初中毕业班数学综合练习(一)

合集下载

中考冲刺--初中毕业班综合测试(一)数学试题

中考冲刺--初中毕业班综合测试(一)数学试题

2010年南沙区初中毕业综合测试(一)试题数学一、选择题(每小题3分,共30分)1.5-的相反数是(※).A.15B.5-C.5D.15-2.1亿可记作108,如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食(※)A.1.3×108千克B.1.3×107千克C.1.3×106千克D.1.3×105 千克3.我区某街道进行街边人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是(※).A.正三角形B.正方形C.正五边形D.正六边形4.下列运算正确的是(※)A.1243xxx=∙ B.623(6)(2)3x x x-÷-=C.22(2)4x x-=- D.23a a a-=-5.关于x的一元二次方程0122=+-xx根的情况是(※).A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定6. 在下面的四个几何体中,它们各自的左视图与主视图可能不相同的是( * )正方体长方体圆柱圆锥A B C D7.下列命题中,真命题是( ※ ).A .同位角相等B .内错角相等C .同旁内角互补D .对顶角相等8.如图,已知直线 25,115,//=∠=∠A C CD AB , 则=∠E ( ※ ).A .70ºB .80ºC . 90ºD .100º9. Rt ABC △中,90C ∠=,8AC =,6BC =,两个相等的圆⊙A,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ※ )A .254π B .258π C .2516π D .2532π 10.如图,有一张直角三角形纸片,两直角边6AC cm =,9BC cm =,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )cm .A 、254B 、223C 、74D 、25第二部分 非选择题 (共120分)二、填空题(每小题3分,共18分) 11.在函数y x 的取值范围是 *** .12.方程121x x =+的解是 *** . 13.如果反比例函数的图象经过点(-3,2),那么这个函数的解析析式是 *** . 14.分解因式: 24x -= *** 。

2024年福建省莆田市初中毕业班质量检查数学试卷 和答案

2024年福建省莆田市初中毕业班质量检查数学试卷 和答案

2024年莆田市初中毕业班质量检查试卷数学(满分150分;考试时间:120分钟)友情提示:本试卷分为“试题”和“答题卡”两部分,答题时,请按答题卡中的“注意事项”认真作答,答案写在答题卡上的相应位置。

一、选择题:本大题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.小华5月份体重增长2kg,记作+2kg.小颖体重减少1kg,记作A.+1kg B.-1kg C.-2kg D.-3kg2.2024年2月17日,全球首架C919大型客机从上海起飞参加第九届新加坡国际航空航天与防务展.商飞C919是中国首款按照国际通行适航标准自行研制、具备自主知识产权的喷气式中程干线客机.如图是C919大型客机的实物图,其俯视图是A.B.C.D.3.在2023中国正能量网络精品征集展播活动中,《16频道》以世界听得懂、看得见的表达方式,讲述海军故事,诠释了人类命运共同体理念.海外传播量超过3000万次,数据3000万用科学记数法表示是A.3000×104B.3×106C.3×107D.3×1084.红团是莆田的特色小吃,在以下红团图案中,既是中心对称图形,又是轴对称图形的是A.B.C.D.5.下列运算结果为x3的是A.x+x2B.x4-x C.x·x2D.x6÷x26.将一块含30°角的直角三角板ABC按如图方式放置在A4纸片上,其中点A,B分别落在纸片边上.若∠1=105°,则∠2的度数为A.15°B.60°C.65°D.75°7.若a =20242-2023×2024,2024420252⨯-=b ,20222024⨯=c ,则a ,b ,c 的大小关系是A .a <b <cB .a <c <bC .b <c <aD .c <b <a8.用一张正方形纸板,制成一副七巧板,如图1.在矩形区域内将它拼成一幅“火箭”图案,如图2.若在矩形区域内随机取点,则这个点落在“火箭”图案部分的概率为A .12B .22C .47D .389.如图,在Rt △ABC 中,∠ACB =90°,∠B =60°,求作∠ACB 的三等分线.阅读以下作图步骤:(1)分别以点A ,C 为圆心,大于12AC 的长为半径画弧,两弧分别交于点D ,E ,作直线DE交AB 于点F ,交AC 于点H ,画射线CF ;(2)以点C 为圆心,适当的长为半径画弧,交BC 于点M ,交CF 于点N ;(3)分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧在∠BCF 的内部交于点G ,画射线CG ,则射线CF ,CG 即为所求.下列说法不正确的是A .AF =CF B .12FH CH=C .CG ⊥ABD .△BCF 为等边三角形10.为了解全班学生的身高情况,王老师测量了班上在场学生的身高,经计算后发现男生的平均身高是170cm ,女生的平均身高是160cm ,当天有两名学生缺课.第二天这两名学生均到校上课,老师也测量了他们的身高.有趣的是,重新计算后全班男、女生的平均身高都不变.下列说法正确的是A .全班学生的平均身高不变B .缺课的两名学生身高相同C .若缺课的两名学生都是男生,则身高都是170cmD .若缺课的学生是男、女生各一名,则男生身高170cm ,女生身高160cm 二、填空题:本大题共6小题,每小题4分,共24分。

2013南沙区初中毕业班综合测试(一)-数学 参考答案及评分标准

2013南沙区初中毕业班综合测试(一)-数学 参考答案及评分标准

2013年南沙区九年级综合测试参考答案及评分标准数 学说明:1.本解答给出了一种解法供参考,如果考生的解法与本解答不同,各学校可根据试题的主要考查内容比照评分标准制订相应的评分细则.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不 得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:(本大题考查基本知识和基本运算.共10小题,每小题3分,共30分)二、填空题:(本大题查基本知识和基本运算,体现选择性.共6小题,每小题3分,共18分) 11.21-12.1≥x 13.9=x 14. 3- 15.π2 16.(2013,1) 三、解答题:(本大题共9小题,满分102分.解答须写出文字说明、证明过程和演算步骤.) 17. (本小题满分9分)解: 由①得 2->x -----------------2分 由②得 2<x ----------------4分∴ 不等式组的解集为 22<<-x ----------------7分 把解集在数轴上表示----------------9分18.(本小题满分9分)解:原式))((1)(2y x y x y x y x -+∙++= -----------------5分 yx -=1-----------------7分 ° °19. (本小题满分10分)(1)图略……………………4分注:图中AB 和AD 边上的弧各1分,交叉的弧1分 连接点A 到交叉弧交点得到AE 得1分 (2)证明:∵四边形ABCD 是等腰梯形∴AD ∥BC, ∠BAD =∠D =120°-----------------------5分∵AE 平分∠BAD ∴∠EAD=60°------------------------------6分∴∠EAD+∠D=180°------------------------------8分 ∴AE ∥DC, ----------------------------------------9分∴四边形AECD 是平行四边形------------------------------10分 第2问也可以用其他证明方法。

广东省白云区2012年初中数学毕业班综合测试试题(一) 人教新课标版

广东省白云区2012年初中数学毕业班综合测试试题(一)  人教新课标版

2012年白云区初中毕业班综合测试(一)数学试题本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.数据3,1,5,2,7,2的极差是(*)(A)2(B)7(C)6(D)52.单项式-22x y的系数为(*)(A)2(B)-2(C)3(D)-33.不等式组26020xx-<⎧⎨+≥⎩的解集是(*)(A)x>3(B)-2≤x<3(C)x≥-2(D)-2<x≤34.一个多边形的内角和与它的外角和相等,则这个多边形的边数为(*)(A)4(B)5(C)6(D)75.如图1,△ABC中,∠C=90°,∠A的正切是(*)(A)B CA B(B)B CA C(C)A CB C(D)A CA B6.已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为(*)(A)4cm (B)6cm (C)8cm (D)10cm7.64的算术平方根与64的立方根的差是(*)(A)-12(B)±8(C)±4(D)48.如图2,⊙O是△ABC的外接圆,∠A=50°,则∠OBC的度数等于(*)(A)50°(B)40°(C)45°(D)100°9.如图3,梯形ABCD中,AD∥BC,AC、BD交于点O,AD=1,BC=3,则S△AOD︰S△BOC等于(*)(A)1︰2(B)1︰3(C)4︰9(D)1︰910.若一次函数y=kx+b,当x的值增大1时,y值减小3,则当x的值减小3时,y值(*)(A)增大3 (B)减小3 (C)增大9 ( D)减小9第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.已知∠α=50°,则∠α的余角的度数为 * °. 12.不等式-26x >的解集为 * .13.点P (-2,1)关于原点对称的点P '的坐标为 * .14.在一次数学测验中,某学习小组的六位同学的分数分别是54,85,92,73,61,85.这组数据的平均数是 * ,众数是 * ,中位数是 * . 15.计算并化简式子2224()22y x x xx yyy⋅-÷的结果为 * .16.如图4,A D 是以边长为6的等边△ABC一边AB为半径的四分之一圆周,P为A D 上一动点.当BP经过弦AD的中点E时,四边形ACBE的周长为 * (结果用根号表示).三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程组:32435x y x y +=⎧⎨-=⎩.18.(本小题满分9分)已知,如图5,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF. 求证:BE=DF.19.(本小题满分10分)先化简,再求值:2(2)(3)(3)x x x +-+-,其中x =-32.y1x1O图6BAABCDEF 图5OC B A图2图1 CB A ODCB A 图3 图4BC P DA²20.(本小题满分10分)如图6,等腰△OAB的顶角∠AOB=30°,点B在x 轴上,腰OA=4. (1)B点的坐标为: ;(2)画出△OAB关于y 轴对称的图形△OA1B1(不写画法,保留画图痕迹),求出A1与B1的坐标;(3)求出经过A1点的反比例函数解析式.(注:若涉及无理数,请用根号表示)21.(本小题满分12分)在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标. (1)可得到的点的个数为 ;(2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解); (3)过点P的正比例函数中,函数y 随自变量x 的增大而增大的概率为 .22.(本小题满分11分)在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学.清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的1.2倍骑车追赶,结果他们在学校大门处相遇.已知他们家离学校大门处的骑车距离为15千米.求王真的速度.23.(本小题满分13分) 如图7,已知⊙O的弦AB等于半径,连结OB并延长使BC=OB. (1)∠ABC= °;(2)AC与⊙O有什么关系?请证明你的结论;(3)在⊙O上,是否存在点D,使得AD=AC?若存在,请画出图形,并给出证明;若不存在,请说明理由.24.(本小题满分14分)如图8,正方形ABCD的边长是4,∠DAC的平分线交DC于点E,点P、Q分别是边AD和AE上的动点(两动点都不与端点重合).(1)PQ+DQ的最小值是 ;(2)说出PQ+DQ取得最小值时,点P、点Q的位置,并在图8中画出;(3)请对(2)中你所给的结论进行证明.25.(本小题满分14分)已知抛物线y =2x +kx +2k -4.(1)当k =2时,求出此抛物线的顶点坐标;(2)求证:无论k 为什么实数,抛物线都与x 轴有交点,且经过x 轴上的一定点; (3)已知抛物线与x 轴交于A(x 1,0)、B(x 2,0)两点(A在B的左边),|x 1|<|x 2|,与y 轴交于C 点,且S△ABC =15.问:过A,B,C三点的圆与该抛物线是否有第四个交点?试说明理由.如果有,求出其坐标.A B CD E 图8C参考答案及评分建议(2012一模)一、选择题二、填空题三、解答题 17.(本小题满分9分) 解:324 35 x y x y +=⎧⎨-=⎩①②解法一(加减法):①-②³3,………………………………………………3分 得(32)3(3)435x y x y +--=-⨯3239415x y x y +-+=-………………………………………………………5分 1111y =-…………………………………………………………………………6分 y =-1,…………………………………………………………………………7分代入②式,得x =2,……………………………………………………………8分 ∴原方程组的解为:21x y =⎧⎨=-⎩.…………………………………………………9分解法二(代入法):由②得:35 x y =+③,……………………………………………………3分-5542-2-4-6Oyx1备用图把③代入①式,……………………………………………………………………5分得3(35y+)+2y=4,………………………………………………………6分解得y=-1,……………………………………………………………………7分代入③式,得x=2,……………………………………………………………8分∴原方程组的解为:21xy=⎧⎨=-⎩.…………………………………………………9分18.(本小题满分9分)证法一:∵四边形ABCD为矩形,∴AB=CD,∠A=∠C=90°.…………………………………………4分在△ABE和△CDF中,……………………………………………………5分∵A E C FA CA B C D=⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△CDF(SAS),……………………8分∴BE=DF(全等三角形对应边相等).…………………………………9分证法二:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,…………………………………………………3分又∵AE=CF,∴AD-AE=BC-CF,……………………………5分即ED=BF,…………………………………………………………………6分而ED∥BF,∴四边形BFDE为平行四边形………………………………………………8分∴BE=DF(平行四边形对边相等).……………………………………9分19.(本小题满分10分)解:2(2)(3)(3)x x x+-+-=2244(9)x x x++--………………………………………………………5分=22449x x x++-+…………………………………………………………6分=413x+………………………………………………………………………7分当x=-32时,………………………………………………………………8分原式=4³(-32)+13=-6+13……………………………………………………………9分=7………………………………………………………………………10分20.(本小题满分10分)解:(1)(4,0);…………………………………………………………1分(2)如图1,过点A作AC⊥x轴于C点.………………………………2分在Rt△OAC中,∵斜边OA=4,∠AOB=30°,∴AC=2,OC=OA²cos.………………………………………………5分由轴对称性,得A点关于y轴的对称点A1,………………………………………………6分B点关于y轴的对称点B1的坐标为(-4,0);…………………………7分(3)设过A1点的反比例函数解析式y=kx,……………………………8分把点A1,2)代入解析式,,∴k从而该反比例函数的解析式为y=-x.…………………………………10分21.(本小题满分12分)解:(1)6;……………………………………………………………………3分(2)树形图如下:所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分列表法:y1x1O图1BAA1B1 C 点P的横坐标点P的纵坐标-2-3 4-3-2 4 -24-3……………6分……………………………………………………………………………………………6分所经过的6个点分别为P1(-2,-3)、P2(-2,4)、P3(-3,-2)、P4(-3,4)、P5(4,-2)、P6(4,-3),……………………………8分其中经过第二、四象限的共有4个点,………………………………………………9分∴P(经过第二、四象限)=46=23;……………………………………………10分(3)13.……………………………………………………………………………12分22.(本小题满分11分)解:设王真骑自行车的速度为x千米/时,……………………………………1分则李浩的速度为1.2x千米/时.根据题意,得1510151.260x x+=.…………………………………………………6分即151151.26x x+=,两边同乘以6x去分母,得75+x=90,………………………………………………………………8分解得x=15.……………………………………………………………………9分经检验,x=15是该分式方程的根.………………………………………10分答:王真的速度为15km/时.………………………………………………11分23.(本小题满分13分)解:(1)120°;……………………………………………………………1分(2)AC是⊙O的切线.……………………………………………………3分证法一∵AB=OB=OA,∴△OAB为等边三角形,…………………………4分∴∠OBA=∠AOB=60°.……………………………………………5分∵BC=BO,∴BC=BA,∴∠C=∠CAB,……………………………………………………………6分又∵∠OBA=∠C+∠CAB=2∠C,即2∠C=60°,∴∠C=30°,………………………………………7分在△OAC中,∵∠O+∠C=60°+30°=90°,∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;证法二:∵BC=OB,∴点B为边OC的中点,……………………………………4分即AB为△OAC的中位线,…………………………………………………5分∵AB=OB=BC,即AB是边OC的一半,……………………………6分∴△OAC是以OC为斜边的直角三角形,…………………………………7分∴∠OAC=90°,…………………………………………………………8分∴AC是⊙O的切线;(3)存在.……………………………………………………………………9分 方法一:如图2,延长BO交⊙O于点D,即为所求的点.…………………………10分 证明如下:连结AD,∵BD为直径,∴∠DAB=90°.…………………………11分 在△CAO和△DAB中,∵C A O D A B A O A B A O C A B D ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CAO≌△DAB(ASA),………………12分 ∴AC=AD.…………………………………………………………………13分 (也可由OC=BD,根据AAS证明;或HL证得,或证△ABC≌△AOD) 方法二:如图3,画∠AOD=120°,……………………………………………10分 OD交⊙O于点D,即为所求的点.…………………………………………11分 ∵∠OBA=60°,∴∠ABC=180°-60°=120°. 在△AOD和△ABC中,∵O A B A A O D A B C O D B C =⎧⎪∠=∠⎨⎪=⎩,∴△AOD≌△ABC(SAS),………………12分 ∴AD=AC.…………………………………………………………………13分24.(本小题满分14分) 解:(1)(2)如图4,过点D作DF⊥AC,垂足为F,………………………3分 DF与AE的交点即为点Q;………………………………………………4分 过点Q作QP⊥AD,垂足即为点P;……………………………………5分 (3)由(2)知,DF为等腰Rt △ADC底边上的高, ∴DF=AD²sin45°=4³2=∵AE平分∠DAC,Q为AE上的点, 且QF⊥AC于点F,QP⊥AD于点P, ∴QP=QF(角平分线性质定理),……………………………………7分∴PQ+DQ=FQ+DQ=DF=CD C下面证明此时的PQ+DQ为最小值: 在AE上取异于Q的另一点Q1(图5).…………………………………9分 ①过Q1点作Q1F1⊥AC于点F1,………………………………………10分 过Q1点作Q1P1⊥AD于点P1,…………………………………………11分 则P1Q1+DQ1=F1Q1+DQ1, 由“一点到一条直线的距离”,可知,垂线段最短, ∴得F1Q1+DQ1>FQ+DQ,即P1Q1+DQ1>PQ+DQ.…………………………………………12分 ②若P2是AD上异于P1的任一点,………………………………………13分 可知斜线段P2Q1>垂线段P1Q1,………………………………………14分 ∴P2Q1+DQ1>P1Q1+DQ1>PQ+DQ. 从而可得此处PQ+DQ的值最小.25.(本小题满分14分) 解:(1)当k =2时,抛物线为y =2x +2x ,…………………………1分 配方:y =2x +2x =2x +2x +1-1 得y =2(1)x +-1,∴顶点坐标为(-1,-1);………………………………………………3分(也可由顶点公式求得) (2)令y =0,有2x +kx +2k -4=0,………………………………4分 此一元二次方程根的判别式⊿=2k -4²(2k -4)=2k -8k +16=2(4)k -,…………………5分 ∵无论k 为什么实数,2(4)k -≥0,方程2x +kx +2k -4=0都有解,…………………………………………6分 即抛物线总与x 轴有交点.P Q A B C D E 图4 F P Q A B C D E图5 FP 2 Q1F 1 P 1由求根公式得x=42k k-±-,………………………………………………7分当k≥4时,x=(4)2k k-±-,x1=(4)2k k-+-=-2,x2=(4)2k k---=-k+2;当k<4时,x=(4)2k k-±-,x1=(4)2k k-+-=-k+2,x2=(4)2k k---=-2.即抛物线与x轴的交点分别为(-2,0)和(-k+2,0),而点(-2,0)是x轴上的定点;…………………………………………8分(3)过A,B,C三点的圆与该抛物线有第四个交点.…………………9分设此点为D.∵|x1|<|x2|,C点在y轴上,由抛物线的对称,可知点C不是抛物线的顶点.……………………………10分由于圆和抛物线都是轴对称图形,过A、B、C三点的圆与抛物线组成一个轴对称图形.……………………11分∵x轴上的两点A、B关于抛物线对称轴对称,∴过A、B、C三点的圆与抛物线的第四个交点D应与C点关于抛物线对称轴对称.……………………………………12分由抛物线与x轴的交点分别为(-2,0)和(-k+2,0):当-2<-k+2,即k<4时,……………………………………………13分A点坐标为(-2,0),B为(-k+2,0).即x1=-2,x2=-k+2.由|x1|<|x2|得-k+2>2,解得k<0.根据S△ABC=15,得12AB²OC=15.AB=-k+2-(-2)=4-k,OC=|2k-4|=4-2k,∴12(4-k)(4-2k)=15,化简整理得267k k--=0,解得k=7(舍去)或k=-1.此时抛物线解析式为y=26x x--,其对称轴为x=12,C点坐标为(0,-6),它关于x=12的对称点D坐标为(1,-6);………………………………14分当-2>-k+2,由A点在B点左边,知A点坐标为(-k+2,0),B为(-2,0).即x 1=-k +2,x 2=-2. 但此时|x 1|>|x 2|,这与已知条件|x 1|<|x 2|不相符, ∴不存在此种情况.故第四个交点的坐标为(1,-6). (如图6)-2-4-6O y x C 1 D B A 图6。

