,顾客一次购物的结算时间的平均值可用样本平均数估计,其估计值为=1.9(分钟).(2)记A 为事件“一位顾客一次购物的结算时间不超过2分钟”,A 1,A 2,A 3分别表示事件“该顾客一次购物的结算时间为1分钟”“该顾客一次购物的结算时间为1.5分钟”“该顾客一次购物的结算时间为2分钟”,将频率视为概率得P (A 1)=,P (A 2)=,P (A 3)=.因为A=A 1∪A 2∪A 3,且A 1,A 2,A 3是互斥事件, 所以P (A )=P (A 1∪A 2∪A 3) =P (A 1)+P (A 2)+P (A 3) =.故一位顾客一次购物的结算时间不超过2分钟的概率为.22.(14分)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.解:(1)因为在20至40岁的58名观众中有18名观众收看新闻节目,而大于40岁的42名观众中有27名观众收看新闻节目.所以,经直观分析,收看新闻节目的观众与年龄是有关的.(2)应抽取大于40岁的观众人数为×5=×5=3(名).(3)用分层抽样方法抽取的5名观众中,20至40岁有2名(记为Y1,Y2),大于40岁有3名(记为A1,A2,A3),5名观众中任取2名,共有10种不同取法:Y1Y2,Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,A1A2,A1A3,A2A3.设A表示随机事件“5名观众中任取2名,恰有1名观众年龄为20至40岁”.则A中的基本事件有6种:Y1A1,Y1A2,Y1A3,Y2A1,Y2A2,Y2A3,故所求概率为P(A)=.。

人教A版高中数学必修三试卷高一:综合模块测试(1)

人教A版高中数学必修三试卷高一:综合模块测试(1)

必修3综合模块测试1(人教A 版必修3)一、选择题:1. 高二年级有14个班,每个班的同学从1到50排学号,为了交流学习经验,要求每班学号为14的同学留下来进行交流,这里运用的是() A .分层抽样 B .抽签抽样 C .随机抽样 D .系统抽样 2. 五进制数(5)444转化为八进制数是()A.(8)194B.(8)233C.(8)471D.(8)1743. 计算机执行下面的程序,输出的结果是()a=1 b=3 a=a+b b=b a PRINTa ,b ENDA 、1,3B 、4,9C 、4,12D 、4,84. 甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是()A.31B.41C.21 D.无法确定 5. 如下四个游戏盘,现在投镖,投中阴影部分概率最大的是()7 9 8 4 4 4 6 7 9 3 开始 i =1s =0i =i +1s =s+i i ≤5? 输出s 结束① ② a是否6. 下图是2011年我校举办“激扬青春,勇担责任”演讲比赛大赛上, 七位评委为某位选手打出的分数的茎叶图,去掉一个最高分和一 个最低分后,所剩数据的中位数和平均数分别为()A.85;87B.84;86C.84;85D.85;867. 如右图的程序框图(未完成).设当箭头a 指向①时,输出的结果 s =m,当箭头a 指向②时,输出的结果s =n,则m+n=()A.30B.20C.15D.58. 10个正数的平方和是370,方差是33,那么平均数为()A .1B .2C .3D .49. 读程序 甲:INPUTi =1乙:INPUTi =1000 S =0S =0WHILEi <=1000DO S =S +iS =S +i i =i +li =i 一1 WENDLOOPUNTILi <1 PRINTSPRINTSENDEND对甲乙两程序和输出结果判断正确的是()A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同10. 已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是()A.44π- B.14C.34π- D.1811. 甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,其中{},1,2,3,4,5,6a b ∈,若1a b -≤,就称甲乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.19B.29C.718D.4912. 如右的程序框图可用来估计圆周率π的值.设(1,1)CONRND -是产生随机数的函数,它能随机产生区间(1,1)-内的任何一个数,如果输入1000,输出的结果为786,则运用此方法,计算π的近似值为() A.3.144B.3.141C.3.142D.3.143 二、填空题:13. 语句“PRINT37MOD5”运行的结果是____. 14. 阅读右边的流程图,若0.30.322,2,log 0.8,a b c -===则输出的数是_____; 15. 5280和2155的最大公约数是____. 16. 乙两艘轮船都要停靠同一个泊位,它们可以在一昼夜(零点至24点)的任意时刻到达,设甲、乙两艘轮船停靠泊位的时间分别是3小时和5小时,则有一艘轮船停靠泊位时必须等待一段时间的概率为____(用分数表示).三.解答题:17. (本题满分12分)设数列{}{}111,n n n n a a a a n a +=-=满足,右图是求数列30前项和的算法流程图。

