2018-2019年度部编版七年级下册数学单元测试 第七章 平面直角坐标系7AB

合集下载

2018-2019年人教版七年级数学下册 第七章 平面直角坐标系 单元综合能力测试卷

2018-2019年人教版七年级数学下册 第七章 平面直角坐标系  单元综合能力测试卷

第七章平面直角坐标系单元综合能力测试卷(时间:120分钟总分:120分)一、选择题(每小题3分,共30分)1.如图,小强告诉小华图中A、B两点的坐标分别为(-3,3)、(3,3),小华一下就说出了C在同一坐标系下的坐标()A.(-1,5) B.(-5,1) C.(5,-1) D.(1,-5)2.点P(m+3, m+1)在直角坐标系的x轴上,则点P坐标为()A.(0,-2)B.(4,0)C.(2,0)D.(0,-4)3.已知点A(-3,2),B(3,2),则A,B两点相距()A.3个单位长度B.4个单位长度C.5个单位长度D.6个单位长度4.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)5.如图,在平面直角坐标系中,三角形ABC的顶点都在方格纸的格点上,如果将三角形ABC先向右平移4个单位长度,再向下平移1个单位长度,得到三角形A1B1C1,那么点A 的对应点A1的坐标为( )A.(4,3) B.(2,4) C.(3,1) D.(2,5)6.如图,小明家相对于学校的位置,下列描述最正确的是( )A.在距离学校300米处B.在学校的西北方向C.在西北方向300米处D.在学校西北方向300米处7.张强在某旅游景点的动物园的大门口看到这个动物园的平面示意图(如图),若以大门为坐标原点,正东方向为x轴正方向,正北方向为y轴正方向,其他四个景点大致用坐标表示肯定错误的是( )A.熊猫馆(1,4) B.猴山(6,0) C.百鸟园(5,-3) D.驼峰(3,-2)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是()A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.定义:平面内的直线l1与l2相交于点O,对于该平面内任意一点M,点M到直线l1,l2的距离分别为a,b,则称有序非负实数对(a,b)是点M的“距离坐标”.根据上述定义,“距离坐标”为(2,3)的点的个数是( )A.2 B.1 C.4 D.310.一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是()A.(4,0) B.(5,0) C.(0,5) D.(5,5)二、填空题(每小题4分,共24分)11.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是.12将点A(1,-3)沿x轴向左平移3个单位长度,再沿y轴向上平移5个单位长度后得到的点A′的坐标为.13.如图所示,把图1中的圆A经过平移得到圆O(如图2),如果图1中圆A上一点P的坐标为(m,n),那么平移后在图2中的对应点P′的坐标为.14、坐标原点O(0,0)及A(-2,0)、B(-2,3)三点围成的△ABO的面积为____________.15、已知线段MN=4,MN∥y轴,若点M坐标为(-1,2),则N点坐标为.16.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…,则边长为8的正方形内部的整点的个数为.三、解答题(共66分)17.(6分)如图所示,是小慧所在学校的平面示意图,小慧可以如何描述她所住的宿舍位置呢?18.(8分)如图所示,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)→(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?请至少给出3种不同的路径.19.(8分)已知平面直角坐标系中有一点M(m-1,2m+3).(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?20.(10分)四边形ABCD各顶点的坐标分别为A(0,1),B(5,1),C(7,3),D(2,5).(1)在平面直角坐标系中画出该四边形;(2)四边形ABCD内(边界点除外)一共有13个整点(即横坐标和纵坐标都是整数的点);(3)求四边形ABCD的面积.21.(10分)如图,已知长方形ABCD四个顶点的坐标分别是A(2,-22),B(5,-22),C(5,-2),D(2,-2).(1)四边形ABCD的面积是多少;(2)将四边形ABCD向上平移2个单位长度,求所得的四边形A′B′C′D′的四个顶点的坐标.22.(12分)小明给右图建立平面直角坐标系,使医院的坐标为(0,0),火车站的坐标为(2,2).(1)写出体育场、文化宫、超市、宾馆、市场的坐标;(2)分别指出(1)中场所在第几象限?(3)同学小丽针对这幅图也建立了一个直角坐标系,可是她得到的同一场所的坐标和小明的不一样,是小丽做错了吗?23.(12分)如图,三角形DEF是三角形ABC经过某种变换得到的图形,点A与点D,点B 与点E,点C与点F分别是对应点,观察点与点的坐标之间的关系,解答下列问题:(1)分别写出点A与点D,点B与点E,点C与点F的坐标,并说说对应点的坐标有哪些特征;(2)若点P(a+3,4-b)与点Q(2a,2b-3)也是通过上述变换得到的对应点,求a,b的值.参考答案1、A2、C3、D4、A5、D6、D7、C8、A9、C10、B11、3排4号12、(-2,2)13、(m+2,n-1)14、315、(-1,6)或(-1,-2)16、4917、用(0,0)表示教学楼的位置,(2,0)表示操场的位置,(-2,2)表示实验楼的位置,则小慧所住的宿舍位置为(2,3).建立不同的坐标系,小慧所住的宿舍位置坐标不相同.(答案不唯一)18、答案不唯一,如:(1)(3,5)→(4,5)→(4,4)→(5,4)→(5,3);(2)(3,5)→(4,5)→(4,4)→(4,3)→(5,3);(3)(3,5)→(3,4)→(4,4)→(5,4)→(5,3);(4)(3,5)→(3,4)→(4,4)→(4,3)→(5,3);(5)(3,5)→(3,4)→(3,3)→(4,3)→(5,3)等.19、(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得m=-1或m=-2.(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得m=3或m=-1.20、(1)如图所示:(3)如图所示:∵S四边形ABCD=S三角形ADE+S三角形DFC+S四边形BEFG+S△BCG,S三角形ADE=12×2×4=4,S三角形DFC=12×2×5=5,S四边形BEFG=2×3=6,S△BCG=12×2×2=2,∴S四边形ABCD=4+5+6+2=17.21、(1)四边形ABCD的面积为3×(22-2)=3 2.(2)A′(2,-2),B′(5,-2),C′(5,0),D′(2,0).22、(1)体育场的坐标为(-2,5),文化宫的坐标为(-1,3),超市的坐标为(4,-1),宾馆的坐标为(4,4),市场的坐标为(6,5).(2)体育场、文化宫在第二象限,市场、宾馆在第一象限,超市在第四象限.(3)不是,因为对于同一幅图,直角坐标系的原点、坐标轴方向不同,得到的点的坐标也就不一样.23、(1)A(2,3)与D(-2,-3);B(1,2)与E(-1,-2);C(3,1)与F(-3,-1).对应点的坐标的特征:横坐标互为相反数,纵坐标互为相反数.(2)由(1)可得a+3=-2a,4-b=-(2b-3).解得a=-1,b=-1.。

人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)

人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)

第7章平面直角坐标系期末考好题精选训练一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2) C.2,(3,0) D.1,(4,2)3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为() A.(3,3)B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.37.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.D.(99,34)10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.511.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.第12题图第13题图13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离”.已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a ﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满足+|b﹣3|=0.(1)求长方形ABCD的面积.(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.①当t=4时,直接写出三角形OAC的面积为;②若AC∥ED,求t的值;(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n.①若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;②若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为.22.在平面直角坐标系xOy中,对于点P(x,y),我们把P'(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点.(1)当点A1的坐标为(2,1),则点A3的坐标为,点A2016的坐标为;(2)若A2016的坐标为(﹣3,2),则设A1(x,y),求x+y的值;(3)设点A1的坐标为(a,b ),若A1,A2,A3,…A n,点A n均在y轴左侧,求a、b的取值范围.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底"a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底"a=5,“铅垂高"h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积"为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.【解答】解:∵点P(2a﹣5,a+2)在第二象限,∴解得:符合条件的a的所有整数为﹣1,0,1,2,∴﹣1+0+1+2=2,∴2的立方根为:,故选:D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0) D.1,(4,2)【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为()A.(3,3) B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)【解答】解:∵点P(2﹣a,3a+6)到两坐标轴距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4,当a=﹣1时,2﹣a=2﹣(﹣1)=3,3a+6=3×(﹣1)+6=3,当a=﹣4时,2﹣a=2﹣(﹣4)=6,3a+6=3×(﹣4)+6=﹣6,∴点P的坐标为(3,3)或(6,﹣6).故选C.4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D 符合.故选:D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.3【解答】解:a,b为实数,若a2=b2,则a=b或a=﹣b,所以①错误;的平方根是±2,所以②错误;三角形ABC中,∠C=90°,则点B到直线AC的距离是线段BC的长,所以③错误;建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(2,4),(﹣6,4),所以④错误.故选A.7.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选B.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限【解答】解:A、a=0,b≠0时,点P(a,b)在y轴上,a≠0,b=0时,点P(a,b)在x轴上,a=b=0时,点P(a,b)表示原点,故本选项错误;B、a=0时,点(1,﹣a2)在x轴上,a≠0时,点(1,﹣a2)在第四象限,故本选项错误;C、∵点A(2,3)与点B(2,﹣3)的横坐标相同,∴直线AB平行y轴,故本选项错误;D、坐标轴上的点不属于任何象限正确,故本选项正确.故选D.9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33) C.D.(99,34)【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是.故选:C.10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.5【解答】解:∵A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),∴△ABC的平移规律为:向右平移个单位,向下平移3个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+2=c,b﹣3=d,∴a﹣c=﹣2,b﹣d=3,∴a+b﹣c﹣d=﹣2+3=1,故选C.11.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米【解答】解:根据题意建立平面直角坐标系如图所示,小文能从M超市走到游乐园门口的路线是:向北直走700米,再向西直走300米.故选A.二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.【解答】解:∵点A的坐标是(2,2),BC∥x轴,且AB=1,∴点B坐标为(2,1),又BC=1,∴点C的坐标为(3,1),故答案为:(3,1).13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).【解答】解:由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,则OA20=10,∴A20(10,0);根据以上可得:OA4n=4n÷2=2n,∴点A4n的坐标(2n,0).故答案为:10,0;2n,0.15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB +S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B (﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点"时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.【解答】解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).所以,当机器人走到点A6时,离点O的距离是=15.故答案为:15.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离".已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.【解答】解:由题意可得,,解得,﹣1≤k≤1,故答案为:﹣1≤k≤1.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.【解答】解:(1)如图所示:(2)如图所示:市场(4,3)、超市(2,﹣3);(3)如图所示,△A1B1C1的面积是:3×6﹣×1×6﹣×2×2﹣×3×4=7.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)∵a ,b 满足|a ﹣2|+(b ﹣3)2=0, ∴a ﹣2=0,b ﹣3=0,解得a=2,b=3.故a 的值是2,b 的值是3;(2)过点M 作MN 丄y 轴于点N .四边形AMOB 面积=S △AMO +S △AOB =MN•OA +OA•OB =×(﹣m )×2+×2×3=﹣m +3;(3)当m=﹣时,四边形ABOM 的面积=4。

精选七年级下册数学第七章平面直角坐标系单元测试卷(含答案解析)(1)

精选七年级下册数学第七章平面直角坐标系单元测试卷(含答案解析)(1)

人教版七年级下册 第七章 平面直角坐标系提升训练七下平面直角坐标系相关提高训练(含答案)解决平面直角坐标系相关综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程和函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。

1、在平面直角坐标系中,0A=7,OC=18,现将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B 。

(1)求点B 的坐标(2)若点P 从点C 以2个单位长度秒的速度沿C0方向移动,同时点Q 从点0以1个单位长度秒的速度沿0A 方向移动,设移动的时间为t 秒(0<t<7),四边形0PBA 与△0QB 的面积分别记为OPBA S 四边形与OQB S ∆,是否存在时间t,使OQB S OPBA S ∆≤2四边形,若存在,求出t 的范围,若不存在,试说明理由。

(3)在(2)的条件下,OPBQ S 四边形的值是否不变,若不变,求出其值,若变化,求出其范围2、如图,在平面直角坐标新中,AB//CD//x 轴,BC//DE//y 轴,且AB=CD=4cm ,OA=5cm ,DE=2cm,动点P 从点A 出发,沿C B A →→路线运动到点C 停止;动点Q 从点O 出发,沿C D E O →→→路线运动到点C 停止;若P 、Q 两点同时出发,且点P 的运动速度为1cm/s,点Q 的运动速度为2cm/s.(1) 、直接写出B 、C 、D 三个点的坐标; (2) 、当P 、Q 两点出发s 211时,试求的面积PQC ∆; (3) 、设两点运动的时间为t s,用t 的式子表示运动过程中S OPQ 的面积∆.3、如图,在平面直角坐标系中,A(a,0)为x 轴正半轴上一点,B(0,b)为y 轴正半轴上一点,且a 、b 满足()0382=-+-+b a b a(1)求S △AOB(2)点P(m,n)为直线L 上一动点,满足m-2n+2=0. ①若P 点正好在AB 上,求此时P 点坐标;②若B A S PAB S 0∆≥∆,试求m 的取值范围. L4、如图,已知点A ():51,3个单位,右移轴上,将点在A x m m --上移3个单位得到点B; (1) ,则m= ;B 点坐标( );(2) 连接AB 交y 轴于点C ,点D 是X 轴上一点,点坐标;,求的面积为D DAB 9∆(3) 求ABAC5、如图,在平面直角坐标系中,()().,2,1,6,4P y AB B A 轴于点交线段---(1) ,点A 到x 轴的距离是 ;点B 到x 轴的距离是 ;p 点坐标是 ; (2) ,延长AB 交x 轴于点M ,求点M 的坐标;(3) ,在坐标轴上是否存在一点T,使点坐标;?若存在,求的面积等于T ABT 6∆ 若不存在,说明理由。