北师大版八年级(上)数学《平均数、中位数与众数》综合练习(含答案)

北师大版八年级(上)数学《平均数、中位数与众数》综合练习(含答案)

平均数、中位数与众数综合练习【基础知识训练】1.(天津市)已知一组数据:-2,-2,3,-2,x,-1,若这组数据的平均数是0.5,则这组数据的中位数是______.2.一个射手连续射靶20次,其中2次射中10环,7次射中9环,8次射中8环,3次射中7环,那么,这个射手中靶的环数的平均数是_______(保留一位小数),众数是_____,中位数是_______.3.某校10位同学一学年参加公益活动的次数分别为:2,1,3,3,4,5,3,6,5,3,这组数据的平均数和众数分别为()A.3,3B.3.5,3C.3,3.5D.4,34.已知一组数据:23,27,20,18,x,12,若它们的中位数是21,那么数据x是()A.23B.22C.21D.205.某校四个绿化小组一天植树的棵数如下:10,10,x,8,已知这组数据的众数和平均数相等,那么这组数据的中位数是()A.8B.9C.10D.126.在某次数学测验中,随机抽取了10份试卷,其成绩如下:85,81,89,81,72,82,77,81,79,83,则这组数据的众数,平均数与中位数分别为()A.81,82,81B.81,81,76.5C.83,81,77D.81,81,817.已知一组数据-3,-2,0,6,6,13,20,35,那么这组数据的中位数和众数分别是()A.6和6B.3和6C.6和3D.9.5和68.下表是某校随机抽查的20名八年级男生的身高统计表:在这组数据库,众数是______,中位数是________.【创新能力应用】9.制鞋厂准备生产一批男皮鞋,经抽样120名中年男子,得知所需鞋号和人数如下:并求出鞋号的中位数是24,众数是25,平均数是24,下列说法正确的是( )A.所需27cm 鞋的人数太少,27cm 鞋可以不生产B.因为平均数为24,所以这批男鞋可以一律按24cm 的鞋生产C.因为只位数是24,故24cm 的鞋的生产量应占首位D.因为众数是25,故25cm 的鞋的生产量要占首位 10.10名工人某天生产同一种零件,生产的件数分别是15,17,14,10,15, 17,17,15,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( )A.a>b>cB.b>c>aC.c>a>bD.c>b>a11.由小到大排列的一组数据x 1,x 2,x 3,x 4,x 5,其中每个数据都小于-1,则对于样本1,x 1,-x 2,x 3,-x 4,x 5的中位数可表示为( )A.53422111 (2222)x x x x x x B C D +-+- 12.从甲、乙、丙三个厂家生产的同一种产品中各抽取8件产品,对其使用寿命跟踪调查,结果如下:(单位:年)甲:3,4,5,6,8,8,8,10乙:4,6,6,6,8,9,12,13丙:3,3,4,7,9,10,11,12三个厂家在广告中都称该产品的使用寿命是8年,请根据结果判断厂家在广告中分别运用了平均数,众数,中位数中的哪一种集中趋势的特征数:甲:________;乙:_________;丙______.13.为了调查七年级某班学生每天完成家庭作业所需的时间,在该班随机调查了8名学生,他们每天完成作业所需时间(单位:分)分别为:60,55,75,55,55,43,65,40.(1)求这组数的众数,中位数;(2)求这8名学生每天完成家庭作业的平均时间,如果按照学校要求,学生每天完成家庭作业时间不能超过60分钟,问该班学生每天完成家庭作业的平均时间是否符合学校的要求?14.(河南)某公司员工的月工资情况统计如下表:(1)分别计算该公司月工资的平均数,中位数和众数;(2)你认为用(1)中计算出的哪个数据来代表该公司员工的月工资水平更为合适?请简要说明理由;(3)请画出一种你认为合适的统计图来表示上面表格中的数据.15.某校在一次数学检测中,八年级甲、乙两班学生的数学成绩统计如下:请根据表中提供的信息回答下列问题:(1)甲班的众数为_____分,乙班的众数为______分,从众数看成绩较好的是_____班.(2)甲班的中位数是_______分,乙班的中位数是________分,甲班成绩在中位数以上(包括中位数)的学生所占的百分比是______%;乙班成绩在中位数以上(包括中位数)的学生所占的百分比是______%,从中位数看成绩较好的是_______班.(3)甲班的平均成绩是______分,乙班的平均成绩是_______分,从平均成绩看成绩较好的是______班.【三新精英园】16.某学校对初中毕业班经过初步比较后,决定从九年级(1),(4),(8)班这三个班中推荐一个班为市级先进班集体的候选班,现对这三个班进行综合素质考评,下表是五项素质考评的得分表(以分为单位,每项满分为10分)(1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将它们得分进行排序;(2)根据你对表中五个项目的重要程度的认识,设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),按这个比例对各班的得分重新计算,比较好大小关系,并从中推荐一个得分最高....的班级作为市级先进班集体的候选班.参考答案1.-322.8.4环,8环;8环3.B4.B5.C6.D7.A8.165cm,163cm9.D 10.D 11.C12.众数,平均数,中位数13.(1)在这8个数据中,55出现了3次,•出现的次数最多,即这组数据的众数是55,将这8个数据按从小到大的顺序排列,其中最中间的两个数据都是55,即这组数的中位数是55(2)∵这8个数据的平均数是x=18(60+55+75+55+55+43+65+40)=56(分),∴这8名学生完成家庭作业所需的平均时间为56分钟,因为56<60,由此估计该班学生每天完成家庭作业的平均时间符合学校的要求。

2009海珠区初中毕业班综合测试数学试题及答案

2009海珠区初中毕业班综合测试数学试题及答案

海珠区初中毕业班综合测试(一)数学试卷本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟.注意事项:1. 答卷前,考生务必在答题卡第1面、第3面上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、考号;再用2B 铅笔把对应号码的标号涂黑.2. 选择题每小题选出答案后,用2B 铅笔把答题卡上对应题号的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3. 非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(每小题3分,共30分)1、在2-、0、1、3这四个数中比0小的数是( )A.0B.1C.-2 D .32、据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( )A .80.155110⨯B . 71.55110⨯ C .615.5110⨯D . 4155110⨯3、如图,一个碗摆放在桌面上,则它的俯视图是( )4、下列图形中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5、把不等式组3156x x -<-⎧⎨-<⎩,的解集表示在数轴上正确的是( )6、在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其它完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率稳定在15%和45%,则口袋中白色球的个数可能是( ) A .6 B .16 C .18 D .247、如图,AB DE ∥,65E ∠=,则B C ∠+∠=( )A .135B .115C .36D .658、在正方形网格中,ABC △的位置如图所示,则cos B ∠的值 为( ) A.2B .12C.3D .29、已知圆锥的母线长是5cm ,侧面积是15πcm 2,则这个圆锥底面圆的半径是( )A .3cmB .1.5cmC .4cmD .6cm 10、下列图象中,以方程220y x --=的解为坐标的点组成的图象是( )A .B .C .D .B EDAC F第二部分 非选择题(共120分)二、填空题(每小题3分,共18分) 11、分解因式:224a ab -= . 12、方程02=-x x 的解是 . 132008(1)2sin30-- = .14、已知:如图,⊙1O 与⊙2O 外切于点P ,⊙1O 的半径为3且128O O =,则⊙2O 的半径______R =.15、已知一元二次方程032=++px x 的一个根为3-,则=p16、在下列三个不为零的式子 2224244x x x x x ---+,,中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 . 三、解答题(共102 分,解答应写出文字说明、证明过程或演算步骤) 17、(8分)解分式方程:1233xx x=+--.18、(10分)如图,已知ABC △: (1) AC 的长等于_______.(2)若将ABC △向右平移2个单位得到A B C '''△, 则A 点的对应点A '的坐标是______;(3)若将ABC △绕点C 按顺时针方向旋转90后得到∆A 1B 1C 1,则A 点对应点A 1的坐标是_________. (4)在图中画出第(2)问中A B C '''△或第(3)问中 ∆A 1B 1C 1的图形。

中考冲刺--初中毕业班综合测试(一)答题卡(数学)

中考冲刺--初中毕业班综合测试(一)答题卡(数学)
2010 年南沙区初中毕业班综合测试(一)答题卡(数学) 学校:_________
注意事项: 1. 选择题作答必须用 2B 铅笔,修改时用塑 料橡皮擦干净。笔答题作答必须用黑色签 字笔填写,答题不得超出答题框。 2. 保持卡面清洁,不要折叠,不要弄破。
姓名:__________ 试室号:__________
南沙区教育发展中心制
22. (12 分)
23. (12 分)
l D C B
A
O
学校:_________ 24.(14 分)
姓名:__________ 试室号:__________
座位号:________
D
G
C
F H
A 图1
D1
E
B
G1 H1
C1
F1 E1 图2
A1 j
B1
D H A 图3 E B

座位号:________

一、选择题(每小题 3 分,共 30 分)
1 2 3 6 7 8
9 分) 4 二、填空题 (每小题 3 分,共 18 11. 5 12. 10 13.
14.
15.
16.
三、解答题(共 102 分) 17.(9 分)
数学答题卡第ຫໍສະໝຸດ 1 面/共 6 面南沙区教育发展中心制
请不要在此区域答题或书写
G F
C
数学答题卡 第 5 面/共 6 面
南沙区教育发展中心制
y C B D 1 O 1 A x
18.(9 分)
19.(10 分) 解:(1)
平均数 甲 乙 7 众数 方差 1.2 2.2
(2)
学校:_________ 20. (10 分)
姓名:__________ 试室号:__________