高一数学必修三模块测试题

高一数学必修三模块测试题

一数学必修三模块测试题(人教A 版)限时:120分钟1.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,共150分,第I 卷一、选择题(每小题5分,共50分) 1.下列给出的赋值语句中正确的是:A 、3=AB 、M=—MC 、B=A=2D 、x+y=0 2.把89化成五进制数的末位数字为 ( ) A 1 B 2 C 3 D 43.如右图,是某算法流程图的一部分,其算法的逻辑结构为 ( )A. 顺序结构B. 判断结构C. 条件结构D. 循环结构4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

则完成(1)、(2)这两项调查宜采用的抽样方法依次是 ( ) A 、 分层抽样法,系统抽样法 B 、分层抽样法,简单随机抽样法 C 、系统抽样法,分层抽样法 D 、简单随机抽样法,分层抽样法 5.下列对一组数据的分析,不正确的说法是 ( ) A 、数据极差越小,样本数据分布越集中、稳定 B 、数据平均数越小,样本数据分布越集中、稳定 C 、数据标准差越小,样本数据分布越集中、稳定 D 、数据方差越小,样本数据分布越集中、稳定6.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩; ③某人每日吸烟量和其身体健康情况; ④正方形的边长和面积; ⑤汽车的重量和百公里耗油量; 其中两个变量成正相关的是 ( )A .①③B .②④C .②⑤D .④⑤7.计算机中常用16进制,采用数字0~9和字母A ~F 共16个计数符号与10进制得对应关系如下表: 16进制 0 1 2 3 4 5 6 7 8 9 ABCDEF10进制 012345678910 11 12 13 14 15例如用16进制表示D+E =1B ,则A ×B=( ) A 6E B 7C C 5F D B0n 不是质数 n 不是质数 是 否r=08.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品至少有一件是次品”,则下列结论正确的是( ) A . A 与C 互斥 B . 任何两个均互斥 C . B 与C 互斥D . 任何两个均不互斥9.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1。

人教版高中数学高一 综合模块测试13(人教A版必修3)

人教版高中数学高一 综合模块测试13(人教A版必修3)

必修3综合模块测试13(人教A 版必修3)一、选择题(共10小题,每题4分,共40分)1. 我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是( )A.分层抽样B.抽签抽样C.随机抽样D.系统抽样 2. 某市有大型、中型与小型商店共1500家,它们的家数之比为1∶5∶9.用分层抽样抽取其中的30家进行调查,则中型商店应抽出( )家.A.10B.18C.2D.20 3、下列赋值语句中正确的是( )A.3=+n mB.i =3C.12+=i i D.3==j i4、算法的三种基本结构是 ( )A. 顺序结构、模块结构、条件结构B. 顺序结构、循环结构、模块结构C. 顺序结构、选择结构、循环结构D. 选择结构、条件结构、循环结构5、阅读流程图(如图1),如输入的a,b,c 分别为21,32,75。