七年级数学下册《第七章 平面直角坐标系》单元测试卷及答案

七年级数学下册《第七章 平面直角坐标系》单元测试卷及答案

七年级数学下册《第七章平面直角坐标系》单元测试卷及答案一、选择题(每题3分,共30分)1.若点P(x,y)在第四象限,且|x|=2,|y|=3,则x+y=()A.﹣1B.1C.5D.﹣52.第24届冬季奥林匹克运动会将于2022年在北京市和张家口市联合举行.以下能够准确表示张家口市地理位置的是()A.离北京市200千米B.在河北省C.在宁德市北方D.东经114.8°,北纬40.8°3.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.54.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,﹣2),“象”位于点(3,﹣2),则“炮”位于点()A.(1,3)B.(﹣2,0)C.(﹣1,2)D.(﹣2,2)5、已知点P(x,y)的坐标满足|x|=3,y=2,且xy<0,则点P的坐标是( )A.(3,-2)B.(-3,2)C.(3,-4)D.(-3,4)6、已知点A(1,0)B(0,2),点P在x轴上,且△P AB的面积为5,则点P的坐标为( )A.(-4,0)B.(6,0)C.(-4,0)或(6,0)D.(0,12)或(0,-8)7.已知点A(a﹣2,2a+7),点B的坐标为(1,5),直线AB∥y轴,则a的值是()A.1B.3C.﹣1D.58.将点A(﹣2,﹣3)向右平移3个单位长度得到点B,则点B所处的象限是()A.第一象限B.第二象限C.第三象限D.第四象限9.点A(﹣3,﹣5)向上平移4个单位,再向左平移4个单位到点B,则点B的坐标为()A.(1,﹣8)B.(1,﹣2)C.(﹣7,﹣1 )D.(0,﹣1)10.在平面直角坐标系中,将点(2,3)向上平移1个单位,所得到的点的坐标是()A .(1,3)B .(2,2)C .(2,4)D .(3,3)二、填空题(每题3分,共24分)11.如图是小兰观看马戏表演的门票若小敏的座位是3排4座,简记为(3,4),则小兰的座位可简记为 .12.点P(x ,y)在第二象限,且x 2=4,y =3.则点P 的坐标为 .13.已知点M (3,2)与点N (x ,y )在同一条平行于x 轴的直线上,且点N 到y 轴的距离为5,则点N 的坐标为 .14.如图,平面直角坐标系中,A 、B 两点的坐标分别为(2,0)、(0,1),若将线段AB 平移至A 1B 1,点A 1的坐标为(3,1),则点B 1的坐标为 .15、若点P ,m n 在第二象限,则点Q,m n 在第 象限。

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

【3套试题】人教版七年级数学下册 第七章平面直角坐标系单元测试题 (Word含答案)

人教版七年级数学下册第七章平面直角坐标系单元测试题 (Word含答案)一、选择题(每小题3分,共30分)1.课间操时,小华、小军、小刚的位置如图,小华对小刚说:“如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()”A.(5,4)B.(4,5)C.(3,4)D.(4,3)第1题第4题2.在平面直角坐标系中,对于坐标P(2,5),下列说法错误的是() A、P(2,5)表示这个点在平面C、点P到x轴的距离是5D、它与点(5,2)表示同一个坐标3.在平面直角坐标系中,点(-1,m2+1)一定在( )A.第一象限B.第二象限C.第三象限D.第四象限4.如图,下列说法正确的是()A.A与D的横坐标相同B.C与D的横坐标相同C.B 与C的纵坐标相同D.B与D的纵坐标相同5.一个正方形在平面直角坐标系中三个顶点的坐标为(-2,-3),(-2,1),(2,1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(2,-3)D.(2,3)6.下列坐标所表示的点中,距离坐标系的原点最近的是()A.(-1,1)B.(2,1)C.(0,2)D.(0,-2)7.在平面直角坐标系中,若以点A(0,-3)为圆心,5为半径画一个圆,则这个圆与y轴的负半轴相交的点坐标是()A.(8,0)B.(0,-8)C.(0,8)D.(-8,0)8.在平面直角坐标系中,将三角形各点的纵坐标都减去3,横坐标保持不变,所得图形与原图形相比()A、向右平移了3个单位B、向左平移了3个单位C、向上平移了3个单位D、向下平移了3个单位9.已知三角形的三个顶点坐标分别是(-1,4)、(1,1)、(-4,-1),现将这三个点先向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(-2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)10.一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,且每秒移动一个单位,那么第2008秒时质点所在位置的坐标是()A.(16,16)B.(44,44)C.(44,16) D.(16,44)二、填空题(每小题3分,共24分)11.如果用(7,8)表示七年级八班,那么八年级七班可表示成.12.点(-2,3)先向右平移2个单位,再向下平移3个单位,此时的位置的坐标是.13.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.14.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P;15.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧,则P点的坐标是.16.如图所示,进行“找宝”游戏,如果宝藏藏在(3,3)字母牌的下面,那么应该在字母的下面寻找.第16题第17题17.如图所示,A的位置为(2,6),小明从A出发,经(2,5)→(3,5)→(4,5)→(4,4)→(5,4)→(6,4),小刚也从A出发,经(3,6)→(4,6)→(4,7)→(5,7)→(6,7),则此时两人相距格.18. 如图,在平面直角坐标系中,有若干个横纵坐标分别为整数的点,其顺序按图中“→” 方向排列,如(1,0),(2,0),(2,1),(1,1)(1,2),(2,2),…,根据这个规律,第2017个点的坐标为三、解答题(共96分)19.(8分)如果点A的坐标为(a2+1,-1-b2),那么点A在第几象限?为什么?20.(12分)如图,将三角形A BC向右平移2个单位长度,再向下平移3个单位长度,得到对应的三角形A1B1C1。

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教版七年级数学下册《第7章 平面直角坐标系》单元测试卷及答案解析

人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.27.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A,A'.(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣821.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3 23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.824.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(,).27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.人教新版七年级下册《第7章平面直角坐标系》单元测试卷(1)参考答案与试题解析一、选择题(共12小题,每小题0分,满分0分)1.如果电影票上的“5排2号”记作(5,2),那么(4,3)表示()A.3排5号B.5排3号C.4排3号D.3排4号【考点】坐标确定位置.【分析】由于将“5排2号”记作(5,2),根据这个规定即可确定(4,3)表示的点.【解答】解:∵“5排2号”记作(5,2),∴(4,3)表示4排3号.故选:C.2.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(南偏西50°,35海里)B.(北偏西40°,35海里)C.(北偏东50°,35海里)D.(北偏东40°,35海里)【考点】坐标确定位置;方向角.【分析】以点B为中心点,来描述点A的方向及距离即可.【解答】解:由题意知货船A相对港口B的位置可描述为(北偏东40°,35海里),故选:D.3.如图,是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(﹣1,﹣1),在图中标出行政楼的位置.【考点】坐标确定位置.【分析】(1)直接利用宿舍楼的位置是(3,4),艺术楼的位置是(﹣3,1)得出原点的位置进而得出答案;(2)利用所建立的平面直角坐标系即可得出答案;(3)根据点的坐标的定义可得.【解答】解:(1)如图所示:(2)由平面直角坐标系知,教学楼的坐标为(1,0),体育馆的坐标为(﹣4,3);(3)行政楼的位置如图所示.4.已知点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,则点C(m,n)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】直接利用x轴以及y轴上点的坐标得出m,n的值,进而得出答案.【解答】解:∵点A(﹣3,2m+3)在x轴上,点B(n﹣4,4)在y轴上,∴2m+3=0,n﹣4=0,解得:m=﹣,n=4,则点C(m,n)在第二象限.故选:B.5.在平面直角坐标系中,如果点P(a+b,ab)在第二象限,那么Q(a,﹣b)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据题意可得a+b<0,ab>0,从而可得a<0,b<0,然后根据平面直角坐标系中点的坐标特征,即可解答.【解答】解:由题意得:a+b<0,ab>0,∴a<0,b<0,∴﹣b>0,∴Q(a,﹣b)在第二象限,故选:B.6.点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,则a的值为()A.﹣1B.﹣2C.1D.2【考点】点的坐标.【分析】首先根据点P(x,y)在第四象限,且到y轴的距离为3,可得点P的横坐标是3,可得2﹣a=3,据此可得a的值.【解答】解:∵点P(2﹣a,2a﹣1)在第四象限,且到y轴的距离为3,∴点P的横坐标是3;∴2﹣a=3,解答a=﹣1.故选:A.7.若点P在第二象限,且点P到x轴的距离为2,到y轴的距离为1,则点P的坐标为()A.(1,﹣2)B.(2,1)C.(﹣1,2)D.(2,﹣1)【考点】点的坐标.【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵点P在第二象限,且到x轴的距离为2,到y轴的距离为1,∴点P的横坐标是﹣1,纵坐标是2,∴点P的坐标为(﹣1,2).故选:C.8.已知点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,则P点的坐标()A.(﹣2,2)B.(6,6)C.(2,﹣2)D.(﹣6,﹣6)【考点】坐标与图形性质.【分析】根据点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,可以得到2x=x﹣1,然后求出x的值,再代入点P的坐标中,即可得到点P的坐标.【解答】解:∵点P的坐标为(2x,x+3),点M的坐标为(x﹣1,2x),PM平行于y轴,∴2x=x﹣1,解得x=﹣1,∴2x=﹣2,x+3=2,∴点P的坐标为(﹣2,2),故选:A.9.已知点A的坐标为(1,2),直线AB∥x轴,且AB=5,则点B的坐标为()A.(5,2)或(4,2)B.(6,2)或(﹣4,2)C.(6,2)或(﹣5,2)D.(1,7)或(1,﹣3)【考点】坐标与图形性质.【分析】根据平行于x轴的直线上的点的纵坐标相等求出点B的纵坐标,再分点B在点A的左边与右边两种情况求出点B的横坐标,即可得解.【解答】解:∵AB∥x轴,点A的坐标为(1,2),∴点B的纵坐标为2,∵AB=5,∴点B在点A的左边时,横坐标为1﹣5=﹣4,点B在点A的右边时,横坐标为1+5=6,∴点B的坐标为(﹣4,2)或(6,2).故选:B.10.