2013届初中毕业班数学总复习综合练习(一)

2013届初中毕业班数学总复习综合练习(一)

2013届初中毕业班数学总复习综合练习(一)一、选择题(本大题有7题,每小题3分,共21分.每小题有四个选项,其中有且只有一个选项正确)1.-5的绝对值是( ). A .51-B .51 C .- 5 D . 52.联合国人口基金会的报告显示,世界人口总数在2011 年10 月31 日达到70 亿.将70 亿用科学记数法表示为( ).A .7×109B . 7×108C . 70×108D . 0.7×10103.下列图形中,既是轴对称图形,又是中心对称图形的是( ).4.一个不等式组的解集在数轴上表示出来如图所示,则下列符合条件的不等式组为( ).A .B .C .D .5.如图是一个由4个相同的正方体组成的立体图形,它的三视图是( ).6.已知:菱形ABCD 中,对角线AC 与BD 相交于点O ,OE ∥DC 交 BC 于点E ,AD=6cm ,则OE 的长为( ). A .2cm B .3cm C .4cm D . 6cm7.如图,在方格纸中建立直角坐标系,已知一次函数b x y +-=1的图象与反比例函数xky =2的图象相 交于点A (5,1)和1A . 若点A 和1A 关于直线x y =对称. 由图象可得不等式kxb x+-≥的解是( ). A. x ≥5 B . 0<x ≤-1C. 1≤x ≤5D. x ≥5或 0<x ≤1二、填空题(每小题4分,共40分) 8.33(2)a -=__________.9.分解因式:216x -= . 10.五边形的内角和= .11x 的取值范围是 .12.某校七年级(2)班要选取6名学生参加年段数学竞赛,有13名同学参加班级选拔赛,预赛成绩各不相同,小梅已知道自己的成绩,她只需了解这13名同学成绩的众数,中位数,平均数中的 ,就能知道自已能否进入决赛.13. 如图,在等边ABC △中,6AB =,D 是BC 上一点.且3BC BD =, ABD △绕点A 旋转后得到ACE △.则CE 的长为_______.14. 如图,等腰梯形ABCD 中,AD ∥BC ,AB=AD=2,∠B=60°,则BC 的长为 . 15. 抛物线y=x 2+x 的顶点坐标是,y 的最小值= _________.16. 如图,在平行四边形ABCD 中,AD=2,AB=4,∠A=30°,以点A 为圆心,AD 的长为半径画弧交AB 于点E ,连接CE ,则阴影部分的面积是 (结果保留π).17.如图,反比例函数ky x=经过点(1,则k= ;若点M 为该曲线上的一点,过点M 作x 轴、y 轴的垂线,分别交直线y =-x +m 于点D 、C 两点,若直线y =-x +m 与y 轴交于点A ,与x 轴相交于点B ,则AD •BC 的值为 . 三.解答题(共89分)18. (9分)计算:()11π32sin 608-⎛⎫-︒- ⎪⎝⎭.第17题19.(9分)化简,求值: 11222+-+--x xx x x x ,其中x=2.20.(9分)如图,在平行四边形ABCD 中,点E 在边BC 上,点F 在BC 的延长线上,且BE=CF .求证:∠BAE=∠CDF .21.(9分)某年级组织学生参加夏令营活动,本次夏令营活动分为甲、乙、丙三组进行.下面条形统计图和扇形统计图反映了学生参加夏令营活动的报名情况,请你根据图中的信息回答下列问题:(1)该年级报名参加本次活动的总人数为 人,报名参加乙组的人数为 人,请你补全条形统计图中乙组的空缺部分;(2)根据实际情况。

四会市2013年初中毕业班第一次模拟测试数学科参考答案

四会市2013年初中毕业班第一次模拟测试数学科参考答案

四会市2013年初中毕业班第一次模拟测试数学科参考答案及评分标准一、选择题(本大题共10小题,每小题3分,共30分)二、填空题(本大题共6小题,每小题4分,共24分)三、解答题(一)(本大题3小题,每小题5分,共15分) 17.解:原式=122212+-⨯+ ---------------------------------------4分 =4 ---------------------------------------5分18.解:由30x -< 得 x <3 ---------------------------------------1分 由 2(1)3x x +≥+ 得 1x ≥ ---------------------------------------2分 所以原不等式的解集为 13x ≤< ---------------------------------------4分 解集在数轴上表示为:(略) ---------------------------------------5分 19.解:(1)如下图所示:(痕迹2分,直线1分) --------------3分(2)由勾股定理,可得AB =5, --------------4分根据面积相等有,AB ⨯CD =AC ⨯BC 所以CD =125--------------5分 四、解答题(二)(本大题3小题,每小题8分,共24分)20. 解:(1)20%, 72° -------------2分 (2)样本数为 44÷44%=100 -------------3分 最喜欢B 项目的人数为 100×20%=20 ----------4分统计图补充如右图所示. -------------6分 (3)1200×44% = 528 -------------8分图10 21. 解:如图,作BG ⊥AD 于G ,作EF ⊥AD 于F ,-----1分 ∵Rt △ABG 中,∠BAD =60︒,AB =40,∴ BG =AB ·sin60︒=203,AG = AB ·cos60︒=20 -------------4分同理在Rt △AEF 中,∠EAD =45︒, ∴AF =EF =BG =203, -------------6分 ∴BE =FG =AF -AG =20(13-)米. -------------8分 22. 解:(1)∵B (1,4)在反比例函数y =mx 上,∴m =4, -------------1分 又∵A (n ,-2)在反比例函数y =mx的图象上,∴n =-2, -------------2分又∵A (-2,-2),B (1,4)是一次函数y =kx +b 的上的点,联立方程组解得, k =2,b =2, ∴y =4x,y =2x +2; -------------5分 (2)过点A 作AD ⊥y 轴,交y 轴于D 点,∵一次函数y =2x +2的图象交y 轴于C 点可得,C (0,2), --------6分 ∴AD =2,CO =2, ∴△AOC 的面积为:S =12AD •CO =12×2×2=2; -------------8分 五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 解:(1)由二次函数212y x bx c =++与x 轴交于(4,0)A -、(1,0)B 两点可得: 221(4)4021102b c b c ⎧--+=⎪⎪⎨⎪⋅++=⎪⎩,. -------------2分解得: 322b c ⎧=⎪⎨⎪=-⎩,.故所求二次函数的解析式为213222y x x =+-. ----------3分(2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). -------------4分若设直线AC 的解析式为y kx b =+,则有20,04b k b -=+⎧⎨=-+⎩. 解得:1,22k b ⎧=-⎪⎨⎪=-⎩.故直线AC 的解析式为122y x =--.-------------5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, -------------6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点,则Q 点的坐标为(1,2)2a a --.则有:2131[(2)](2)222PQ a a a =-+----=2122a a -- -------------7分=()21222a -++ -------------8分即当2a =-时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3)-------------9分24.(1)证明:∵∠AEF =90o ,∴∠FEC +∠AEB =90o . ---------------------------------------1分 在Rt △ABE 中,∠AEB +∠BAE =90o ,∴∠BAE =∠FEC ; ---------------------------------------3分 (2)证明:∵G ,E 分别是正方形ABCD 的边AB ,BC 的中点,∴AG=GB=BE=EC ,且∠AGE =180o -45o =135o . 又∵CF 是∠DCH 的平分线,∠ECF =90o +45o =135o . ---------------------------------------4分在△AGE 和△ECF 中,⎪⎩⎪⎨⎧∠=∠=∠=∠=FEC GAE ECF AGE EC AG o,135, ∴△AGE ≌△ECF ; ---------------------------------------6分 (3)解:由△AGE ≌△ECF ,得AE=EF .又∵∠AEF =90o ,∴△AEF 是等腰直角三角形. ---------------------------------------7分由AB=a ,BE =21a ,知AE =25a , ∴S △AEF =85a 2. ---------------------------------------9分25. 解:(1)∵ 四边形EFPQ 是矩形,∴ EF ∥QP .∴△AEH ∽△ABD ,△AEF ∽△ABC , ---------------------------------------1分∴ AH AD =AE AB =EFBC---------------------------------------2分(2)由(1)得AH 8=x 10. AH =45x .∴ EQ =HD =AD -AH =8-45x , --------------------------------------3分∴ S 矩形EFPQ =EF ·EQ =x (8-45x ) =-45x 2+8 x =-45(x -5)2+20. -----------4分∵ -45<0, ∴ 当x =5时,S 矩形EFPQ 有最大值,最大值为20. -----------5分(3)如图1,由(2)得EF =5,EQ =4.∴ ∠C =45°, ∴ △FPC 是等腰直角三角形.∴ PC =FP =EQ =4,QC =QP +PC =9. -----------6分分三种情况讨论:① 如图2.当0≤t <4时,设EF 、PF 分别交AC 于点M 、N ,则△MFN 是等腰直角三角形.∴ FN =MF =t .∴S =S 矩形EFPQ -S Rt △MF N =20-12t 2=-12t 2+20; -----------7分②如图3,当4≤t <5时,则ME =5-t ,QC =9-t .∴ S =S 梯形EMCQ =12[(5-t )+(9-t )]×4=-4t +28; -----------8分③如图4,当5≤t ≤9时,设EQ 交AC 于点K ,则KQ =QC =9-t . ∴ S =S △K QC =12 (9-t )2=12( t -9)2.第25题图2 第25题图3 第25题图4 综上所述:S 与t 的函数关系式为:S =221204)24285)1(9)9)2t t t t t t ⎧-+<⎪⎪--<⎨⎪⎪-<⎩ (0, (4, (5.≤≤≤ -----------9分注:如果有不同解法请参照给分.。

厦门市2022-2023学年第一学期初中毕业班期末考试数学试题与答案

厦门市2022-2023学年第一学期初中毕业班期末考试数学试题与答案

厦门市2022-2023学年第一学期初中毕业班期末考试数学试题一、选择题(本大题有8小题,每小题4分,共32分.每小题都有四个选项,其中有且只有一个选项正确)1.⊙O的半径为4,点A在⊙O内,则OA的长可以是A.3B.4C.5D.62.抛物线y=(x-1)2+3的对称轴是A.x=3B.x=-3C.x=1D.x=-13.如图1,圆上依次有A,B,C,D四个点,AC,BD交于点P,连接AB,CD,则图中与∠C相等的角是A.∠AB.∠BC.∠DD.∠APD4.如图2,正方形ABCD的对角线AC,BD交于点O,点M在△AOD内.将点N绕点O逆时针旋转90°,则M的对应点M′在A.△AOB内B.△BOC内C.△COD内D.△DOA内5.某园林公司购进某种树苗,为了解该种树苗的移植成活率,现对购进的第一批树苗进行随机抽样并统计,结果如图3所示.若该公司第二批还需移植成活1800棵该种树苗,根据统计结果,则第二批树苗购买量较为合理的是A.1620棵B.1800棵C.2000棵D.2093棵6.点A(0,5),B(4,5)是抛物线y=ax2+bx+c上的两点,则该抛物线的顶点可能是A.(2,5)B.(2,4)C.(5,2)D.(4,2)7.将一个关于x的一元二次方程配方为(x+m)2=p,若2±√3是该方程的两个根,则p的值是A.2B.4C.√3D.38.在平面直角坐标系x0y中,△ABC是以BC为底边的等腰三角形,A(1,a),B(b,3),C(b+t,3),其中2<t<4.关于点B的位置,下列描述正确的是A.在y轴上B.在第一象限C.在第二象限D.随a的变化而不同二、填空题(本大题有8小题,每小题4分,共32分)9.一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数,掷一次该骰子,向上一面的点数是奇数的概率是_________.10.已知x=1是方程x2-mx+3=0的解,则m的值为__________.11.在⊙O中有两个三角形:△AOB和△COD,点A,B,C,D依次在⊙O上,如图4所示.若这两个三角形关于过点O的直线l成轴对称,则点B关于直线l的对称点是_________.12.如图5,在△ACB中,∠C=90°,AB=10,AC=8,D是AC的中点,点B,E关于点D成中心对称,则AE的长为_________.13.某小区有1300个住户,为了解小区居民的生活垃圾量(单位:kg),物业公司某日在该小区内随机抽取4栋楼的住户进行调查,结果如表一所示.表一所抽取的居民楼A栋B栋C栋D栋住户数30304030该栋所有住户40457035当日产生的生活垃圾总量(kg)根据表一,估计该小区居民当日生活垃圾总量为________.14.小桐竖直向上抛出一个小球,小球只在重力作用下的高度h(单位:m)随时间t(单位:s)变化的图象是抛物线的一部分,如图6所示.小球出手时的高度是_________.15.我国东汉初年的数学典籍《周髀算经》中总结了对几何工具“矩”(即直角形状的曲尺,如图7所示)的使用之道,其中就有“环矩以为圆”的方法.我国许多数学家对该方法作了如下更具体的描述:如图8所示,在平面内固定两个钉子A,B,保持“矩”的两边始终紧靠两钉子的内侧,转动“矩”,则“矩”的顶点C的运动路线将会是一个圆.依此描述,请用你学过的一个数学概念或定理解释“环矩以为圆”这种方法的道理:_________.16.已知b>0,抛物线y1=ax2-bx+c与x轴交于A,B两点(A在B的左侧),抛物线y2=ax2+bx+c与x轴交于C,D两点(C在D的左侧),其中A,B,C,D的横坐标分别为x A,x B,x C,x D.若当0<x<x B时,0<y1<y2,则当0<y2<y1时,x的取值范围是__________.三、解答题(本大题有9小题,共86分)17.(本题满分8分)解方程x2+2x-5=0.18.(本题满分8分)如图9,四边形ABCD是平行四边形,点E,F在对角线BD上,AB,CF分别平分∠BAD和∠DCB.证明BE=DF.19.(本题满分8分)先化简,再求值:(1−aa+2÷a2−4a2+4a+4,其中a=√5+2.20.(本题满分8分)某市为减少汽车尾气污染,改善空气质量,鼓励市民选择新能源汽车作为出行的交通工具,并大力推进新能源汽车充电基础设施建设.据统计,该市2020年新建100座充电站,2022年新建169座.求该市这两年新建充电站的数量的年平均增长率.21.(本题满分8分)小梧是某校一名七年级新生,新学期开始,他打算每天早上和同小区里的几位新同学一起上学.小梧和同学计划每天早上7:00出发搭乘公共交通工具前往该学校,并在7:50前人校.几位同学通过查询出行软件,发现有三条路线可供选择,他们约定开学后的两周内分三组体验不同的路线并进行记录,结果如表二所示.表二(1)根据表二,求体验路线一的同学这10天平均每天上学路上所用的时间;(2)请你为小梧和他的同学选择一条较为合理的上学路线,并说明理由.在△ABC中,∠C=90°,∠CAB=α(0°<α<45°),将△ABC绕点A逆时针旋转,旋转角为β(α<β<180°),记点B,C的对应占分别为D,E.(1)若△ABC和线段AD如图10所,请在图10中作出△ADE(要求:尺规作图,不写作法,保留作图痕迹);(2)M是AB的中点,N是点M旋转后的对应点,连接MN,CD,BD,则是否存在β与α的某种数量关系,使得无论α取何值时,都有MN=CD?若存在,请说明理由,并直接写出此时BC与BD的数量关系;若不存在,也请说明理由.23.(本题满分10分)如果一个矩形有两个顶点在某抛物线上,那么称该矩形是该抛物线的“半接矩形”.矩形ABCD在第一象限,点B(m,n)在抛物线y=x2+bx+c(记为抛物线T)上.(1)矩形ABCD是正方形,A(1,3),m=1,b=-3,c=4.直接写出点C,D的坐标,并证明:矩形ABCD是抛物线T的“半接矩形”;(2)A(m,n+1),点C在AB边的右侧,BC=3,矩形ABCD是抛物线T的“半接矩形”.若矩形ABCD的一条对称轴是x=−b,将该矩形平移,使得平移后的矩形A1B1C1D1仍是抛物线T的2“半接矩形”,请探究矩形ABCD如何平移.△ABC内接于⊙O,AB=AC,∠ABC=67.5°,BC的长为√2π.点P是射线BC上的动2点,BP=m(m≥2).射线OP绕点O逆时针旋转45°得到射线OD,如图11所示.点Q是射线OD上的点,点Q与点O不重合,连接PQ,PQ=n.(1)求⊙O的半径;(2)当n2=m2-2m+2时,在点P运动的过程中,点Q的位置会随之变化,记Q1,Q2是其中任意两个位置,探究直线Q1Q2与⊙O的位置关系.25.(本题满分14分)某景区正在修建一条到主景点的步行道及步行道两侧的游客休息区、沿途小观景点等附属设施.把步行道的人口记为A,步行道上某点P到人口A的道路长度记为(单位:m),把从人口A处到P处的步行道面积与此段步行道两侧的所有附属设施的占地面积之和记为S(单位:m2).设P处的步行道宽度为x(单位:m),根据景区对主景点的规划,步行道出口的宽度为2m.用矩形面积估计不规则图形的面积是一种比较有效的方法.因此,景区管委会近似地用一边长为l,另一边长为(x+n)(n为常量,n>0,n的单位为m)的矩形的面积表示S.景区管委会在目前已修建的720 m 的步行道上选取了部分有代表性的地点进行测算,数据如表三所示.表三l(单位:m)3060180360540720S(单位:m2)177.5350990180024302880S/l(单位:m) 5.92 5.83 5.55 4.54根据以上信息,在合理估计的基础上,解决下列问题:的值,并说明理由;(1)写出当l=450时Sl(2)当n=2时,求l与x的函数解析式(不需要写出x的取值范围);(3)若景区可按此方式继续修建步行道及附属设施,请你通过计算说明常量n至少为多少.。

