2020年高考数学(文)二轮专项复习专题07 立体几何
2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。
【精】冲刺2020高考数学文科复习第七章 立体几何250P

(3)夹在两个平行的平面之间,其余的面都是梯形,这样的几何体
一定是棱台.( × )
2.下图所示的几何体中,是棱柱的为 ③⑤ (填写所有正确的序
号).
解析:根据棱柱的结构特征可知③⑤是棱柱.
知识点二 空间几何体的三视图
1.三视图的名称
几何体的三视图包括 正视图、侧视图、俯视图.
2.三视图的画法
俯视图可以是( A )
(2)(2019·山西八校联考)将正方体(如图 1)截去三个三棱锥后,得到 如图 2 所示的几何体,侧视图的视线方向如图 2 所示,则该几何体的侧
视图为( D )
【解析】 (1)由题意知,在咬合时带卯眼的木构件中,从俯 视方向看,榫头看不见,所以是虚线,结合榫头的位置知选 A.
典例 1 下图是一个四面体的三视图,三个三角形均是腰长为 2 的 等腰直角三角形,还原其直观图.
【解】 第一步,根据题意,画正方体,在正方体内画出俯 视图,如图 1.
第二步,找直角,在俯视图、正视图和侧视图中都有直角. 第三步,将俯视图的直角顶点向上拉起,与三视图中的高一 致,连线即可.所求几何体为三棱锥 A-BCD,如图 2. 以上三步,第一步是必须,第二步是关键!下面从不同角度 来进一步详细说明.
画出该圆柱的侧面展开图,如图②所示,连接 MN,则 MS =2,SN=4,则从 M 到 N 的路径中,最短路径的长度为 MS2+SN2 = 22+42=2 5.故选 B.
(2)将三视图还原为直观图,几何体是底面为直角梯形,且一 条侧棱和底面垂直的四棱锥,如图所示.
易知,BC∥AD,BC=1,AD=AB=PA=2,AB⊥AD,PA⊥ 平面 ABCD,故△PAD,△PAB 为直角三角形,∵PA⊥平面 ABCD, BC⊂平面 ABCD,∴PA⊥BC,又 BC⊥AB,且 PA∩AB=A,∴ BC⊥平面 PAB,又 PB⊂平面 PAB,∴BC⊥PB,∴△PBC 为直角 三角形,容易求得 PC=3,CD= 5,PD=2 2,故△PCD 不是 直角三角形,故选 C.
专题07 立体几何小题常考全归类(精讲精练)(原卷版)