若将点A(1,3)向左平移3个单位,再向下平移3个单位得到点B,则点B的坐标为()A.(﹣2,﹣1)B.(﹣1,0)C.(﹣2,0)D.(﹣1,﹣1)【考点】坐标与图形变化﹣平移.【分析】根据向左平移横坐标减,向下平移纵坐标减求解即可.【解答】解:点(1,3)向左平移3个单位,再向下平移3个单位得到点B的坐标为(1﹣3,3﹣3),即(﹣2,0),故选:C.11.在平面直角坐标系中,将点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B(﹣3,1)重合,则点A的坐标是()A.(2,﹣2)B.(2,4)C.(﹣8,﹣2)D.(﹣8,4)【考点】坐标与图形变化﹣平移.【分析】根据向左平移,横坐标减,向上平移纵坐标加列方程求出x、y,然后写出即可.【解答】解:∵点A(x,y)向左平移5个单位长度,再向上平移3个单位长度后与点B (﹣3,1)重合,∴x﹣5=﹣3,y+3=1,解得x=2,y=﹣2,所以,点A的坐标是(2,﹣2).故选:A.12.如图,线段AB经过平移得到线段A1B1,若点A1(3,0)、B1(0,﹣4)、A(﹣1,2),则点B的坐标为()A.(﹣2,﹣3)B.(﹣4,﹣1)C.(﹣4,﹣2)D.(﹣2,﹣2)【考点】坐标与图形变化﹣平移.【分析】直接利用平移中点的变化规律求解即可.【解答】】解:∵A1(3,0)、A(﹣1,2),∴求原来点的坐标,则为让新坐标的横坐标都减4,纵坐标都加2.则点B的坐标为(﹣4,﹣2).故选:C.二、解答题(共1小题,满分0分)13.在平面直角坐标系中,三角形ABC经过平移得到三角形A'B'C',位置如图所示.(1)分别写出点A,A'的坐标:A(1,0),A'(﹣4,4).(2)请说明三角形A'B'C'是由三角形ABC经过怎样的平移得到的.(3)若点M(m,4﹣n)是三角形ABC内部一点,则平移后对应点M'的坐标为(2m﹣8,n﹣4),求m和n的值.(4)求三角形ABC的面积.(5)设点P在y轴上,且△PB'C'与△ABC的面积相等,求P的坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(1)根据点的位置写出坐标即可;(2)利用平移变换的性质判断即可;(3)构建方程组求解即可;(4)设P(0,m),构建方程求解即可.【解答】解:(1)由题意A(1,0),A′(﹣4,4);故答案为:(1,0),(﹣4,4);(2)三角形ABC向左平移5个单位,向上平移4个单位得到三角形A′B′C′.(3)由题意,解得;(4)设P(0,m),则有×|m﹣3|×2=4×4﹣×2×4﹣×1×4﹣×2×3,∴m=﹣4或10,∴P(0,﹣4)或(0,10).三、选择题(共12小题,每小题0分,满分0分)14.在仪仗队列中,共有八列,每列8人,若战士甲站在第二列从前面数第3个,可以表示为(2,3),则战士乙站在第七列倒数第3个,应表示为()A.(7,6)B.(6,7)C.(7,3)D.(3,7)【考点】坐标确定位置.【分析】先求出倒数第3个为从前面数第6个,再根据第一个数为列数,第二个数为从前面数的数写出即可.【解答】解:∵每列8人,∴倒数第3个为从前面数第6个,∵第二列从前面数第3个,表示为(2,3),∴战士乙应表示为(7,6).故选:A.15.如图中的一张脸,小明说:“如果我用(0,2)表示左眼,用(2,2)表示右眼”,那么嘴的位置可以表示成()A.(0,1)B.(2,1)C.(1,0)D.(1,﹣1)【考点】坐标确定位置.【分析】先根据左眼和右眼所在位置点的坐标画出直角坐标系,然后写出嘴的位置所在点的坐标即可.【解答】解:如图,嘴的位置可以表示成(1,0).故选:C.16.若点A(n,3)在y轴上,则点B(n+1,n﹣1)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据y轴上的点横坐标为0,可得n=0,从而求出点B的坐标,即可解答.【解答】解:由题意得:n=0,∴n+1=1,n﹣1=﹣1,∴点B(1,﹣1)在第四象限,故选:D.17.若点M(a,b)在第四象限,则点(﹣a﹣1,﹣b+3)在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】根据第四象限点的横坐标是正数,纵坐标是负数,可得a>0,b<0,进而得出﹣a﹣1<0,﹣b+3>0,从而确定点(﹣a﹣1,﹣b+3)所在的象限.【解答】解:∵点M(a,b)在第四象限,∴a>0,b<0,则﹣a﹣1<0,﹣b+3>0,∴点(﹣a﹣1,﹣b+3)在第二象限,故选:B.18.在平面直角坐标系中,点M(m﹣3,m+1)在x轴上,则点M的坐标为()A.(﹣4,0)B.(0,﹣2)C.(﹣2,0)D.(0,﹣4)【考点】点的坐标.【分析】根据x轴上的点的纵坐标等于0列式求出m的值,即可得解.【解答】解:∵点M(m﹣3,m+1)在平面直角坐标系的x轴上,∴m+1=0,解得m=﹣1,∴m﹣3=﹣1﹣3=﹣4,点M的坐标为(﹣4,0).故选:A.19.若点P(x,y)到x轴的距离为2,且xy=﹣8,则点P的坐标为()A.(2,﹣4)B.(﹣2,4)或(2,﹣4)C.(﹣2,4)D.(﹣4,2)或(4,﹣2)【考点】点的坐标.【分析】根据有理数的乘法判断出x、y异号,根据点到x轴的距离等于纵坐标的绝对值,可得纵坐标为±2,进而得出横坐标.【解答】解:∵点P(x,y)到x轴的距离为2,∴点P的得纵坐标为±2,又∵且xy=﹣8,∴y=﹣4或4,∴点P的坐标为(﹣4,2)或(4,﹣2).故选:D.20.已知点P(4,m)到y轴的距离是它到x轴距离的2倍,则m的值为()A.2B.8C.2或﹣2D.8或﹣8【考点】点的坐标.【分析】根据点到坐标轴的距离公式列出绝对值方程,然后求解即可.【解答】解:∵点P(4,m)到y轴的距离是它到x轴距离的2倍,∴2|m|=4∴m=±2,故选:C.21.在平面直角坐标系中,坐标原点O是线段AB的中点,若点A的坐标为(﹣1,2),则点B的坐标为()A.(2,﹣1)B.(﹣1,﹣2)C.(1,﹣2)D.(﹣2,1)【考点】坐标与图形性质.【分析】根据中点坐标公式[(x A+x B),(y A+y B)]代入计算即可.【解答】解:设点B的坐标为(x,y),∵点A的坐标为(﹣1,2),∴=0,=0,∴x=1,y=﹣2,∴点B的坐标为(1,﹣2),故选:C.22.在直角坐标系中,过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,则()A.,b=﹣3B.,b=﹣3C.,b≠﹣3D.,b≠﹣3【考点】坐标与图形性质.【分析】根据平行于x轴的直线上点的纵坐标相等列出方程计算即可得解.【解答】解:∵过不同的两点P(2a,6)与Q(4+b,3﹣b)的直线PQ∥x轴,∴2a≠4+b,6=3﹣b,解得b=﹣3,a≠.故选:B.23.在平面直角坐标系中,点P(m﹣n,2m+n)在y轴正半轴上,且点P到原点O的距离为6,则m+3n的值为()A.5B.6C.7D.8【考点】坐标与图形性质.【分析】根据P在y轴正半轴上可得:横坐标m﹣n=0,点P到原点O的距离为6可得:2m+n=6,解方程组可得结论.【解答】解:由题意得:,解得:,∴m+3n=2+6=8.故选:D.24.第一象限内有两点P(m﹣4,n),Q(m,n﹣2),将线段PQ平移,使平移后的点P、Q分别在x轴与y轴上,则点P平移后的对应点的坐标是()A.(﹣4,0)B.(4,0)C.(0,2)D.(0,﹣2)【考点】坐标与图形变化﹣平移.【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减解答即可.【解答】解:设平移后点P、Q的对应点分别是P′、Q′.∵P′在x轴上,Q′在y轴上,则P′纵坐标为0,Q′横坐标为0,∵0﹣m=﹣m,∴m﹣4﹣m=﹣4,∴点P平移后的对应点的坐标是(﹣4,0);故选:A.25.如图,动点P在平面直角坐标系中按“→”所示方向跳动,第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,按这样的跳动规律,点P2021的坐标是()A.(2020,﹣1011)B.(2021,﹣1011)C.(2020,1011)D.(2020,﹣1010)【考点】规律型:点的坐标.【分析】观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,的出规律.【解答】解:观察图象,结合动点P第一次从A(﹣1,0)跳到点P1(0,1),第二次运动到点P2(1,0),第三次运动到P3(2,﹣2),第四次运动到P4(3,0),第五运动到P5(4,3),第六次运动到P6(5,0),第七次跳到P7(6,﹣4),第八次跳到P8(7,0),第九次跳到P9(8,5),…,横坐标为:0,1,2,3,4,5,6,.....,纵坐标为:1,0,﹣2,0,3,0,﹣4,0,5,0,﹣6,可知P n的横坐标为n﹣1,当n为偶数时纵坐标为0,当n为奇数时,纵坐标为||,当为偶数时符号为负,当为奇数时符号为正,∴P2021的横坐标为2020,纵坐标为=1011,故选:C.四、解答题(共3小题,满分0分)26.如图,在平面直角坐标系xOy中,A、B、C三点的坐标分别为(﹣5,4)、(﹣3,0)、(0,2).(1)画出三角形ABC,并求其面积;(2)如图,△A′B′C′是由△ABC经过△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,平移得到的.(3)已知点P(a,b)为△ABC内的一点,则点P在△A′B′C′内的对应点P′的坐标是(a+4,b﹣3).【考点】坐标与图形变化﹣平移.【分析】(1)根据点的位置作出图形,利用分割法求出三角形的面积即可;(2)结合图象,利用平移变换的性质解决问题;(3)利用平移变换的规律解决问题.=4×5﹣×2×4﹣×2×5﹣×3【解答】解:(1)如图,△ABC即为所求,S△ABC×2=8;(2)△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,故答案为:△ABC向右平移4个单位,再向下平移3个单位得到△A′B′C′,(3)P′(a+4,b﹣3),故答案为:a+4,b﹣3.27.如图,△ABO的三个顶点坐标分别为O(0,0)、A(5,0)、B(2,4).(1)求△OAB的面积;(2)若O、A两点的位置不变,P点在什么位置时,△OAP的面积是△OAB面积的2倍?(3)若O(0,0)、B(2,4),点M在坐标轴上,且△OBM的面积是△OAB的面积的,求点M的坐标.【考点】三角形的面积;坐标与图形性质.【分析】(1)利用分割法求三角形的面积即可.(2)由O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,推出点P到x轴的距离是点B到x轴的距离的2倍,推出点P的纵坐标为8和﹣8,由此即可解决问题.(3)分两种情形分别构建方程求解即可.【解答】解:(1)∵O(0,0)、A(5,0)、B(2,4)=×5×4=10.∴S△OAB(2)∵O、A两点的位置不变,△OAP的面积是△OAB面积的2倍,∴点P到x轴的距离是点B到x轴的距离的2倍,∴点P的纵坐标为8和﹣8,∴P点在直线y=8或y=﹣8上时,△OAP的面积是△OAB面积的2倍.(3)当点M在x轴上时,设M(m,0),则有•|m|•4=×10,解得m=±2,∴M(2,0)或(﹣2,0).当点M在y轴上时,设M(0,n),则有:•|n|•2=×10,解得n=±4,∴M(0,4)或(0,﹣4),综上所述,满足条件的点M坐标为(2,0)或(﹣2,0)或(0,4)或(0,﹣4).28.在平面直角坐标系中,O为原点,点A(0,2),B(﹣2,0),C(4,0).(Ⅰ)如图①,则三角形ABC的面积为6;(Ⅱ)如图②,将点B向右平移7个单位长度,再向上平移4个单位长度,得到对应点D.①求三角形ACD的面积;②点P(m,3)是一动点,若三角形PAO的面积等于三角形CAO的面积.请直接写出点P坐标.【考点】坐标与图形变化﹣平移;三角形的面积.【分析】(Ⅰ)利用三角形的面积公式直接求解即可.(Ⅱ)①连接OD,根据S△ACD=S△AOD+S△COD﹣S△AOC求解即可.②构建方程求解即可.【解答】解:(Ⅰ)∵A(0,2),B(﹣2,0),C(4,0),∴OA=2,OB=2,OC=4,∴S△ABC=•BC•AO =×6×2=6.故答案为6.(Ⅱ)①如图②中由题意D(5,4),连接OD.S△ACD=S△AOD+S△COD﹣S△AOC=×2×5+×4×4﹣×2×4=9.②由题意:×2×|m|=×2×4,解得m=±4,∴P(﹣4,3)或(4,3).第21页(共21页)。