福建省南平市2023-2024学年初中毕业班教学质量第一次抽测数学试卷(含答案)

福建省南平市2023-2024学年初中毕业班教学质量第一次抽测数学试卷(含答案)

南平市2023-2024学年初中毕业班教学质量第一次抽测数学试题(考试时间:120分钟;满分:150分;考试形式:闭卷)友情提示:①所有答案都必须填在答题卡相应的位置上,答在试卷上一律无效;②试题未要求对结果取近似值的,不得采取近似计算.一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡...的相应位置填涂)1.下面几何图形中,一定是中心对称图形的是A .三角形B .四边形C .正五边形D .圆2.下列事件是必然事件的是A .抛掷一枚硬币四次,有两次正面朝上B .打开电视频道,正在播放新闻C .射击运动员射击一次,命中十环D .明天太阳从东边升起3.下列各点中,在函数xy 2=图象上的是A .),-(12B .2(,0)C .21(,)D .22(,)4.如图,ADE △是由ABC △绕点A 顺时针旋转锐角α得到,下列各角中,是旋转角的是A .BAD ∠B .BAE ∠C .DAE∠D .CAD∠5.如图,⊙O 的半径为5,OC ⊥AB 于点C ,OC =3,则弦AB 的长为A .8B .6C .5D .4ED CBA第4题图6.水平地面上一个小球被推开后向前滑行,滑行的距离s 与时间t 的函数关系如图所示(图为抛物线的一部分,其中P 是该抛物线的顶点),则下列说法正确的是A .小球滑行6秒停止B .小球滑行12秒停止C .小球向前滑行的速度不变D .小球向前滑行的速度越来越大7.关于x 的一元二次方程22310x x a ++-=有一个根是0,则a 的值为A .0B .1或-1C .-1D .18.某校在社会实践活动中,小明同学用一个直径为30cm 的定滑轮带动重物上升.如图,滑轮上一点A 绕点O 逆时针旋转︒108,假设绳索(粗细不计)与滑轮之间没有滑动,则重物上升了A .6πcm B .9πcm C .12πcmD .15πcm9.如图,线段AB 上的点C 满足关系式:2AC BC AB = ,且AB =2,则AC 的长为A .15-或53-B .215-C .15-D .53-P6Os (米)t (秒)第6题图OA第8题图C BA第9题图10.已知抛物线c bx ax y ++=2上某些点的横坐标x 与纵坐标y 的对应值如下表:x…﹣4﹣3﹣2﹣10…y…﹣3p1pm…有以下几个结论:①抛物线c bx ax y ++=2与y 轴的交点坐标是03(,-);②抛物线c bx ax y ++=2的对称轴为直线2-=x ;③关于x 的方程02=++c bx ax 的根为3-和1-;④当0<y 时,x 的取值范围是13-<<-x .其中正确的个数有A .1B .2C .3D .4二、填空题(本大题共6小题,每空4分,共24分.将答案填入答题卡...的相应位置)11.抛物线2y x =的顶点坐标是.12.点()4A m ,关于原点的对称点是()42B --,,则m 的值是.三、解答题(本大题共9小题,共86分.解答题写出文字说明、证明过程或演算步骤,在答题卡...的相应位置作答)17.(本小题满分8分)解方程:2210x x +-=.18.(本小题满分8分)在平面直角坐标系中,ABC △的三个顶点坐标分别为A (1,1),B(4,4),C (5,1),111A B C △是由ABC △绕点O 顺时针旋转︒180得到的(每个小方格都是边长为1个单位长度的正方形)(1)画出111A B C △;(2)直接写出点1B ,1C 的坐标.19.(本小题满分8分)在一个不透明的盒子里,装有四个分别标有数字1,3,4,5的小球.它们的形状、大小、质地等完全相同.小明先从盒子里随机取出一个小球,记下数字为x ,放回盒子摇匀后,再由小华随机取出一个小球,记下数字为y .(1)列出表示点(x ,y)的所有可能出现的结果;(2)求小明、小华各取一次小球所确定的点(x ,y )落在一次函数5y x =的图象上的概率.MFDE CB A第16题图20.(本小题满分8分)反比例函数ky x=图象经过点()1A ,6,()3B a ,.(1)求a 的值;(2)若点()C m n ,在反比例函数ky x=图象上,其中3n <,求m 的取值范围.21.(本小题满分8分)某商家将每件进价为15元的纪念品,按每件19元出售,每日可售出28件.经市场调查发现,这种纪念品每件涨价1元,日销售量会减少2件.(1)当每件纪念品涨价多少元时,单日的利润为154元?(2)商家为了单日获得的利润最大,每件纪念品应涨价多少元?最大利润是多少元?22.(本小题满分10分)已知关于x 的一元二次方程()2330x k x k -++=.(1)求证:无论k 为何值,此方程总有实数根;(2)若直角三角形的一边长为3,另两边长恰好是这个方程的两根,求k的值.23.(本小题满分10分)如图,直线AB 与⊙O 相切于点B ,AO 交⊙O 于点C ,AO 的延长线交⊙O 于点D ,︒=∠30A ,点E 在 BCD上,且不与B ,D 重合.(1)求BED ∠的大小;(2)若 BEDE =,EO 的延长线交直线AB 于点F ,求证:DF 与⊙O 相切.CEDFB AO第23题图24.(本小题满分12分)已知点(0,1-)在二次函数()n m x y +-=21的图象上.(1)求n 关于m 的函数关系式;(2)求n m +的最大值;(3)设直线t y =(t 为常数且n t >)与抛物线()n m x y +-=21交于点A ,B ,与抛物线()224y x h n =-+(h 为常数)交于点C ,D .求证:2AB CD =.25.(本小题满分14分)如图1,点D 是ABC △的边AB 上一点.AC AD =,CAB α∠=,⊙O 是BCD △的外接圆,点E 在 DBC 上(不与点C ,点D 重合),且90CED α∠︒-=.(1)求证:ABC △是直角三角形;(2)如图2,若CE 是⊙O 的直径,且2=CE ,折线ADF 是由折线ACE绕点A 顺时针旋转α得到.①当30α=︒时,求CDE △的面积;②求证:点C ,D ,F 三点共线.图1南平市2023-2024学年初中毕业班教学质量第一次抽测数学试题参考答案及评分说明说明:(1)解答右端所注分数为考生正确做完该步应得的累计分数,全卷满分150分.(2)对于解答题,评卷时要坚持每题评阅到底,勿因考生解答中出现错误而中断本题的评阅.当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的考试要求,可酌情给分,但原则上不超过后面应得分数的一半,如果有较严重的错误,就不给分.(3)若考生的解法与本参考答案不同,可参照本参考答案的评分标准相应评分.(4)评分只给整数分.选择题和填空题不给中间分.一、选择题(本大题共10小题,每小题4分,共40分)1.D ;2.D ;3.C ;4.A ;5.A ;6.A ;7.B ;8.B ;9.C ;10.C .二、填空题(本大题共6小题,每小题4分,共24分)11.(0,0);12.2;13.43π;14.4π;15.6;16.10.第16题解答提示:解法1,取AD 中点N ,可证MN ∥AE ,当F ,E 重合时,BM 取最大值.解法2,以点B 为原点建立平面直角坐标系,可表示出点F ,点M 坐标.三、解答题(本大题共9小题,共86分)17.(8分)解:a=1,b =2,c =-1·····················································································1分08)1(142422>=-⨯⨯-=-=∆ac b ·······························································2分方程有两个不相等的实数根a acb b x 242-±-=·······················································································3分(说明:判别式不写不扣分,公式或代值正确得3分)282±-=···································································································6分21±-=····································································································8分即11x =-+21x =--(说明:本题只提供一种解法,其它解法酌情给分)18.(8分)解:(1)如图,△A 1B 1C 1为所作;···············································································4分(说明:画出正确图形3分,标出字母并说明1分)(2)点1B ,1C 的坐标分别是1B (-4,-4)·····················································································6分1C (-5,-1)·····················································································8分19.(8分)解:(1)列表如下:y x13451(1,1)(1,3)(1,4)(1,5)3(3,1)(3,3)(3,4)(3,5)4(4,1)(4,3)(4,4)(4,5)5(5,1)(5,3)(5,4)(5,5)(本题只提供一种解法,其它解法酌情给分)·······················································5分(2)共有16种情况,满足y =5x 只有一种情况,所以点(x ,y )落在一次函数y =5x 的图象上的概率是116······························································································································8分20.(8分)解:(1)因为反比例函数ky x=图象经过点A (1,6),B (a ,3)·····························1分所以166k =⨯=····················································································2分所以3a =6······························································································3分所以a =2·······························································································4分(2)因为点C (m ,n )是反比例函数6y x=图象上一点,且3n <当y =3时,x =2.······················································································5分因为k =6>0,在每一个象限内y 随x 的增大而减小.········································6分所以当3n <时,有m >2或m <0.································································8分(说明:写出一个答案给1分)21.(8分)解:(1)设当涨价x 元时,单日利润为154元.····························································1分()()4282154x x +-=···············································································2分解得:13x =,27x =·················································································4分答:当涨价3元或7元时,单日利润为154元.(2)设当涨价a 元时,单日利润为W 元W =()()4282a a +-···················································································5分()225162W a =--+因为20-<,抛物线开口向下·······································································6分所以当a =5时,W 最大=162·············································································8分答:当涨价5元时获得最大利润,为162元.22.(10分)(1)证明:1=a ,()3+-=k b ,k c 3=··························································1分24b ac ∆=-····················································································2分[]2(3)413k k =-+-⨯⨯269k k =-+()23k =-≥0··················································································4分所以无论k 为何值,此方程总有实数根···················································5分(2)解方程()0232=++-k x k x 由(1)得()230k ∆=-≥·······································································6分所以()()123323⨯-±+∆±-=k k a b x =解得31=x ,k x =2···············································································7分因为直角三角形的另两边长恰好是这个方程的两根,所以这个直角三角形的三边长分别是3、3、k所以该三角形斜边只能为k·······························································································8分(说明:只要做出判断即可得分)所以22233k=+解得k ±=···················································································9分因为0k >,所以k =········································································10分答:k 的值是2323.(10分)(1)连接OB ·······································································································1分∵AB 切⊙O 于点B∴OB ⊥AB····································································································································2分∴∠OBA =90°,在Rt △OAB 中,∠A =30°∴∠AOB =90°-∠A =60°···················································································3分∴∠BOD =180°-∠AOB =120°··········································································4分∵ =BDBD ∴∠BED =12∠BOD =60°·················································································5分(2)在⊙O 中,OB =OD∵ =BEDE ∴∠EOB =∠EOD···············································································6分∵∠EOB +∠BOF =∠EOD+∠DOF =180°∴∠BOF =∠DOF···············································································7分∵OF=OF∴△OBF ≌△ODF (SAS)················································8分∴∠ODF =∠OBF,∠OBF ==180°-∠OBA =90°∴∠ODF =90°∴OD ⊥DF··························································································9分∵点D 在⊙O 上∴DF 与⊙O 相切····························································10分24.(12分)(1)解:因为点(0,1-)在二次函数()n m x y +-=21的图象上所以()n m +-=-201··············································································2分12--=m n 所以····················································································4分(2)解:12--=m n 因为2213124m n m m m ⎛⎫+=-+-=--- ⎪⎝⎭所以················································6分432101-+=<-的最大值等于时,,所以当因为n m m ····························8分(3)证明:因为直线t y =与抛物线()n m x y +-=21交于点A ,B ,与抛物线()224y x h n =-+交于点C ,D 故设()t x A ,1、()t x B ,2、()t x C ,3、()t x D ,4······································9分把y =t 代入1y 得:()tn m x =+-20222=-++-t n m mx x 整理得:0122=---t mx x ()()2122122124x x x x x x AB -+=-==n t t m 444442-=++,····································································10分把y =t 代入2y 得:()24x h n t -+=224840x hx h n t -++-=()()4324324324x x x x x x CD -+=-==224444h n t h t n +--⨯=-································································11分所以2AB CD ==,即2AB CD =·····················································12分25.(14分)(1)证明:在⊙O 中∵ =CDCD ∴∠E =∠B···································································································································1分∵∠E =90°-∠A∴∠B =90°-∠A··························································································································2分即∠A +∠B =90°∴∠ACB =180°-(∠A +∠B )=90°·····································································3分∴△ABC 是直角三角形··················································································4分(2)解:①∵CE 是⊙O 直径∴∠CDE =90°·······························································································5分∴∠CED =90°-∠DCE∵∠CED =90°-α∴∠DCE =α=30°···························································································6分在Rt △CDE 中,CE =2DE =12CE =1CD 7分∴1==22CDE S DE CD ·················································································8分②∵AC =AD∴∠ACD =∠ADC························································································································9分在△ACD 中α+∠ACD +∠ADC =180°··················································································10分由①得∠DCE =α∴∠ACE =∠ACD +∠DCE =∠ACD +α·································································11分。