专题07 立体几何小题常考全归类【命题规律】高考对该部分的考查,小题主要体现在两个方面:一是有关空间线面位置关系的命题的真假判断;二是常见一些经典常考压轴小题,难度中等或偏上.【核心考点目录】核心考点一:球与截面面积问题核心考点二:体积、面积、周长、角度、距离定值问题 核心考点三:体积、面积、周长、距离最值与范围问题 核心考点四:立体几何中的交线问题核心考点五:空间线段以及线段之和最值问题 核心考点六:空间角问题 核心考点七:轨迹问题核心考点八:以立体几何为载体的情境题 核心考点九:翻折问题【真题回归】1.(2022·北京·高考真题)已知正三棱锥-P ABC 的六条棱长均为6,S 是ABC 及其内部的点构成的集合.设集合{}5T Q S PQ =∈≤,则T 表示的区域的面积为( ) A .34π B .πC .2πD .3π2.(2022·浙江·高考真题)如图,已知正三棱柱1111,ABC A B C AC AA -=,E ,F 分别是棱11,BC A C 上的点.记EF 与1AA 所成的角为α,EF 与平面ABC 所成的角为β,二面角F BC A --的平面角为γ,则( )A .αβγ≤≤B .βαγ≤≤C .βγα≤≤D .αγβ≤≤3.(多选题)(2022·全国·高考真题)如图,四边形ABCD 为正方形,ED ⊥平面ABCD ,,2FB ED AB ED FB ==∥,记三棱锥E ACD -,F ABC -,F ACE -的体积分别为123,,V V V ,则( )A .322V V =B .31V V =C .312V V V =+D .3123V V =4.(多选题)(2022·全国·高考真题)已知正方体1111ABCD A B C D -,则( ) A .直线1BC 与1DA 所成的角为90︒ B .直线1BC 与1CA 所成的角为90︒ C .直线1BC 与平面11BB D D 所成的角为45︒D .直线1BC 与平面ABCD 所成的角为45︒5.(多选题)(2021·全国·高考真题)在正三棱柱111ABC A B C 中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则( )A .当1λ=时,1AB P △的周长为定值B .当1μ=时,三棱锥1P A BC -的体积为定值 C .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥ D .当12μ=时,有且仅有一个点P ,使得1A B ⊥平面1AB P 6.(2020·海南·高考真题)已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 5BCC 1B 1的交线长为________.【方法技巧与总结】1、几类空间几何体表面积的求法(1)多面体:其表面积是各个面的面积之和. (2)旋转体:其表面积等于侧面面积与底面面积的和.(3)简单组合体:应弄清各构成部分,并注意重合部分的删、补. 2、几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥,有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉3、求解旋转体的表面积和体积时,注意圆柱的轴截面是矩形,圆 锥的轴截面是等腰三角形,圆台的轴截面是等腰梯形.4、球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d .注意:解决球与其他几何体的切、接问题,关键在于仔细观察、分析,弄清相关元素的位置关系和数量关系;选准最佳角度作出截面(要使这个截面尽可能多地包含球、几何体的各种元素以及体现这些元素之间的关系),达到空间问题平面化的目的.5、立体几何中的最值问题有三类:一是空间几何体中相关的点、线和面在运动,求线段长度、截面的面积和体积的最值;二是空间几何体中相关点和线段在运动,求有关角度和距离的最值;三是在空间几何体中,已知某些量的最值,确定点、线和面之间的位置关系.6、解决立体几何问题的思路方法:一是几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值;通过降维的思想,将空间某些量的最值问题转化为平面三角形、四边形或圆中的最值问题;涉及某些角的三角函数的最值,借助模型求解,如正四面体模型、长方体模型和三余弦角模θαβ=cos cos cos (θ为平面的斜线与平面内任意一条直线l 所成的角,α为该斜线与该平面所成的角,β为该斜线在平面上的射影与直线l 所成的角).7、立体几何中的轨迹问题,这是一类立体几何与解析几何的交汇题型,既考查学生的空间想象能力,即点、线、面的位置关系,又考查用代数方法研究轨迹的基本思想,培养学生的数学运算、直观想象等素养.8、解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.9、以立体几何为载体的情境题大致有三类:(1)以数学名著为背景设置问题,涉及中外名著中的数学名题名人等; (2)以数学文化为背景设置问题,包括中国传统文化,中外古建筑等; (3)以生活实际为背景设置问题,涵盖生产生活、劳动实践、文化精神等.10、以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【核心考点】核心考点一:球与截面面积问题 【规律方法】 球的截面问题 球的截面的性质: ①球的任何截面是圆面;②球心和截面(不过球心)圆心的连线垂直于截面;③球心到截面的距离d 与球的半径R 及截面的半径r 的关系为=+222R r d . 【典型例题】例1.(2022·全国·高三阶段练习)已知四棱锥P -ABCD 的底面ABCD 是矩形,且该四棱锥的所有顶点都在球O 的球面上,P A ⊥平面ABCD , 22,PA AB BC === ,点E 在棱PB 上,且2EB PE =, 过E 作球O 的截面,则所得截面面积的最小值是____________. 例2.(2022·湖北省红安县第一中学高三阶段练习)球体在工业领域有广泛的应用,某零件由两个球体构成,球1O 的半径为10,,P Q 为球1O 表面上两动点,16,PQ M =为线段PQ 的中点.半径为2的球2O 在球1O 的内壁滚动,点,,A B C 在球2O 表面上,点2O 在截面ABC 上的投影H 恰为AC 的中点,若21O H =,则三棱锥M ABC -体积的最大值是___________. 例3.(2022·江西·高三阶段练习(理))如图,正方体1111ABCD A B C D -的棱长为6,11113C E CD =,点F 是CD 的中点,则过1B ,E ,F 三点的平面α截该正方体所得截面的面积为_________.例4.(2022·北京市十一学校高三阶段练习)如图,在棱长为2的正方体1111ABCD A B C D -中,,M N 分别是棱1111,A B A D 的中点,点P 在线段CM 上运动,给出下列四个结论:①平面CMN 截正方体1111ABCD A B C D -所得的截面图形是五边形; ②直线11B D 到平面CMN 2; ③存在点P ,使得1190B PD ∠=; ④1PDD △45. 其中所有正确结论的序号是__________.核心考点二:体积、面积、周长、角度、距离定值问题 【规律方法】几类空间几何体体积的求法(1)对于规则几何体,可直接利用公式计算.(2)对于不规则几何体,可采用割补法求解;对于某些三棱锥, 有时可采用等体积转换法求解.(3)锥体体积公式为13V Sh =,在求解锥体体积时,不能漏掉【典型例题】例5.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关例6.(2022·山西运城·模拟预测(文))如图,正方体1111ABCD A B C D -的棱长为1,线段1CD 上有两个动点E ,F ,且12EF =,点P ,Q 分别为111A B BB ,的中点,G 在侧面11CDD C 上运动,且满足1B G ∥平面1CD PQ ,以下命题错误的是( )A .1AB EF ⊥B .多面体1AEFB 的体积为定值C .侧面11CDD C 上存在点G ,使得1B G CD ⊥ D .直线1B G 与直线BC 所成的角可能为6π例7.(2022·全国·高三专题练习)如图所示,在正方体1111ABCD A B C D -中,过对角线1BD 的一个平面交1AA 于E ,交1CC 于F ,给出下面几个命题:①四边形1BFD E 一定是平行四边形; ②四边形1BFD E 有可能是正方形;③平面1BFD E 有可能垂直于平面1BB D ;④设1D F 与DC 的延长线交于M ,1D E 与DA 的延长线交于N ,则M 、N 、B 三点共线; ⑤四棱锥11B BFD E -的体积为定值. 以上命题中真命题的个数为( ) A .2B .3C .4D .5核心考点三:体积、面积、周长、距离最值与范围问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例8.(2022·全国·高三专题练习)如图,正方形EFGH 的中心为正方形ABCD 的中心,22AB =P EFGH -(A ,B ,C ,D 四点重合于点P ),则此四棱锥的体积的最大值为( )A 1286B 1285C .43D 15例9.(2022·江西南昌·三模(理))已知长方体1111ABCD A B C D -中,2AB =,22BC =13AA =,P 为矩形1111D C B A 内一动点,设二面角P AD C --为α,直线PB 与平面ABCD 所成的角为β,若αβ=,则三棱锥11P A BC -体积的最小值是( ) A 2 B .321C 2D 32例10.(2022·浙江·高三阶段练习)如图,在四棱锥Q EFGH -中,底面是边长为22方形,4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为( )A .12 B .13C .14D .15例11.(2022·河南省实验中学高一期中)如图,在正方体1111ABCD A B C D -中,2AB =,M ,N 分别为11A D ,11B C 的中点,E ,F 分别为棱AB ,CD 上的动点,则三棱锥M NEF -的体积( )A .存在最大值,最大值为83B .存在最小值,最小值为23C .为定值43D .不确定,与E ,F 的位置有关核心考点四:立体几何中的交线问题 【规律方法】 几何法 【典型例题】例12.(2022·浙江宁波·一模)在棱长均相等的四面体ABCD 中,P 为棱AD (不含端点)上的动点,过点A 的平面α与平面PBC 平行.若平面α与平面ABD ,平面ACD 的交线分别为m ,n ,则m ,n 所成角的正弦值的最大值为__________.例13.(2022·全国·高三专题练习)已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.例14.(2022·福建福州·三模)已知正方体1111ABCD A B C D -31A 为球心,半径为2的球面与底面ABCD 的交线的长度为___________.例15.(2022·陕西·武功县普集高级中学高三阶段练习(理))如图,在四面体ABCD 中,DA ,DB ,DC 两两垂直,2DA DB DC ===D 为球心,1为半径作球,则该球的球面与四面体ABCD 各面交线的长度和为___.核心考点五:空间线段以及线段之和最值问题 【规律方法】几何法,利用几何体的性质,探求图形中点、线、面的位置关系;二是代数法,通过建立空间直角坐标系,利用点的坐标表示所求量的目标函数,借助函数思想方法求最值【典型例题】例16.(2022·全国·高三专题练习)已知正三棱锥S ABC -2,外接球表面积为3π,2SA <点M ,N 分别是线段AB ,AC 的中点,点P ,Q 分别是线段SN 和平面SCM 上的动点,则AP PQ +的最小值为( ) A 262-B 62+C 32D 2例17.(2022·全国·高三专题练习)在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则1A F EF +的最小值为( )A 29B .6C 41D .7例18.(2022·全国·高三专题练习)如图所示,在直三棱柱111ABC A B C -中,11AA =,3AB BC ==1cos 3ABC ∠=,P 是1A B 上的一动点,则1AP PC +的最小值为( )A 5B 7C .13+D .3核心考点六:空间角问题 【规律方法】1、用综合法求空间角的基本数学思想主要是转化与化归,即把空间角转化为平面角,进而转化为三角形的内角,然后通过解三角形求得.求解的一般步骤为:(1)作图:作出空间角的平面角.(2)证明:证明所给图形是符合题设要求的. (3)计算:在证明的基础上计算得出结果. 简称:一作、二证、三算.2、用定义作异面直线所成角的方法是“平移转化法”,可固定一条,平移另一条;或两条同时平移到某个特殊的位置,顶点选在特殊的位置上.3、求直线与平面所成角的常见方法(1)作角法:作出斜线、垂线、斜线在平面上的射影组成的直角三角形,根据条件求出斜线与射影所成的角即为所求.(2)等积法:公式θ=sin hl,其中θ是斜线与平面所成的角,h 是垂线段的长,是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可构造三棱锥,利用等体积法来求垂线段的长.(3)证垂法:通过证明线面垂直得到线面角为90°. 4、作二面角的平面角常有三种方法(1)棱上一点双垂线法:在棱上任取一点,过这点分别在两个面内作垂直于棱的射线,这两条射线所成的角,就是二面角的平面角.(2)面上一点三垂线法:自二面角的一个面上一点向另一面引垂线,再由垂足向棱作垂线得到棱上的点(即垂足),斜足与面上一点连线和斜足与垂足连线所夹的角,即为二面角的平面角.(3)空间一点垂面法:自空间一点作与棱垂直的平面,截二面角得两条射线,这两条射线所成的角就是二面角的平面角.【典型例题】例19.(2022·浙江金华·高三期末)已知正方体1111ABCD A B C D -中,P 为1ACD △内一点,且1113PB D ACD S S =△△,设直线PD 与11A C 所成的角为θ,则cos θ的取值范围为( )A .3⎡⎢⎣⎦B .3⎡⎤⎢⎥⎣⎦C .10,2⎡⎤⎢⎥⎣⎦D .1,12⎡⎤⎢⎥⎣⎦例20.(2022·浙江·效实中学模拟预测)在等腰梯形ABCD 中,AD BC ∥,12AB AD CD BC ===,AC 交BD 于O 点,ABD △沿着直线BD 翻折成1A BD ,所成二面角1A BD C --的大小为θ,则下列选项中错误的是( )A .1A BC θ∠≤B .1AOC θ∠≥ C .1A DC θ∠≤D .11A BC A DC θ∠+∠≥例21.(2022·浙江·湖州中学高三阶段练习)如图,ABC 中,90C ∠=︒,1AC =,3BC =D 为AB 边上的中点,点M 在线段BD (不含端点)上,将BCM 沿CM 向上折起至'B CM △,设平面'B CM 与平面ACM 所成锐二面角为α,直线'MB 与平面AMC 所成角为β,直线MC 与平面'B CA 所成角为γ,则在翻折过程中,下列三个命题中正确的是( )①3tan βα,②γβ≤,③γα>. A .①B .①②C .②③D .①③例22.(2022·浙江·高三专题练习)已知等边ABC ,点,E F 分别是边,AB AC 上的动点,且满足EF BC ∥,将AEF △沿着EF 翻折至P 点处,如图所示,记二面角P EF B --的平面角为α,二面角P FC B --的平面角为β,直线PF 与平面EFCB 所成角为γ,则( )A .αβγ≥≥B .αγβ≥≥C .βαγ≥≥D .βγα≥≥例23.(2022·全国·高三专题练习)设三棱锥V ABC -的底面是正三角形,侧棱长均相等,P 是棱VA 上的点(不含端点),记直线PB 与直线AC 所成的角为α,直线PB 与平面ABC 所成的角为β,二面角P AC B --的平面角是γ则三个角α,β,γ中最小的角是( ) A .αB .βC .γD .不能确定核心考点七:轨迹问题 【规律方法】解决立体几何中的轨迹问题有两种方法:一是几何法.对于轨迹为几何体的问题,要抓住几何体中的不变量,借助空间几何体(柱、锥、台、球)的定义;对于轨迹为平面上的问题,要利用降维的思想,熟悉平面图形(直线、圆、圆锥曲线)的定义.二是代数法(解析法).在图形中,建立恰当的空间直角坐标系或平面直角坐标系.【典型例题】例24.(2022·北京·昌平一中高三阶段练习)设正方体1111ABCD A B C D -的棱长为1,E ,F 分别为AB ,1BD 的中点,点M 在正方体的表面上运动,且满足FM DE ⊥,则下列命题:①点M 可以是棱AD 的中点; ②点M 的轨迹是菱形; ③点M 轨迹的长度为25 ④点M 5. 其中正确的命题个数为( ) A .1B .2C .3D .4例25.(2022·全国·高三专题练习)已知正方体1111ABCD A B C D -的边长为2,点E ,F 分别为棱CD ,1DD 的中点,点P 为四边形11CDD C 内(包括边界)的一动点,且满足1B P ∥平面BEF ,则点P 的轨迹长为( ) A 2B .2C 2D .1例26.(2022·全国·模拟预测(理))如图,在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,P A ⊥平面ABCD ,且2PA =,点E ,F ,G 分别为棱AB ,AD ,PC 的中点,下列说法错误的是( )A .AG ⊥平面PBDB .直线FG 和直线AC 所成的角为π3C .过点E ,F ,G 的平面截四棱锥P ABCD -所得的截面为五边形D .当点T 在平面ABCD 内运动,且满足AGT △的面积为12时,动点T 的轨迹是圆例27.(2022·浙江温州·高三开学考试)如图,正方体1AC ,P 为平面11B BD 内一动点,设二面角11A BD P --的大小为α,直线1A P 与平面11BD A 所成角的大小为β.若cos sin βα=,则点P 的轨迹是( )A .圆B .抛物线C .椭圆D .双曲线例28.(2022·全国·高三专题练习)如图,正方体ABCD A B C D -''''中,M 为BC 边的中点,点P 在底面A B C D ''''和侧面CDD C ''上运动并且使MAC PAC ''∠=∠,那么点P 的轨迹是( )A .两段圆弧B .两段椭圆弧C .两段双曲线弧D .两段抛物线弧核心考点八:以立体几何为载体的情境题 【规律方法】以立体几何为载体的情境题都跟图形有关,涉及在具体情境下的图形阅读,需要通过数形结合来解决问题.图形怎么阅读?一是要读特征,即从图形中读出图形的基本特征;二是要读本质,即要善于将所读出的信息进行提升,实现“图形→文字→符号”的转化;三是要有问题意识,带着问题阅读图形,将研究图形的本身特征和关注题目要解决的问题有机地融合在一起;四是要有运动观点,要“动手”去操作,动态地去阅读图形.【典型例题】例29.(2022·宁夏·平罗中学高三阶段练习(理))设P 为多面体M 的一个顶点,定义多面体M 在P 处的离散曲率为()()1223111 1.2,3,32k i Q PQ Q PQ Q PQ Q i k π-∠+∠+⋯+∠=⋯≥其中,为多面体M 的所有与点P 相邻的顶点,且平面12Q PQ ,23Q PQ ,……,1k Q PQ 遍及多面体M 的所有以P 为公共点的面如图是正四面体、正八面体、正十二面体和正二十面体,若它们在各顶点处的离散曲率分别是a ,b ,c ,d ,则a ,b ,c ,d 的大小关系是( )A .a b c d >>>B .a b d c >>>C .b a d c >>>D .c d b a >>>例30.(2022·广东·广州市从化区第三中学高三阶段练习)北京大兴国际机场的显著特点之一是各种弯曲空间的运用,在数学上用曲率刻画空间弯曲性.规定:多面体的顶点的曲率等于2π与多面体在该点的面角之和的差(多面体的面的内角叫做多面体的面角,角度用弧度制),多面体面上非顶点的曲率均为零,多面体的总曲率等于该多面体各顶点的曲率之和.例如:正四面体在每个顶点有3个面角,每个面角是3π,所以正四面体在每个顶点的曲率为233πππ-⨯=,故其总曲率为4π.给出下列三个结论:①正方体在每个顶点的曲率均为2π; ②任意四棱锥的总曲率均为4π;③若某类多面体的顶点数V ,棱数E ,面数F 满足2V E F -+=,则该类多面体的总曲率是常数.其中,所有正确结论的序号是( ) A .①②B .①③C .②③D .①②③例31.(2022·辽宁·沈阳二十中三模)我国南北朝时期的著名数学家祖暅原提出了祖暅原理:“幂势既同,则积不容异.”意思是,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.运用祖暅原理计算球的体积时,构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等,即2311122323V R R R R R πππ=⋅-⋅=球.现将椭圆22149x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .32πB .24πC .18πD .16π例32.(2022·全国·高三专题练习)将地球近似看作球体.设地球表面某地正午太阳高度角为θ,δ为此时太阳直射纬度(当地夏半年取正值,冬半年取负值),ϕ为该地的纬度值,如图.已知太阳每年直射范围在南北回归线之间,即[]2326,2326δ''∈-︒︒.北京天安门广场的汉白玉华表高为9.57米,北京天安门广场的纬度为北纬395427'''︒,若某天的正午时刻,测得华表的影长恰好为9.57米,则该天的太阳直射纬度为( )A .北纬5527'''︒B .南纬5527'''︒C .北纬5533'''︒D .南纬5533'''︒核心考点九:翻折问题 【规律方法】1、处理图形翻折问题的关键是理清翻折前后长度和角度哪些发生改变,哪些保持不变.2、把空间几何问题转化为平面几何问题,把握图形之间的关系,感悟数学本质. 【典型例题】例33.(2022·全国·高三专题练习)如图,已知四边形ABCD ,BCD △是以BD 为斜边的等腰直角三角形,ABD △为等边三角形,2BD =,将ABD △沿对角线BD 翻折到PBD △在翻折的过程中,下列结论中不正确...的是( )A .BD PC ⊥B .DP 与BC 可能垂直C .直线DP 与平面BCD 所成角的最大值是45︒D .四面体PBCD 3例34.(2022·浙江·杭州高级中学模拟预测)如图,已知矩形ABCD 的对角线交于点,,1E AB x BC ==,将ABD △沿BD 翻折,若在翻折过程中存在某个位置,使得ABCE ,则x 的取值范围是( )A .03x <≤B .02x <≤C .01x <≤D .06x ≤<例35.(2022·全国·高三专题练习)如图1,在正方形ABCD 中,点E 为线段BC 上的动点(不含端点),将ABE 沿AE 翻折,使得二面角B AE D --为直二面角,得到图2所示的四棱锥B AECD -,点F 为线段BD 上的动点(不含端点),则在四棱锥B AECD -中,下列说法正确的是( )A .B 、E 、C 、F 四点一定共面 B .存在点F ,使得CF ∥平面BAEC .侧面BEC 与侧面BAD 的交线与直线AD 相交 D .三棱锥B ADC -的体积为定值例36.(2022·全国·高三专题练习)已知直角梯形ABCD 满足:AD ∥BC ,CD ⊥DA ,且△ABC 为正三角形.将△ADC 沿着直线AC 翻折至△AD 'C 如图,且AD BD CD '''<<,二面角D AB C '﹣﹣、D BC A '﹣﹣、D AC B '﹣﹣的平面角大小分别为α,β,γ,直线D A ',D B ',D C '与平面ABC 所成角分别是θ1,θ2,θ3,则( )A .123θθθαγβ>>,>>B .123θθθαβγ<<,>>C .123θθθαβγ>>,<<D .123θθθαβγ<<,<<【新题速递】1.(2022·安徽·高三阶段练习)如图,在棱长为a 的正四面体ABCD 中,点111,,B C D 分别在棱,,AB AC AD 上,且平面111B C D 平面1,BCD A 为BCD △内一点,记三棱锥1111A B C D -的体积为V ,设1AD x AD=,关于函数()V f x =,下列说法正确的是( )A .12220,,,133x x ⎛⎫⎛⎫∀∈∃∈ ⎪ ⎪⎝⎭⎝⎭,使得()()21f x f x =B .函数()f x 在1,12⎛⎫⎪⎝⎭上是减函数C .函数()f x 的图象关于直线12x =对称 D .()00,1x ∃∈,使得()016A BCD f x V ->(其中A BCD V -为四面体ABCD 的体积)2.(2022·重庆市长寿中学校高三阶段练习)如图所示,在直角梯形BCEF 中,90,CBF BCE A ∠∠==、D 分别是BF 、CE 上的点,//AD BC ,且22AB DE BC AF ===(如图1).将四边形ADEF 沿AD 折起,连接BE BF CE 、、(如图2).在折起的过程中,下列说法中错误的个数是( )①AC //平面BEF ; ②B C E F 、、、四点不可能共面;③若EF CF ⊥,则平面ADEF ⊥平面ABCD ; ④平面BCE 与平面BEF 可能垂直. A .1B .2C .3D .43.(2022·四川·成都市第二十中学校一模(理))如图, 在棱长为 2 的正方体1111ABCD A B C D -中,E F G H P 、、、、均为所在棱的中点, 则下列结论正确的有( )①棱 AB 上一定存在点Q , 使得1QC D Q ⊥ ②三棱锥F EPH -的外接球的表面积为8π③过点 E F G ,,作正方体的截面, 则截面面积为33④设点 M 在平面11BB C C 内, 且1//A M 平面AGH , 则1A M 与AB 所成角的余弦值的最大22A .1 个B .2 个C .3 个D .4 个4.(2022·四川·成都市锦江区嘉祥外国语高级中学有限责任公司模拟预测(文))在棱长为2的正方体1111ABCD A B C D -中,N 为11B C 的中点,点P 在正方体各棱及表面上运动且满足AP CN ⊥,则点P 轨迹所围成图形的面积为( )A .25B .42C .23D .45.(2022·上海市实验学校高三阶段练习)直线m ⊥平面α,垂足是O ,正四面体ABCD 的棱长为4,点C 在平面α上运动,点B 在直线m 上运动,则点O 到直线AD 的距离的取值范围是( )A .425425⎡-+⎢⎣⎦B .222,222⎡⎤⎣⎦C .322322⎡-+⎢⎣⎦D .322,322⎡⎤⎣⎦6.(2022·湖南·模拟预测)正三棱柱111ABC A B C 的底面边长是4,侧棱长是6,M ,N 分别为1BB ,1CC 的中点,若点P 是三棱柱内(含棱柱的表面)的动点,MP ∥平面1AB N ,则动点P 的轨迹面积为( ) A .53B .5C 39D 267.(2022·山西·高三阶段练习)已知正方体1111ABCD A B C D -的顶点都在表面积为12π的球面上,过球心O 的平面截正方体所得的截面为一菱形,记该菱形截面为S ,点P 是正方体表面上一点,则以截面S 为底面,以点P 为顶点的四棱锥的体积的最大值为( ) A .83B .73C .2D .538.(2022·浙江·高三阶段练习)在OAB △中,OA AB =,120OAB ∠=︒.若空间点P 满足1=2PABOABSS ,则直线OP 与平面OAB 所成角的正切的最大值是( )A .13B .12C 3D .19.(多选题)(2022·云南曲靖·高三阶段练习)已知正方体1111ABCD A B C D -的棱长为1,点P 为侧面11BCC B 内一点,则( )A .当1113C P C B =时,异面直线CP 与AD 所成角的正切值为2B .当11(01)C P C B λλ=<<时,四面体1D ACP 的体积为定值C .当点P 到平面ABCD 的距离等于到直线11A B 的距离时,点P 的轨迹为拋物线的一部分 D .当1112C P C B =时,四面体BCDP 的外接球的表面积为3π10.(多选题)(2022·辽宁·本溪高中高三阶段练习)如图,矩形BDEF 所在平面与正方形ABCD 所在平面互相垂直,2AD DE ==,G 为线段AE 上的动点,则( )A .AE CF ⊥B .多面体ABCDEF 的体积为83C .若G 为线段AE 的中点,则GB //平面CEFD .点M ,N 分别为线段AF ,AC 上的动点,点T 在平面BCF 内,则MT NT +43 11.(多选题)(2022·广东·东涌中学高三期中)如图,已知正方体1111ABCD A B C D -的棱长为1,E ,F ,G 分别为AB ,AD ,1BB 的中点,点P 在11A C 上,//AP 平面EFG ,则以下说法正确的是( )A .点P 为11A C 的中点B .三棱锥P EFG -的体积为148C .直线1BB 与平面EFG 3D .过点E 、F 、G 作正方体的截面,所得截面的面积是3312.(多选题)(2022·安徽·阜阳师范大学附属中学高三阶段练习)已知ABC 为等腰直角三角形,AB AC =,其高3AD =,E 为线段BD 的中点,将ABC 沿AD 折成大小为32ππθθ⎛⎫< ⎪⎝⎭的二面角,连接BC ,形成四面体A BCD -,动点P 在ACD 内(含边界),且//PE 平面ABC ,则在θ变化的过程中( )A .AD BC ⊥B .E 点到平面ADC 的距离的最大值为322C .点P 在ADC △2D .当BP AC ⊥时,BP 与平面ADC 所成角的正切值的取值范围为)22,⎡+∞⎣13.(多选题)(2022·江苏省泰兴中学高三阶段练习)棱长为1的正方体1111ABCD A B C D -内部有一圆柱12O O ,此圆柱恰好以直线1AC 为轴,且圆柱上下底面分别与正方体中以1A C ,为公共点的3个面都有一个公共点,以下命题正确的是( )A .在正方体1111ABCD ABCD -内作与圆柱12O O 3B .无论点1O 在线段1AC 上如何移动,都有11BO B C ⊥C .圆柱12O O 的母线与正方体1111ABCD A B C D -所有的棱所成的角都相等D .圆柱12O O 外接球体积的最小值为π6 14.(多选题)(2022·江苏盐城·高三阶段练习)已知正四面体ABCD 的棱长为2球的球心为O .点E 满足(01)AE AB λλ=<<,(01)CF CD μμ=<<,过点E 作平面α平行于AC 和BD ,平面α分别与该正四面体的棱BC ,CD ,AD 相交于点M ,G ,H ,则( )A .四边形EMGH 的周长为是变化的B .四棱锥A EMGH -的体积的最大值为6481 C .当14λ=时,平面α截球O 47 D .当12λμ==时,将正四面体ABCD 绕EF 旋转90︒后与原四面体的公共部分体积为43 15.(2022·安徽·石室中学高三阶段练习)已知三棱锥V ABC -的高为3D E F ,,,分别为VC VA VB ,,的中点,若平面ABD ,平面BCE ,平面ACF 相交于O 点,则O 到平面ABC 的距离h 为___________.16.(2022·北京八十中高三期末)如图,在正方体ABCD —1111D C B A 中,E 为棱11B C 的中点.动点P 沿着棱DC 从点D 向点C 移动,对于下列四个结论:。
40、2020版高考文科数学突破二轮复习新课标通用讲义:第三部分 回顾7 立体几何 Word版含答案