则输出的a,b,c.分别是( )A 、75,21,32B 、 21,32,75C 、32,21,756、某程序框图(如图2)所示,该程序运行后输出的k 的值是 ( ) A .4 B .5 C .6 D .7如图2 开始 输入a 、b 、cx=a a=c c=b b=x 输出a 、b 、c结束如图1a x +7,则a 的值为( )A .5.25B .5C .2.5D .3.58、我市对上下班交通情况作抽样调查,作出上下班时间各抽取12辆机动车行驶时速(单位:km/h )的茎叶图(如下):上班时间 下班时间 8 1 6 7 9 8 7 6 1 0 2 2 5 7 8 6 5 3 2 0 3 0 0 2 6 7 0 4则上下班时间行驶时速的中位数分别为( )A.28与28.5 B.29与28.5 C.28与27.5 D.29与27.59、甲乙两人进行相棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是( )A.0.6B.0.8C.0.2D.0.4 10、同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是 A .21 B .41 C .31 D .81二、填空题(共5小题,每题5分,共25分) 11、204与85的最大公因数是___________ 12、下列算法语句表示的函数是____________13、已知一组数据的标准差为s ,将这组数据都扩大3倍,所得到的一组新数据的方差是______________14、在对两个变量x,y 进行线性回归分析时有以下步骤:1)利用回归方程进行预测;2)收集数据()n i y x i i ,...,2,1,,=;3)求线性回归方程;4)根据所收集的数据绘制散件图. 则正确的操作顺序是____________15、将一枚质地均匀的一元硬币抛3次,恰好出现一次正面的概率是_________三、解答题(共35分,其中16题7分,17题8分, 18题、19题各10分)16、某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,(510,515],由此得到样本的频率分布直方图,如图4所示.根据频率分布直方图,求(1)重量超过500 克的产品的频率;(2)重量超过500 克的产品的数量.17、如果学生的成绩大于或等于60分,则输出“及格”,否则输出“不及格”.用算法框图表示这一算法过程.18、某车间为了规定工时定额,需要确定加个某零件所花费的时间,为此作了四次实验,零件的个数x(个) 2 3 4 5加工的时间y(小时) 2.5 3 4 4.5(1)求出y关于x的线性回归方程;(2)试预测加工10个零件需要多少时间?xb y a xn x yx n yx b n i ini ii -=-⋅-=∑∑==,1221注:19、口袋内装有3个白球和2个黑球,这5个球除颜色外完全相同.每次从袋中随机地取出一个,连续取出2个球:⑴列出所有等可能的结果;⑵求取出的2个球不全是白球的概率.参考答案二、 填空题(每空5分,共25分)11.______17________; 12.____ ⎪⎩⎪⎨⎧>-≤+=.5.2,1,5.2,122x x x x y ____;13.____.92s ____________; 14.___ 2)、4)、3)、1)______;15._____83________. 三、 解答题(共4小题,共35分;解答应写出必要的文字说明、证明过程或演算步骤) 16.(本小题7分)解:(I )重量超过500克的产品频率是0.0750.0550.0150.65⨯+⨯+⨯= ………4分(I )重量超过500克的产品数量是 400.6526⨯= 件;……7分17.(本小题8分)54 321 12 43 5 55544 33 22 1 1 1 23 418.(本小题10分) 解:(1)由表中数据得:.54,5.3,5.3,5.5241241====∑∑==i i i i i x y x y x所以,.7.05.34545.345.5222=⨯-⨯-=b 故,05.15.37.05.3=⨯-=a 所以,.05.17.0+=x y(2)将10=x 代人回归直线方程,得.(05.805.1107.0小时)=+⨯=y 所以,试预测加工10个零件需要8.05个小时.19、(本小题10分)解⑴:设球的编号为:白球1、2、3,黑球4、5. 则所有20种结果如下:⑵设“取出的2个球不全是白球”为事件A ,则.1072014)(==A p。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题(每小题5分,共50分) 1.下列给出的赋值语句中正确的是:A 、3=AB 、M=—MC 、B=A=2D 、x+y=0 2.把89化成五进制数的末位数字为 ( )43.如右图,是某算法流程图的一部分,其算法的逻辑结构为 ( )A. 顺序结构B. 判断结构C. 条件结构D. 循环结构4.某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中抽取一个容量为100的样本,记这项调查为(1);在丙地区中有20个特大型销售点,要从中抽取7个调查其销售收入和售后服务情况,记这项调查为(2)。