2024年漳州市初中毕业班质量检测数学试题与答案

2024年漳州市初中毕业班质量检测数学试题与答案

2024年漳州市初中毕业班质量检测数学试题一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.下列四个实数中,为无理数的是A 2B .1C .31D .-22.如图是一把做工精湛的紫砂壶,其俯视图是A B C D3.第33届夏季奥运会将于2024年7月26日至8月11日在法国巴黎举行,下列巴黎奥运会部分项目的图标中,为轴对称图形的是A B C D4.若73333=⋅k ,则k 的值为A .k =1B .k =2C .k =3D .k =45.实数a ,b 在数轴上的对应点的位置如图所示,则正确的结论是A .a >-2B .b <5C .b >aD .a <-b6.某中学开展课后服务,其中在体育类活动中开设了四种运动项目:乒乓球、排球、篮球、足球.为了解学生最喜欢哪一种运动项目,随机选取200名学生进行问卷调查(每位学生仅选一种),并将调查结果绘制成如下的扇形统计图.下列说法错误的是A .最喜欢篮球的学生人数为30B .最喜欢足球的学生人数最多C .“乒乓球”对应扇形的圆心角为72°D .最喜欢排球的人数占被调查人数的10%7.如图,⊙O 是四边形ABCD 的外接圆,连接OB ,OD ,若110BCD ∠=︒,则BOD ∠的大小为A .110°B .120°C .130°D .140°8.“凌波仙子生尘袜,水上轻盈步微月.”宋朝诗人黄庭坚以水中仙女借喻水仙花.如图,将水仙花图置于正方形网格中,点A ,B ,C 均在格点上.若点A (-2,3),B (0,1),则点C 的坐标为A .(4,2)B .(2,2)C .(1,2)D .(2,1)9.已知点P (m ,12m -1),Q (2,1),则PQ最小值为A .551B .552C .5410.如图,在Rt △ABC 和Rt △ABD 中,∠C=∠ADB=90°,AC ,BD 相交于点G ,E ,F 分别是AB ,BD 的中点,连接AF ,EF ,DE .若点F 为△ABC 的内心,BF =4,则下面结论错误的是A.CAF BAF ∠=∠ B.2sin 2AFD ∠=C.EF=2D.DE=23二、填空题:本题共6小题,每小题4分,共24分。

专题01 实数(第一篇)-2019年中考数学母题题源系列(原卷版)

专题01 实数(第一篇)-2019年中考数学母题题源系列(原卷版)

【母题来源一】【2019•河北】规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作A.+3 B.-3 C.-13D.+13【答案】B【解析】“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作-3.故选B.【名师点睛】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.【母题来源二】【2019•吉林】如图,数轴上蝴蝶所在点表示的数可能为A.3 B.2 C.1 D.-1【答案】D【解析】数轴上蝴蝶所在点表示的数可能为-1,故选D.【名师点睛】本题考查了数轴、根据数轴-1是解题关键.【母题来源三】【2019•安顺】2019的相反数是A.-2019 B.2019 C.-D.【答案】A【解析】2019的相反数是-2019,故选A.【名师点睛】主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【母题来源四】【2019•河南】-12的绝对值是专题01 实数A.-12B.12C.2 D.-2【答案】B【解析】|-12|=12,故选B.【名师点睛】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.【母题来源五】【2019•桂林】23的倒数是A.32B.-32C.-23D.23【答案】A【解析】23的倒数是:32.故选A.【名师点睛】此题主要考查了倒数,正确把握定义是解题关键.【母题来源六】【2019•安徽】在-2,-1,0,1这四个数中,最小的数是A.-2 B.-1 C.0 D.1【答案】A【解析】根据有理数比较大小的方法,可得-2<-1<0<1,∴在-2,-1,0,1这四个数中,最小的数是-2.故选A.【名师点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【命题意图】这类试题主要考查有理数的有关知识,包括正数和负数、数轴、相反数、绝对值、倒数、有理数的比较大小等.【方法总结】1.正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如5、7、50、+14200等;负的量用小学学过的数前面放上“–”(读作负)号来表示,如–3、–8、–47、–4745等.2.相反数(1)注意:①相反数是成对出现的;②相反数只有符号不同,若一个为正,则另一个为负;③0的相反数是它本身;相反数为本身的数是0.(2)多重符号的化简方法:①在一个数前面添加一个“+”,所得的数与原数相等;②在一个数前面添加一个“–”,所得的数是原数的相反数;③对于有三个或三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”,都可以把“+”去掉,其次要看“–”的个数,当“–”的个数为偶数时,结果取“+”,当“–”的个数为奇数时,结果取“–”. 3.绝对值 即:(0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩或 (0)(0)aa a a a ≥⎧=⎨-<⎩.【母题来源七】【2019•天津】计算(-3)×9的结果等于 A .-27B .-6C .27D .6【答案】A【解析】(-3)×9=-27,故选A . 【名师点睛】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.【母题来源八】【2019•贵港】计算(-1)3的结果是A .-1B .1C .-3D .3【答案】A【解析】(-1)3表示3个(-1)的乘积,所以(-1)3=-1.故选A .【名师点睛】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.【母题来源九】【2019•北京】4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为 A .0.439×106B .4.39×106C .4.39×105D .439×103【答案】C【解析】将439000用科学记数法表示为4.39×105.故选C.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十】【2019•安徽】2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【答案】B【解析】根据题意161亿用科学记数法表示为1.61×1010.故选B.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十一】【2019•河南】成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C.【名师点睛】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.【母题来源十二】【2019•聊城】计算:115()324--÷=__________.【答案】2 3 -【解析】原式=542()653-⨯=-,故答案为:23-.【名师点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序.【命题意图】这类试题主要考查有理数的运算,包括有理数的加减法、乘除法、乘方、混合运算、科学记数法等.【方法总结】1.有理数的加法有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得0.2.有理数的减法对于有理数的减法运算,应先转化为加法,再根据有理数加法法则计算,即加法与减法是互逆运算.3.有理数的乘法两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0.4.有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a b÷=1ab⨯(b≠0);(2)在进行除法运算时,若能整除,则根据“两数相除,同号得正,异号得负,并把绝对值相除”进行计算;若不能整除,则根据“除以一个不等于0的数,等于乘以这个数的倒数”进行计算;5.有理数的混合运算有理数的乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果.6.有理数的乘方(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数,0的任何正整数次幂都是0.7.科学记数法科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n 的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10−n的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零).【母题来源十三】【2019•攀枝花】用四舍五入法将130542精确到千位,正确的是A.131000 B.0.131×106C.1.31×105D.13.1×104【答案】C【解析】130542精确到千位是1.31×105.故选C.【名师点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.【母题来源十四】【2019•广东】的结果是A.-4 B.4 C.±4 D.2【答案】B2416.故选B.【名师点睛】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.【母题来源十五】【2019•烟台】-8的立方根是A.2 B.-2 C.±2 D.-22【答案】B【解析】∵-2的立方等于-8,∴-8的立方根等于-2.故选B.【名师点睛】本题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【母题来源十六】【2019•邵阳】下列各数中,属于无理数的是A.13B.1.414 C2D4【答案】C4=22是无理数,故选C.【名师点睛】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.【母题来源十七】【2019•聊城】2的相反数是A.-22B.22C.2D2【答案】D【解析】,故选D.【名师点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.【母题来源十八】【2019•广东】实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>b B.|a|<|b| C.a+b>0 D.ab<0【答案】D【解析】由图可得:-2<a<-1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;ab<0,故D正确,故选D.【名师点睛】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.【母题来源十九】【2019•扬州】下列各数中,小于-2的数是A.5B.3C.2D.-1【答案】A【解析】比-2小的数是应该是负数,且绝对值大于2的数,分析选项可得,5-2<3<2-1,只有A符合.故选A.【名师点睛】本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【母题来源二十】【2019•天津】33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D【解析】∵25<33<3625333633.故选D.【名师点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.【母题来源二十一】【2019•无锡】49的平方根为__________.【答案】2 3±【解析】49的平方根为23=±.故答案为:23±.【名师点睛】本题考查了平方根的知识,注意一个正数有两个平方根,它们互为相反数.【母题来源二十二】【2019•河南】12-=__________. 【答案】32142-=2-12=32.故答案为:32. 【名师点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.【母题来源二十三】【2019•北京】计算:|3-(4-π)0+2sin60°+(14)-1. 【解析】原式31+2×323-3+4=3+23 【名师点睛】此题主要考查了实数运算,正确化简各数是解题关键.【命题意图】这类试题主要考查实数的有关知识,包括平方根、立方根、无理数、实数的比较大小、无理数的估算、实数的运算等. 【方法总结】 1.精确度与近似数近似数与准确数的接近程度通常用精确度来表示,近似数一般由四舍五入取得,四舍五入到哪一位,就说这个近似数精确到哪一位. 2.平方根22()(0)(0)()000a a a a a a a a a ⎧⎪⎪⎪=≥⎨≥⎧==⎨-<⎩只有非负数才有平方根,的平方根和算术平方根都义是意 3.立方根3意义a a==⎪⎩4.实数大小的比较实数大小的比较可以利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法.除此之外,常用的方法有“差值比较法”适用于比较任何两数的大小;“商值比较法”只适用于比较两个正数的大小;“平方法”、“倒数法”常用于比较二次根式的大小;“底数比较法”、“指数比较法”常用于比较幂的大小. 5.实数的运算法则(1)实数的混合运算中,在同一个式子里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.(2)熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.注意运算顺序,分清先算什么,再算什么.1.【河北省张家口市桥西区2019届九年级中考6月模拟】中国人最早使用负数,下列各数中是负数的是 A .|1|--B .(1)--C .0()-πD .2(1)-2.【2019年浙江省宁波市北仑区中考数学模拟】2的相反数是 A .12B .-12 C .±12D .-23.【河南省新乡市2019届九年级第二次全真模拟】-2的绝对值是 A .-2B .12-C .12D .24.【福建省福州市2019年初中毕业班适应性数学试卷】已知A 、B 、C 三点在数轴上从左向右排列,且AC =3AB =6,若B 为原点,则点C 所表示的数是 A .-6B .2C .4D .65.【2019年湖北省孝感市孝南区中考数学二模】给出-2,-1,0,13这四个数,其中最小的是 A .13B .0C .-2D .-1【名师点睛】本题考查了有理数大小的比较法则,其关键是负数的绝对值越大,其本身越小. 6.【2019年福建省南平市六校联考中考数学模拟】计算-6+4的结果为 A .10B .-10C .2D .-27.【广东省东莞市2019届九年级中考数学二模】13-的倒数 A .13B .3C .-3D .30.⋅-8.【2019年河南省第二届名校联盟中考数学5月份模拟】2018年8月31日,中国最新一代芯片--麒麟980来了,它的诞生打破了欧美对芯片行业的垄断,该芯片堪称世界最强“心”,在比指甲盖稍大一点的芯片里安装了69亿颗晶体管,数据”69亿“用科学记数法表示为 A .6.9×109B .6.9×108C .69×108D .6.9×10109.【2019年广西贵港市中考数学三模】6.8×105这个数的原数是 A .68000B .680000C .0.000086D .-68000010.【河北省石家庄市新华区2019届九年级毕业生教学质量检测】近似数1.23×103精确到A .百分位B .十分位C .个位D .十位11.【浙江省杭州市下城区2019届九年级二模】16的平方根为A .±4B .±2C .+4D .212.【2019年广东省广州市南沙区中考数学一模】8的立方根等于A .-2B .2C .-4D .413.【2019年重庆市江北新区联盟中考数学一模】下列四个数中是无理数的是A .3B .3πC .3.14159D 914.【2019年河南省第二届名校联盟中考数学5月份模拟】下面四个实数中最大的是A 5B .0C .-2D .115.【天津市河西区201957的值在A .5和6之间B .6和7之间C .7和8之间D .8和9之间16.【湖北省武汉市部分学校20199__________. 17.【福建省厦门市双十中学2019届九年级3月月考】计算:|-3|+11()2=__________. 18.【2019年广东省深圳市罗湖区中考数学二模】计算:(12)-2-4cos30°+(-2)012.。

广东省广州市南沙区初中毕业班综合测试(一)数学试题

广东省广州市南沙区初中毕业班综合测试(一)数学试题

2022年南沙区初中毕业班综合测试(一)数学本试卷分选择题和非选择题两局部,共三大题25小题,总分值150分.考试用时120分钟. 本卷须知:1.答卷前,考生务必在答题卡第1面、第3面、第5面、第7面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答 案必须写在答题卡各题指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效。