回顾7立体几何[必记知识]空间几何体的表面积和体积空间线面位置关系的证明方法(1)线线平行: ⎭⎪⎬⎪⎫a ∥αa ⊂βα∩β=b ⇒a ∥b ,⎭⎪⎬⎪⎫a ⊥αb ⊥α⇒a ∥b ,⎭⎪⎬⎪⎫α∥βα∩γ=a β∩γ=b ⇒a ∥b ,⎭⎪⎬⎪⎫a ∥b a ∥c ⇒c ∥b . (2)线面平行:⎭⎪⎬⎪⎫b ⊂αa ⊄αa ∥b ⇒a ∥α,⎭⎪⎬⎪⎫α∥βa ⊂β⇒a ∥α,⎭⎪⎬⎪⎫α⊥βa ⊥βa ⊄α⇒a ∥α. (3)面面平行:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O a ∥β,b ∥β⇒α∥β,⎭⎪⎬⎪⎫a ⊥αa ⊥β⇒α∥β,⎭⎪⎬⎪⎫α∥βγ∥β⇒α∥γ. (4)线线垂直:⎭⎪⎬⎪⎫a ⊥αb ⊂α⇒a ⊥b . (5)线面垂直:⎭⎪⎬⎪⎫a ⊂α,b ⊂αa ∩b =O l ⊥a ,l ⊥b ⇒l ⊥α,⎭⎪⎬⎪⎫α⊥βα∩β=l a ⊂α,a ⊥l ⇒a ⊥β,⎭⎪⎬⎪⎫α∥βa ⊥α⇒a ⊥β,⎩⎪⎨⎪⎧a ∥ba ⊥α⇒b ⊥α.(6)面面垂直:⎭⎪⎬⎪⎫a ⊂βa ⊥α⇒α⊥β,⎭⎪⎬⎪⎫a ∥βa ⊥α⇒α⊥β.[必会结论]把握两个规则(1)三视图排列规则:俯视图放在正(主)视图的下面,长度与正(主)视图一样;侧(左)视图放在正(主)视图的右面,高度和正(主)视图一样,宽度与俯视图一样.画三视图的基本要求:正(主)俯一样长,俯侧(左)一样宽,正(主)侧(左)一样高.(2)画直观图的规则:画直观图时,与坐标轴平行的线段仍平行,与x轴、z轴平行的线段长度不变,与y轴平行的线段长度为原来的一半.球的组合体(1)球与长方体的组合体:长方体的外接球的直径是长方体的体对角线长.(2)球与正方体的组合体:正方体的内切球的直径是正方体的棱长,正方体的棱切球的直径是正方体的面对角线长,正方体的外接球的直径是正方体的体对角线长.(3)球与正四面体的组合体:棱长为a的正四面体的内切球的半径为612a(正四面体高63a的14),外接球的半径为64a(正四面体高63a的34).空间中平行(垂直)的转化关系[必练习题]1.(2019·成都市第二次诊断性检测)已知a,b是两条异面直线,直线c与a,b都垂直,则下列说法正确的是()A.若c⊂平面α,则a⊥αB.若c⊥平面α,则a∥α,b∥αC.存在平面α,使得c⊥α,a⊂α,b∥αD.存在平面α,使得c∥α,a⊥α,b⊥α解析:选C.对于A,直线a可以在平面α内,也可以与平面α相交;对于B,直线a可以在平面α内,或者b在平面α内;对于D,如果a⊥α,b⊥α,则有a∥b,与条件中两直线异面矛盾.2.(2019·江西南昌二模)设点P 是正方体ABCD -A 1B 1C 1D 1的体对角线BD 1的中点,平面α过点P ,且与直线BD 1垂直,平面α∩平面ABCD =m ,则m 与A 1C 所成角的余弦值为( )A.33B.63C.13D.223解析:选B.设正方体的棱长为1.由题意知m ∥AC ,所以直线m 与A 1C 所成角(或其补角)等于∠ACA 1,在Rt △ACA 1中,cos ∠ACA 1=AC A 1C =23=63.故选B.3.(2019·福建五校第二次联考)已知某几何体的三视图如图,则该几何体的表面积是( )A.39π4+3 3B.45π4+3 3C.23π2D.49π4解析:选A.由三视图知,该几何体为圆锥挖掉14圆台后剩余部分,其表面积S 表=34π×22+14π×12+12×⎝⎛⎭⎫34×2π×2×4+12×⎝⎛⎭⎫14×2π×1×2+(1+2)×32×2=39π4+3 3.故选A. 4.(2019·河南安阳调研四)在正方体ABCD -A 1B 1C 1D 1中,点E ∈平面AA 1B 1B ,点F 是线段AA 1的中点,若D 1E ⊥CF ,则当△EBC 的面积取得最小值时,S △EBC S 四边形ABCD=( )A.255B.12C.55D.510解析:选D.如图所示,连接B 1D 1,取AB 的中点G ,连接D 1G ,B 1G .由题意得CF ⊥平面B 1D 1G ,所以当点E 在直线B 1G 上时,D 1E ⊥CF , 设BC =a ,则S △EBC =12EB ·BC =12EB ·a ,当△EBC 的面积取最小值时,线段EB 的长度为点B 到直线B 1G 的距离, 所以线段EB 长度的最小值为a 5,所以S △EBC S 四边形ABCD=12×a5×a a 2=510.故选D.5.(一题多解)(2019·南昌市第一次模拟测试)底面边长为6,侧面为等腰直角三角形的正三棱锥的高为________.解析:法一:由题意得,三棱锥的侧棱长为32,设正三棱锥的高为h ,则13×12×32×32×32=13×34×36h ,解得h = 6.法二:由题意得,三棱锥的侧棱长为32,底面正三角形的外接圆的半径为23,所以正三棱锥的高为18-12= 6.答案: 66.设a ,b 是两条不重合的直线,α,β是两个不重合的平面,给出以下四个命题:①若a ∥b ,a ⊥α,则b ⊥α;②若a ⊥b ,a ⊥α,则b ∥α;③若a ⊥α,a ⊥β,则α∥β;④若a ⊥β,α⊥β,则a ∥α.其中所有正确命题的序号是________.解析:①若a ∥b ,a ⊥α,则b ⊥α,故正确;②若a ⊥b ,a ⊥α,则b ∥α或b ⊂α,故不正确;③若a ⊥α,a ⊥β,则α∥β,正确;④若a ⊥β,α⊥β,则a ∥α或a ⊂α,故不正确.答案:①③7.(2019·高考江苏卷)如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.证明:(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC-A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1⊄平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC-A1B1C1是直棱柱,所以C1C⊥平面ABC.又因为BE⊂平面ABC,所以C1C⊥BE.因为C1C⊂平面A1ACC1,AC⊂平面A1ACC1,C1C∩AC=C,所以BE⊥平面A1ACC1.因为C1E⊂平面A1ACC1,所以BE⊥C1E.8.(2019·贵州省适应性考试)如图,四棱锥P-ABCD的底面是矩形,侧面P AD为等边三角形,AB=3,AD=23,PB=15.(1)求证:平面P AD⊥平面ABCD;(2)M是棱PD上一点,三棱锥M-ABC的体积为1,记三棱锥P-MAC的体积为V1,三棱锥M -ACD 的体积为V 2,求V 1V 2.解:(1)证明:由已知,得P A =AD =2 3. 于是P A 2+AB 2=15=PB 2, 故AB ⊥P A .因为四边形ABCD 是矩形,所以AB ⊥AD , 又P A ∩AD =A ,所以AB ⊥平面P AD , 因为AB ⊂平面ABCD , 所以平面P AD ⊥平面ABCD . (2)依题意,得V 2=V 三棱锥M -ABC =1, 又V 三棱锥P -ACD=13×⎝⎛⎭⎫12×3×23×3=3, 所以V 1=V 三棱锥P -ACD -V 三棱锥M -ACD =3-1=2. 故V 1V 2=2.。
高考数学(文)《立体几何》专题复习

(2)两个平面垂直的判定和性质
✓ 考法5 线面垂直的判定与性质
1.证明直线 与平面垂直 的方法
2.线面垂直 的性质与线 线垂直
(1)判定定理(常用方法): 一条直线与一个平面内的两条相交直线都垂直,则该直线
与此平面垂直.判定定理中的两条相交直线必须保证“在平面 内相交”这一条件. (2)性质: ①应用面面垂直的性质(常用方法):若两平面垂直,则在一 个平面内垂直于交线的直线必垂直于另一个平面,是证明线 面垂直的主要方法; ②(客观题常用)若两条平行直线中的一条垂直于一个平面, 则另一条也垂直于这个平面.
64
65
✓ 考法4 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法 2.空间平行关系 之间的转化
66
✓ 考法3 面面平行的判定与性质
1.证明平面 与平面平行 的常用方法
这是立体几何中证明平行关系常用的思路,三 种平行关系的转化可结合下图记忆
2.空间平行关系 之间的转化
67
68
600分基础 考点&考法
定义 判定方法
2.等角定理
判定定理 反证法 两条异面直线所成的角
✓ 考法2 异面直线所成的角
常考形式
直接求 求其三角函数值
常用方法
作角
正弦值 余弦值 正切值
证明 求值 取舍
55
56
57
58
600分基础 考点&考法
➢ 考点46 线面、面面平行的判定与性质 ✓ 考法3 线面平行的判定与性质 ✓ 考法4 面面平行的判定与性质
1.计算有关 线段的长
2.外接球、内切 球的计算问题
观察几何体的特征 利用一些常用定理与公式 (如正弦定理、余弦定理、勾股定理、 三角函数公式等) 结合题目的已知条件求解
立体几何中的最值问题-高考数学二轮复习之大题考点专练

第三篇 立体几何专题07 立体几何中的最值问题常见考点考点一 最大值问题典例1.如图,在ABC 中,1AC BC ==,120ACB ∠=︒,O 为ABC 的外心,PO ⊥平面ABC ,且6PO =(1)求证://BO 平面PAC ;(2)设平面PAO 面PBC l =,若点M 在线段PC (不含端点)上运动,当直线l 与平面ABM 所成角取最大值时,求二面角A BM O --的正弦值.变式1-1.如图,在正三棱柱111ABC A B C -中,12AB AA ==,点D 在边BC 上,E 为11B C 的中点.(1)如果D 为BC 的中点,求证:平面1BA E ∥平面1C DA ;(2)设锐二面角11/B AC D --的平面角为α,CD CB λ=,1,12λ⎡⎤∈⎢⎥⎣⎦,当λ取何值时,cos α取得最大值?变式1-2.如图,在四棱锥S ABCD-中,底面ABCD是直角梯形,侧棱SA⊥底面ABCD,AB垂直于AD和BC,2===,1SA AB BCAD=,M是棱SB的中点.(1)求证://AM平面SCD;(2)求平面SCD与平面SAB的夹角的余弦值;(3)设点N是线段CD上的动点,MN与平面SAB所成的角为θ,求sinθ的最大值.-中,点O,E分别是BD,BC中点,点F是SE 变式1-3.如图,在正四棱锥S ABCD上的一点.(1)证明:OF BC⊥;(2)若四棱锥S ABCD-的所有棱长为22OF与平面SDE所成角的正弦值的最大值.考点二最小值问题典例2.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,四边形BFED 为矩形,1BF =,平面BFED ⊥平面ABCD .(1)求证:AD ⊥平面BDEF ;(2)点P 在线段EF 上运动,设平面P AB 与平面ADE 所成的夹角为θ,试求θ的最小值.变式2-1.如图,在ABC 中,1AB =,22BC =4B π=,将ABC 绕边AB 翻转至ABP △,使面ABP ⊥面ABC ,D 是BC 的中点.(1)求二面角P BC A --的平面角的余弦值;(2)设Q 是线段PA 上的动点,当PC 与DQ 所成角取得最小值时,求线段AQ 的长度.变式2-2.如图,四棱锥S ABCD -的底面为矩形,SD ⊥底面ABCD ,设平面SAD 与平面SBC 的交线为m .(1)证明://m BC ,且m ⊥平面SDC ;(2)已知2SD AD DC ===,R 为m 上的点求SB 与平面RCD 所成角的余弦值的最小值.变式2-3.如图,在梯形ABCD 中,//AB CD ,1===AD DC CB ,120BCD ∠=︒,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,1BF =.(1)求证:BD ⊥平面AED ,AD ⊥平面BDEF ;(2)点P 在线段EF 上运动,设平面PAB 与平面ADE 所成锐二面角为θ,试求θ的最小值.巩固练习练习一 最大值问题1.如图所示,在三棱柱111ABC A B C -中,AB BC =,点1A 在平面ABC 的射影为线段AC的中点,侧面11AAC C 是菱形,过点1,,B B D 的平面α与棱11A C 交于点E .(1)证明:四边形1BB ED 为矩形;(2)求1CB 与平面11ABB A 所成角的正弦值的最大值.2.如图,在矩形ABCD 中,M 、N 分别是线段AB 、CD 的中点,2AD =,4AB =,将ADM △沿DM 翻折,在翻折过程中A 点记为P 点.(1)从ADM △翻折至NDM 的过程中,求点P 运动的轨迹长度;(2)翻折过程中,二面角P −BC −D 的平面角为θ,求tan θ的最大值.3.在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,其中//AD BC ,AB AD ⊥,122AB AD BC ===,E 为棱BC 上的点,且14BE BC =.(1)求证:DE⊥平面PAC;(2)若二面角A PC D,求PA的长;--的平面角的正切值为12(3)在(2)的条件下,若Q为线段PC上一点,求BQ与面PCD所成角为θ,求sinθ的最大值.4.如图,在直角三角形AOB中,30∠=︒,斜边4OABAB=,直角三角形AOC可以--是直二面角,动点D在斜边通过AOB以直线AO为轴旋转得到,且二面角B AO CAB上.(1)求证:平面COD⊥平面AOB;(2)当D为AB的中点时,求异面直线AO与CD所成角的正切值;(3)求CD与平面AOB所成角的正切值的最大值.练习二最小值问题5.如图,ABCD为正方形,PDCE为直角梯形,90∠=,平面ABCD⊥平面PDCE,PDC且22PD AD EC ===.(1)若PE 和DC 延长交于点F ,求证://BF 平面PAC ;(2)若Q 为EC 边上的动点,求直线BQ 与平面PDB 所成角正弦值的最小值.6.如图,在梯形ABCD 中,//AB CD ,1AD DC BC ===,60ABC ∠=︒,四边形ACFE 为矩形,平面ACFE ⊥平面ABCD ,1CF =,设点M 在线段EF 上运动.(1)证明:BC AM ⊥;(2)设平面MAB 与平面FCB 所成锐二面角为θ,求θ的最小值.7.如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =1,∠BCD =120°,四边形BFED 为矩形,平面BFED ⊥平面ABCD ,BF =1.(1)求证:AD ⊥平面BFED ;(2)点P 在线段EF 上运动,设平面P AB 与平面ADE 所成锐二面角为θ,试求θ的最小值.8.如图,正方形ABCD 边长为1,ED ⊥平面ABCD ,FB ⊥平面ABCD ,且1ED FB ==(E ,F 在平面ABCD 同侧),G 为线段EC 上的动点.(1)求证:AG DF ⊥;(2)求22AG BG +的最小值,并求取得最小值时二面角B AG C --的余弦值。
2020年高考数学二轮限时训练立体几何7理