第七章《平面直角坐标系》单元测试卷(含答案)

第七章《平面直角坐标系》单元测试卷(含答案)

第七章《平面直角坐标系》测试卷班级_______ 姓名________ 坐号_______ 成绩_______一、选择题(每小题3分,共30 分)1、根据下列表述,能确定位置的是( )A、红星电影院2排B、北京市四环路C、北偏东30°D、东经118°,北纬40°2、若点A(m,n)在第三象限,则点B(|m|,n)所在的象限是()A、第一象限B、第二象限C、第三象限D、第四象限3、若点P在x轴的下方,y轴的左方,到每条坐标轴的距离都是3,则点P的坐标为()A、(3,3)B、(-3,3)C、(-3,-3)D、(3,-3)4、点P(x,y),且xy<0,则点P在()A、第一象限或第二象限B、第一象限或第三象限C、第一象限或第四象限D、第二象限或第四象限5、如图1,与图1中的三角形相比,图2中的三角形发生的变化是()A、向左平移3个单位长度B、向左平移1个单位长度C、向上平移3个单位长度D、向下平移1个单位长度6、如图3所示的象棋盘上,若错误!位于点(1,-2)上,错误!位于点(3,-2)上,则错误!位于点()A、(1,-2)B、(-2,1)C、(-2,2)D、(2,-2)7、若点M(x,y)的坐标满足x+y=0,则点M位于( )A、第二象限B、第一、三象限的夹角平分线上C、第四象限D、第二、四象限的夹角平分线上8、将△ABC的三个顶点的横坐标都加上-1,纵坐标不变,则所得图形与原图形的关系是()A、将原图形向x轴的正方向平移了1个单位;B、将原图形向x轴的负方向平移了1个单位C、将原图形向y轴的正方向平移了1个单位D、将原图形向y轴的负方向平移了1个单位9、在坐标系中,已知A(2,0),B(-3,-4),C(0,0),则△ABC的面积为()A、4B、6C、8D、310、点P(x-1,x+1)不可能在()A、第一象限B、第二象限C、第三象限D、第四象限二、填空题(每小题3分,共18分)11、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是______________。