4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一局部选择题〔共30分〕一、选择题〔本大题共10小题,每题3分,总分值30分.在每题给出的四个选项中只有一项为哪一项符合题目要求的.〕3.点A ()2,3向左平移3个单位长度得到点A ’,那么点A ’的坐标为〔※〕 A . ()2,0 B .()-1,3C. ()-2,3 D. ()5,34.某红外线的波长为0.000 000 94m ,用科学记数法表示这个数是〔※〕 A .m 7104.9-⨯B .m 7104.9⨯C .m 8104.9-⨯D .m 8104.9⨯5.以下运算正确的选项是〔※〕A .030=B .33--=-C .133-=-D 3=±6.将如右图所示的Rt ABC ∆绕直角边AC 旋转一周,所得几何体的俯视图是〔※〕 7.关于x 的方程0122=--x x 的根的情况表达正确的选项是〔※〕A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定第16题8.一次函数3y kx =-且y 随x 的增大而增大,那么它的图像经过〔※〕 A .第二、三、四象限 B .第一、二、三象限 C .第一、三、四象限D .第一、二、四象限9.如图,在数轴上点A ,B 对应的实数分别为a ,b ,那么有〔※〕A .0a b +>B .0a b ->C .0ab >D .0a>二、填空题〔本大题共6小题,每题3分,总分值18分.〕 11.如图,ABC ∆中,AB=AC ,∠B=50°,那么∠A=***度. 12x 的取值范围为***.13.假设方程 220x px --=的一个根为2,那么它的另一个根为***. 14.某春季田径运动会上,参加男子跳高的15名运发动的成绩如下表所示:成绩〔m 〕 1.50 1.60 1.65 1.70 1.75 1.80 人数124332这些运发动跳高成绩的中位数是***m .15.一个扇形的圆心角为60°,半径为2,那么这个扇形的面积为***.〔结果保存π〕16.如图,矩形ABCD 中,AB=6,BC=8,E 是BC 边上的一定点,P 是CD 边上的一动点〔不与点C 、D 重合〕,M ,N 分别是AE 、PE 的中点,记MN 的长度为a ,在点P 运动过程中,a 不断变化,那么a 的取值范围是***.三、解答题〔本大题共9小题,总分值102分.解容许写出文字说明、证明过程或演算步骤〕 17.〔本小题总分值9分〕 解分式方程123x x=- 18.〔本小题总分值9分〕 化简()()23a b a a b ab +---第11题BA y第10C第20题19.〔本小题总分值10分〕如图,在ABC ∆中,∠B=90°,O 为AC 的中点〔1〕用直尺和圆规作出ABC ∆关于点O 的中心对称图形〔保存作图痕迹,不写作法〕; 〔2〕假设点B 关于点O 中心对称的点为D ,判断四边形ABCD 的形状并证明.20.〔本小题总分值10分〕如图,在Rt ABC ∆中,090A ∠=,点O 在AC 上,⊙O 切BC 于点E ,AC=12,求⊙O 的半径.21.〔本小题总分值12分〕 某校将举办“心怀感恩·孝敬父母〞的活动,为此,校学生会就全校1 000名同学暑假期间平均每天做家务活的时间,随机抽取局部同学进行调查,并绘制成如下条形统计图. 〔1〕求样本容量,并估计全校同学在暑假期间平均每天做家务活的时间在40分钟以上(含40分钟)的人数; 〔2〕校学生会拟在表现突出的甲、乙、丙、丁四名同学中,随机抽取两名同学向全校汇报.请用树状图或列表法表示出所有可能的结果,并求恰好抽到甲、乙两名同学的概率. 22.〔本小题总分值12分〕为了帮助贫困学生,姐妹两人分别编织28个中国结进行义卖,妹妹单独编织一周〔7天〕不能完成,而姐姐单独编织不到一周就已完成.姐姐平均每天比妹妹多编2个.求: 〔1〕姐姐和妹妹平均每天各编多少个中国结〔答案取整数〕〔2〕假设妹妹先工作2天,姐姐才开始工作,那么姐姐工作几天,两人所编中国结数量相同 23.〔本小题总分值12分〕 如图,直线y 4x =-与反比例函数A 、B 两点,与x 轴、y 轴分别相交于C 、D 两点.〔1〕如果点A 的横坐标为1,求m 的值并利用函数图象求关于x 〔2〕是否存在以AB 为直径的圆经过点P 〔1,0〕假设存在,求出m 的值;假设不存在,请说明理由.4x -题 yx 轴的交点,点B 在二次函数218y x bx c =++的图像上,且该二次函数图像上存在一点D 使四边形ABCD 能构成平行四边形.〔1〕试求点B 、D 的坐标,并求出该二次函数的解析式;〔2〕P 、Q 分别是线段AD 、CA 上的动点,点P 从A 开始向D 运动,同时点Q 从C 开始向A 运动,它们运动的速度都是每秒1个单位,求: ①当P 运动到何处时,△APQ 是直角三角形②当P 运动到何处时,四边形PDCQ 的面积最小此时四边形PDCQ 的面积是多少 25〔本小题总分值14分〕正方形ABCD 中,E 为对角线BD上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .〔1〕求证:EG =CG ;〔2〕将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问〔1〕中的结论是否仍然成立假设成立,请给出证明;假设不成立,请说明理由.〔3〕将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问〔1〕中的结论是否仍然成立通过观察你还能得出什么结论〔均不要求证明〕数学题的内容和难度,可视影响的程度决定后继局部的得分,但所给分数不 得超过该局部正确解容许得分数的一半;如果后继局部的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:〔本大题查根本知识和根本运算,表达选择性.共6小题,每题3分,共18分〕 11. 8012.2x ≥13.-114. 1.7015.23π 16. 45a << 三、解答题:〔本大题共9小题,总分值102分.解答须写出文字说明、证明过程和演算步骤.〕 17.〔本小题总分值9分〕解:()23x x -=…………………………………………3分26x x -= (6)分F B D图①BDE 图② B 图③ D O C B Ay x 第24题6x =…………………………………………………8分经检验得6x =是原方程的解。

2013黄埔区初中毕业班综合测试数学参考答案130423

2013黄埔区初中毕业班综合测试数学参考答案130423

2013年黄埔区初中毕业生综合测试数学参考答案及评分标准一.选择题(每小题3分,共30分) 1. D CC CBBA D A二.填空题(本大题共6题,每小题3分,满分18分)11. 3;12. 3≥x ;13. 1;14. 26;15. 7,)1(3-+n ;16. 55说明:第15题第1空1分,第1空2分 三.解答题 17.⎩⎨⎧-<-<-)()(2121532x x由(1)得4<x ……3分 由(2)得3>x ……6分 所以这个不等式组的解为43<<x ……9分 18.方法一∵四边形ABCD 是平行四边形,∴ AD=BC ,且AD ∥BC .(平行四边形对边平行且相等) ……2分 又∵AE =CF ,(已知)∴ED=BF ,且ED ∥BF . ……4分 ∴四边形EDFB 是平行四边形(对边平行且相等的四边形是平行四边形) ……6分 ∴EB =DF (平行四边形对边相等) ……9分 方法二∵四边形ABCD 是平行四边形,∴ AB =CD ,∠A =∠C .(平行四边形对边相等,对角相等) ……2分 在△AEB 和△CFD 中, ∵AE =CF ,(已知) AB =CD ,∠A =∠C∴△AEB ≌△CFD (SAS ) ……6分 ∴EB =DF (全等三角形对应边相等) ……9分 19. 化简:221()a b a b a b b a -÷-+-=ba b ba b a b a a-⨯+--+]1))(([……3分=ba bb a ab bb a a +-=+--+1)()(- ……7分第18题∵a 、b 分别是方程0432=--x x 的两个实数根, ∴a +b =3 ……9分 ∴221()a b a ba bb a-÷-+-=31-……10分20.(1)抽取1名学生,恰好是女生的概率是52 ……2分(2)分别用男1、男2、女1、女2、女3表示这五位同学,从中任意抽取2名,所有可能出现的结果有:(男1、男2),(男1、女1),(男1、女2),(男1、女3),(男2、女1),(男2、女2),(男2、女3),(女1、女2),(女1、女3),(女2、女3),共10种,它们出现的可能性相同, ……7分 所有结果中,满足抽取2名学生,恰好一男一女(记为事件A )的结果共有6种, 所以P (A )=53106=. ……10分21.(1)∵抛物线)6(2)42+-++=m x m x y ((m 为常数,)8-≠m )的对称轴为24+=m x -……2分而抛物线与x 轴有两个不同的交点A 、B ,点A 、点B 关于直线1=x 对称, ∴124=+m -,6-=m∴所求抛物经的解析式为x x y 2-2= ……6分 (2)当0=y 时,02-2=x x ,解得01=x ,22=x当0=x 时,1)1(2-22--==x x x y ,解得01=x ,22=x∴点A 、B 、C 的坐标.分别为(0,0),(2,0),(1,-1) ……12分22.(1)∵CDCB CDB =∠sin∴3.21sin2810sin ≈︒=∠=CDBCB CD ……5分答:新坡面的长为21.3米(2)∵∠CAB =45°,∴AB =CB =10, ……6分又建筑物离原坡角顶点A 处10米,即建筑物离天桥底点B 的距离为20米,……7分 当DB 取最大值时,CDB ∠达最小值,要使建筑物不被拆掉DB 的最大值为20-3=17 ……8分第22题又1710tan ==∠DBCB CDB ,︒≈∠31CDB ……12分答,若新坡角顶点D 前留3米的人行道,要使离原坡角顶点A 处10米的建筑物不拆除,新坡面的倾斜角的最小值是31°23. (1)用科学记数法表示:24.5亿= 5102.45⨯ 万; ……2分 (2)设该市后两年廉租房建筑面积的年增长率为x ,根据题意,得:220)1(1242=+x ……5分 整理,得:024-62312=+x x , 解之,得:2122431431312⨯⨯⨯+±-=x ,∴0.331=x ,-2.332=x (舍去), ……7分答:该市后两年廉租房建筑面积的年增长率为33%.(3)2010年的建房成本为每平方米≈⨯1241000024.51976(元)2011年的建房成本为每平方米≈+)(10.7%119762187(元) 2012年的建房成本为每平方米≈+)(10.7%121872421(元) 2011年建房410.33124124124)1124≈⨯==-+x x ((万平方米) 2012年建房5541-124-220=(万平方米) 后两年共投资22282213315589667552421412187=+=⨯+⨯(万元),即约22.3亿元 ……12分 答:后两年共需约投入22.3亿元人民币建廉租房..24.(1)E (5,2), ……1分图略,Q ……3分(2)设直线AE 对应的函数关系式为b kx y +=∵A (1,0)、E (5,2)∴⎩⎨⎧=+=+250b k b k ,解得⎪⎪⎩⎪⎪⎨⎧==21-21b k∴直线AE 对应的函数关系式为21-21x y = ……5分(3)①当点F 在AD 之间时,重叠部分是△PTF .yxEDCB A O第24题(1)则2)1(41)2121)(1(212121S -=--=⋅=⋅=∆x x x PT AT PT TF PEF当F 与D 重合时,AT =21AD=2,∴31≤<x .当点F 在点D 的右边时,重叠部分是梯形PTDH . ∵△FDH ∽△ADE ∴21==AD ED DFHD ,HD =21DF =3]5)12[21-=--x x (则TD HD PT PTDH⋅+=)(21S 梯形=)5()32121(21x x x -⋅-+-=43521143-2-+x x 当T 与D 重合时,点F 的坐标是(9,0),∴53≤<x . 综上,得⎪⎪⎩⎪⎪⎨⎧≤<-+≤<+-=5343521143-31412141S 22x x x x x x ……9分说明:分段函数对一段2分,没化简不扣分②⎪⎪⎩⎪⎪⎨⎧≤<+≤<=5334311-43-311-41S 22x x x x )()(i)由当31≤<x 时,S 随x 的增大而增大,得3=x 时,S 有取大值,且最大值是1; ii)当53≤<x 时,311=x ,S 4综上i)、ii)所求为当311=x ,S ③存在,T 的坐标为(27,0)和(25,0) (i )当△PFE 以点E 为直角顶点时,作EF ⊥∵△AED ∽△EFD ∴21==ADED EDDF∴DF =1,∴点F (6,0) ∴点T (27,0)(ii )当△P ’F ’E 以点F ’为直角顶点时, ∵同样有△AED ∽△EF ’D∴21==AD ED ED DF ’ ∴DF ’=1,∴点F ’(4,0) ∴点T (25,0)综上(i )、(ii )知,满足条件的点T 坐标有(27,0)和(25,025. (1)由221+=m m ,得 2=m ……1分连结AD 、BD ∵AB 是⊙O 的直径∴∠ACB =90°,∠ADB =90°又∵∠BCD=2∠ACD ,∠ACB =∠BCD +∠ACD∴∠ACD =30°,∠BCD =60° ……3分 (2)连结AD 、BD ,则∠ABD=∠ACD=30°,AB =4∴AD =2,32=BD ……4分(算出AD 或BD 之一即1分) ∵21=PBAP ,∴34=AP ,38=BP ……5∵∠APC=∠DPB ,∠ACD =∠ABD ∴△APC ∽△DPB ∴BPPC DPAP DBAC ==,∴3383234=⋅=⋅=⋅DB AP DP AC ①,9163832=⋅=⋅=⋅BP AP DP PC ②同理△CPB ∽△APD ∴ADBC DPBP =,∴316238=⋅=⋅=⋅AD BP DP BC ③,由①得DPAC 338=,由③得DPBC 316=23316338==::BC AC ,在△ABC 中,AB =4,∴2224)316()338=+DPDP(,∴372=DP由②916372=⋅=⋅PC DP PC ,得2178=PC∴217223722178=+=+=PD CP DC方法二由①÷③得23316338==::BC AC ,在△ABC 中,AB =4,72143774=⋅=AC ,7782774=⋅=BC由③316778=⋅=⋅DP DP BC ,得372=DP由②916372=⋅=⋅PC DP PC ,得2178=PC∴217223722178=+=+=PD CP DC ……8分(3)连结OD ,由323-2+=PBAP ,AB =4,则323-24+=-APAP ,则APAP )()(3-2)32(432--=+,则32-=AP……10分32=-=AP OP要使CD 最短,则CD ⊥AB 于P 于是23cos ==∠ODOP POD ……12分︒=∠30POD∴∠ACD =15°,∠BCD =75°∴m =5,故存在这样的m 值,且m =5 ……14分。

G37-广东省广州市白云区2017年初中毕业班综合测试数学试题(5页,答案14)

G37-广东省广州市白云区2017年初中毕业班综合测试数学试题(5页,答案14)