第五部分:立体几何(7)(限时:时间45分钟,满分100分)一、选择题1. 若m n是两条不同的直线,a、B、丫是三个不同的平面,则下列命题中的真命题是()A. 若n? 3,a±3,贝U mLaB. 若久门丫 = m 3^Y= n, mil n,贝V a〃BC. 若mL3, m//a,贝U a//BD. 若a丄Y,a丄B,贝V B丄丫【解析】A中只有当m垂直于a、B的交线时,才有mha;B中a、B可能相交,如三棱柱的两个侧面;C中m//a ? a内有一直线l //m ] i 丄m 丄pj 丄0;/CcrJD中,B与丫可能平行,也可能相交(不一定垂直).【答案】C2. (2020年柳州质检一一)设a、b是不同的直线,a、B是不同的平面,则下列四个命题中正确的是()A. 若a丄b, a La,贝U b/aB. 若a/a,a丄B,贝V a丄BC. 若a 丄B,a丄B,贝V a /laD. 若a丄b, a±a, b±B,贝U a±B【解析】A中,b可能在a内;B中,a可能在B内,也可能与B平行或相交(不垂直);C中,a可能在a内;D中,a丄b, a丄a,贝U b? a或b//a,又b丄B,「・a丄B.【答案】D3.其中正确命题的序号是()如图,在斜三棱柱 ABO ABG 中,/ BAG= 90°, BG 丄AQ 贝U G 在底面 ABC 上的射影H 必在( )A. 直线AB 上B. 直线BG 上C. 直线AG 上D. A ABC 内部【解析】••• BAI AG BG 丄 AG BA H BGi = B,••• AGL 平面 ABG.•/ AG 平面ABG ••平面 ABGL 平面ABG ,且交线是 AB.故平面ABG 上一点 G 在底面ABG 的射影H 必在交线 AB 上.【答案】 A3.如果一个二面角的两个半平面与另一个二面角的两个半平面互相垂直,则这两个 .面角的大小是() A.相等•应选D.【答案】 D4. (2020年浙江模拟)下面四个命题:① “直线a //直线b ”的充要条件是“a 平行于b 所在的平面”;② “直线I 丄平面a 内所有直线”的充要条件是“ I 丄平面 a”; ③ “直线a 、b 为异面直线”的充分不必要条件是“直线 a 、b 不相交”;C.相等或互补.无法确定 【解析】如图, I —3为直二面角,丫一 a —S 为另一个二面角,使 丫丄a,.互补 把丫平面固定不动,a —3的度数不能确定,④“平面a//平面3”的必要不充分条件是“a内存在不共线三点到3的距离相其中正确命题的序号是()A.①②B .②③ C.②④ D .③④【解析】a //b 推不出a 平行于b 所在平面,反之也不成立.•••①不正确.由线面垂直的定义知②正确. a 、b 不相交时,a 、b 可能平行,此时 a 、b 共面•③不正确•当 a/3时,a 内一定有三个不共线的点到平面 3的距离相等•反之, 设A 、B 、C 是a 内三个不共线的 点,当3过厶ABC 的中位线时,A 、B C 三点到3的距离 相等,但此时a 、3相交,④正确.【答案】 C二、填空题6•将正方形ABCD 沿对角线BD 折起,使平面 AED 丄平面CBD E 是CD 的中点,则异面 直线AE BC 所成角的正切值是【解析】 如图,取BD 中点O,连接AO OE二 tan 乙 AEO = 27.正四棱锥S — ABCD 的底面边长为2,高为2, E 是边BC 的中点,动点P 在表面上运动,并且总保持 PE! AQ 则动点P 的轨「迹的周长为 _________【解析】贝U AO 丄BD.•••平面ABDL 平面 CBD•- AO 丄平面 BCD OE// BC, •••/ AEO 即为 AE 、 BC 所成的角.设正方形的边长为 则 0E 二 1/0 二 0由题意知;点P 的轨迹为 如图所示的三角形 EFG 其中GF 为中点,二 EF =Q,GE 二 GF 二二泗二斗2 2 '/>轨迹的周长为辽+ 6【答案】’八&设P 是60°的二面角 a — I — 3内一点,PAL a, PB±3, A B 分别为垂足,=2, PB = 4,贝U AB 的长是【解析】设平面PAB 与棱I 交于点0,连接AO BQ 则/ A0E 为二面角的平面角, •••/ AOB=60 ,•••/ APB=120 .• Ah=Ah+BP-2AP • BP- cos120= 4 + 16-2x2x4xS'PA10.【答案】三、解答题9.(2020年年苏北模拟)在四棱锥 S — ABCD 中,已知 AB// CD SA = SB, SC = SD, E 、F 分 别为AB CD 的中点.(1) 求证:平面 SEFL 平面 ABCD⑵ 若平面SABH 平面 SCD= I ,求证:AB//I.【证明】(1)由SA = SB, E 为AB 中点得SEI AB.一由SC = SD F 为CD 中点得SF 丄DC.又 AB// DC ••• SB 丄SF.又 SF A SE = S,「. AB!平面 SEF.又••• AB?平面 ABCD :平面 SEFL 平面 ABCD.(2) T AB// CD CD?平面 SCD• AB//平面 SCD.又•••平面 SABH 平面 SCD= I ,根据直线与平面平行的性质定理得:AB// I.(2020年九江模拟)如图,四棱锥S— ABCD的底面ABCD是正方形,SM底面ABCD E 是SC上一动点.(1) 求证:平面EBDL平面SAC(2) 当AA的值为多少时,二面角B—SC- D的大小为120°?(3) 在(2)的条件下,设AB= 1,当E位于何处时,恰为四棱锥S- ABCD的外接球的球心•并求该球的体积.【解析】⑴•/ ABC 为正方形,••• BDL AC又SAL底面ABCD:BDL SASAH AC= A平面EBD丄平面SAC.BD丄平面SAC又BD?平面EBD(2)由题设易知,Rt△ SBC也Rt△ SDC. 设BE! SC 贝U DEL SC.•••/ BED为二面角B- SG-D的平面角.•••/ BED= 120°.设AB= a, SA= b,计算可得,而BD= 2a,代入余弦定理:BD= B^+ DE—2BE- DE- cos120°? a = b,(3) 当E为SC的中点时,恰为四棱锥S—ABCD的外接球球心,禾U用补形法可把四棱锥补成一个正方体,则E点为对角线交点,即正方体中心,可得结论.•••外接球的半径为R=〒,V球=牙n.10.。
2020—2021年高考总复习数学《立体几何》高考考点专项复习及参考答案(精品试题).docx

届高三第二次模拟数学理试题分类汇编:立体几何一、填空、选择题1、(崇明县2016届高三二模)已知圆锥的母线长为5cm ,侧面积为15πcm2,则此圆锥的体积为cm 2.2、(奉贤区2016届高三二模)在棱长为1的正方体ABCD A B C D ''''-中,若点P 是棱上一点,则满足2PA PC '+=的点P 的个数_______.3、(虹口区2016届高三二模)已知A 、B 是球O 的球面上两点,90AOB ∠=o ,C 为该球面上的动点,若三棱锥ABC O -体积的最大值为323,则球O 的表面积为__________4、(黄浦区2016届高三二模)已知一个凸多边形的平面展开图由两个正六边形和六个正方形构成,如右上图所示,若该凸多面体所有棱长均为1,则其体积V =5、(静安区2016届高三二模)如图,正四棱锥P ABCD -的底面边长为23cm ,侧面积为 283cm ,则它的体积为.6、(闵行区2016届高三二模)若一个圆锥的母线长是底面半径的3倍,则该圆锥的侧面积是底面积的 倍.7、(浦东新区2016届高三二模)已知四面体ABCD 中,2==CD AB ,E ,F分别为BC ,AD 的中点,且异面直线AB 与CD 所成的角为3π,则EF =________.8、(普陀区2016届高三二模)若a 、b 表示两条直线,α表示平面,下列命题中的真命题为( )(A )若α⊥a ,b a ⊥,则α//b (B )若α//a ,b a ⊥,则α⊥b (C )若α⊥a ,α⊆b ,则b a ⊥ (D )若α//a ,α//b ,则b a // 9、(徐汇、金山、松江区2016届高三二模).如图,圆锥形容器的高为,h 圆锥内水面的高为1,h 且11,3h h =若将圆锥倒置,水面高为2,h 则2h 等于------------------------------------------------( )(A )23h (B )1927h (C )363h (D )3193h10、(杨浦区2016届高三二模)已知命题:“若a,b 为异面直线,平面α过直线a 且与直线b 平行,则直线b 与平面α的距离等于异面直线a,b 之间的距离”为真命题.根据上述命题,若a,b 为异面直线,且它们之间的距离为d ,则空间中与a,b 均异面且距离也均为d 的直线c 的条数为( )A0条 B.1条 C.多于1条,但为有限条 D.无数多条11、(闸北区2016届高三二模)已知,,,S A B C 是球O 表面上的点,SA ⊥平面ABC ,AB BC ⊥,1SA AB == 2BC =,则球O 的表面积等于( )A .π4 B .π3 C .π2 D .π12、(长宁、青浦、宝山、嘉定四区2016届高三二模)下列命题正确的是( ).(A )若直线1l ∥平面α,直线2l ∥平面α,则1l ∥2l ; (B )若直线l 上有两个点到平面α的距离相等,则l ∥α;(C )直线l 与平面α所成角的取值范围是⎪⎭⎫⎝⎛2,0π;(D )若直线1l ⊥平面α,直线2l ⊥平面α,则1l ∥2l .13、(闵行区2016届高三二模)如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,P 为底面ABCD 内一动点,设1PD PE 、与底面ABCD 所成的角分别为12θθ、(12θθ、均不为0).若12θθ=,则动点P 的轨迹为哪种曲线的一部分( ).(A)直线 (B)圆 (C) 椭圆 (D) 抛物线14、(浦东新区2016届高三二模)给出下列命题,其中正确的命题为( )(A )若直线a 和b 共面,直线b 和c 共面,则a 和c 共面;(B )直线a 与平面α不垂直,则a 与平面α内的所有直线都不垂直; (C )直线a 与平面α不平行,则a 与平面α内的所有直线都不平行; (D )异面直线a 、b 不垂直,则过a 的任何平面与b 都不垂直. 二、解答题1、(崇明县2016届高三二模)如图,在棱长为1的正方体1111ABCD A B C D -中,点E 是棱BC 的中点,点F 是棱CD 的中点. (1)求证:11EF B D ∥; (2)求二面角1C EF A --的大小(结果用反三角函数值表示).AC BC 1A 1B 1(第19题图)D 1D FE2、(奉贤区2016届高三二模)面ABC 外的一点P ,,,AP AB AC 两两互相垂直,过AC 的中点D 作ED ⊥面ABC ,且1ED =,2PA =,2AC =,连,BP BE ,多面体B PADE -的体积是33. (1)画出面PBE 与面ABC 的交线,说明理由; (2)求面PBE 与面ABC 所成的锐二面角的大小.ADBCPEQ A DCBP (第20题图)3、(虹口区2016届高三二模)如图,在四棱锥ABCD P -中,已知⊥PA 平面ABCD ,且四边形ABCD 为直角梯形,90ABC BAD ∠=∠=︒,2AB AD AP ===,1BC =.(1) 求点A 到平面PCD 的距离; (2) 若点Q 为线段BP 的中点,求直线CQ 与平面ADQ 所成角的大小.4、(黄浦区2016届高三二模)如图,小凳的凳面为圆形,凳脚为三根细钢管,考虑到钢管的受力等因素,设计的小凳应满足:三根细钢管相交处的节点P 与凳面圆形的圆心O 的连线垂直于凳面和地面,且P 分两钢管上下两段的比值为0.618,三只凳脚与地面所成的角均为60°,若A 、B 、C 是凳面圆周的三等分点,18AB =厘米,求凳面的高度h 及三根细钢管的总长度(精确到0.01);5、(静安区2016届高三二模)设点,E F 分别是棱长为2的正方体1111ABCD A B C D -的棱1,AB AA 的中点.如图,以C 为坐标原点,射线CD 、CB 、1CC 分别是x 轴、y 轴、z 轴的正半轴,建立空间直角坐标系.(1)求向量1D E u u u u r与1C F u u u u r 的数量积;(2)若点,M N 分别是线段1D E 与线段1C F 上的点,问是否存在直线MN ,MN ⊥平面ABCD ?若存在,求点,M N 的坐标;若不存在,请说明理由E FB 1A 1C 1D 1BC DA6、(闵行区2016届高三二模)如图,在直角梯形PBCD中,//PB DC,DC BC⊥,22PB BC CD===,点A是PB的中点,现沿AD将平面PAD折起,设PABθ∠=.(1)当θ为直角时,求异面直线PC与BD所成角的大小;(2)当θ为多少时,三棱锥P ABD-的体积为26.7、(浦东新区2016届高三二模)如图,在圆锥SO中,AB为底面圆O 的直径,点C为»AB的中点,SO AB=.(1)证明:AB⊥平面SOC;(2)若点D为母线SC的中点,求AD与平面SOC所成的角.(结果用反三角函数表示)8、(普陀区2016届高三二模)在正四棱柱1111D C B A ABCD -中,底面边长为1,B C 1与底面ABCD 所成的角的大小为2arctan ,如果平面11C BD 与底面ABCD 所成的二面角是锐角,求出此二面角的大小(结果用反三角函数值)9、(徐汇、金山、松江区2016届高三二模)在直三棱柱111C B A ABC -中,1==AC AB ,90=∠BAC ,且异面直线BA 1与11CB 所成的角等于060,设a AA =1. (1)求a 的值;(2)求三棱锥BC A B 11-的体积.1A 1B 1CA BCD.A 1CEA BCDB 110、(杨浦区2016届高三二模)如图,底面是直角三角形的直三棱柱111ABC A B C -中,1112AC BC AA ===,D 是棱1AA 上的动点.(1)证明:1DC BC ⊥; (2)求三棱锥1C BDC -的体积.11、(闸北区2016届高三二模)在长方体1111ABCD A B C D -中,2AB =,1AD =,11AA =,点E 在棱AB 上移动.(1)探求AE 多长时,直线1D E 与平面11AA D D成45o 角;(2)点E 移动为棱AB 中点时,求点E 到平面11A DC 的距离.12、(长宁、青浦、宝山、嘉定四区2016届高三二模)如图,在直三棱柱111C B A ABC -中,底面△ABC 是等腰直角三角形,21===AA BC AC ,D 为侧棱1AA 的中点.(1)求证:⊥BC 平面11A ACC ;(2)求二面角11C CD B --的大小(结果用反三角函数值表示). 参考答案一、填空、选择题ABCA 1B 1C 1D1、12π2、23、64π4、3325、4106、37、1 或3 8、C 9、D 10、D 11、A 12、D13、B 14、D二、解答题1、可得有关点的坐标为11111(0,0,1),(1,1,1),(,1,0),(0,,0),(0,1,1)22D BEF C 11(,,0)22EF =--u u u r ,11(1,1,0)B D =--u u u u r (4)分所以112B D EF =u u u u r u u u r...............................5分所以11EF B D ∥...............................6分(2)设1(,,)n u v w =u r是平面1C EF 的一个法向量.因为111,n EF n FC ⊥⊥u r u u u u r u r u u u u r所以1111110,0222n EF u v n FC v w ⋅=--=⋅=+=u r u u u ru r u u u u r解得,2u v v w =-=- .取1w = ,得1(2,2,1)n =-u r.............................9分因为1DD ABCD ⊥平面,所以平面ABCD 的一个法向量是2(0,0,1)n =u u r (10)分设1n u r 与2n u u r 的夹角为α ,则12121cos 3||||n n n n α⋅==⋅u r u u ru r uu r .......................11分结合图形,可判别得二面角1C EF A --是钝角,其大小为1arccos 3π- (12)分2、(1)根据条件知:PE 与AD 交点恰好是C 1分ACBC 1A 1B 1(第19题图)D 1 D FE x yz,C PE C ∈∴∈面PBE ,,C AC C ∈∴∈面ABC 2分B ∈面PBE ,B ∈面ABC3分 面PBE与面ABC的交线BC5分 (2)(理) ,,AP AB AC 两两互相垂直,BA ⊥面EDAP 7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯=9分233BA ∴=10分建立空间直角坐标系,设平面的法向量是()1,,n x y z u r23,0,03B ⎛⎫ ⎪ ⎪⎝⎭,()0,2,0C ()0,1,0D ()0,1,1E ()0,0,2P23,0,23BP ⎛⎫=- ⎪ ⎪⎝⎭u u u r ,23,1,13BE ⎛⎫=- ⎪ ⎪⎝⎭u u u r123203n BP x z ⋅=-+=u r u u u r12303n BE x y z ⋅=-++=u r u u u r()13,1,1n ∴=u r11分面ABC 的法向量()20,0,1n =u u rADBC PE zxyQA D CBP(第20题解答图)z yx 1212cos n nn n θ⋅==⋅u r u u ru r u u r 1555= 12分所以面PBE 与面ABC 所成的锐二面角大小5arccos 513分注:若作出二面角得2分,计算再3分 (2)(文),,AP AB AC 两两互相垂直,BA ⊥面EDAP7分多面体B PADE -的体积是()113323PA DE AD BA ⨯+⨯⨯=9分233BA ∴=10分 连接AEAE 是BE 在面EDAP 的射影BEA ∠是BE 与面PADE 所成的线面角. 11分 计算2AE =,2363tan 32BAE ∠==12分BEA ∠是BE 与面PADE 所成的线面角6arctan 3. 13分3、 (理)解:(1)以},,{AP AD AB 为正交基底建立空间直角坐标系xyz A -,则相关点的坐标为B (2,0,0),(2,1,0),(0,2,0),(0,0,2).C D P ……2分设平面PCD 的法向量为(,,),n x y z =r由(2,1,0),DC =-uuu r (0,2,2),DP =-u u u r (0,2,0).DA =-u u u r则ADBCPE202,2.220n DC x y y x z x n DPy z r u u u r r u u u r ìïì?-==ïïïÞ眄镲=?-+=ïîïî 令1x =,则(1,2,2)n =r.……5分所以点A 到平面PCD 的距离为:(0,2,0)(1,2,2)4.(1,2,2)3DA n d nu u u r r r×-?=== ……7分(2) 由条件,得(1,0,1),Q =(0,2,0),(1,0,1),AD AQ ==u u u r u u u r 且(1,1,1).CQ u u u r=--设平面ADQ 的法向量为0000(,,),n x y z =r 则00000000200,.0n AD y y z x n AQx z r u u u r r u u u r ìïì?==ïï镲Þ眄镲=-?+=ïïîî令01x =,则0(1,0,1)n =-r.……10分设直线CQ 与平面ADQ 所成角为,θ则00026sin cos ,.332CQ n CQ n CQ n θ⋅=<>===⋅u u u r u u r u u u r u u ru u u r u u r故直线CQ 与平面ADQ 所成角的大小为6sin.3arc ……14分注:第(1)小题也可用等积法来做.4、[解] 联结PO ,AO ,由题意,PO ⊥平面ABC ,因为凳面与地面平行, 所以PAO ∠就是PA 与平面ABC 所成的角,即60PAO ∠=︒.(2分) 在等边三角形ABC 中,18AB =,得63AO =,(4分)在直角三角形PAO 中,318OP AO ==,(6分)由0.618OPh OP=-,解得47.13h ≈厘米.(9分)三根细钢管的总长度3163.25sin 60h≈︒厘米.(12分)5、(1)在给定空间直角坐标系中,相关点及向量坐标为11(2,0,2),(1,2,0),(1,2,2)D E D E =--u u u u r (2)分PA BCD xy z PA BCD 11(0,0,2),(2,2,1),(2,2,1)C F C F =-u u u u r (4)分所以111222(2)(1)4D E C F ⋅=-⨯+⨯+-⨯-=u u u u r u u u u r。
2020新高考文科数学二轮培优空立体几何中的热点问题考点考向考题突破(85张)