人教版七年级数学下册第七章《平面直角坐标系》单元测试卷附答案

人教版七年级数学下册第七章《平面直角坐标系》单元测试卷附答案

第七章《平面直角坐标系》单元测试卷(共23小题,满分120分,考试用时90分钟)一、选择题(本大题共10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的.1.(跨学科融合)如图,气象台为了预报台风,首先要确定台风中心的位置,则下列能确定台风中心位置的是()A.西太平洋B.北纬128°,东经36°C.距珠海500海里D.湛江附近第1题图第3题图第4题图2.在平面直角坐标系中,点P(-3,-8)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限3.(跨学科融合)如图是象棋棋盘的一部分,若位于点(1,-2)上,位于点(3,-2)上,则位于点 ()A.(-1,1)B.(-1,2)C.(-2,1)D.(-2,2)4.如图,货船A与港口B相距35海里,我们用有序数对(南偏西40°,35海里)来描述港口B相对货船A的位置,那么货船A相对港口B的位置可描述为()A.(北偏东40°,35海里)B.(北偏西40°,35海里)C.(南偏西50°,35海里)D.(北偏东50°,35海里)5.已知x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(0,3)C.(0,3)或(0,-3)D.(3,0)或(-3,0)6.若点P(5,y)在第四象限,则y的取值范围是()A.y<0B.y>0C.y≤0D.y≥07.在平面直角坐标系中,一个三角形的三个顶点的横坐标保持不变,纵坐标都增加3个单位长度,则所得的图形与原图形相比()A.形状不变,大小扩大为原来的3倍B.形状不变,向右平移了3个单位长度C.形状不变,向上平移了3个单位长度D.三角形被纵向拉伸为原来的3倍8.点C在x轴上方,y轴左侧,距离x轴2个单位长度,距离y轴3个单位长度,则点C的坐标为()A.(2,3)B.(-2,-3)C.(-3,2)D.(3,-2)9.一个长方形在平面直角坐标系中,其中三个顶点的坐标分别为(-1,-1),(-1,2),(3,-1),则第四个顶点的坐标为()A.(2,2)B.(3,2)C.(3,3)D.(2,3)10.(创新题)如图,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(0,1),将线段AB 平移,使其一个端点到C(3,2),则平移后另一端点的坐标为()A.(1,3)B.(5,1)C.(1,3)或(3,5)D.(1,3)或(5,1)二、填空题(本大题共5小题,每小题3分,共15分)11.把点A(-4,6)先向左平移2个单位长度,再向下平移4个单位长度,此时的位置是.12.在坐标平面内,已知点M(1,2)和点N(1,-4),那么线段MN的长为个单位长度.13.如图,表示北偏西50°方向的是射线.14.观察下图,与图1中的鱼相比,图2中的鱼发生了一些变化.若图1中鱼上点P的坐标为(4,3.2),则这个点在图2中的对应点P1的坐标为(图中的方格是1×1).图1图215.(创新题)如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).一只蚂蚁从点A处出发,并按A-B-C-D-A-B…的规律在四边形ABCD的边上以每秒1个单位长度的速度运动,运动时间为t秒.若t=2 023,则这只蚂蚁所在位置的点的坐标是.三、解答题(一)(本大题共3小题,每小题8分,共24分)16.如图,写出点A,B,C,D,E,F的坐标.17.如图,C,D两点的横坐标分别为2,3,线段CD=1;B,D两点的横坐标分别为-2,3,线段BD=5;A,B两点的横坐标分别为-3,-2,线段AB=1.(1)如果x轴上有两点M(x1,0),N(x2,0)(x1<x2),那么线段MN的长为多少?(2)如果y轴上有两点P(0,y1),Q(0,y2)(y1<y2),那么线段PQ的长为多少?18.如图,在平面直角坐标系中,O是原点,四边形ABCD是长方形,A,B,C的坐标分别是A(-3,1),B(-3,3),C(2,3).(1)直接写出点D的坐标;(2)画出将长方形ABCD先向右平移3个单位长度,再向下平移5个单位长度后所得的长方形A1B1C1D1,直接写出点D1的坐标.四、解答题(二)(本大题共3小题,每小题9分,共27分)19.如图,在平面直角坐标系中,A(-1,5),B(-1,0),C(-4,3).(1)求△ABC的面积;(2)若把△ABC向下平移2个单位长度,再向右平移5个单位长度得到△A'B'C',画出△A'B'C'并写出C'的坐标.20.如图是小明所在学校的平面示意图,已知宿舍楼的位置是(3,4),艺术楼的位置是(-3,1).(1)根据题意,画出相应的平面直角坐标系;(2)分别写出教学楼、体育馆的位置;(3)若学校行政楼的位置是(-1,-1),在图中标出行政楼的位置.21.在如图所示的平面直角坐标系中,四边形ABCD的各个顶点的坐标分别是A(-4,-2),B(4,-2),C(2,2),D(-2,3),求这个四边形的面积.五、解答题(三)(本大题共2小题,每小题12分,共24分))为“开心点”.22.(创新题)已知当m,n都是实数,且满足2m=8+n时,称P(m−1,n+22(1)判断点A(5,3),B(4,10)是否为“开心点”,并说明理由;(2)若点M(a,2a-1)是“开心点”,请判断点M在第几象限?并说明理由.23.如图,A(-1,0),C(1,4),点B在x轴上,且AB=2.(1)求点B的坐标,并画出△ABC;(2)求△ABC的面积;(3)在y轴上是否存在点P,使以A,B,P三点为顶点的三角形的面积为7?若存在,请求出点P的坐标;若不存在,请说明理由.第七章《平面直角坐标系》单元测试卷1.B 2.C 3.C 4.A 5.D 6.A7.C8.C9.B10.D11.(-6,2)12.613.OC14.(4,2.2)15.(-1,0)16.解:A(-3,-2),B(-5,4),C(5,-4),D(0,-3),E(2,5),F(-3,0).17.解:(1)MN=x2-x1.(2)PQ=y2-y1.18.解:(1)D(2,1).(2)图略,D1(5,-4).×3×5=7.5.19.解:(1)△ABC的面积是12(2)作图如下:所以点C'的坐标为(1,1).20.解:(1)如图.(2)由平面直角坐标系知,教学楼的位置为(1,0),体育馆的位置为(-4,3).(3)行政楼的位置如图所示.21.解:如图,过D作DE⊥AB,过C作CF⊥AB,垂足分别为E,F.S四边形ABCD=S△ADE+S梯形DEFC+S△BCF=1 2×2×5+12×(4+5)×4+12×2×4=5+18+4=27.22.解:(1)点A(5,3)为“开心点”,理由如下:当A(5,3)时,m-1=5,n+22=3,得m=6,n=4,则2m=12,8+n=12,∴2m=8+n,∴A(5,3)是“开心点”.点B(4,10)不是“开心点”,理由如下:当B(4,10)时,m-1=4,n+22=10,解得m=5,n=18, 则2m=10,8+18=26,∴2m≠8+n,∴点B(4,10)不是“开心点”.(2)点M在第三象限,理由如下:∵点M(a,2a-1)是“开心点”,∴m-1=a,n+22=2a-1,∴m=a+1,n=4a-4,代入2m=8+n有2a+2=8+4a-4,∴a=-1,∴2a-1=-3,∴M(-1,-3),故点M在第三象限.23.解:(1)如图:△AB'C或△AB″C是所求作的三角形.由图形可知:点B的坐标为(-3,0)或(1,0).(2)S△ABC=12AB·CB'=12×2×4=4,即△ABC的面积为4.(3)存在.设点P(0,y),因为以A,B,P三点为顶点的三角形的面积为7,所以S△ABP=12AB·|y|=7,即12×2×|y|=7,解得y=±7,故点P的坐标为(0,7)或(0,-7).。

初中数学 第七章平面直角坐标系单元测试题解析及答案含试题解析

初中数学 第七章平面直角坐标系单元测试题解析及答案含试题解析

第七章 平面直角坐标系测试题一、填空题(每小题3分,共30分)1.已知点A (0,1)、B (2,0)、C (0,0)、D (-1,0)、E (-3,0),则在y 轴上的点有 个。

2.如果点A ()b a ,在x 轴上,且在原点右侧,那么a ,b3.如果点()1,-a a M 在x 轴下侧,y 轴的右侧,那么a 的取值范围是4..如图所示,○A 表示三经路与一纬路的十字路口,○B 表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示由○A 到○B 的一条路径,用同样的方式写出另一条由○A 到○B 的路径:(3,1)→ → → →(1,3)新-课- 标-第 -一 -网○A○B5.如图所示,在一个规格为84⨯的球台上,有两只小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则点O 的位置可以表示为.6.已知两点A ()m ,3-,B ()4,-n ,若AB ∥y 轴,则n = , m 的取值范围是 .7.∆ABC 上有一点P (0,2),将∆ABC 先沿x 轴负方向平移2个单位长度,再沿y 轴正方向平移3个单位长度,得到的新三角形上与点P 相对应的点的坐标是 .8.如图所示,象棋盘上,若“将”位于点 (3,-2),“车”位于点(-1,-2),则“马”位于.9.李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为(3,2),若周伟的座位在李明的后面相距2排,同时在他的左边相距3列,则周伟的座位可简记为. X|k |B| 1 . c|O |m10.将∆ABC 绕坐标原点旋转180后,各顶点坐标变化特征是: .路章豫路明明路经三路经二路经一路纬二路纬一路纬三A 马将车4题图 5题图 8题图二、选择题(每小题3分,共30分)11.下列语句:(1)点(3,2)与点(2,3)是同一点;(2)点(2,1)在第二象限;(3)点(2,0) 在第一象限;(4)点(0,2)在x 轴上,其中正确的是()A.(1)(2)B.(2)(3)C.(1)(2)(3)(4)D. 没有12.如果点M ()y x ,的坐标满足0=yx ,那么点M 的可能位置是( ) A.x 轴上的点的全体 B. 除去原点后x 轴上的点的全体C.y 轴上的点的全体D. 除去原点后y 轴上的点的全体13.已知点P 的坐标为()63,-2+a a ,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A.(3,3)B.(3,-3)C. (6,-6)D.(3,3)或(6,-6)14.如果点()3,2+x x 在x 轴上方,y 轴右侧,且该点到x 轴和y 轴的距离相等,则x 的值为( )A.1B.-1C.3D.-315.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( )A.横向右平移2个单位B.横向向左平移2个单位16.下面是小明家与小刚家的位置描述:小明家:出校门向东走150m ,再向北走200m ;小刚家:出校门向南走100m ,再向西走300m ,最后向北走50m如果以学校所在位置为原点,分别以正东、正北方向为x 轴,y 轴正方向建立平面直角坐标系, 并取比例尺1∶10 000. 则下列说法正确的是( )①点(150,200)是小明家的位置;② 点(-300,-50)是小刚家的位置;③从小明家向西走200m ,到达点(200,-50);○4从小刚家向东走100m 到达点(50,-300). A.①②B.③○4C.①③D.②○4 17.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km 处,乙车位于雕像北方7km 处,若甲、乙两车以相同的速度向雕像的方向同时出发,当甲车到雕像西方1km 处乙车在( )A.雕像北方1km 处B.雕像北方3km 处C.雕像南方1km 处D.雕像南方3km 处18.已知如图所示,方格纸中的每个小方格边长为1的正方形,AB 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格顶点上确定一点C ,连接AB 、AC 、BC ,使∆ABC 的面积为2个平方单位,则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2)19.如图所示,若三角形ABC 中经平移后任意一点P ()00,y x 的对应点为()3,5001-+y x P ,则点A 的对应点1A 的坐标是( )A.(4,1)B.(9,-4)C.(-6,7)D.(-1,2)20.如图所示,是郑州市某天的温度随时间变化的图象,通过观察可知下列说法错误的是( )A.这天15点温度最高B.这天3点时温度最低C.这天最高温度与最低温度的差是15度D.这天21时温度是30度三、解答题(共40分) 21.(6分)如图所示,是一个规格为88 的球桌,小明用A 球撞击B 球,到C 处反弹,再撞击桌边D 处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.新 课 标第 一 网22.(7分)以点A 为圆心的圆可表示为⊙A 。

新人教版七年级下册数学第七章平面直角坐标系单元测试卷及答案(1)

新人教版七年级下册数学第七章平面直角坐标系单元测试卷及答案(1)

人教版七年级数学下册第7 章《平面直角坐标系》培优试题(2)一.选择题(共10 小题)1.如下图,横坐标是正数,纵坐标是负数的点是()A.A点B.B点C.C点D.D点2.若x轴上的点P到y轴的距离为 3,则点P为()A.(3,0)B.(3,0)或( 3,0)C.(0,3)D.(0,3)或(0, 3)3.若 ab 0 ,则P(a, b)在()A.第一象限B.第一或第三象限C.第二或第四象限D.以上都不对4.点M (m1,m3) 在x轴上,则M点坐标为 ()A.(0,4)B.(4,0)C.( 2,0)D.(0, 2)5.在平面直角坐标系中,若将三角形上各点的纵坐标都减去3,横坐标保特不变,则所得图形在原图形基础上()A.向左平移了 3 个单位B.向下平移了 3 个单位C.向上平移了 3 个单位D.向右平移了 3 个单位6.如图,是象棋盘的一部分.若“帅”位于点(1, 2)上,“相”位于点(3, 2)上,则“炮”位于点 ()上.A.(1,1)B.( 1,2)C.( 2,1)D.( 2,2)7.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移 2 个单位得线段A1B1,以下点在线段A1 B1上的是()A.(0,3)B.(-2,1)C.(0,8)D.(-2,0)8.点A(0,2)在 ()A.第二象限B.x 轴的正半轴上C.y 轴的正半轴上D.第四象限9.将点A( 3,2)先向右平移 3 个单位,再向下平移 5 个单位,获得A 、将点B(3,6)先向下平移 5 个单位,再向右平移 3 个单位,获得 B ,则 A 与 B相距 () A.4 个单位长度B.5 个单位长度C.6 个单位长度D.7 个单位长度10.已知点A(m, n)在第二象限,则点B(| m |, n) 在 ()A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共8 小题)11.已知| x 2 |( y1)20 ,则点P( x, y)在第个象限,坐标为.12.点P( 3, 5)到x轴距离为,到 y 轴距离为.13.在平面直角坐标系中,将点P(1,4) 向右平移2个单位长度后,再向下平移3个单位长度,获得点 P P的坐标为.1 ,则点114.李明的座位在第 5 排第 4 列,简记为(5, 4),张扬的座位在第 3 排第 2 列,简记为(3, 2),若周伟的座位在李明的前方相距 2 排,同时在他的右侧相距2 列,则周伟的座位可简记为.15.如图,在三角形ABC中,A(0,4),C (3,0),且三角形ABC 面积为10,则B点坐标为.16.点P(2 x1,x3) 在第一、三象限角均分线上,则x 的值为, P点坐标为.17.在平面直角坐标系中,点 A 的坐标为( 1,3),线段AB / / x 轴,且AB 4 ,则点B 的坐标为.18.在平面直角坐标系中,若点M (1, x)人教版七年级数学下册第七章平面直角坐标系单元综合测试题含答案一、(本大题共10 小题,每题 3 分,共 30 分 . 在每题所给出的四个选项中,只有一项为哪一项符合题意的 .把所选项前的字母代号填在题后的括号内. 相信你必定会选对!)1.如图是小李设计的49 方格扫雷游戏,“★ ”代表地雷(图中显示的地雷在游戏中都是隐藏的 ),点 A 可用 (2,3)表示,假如小惠不想因走到地雷上而结束游戏的话,以下选项中,她应当走()A. (7,2)B. (2, 6)C. (7, 6)D. (4, 5)2. 若a5, b 4 ,且点M( a,b)在第三象限,则点M 的坐标是()A.( 5, 4)B.(- 5, 4)C.(- 5,- 4)D.(5,- 4)3.在平面直角坐标系中,点A(2,5)与点 B 对于 y 轴对称,则点 B 的坐标是().A.(-5,- 2)B. (- 2,- 5)C. (-2,5)D. (2,- 5)4.平面直角坐标系中,点P 先向左平移 1 个单位,再向上平移 2 个单位,所得的点为Q( -2,1),则P 的坐标为()A.( -3,-1)B.( -3,3)C.( -1, -1)D.( -1, 3)5.点A(- 4, 3)和点B(- 8, 3),A, B 相距()A. 4 个位度B.12 个位度C. 10 个位度D.8 个位度6.已知点P 坐(2- a,3a+6),且 P 点到两坐的距离相等,点P 的坐是()A.( 3, 3)B.( 3,- 3)C.(6,- 6)D.(3, 3)或( 6,- 6)7.如,已知正方形ABCD,点A(1 , 3), B(1 ,1), C(3 , 1),定“把正方形ABCD 先沿 x 翻折,再向左平移 1 个位度” 一次,这样,后,正方形ABCD 的角交点M 的坐 ()2 018次A.(-2 016,2) C.( -2 017,- 2)8.已知段CD 是由段B. (- 2 016,- 2)D. (- 2 017,2)AB 平移获得的 ,点 A(-1,4)的点C(4,7),点B(-4,-1)的点 D 的坐()A.(1,2)9.已知点B.(2,9)A(1,0)B(0,2),点C.(5,3)P 在 x 上,且△D.(-9,-4)PAB 的面5,点P 的坐()A.(- 4,0)B.(6,0)C.(- 4, 0)或(6, 0)D.(0, 12)或 (0,- 8)10.如,一只跳蚤在第一象限及 x 、 y 上跳,第一秒,它从原点跳到 (0, 1),而后按中箭所示方向跳 [ 即 (0,0) →(0, 1) →(1, 1) →(1, 0) →⋯],且每秒跳一个位,那么第24 s 跳蚤所在地点的坐是()A . (0, 3)B. (4, 0)C. (0, 4 )D. (4, 4)二、心填一填:(本大共有8 小,每 3 分,共 24 分.把果直接填在中的横上.只需你理解观点,仔运算,极思虑,相信你必定会填的!)11.在平面直角坐系内,点P(-1,-2)在第象限,点P与横相距个位度,与相距个位度。