G37 广州市白云区2017年初中毕业班综合测试数学试题(5页,答案14)第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.-12的相反数是( ) (A)12(B)2 (C)-0.5 (D)-2 2.下列各种图形中,可以比较大小的是( )(A)两条射线 (B)两条直线 (C)直线与射线 (D)两条线段3.下列代数式中,是4次单项式的为( )(A)4abc (B)-22x y π (C)2xyz (D)444x y z ++4.已知一组数据:5,7,4,8,6,7,2,则它的众数及中位数分别为( ) (A)7,8 (B)7,6 (C)6,7 (D)7,45.用直接开平方法解下列一元二次方程,其中无解的方程为( ) (A)2x -1=0 (B)2x =0 (C)2x +4=0 (D)-2x +3=06.平面内三条直线a 、b 、c ,若a ⊥b ,b ⊥c ,则直线a 、c 的位置关系是( ) (A)垂直 (B)平行 (C)相交 (D)以上都不对7.某同学参加数学、物理、化学三科竞赛平均成绩是93分,其中数学97分,化学89分,那么物理成绩是( )(A)91分 (B)92分 (C)93分 (D)94分 8.如图1,直线AB⊥CD,垂足为点O,直线EF经过点O,若∠1=26°,则∠2的度数是( ) (A)26° (B)64° (C)54° (D)以上答案都不对ABCDEFO12图19.在反比例函数y =13mx-的图象上有两点A(1x ,1y ),B(2x ,2y ),当1x <0<2x 时,有1y <2y ,则m 的取值范围是( )(A)m >0 (B)m <0 (C)m >13 (D)m <1310.如图2,两条宽度都是1的纸条,交叉重叠放在一起,且夹角为α,则重叠部分的面积为( ) (A)1sin α (B)1cos α(C)tan α (D)1第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分)11.如图3,点D、E分别是△ABC的边AC、BC上的点,AD=DE,AB=BE,∠A=80°,则∠BED= * °.12.△ABC中,∠A、∠B都是锐角,且sin A=cos B=12,则△ABC是* 三角形. 13.若3ma a ⋅=9a ,则m = * .14.已知,如图4,△ABC中,∠A+∠B=90°,AD=DB,CD=4,则AB= * .15.化简:22242x y xy x y ++-+-= * .αABCD图2↓↑1ABCDE 图3A BCD 图416.如图5,点C、D在线段AB上,且CD是等腰直角△PCD的底边.当△PDB∽△ACP时(P与A、B与P分别为对应顶点),∠APB= * °.三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)解方程组:2547x y x y +=-⎧⎨-=⎩18.(本小题满分9分)如图6,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且BE=DF. 求证:△ACE≌△ACF.19.(本小题满分10分)在一个纸盒里装有四张除数字以外完全相同卡片,四张卡片上的数字分别为1,2,3,4.先从纸盒里随机取出一张,记下数字为x ,再从剩下的三张中随机取出一张,记下数字为y ,这样确定了点P的坐标(x ,y ). (1)请你运用画树状图或列表的方法,写出点P所有可能的坐标; (2)求点P(x ,y )在函数y =-x +4图象上的概率.20.(本小题满分10分)如图7,一条直线分别交x 轴、y 轴于A、B两点,交反比例函数y =m x(m ≠0)位于第二象限的一支于C点,OA=OB=2. (1)m = * ;(2)求直线所对应的一次函数的解析式;(3)根据(1)所填m 的值,直接写出分解因式2a +ma +7的结果.ABC DE F图6CBD PA 图5xyO图7ABC-2421.(本小题满分12分)如图8,△ABC中,D为BC边上的点,∠CAD=∠CDA,E为AB边的中点. (1)尺规作图:作∠C的平分线CF,交AD于点F(保留作图痕迹,不写作法); (2)连结EF,EF与BC是什么位置关系?为什么? (3)若四边形BDFE的面积为9,求△ABD的面积.22.(本小题满分12分)我国实施的“一带一路”战略方针,惠及沿途各国.中欧班列也已融入其中.从我国重庆开往德国的杜伊斯堡班列,全程约11025千米.同样的货物,若用轮船运输,水路路程是铁路路程的1.6倍,水路所用天数是铁路所用天数的3倍,列车平均日速(平均每日行驶的千米数)是轮船平均日速的2倍少49千米.分别求出列车及轮船的平均日速.23.(本小题满分12分)如图9,⊙O的半径OA⊥OC,点D在 AC 上,且AD =2 CD ,OA=4. (1)∠COD= * °; (2)求弦AD的长;(3)P是半径OC上一动点,连结AP、PD,请求出AP+PD的最小值,并说明理由. (解答上面各题时,请按题意,自行补足图形)图9AC图8· EC备用图24.(本小题满分14分)二次函数y =2x +px +q 的顶点M是直线y =-12x 和直线y =x +m 的交点. (1)若直线y =x +m 过点D(0,-3),求M点的坐标及二次函数y =2x +px +q 的解析式; (2)试证明无论m 取任何值,二次函数y =2x +px +q 的图象与直线y =x +m 总有两个不同的交点;(3)在(1)的条件下,若二次函数y =2x +px +q 的图象与y 轴交于点C,与x 的右交点为A,试在直线y =-12x 上求异于M的点P,使P在△CMA的外接圆上.25.(本小题满分14分)已知,如图10,△ABC的三条边BC=a ,CA=b ,AB=c ,D为△ABC内一点,且∠ADB=∠BDC=∠CDA=120°,DA=u ,DB=v ,DC=w . (1)若∠CBD=18°,则∠BCD= * °;(2)将△ACD绕点A顺时针方向旋转90°到△AC D '',画出△AC D '',若∠CAD=20°,求∠CAD '度数; (3)试画出符合下列条件的正三角形:M为正三角形内的一点,M到正三角形三个顶点的距离分别为a 、b 、c ,且正三角形的边长为u +v +w ,并给予证明.ABCDu v wabc图10参考答案及评分建议(2017初三模拟考)三、解答题17.(本小题满分9分)解法一(加减消元法):2 547 x yx y⎧+=-⎨-=⎩①②①-②,得(x+2y)-(x-4y)=-5-7,…………………………3分即6y=-12,…………………………………………………………………4分解得y=-2,……………………………………………………………………5分把y=-2代入②,………………………………………………………………6分x-4×(-2)=7,…………………………………………………………7分得x=-1,………………………………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[若用②-①、①×2+②等,均参照给分]解法二(代入消元法):2 547 x yx y⎧+=-⎨-=⎩①②由①得,x=-2y-5③,……………………………………………3分把③式代入②式,…………………………………………………………………4分得(-2y-5)-4y=7,……………………………………………………5分解得y=-2,……………………………………………………………………6分把y=-2代入③式,……………………………………………………………7分x=-2×(-2)-5=-1,………………………………………………8分∴原方程组的解为12xy=-⎧⎨=-⎩.……………………………………………………9分[由②式变形代入,均参照给分]18.(本小题满分9分)证法一:∵四边形ABCD为菱形,∴AB=AD,∠BAC=∠DAC,………………2分又∵BE=DF,∴AB-BE=AD-DF,……………………………………4分即AE=AF.…………………………………………………………………………5分在△ACE和△ACF中,∵AE AFEAC FACAC AC=⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………8分∴△ACE≌△ACF(SAS).……………………………………………………9分证法二:∵四边形ABCD为菱形,∴BC=DC,∠B=∠D,…………………………1分在△BCE和△DCF中,∵BE DFB DBC DC=⎧⎪∠=∠⎨⎪=⎩,…………………………………………………………………………2分∴△BCE≌△DCF(SAS),……………………………………………………3分∴CE=CF.…………………………………………………………………………4分∵AB=AD,BE=DF,AB-BE=AD-DF,…………………………5分即AE=AF.…………………………………………………………………………6分在△ACE和△ACF中,∵AE AFCE CFAC AC=⎧⎪=⎨⎪=⎩,…………………………………………………………………………8分∴△ACE≌△ACF(SSS).……………………………………………………9分19.(本小题满分10分)解:(1)树状图如下:点P所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;……………………7分……………………………5分(2)∵共有12种等可能的结果,其中在函数y =-x +4图象上的点有2个(2种),………………………1分 即(1,3),(3,1),∴点P(x ,y )在函数y =-x +4图象上的概率为:P(点在图象上)=212=16.…………………………………………………3分20.(本小题满分10分) 解:(1)-8;…………………………………………………………………2分 (2)∵OA=OB=2,∴A、B点的坐标 分别为A(2,0)、B(0,2).……………………………………………2分 设直线所对应的一次函数的解析为y =kx +b ,……………………………3分 分别把A、B的坐标代入其中,得202k b b +=⎧⎨=⎩,……………………………………………………………………4分 解得12k b =-⎧⎨=⎩,…………………………………………………………………5分∴一次函数的解析为y =-x +2; (3)由(1)m =-8, 则2a +ma +7=2a -8m +7=(a -1)(a -7).……………………………………3分21.(本小题满分12分) 解:(1)尺规作图略;…………………………………………………………3分 (2)EF∥BC(即EF平行于BC).……………………………………1分 原因如下:如图1,∵∠CAD=∠CDA, ∴AC=DC(等角对等边),即△CAD为等腰三角形;…………………2分 又CF是顶角∠ACD的平分线,由“三线合一”定理,知CF是底边AD的中线,即F为AD的中点,……………………………3分 结合E是AB的中点,得EF为△ABD的中位线,………………………4分 ∴EF∥BD,从而EF∥BC;……………………………………………5分 (3)由(2)知EF∥BC,∴△AEF∽△ABD,…………………1分……………………………7分∴2()AEF ABD S AE S AB= ,……………………………………………………………2分 又∵AE=12AB,∴得14AEF AEF BDFE S S S =+ , 把S四边形BDFE=9代入其中,解得S△AEF=3,………………………………………………………………………3分 ∴S△ABD=S△AEF+S四边形BDFE=3+9=12,……………………………4分 即△ABD的面积为12.22.(本小题满分12分)解:设轮船的日速为x 千米/日,…………………………………………………1分 由题意,得11025249x -×3=1.611025x⨯,…………………………………………7分解此分式方程,得x =392,……………………………………………………9分经检验,x =392是原分式方程的解,………………………………………10分 2x -49=735.……………………………………………………………11分 答:列车的速度为735千米/日;轮船的速度为392千米/日.………12分23.(本小题满分12分) 解:(1)30;……………………………………………………………………1分 (2)连结OD、AD(如图2).∵OA⊥OC,∴∠AOC=90°.∵ AD =2 CD, 设 CD所对的圆心角∠COD=m ,………………………………………………1分 则∠AOD=2m ,…………………………………………………………………2分 由∠AOD+∠DOC=90°,得m +2m =90°,∴m =30°,2m =60°,…………………………3分 即∠AOD=60°,又∵OA=OD,∴△AOD为等边三角形,…………4分 ∴AD=OA=4;…………………………………………………………………5分 (3)过点D作DE⊥OC,交⊙O于点E,……………………………………1分 连结AE,交OC于点P(如图3),………………………………………………2分 则此时,AP+PD的值最小.∵根据圆的对称性,点E是点D关于OC的对称点,OC是DE的垂直平分线,即PD=PE.………………………………………3分 ∴AP+PD=AP+PE=AE,若在OC上另取一点F,连结AF、FD及EF,在△AFE中,AF+FE>AE, 即AF+FE>AP+PD,∴可知AP+PD最小.…………………………………………………………4分 ∵∠AED=12∠AOD=30°, 又∵OA⊥OC,DE⊥OC,∴OA∥DE, ∴∠OAE=∠AED=30°.延长AO交⊙O于点B,连结BE,∵AB为直径, ∴△ABE为直角三角形.由AEAB=cos ∠BAE,……………………………5分 得AE=AB·cos30°=2×4×2=即AP+PD= [也可利用勾股定理求得AE]24.(本小题满分14分) 解:(1)把D(0,-3)坐标代入直线y =x +m 中,得m =-3,从而得直线y =x -3.……………………………………………1分 由M为直线y =-12x 与直线y =x -3的交点, 得123y x y x ⎧=-⎪⎨⎪=-⎩,………………………………………………………………………2分 解得21x y =⎧⎨=-⎩,∴得M点坐标为M(2,-1).…………………………………3分∵M为二次函数y =2x +px +q 的顶点,∴其对称轴为x =2,由对称轴公式:x =-2b a ,得-2p=2,∴p =-4; 图2图3B由244ac b a-=-1,得24(4)4q --=-1,得q =3. ∴二次函数y =2x +px +q 的解析式为:y =2x -4x +3;………………4分[也可用顶点式求得解析式:由M(2,-1),得y =2(2)x --1,展开得y =2x -4x +3](2)∵M是直线y =-12x 和y =x +m 的交点,得12y x y x m⎧=-⎪⎨⎪=+⎩, 解得2313x m y m ⎧=-⎪⎪⎨⎪=⎪⎩,∴得M点坐标为M(-23m ,13m ).…………………………1分 从而有-2p =-23m 和244()34q m -=13m , 解得p =43m ;q =249m +13m .…………………………………………………3分 由2y x my x px q =+⎧⎨=++⎩,得2x +(p -1)x +q -m =0,……………………4分该一元二次方程根的判别式⊿=(p -1)2-4(q -m ) =(43m -1)2-4(249m +13m -m )=1>0,…………………………5分 ∴二次函数y =2x +px +q 的图象与直线y =x +m 总有两个不同的交点;(3)解法①:由(1)知,二次函数的解析式为:y =2x -4x +3,当x =0时,y =3.∴点C的坐标为C(0,3).……………………………1分令y =0,即2x -4x +3=0,解得1x =1,2x =3,∴点A的坐标为A(3,0).………………………………………………………2分,过M点作x 轴的垂线,垂足的坐标应为(2,0),由勾股定理,y 轴的垂线,垂足的坐标应为(0,-1),∵AC2+AM2=20=CM2,∴△CMA是直角三角形,……………………3分CM为斜边,∠CAM=90°.直线y =-12x 与△CMA的外接圆的一个交点为M,另一个交点为P, 则∠CPM=90°.即△CPM为Rt △.………………………………………4分 设P点的横坐标为x ,则P(x ,-12x ).过点P作x 轴垂线, 过点M作y 轴垂线,两条垂线交于点E(如图4),则E(x ,-1). 过P作PF⊥y 轴于点F,则F(0,-12x ). 在Rt △PEM中,PM2=PE2+EM2 =(-12x +1)2+(2-x )2=254x -5x +5. 在Rt △PCF中,PC2=PF2+CF2=2x +(3+12x )2 =254x +3x +9.在Rt △PCM中,PC2+PM2=CM2, 得254x +3x +9+254x -5x +5=20, 化简整理得52x -4x -12=0,解得1x =2,2x =-65. 当x =2时,y =-1,即为M点的横、纵坐标.∴P 点的横坐标为-65,纵坐标为35. ∴P(-65,35).……………………………………………………………………5分解法②[运用现行高中基本知识(解析几何):线段中点公式及两点间距离公式]:设线段CM的中点(即△CMA内接圆的圆心)为H,则由线段中点公式,可求出H的坐标为H(1,1).∵点P在⊙H上,∴点P到圆心H的距离等于半径.设点P的坐标为:P(n ,-12n ),由两点间的距离公式,得PH的长度为:221(1)(1)2n n -+--=5,化简,整理,得化简整理得52n -4n -12=0,解得1n =2,2n =-65.当n =2时,y =-1,即为M点的横、纵坐标.∴P 点的横坐标为-65,纵坐标为35. ∴P(-65,35). [对该解法,可相应给分]25.(本小题满分14分)解:(1)42;……………………………………………………………………1分 (2)画图如下(如图5).………………………………………………………3分 ∵∠DAD '=90°,∠CAD=20°,∴∠CAD '=∠DAD '-∠CAD=90°-20°=70°;…………5分(3)画图如下:将△BDC绕点B按逆时针方向旋转60°…………………2分 到△BEF的位置(如图6).连结DE,CF,这样可知△BDE和△BCF均为等边三角形,从而DE=v ,CF=a .∵∠ADB=120°,∠BDE=60°,即∠ADE=180°,则A、D、E三点共线(即该三点在同一条直线上).……………………………3分 同理,∵∠BEF=∠BDC=120°,∠BED=60°,即∠DEF=180°,则D、E、F三点共线,∴A、D、E、F四点均在一条直线上.…………………………………………4分 ∵EF=DC=w ,∴线段AF=u +v +w .以线段AF为边在点B一侧作等边△AFG(图6),……………………………5分 则△AFG即为符合条件的等边三角形,其中的点B即为点M.…………………6分 正三角形的边长为u +v +w 已证,BA=c ,BF=BC=a ,下面再证BG=b .∵∠CFB=∠AFG=60°,即∠1+∠EFB=∠2+∠EFB=60°,∴∠1=∠2.在△AFC和△GFB中,∵FA=FG,∠1=∠2,FC=FB,∴△AFC≌△GFB(SAS), AB C D uvw ab c 图5 C 'D '∴AC=GB,即BG=CA=b.从而点B(M)到等边△AFG三个顶点的距离分别为a、b、c,且其边长为u+v+w.………………………………………………………………8分[注:把△ADB绕点A按逆时针方向旋转60°,把△CDA绕点C按逆时针方向旋转60°,把△ADC绕点A按顺时针方向旋转60°,把△BCD绕点C按顺时针方向旋转60°等均可证得,方法类似]。

160425数学参考答案与评分标准(2016年黄埔区初中毕业班综合测试)

160425数学参考答案与评分标准(2016年黄埔区初中毕业班综合测试)