核心知识回顾
热点考向探究
真题VS押题
配套作业
(2)存在满足条件的点 M.取 CF 的中点记作 M,设 DF 的中点为 N,连接 AN,MN,则 MN 綊12CD,
又 AO 綊12CD,则 MN 綊 AO,
∴四边形 MNAO 为平行四边形, ∴OM∥AN,又 AN⊂平面 DAF,OM⊄平面 DAF, ∴OM∥平面 DAF. 即存在一点 M 为 CF 的中点,使得 OM∥平面 DAF.
核心知识回顾
热点考向探究
真题VS押题
配套作业
(1)求证:平面 PBC∥平面 EFH; (2)求三棱锥 P-EFH 的体积.
核心知识回顾
热点考向探究
真题VS押题
配套作业
解 (1)证明:因为在菱形 ABCD 中,E,H 分别为 AB,CD 的中点, 所以 BE 綊 CH,四边形 BCHE 为平行四边形,则 BC∥EH,
(1)求证:BC⊥平面 ACD;
(2)若点 F 在棱 CD 上,且满足 AD∥平面 BEF,求几何体 F-BCE 的体
积.
核心知识回顾
热点考向探究
真题VS押题
配套作业
解 (1)证明:在图 1 中,由题意,知 AC=BC=2 2,
所以 AC2+BC2=AB2,所以 AC⊥BC.
因为点 E 为 AC 的中点,如图,连接 DE,则 DE⊥AC, 又平面 ADC⊥平面 ABC, 且平面 ADC∩平面 ABC=AC,DE⊂平面 ACD,从而 ED⊥平面 ABC,
又 EH⊄平面 PBC,所以 EH∥平面 PBC.
又点 E,F 分别为 AB,AP 的中点,所以 EF∥BP,
又 EF⊄平面 PBC,所以 EF∥平面 PBC.而 EF∩EH=E, 所以平面 EFH∥平面 PBC.
专题7-1 立体几何压轴小题:截面与球(讲+练)-2023年高考数学二轮复习讲练测(全国通用原卷版)

专题7-1立体几何压轴小题;截面与球目录讲高考 (1)题型全归纳 (2)【题型一】截面最值 (2)【题型二】球截面 (3)【题型三】截面综合难题 (3)【题型四】线面垂直型求外接球 (4)【题型五】特殊三角形定球心型 (5)【题型六】定义法列方程计算型求球心 (6)【题型七】内切球 (6)【题型八】棱切球型最值 (8)【题型九】内切球与外切球一体综合 (8)【题型十】球综合 (9)专题训练...........................................................................................................................................................................9讲高考1.江西·高考真题)如图,在四面体ABCD 中,截面AEF 经过四面体的内切球(与四个面都相切的球)球心O ,且与BC 、DC 分别截于E 、F .如果截面将四面体分为体积相等的两部分,设四棱锥A BEFD -与三棱锥A EFC -的表面积分别为1S ,2S ,则必有()A .12S S <B .12S S >C .12S S =D .12S S 、的大小不能确定2.(2022·全国·统考高考真题)在正方体1111ABCD A B C D -中,E ,F 分别为,AB BC 的中点,则()A .平面1B EF ⊥平面1BDD B .平面1B EF ⊥平面1A BDC .平面1//B EF 平面1A ACD .平面1//B EF 平面11AC D3.(2022·全国·统考高考真题)已知正三棱台的高为1,上、下底面边长分别为其顶点都在同一球面上,则该球的表面积为()A .100πB .128πC .144πD .192π4.(2022·全国·l ,其各顶点都在同一球面上.若该球的体积为36π,且3l ≤≤)A .8118,4⎡⎤⎢⎥⎣⎦B .2781,44⎡⎤⎢⎥⎣⎦C .2764,43⎡⎤⎢⎥⎣⎦D .[18,27]5.(2021·天津·统考高考真题)两个圆锥的底面是一个球的同一截面,顶点均在球面上,若球的体积为323π,两个圆锥的高之比为1:3,则这两个圆锥的体积之和为()A .3πB .4πC .9πD .12π6.(2020·全国·统考高考真题)已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为()A .64πB .48πC .36πD .32π题型全归纳【题型一】截面最值【讲题型】例题1..正方体1111ABCD A B C D -为棱长为2,动点P ,Q 分别在棱BC ,1CC 上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP x =,CQ y =,其中x ,[]0,2y ∈,下列命题正确的是_____.(写出所有正确命题的编号)①当0x =时,S 为矩形,其面积最大为4;②当1x y ==时,S 的面积为92;③当1x =,()1,2y ∈时,设S 与棱11C D 的交点为R ,则144RD y =-;④当2y =时,以1B 为顶点,S 为底面的棱锥的体积为定值83. 1.如图,长方体1111ABCD A B C D -中,AB =BC =4,13AA =,M 是线段11D C 的中点,点N 在线段11B C 上,MN ∥BD ,则长方体1111ABCD A B C D -被平面AMN 所截得的截面面积为___________.2.如图,在正四棱台1111ABCD A B C D -中,上底面边长为4,下底面边长为8,高为5,点,M N 分别在1111,A B D C 上,且111A M D N ==.过点,M N 的平面α与此四棱台的下底面会相交,则平面α与四棱台的面的交线所围成图形的面积的最大值为A .B .C .D .【题型二】球截面【讲题型】例题1.在三棱锥A -BCD 中,AB BC CD DA ====∠ADC =∠ABC =90°,平面ABC ⊥平面ACD ,三棱锥A -BCD O 的球面上,E ,F 分别在线段OB ,CD 上运动(端点除外),BE =.当三棱锥E -ACF 的体积最大时,过点F 作球O 的截面,则截面面积的最小值为()A .πBC .3π2D .2π 1.已知一个正四面体的棱长为2,则其外接球与以其一个顶点为球心,1为半径的球面所形成的交线的长度为___________.2.在正四棱锥P ABCD -中,已知4PA AB ==,O 为底面ABCD 的中心,以点O 为球心作一半径为3PAB 截该球的截面面积为________.【题型三】截面综合难题例题1.如图,在四棱锥Q EFGH -中,底面是边长为4QE QF QG QH ====,M 为QG 的中点.过EM 作截面将此四棱锥分成上、下两部分,记上、下两部分的体积分别为1V ,2V ,则12V V 的最小值为()A .12B .13C .14D .15【练题型】1.在三棱锥P ABC -中,顶点P 在底面的射影为ABC 的垂心O (O 在ABC 内部),且PO 中点为M ,过AM 作平行于BC 的截面α,过BM 作平行于AC 的截面β,记α,β与底面ABC 所成的锐二面角分别为1θ,2θ,若PAM PBM θ∠=∠=,则下列说法错误的是()A .若12θθ=,则AC BC=B .若12θθ≠,则121tan tan 2θθ⋅=C .θ可能值为6πD .当θ取值最大时,12θθ=2.如图,DE 是边长为6的正三角形ABC 的一条中位线,将△ADE 沿直线DE 翻折至△1A DE ,当三棱锥1A CED -的体积最大时,四棱锥1A BCDE -外接球O 的表面积为______;过EC 的中点M 作球O 的截面,则所得截面圆面积的最小值是______.【题型四】线面垂直型求外接球例题1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,2SA =,若球O16π,则三棱锥S -ABC 的体积的最大值为()A.2B.CD . 1.模板图形原理图122.计算公式2+r r=2sin PC CD R A ⎛⎫= ⎪⎝⎭;其中2【练题型】1.已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SA ⊥平面ABC ,2SA =,若球O 的表面积为16π,则三棱锥S -ABC 的体积的最大值为()A .332B .3C D .2.已知,,,A B C D 四点均在半径为R (R 为常数)的球O 的球面上运动,且AB AC =,AB AC ⊥,AD BC ⊥,若四面体ABCD 的体积的最大值为16,则球O 的表面积为()A .32πB .2πC .94πD .83π【题型五】特殊三角形定球心型【讲题型】例题1.已知三棱锥底面ABC是边长为2的等边三角形,顶点S 与AB 边中点D 的连线SD 垂直于底面ABC ,且SD =SABC -的外接球半径为()A B C D1.在三棱锥A BCD -中,60BAC BDC ∠=∠=︒,二面角A BC D --的余弦值为13-,当三棱锥A BCD -A .5πB .6πC .7πD .8π2..在三棱锥-P ABC 中,2,1PA PB AC BC AB PC ======,则三棱锥-P ABC 的外接球的表面积为()A .43πB .4πC .12πD .523π【题型六】定义法列方程计算型求球心【讲题型】例题1.在空间直角坐标系O -xyz 中,四面体ABCD 各顶点坐标分别为()2,2,1A ,()2,1,2B -,()0,2,1C ,()0,0,1D .则该四面体外接球的表面积是___________.1.如图所示几何体ABCDEF ,底面ABCD 为矩形,4AB =,2BC =,△ADE 与△BCF 是等边三角形,EF AB ∥,2AB EF =,则该几何体的外接球的表面积为()A .6πB .12πC .22πD .24π2.直角ABC 中,2AB =,1BC =,D 是斜边AC 上的一动点,沿BD 将ABD △翻折到A BD ' ,使二面角A BD C '--为直二面角,当线段A C '的长度最小时,四面体A BCD '的外接球的表面积为()A .134πB .143πC .133πD .125π【题型七】内切球【讲题型】例题1.已知一圆锥底面圆的直径为3,圆锥的高为2,在该圆锥内放置一个棱长为a的正四面体,并且正四面体在该几何体内可以任意转动,则a的最大值为()A.3BC.92D.2【讲技巧】椎体的内切球,多采用体积分割法求解。
2020高考数学二轮专题复习立体几何(文).docx