则完成(1)、(2)这两项调查宜采用的抽样方法依次是 ( )A 、 分层抽样法,系统抽样法B 、分层抽样法,简单随机抽样法C 、系统抽样法,分层抽样法D 、简单随机抽样法,分层抽样法 5.下列对一组数据的分析,不正确的说法是 ( ) A 、数据极差越小,样本数据分布越集中、稳定 B 、数据平均数越小,样本数据分布越集中、稳定 C 、数据标准差越小,样本数据分布越集中、稳定 D 、数据方差越小,样本数据分布越集中、稳定6.有五组变量:①汽车的重量和汽车每消耗1升汽油所行驶的平均路程;②平均日学习时间和平均学习成绩; ③某人每日吸烟量和其身体健康情况; ④正方形的边长和面积; ⑤汽车的重量和百公里耗油量; 其中两个变量成正相关的是 ( )A .①③B .②④C .②⑤D .④⑤7.计算机中常用16进制,采用数字0~9和字母A ~F 共16个计数符号与10进制得对应关系A 6E B 7C C 5F D B08.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品至少有一件是次品”,则下列结论正确的是( ) A. A 与C 互斥 B. 任何两个均互斥 C. B 与C 互斥 D. 任何两个均不互斥9.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知 P (A )= 0.65 ,P(B)=0.2 ,P(C)=0.1。

则事件“抽到的不是一等品”的概率为( )A. 0.7B. 0.65C. 0.35D. 0.310.先后抛掷质地均匀的硬币三次,则至少一次正面朝上的概率是 ( )A.81B. 83C. 85D. 87二、填空题(每小题5分,共20分)11.计算机的程序设计语言很多,但各种程序语言都包含下列基本的算法语句: , , , , 。

12.为了解某地高一年级男生的身高情况,从其中的一个学校选取容量为60的样本(60名男生则表中的=m ,=a 。

13.如右图,在正方形内有一扇形(见阴影部分),扇形对应的圆心是正方形的一顶点,半径为正方形的边长。

在这个图形上随机撒一粒黄豆,它落在扇形外正方形内的概率为 。

(用分数表示)14.下列说法中正确的有________①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响; ②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确。

④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型。

三、解答题: 15.(12分)为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:16.(13分)下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300) 第三步 输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应)17.(13分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图:(1)甲、乙两个网站点击量的极差分别是多少? (4分)(2)甲网站点击量在[10,40]间的频率是多少? (5分) (3)甲、乙两个网站哪个更受欢迎?并说明理由。

(4分)18.(本小题满分14分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?茎叶图 119.(14分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间(1)你离家前不能看到报纸(称事件A)的概率是多少?(8分,须有过程)(2)请你设计一种随机模拟的方法近似计算事件A的概率(包括手工的方法或用计算器、计算机的方法)(6分)20.(本小题满分14分)给出50个数,1,2,4,7,11,…,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,…,以此类推. 要求计算这50个数的和. 先将下面给出的程序框图补充完整,再根据程序框图写出程序.1. 把程序框图补充完整:Array(1)________________________ (3分)(2)________________________ (4分)2. 程序:(7分)山东省莱州一中高一数学必修三模块测试题(人教A 版)参考答案限时:120分钟第II 卷一、选择题(每小题5分,共60分)二、填空题(每小题5分,共20分)11.输入语句 ,输出语句 , 赋值语句 , 条件语句 , 循环语句 。