精选七年级下册数学第七章平面直角坐标系单元测试(含答案解析)(2)

精选七年级下册数学第七章平面直角坐标系单元测试(含答案解析)(2)

人教版七年级数学下册第七章平面直角坐标系期中复习检测试题一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,2)在( B )A.第一象限 B.第二象限 C.第三象限 D.第四象限2.经过两点A(2,3)、B(﹣4,3)作直线AB,则直线AB( B )A.经过原点 B.平行于x轴C.平行于y轴D.无法确定3.若y轴上的点P到x轴的距离为3,则点P的坐标是( D )A.(3,0)B.(0,3)C.(3,0)或(-3,0)D.(0,3)或(0,-3)4.已知△ABC顶点坐标分别是A(0,6),B(﹣3,﹣3),C(1,0),将△ABC平移后顶点A的对应点A1的坐标是(4,10),则点B的对应点B1的坐标为( C )A.(7,1) B.B(1,7)C.(1,1) D.(2,1)5.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的交点(格点)上,在第四象限内的格点上找点C,使三角形ABC的面积为3,则这样的点C共有( B )A.2个B.3个C.4个D.5个6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.图7-2-1是一局象棋残局,已知棋子“马”和“车”所在位置用坐标表示分别为(4,3),(-2,1),则棋子“炮”所在位置用坐标表示为( D )A.(-3,3) B.(3,2) C.(0,3) D.(1,3)7.如图,线段AB经过平移得到线段A′B′,其中点A,B的对应点分别为点A′,B′,这四个点都在网格的格点上.若线段AB上有一个点P(a,b),则点P在线段A′B′上的对应点P′的坐标为( A )A.(a-2,b+3) B.(a-2,b-3) C.(a+2,b+3) D.(a+2,b-3)8.将正整数按如图所示的规律排列下去,若有序实数对(n,m)表示第n排,从左到右第m个数,如(4,2)表示9,则表示58的有序数对是(A)A.(11,3)B.(3,11)C.(11,9)D.(9,11)9.如图,点A,B的坐标分别为(2,0),(0,1).若将线段AB平移至A1B1的位置,则a+b 的值为( A )A.2 B.3 C.4 D.510.在平面直角坐标系xOy中,对于点,我们把点叫做点伴随点.已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得到点,,,…,,….若点的坐标为(2,4),点的坐标为( D )A. (-3,3)B.(-2,-2)C.(3,-1)D.(2,4)二、填空题(每空3分,共18分)11.若点P是第二象限内的点,且点P到x轴的距离是4,到y轴的距离是3,则点P的坐标是(﹣3,4)。

人教版七年级下册数学单元同步检测卷:第七章 平面直角坐标系(含答案)

人教版七年级下册数学单元同步检测卷:第七章 平面直角坐标系(含答案)

人教版七年级下册数学单元同步检测卷:第七章平面直角坐标系(含答案)一、填空题1.观察下列的有序数对:(3,-1),(-5,),(7,-),(-9,),…,根据你发现的规律,第2019个有序数对是.2.A,B两点的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a+b= .3.已知点A(1+2a,4a-5),且点A到两坐标轴的距离相等,则点A的坐标为.4.观察如图,回答下面的问题:(1)学校在小明家北偏(°)的方向上,距离是400米;(2)邮局在小明家的西偏(°)的方向上,距离是500米.二、选择题5.有一个学生方队,学生B的位置是第8列第7行,记为(8,7),则学生A在第2列第3行的位置可以表示为()A.(2,1)B.(3,3)C.(2,3)D.(3,2)6.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P飞到P'(4,3)位置,则飞机Q,R的位置Q',R'分别为()A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)7.下列选项中,平面直角坐标系的画法正确的是()8.七(1)班的座位表如图所示,如果建立如图所示的平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是()A.(6,3)B.(6,4)C.(7,4)D.(8,4)9.如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是()A.AB.BC.CD.D10.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向下平移4个单位长度得到点P'的坐标是()A.(2,4)B.(1,-3)C.(1,5)D.(-5,5)11.在平面直角坐标系内,点P(a,a+3)的位置一定不在()A.第一象限B.第二象限C.第三象限D.第四象限12.如图,学校在李老师家的南偏东30°方向,距离是500 m,则李老师家在学校的()A.北偏东30°方向,相距500 m处B.北偏西30°方向,相距500 m处C.北偏东60°方向,相距500 m处D.北偏西60°方向,相距500 m处13.下列关于有序数对的说法正确的是()A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2),(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置14.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A'B'上的对应点P'的坐标为()A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)15.下列说法中,正确的是()A.点P(3,2)到x轴的距离是3B.在平面直角坐标系中,点(2,-3)和点(-2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号16.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(-3,0),则表示棋子“炮”的点的坐标为()A.(1,2)B.(0,2)C.(2,1)D.(2,0)三、解答题17.如图,用点A(3,1)表示3个胡萝卜,1棵青菜;点B(2,3)表示2个胡萝卜,3棵青菜.同理点C(2,1),D(2,2),E(3,2),F(3,3)各表示相应的胡萝卜个数与青菜的棵数.若1只兔子从A到B(顺着方格走),有以下几条路可供选择①A→C→D→B;②A→E→D→B;③A→E→F→B.问:兔子顺着哪条路走吃到的胡萝卜最多?顺着哪条路走吃到的青菜最多?各是多少?18.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4).(1)求四边形ABCD的面积;(2)把四边形ABCD向左平移3个单位得四边形A1B1C1D1,画出平移后的图形并写出平移后四边形各个顶点的坐标.19.如图是某台阶的一部分,每级台阶的高与长都相等.如果点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?20.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→ A (-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};(2)如图,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.22.已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.23.某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O 来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|;(1)已知点A(-1,0),B为y轴上的动点.①若点A与点B的“识别距离”为2,写出满足条件的B点的坐标(0,2)或(0,-2);②直接写出点A与点B的“识别距离”的最小值1.(2)已知点C与点D的坐标分别为C(m,m+3),D(0,1),求点C与点D的“识别距离”的最小值及相应的C点坐标.参考答案1.2.23.4. 东 25 南 305-9:CABCC10-14:BDBCA15-16:DB17.解:按①走吃到的胡萝卜为3+2+2+2=9(个),青菜为1+1+2+3=7(棵);按②走吃到的胡萝卜为3+3+2+2=10(个),青菜为1+2+2+3=8(棵);按③走吃到的胡萝卜为3+3+3+2=11(个),青菜为1+2+3+3=9(棵).故按③走吃到的胡萝卜和青菜都是最多的,分别为胡萝卜11个,青菜9棵.18.解:(1)S四边形ABCD=4×6-×2×3-×1×3-×2×4-×2×3=12.5.(2)图略,A1(-2,2),B1(0,-2),C1(2,1),D1(1,4).19.解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C(2,2),D(3,3),E(4,4),F(5,5).(2)因为每级台阶高为1,所以10级台阶的高度是10.20.解:(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m.(3)略.21.解:(1){3,1}+{1,2}={4,3}.(2)由题可得O到P的“平移量”为{2,3},P到Q的“平移量”为{3,2},从Q到O的“平移量”为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.22.解:(1)由题意,得2m+4=0,解得m=-2,∴点P的坐标为(0,-3).(2)由题意,得(m-1)-(2m+4)=3,解得m=-8,∴点P的坐标为(-12,-9).(3)由题意,得|m-1|=2,解得m=-1或m=3.当m=-1时,点P的坐标为(2,-2);当m=3时,点P的坐标为(10,2).∵点P在第四象限,∴点P的坐标为(2,-2).23.解:(1)北偏东40°的方向上有两个目标:敌方战舰B和小岛.要想确定敌方战舰B的位置,还需要知道敌方战舰B距我方潜艇的距离.(2)敌方战舰A和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.24.解:(2)令|m-0|=|m+3-1|,解得m=8或-.当m=8时,“识别距离”为8;当m=-时,“识别距离”为.所以当m=-时,“识别距离”取最小值,相应的C点坐标为(-).人教版七年级数学下册第七章平面直角坐标系培优训练卷一.选择题(共10小题,每小题3分,共30分)1.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°2.在平面直角坐标系中,点A(20,-20)在()A.第一象限B.第二象限C.第三象限D.第四象限3.在直角坐标系中,一个图案上各个点的横坐标和纵坐标分别减去正数a(a>1),那么所得的图案与原图案相比()A.形状不变,大小扩大到原来的a倍B.图案向右平移了a个单位长度C.图案向左平移了a个单位长度,并且向下平移了a个单位长度D.图案向右平移了a个单位长度,并且向上平移了a个单位长度4.若点P(a,b)在第二象限,则点Q(b+2,2-a)所在象限应该是()A.第一象限B.第二象限C.第三象限D.第四象限5.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为()A.(1,0) B.(1,2) C.(5,4) D.(5,0)7.如图,在一次“寻宝”游戏中,寻宝人找到了如图所示的两个标志点A(3,1),B(2,2),则“宝藏”点C的位置是()A.(1,0) B.(1,2) C.(2,1) D.(1,1)8.已知点A(m+1,-2)和点B(3,m-1),若直线AB∥x轴,则m的值为()A.-1 B.-4 C.2 D.39.如图,围棋棋盘放在某平面直角坐标系内,已知黑棋(甲)的坐标为(-2,2)黑棋(乙)的坐标为(-1,-2),则白棋(甲)的坐标是()A.(2,2) B.(0,1) C.(2,-1) D.(2,1)10.在平面直角坐标系中,电子跳蚤从原点出发,按向右、向上、向左再向上的方向依次跳A的坐标是()动,每次跳动1个单位长度,其行走路线如图,则点2018A.(0,1008) B.(1,1008) C.(1,1009) D.(0,1010)二.填空题(共7小题,每小题4分,共28分)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,点(2,3)到x轴的距离是.13.若4排3列用有序数对(4,3)表示,那么表示2排5列的有序数对为.14.若点A(2,n)在x轴上,则点B(n+2,n-5)位于第象限.15.在平面直角坐标系中,将点A(-1,3)向左平移a个单位后,得到点A′(-3,3),则a的值是.16.在平面直角坐标系xOy中,我们把横、纵坐标都是整数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当点B的横坐标为4时,m的值是.当点B的横坐标为4n(n为正整数)时,m= (用含n的代数式表示)三.解答题(共6小题,共42分)17.(6分)(1)点P的坐标为(x,y)且不在原点上,若x=y,则点P在坐标平面内的位置可能在第象限,若x+y=0,则点P在坐标平面内的位置可能在第象限;(2)已知点Q的坐标为(2-2a,a+8),且点Q到两坐标轴的距离相等,求点Q的坐标.18.(8分)如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.19.(8分)如图,已知△ABC经过平移后得到111,A B C点A与1,A点B与1,B点C与1C分别是对应点,观察各对应点坐标之间的关系,解答下列问题:(1)分别写出点A与1,A点B与1,B点C与1C的坐标;(2)若点P(x,y)通过上述的平移规律平移得到的对应点为Q(3,5),求p点坐标.20.(10分)在平面直角坐标系中,已知点P(2m+4,m-1),试分别根据下列条件,求出点P 的坐标. 求:(1)点P 在y 轴上; (2)点P 的纵坐标比横坐标大3;(3)点P 在过A(2,-5)点,且与x 轴平行的直线上.21.(10分)已知:如图,在直角坐标系中1234,(1,0),(1,1),(1,1),(1,1)A A A A --- (1)继续填写()()()567;;A A A :(2)依据上述规律,写出点20172018,A A 的坐标.答案:1-5 DDCAA6-10 DDADC11.-112.313. (2,5)14.四15.216.3, 6n-317.(1)一或三,二或四(2))∵点Q到两坐标轴的距离相等,∴|2-2a|=|8+a|,∴2-2a=8+a或2-2a=-8-a,解得a=-2或a=10,当a=-2时,2-2a=2-2×(-2)=6,8+a=8-2=6,当a=10时,2-2a=2-20=-18,8+a=8+10=18,所以,点Q的坐标为(6,6)或(-18,18).18.解:(1)如图所示:食堂(-5,5)、图书馆的位置(2,5);(2)如图所示:办公楼和教学楼的位置即为所求;(3)宿舍楼到教学楼的实际距离为:8×30=240(m).19.解:(1)由图知A(1,2)、A1(-2,-1);B(2,1)、B1(-1,-2);C(3,3)、C1(0,0);(2)由(1)知,平移的方向和距离为:向左平移3个单位、向下平移3个单位,由x−3=3 解得x=6;由y−3=5解得y=8 ;则点P的坐标为(6,8).20.解:(1)由题意得:2m+4=0,解得m=-2,所以P点的坐标为(0,-3);(2)由题意得:m-1-(2m+4)=3,解得m=-8,所以P点的坐标为(-12,-9);(3)由题意得:m-1=-5,解得m=-4.所以P点的坐标为(-4,-5).21. 解:(1)A5(2,-1),A6(2,2),A7(-2,2),A8(-2,-2),A9(3,-2 ),A10(3,3),A11(-3,3);(2)通过观察可得数字是4的倍数的点在第三象限,4的倍数余1的点在第四象限,4的倍数余2的点在第一象限,4的倍数余3的点在第二象限,∵2017÷4=504…1,2018÷4=506…2,∴点A2017在第四象限,且转动了504圈以后,在第505圈上,∴A2017的坐标为(505,-504),A2018的坐标(505,505).人教版七年级数学下册第七章平面直角坐标系章末检测蘃人教版七年级数学下册第七章平面直角坐标系单元测试题一、选择题1.有一个学生方队,学生B的位置是第8列第7行,记为(8,7),则学生A在第2列第3行的位置可以表示为(C)A.(2,1)B.(3,3)C.(2,3)D.(3,2)2.如图所示,三架飞机P,Q,R保持编队飞行,某时刻在坐标系中的坐标分别为(-1,1),(-3,1),(-1,-1).30秒后,飞机P飞到P'(4,3)位置,则飞机Q,R的位置Q',R'分别为(A)A.Q'(2,3),R'(4,1)B.Q'(2,3),R'(2,1)C.Q'(2,2),R'(4,1)D.Q'(3,3),R'(3,1)3.下列选项中,平面直角坐标系的画法正确的是(B)4.七(1)班的座位表如图所示,如果建立如图所示的平面直角坐标系,并且“过道也占一个位置”,例如小王所对应的坐标为(3,2),小芳的为(5,1),小明的为(10,2),那么小李所对应的坐标是(C)A.(6,3)B.(6,4)C.(7,4)D.(8,4)5.如图所示,一方队正沿箭头所指的方向前进,P的位置为五列二行,表示为(5,2),则(4,3)表示的位置是(C)A.AB.BC.CD.D6.在平面直角坐标系中,将点P(-2,1)向右平移3个单位长度,再向下平移4个单位长度得到点P'的坐标是(B)A.(2,4)B.(1,-3)C.(1,5)D.(-5,5)7.在平面直角坐标系内,点P(a,a+3)的位置一定不在(D)A.第一象限B.第二象限C.第三象限D.第四象限8.如图,学校在李老师家的南偏东30°方向,距离是500 m,则李老师家在学校的(B)A.北偏东30°方向,相距500 m处B.北偏西30°方向,相距500 m处C.北偏东60°方向,相距500 m处D.北偏西60°方向,相距500 m处9.下列关于有序数对的说法正确的是(C)A.(3,2)与(2,3)表示的位置相同B.(a,b)与(b,a)表示的位置一定不同C.(3,-2),(-2,3)是表示不同位置的两个有序数对D.(4,4)与(4,4)表示两个不同的位置10.如图,线段AB经过平移得到线段A'B',其中点A,B的对应点分别为点A',B',这四个点都在格点上.若线段AB上有一个点P(a,b),则点P在A'B'上的对应点P'的坐标为(A)A.(a-2,b+3)B.(a-2,b-3)C.(a+2,b+3)D.(a+2,b-3)11.下列说法中,正确的是(D)A.点P(3,2)到x轴的距离是3B.在平面直角坐标系中,点(2,-3)和点(-2,3)表示同一个点C.若y=0,则点M(x,y)在y轴上D.在平面直角坐标系中,第三象限内点的横坐标与纵坐标同号12.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏,如图,若表示棋子“馬”和“車”的点的坐标分别为(3,2),(-3,0),则表示棋子“炮”的点的坐标为(B)A.(1,2)B.(0,2)C.(2,1)D.(2,0)二、填空题13.观察下列的有序数对:(3,-1),(-5,),(7,-),(-9,),…,根据你发现的规律,第2019个有序数对是.14.A,B两点的坐标分别为(1,0),(0,2),若将线段AB平移至A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a+b= 2.15.已知点A(1+2a,4a-5),且点A到两坐标轴的距离相等,则点A的坐标为(7,7)或.16.观察如图,回答下面的问题:(1)学校在小明家北偏东(25°)的方向上,距离是400米;(2)邮局在小明家的西偏南(30°)的方向上,距离是500米.三、解答题17.如图,用点A(3,1)表示3个胡萝卜,1棵青菜;点B(2,3)表示2个胡萝卜,3棵青菜.同理点C(2,1),D(2,2),E(3,2),F(3,3)各表示相应的胡萝卜个数与青菜的棵数.若1只兔子从A到B(顺着方格走),有以下几条路可供选择①A→C→D→B;②A→E→D→B;③A→E→F→B.问:兔子顺着哪条路走吃到的胡萝卜最多?顺着哪条路走吃到的青菜最多?各是多少?解:按①走吃到的胡萝卜为3+2+2+2=9(个),青菜为1+1+2+3=7(棵);按②走吃到的胡萝卜为3+3+2+2=10(个),青菜为1+2+2+3=8(棵);按③走吃到的胡萝卜为3+3+3+2=11(个),青菜为1+2+3+3=9(棵).故按③走吃到的胡萝卜和青菜都是最多的,分别为胡萝卜11个,青菜9棵.18.如图所示的平面直角坐标系中,四边形ABCD的四个顶点的坐标分别是A(1,2),B(3,-2),C(5,1),D(4,4).(1)求四边形ABCD的面积;(2)把四边形ABCD向左平移3个单位得四边形A1B1C1D1,画出平移后的图形并写出平移后四边形各个顶点的坐标.解:(1)S四边形ABCD=4×6-×2×3-×1×3-×2×4-×2×3=12.5.(2)图略,A1(-2,2),B1(0,-2),C1(2,1),D1(1,4).19.如图是某台阶的一部分,每级台阶的高与长都相等.如果点A的坐标为(0,0),点B的坐标为(1,1).(1)请建立适当的平面直角坐标系,并写出点C,D,E,F的坐标;(2)如果该台阶有10级,你能得到该台阶的高度吗?解:(1)以A点为原点,水平方向为x轴,建立平面直角坐标系,所以C(2,2),D(3,3),E(4,4),F(5,5).(2)因为每级台阶高为1,所以10级台阶的高度是10.20.如图,奥运福娃在5×5的方格(每小格边长为1 m)上沿着网格线运动.贝贝从A处出发去寻找B,C,D处的其他福娃,规定:向上、向右走为正,向下、向左走为负.如果从A到B记为:A→B(+1,+4),从B到A记为:B→A(-1,-4).请根据图中所给信息解决下列问题:(1)A→C(+3,+4);B→C(+2,0);C→ A (-3,-4);(2)如果贝贝的行走路线为A→B→C→D,请计算贝贝走过的路程;(3)如果贝贝从A处去寻找妮妮的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出妮妮的位置E点.解:(2)根据题意得|+1|+|+4|+|+2|+|0|+|+1|+|-2|=10 m.(3)略.21.类比学习:一动点沿着数轴向右平移3个单位,再向左平移2个单位,相当于向右平移1个单位.用实数加法表示为3+(-2)=1.若坐标平面上的点作如下平移:沿x轴方向平移的数量为a(向右为正,向左为负,平移|a|个单位),沿y轴方向平移的数量为b(向上为正,向下为负,平移|b|个单位),则把有序数对{a,b}叫做这一平移的“平移量”.“平移量”{a,b}与“平移量”{c,d}的加法运算法则为{a,b}+{c,d}={a+c,b+d}.解决问题:(1)计算:{3,1}+{1,2};(2)如图,一艘船从码头O出发,先航行到湖心岛码头P(2,3),再从码头P航行到码头Q(5,5),最后回到出发点O.请用“平移量”加法算式表示它的航行过程.解:(1){3,1}+{1,2}={4,3}.(2)由题可得O到P的“平移量”为{2,3},P到Q的“平移量”为{3,2},从Q到O的“平移量”为{-5,-5},故有{2,3}+{3,2}+{-5,-5}={0,0}.22.已知点P(2m+4,m-1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P到x轴的距离为2,且在第四象限.解:(1)由题意,得2m+4=0,解得m=-2,∴点P的坐标为(0,-3).(2)由题意,得(m-1)-(2m+4)=3,解得m=-8,∴点P的坐标为(-12,-9).(3)由题意,得|m-1|=2,解得m=-1或m=3.当m=-1时,点P的坐标为(2,-2);当m=3时,点P的坐标为(10,2).∵点P在第四象限,∴点P的坐标为(2,-2).23.某次海战演练中敌我双方舰艇对峙示意图(图中1 cm代表20海里)如下,对我方潜艇O 来说:(1)北偏东40°的方向上有哪些目标?要想确定敌方战舰B的位置,还需要什么数据?(2)距离我方潜艇20海里的敌方战舰有哪几艘?(3)要确定每艘敌方战舰的位置,各需要几个数据?解:(1)北偏东40°的方向上有两个目标:敌方战舰B和小岛.要想确定敌方战舰B的位置,还需要知道敌方战舰B距我方潜艇的距离.(2)敌方战舰A和敌方战舰C.(3)要确定每艘敌方战舰的位置,各需要两个数据:距离和方位角.24.在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“识别距离”,给出如下定义:若|x1-x2|≥|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|x1-x2|;若|x1-x2|<|y1-y2|,则点P1(x1,y1)与点P2(x2,y2)的“识别距离”为|y1-y2|;(1)已知点A(-1,0),B为y轴上的动点.①若点A与点B的“识别距离”为2,写出满足条件的B点的坐标(0,2)或(0,-2);②直接写出点A与点B的“识别距离”的最小值1.(2)已知点C与点D的坐标分别为C(m,m+3),D(0,1),求点C与点D的“识别距离”的最小值及相应的C点坐标.解:(2)令|m-0|=|m+3-1|,解得m=8或-.当m=8时,“识别距离”为8;当m=-时,“识别距离”为.所以当m=-时,“识别距离”取最小值,相应的C点坐标为(-).。