立体几何(文)【考纲解读】1.掌握平面的基本性质 ( 三个公理、三个推论 ) ,理解确定平面的条件;会用字母、集合语言表示点、直线、平面间的关系 .2. 理解线线、线面平行的定义; 熟练掌握线线、线面及面面平行的判定和性质; 会运用线线、线面及面面平行的判定和性质进行推理和证明.3.能画出简单空间图形( 长方体、球、圆柱、圆锥、棱柱等简易组合三视图所表示的立体模型, 会画它们的直观图.) 的三视图, 能识别上述4.理解空间中线线、线面垂直定义及分类;理解空间中线线、线面、面面垂直的有关定理及性质;会运用线面平行与垂直的判定与性质定理进行证明和推理.5.认识柱、锥、台、球及简单几何体的结构特征, 并运用这些特征描述简单物体的结构; 了解柱、锥、台、球的表面积与体积的计算公式( 不要求记忆 ).【考点预测】1.对于空间几何体中点、线、面的位置关系及平行与垂直的性质和判定,高考中常在选择题中加以考查 . 解答题主要考查空间几体的点、线、面的位置关系的证明及探索存在性问题,着重考查学生的空间想象能力、推理论证能力,运用图形语言进行交流的能力及几何直观能力,难度中等 . 明年高考将仍以平行与垂直关系的证明探究为重点 , 注意命题题型的多样化、新颖化,如开放性、探索存在性题型 .2.三视图与直观图、空间几何体的表面积与体积,考查了学生通过直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及性质的基本能力,是每年高考必考内容,明年高考仍以三视图,空间几何体的表面积与体积为重点,在客观题中加以考查,其中表面积与体积也可能在解答题题后一问中出现。
【要点梳理】1.三视图:正俯视图长对正、正侧视图高平齐、俯侧视图宽相等.2.直观图 : 已知图形中平行于 x 轴和 z 轴的线段 , 在直观图中保持长度不变, 平行于 y 轴的线段平行性不变, 但在直观图中其长度为原来的一半.3.体积与表面积公式 :(1) 柱体的体积公式 : V柱Sh;锥体的体积公式:V锥1Sh;1h(S 34台体的体积公式 : V棱台SS S ) ;球的体积公式:V球r 3.33(2) 球的表面积公式 :S球4R2.4. 有关球与正方体、长方体、圆柱、圆锥、圆台的结合体问题,要抓住球的直径与这些几何体的有关元素的关系 .5. 平行与垂直关系的证明, 熟练判定与性质定理.【考点在线】考点一三视图例1. ( 2020 年高考海南卷文科第 8 题)在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为()【答案】 D【解析】由主视图和府视图可知,原几何体是由后面是半个圆锥,前面是三棱锥的组合体,所以,左视图是 D.【名师点睛】本题考查三视图的基础知识.【备考提示】三视图是高考的热点之一 , 年年必考 , 所以必须熟练立体几何中的有关定理是解答好本题的关键 .练习 1:(2020年高考江西卷文科9) 将长方体截去一个四棱锥,得到的几何体如右图所示,则该几何体的左视图为()【答案】 D【解析】左视图即是从正左方看,找特殊位置的可视点,连起来就可以得到答案.考点二表面积与体积例 2. . (2020 年高考安徽卷文科8) 一个空间几何体得三视图如图所示,则该几何体的表面积为( )【解析】 由三视图可知几何体是底面是等腰梯形的直棱柱 . 底面等腰梯形的上底为 2,下底为4 , 高 为 4 , 两 底 面 积 和 为 212 44 24 , 四 个 侧 面 的 面 积 为24 4 2 2 17 24 8 17 ,所以几何体的表面积为 48 8 17 . 故选 C.【名师点睛】 本题考查三视图的识别以及空间多面体表面积的求法.【备考提示】: 表面积与体积的求解也是高考的热点之一,年年必考,大多以三视图为载体,在选择与填空题中考查,难度不大,也可能在解答题的一个问号上.练习 2:(2020 年高考湖南卷文科4) 设图1是某几何体的三视图,则3该几何体的体积为 ()A . 9 42B. 3618 2C.912D.9 1822【答案】 D【解析】 有三视图可知该几何体是一个长方体和球构成的组合体,其体积 V4 ( 3 339 18 .32)+3 2=2考点三 球的组合体例 3.( 2020 年高考辽宁卷文科 10) 己知球的直径 SC=4,A , B 是该球球面上的两点. AB=2,ASC 45o , 则棱锥 SABC 的体积为 ( )(A)3(B)2 3(C)4 3 5 3(D)3正视图侧视图俯视图图 13 3 33【答案】 C【解析】取 SC的中点 D, 则 D为球心,则AD=BD=DS=2。
【创新课堂】高考数学总复习 专题07 第1节 空间几何体的结构及其三视图和直观图课件 文

()
A. ①② B. ②③ C. ①③ D. ②④
4. 如图,几何体的正视图和侧视图都正确的是 ( )
5. 如图是利用斜二测画法画出的△ABO的直观图,已知O′B′=4, A′B′∥y′轴,且△ABO的面积为16,过A′作A′C′⊥x′轴,则A′C′的 长为________.
答案:
1. C 解析:由棱柱定义可判断,最简单的棱柱为三棱柱,故C
答案:2 3 解析:由正视图和俯视图可知几何体是正方体切割后的一部分
(四棱锥C1ABCD),还原在正方体中,如图所示.
多面体最长的一条棱即为正方体的体对角线,
由正方体棱长AB=2知最长棱的长为2 3
9.若一个底面是正三角形的直三棱柱的正视图如图所示,
则其侧面积等于
()
A. 3
B.2
C.2 3
D.6
图1
图2
高考体验
(2012 高考浙江文 3)已知某三棱锥的三视图(单位:cm)如图 所示,则该三棱锥的体积是
A.1cm3 B.2cm3 C.3cm3 D.6cm3
【答案】C
【解析】由题意判断出,底面是一个直角三角形,两个直角
边分别为 1 和 2,整个棱锥的高由侧视图可得为 3,所以三棱
锥的体积为
1 3
3. D 解析:由母线的定义可知①、③错.
4. B 解析:注意实、虚线的区别.
5.2 2 解析:由题意知,在△ABO中,边OB上的高AB=16/4*2=8,
则在直观图中A′B′=4,∴A′C′=A′B′sin 45°=4*
2 2 2. 2
6.如图所示,矩形O′A′B′C′是水平放置的一个平面图形的直观 图,其中O′A′=6 cm,O′C′=2 cm,则原图形是 ( )
2020高考数学(文)二轮专题课件:大题考法课立体几何

解:(1)证明:由题知,BD=AD=4 2,又 AB=8,∴AB2=AD2 +BD2,∴BD⊥AD. ∵平面 PAD⊥平面 ABCD,且两平面的交线是 AD,BD⊂平面 ABCD,BD⊥AD,∴BD⊥平面 PAD,又 BD⊂平面 MBD,∴ 平面 MBD⊥平面 PAD.
(2)过点 P 作 PO⊥AD 交 AD 于点 O,则 PO⊥平面 ABD,∴点
知 A1B1 綊 DC,可得 B1C 綊 A1D,故 ME 綊
ND,因此四边形 MNDE 为平行四边形,所以 MN∥ED.
又 MN⊄平面 C1DE,扣 1 分.
[微点提醒]
[微点提醒]
加红处若漏掉 MN⊄ 平面 C1DE,扣 1 分.
❶转化:线线平行⇒线面平行 MN∥ED⇒MN∥平面 C1DE.
(2)存在一个常数 m= 23,使得平面 PED⊥ 平面 PAB,理由如下: 要使平面 PED⊥平面 PAB,只需 AB⊥DE, 因为 AB=AD=2,∠DAB=30°, 所以 AE=ADcos 30°= 3, 又因为 PD⊥平面 ABCD,PD⊥AB,PD∩DE=D, 所以 AB⊥平面 PDE, 因为 AB⊂平面 PAB,所以平面 PDE⊥平面 PAB, 所以 m=AAEB= 23.
(2)取 CG 的中点 M,连接 EM,DM. 因为 AB∥DE,AB⊥平面 BCGE,所以 DE⊥平面 BCGE, 所以 DE⊥CG. 因为四边形 BCGE 是菱形,且∠EBC=60°, 所以 EM⊥CG, 又 DE∩EM=E,所以 CG⊥平面 DEM. 所以 DM⊥CG. 在 Rt△DEM 中,DE=1,EM= 3, 故 DM=2. 所以四边形 ACGD 的面积为 4.
[微点提醒]
[关键步骤]
加红处只作 CH⊥C1E,不进行证 明 CH⊥平面 C1DE 的扣 2 分.
专题七 立体几何-2020版数学(理)二轮专项复习

专题07 立体几何§7-1 点、直线、平面之间的位置关系【复习要求】1.了解四个公理与等角定理;2.理解空间中线面平行、垂直的有关性质与判定定理;3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题.【例题分析】例1如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AA1的中点.求证:(Ⅰ)E、C、D1、F四点共面;(Ⅱ)CE、DA、D1F三线共点.例2在四棱锥P-ABCD中,底面ABCD是平行四边形,M,N分别是AB,PC的中点,求证:MN∥平面P AD.例3在直三棱柱ABC-A1B1C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.例4在三棱锥P-ABC中,平面P AB⊥平面ABC,AB⊥BC,AP⊥PB,求证:平面P AC⊥平面PBC.例5如图,在斜三棱柱ABC-A1B1C1中,侧面A1ABB1是菱形,且垂直于底面ABC,∠A1AB=60°,E,F分别是AB1,BC的中点.(Ⅰ)求证:直线EF∥平面A1ACC1;(Ⅱ)在线段AB上确定一点G,使平面EFG⊥平面ABC,并给出证明.练习7-1一、选择题:1.已知m,n是两条不同直线,α ,β ,γ 是三个不同平面,下列命题中正确的是( )(A)若m∥α ,n∥α ,则m∥n(B)若m⊥α ,n⊥α ,则m∥n(C)若α ⊥γ ,β ⊥γ ,则α ∥β (D)若m∥α ,m∥β ,则α ∥β2.已知直线m,n和平面α ,β ,且m⊥n,m⊥α ,α ⊥β ,则( )(A)n⊥β (B)n∥β ,或n⊂β(C)n⊥α (D)n∥α ,或n⊂α3.设a,b是两条直线,α 、β 是两个平面,则a⊥b的一个充分条件是( )(A)a⊥α ,b∥β ,α ⊥β (B)a⊥α ,b⊥β ,α ∥β(C)a⊂α ,b⊥β ,α ∥β (D)a⊂α ,b∥β ,α ⊥β4.设直线m与平面α 相交但不垂直,则下列说法中正确的是( )(A)在平面α 内有且只有一条直线与直线m垂直(B)过直线m有且只有一个平面与平面α 垂直(C)与直线m垂直的直线不可能与平面α 平行(D)与直线m平行的平面不可能与平面α 垂直二、填空题:5.在三棱锥P -ABC 中,6==PB PA ,平面P AB ⊥平面ABC ,P A ⊥PB ,AB ⊥BC ,∠BAC =30°,则PC =______.6.在直四棱柱ABCD -A 1B 1C 1D 1中,当底面ABCD 满足条件______时,有A 1C ⊥B 1D 1.(只要求写出一种条件即可)7.设α ,β 是两个不同的平面,m ,n 是平面α ,β 之外的两条不同直线,给出四个论断: ①m ⊥n ②α ⊥β ③n ⊥β ④m ⊥α以其中三个论断作为条件,余下的一个论断作为结论,写出正确的一个命题______. 8.已知平面α ⊥平面β ,α ∩β =l ,点A ∈α ,A ∉l ,直线AB ∥l ,直线AC ⊥l ,直线m ∥α ,m ∥β ,给出下列四种位置:①AB ∥m ;②AC ⊥m ;③AB ∥β ;④AC ⊥β , 上述四种位置关系中,不一定成立的结论的序号是______. 三、解答题:9.如图,三棱锥P -ABC 的三个侧面均为边长是1的等边三角形,M ,N 分别为P A ,BC 的中点.(Ⅰ)求MN 的长; (Ⅱ)求证:P A ⊥BC .10.如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,且E 、F 分别是AB 、BD 的中点.求证:(Ⅰ)直线EF ∥平面ACD ; (Ⅱ)平面EFC ⊥平面BCD .11.如图,平面ABEF ⊥平面ABCD ,四边形ABEF 与ABCD 都是直角梯形,∠BAD =∠F AB=90°,BC ∥AD ,AF BE AF BE AD BC 21,//,21==,G ,H 分别为F A ,FD 的中点.(Ⅰ)证明:四边形BCHG 是平行四边形;(Ⅱ)C ,D ,F ,E 四点是否共面?为什么?(Ⅲ)设AB =BE ,证明:平面ADE ⊥平面CDE .§7-2空间几何体的结构【复习要求】1.了解柱、锥、台、球及其简单组合体的结构特征;2.会画出简单几何体的三视图,会用斜二侧法画简单空间图形的直观图; 3.理解球、棱柱、棱锥、台的表面积与体积的计算公式. 【例题分析】例1 如图,正三棱锥P -ABC 的底面边长为a ,侧棱长为b .(Ⅰ)证明:P A ⊥BC ;(Ⅱ)求三棱锥P -ABC 的表面积; (Ⅲ)求三棱锥P -ABC 的体积.例2 如图,正三棱柱ABC -A 1B 1C 1中,E 是AC 的中点.(Ⅰ)求证:平面BEC 1⊥平面ACC 1A 1;(Ⅱ)求证:AB 1∥平面BEC 1.例3 在四棱锥P -ABCD 中,平面P AD ⊥平面ABCD ,AB ∥DC ,△P AD 是等边三角形,已知BD =2AD =8,542==DC AB .(Ⅰ)设M 是PC 上的一点,证明:平面MBD ⊥平面P AD ; (Ⅱ)求四棱锥P -ABCD 的体积.例4 如下的三个图中,上面的是一个长方体截去一个角所得多面体的直观图.它的主视图和左视图在下面画出(单位:cm) (Ⅰ)画出该多面体的俯视图;(Ⅱ)按照给出的尺寸,求该多面体的体积; (Ⅲ)在所给直观图中连结BC ',证明:BC '∥平面EFG .例5 在棱长为a 的正方体ABCD -A 1B 1C 1D 1中,E ,F 分别是BB 1,CD 的中点,求三棱锥F -A 1ED 1的体积.练习7-2一、选择题:1.将棱长为2的正方体木块削成一个体积最大的球,则这个球的表面积为( ) (A)2π (B)4π (C)8π (D)16π2.如图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( )(A)9π(B)10π(C)11π(D)12π3.有一种圆柱体形状的笔筒,底面半径为4 cm ,高为12 cm .现要为100个这种相同规格的笔筒涂色(笔筒内外均要涂色,笔筒厚度忽略不计).如果所用涂料每0.5 kg 可以涂1 m 2,那么为这批笔筒涂色约需涂料( ) (A)1.23 kg (B)1.76 kg (C)2.46 kg (D)3.52 kg4.某几何体的一条棱长为7,在该几何体的正视图中,这条棱的投影是长为6的线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a 和b 的线段,则a +b 的最大值为( ) (A)22(B)32(C)4(D)52二、填空题:5.如图,正三棱柱ABC -A 1B 1C 1的每条棱长均为2,E 、F 分别是BC 、A 1C 1的中点,则EF 的长等于______.6.将边长为1的正方形ABCD 沿对角线AC 折起,使得BD =1,则三棱锥D -ABC 的体积是______.7.一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,且该六棱柱的高为3,底面周长为3,则这个球的体积为______.三、解答题:8.如图,在正四棱柱ABCD -A 1B 1C 1D 1中,E 是DD 1的中点.(Ⅰ)求证:BD 1∥平面ACE ;(Ⅱ)求证:平面ACE ⊥平面B 1BDD 1.9.如图,已知ABCD -A 1B 1C 1D 1是棱长为3的正方体,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(Ⅰ)求证:E ,B ,F ,D 1四点共面; (Ⅱ)若点G 在BC 上,32BG ,点M 在BB 1上,GM ⊥BF ,求证:EM ⊥面BCC 1B 1.§7-3 空间向量与立体几何【复习要求】1.了解空间向量的概念,了解空间向量的基本定理及其意义,掌握空间向量的正交分解及其坐标表示.2.掌握空间向量的线性运算及其坐标表示. 3.掌握空间向量的数量积及其坐标表示;能运用向量的数量积判断向量的共线与垂直. 4.理解直线的方向向量与平面的法向量.5.能用向量语言表述线线、线面、面面的垂直、平行关系. 6.能用向量方法解决线线、线面、面面的夹角的计算问题.【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2 BC ,求二面角A -PB -C 的平面角的余弦值.例6 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,P A =AB ,∠ABC =60°,∠BCA =90°,点D ,E 分别在棱PB ,PC 上,且DE ∥BC .(Ⅰ)求证:BC ⊥平面P AC ;(Ⅱ)当D 为PB 的中点时,求AD 与平面P AC 所成角的余弦值;(Ⅲ)试问在棱PC 上是否存在点E ,使得二面角A -DE -P 为直二面角?若存在,求出PE ∶EC 的值;若不存在,说明理由.练习7-3一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)324.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______.6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______.7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______.三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值.10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.习题7一、选择题:1.关于空间两条直线a 、b 和平面α ,下列命题正确的是( )(A)若a ∥b ,b ⊂α ,则a ∥α (B)若a ∥α ,b ⊂α ,则a ∥b(C)若a ∥α ,b ∥α ,则a ∥b (D)若a ⊥α ,b ⊥α ,则a ∥b2.正四棱锥的侧棱长为23,底面边长为2,则该棱锥的体积为( )(A)8 (B)38 (C)6 (D)23.已知正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则直线AB 1与侧面ACC 1A 1所成角的正弦值等于( ) (A)46 (B)410 (C)22 (D)23 4.已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm),可得这个几何 体的体积是( )(A)3cm 34000 (B)3cm 38000 (C)2000cm 3 (D)4000cm 35.若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为60° 的菱形,则该棱柱的体积等于( ) (A)2 (B)22 (C)23 (D)24二、填空题:6.已知正方体的内切球的体积是π34,则这个正方体的体积是______.7.若正四棱柱ABCD -A 1B 1C 1D 1的底面边长为1,AB 1与底面ABCD 成60°角,则直线AB 1和BC 1所成角的余弦值是______.8.若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是______.9.连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB 、CD 的长度分别等于3472、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为______.10.已知AABC 是等腰直角三角形,AB =AC =a ,AD 是斜边BC 上的高,以AD 为折痕使∠BDC 成直角.在折起后形成的三棱锥A -BCD 中,有如下三个结论:①直线AD ⊥平面BCD ;②侧面ABC 是等边三角形;③三棱锥A -BCD 的体积是.2423a 其中正确结论的序号是____________.(写出全部正确结论的序号)三、解答题:11.如图,正三棱柱ABC -A 1B 1C 1中,D 是BC 的中点,AB =AA 1.(Ⅰ)求证:AD ⊥B 1D ;(Ⅱ)求证:A 1C ∥平面A 1BD ;(Ⅲ)求二面角B -AB 1-D 平面角的余弦值.12.如图,三棱锥P -ABC 中,P A ⊥AB ,P A ⊥AC ,AB ⊥AC ,P A =AC =2,AB =1,M 为PC 的中点.(Ⅰ)求证:平面PCB ⊥平面MAB ;(Ⅱ)求三棱锥P -ABC 的表面积.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ABC =90°,AB =BC =AA 1=2,M 、N 分别是A 1C 1、BC 1的中点.(Ⅰ)求证:BC 1⊥平面A 1B 1C ;(Ⅱ)求证:MN ∥平面A 1ABB 1;(Ⅲ)求三棱锥M -BC 1B 1的体积.14.在四棱锥S -ABCD 中,底面ABCD 为矩形,SD ⊥底面ABCD ,2=AD ,DC =SD=2.点M 在侧棱SC 上,∠ABM =60°.(Ⅰ)证明:M 是侧棱SC 的中点;(Ⅱ)求二面角S -AM -B 的平面角的余弦值.。
2020届高三数学立体几何专项训练