12.=m 6 , =a 0.45 。

13.44π- 14. ③ 。

三、解答题: 15.(12分)为了参加奥运会,对自行车运动员甲、乙两人在相同的条件下进行了6次测试,测得他们的最大速度的数据如表所示:解:336313537303827=+++++=甲X336362834382933=+++++=乙X ( 4分)S 甲=958.3694≈, S 乙=559.3338≈ (8分) 乙甲X X =,S 甲>S 乙 (10分)乙参加更合适 (12分)16.(13分)下面是计算应纳税所得额的算法过程,其算法如下:第一步 输入工资x(注x<=5000);第二步 如果x<=800,那么y=0;如果800<x<=1300,那么 y=0.05(x-800);否则 y=25+0.1(x-1300) 第三步 输出税款y, 结束。

请写出该算法的程序框图和程序。

(注意:程序框图与程序必须对应) 解:框图7分,程序6分(不对应扣3-4分)茎叶图17.(13分)为了调查甲、乙两个网站受欢迎的程度,随机选取了14天,统计上午8:00—10:00间各自的点击量,得如下所示的统计图,根据统计图:(1)甲、乙两个网站点击量的极差分别是多少? (4分) (2)甲网站点击量在[10,40]间的频率是多少? (5分) (3)甲、乙两个网站哪个更受欢迎?并说明理由。

(4分) 解:(1)甲网站的极差为:73-8=65; (2分)乙网站的极差为:61-5=56 (4分)(2)甲网站点击量在[10,40]间的频率为4/14=2/7=0.28571 (9分)(3)甲网站的点击量集中在茎叶图的下方,而乙网站的点击量集中在茎叶图的上方。

从数据的分布情况来看,甲网站更受欢迎。

(13分)18.(本小题满分14分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱。

(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?解:把3只黄色乒乓球标记为A 、B 、C ,3只白色的乒乓球标记为1、2、3。

从6个球中随机摸出3个的基本事件为:ABC 、AB1、AB2、AB3、AC1、AC2、AC3、A12、A13、A23、BC1、BC2、BC3、B12、B13、B23、C12、C13、C23、123,共20个 (1) 事件E={摸出的3个球为白球},事件E 包含的基本事件有1个,即摸出123号3个球,P (E )=1/20=0.05(2) 事件F={摸出的3个球为2个黄球1个白球},事件F 包含的基本事件有9个,P (F )=9/20=0.45(3) 事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G )=2/20=0.1,假定一天中有100人次摸奖,由摸出的3个球为同一颜色的概率可估计事件G 发生有10次,不发生90次。

则一天可赚40510190=⨯-⨯,每月可赚1200元。

19.(14分)假设你家订了一份报纸,送报人可能在早上6点—8点之间把报纸送到你家,你每天离家去工作的时间在早上7点—9点之间(1)你离家前不能看到报纸(称事件A )的概率是多少?(8分,须有过程)(2)请你设计一种随机模拟的方法近似计算事件A 的概率(包括手工的方法或用计算器、计算机的方法)(6分)解:如图,设送报人到达的时间为X ,小王离家去工作的时间为Y 。

(X ,Y )可以看成平面中的点,试验的全部结果所构成的区域为}9786/{≤≤≤≤=ΩY X Y X ,),(一个正方形区域,面积为S Ω=4,事件A 表示小王离家前不能看到报纸,所构成的区域为A={(X ,Y )/ }9786Y X Y X >≤≤≤≤,, 即图中的阴影部分,面积为S A =0.5。

这是一个几何概型,所以P (A )=S A /S Ω=0.5/4=0.125。

答:小王离家前不能看到报纸的概率是0.125。

(2)用计算机产生随机数摸拟试验,X 是0—1之间的均匀随机数,Y 也是0—1之间的均匀随机数,各产生100个。

依序计算,如果满足2X+6>2y+7,那小王离家前不能看到报纸,统计共有多少为M ,则M/100即为估计的概率。

相关文档
最新文档