人教版七年级第七章平面直角坐标系单元测试精选(含答案)7

人教版七年级第七章平面直角坐标系单元测试精选(含答案)7

人教版七年级第七章平面直角坐标系单元测试精选(含答案) 学校:___________姓名:___________班级:___________考号:___________一、单选题1.在平面直角坐标系中,点(-2,3)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限【来源】山东省日照市莒县2016-2017学年七年级下学期期末考试数学试题(WORD版)【答案】B2.如图:正方形ABCD中点A和点C的坐标分别为(-2,3)和(3,-2),则点B和点D的坐标分别为().A.(2,,2)和(3,3)B.(-2,-2)和(3,3)C.(-2,-2)和(-3,-3)D.(2,2)和(-3,-3)【来源】2018人教版数学七年级下册第七章平面直角坐标系单元测试题【答案】B3.某同学的座位号为(2,4)那么该同学的位置是()A.第2排第4列B.第4排第2列C.第2列第4排D.不好确定【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】D4.线段AB两端点坐标分别为A(–1,4),B(–4,1),现将它向左平移4个单位长度,得到线段A1B1,则A1、B1的坐标分别为()A.A1(–5,0),B1(–8,–3)B.A1(3,7),B1(0,5)C.A1(–5,4),B1(-8,1)D.A1(3,4),B1(0,1)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】C5.小敏的家在学校正南150m,正东方向200m处,如果以学校位置为原点,以正北、正东为正方向,则小敏家用有序数对表示为()A.(-200,-150)B.(200,150)C.(200,-150)D.(-200,150)【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C6.若点P(m,n)在第二象限,则点Q(m,-n)在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】C7.一个学生方队,B的位置是第8列第7行,记为(8,7),则学生A在第二列第三行的位置可以表示为( )A.(2,1) B.(3,3) C.(2,3) D.(3,2)【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】C8.点P(-|a|-1,b2+2)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B9.下列语句中,说法错误的是()A.点(0,0)是坐标原点B.对于坐标平面内的任一点,都有唯一的一对有序实数与它对应C.点A(a,-b)在第二象限,则点B(-a,b)在第四象限D.若点P的坐标为(a,b),且a·b=0,则点P一定在坐标原点【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】D10.点A的坐标是(-2,5),则点A在()A.第一象限B.第二象限C.第三象限D .第四象限【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】B11.如图,在平面直角坐标系中,矩形OABC ,OA=3,OC=6,将△ABC 沿对角线AC 翻折,使点B 落在点B′处,AB′与y 轴交于点D ,则点D 的坐标为( )A .(0,-92)B .(0,-94)C .(0,-72)D .(0,-74) 【来源】2016届山东省济南市中考三模数学试卷(带解析)【答案】D12.若点A(m ,n)在第二象限,那么点B(-m ,n+3)在( )A .第一象限B .第二象限;C .第三象限D .第四象限【来源】人教版七年级数学下册第七章平面直角坐标系单元测试【答案】A13.我市为了促进全民健身,举办“健步走”活动,朝阳区活动场地位于奥林匹克公园(路线:森林公园-玲珑塔-国家体育场-水立方).如图,体育局的工作人员在奥林匹克公园设计图上设定玲珑塔的坐标为(-1,0),森林公园的坐标为(-2,2),则终点水立方的坐标为( )A .(-2,-4)B .(-1,-4)C .(-2,4)D .(-4,-1)【来源】第七章平面直角坐标系单元练习题【答案】A二、填空题14.如图,每个小方格都是边长为1个单位长度的正方形,如果用(0,0)表示A 点的位置,用(3,4)表示B 点的位置,那么用______表示C 点的位置.【来源】2016年北师大新版八年级数学上册同步练习:3.1 确定位置【答案】(6,1)15.若第四象限内的点P(x ,y)满足|x|=3,y 2=4,则点P 的坐标是________.【来源】2018年秋北师大版八年级数学上册第三章 位置与坐标检测卷【答案】(3,-2)16.第三象限内的点P(x ,y),满足5x =,29y =,则点P 的坐标是_________.【来源】湖北黄石江北中学2016-2017学年七年级(下)期中模拟数学试卷(含答案)【答案】(-5,-3).17.若点P (x ,y )满足xy <0,则点P 在第________象限.【来源】2017年秋北师大版八年级数学上册章末检测卷:第3章?位置与坐标【答案】二或四18.七年级(2)班教室里的座位共有7排8列,其中小明的座位在第3排第7列,简记为(3,7),小华坐在第5排第2列,则小华的座位可记作__________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(5,2)19.若点P (a,-b )在第二象限,则点Q (-ab,a+b )在第_______象限.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】三20.若点P 到x 轴的距离是12,到y 轴的距离是15,那么P 点坐标可以是________(写出一个即可).【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(15,12)或(15,-12)或(-15,12)或(-15,-12);21.如下图,小强告诉小华图中A 、B 两点的坐标分别为(-3,5),(3,5),•小华一下就说出了C在同一坐标系下的坐标________.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】(-1,7)22.若图中的有序数对(4,1)对应字母D,有一个英文单词的字母依次对应图中的有序数对为(1,1),(2,3),(2,3),(5,2),(5,1),则这个英文单词是________.【来源】人教版七年级下册数学练习:7.1.1有序数对【答案】APPLE23.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1、1),则此“QQ”笑脸左眼B的坐标________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(0,3)24.若点P(m,n)在第三象限,则点Q(mn,m+n)在第________象限.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】四25.平面直角坐标系中,点P(3,-4)到x轴的距离是________.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】426.通过平移把点A(2,-1)移到点A′(2,2),按同样的平移方式,点B(-3,1)移动到点B′,则点B′的坐标是________.【来源】沪科版数学八年级上学期全册综合测试试卷【答案】(-3,4)27.同学们排成方队做操,李明在第10列第8行,用数对表示为________,小方所在的位置用数对表示为(8,7),她在第________列第________行.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(10,8) 8 728.若图中的有序数对(4,1)对应字母D ,有一个英文单词的字母顺序对应如图中的有序数对分别为(1,2),(5,1),(5,2),(5,2),(1,3),请你把这个英文单词写出来为________.【来源】第七章平面直角坐标系单元练习题【答案】HELLO29.已知点A(x -4,x +2)在y 轴上,则x 的值等于________.【来源】第七章平面直角坐标系单元练习题【答案】4三、解答题30.已知平面直角坐标系中有一点()M 2m 3,m 1-+.(1)点M 到y 轴的距离为1时,M 的坐标?(2)点()N 5,1-且MN//x 轴时,M 的坐标?【来源】山东省济宁市嘉祥县2017-2018学年七年级下学期期中水平测试数学试题【答案】(1) (﹣1,2)或(1,3)(2) (﹣7,﹣1)31.(1)已知图1是将线段AB 向右平移1个单位长度,图2是将线段AB 折一下再向右平移1个单位长度,请在图3中画出一条有两个折点的折线向右平移1个单位长度的图形;(2)若长方形的长为a ,宽为b ,请分别写出三个图形中除去阴影部分后剩下部分的面积;(3)如图4,在宽为10m ,长为40m 的长方形菜地上有一条弯曲的小路,小路宽度为1m ,求这块菜地的面积.【来源】2017-2018学年人教版七年级数学下册同步测试题 5.4 平移【答案】(1)图形见解析.(2)三个图形中除去阴影部分后剩下部分的面积均为ab-b.(3) 390(m2).32.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.【来源】人教版七年级下册第七章《平面直角坐标系》全章测试含答案【答案】(1)食堂的位置是(-5,5),图书馆的位置是(2,5);(2)见解析;(3)240米.33.已知点P(2m+4,m-1).试分别根据下列条件,求出点P的坐标.(1)点P的纵坐标比横坐标大3;(2)点P在过A(2,-3)点,且与x轴平行的直线上.【来源】人教版七年级数学下册第7章平面直角坐标系单元提优测试题【答案】(1)点P(-12,-9)(2)P(0,-3)34.已知A(a-3,a2-4),求a的值及点A的坐标.(1)当点A在x轴上;(2)当点A在y轴上.【来源】2016——2017学年度江西省赣县区第二学期期中考试七年级数学试题【答案】(1) a=±2,点A的坐标为(-1,0)或(-5,0);(2) a=3,点A的坐标为(0,5).35.已知,射线BC∥射线OA,∠C=∠BAO=100°,试回答下列问题:(1)如图①,求证:OC∥AB;(2)若点E、F在线段BC上,且满足∠EOB=∠AOB,并且OF平分∠BOC,①如图②,若∠AOB=30°,则∠EOF的度数等于多少(直接写出答案即可);②若平行移动AB,当∠BOC=6∠EOF时,求∠ABO.【来源】湖南省长沙市青竹湖湘一外国语学校2017-2018学年七年级上期末试卷数学试题【答案】(1)证明见解析;(2)Ⅰ)∠EOF=5°;Ⅱ)∠ABO=48°或60°.36.如图是小明家和学校所在地的简单地图,已知OA=2cm,OB=2.5cm,OP=4cm,点C为OP的中点,回答下列问题:(1)图中距小明家距离相同的是哪些地方?(2)学校、商场和停车场分别在小明家的什么方位?(3)如果学校距离小明家400m,那么商场和停车场分别距离小明家多远?【来源】2017-2018学年八年级数学冀教版下册单元测试题第19章平面直角坐标系【答案】(1)距小明家距离相同的是学校和公园;(2)学校在小明家北偏东45°方向,商场在小明家北偏西30°方向,停车场在小明家南偏东60°方向;(3)停车场距离小明家800m.37.某学校校门在北侧,进校门向南走30米是旗杆,再向南走30米是教学楼,从教学楼向东走60米,再向北走20米是图书馆,从教学楼向南走60米,再向北走10米是实验楼,请你选择适当的比例尺,画出该校的校园平面图.【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】见解析38.请自己动手,建立平面直角坐标系,在坐标系中描出下列各点的位置:你发现这些点有什么位置关系?你能再找出类似的点吗?(再写出三点即可)A(-4,4) ,B(-2,2).C(3,-3).D(5,-5).E(-3,3)F(0,0)【来源】人教版七年级数学下册第7章平面直角坐标系单元测试题【答案】这些点在同一直线上,在二四象限的角平分线上,举例见解析.39.已知坐标平面内的三个点A(1,3),B(3,1),O(0,0),求△ABO的面积.【来源】2014-2015学年山西省大同市矿区十二校七年级下学期期末数学试卷(带解析)【答案】4.40.如图,A、B两点的坐标分别为(2,3)、(4,1).(1)求△ABO的面积;(2)把△ABO向下平移3个单位后得到一个新三角形△O′A′B′,求△O′A′B′的3个顶点的坐标.【来源】2017-2018学年北师大版八年级下册第三章图形的平移与旋转 3.1 图形的平移同步练习卷含答案【答案】(1)S△ABO=5;(2)A′(2,0),B′(4,-2),O′(0,-3).41.请写出点A,B,C,D的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】A(3,2),B(-3,4),C(-4,-3),D(3,-3)42.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.【来源】人教版七年级下册第七章平面直角坐标系单元练习题【答案】(1)点B的坐标为(-2,0)或(6,0);(2)点B的坐标为(-4,0)或(4,0)或(0,4)或(0,-4)43.在如图所示的平面直角坐标系中表示下面各点A(0,3),B(1,-3),C(3,-5),D(-3,-5),E(3,5),F(5,6),G(5,0)根据描点回答问题:(1)A点到原点的距离是________.(2)将点C向x轴的负方向平移6个单位,它与点______重合.(3)连接CE,则直线CE与坐标轴是什么关系?(4)在以上七个点中,任意两点所形成的直线中,直接写出互相垂直的直线.【来源】人教版七年级下册第七章平面直角坐标系单元复习卷【答案】(1)3;(2)D;(3)垂直;(4)直线CD与CE垂直,直线CD与FG垂直.44.写出如图格点△ABC各顶点的坐标,求出此三角形的周长.【来源】2017-2018学年山西农大附中八年级(上)期中数学试卷【答案】A(2,2)、B(-2,-1)、C(3,-2),面积9.5平方单位45.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.【来源】2016-2017学年福建省宁德市蕉城中学七年级(下)期末模拟数学试卷(带解析)【答案】(1)57°;(2)3.5cm.46.已知点P 的坐标为()2,a a -,且点P 到两坐标轴的距离相等,求a 的值.【来源】安徽省潜山市2018-2019学年度第一学期八年级数学期末教学质量检测【答案】a = 1.47.已知直角坐标平面内两点A(-2,-3)、B(3,-3),将点B 向上平移5个单位到达点C ,求:(1)A 、B 两点间的距离;(2)写出点C 的坐标;(3)四边形OABC 的面积.【来源】第七章平面直角坐标系单元练习题【答案】(1) 5;(2) (3,2);(3)15.48.五子棋和象棋、围棋一样,深受广大棋友的喜爱,其规则是:15×15的正方形棋盘中,由黑方先行,轮流弈子,在任一方向上连成五子者为胜.如下图是两个五子棋爱好者甲和乙的对弈图;(甲执黑子先行,乙执白子后走),观察棋盘思考:若A 点的位置记做(8,4),甲必须在哪个位置上落子,才不会让乙马上获胜.【来源】2015年人教版初中数学七年级7.2.1练习卷(带解析)【答案】见解析49.已知:点P(2m +4,m -1).试分别根据下列条件,求出P 点的坐标.(1)点P 在y 轴上;(2)点P 在x 轴上;【来源】第七章平面直角坐标系单元练习题【答案】(1) P 点的坐标为(0,-3);(2) P 点的坐标为(6,0).50.在平面直角坐标系中描出下列各组点,并将各组内的点用线段依次连接起来.(1,1),(3,1),(1,3),(1,1);(-1,3),(-1,5),(-3,3),(-1,3);(-5,1),(-3,-1),(-3,1),(-5,1);(-1,-1),(1,-1),(-1,-3),(-1,-1).(1)观察所得的图形,你觉得它像什么?(2)求出这四个图形的面积和.【来源】第七章平面直角坐标系单元练习题【答案】画图见解析;(1)风车;(2)8.。

最新七年级下册数学第七章平面直角坐标系单元测试及答案(1)

最新七年级下册数学第七章平面直角坐标系单元测试及答案(1)

人教版七年级下册第七章《平面直角坐标系》单元测试卷一、选择题(每小题5分,共25分)1、在平面直角坐标系中,若点P的坐标为(3,2),则点P所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限2、课间操时,小华、小军、小刚的位置如图,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4)B.(4,5)C.(3,4)D.(4,3)3、若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(-3,0)C.(0,3)D.(0,3)或(0,-3)4、线段CD是由线段AB平移得到的.点A(-1,4)的对应点为C(4,7),则点B(-4,-1)的对应点D的坐标为()A.(2,9)B.(5,3)C.(1,2)D.(-9,-4)5、若定义:f(a,b)=(-a,b),g(m,n)=(m,-n),例如f(1,2)=(-1,2),g(-4,-5)=(-4,5),则g(f(2,-3))=()A.(2,3)B.(-2,3)C.(2,-3)D.(-2,-3)二、填空题(每小题5分,共25分)6、如果点M(3,x)在第一象限,则x的取值范围是.7、点A在y轴上,位于原点的上方,距离坐标原点5个单位长度,则此点的坐标为.8、小华将直角坐标系中的猫的图案向右平移了3个单位长度,平移前猫眼的坐标为(-4,3)、(-2,3),则移动后猫眼的坐标为.9、一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为.10、如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6…,则顶点A20的坐标为.三、解答题(共50分)11、写出如图中“小鱼”上所标各点的坐标.12、如图,这是某市部分简图,请以火车站为坐标原点建立平面直角坐标系,并分别写出各地的坐标.13、王明从A处出发向北偏东40°走30m,到达B处;李刚也从A处出发,向南偏东50°走了40m,到达C处.(1)用1cm表示10m,画出A,B,C三处的位置;(2)在图上量出B处和C处之间的距离,再说出王明和李刚两人实际相距多少米.14、如图,把△ABC向上平移4个单位长度,再向右平移2个单位得△A1B1C1,解答下列各题:(1)在图上画出△A1B1C1;(2)写出点A1,B1,C1的坐标.15、在平行四边形ACBO中,AO=5,则点B坐标为(-2,4).(1) 写出点C坐标;(2) 求出平行四边形ACBO面积.《平面直角坐标系》单元测试卷参考答案一、选择题1、A2、D3、B4、C5、B二、填空题6、x >07、(0,5)8、(-4,6)、(-2,6)9、(3,2) 10、(5,﹣5)三、解答题11、解:A (-2,0),B (0,-2),C (2,1-),D (2,1),E (0,2), O (0,0).12、解:图略.体育场(-4,3),文化宫(-3,1),宾馆(2,2),市人教版七年级下册第7章平面直角坐标系水平测试卷一.选择题(共10小题)1.在平面直角坐标系中,点()23,2P x -+所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各点中,位于第四象限的点是( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4) 3.已知点P(-4,3),则点P 到y 轴的距离为( )A .4B .-4C .3D .-34.已知m 为任意实数,则点()2,1A m m +不在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限 5.已知点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为2.则点P 的坐标是( ) A .(1、2) B .(-1,2) C .(2,1) D .(-2,1) 6.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .( 8,0)7.已知点A(-3,0),则A 点在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( )A .(1,0)B .(1,2)C .(5,4)D .(5,0)9.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移2个单位得线段11,A B 以下点在线段11A B 上的是( )A .(0,3)B .(-2,1)C .(0,8)D .(-2,0)10.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)二.填空题(共6小题)11.若P(a-2,a+1)在x 轴上,则a 的值是 .12.在平面直角坐标系中,点A(-5,4)在第 象限.13.点P(3,-2)到y 轴的距离为 个单位.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成 .15.已知点A(m-1,-5)和点B(2,m+1),若直线AB ∥x 轴,则线段AB 的长为 .16.在平面直角坐标系中,已知点(A B 点C 在x 轴上,且AC+BC=6,写出满足条件的所有点C 的坐标三.解答题(共7小题)17.如图,在平面直角坐标系中,点A 、B 、C 、D 都在坐标格点上,点D 的坐标是(-3,1),点A 的坐标是(4,3).(1)将三角形ABC 平移后使点C 与点D 重合,点A ,B 分别与点E ,F 重合,画出三角形EFD .并直接写出E ,F 的坐标;(2)若AB 上的点M 坐标为(x,y),则平移后的对应点M 的坐标为.18.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC 向左平移5个单位长度,再向上平移4个单位长度,得到111,A B C 在图中画出111,A B C 并直接写出点1A 、1B 、1C 的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M 到x 轴的距离为1时,求点M 的坐标;(2)当点M 到y 轴的距离为2时,求点M 的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M 到y 轴的距离为l 时,M 的坐标?(2)点N(5,-1)且MN ∥x 轴时,M 的坐标?21.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x 的绝对值表示为|x|,纵坐标y 的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3【解决问题】(1)求点(2,4),A B -+的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.22.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置; (2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置; (3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.23.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)= ;(2)若点P(4,-4)在F变换下的对应点是它本身,则a= ,b= .答案:1-5 BAADD6-10 CBDAC11.-112.二13.314. (3,4)15.916.. (3,0)或(-3,0)17. 解:(1)如图所示,△EFD即为所求,其中E(0,2)、F(-1,0).(2)由图形知将△ABC向左平移4个单位、再向下平移1个单位可得△EFD,∴平移后点M的坐标为(x-4,y-1),18. 解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2).19. 解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得:m=-1或m=-2,∴点M 的坐标是(-2,1)或(-3,-1);(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得:m=3或m=-1,∴点M 的坐标是:(2,9)或(-2,1).20. 解:(1)∵点M (2m-3,m+1),点M 到y 轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M 的坐标为(-1,2),当m=2时,点M 的坐标为(1,3);综上所述,点M 的坐标为(-1,2)或(1,3);(2)∵点M (2m-3,m+1),点N (5,-1)且MN ∥x 轴,∴m+1=-1,解得m=-2,故点人教七年级上册数学第7章《平面直角坐标系》练习题 (A B 卷)人教版七年级数学下册第七章平面直角坐标系 单元测试题班级 姓名 得分一、选择题(4分×6=24分)1.点A (4,3-)所在象限为( )A 、 第一象限B 、 第二象限C 、 第三象限D 、 第四象限2.点B (0,3-)在()上A 、 在x 轴的正半轴上B 、 在x 轴的负半轴上C 、 在y 轴的正半轴上D 、 在y 轴的负半轴上3.点C 在x 轴上方,y 轴左侧,距离x 轴2个单位长度,距离y 轴3个单位长度,则点C 的坐标为()A 、(3,2)B 、 (3,2--)C 、 (2,3-)D 、(2,3-)4. 若点P (x,y )的坐标满足xy =0,则点P 的位置是()A 、 在x 轴上B 、 在y 轴上C 、 是坐标原点D 、在x 轴上或在y 轴上5.某同学的座位号为(4,2),那么该同学的所座位置是()A 、 第2排第4列B 、 第4排第2列C 、 第2列第4排D 、 不好确定 6.线段AB 两端点坐标分别为A (4,1-),B (1,4-),现将它向左平移4个单位长度,得到线段A 1B 1,则A 1、B 1的坐标分别为()A 、 A 1(0,5-),B 1(3,8--) B 、 A 1(7,3), B 1(0,5)C 、 A 1(4,5-) B 1(-8,1)D 、 A 1(4,3) B 1(1,0) 二、填空题( 1分×50=50分 ) 7.分别写出数轴上点的坐标:A ( )B ( )C ( )D ( )E ( ) 8.在数轴上分别画出坐标如下的点:)1(-A )2(B )5.0(C )0(D )5.2(E )6(-F9. 点)4,3(-A 在第 象限,点)3,2(--B 在第 象限 点)4,3(-C 在第 象限,点)3,2(D 在第 象限 点)0,2(-E 在第 象限,点)3,0(F 在第 象限10.在平面直角坐标系上,原点O 的坐标是( ),x 轴上的点的坐标的特点 是 坐标为0;y 轴上的点的坐标的特点是 坐标为0。