2020届高三数学立体几何专题(文科)吴丽康2019-111.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的点.(Ⅰ)证明:PB2. 如图,四棱锥PABCD中,AB∥CD,AB=2CD,E为PB的中点.(1)求证:CE∥平面PAD;(2)在线段AB上是否存在一点F,使得平面PAD∥平面CEF若存在,证明你的结论,若不存在,请说明理由.3如图,在四棱锥P -ABCD 中,平面PAC ⊥平面ABCD ,且PA ⊥AC ,PA =AD =2,四边形ABCD 满足BC ∥AD ,AB ⊥AD ,AB =BC =1.点E ,F 分别为侧棱PB ,PC 上的点, 且PE PB =PF PC=λ(λ≠0). (1)求证:EF ∥平面PAD ;(2)当λ=12时,求点D 到平面AFB 的距离.4.如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形.(1)证明:平面A 1BD ∥平面CD 1B 1;(2)若平面ABCD ∩平面B 1D 1C =直线l ,证明:B 1D 1∥l .5..如图,四边形ABCD是平行四边形,点P是平面ABCD外一点,M是PC的中点,在DM上取一点G,过G和AP作平面交平面BDM于GH.求证:AP∥GH.6.如图,在四棱锥PABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.7.(2018北京通州三模,18)如图,在四棱锥P-ABCD中,平面PA B⊥平面ABCD,四边形ABCD 为正方形,△PAB为等边三角形,E是PB中点,平面AED与棱PC交于点F.(1)求证:AD∥EF; (2)求证:PB⊥平面AEFD;(3)记四棱锥P-AEFD的体积为V1,四棱锥P-ABCD的体积为V2,直接写出的值.8...如图,在四棱锥PABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,若G为AD的中点.(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)若E为BC边的中点,能否在棱PC上找到一点F,使平面DEF⊥平面ABCD并证明你的结论.9.(2016·高考北京卷)如图,在四棱锥PABCD中,PC⊥平面ABCD,AB∥DC,DC⊥AC.(1)求证:DC⊥平面PAC;(2)求证:平面PAB⊥平面PAC;(3)设点E为AB的中点.在棱PB上是否存在点F,使得PA∥平面CEF说明理由.10..如图,在四棱锥P-ABCD中,底面ABCD是矩形,点E在棱PC上(异于点P,C),平面ABE与棱PD交于点F.(1)求证:AB∥EF;(2)若AF⊥EF,求证:平面PAD⊥平面ABCD.11..如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,PA =AB =BC =3,AD =CD =1,∠ADC =120°,点M 是AC 与BD 的交点,点N 在线段PB 上,且PN =14PB . (1)证明:MN ∥平面PDC ;(2)求直线MN 与平面PAC 所成角的正弦值.12..(2016·高考四川卷)如图,在四棱锥PABCD 中,PA ⊥CD ,AD ∥BC ,∠ADC =∠PAB =90°,BC =CD =12AD .(1)在平面PAD 内找一点M ,使得直线CM ∥平面PAB ,并说明理由;(2)证明:平面PAB ⊥平面PBD .13.(2016·高考江苏卷)如图,在直三棱柱ABC A 1B 1C 1中,D ,E 分别为AB ,BC 的中点,点F 在侧棱B 1B 上,且B 1D ⊥A 1F ,A 1C 1⊥A 1B 1.求证:(1)直线DE ∥平面A 1C 1F ;(2)平面B 1DE ⊥平面A 1C 1F .14.【2014,19】如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB ο求三棱柱111C B A ABC -的高.15.(2017天津,文17)如图,在四棱锥P-ABCD中,AD⊥平面PDC,AD∥ BC, PD⊥PB,AD=1,BC=3,CD=4,PD=2.(1)求异面直线AP与BC所成角的余弦值;(2)求证:PD⊥平面PBC;(3)求直线AB与平面PBC所成角的正弦值.16.(2016·高考浙江卷)如图,在三棱台ABC DEF中,平面BCFE⊥平面ABC,∠ACB=90°,BE=EF=FC=1,BC=2,AC=3.(1)求证:BF⊥平面ACFD;(2)求直线BD与平面ACFD所成角的余弦值.17..(2018·全国Ⅲ)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.(1)证明:平面AMD⊥平面BMC.(2)在线段AM上是否存在点P,使得MC∥平面PBD说明理由.立体几何中的翻折问题18...如图(1),在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =12AD =a , E 是AD 的中点,O 是AC 与BE 的交点.将△ABE 沿BE 折起到图(2)中△A 1BE 的位置,得到四棱锥A 1BCDE .(1)证明:CD ⊥平面A 1OC ;(2)当平面A 1BE ⊥平面BCDE 时,四棱锥A 1BCDE 的体积为362,求a 的值.19..如图1,在直角梯形ABCD 中,∠ADC =90°,AB ∥CD ,AD =CD =12AB =2, E 为AC 的中点,将△ACD 沿AC 折起,使折起后的平面ACD 与平面ABC 垂直, 如图2.在图2所示的几何体D -ABC 中:(1)求证:BC ⊥平面ACD ;(2)点F 在棱CD 上,且满足AD ∥平面BEF ,求几何体F -BCE 的体积.20.如图,长方体ABCDA1B1C1D1中,AB=16,BC=10,AA1=8.点E,F分别在A1B1,D1C1上,过点E、F的平面α与此长方体的面相交,交线围成一个正方形EFGH.(1)求证:A1E=D1F;(2)判断A1D与平面α的关系.2020届高三数学立体几何专题(文科) 1解析:(Ⅰ)设AC的中点为O,连接EO. 在三角形PBD中,中位线EOV=(Ⅱ)∵AP=1,AD=-P ABD-11=32P ABD V PA AB AD ∴⋅⋅⋅AB 32AB =, 作AH ⊥PB 角PB 于H ,由题意可知BC ⊥平面PAB ,∴BC ⊥AH ,故AH ⊥平面PBC .又PA AB AH PB ⋅==A 点到平面PBC 2.(1)证明:如图所示,取PA 的中点H ,连接EH ,DH ,因为E 为PB 的中点, 所以EH ∥AB ,EH =12AB ,又AB ∥CD ,CD =12AB . 所以EH ∥CD ,EH =CD ,因此四边形DCEH 是平行四边形, 所以CE ∥DH , 又DH ⊂平面PAD ,CE ⊄平面PAD , 所以CE ∥平面PAD . (2)如图所示,取AB 的中点F ,连接CF ,EF , 所以AF =12AB ,又CD =12AB ,所以AF =CD ,又AF ∥CD ,所以四边形AFCD 为平行四边形,所以CF ∥AD ,又CF ⊄平面PAD ,所以CF ∥平面PAD ,由(1)可知CE ∥平面PAD , 又CE ∩CF =C ,故平面CEF ∥平面PAD , 故存在AB 的中点F 满足要求.3.(1)证明 ∵PE PB =PF PC=λ(λ≠0),∴EF ∥BC .∵BC ∥AD ,∴EF ∥AD .又EF ⊄平面PAD ,AD ⊂平面PAD ,∴EF ∥平面PAD . (2)解 ∵λ=12,∴F 是PC 的中点,在Rt△PAC 中,PA =2,AC =2,∴PC =PA 2+AC 2=6,∴PF =12PC =62.∵平面PAC ⊥平面ABCD ,且平面PAC ∩平面ABCD =AC ,PA ⊥AC ,PA ⊂平面PAC ,∴PA ⊥平面ABCD ,∴PA ⊥BC .又AB ⊥AD ,BC ∥AD ,∴BC ⊥AB ,又PA ∩AB =A ,PA ,AB ⊂平面PAB , ∴BC ⊥平面PAB , ∴BC ⊥PB ,∴在Rt△PBC 中,BF =12PC =62.连接BD ,DF ,设点D 到平面AFB 的距离为d ,在等腰三角形BAF 中,BF =AF =62,AB =1, ∴S △ABF =54,又S △ABD =1,点F 到平面ABD 的距离为1, ∴由V F -ABD =V D -AFB ,得13×1×1=13×d ×54,解得d =455,即点D 到平面AFB 的距离为455.4.证明 (1)由题设知BB 1∥DD 1且BB 1=DD 1,所以四边形BB 1D 1D 是平行四边形, 所以BD ∥B 1D 1.又BD ⊄平面CD 1B 1,B 1D 1⊂平面CD 1B 1, 所以BD ∥平面CD 1B 1.因为A 1D 1∥B 1C 1∥BC 且A 1D 1=B 1C 1=BC , 所以四边形A 1BCD 1是平行四边形,所以A 1B ∥D 1C .又A 1B ⊄平面CD 1B 1,D 1C ⊂平面CD 1B 1, 所以A 1B ∥平面CD 1B 1.又因为BD ∩A 1B =B ,BD ,A 1B ⊂平面A 1BD , 所以平面A 1BD ∥平面CD 1B 1. (2)由(1)知平面A 1BD ∥平面CD 1B 1,又平面ABCD ∩平面B 1D 1C =直线l , 平面ABCD ∩平面A 1BD =直线BD ,所以直线l ∥直线BD , 在四棱柱ABCD -A 1B 1C 1D 1中,四边形BDD 1B 1为平行四边形, 所以B 1D 1∥BD ,所以B 1D 1∥l .5.连接AC 交BD 于点O ,连接MO ,因为PM =MC ,AO =OC ,所以PA ∥MO ,因为PA⊄平面MBD,MO⊂平面MBD,所以PA∥平面MBD.因为平面PAHG∩平面MBD=GH,所以AP∥GH.6.[证明] (1)在四棱锥PABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,所以PA⊥CD,因为AC⊥CD,且PA∩AC=A,所以CD⊥平面PAC,而AE⊂平面PAC,所以CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.因为E是PC的中点,所以AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,所以AE⊥PD.因为PA⊥底面ABCD,所以PA⊥AB.又因为AB⊥AD且PA∩AD=A,所以AB⊥平面PAD,而PD⊂平面PAD,所以AB⊥PD.又因为AB∩AE=A,所以PD⊥平面ABE.7.(1)证明因为ABCD为正方形,所以AD∥BC.因为AD⊄平面PBC,BC⊂平面PBC,所以AD∥平面PBC.因为AD⊂平面AEFD,平面AEFD∩平面PBC=EF, 所以AD∥EF.(2)证明因为四边形ABCD是正方形,所以AD⊥AB.因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,AD⊂平面ABCD,所以AD⊥平面PAB.因为PB⊂平面PAB,所以AD⊥PB.因为△PA B为等边三角形,E是PB中点,所以PB⊥AE.因为AE⊂平面AEFD,AD⊂平面AEFD,AE∩AD=A,所以PB⊥平面AEFD.(3)解由(1)知,V1=V C-AEFD,V E-ABC=V F-ADC=V C-AEFD=V1,∴V BC-AEFD=V1,则V P-ABCD=V1+V1=V1, ∴.8.[解] (1)证明:在菱形ABCD中,∠DAB=60°,G为AD的中点,所以BG⊥AD.又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:如图,连接PG.因为△PAD为正三角形,G为AD的中点,所以PG⊥AD.由(1)知,BG⊥AD,又PG∩BG=G,所以AD⊥平面PGB.因为PB⊂平面PGB,所以AD⊥PB.(3)当F为PC的中点时,满足平面DEF⊥平面ABCD.证明如下:取PC的中点F,连接DE、EF、DF.在△PBC中,FE∥PB,在菱形ABCD中,GB∥DE.而FE⊂平面DEF,DE⊂平面DEF,EF∩DE=E,PB⊂平面PGB,GB⊂平面PGB,PB∩GB=B,所以平面DEF∥平面PGB.因为BG⊥平面PAD,PG⊂平面PAD,所以BG⊥PG.又因为PG⊥AD,AD∩BG=G,所以PG⊥平面ABCD.又PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.9.【解】(1)证明:因为PC⊥平面ABCD,所以PC⊥DC.又因为DC⊥AC,且PC∩AC=C,所以DC⊥平面PAC.(2)证明:因为AB∥DC,DC⊥AC,所以AB⊥AC.因为PC⊥平面ABCD,所以PC⊥AB.又因为PC∩AC=C,所以AB ⊥平面PAC .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAC . (3)棱PB 上存在点F ,使得PA ∥平面CEF . 理由如下:如图,取PB 中点F ,连接EF ,CE ,CF .又因为E 为AB 的中点,所以EF ∥PA . 又因为PA ⊄平面CEF ,且EF ⊂平面CEF ,所以PA ∥平面CEF .10.证明 (1)因为四边形ABCD 是矩形,所以AB ∥CD . 又AB ⊄平面PDC ,CD ⊂平面PDC ,所以AB ∥平面PDC , 又因为AB ⊂平面ABE ,平面ABE ∩平面PDC =EF ,所以AB ∥EF . (2)因为四边形ABCD 是矩形,所以AB ⊥AD . 因为AF ⊥EF ,(1)中已证AB ∥EF ,所以AB ⊥AF .又AB ⊥AD ,由点E 在棱PC 上(异于点C ),所以点F 异于点D , 所以AF ∩AD =A ,AF ,AD ⊂平面PAD ,所以AB ⊥平面PAD ,又AB ⊂平面ABCD ,所以平面PAD ⊥平面ABCD . 11.(1)证明 因为AB =BC ,AD =CD , 所以BD 垂直平分线段AC . 又∠ADC =120°,所以MD =12AD =12,AM =32. 所以AC =3.又AB =BC =3,所以△ABC 是等边三角形,所以BM =32,所以BM MD =3,又因为PN =14PB ,所以BM MD =BNNP =3,所以MN ∥PD .又MN ⊄平面PDC ,PD ⊂平面PDC , 所以MN ∥平面PDC .(2)解 因为PA ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥PA ,又BD ⊥AC ,PA ∩AC =A ,PA ,AC ⊂平面PAC ,所以BD ⊥平面PAC .由(1)知MN ∥PD ,所以直线MN 与平面PAC 所成的角即直线PD 与平面PAC 所成的角, 故∠DPM 即为所求的角.在Rt△PAD 中,PD =2,所以sin∠DPM =DM DP =122=14, 所以直线MN 与平面PAC 所成角的正弦值为14.12.【解】 (1)取棱AD 的中点M (M ∈平面PAD ),点M 即为所求的一个点.理由如下: 因为AD ∥BC ,BC =12AD ,所以BC ∥AM ,且BC =AM ,所以四边形AMCB 是平行四边形,从而CM ∥AB . 又AB ⊂平面PAB ,CM ⊄平面PAB ,所以CM ∥平面PAB .(说明:取棱PD 的中点N ,则所找的点可以是直线MN 上任意一点)(2)证明:由已知,PA ⊥AB ,PA ⊥CD ,因为AD ∥BC ,BC =12AD ,所以直线AB 与CD 相交.所以PA ⊥平面ABCD ,从而PA ⊥BD .连接BM , 因为AD ∥BC ,BC =12AD ,所以BC ∥MD ,且BC =MD .所以四边形BCDM 是平行四边形.所以BM =CD =12AD ,所以BD ⊥AB .又AB ∩AP =A ,所以BD ⊥平面PAB . 又BD ⊂平面PBD ,所以平面PAB ⊥平面PBD . 13.[证明] (1)在直三棱柱ABCA 1B 1C 1中,A 1C 1∥AC .在△ABC 中,因为D ,E 分别为AB ,BC 的中点, 所以DE ∥AC ,于是DE ∥A 1C 1.又DE ⊄平面A 1C 1F ,A 1C 1⊂平面A 1C 1F , 所以直线DE ∥平面A 1C 1F . (2)在直三棱柱ABCA 1B 1C 1中,A 1A ⊥平面A 1B 1C 1.因为A 1C 1⊂平面A 1B 1C 1,所以A 1A ⊥A 1C 1.又A 1C 1⊥A 1B 1,A 1A ⊂平面ABB 1A 1,A 1B 1⊂平面ABB 1A 1,A 1A ∩A 1B 1=A 1, 所以A 1C 1⊥平面ABB 1A 1.因为B 1D ⊂平面ABB 1A 1,所以A 1C 1⊥B 1D .又B 1D ⊥A 1F ,A 1C 1⊂平面A 1C 1F ,A 1F ⊂平面A 1C 1F ,A 1C 1∩A 1F =A 1, 所以B 1D ⊥平面A 1C 1F .因为直线B 1D ⊂平面B 1DE ,所以平面B 1DE ⊥平面A 1C 1F14.证明:(Ⅰ)连接 BC 1,则O 为B 1C 与BC 1的交点,∵AO ⊥平面BB 1C 1C . ∴AO ⊥B 1C , …2分 因为侧面BB 1C 1C 为菱形,∴BC 1⊥B 1C ,…4分 ∴BC 1⊥平面ABC 1,∵AB平面ABC 1,故B 1C ⊥AB . …6分(Ⅱ)作OD ⊥BC ,垂足为D ,连结AD ,∵AO ⊥BC ,∴BC ⊥平面AOD ,又BC 平面ABC ,∴平面ABC ⊥平面AOD ,交线为AD , 作OH ⊥AD ,垂足为H ,∴OH ⊥平面ABC . …9分 ∵∠CBB 1=60°,所以ΔCBB 1为等边三角形,又BC =1,可得OD =34, 由于AC ⊥AB 1,∴11122OA B C ==,∴227AD OD OA =+=由 OH·AD=OD·OA ,可得OH=2114,又O 为B 1C 的中点,所以点B 1到平面ABC 的距离为21, 所以三棱柱ABC-A 1B 1C 1的高高为217。
2020学年高考数学(文)二轮复习解题方法与技巧练习:专题七 立体几何 Word版含答案