人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)

人教版七年级数学下册-第七章平面直角坐标系单元测试(含答案)

第七章平面直角坐标系单元测试一、单项选择题(共7 题;共 28 分)1.以下是甲、乙、丙三人看地图时对四个坐标的描绘:甲:从学校向北直走500 米,再向东直走100 米可到图书室.乙:从学校向西直走300 米,再向北直走200 米可到邮局.丙:邮局在火车站西200 米处.依据三人的描绘,若从图书室出发,判断以下哪一种走法,其终点是火车站()A. 向南直走300 米,再向西直走200 米B. 向南直走300 米,再向西直走100 米C. 向南直走700 米,再向西直走200 米D. 向南直走700 米,再向西直走600 米2.平面直角坐标系中,以下各点中,在y 轴上的点是 ()A.(2,0)B. ( -2,3 )C.(0,3)D.(1,-3)3.若 y 轴上的点P 到 x 轴的距离为 3,则点 P 的坐标是()A. (3, 0)B. ( 0,3)C. ( 3, 0)或(﹣ 3, 0)D. (0, 3)或( 0,﹣ 3)4.已知 M(1,﹣ 2), N(﹣ 3,﹣2),则直线 MN 与 x 轴, y 轴的地点关系分别为()A. 订交,订交B. 平行,平行C. 垂直订交,平行D. 平行,垂直订交5.点 P(a,b)在第四象限 ,则点 P 到 x 轴的距离是 ()A. a-B. b-C. -aD. -b6.如图是某校的平面表示图的一部分,若用“(0,0)”表示校门的地点,“(0,3)”表示图书室的地点,则教课楼的地点可表示为()A. (0, 5)B(.5, 3)C(. 3, 5)D(.﹣ 5, 3)7.已知点 P 的坐标( 2a, 6﹣ a),且点 P 到两坐标轴的距离相等,则点P 的坐标是()A. (12,﹣ 12)或( 4,﹣ 4)B. (﹣ 12, 12)或( 4, 4)C.(﹣ 12, 12)D.(4,4)二、填空题(共 6 题;共 30 分)8.假如“2街 5 号”用坐标( 2,5)表示,那么(3 ,1)表示 ________9.将点 A( 1,﹣ 3)沿 x 轴向左平移 3 个单位长度,再沿 y 轴向上平移 5 个单位长度后获得的点A′的坐标为 ________.10.以下图的象棋盘上,若“士”的坐标是(﹣2,﹣2),“相”的坐标是(3,2),则“炮”的坐标是________.111.电影院里 5 排 2 号能够用( 5, 2)表示,则( 7, 4)表示 ________12.( 2015?广安)假如点 M ( 3, x)在第一象限,则 x 的取值范围是 ________ .13.在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点叫做整点.已知点A( 0,4),点 B 是 x 轴正半轴上的整点,记△ AOB 内部(不包含界限)的整点个数为m.如当点 B 的横坐标为 4 时, m=3;那么当点的横坐标为 4n( n 为正整数)时, m= ________ .(用含 n 的代数式表示)三、解答题(共 4 题;共 42 分)14.在平面直角坐标系中,点 A 在 y 轴正半轴上,点 B 与点 C 都在 x轴上,且点 B在点 C的左边,知足BC=OA.若﹣ 3a m﹣1b2与 a n b2n﹣2是同类项且 OA=m, OB=n,求出 m 和 n 的值以及点 C的坐标.15.某水库的景区表示图以下图(网格中每个小正方形的边长为1).若景点 A 的坐标为( 3 ,3),请在图中画出相应的平面直角坐标系,并写出景点B、 C、 D 的坐标.16.在平面直角坐标系中,已知 A(0, 0)、 B( 4, 0),点 C 在 y 轴上,且△ ABC的面积是 12.求点 C 的坐标.17.在雷达探测地区,能够成立平面直角坐标系表示地点.在某次行动中,当我两架飞机在A(- 1, 2)与B( 3, 2)地点时,可疑飞机在(-1,- 3)地点,你能找到这个直角坐标系的横、纵坐标的地点吗?把它们表示出来并确立可疑飞机的地点,谈谈你的做法.2答案一、单项选择题1-7.ACDDDBB二、填空题8.3街1号9.(﹣ 2, 2)10.(﹣ 3, 0)11.7排 4号12.x> 013.6n﹣ 3三、解答题14.解:∵﹣3a m﹣1b2与 a n b2n﹣2是同类项,∴,m = 3解得:{,∵OA=m=3, OB=n=2,∴B( 2,0)或(﹣ 2, 0),∵点 B 在点 C 的左边, BC=OA,∴C( 5,0)或( 1, 0)15.解:以下图:B(﹣ 2,﹣ 2), C( 0, 4), D( 6,5).16.解:∵ A( 0,0)、 B( 4, 0),∴AB=4,且 AB 在 x 轴上,设点 C 坐标是( 0, y),则依据题意得,112AB× AC=12,即2× 4× |y|=12,解得 y=±6.3∴点 C 坐标是:( 0, 6)或( 0, -6)17.解:能.以以下图,先把 AB 四平分,而后过凑近 A 点的分点 M 作 AB 的垂线即为 y 轴,以 AM 为单位长度沿 y 轴向下 2 个单位即为 O 点,过点 O 作 x 轴垂直于 y 轴,而后描出敌机地点为点 N.4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018-2019年度部编版七年级下册数学单元测试卷
第七章平面直角坐标系
满分:100分;考试时间:120分钟
学校:__________
一、选择题
1.2009年初甲型H1N1流感在墨西哥暴发并在全球蔓延.如果把世界地图看成一个平面,如图中以中国为坐标原点建立平面直角坐标系,请写出墨西哥所在位置的坐标是()
A.(4,9)B.(3,8)C.(8,-l)D.(-8,3)
答案:C
解析:C
2.对任意实数x,点P(x,22
)一定不在()
x x
A.第一象限B.第二象限C.第三象限D.第四象限
答案:C
解析:C
3.如图,下列各点在阴影区域内的是()
A.(3.3)B.(-1,2)C.(3.5)D.(-3,-2)
答案:A
解析:A
4.在平面直角坐标系中,点(1,3)位于()
A.第一象限B.第二象限C.第三象限D.第四象限
答案:A
解析:A
5.将三角形ABC的各顶点的横坐标不变,纵坐标分别减去3,连结所得三点组成的三角形是由三角形ABC ()
A.向左平移3个单位得到B.向右平移3个单位得到
C.向上平移3个单位得到D.向下平移3个单位得到
答案:D
解析:D
6.△DEF由△ABC平移得到的,点A(-1,-4)的对应点为D(1,-l),则点B(1,1)的对应点E,点C(-1,4)的对应点F的坐标分别为()
A.(2,2),(3,4) B.(3,4),(1,7)
C.(-2,2),(1,7) D.(3,4),(2,-2)
答案:B
解析:B
7.若点P(x,y)的坐标满足x y=0,则点P的位置在()
A.原点B.x轴上
C.y轴上D.x 轴上或y 轴上
答案:D
解析:D
8.右图是方格纸上画出的小旗图案,如果用(0,0)表示A点,(0,4)表示B点,那么C点的位置可表示为()
A.(0,3)B.(2,3)C.(3,2)D.(3,0)
答案:C
解析:C
9.一个人从A点出发向北偏东60°方向走到B点,再从B点出发向南偏西15°方向走到C点,那么∠ABC等于()
A.135°B.l05°C.75°D.45°
答案:D
解析:D
二、填空题
10.a是数据l,2,3,4,5的中位数,b是数据2,3,3,4的方差,则点P(a,b)关于x轴的对称点的坐标为 .
解析:(3,
1 2 )
11.如图,方格纸上有A、B两点.若以B为原点,建立平面直角坐标系,则点A的坐标为(6,3);若以A为原点建立平面直角坐标系,则点B的坐标为 .
解析:(-6,-3)
12.如图,在△AOM中,∠AMO=90°,0A=5,AM=4.则点A的坐标为 .
解析:(3,4)
13.在坐标平面上点(x+4,2y-1)与点(y-2,8- x)表示同一点,则点(x,y)在坐标平面上的第象限内.
解析:二
14.已知点P(a,b)在坐标轴上,则ab= .
解析:0
15.小红坐在第2排21号用(2,21)表示,则(9,l7)表示小红坐在 .
解析:第9排17号
16.在平面直角坐标系中,点P(-l,2)到y轴的距离是 .
解析:1
17.如图,△ABC的三个顶点坐标分别是A(-5,0),B(4,5),c(3,0),则△ABC的面积是.
解析:20
18.若点P(a+b,-8)与Q(-1,2a-b)关于原点对称,则ab的值为.
解析:-6
19.点A(1-a,3),B(-3,b)关于y轴对称,则b a= .
解析:-8
20.点A(2,0)到点B(-4,0)的距离是.
解析:6
三、解答题
21.如图.
(1)如果此图形中四个点的纵坐标不变,横坐标都乘-1,在直角坐标中画出新图形,并比较新图形与原图形有何关系;
(2)如果原图中四个点的横坐标不变,纵坐标都加上-2,在直角坐标系中画出新图形,并比较新图形与原图形有何关系.
解析:(1)图略,四个点的坐标变为(0,0),(-6,3),(-4,0),(-6,-3),新图形与原图形关于 y轴对称 (2)图略,四个点的坐标变为(0,-2),(6,1),(4,-2),(6,-5),新图形是由原图形向下平移 2个单位长度得到的
22.如图,在平面直角坐标系中,已知点为A(-2,0),B(2,0).
(1)画出等腰三角形ABC(画出一个即可);
(2)写出(1)中画出的ABC的顶点C的坐标.
解析:(1)略;(2)略.
23.在同一平面直角坐标系中描出下列各组中的点,并将各组中的点用线段依次连结起来.
(1)(6,0),(6,1),(4,0),(6,一l),(6,0);
(2)(2,O),(5,3),(4,0);
(3)(2,O),(5,一3),(4,0).
观察得到的图形像什么?如果将这个图形过完全平移到x轴上方,那么至少要向上平移几个单位长度?
解析:一条小鱼,3个
24.已知一个长方形ABCD,长为6,宽为4.
(1)如图①建立直角坐标系,求A、B、C、D四点的坐标.
(2)如图②建立直角坐标系,求A、B、C、D四点的坐标.
图①图②
解析:(1)A(6,4),B(0,4),C(0,O),D(6,0);(2)A(3,2),B(一3,2),C(-3,-2),
D(3,-2)
25.如图,某班教室中有9排5列座位,请根据下列四位同学的描述.在图中标出“5号”孙靓的位置.1号同学说:“孙靓在我的后方.”2号同学说:“孙靓在我的左后方.”3号同学说:“孙靓在我的左前方.”4号同学说:“孙靓离1号同学和3号同学的距离一样远.”
解析:如图:。

相关文档
最新文档