3、如图,在四棱锥 中,底面 为正方形,平面 底面 , ,点 分别是 的中点.
(1)求证: 平面 ;
(2)求证: 平面 ;
(3)在棱 上求作一点P,使得 ,并说明理由.
4、已知一个几何体的三视图如图所示.
(1)求此几何体的表面积;
(2)如果点 在正视图中所处的位置为:P为三角形的顶点,Q为四边形的顶点,求在该几何体的侧面上,从点P到点Q的最短路径的长.
5、已知直三棱柱 中, ,E是 的中点,F是 上一点,且 .
(1)证明: 平面 ;
(2)求三棱锥 的体积.
6、如图,在正方体 中, 分别是 的中点.
(1)求证: 平面 ;
(2)求证:
7、如图,在四棱锥 中, , , , .
(1)求证: ;
(2)当几何体 的体积等于 时,求四棱锥 的表面积.
答案以及解析
1答案及解析:
答案:(1)该四棱锥的俯视图为内含对角线,边长为 的正方形,如图,其面积为 .
(2)由侧视图可求得 ,
由正视图可知 且 ,
所以在 中, .
2答案及解析:
答案:(1)因为 平面 , 平面 ,
平面 平面 ,
所以 .
因为E为棱 的中点,
所以F为棱 的中点.
(2)因为 ,F为 上的中点,
所以 ,
, , ,
所以此几何体的表面积
(2)分别沿点 与点 所在的母线剪开圆柱的侧面两点在该几何体的侧面上的最短路径的长为 .
5答案及解析:
答案:(1)连接 ,在 中, ,故 ,
由于三棱柱 是直三棱柱,故 平面 ,直角三角形 中,因为 , ,所以 ,又因 为直角,即 ,再由E为 中点,并且 为等腰三角形可知 ,结合 , 得 平面 ,综合 , , ,得到 平面 .
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【复习要求】
1.了解四个公理与等角定理; 2.理解空间中线面平行、垂直的有关性质与判定定理; 3.能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题. 【例题分析】 例 1 如图,在正方体 ABCD-A1B1C1D1 中,E,F 分别是 AB,AA1 的中点. 求证:(Ⅰ)E、C、D1、F 四点共面;(Ⅱ)CE、DA、D1F 三线共点.
【分析】要证明“线面平行”,可通过“线线平行”或“面面平行”进行转化;题目中出现了中点的条件,因
此可考虑构造(添加)中位线辅助证明. 证明:方法一,取 PD 中点 E,连接 AE,NE. ∵底面 ABCD 是平行四边形,M,N 分别是 AB,PC 的中点,
∴MA∥CD, MA 1 CD. 2
∵E 是 PD 的中点,
又 EG 平面 EFG,∴平面 EFG⊥平面 ABC.
练习 7-1
一、选择题:
1.已知 m,n 是两条不同直线, , ,是三个不同平面,下列命题中正确的是( )
(A)若 m∥,n∥,则 m∥n
(B)若 m⊥,n⊥,则 m∥n
(C)若⊥, ⊥,则∥
(D)若 m∥,m∥,则 ∥
2.已知直线 m,n 和平面,,且 m⊥n,m⊥, ⊥,则( )
专题 07 立体几何
立体几何的知识是高中数学的主干内容之一,它主要研究简单空间几何体的位置和数量关系.本专题内容分为 三部分:一是点、直线、平面之间的位置关系,二是简单空间几何体的结构,三是空间向量与立体几何.在本专题
中,我们将首先复习空间点、直线、平面之间的位置关系,特别是对特殊位置关系(平行与垂直)的研究 ;其后, 我们复习空间几何体的结构,主要是柱体、锥体、台体和球等的性质与运算;最后,我们通过空间向量的工具证明 有关线、面位置关系的一些命题,并解决线线、线面、面面的夹角问题.
α∥β
α∥β
α∥β
α∥β
例 3 在直三棱柱 ABC-A1B1 C1中,AA1=AC,AB⊥AC,求证:A1C⊥BC1.
【分析】要证明“线线垂直”,可通过“线面垂直”进行转化,因此设法证明 A1C 垂直于经过 BC1 的平面即 可.
证明:连接 AC1. ∵ABC-A1B1C1 是直三棱柱, ∴AA1⊥平面 ABC, ∴AB⊥AA1. 又 AB⊥AC, ∴AB⊥平面 A1ACC1, ∴A1C⊥AB.① 又 AA1=AC, ∴侧面 A1ACC1 是正方形, ∴A1C⊥AC1.② 由①,②得 A1C⊥平面 ABC1, ∴A1C⊥BC 1. 【评述】空间中直线和平面垂直关系的论证往往是以“线面垂直”为核心展开的.如本题已知条件中出现的“直 三棱柱”及“AB⊥AC”都要将其向“线面垂直”进行转化. 例 4 在三棱锥 P-ABC 中,平面 PAB⊥平面 ABC,AB⊥BC,AP⊥PB,求证:平面 PAC⊥平面 PBC.
(Ⅰ)求 MN 的长; (Ⅱ)求证:PA⊥BC. 10.如图,在四面体 ABCD 中,CB=CD,AD⊥BD,且 E、F 分别是 AB、BD 的中点.求证:
(Ⅰ)直线 EF∥平面 ACD; (Ⅱ)平面 EFC⊥平面 BCD.
11.如图,平面 ABEF⊥平面 ABCD,四边形 ABEF 与 ABCD 都是直角梯形,∠BAD=∠FAB=90°,BC∥AD,
∴直线 EF∥平面 A1ACC1.
(2)解:当 BG 1 时,平面 EFG⊥平面 ABC,证明如下: GA 3
连接 EG,FG. ∵侧面 A1ABB 1是菱形,且∠A1AB=60°,∴△A1AB 是等边三角形.
∵E 是 A1B 的中点, BG 1 ,∴EG⊥AB. GA 3
∵平面 A1ABB 1⊥平面 ABC,且平面 A1ABB1∩平面 ABC=AB, ∴EG⊥平面 ABC.
【分析】要证明“面面垂直”,可通过“线面垂直”进行转化,而“线面垂直”又 进行转化.
证明: ∵平面 PAB⊥平面 ABC,平面 PAB∩平面 ABC=AB,且 AB⊥BC, ∴BC⊥平面 PAB, ∴AP⊥BC. 又 AP⊥PB, ∴AP⊥平面 PBC,
又 AP 平面 PAC,
∴平面 PAC⊥平面 PBC. 【评述】关于直线和平面垂直的问题,可归纳如下方法:
(1)
(2)特殊的四棱柱:
(3)其他空间几何体的基本概念: 几何体
基本概念
正棱锥 底面是正多面形,并且顶点在底面的射影是底面的中心
正棱台 正棱锥被平行于底面的平面所截,截面与底面间的几何体是正棱台
圆柱 以矩形的一边所在的直线为轴,将矩形旋转一周形成的曲面围成的几何体
圆锥
以直角三角形的一边所在的直线为轴,将直角三角形旋转一周形成的曲面 围成的几何体
∴点 P 是平面 A1ADD1 和平面 ABCD 的一个公共点.
∵平面 A1ADD1∩平面 ABCD=AD,
∴P∈AD,
∴CE、DA、D 1F 三线共点.
【评述】1、证明多点共面、多点共线、多线共面的主要依据:
(1)证明多点共面常用公理 2 及其推论;
(2)证明多点共线常用公理 3,即证明点在两个平面内,从而点在这两个平面的交线上;
∴NE∥CD, NE 1 CD. 2
∴MA∥NE,且 MA=NE, ∴AENM 是平行四边形, ∴MN∥AE.
又 AE 平面 PAD,MN 平面 PAD,
∴MN∥平面 PAD. 方法二取 CD 中点 F,连接 MF,NF. ∵MF∥AD,NF∥PD, ∴平面 MNF∥平面 PAD, ∴MN∥平面 PAD. 【评述】关于直线和平面平行的问题,可归纳如下方法:
(B)过直线 m 有且只有一个平面与平面垂直
(C)与直线 m 垂直的直线不可能与平面平行
(D)与直线 m 平行的平面不可能与平面垂直
二、填空题:
5.在三棱锥 P-ABC 中,PA PB 6 ,平面 PAB⊥平面 ABC,PA⊥PB,AB⊥BC,∠BAC=30°,则 PC=______.
6.在直四棱柱 ABCD-A1B1C1D1 中,当底面 ABCD 满足条件______时,有 A1C⊥B1D1.(只要求写出一种条件即可) 7.设,是两个不同的平面,m,n 是平面,之外的两条不同直线,给出四个论断:
(Ⅰ)求证:直线 EF∥平面 A1ACC1; (Ⅱ)在线段 AB 上确定一点 G,使平面 EFG⊥平面 ABC,并给出证明. 证明:(Ⅰ)连接 A1C,A1E. ∵侧面 A1ABB1是菱形, E 是 AB 1的中点, ∴E 也是 A1B 的中点, 又 F 是 BC 的中点,∴EF∥A1C.
∵A1C 平面 A1ACC1,EF 平面 A1ACC1,
直线在平面内,记作:a . 直线与平面相交,记作:a∩=A,其中特殊位置关系:直线与平面垂直相交. ②无公共点:直线与平面平行,记作:a∥.
(3)空间两个平面: ①有公共点:相交,记作:∩=l,其中特殊位置关系:两平面垂直相交. ②无公共点:平行,记作:∥. 2.空间作为推理依据的公理和定理: (1)四个公理与等角定理: 公理 1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理 2:过不在一条直线上的三点,有且只有一个平面. 公理 3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理 4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)空间中线面平行、垂直的性质与判定定理: ①判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. ②性质定理: 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图:
BC 1 AD, BE // AF, BE 1 AF ,G,H 分别为 FA,FD 的中点.
2
2
(Ⅰ)证明:四边形 BCHG 是平行四边形; (Ⅱ)C,D,F,E 四点是否共面?为什么? (Ⅲ)设 AB=BE,证明:平面 ADE⊥平面 CDE.
【知识要点】 1.简单空间几何体的基本概念:
§7-2 空间几何体的结构
§7-1 点、直线、平面之间的位置关系
【知识要点】 1.空间直线和平面的位置关系: (1)空间两条直线: ①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交. ②无公共点:平行或异面. 平行,记作:a∥b. 异面中特殊位置关系:பைடு நூலகம்面垂直. (2)空间直线与平面: ①有公共点:直线在平面内或直线与平面相交.
圆台
以直角梯形中垂直于底边的腰所在的直线为轴,将直角梯形旋转一周形成 的曲面围成的几何体
球面 半圆以它的直径为轴旋转,旋转而成的曲面
球 球面所围成的几何体
(A)n⊥
(B)n∥,或 n
(C)n⊥
(D)n∥,或 n
3.设 a,b 是两条直线,、是两个平面,则 a⊥b 的一个充分条件是( )
(A)a⊥,b∥ ,⊥
(B)a⊥,b⊥ ,∥