2016 年黄埔区初中毕业班综合测试 数学参考答案与评分标准说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考 查的知识点和能力要求参照评分标准给分. 2. 对解答题中的计算题, 当考生的解答在某一步出现错误时, 如果后继部分的解答未改变该题的内容和难度, 可视影响的程度决定后继部分的得分, 但所给分数不得超过该部分正确解答应得分数的一半; 如果后继部分的 解答有较严重的错误,就不再给分. 3.解答右端所注分数,表示考生正确做到这一步应得的累加. 4.只给整数分数,选择题和填空题不给中间分. 一、选择题: (本大题考查基本知识和基本运算.共 10 小题,每小题 3 分,满分 30 分. ) 1 2 3 4 5 题号 二、 填空 C A A B C 答案 大题查 识和基本运算.共 6 小题,每小题 3 分,满分 18 分. ) 题号 答案 11 12 13 6 C 7 D 8 D 9 B 10 D 题: (本 基本知1415161000130( x  2 y)( x  2 y)318 3三、解答题:(本大题共9小题,满分102 分.解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分 9 分) (本小题考查目标与要求:会解由两个一元一次不等式组成的不等式组,并会用数轴确定其解集.)–2–101234x解:解不等式 (1) ,得 x  1 , ……………………………………………3 分 解不等式 (2) ,得 x  4 , …………………………………………………6 分把不等式 (1) 和 (2) 的解集在数轴上表示出来,如上图所示. ……………8 分 从上图可以找出两个不等式解集的公共部分,得不等式组的解集为:1  x  4 . …………………………………………………………………9 分18. (本小题满分 9 分) (本小题考查目标与要求:会解可化为一元一次方程的分式方程) 解:方程两边乘 ( x  1)( x  1) , ……………………………………………3 分得: x  1  2 . 解得: x  3 .…………………………………………………………5 分 …………………………………………………………6 分 …………………………7 分检验:当 x  3 时, ( x  1)( x  1)  8  0 . 因此 x  3 是原分式方程的解. 所以,原分式方程的解为 x  3 .……………………………………8 分 ……………………………………9 分19. (本小题满分 10 分) (本小题考查目标与要求:会作一条线段的垂直平分线;会判断点与圆的位置关系; 会运用勾股定理解决简单问题.) 解答:⑴如图所示; ①作 AC 的垂直平分线,交 AB 于点 O ,交 AC 于点 D ; ……………………3 分 ②以 O 为圆心, OA 为半径作圆,交 OD 的延长线于点 E . …………………4 分(每一步的作图痕迹及点的标签各占 0.5 分,按四舍五入给整数分) ⑵①填“点 B 在 O 上”,或填“ O 经过点 B ”. …………………………5 分 ②∵ OD  AC ,且点 D 是 AC 的中点, ∴ AD 1 AC  4 ,设 O 的半径为 r , ………………………………………6 分 2则 OA  OE  r , OD  OE  DE  r  2 . ……………………………………7 分 在 Rt AOD 中,由勾股定理,得OA2  AD2  OD2 ,………………………………………………………………8 分即 r  4  (r  2) ,………………………………………………………………9 分2 2 2解得 r  5 .∴ O 的半径为 5 ……………………………………………………10 分E DCAOB图720. (本小题满分10分) (本小题考查目标与要求:能根据已知条件确定一次函数表达式;能根据已知条件确定反比例函数表达式; 考查运算求解能力.) 解: (1)∵直线 y  3 x  b 与 y 轴交于点 B , 2∴点 B 的坐标为 (0, b) . …………………………………………………2 分 ①作 AC  y 轴, C 为垂足,则 AC 是 OB 边上的高,………………3 分 ②∵点 A 的坐标为 (2, m) ,∴ AC  2 . ………………………………4 分 ③又∵ AOB 的面积等于 2 ,∴ ∴b  2 .1 b  2  2 , ………………………5 分 2………………………………………………………………6 分(说明:第①、②二步省略,只要第③步正确,不扣分.) (2)∵点 A(2, m) 在直线 y   ∴m  3 x  2 上, 23  2  2  1,…………………………………………………7 分 2∴ A 的坐标为 (2, 1) . ……………………………………………………8 分 又∵反比例函数 y  ∴ 1 k ( k 是常量, k  0 )的图像经过点 A , xk ,即 k  2 , …………………………………………………9 分 2 2 ∴这个反比例函数的解析式为 y   . ………………………………10 分 xyBO C1 A 图8x21. (本小题满分12分) (本小题考查目标与要求:会用列举法(包括列表、画树形图)计算简单事件发生的概率.) 解:⑴从 O 、 A 、 B 、 C 、 D 五点中任取两点,所有等可能出现的结果有:AB、AC、AD、BC、BD、CD、OA、OB、OC、OD,共有 10 种.(写对一个结果给 0.5 分,四舍五入,给整数分) 满足两点间的距离为 2 的结果有 AB 、BC、CD、AD 这 4 种.………5 分………7 分(写对一个结果给 0.5 分,四舍五入,给整数分) 所以 P(两点间的距离为 2 ) 4 2  . 10 5………8 分 ………9 分⑵满足两点间的距离为 2 2 的结果有 AC 、BD 这 2 种. (写对一个结果给 0.5 分,四舍五入,给整数分) 所以 P(两点间的距离为 2 2 ) 2 1  . 10 5………10 分 ………12 分⑶满足两点间的距离为 2 的结果有 OA 、OB、OC、OD 这 4 种. (写对一个结果给 0.5 分,四舍五入,给整数分) 所以 P(两点间的距离为 2 ) 4 2  . 10 5………12 分22.(本小题满分12分) (本小题考查目标与要求:能用一元一次方程解决实际问题,能用二元一次方程组解决实际问题;考查解决 简单实际问题的能力;考查运算求解能力.) 解法 1:设甲加工 30 个零件需 t 小时, 依题意,乙加工 30 个零件需 t+1 小时. ………1 分 ………2 分 ………3 分 ………4 分30 个零件, t 30 乙原来每小时加工 个零件. t+1甲原来每小时加工 乙改进操作方法后,每小时加工 乙完成 30 个零件的时间是60 个零件, t+1………5 分 ………7 分30 1 , = (t  1 ) 60 2 t+1 24 4 甲完成 24 个零件的时间是 = t, 30 5 t 4 1 依题意得, t  (t  1)  1 , 5 2解得, t=5 . 答:甲乙两人原来每小时各加工零件分别为 6 个、5 个. 解法 2:设甲乙两人原来每小时各加工零件分别为 x 个、 y 个,………9 分………10 分 ………11 分 ………12 分 ………1 分 30 30   1,  x y ∴  24  30  1,   x 2y………7 分 x  6, 解得   y  5.………11 分经检验它是原方程的组解,且符合题意. 答:甲乙两人原来每小时各加工零件分别为 6 个、5 个. 23. (本小题满分12分) 性质;考查推理能力、转化思想)………12 分(本小题考查目标与要求:掌握两个三角形全等的条件;掌握菱形的性质;理解等边三角形的概念并掌握其D E A 图10 F CD E A 备用图………1 分F CBB解: (1)BE=BF,证明如下: 如图 10,∵四边形 ABCD 是边长为 4 的菱形,BD=4, ∴ΔABD、ΔCBD 都是边长为 4 的正三角形, 在 ΔBDE 与 ΔBCF 中, ∵AE+CF=4,∴CF=4-AE=AD-AE=DE, 又∵BD=BC=4,∠BDE=∠C=60° , ∴ΔBDE≅ΔBCF,∴BE=BF. (2)∵ΔBDE≅ΔBCF,∴∠EBD=∠FBC, ∴∠EBD+∠DBF=∠FBC+∠DBF, ∴∠EBF=∠DBC=60° 又∵BE=BF,∴ΔBEF 是正三角形, ∴EF=BE=BF. 在备用图中,当动点 E 运动到点 D 或点 A 时,BE 的最大值为 4, 当 BE⊥AD,即 E 为 AD 的中点时,BE 的最小值为 2 3 , ∵EF=BE,∴EF 的最大值为 4,最小值为 2 3………2 分………3 分 ………4 分 ………4 分 ………5 分 ………6 分 ………6 分 ………7 分 ………7 分 ………9 分 ………11 分 ………12 分24.(本小题满分14分) (本小题考查目标与要求:能判定一条直线是否为圆的切线;掌握切线与过切点的半径之间的关系;会运用 三角函数解决与直角三角形有关的简单问题;考查推理能力、转化思想考查运算求解能力.)C D AEC D O 图11 B AEC D O 图11 B AEO 图11B证明: (1)解法 1:连接 OE, ∵AB 是⊙O 的直径,AC 是圆⊙O 的切线, ∴AE⊥BC,AC⊥AB. 在直角 ΔAEC 中, ∵D 为 AC 的中点, ∴DE=DC,∴∠DEC=∠DCE. ∵∠OEB=∠OBE,∠ABC+∠ACB=90° , ∴∠DEC+∠OEB=∠DCE+∠OBE=90° , ∴∠DEO=180° -90° =90° ,∴OE⊥DE, ∴DE 是⊙O 的切线. 解法 2: 连接 OE,OD. AC 是圆⊙O 的切线, ∴AE⊥BC,AC⊥AB. 在直角 ΔAEC 中, ∵D 为 AC 的中点,∴DE=DA=DC, 在 ΔDEO 与 ΔDAO 中, ∵OA=OE, OD=OD, DE=DA, ∴ΔDEO≌ΔDAO, ∴∠DEO=∠DAO=90° ,∴OE⊥DE, ∴DE 是⊙O 的切线. (2)解法 1:在直角 ΔEAC 与直角 ΔEBA 中, ∵∠EAC+∠EAB=90° ,∠EBA+∠EAB=90° , ∴∠EAC=∠EBA, ∴ΔEAC∼ΔEBA,……… 1 分 ………2 分……… 3 分 ……… 4 分 ……… 5 分 ………6 分 ………1 分∵AB 是⊙O 的直径, ………2 分 ………3 分………4 分 ………5 分 ………6 分 ………7 分 ………8 分 ………9 分 ………10 分 ………11 分 ………12 分EA EB  , EA2  EB  EC . EC EA 设 EC  1 ,则 EB  3 ,∴EA2  EB  EC  3 , EA  3 .在直角 ΔAEB 中, tan ABC  (2)解法 2 设 AE  x , CE  1 ,则 BE  3 , BC  4 . 在直角 ΔAEB 与直角 ΔAEC 中,由勾股定理得:EA 3 ,  EB 3………14 分………7 分AB  9  x2 , AC  1  x2 .∵………9 分 ………10 分 ………10 分 ………11 分 ………11 分 ………12 分1 1 AC  AB  AE  BC , 2 2∴ 1  x2  9  x2  4 x , ∴ 9  x2  9 x2  x4  16 x2 ,4 2 ∴ x  6x  9  0 ,∴ ( x  3)  0 ,∴ x  3 .2 2在直角 ΔAEB 中, tan ABC EA 3 ,  EB 3………14 分25. (本小题满分14分) (本小题考查目标与要求: 能根据已知条件确定二次函数的表达式; 会应用配方法或公式法确定图象的顶点、 开口方向和对称轴;会用描点法画出二次函数的图象;掌握四边形是平行四边形的条件;考查待定系数法、 数形结合、转化、分类讨论的思想方法,以及运算求解能力)解: (1)根据题意得: 9-3b+c=0, -1+b+c=0.………1 分解得: a  1, , b  2.2………2 分∴解析式为 y   x  2 x  3 . 当x………2 分 ………3 分 ………3 分 ………4 分 ………5 分b  1 时, y  4 , 2a∴顶点 D 的坐标为 (1, 4) , ∴点 F 的坐标为 (1, 4) . 此抛物线的草图如右图所示 (2)若以 O 、 F 、 P 、 Q 为顶点的平行四边形存在, 则点 Q( x, y) 必须满足 y  EF  4 .………6 分2 ①当 y  4 时,  x  2 x  3  4 .………7 分 ………8 分 , ………8 分 ………9 分 ………12 分 ………13 分 ………13 分 ………14 分解得, x  1  2 2 , ∴ Q1 (1  2 2, 4), Q2 (1  2 2, 4) ∴P 1 (2 2,0), P 2 (2 2,0) .2 ②当 y  4 时,  x  2 x  3  4 ,解得, x  1 , ∴ Q3 (1, 4) , ∴P 3 (2,0) . 综上所述,符合条件的点有三个即:P 1 (2 2,0), P 2 (2 2,0), P 3 (2,0) .………14 分。

三明市2021-2022学年九年级初中毕业班第一次数学教学质量检测试卷

三明市2021-2022学年九年级初中毕业班第一次数学教学质量检测试卷

三明市2021-2022学年初中毕业班第一次教学质量检测数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共6页.满分150分,考试时间120分钟. 注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人准考证号、姓名等信息.考生要认真核对答题卡上的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题答案用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上答题无效.3.作图可先使用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑.4.考试结束,考生必须将答题卡交回.第Ⅰ卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.一元二次方程2x 2﹣1=6x 化成一般形式后,常数项是﹣1,一次项系数是 A .﹣2B .﹣6C .2D .62.下列各组图形中,不一定相似的是 A .任意两个等腰直角三角形 B .任意两个等边三角形 C .任意两个矩形D .任意两个正方形3. 抛物线y =﹣x 2+2x ﹣7与y 轴的交点坐标为 A .(7,0)B .(﹣7,0)C .(0,7)D .(0,﹣7)4.如图,已知直线a ∥b ∥c ,直线m ,n 与直线a ,b ,c 分别交于点A ,B ,C ,D ,E ,F ,若DE =7,EF =10,则AB BC的值为A .710B .107C .717D .10175. 将二次函数y = x 2-4x +3通过配方化为y=a (x -h )2+k 的形式,结果为 A .y =(x -2)2-1 B . y =(x -2)2+3 C . y =(x +2)2+3 D . y =(x +2)2-16.如图所示几何体的左视图是A.B.C.D.7.某种芯片实现国产化后,经过两次降价,每块芯片单价由128元降为88元.若两次降价的百分率相同,设每次降价的百分率为x,根据题意,可列方程A .128(1-x2)=88B.88(1+x) 2=128C.128(1-2x)=88D.128(1-x) 2=888.如图,小勇在探究课本“综合与实践”中的“制作视力表”时,根据测试距离为5m的标准视力表制作了一个测试距离为3m的视力表.如果标准视力表中“E”的高a是72.7mm,那么制作出的视力表中相应“E”的高b是A.121.17mm B.43.62mmC.43.36mm D.29.08mm9.若点A(1,y1),B(2,y2),C(m,y3)在抛物线y=a(x+1)2+c(a≠0)上,且y1<y2<y3,则m的值不可能是A.5B.3C.-3 D.-510. 如图,菱形ABCD中,∠BAD=60°,AB=6,点E,F分别在边AB,AD上,将△AEF沿EF翻折得到△GEF,若点G恰好为CD边的中点,则AE的长为A.34B. 214C. 34√15 D. 3√3GFED CBA第Ⅱ卷注意事项:1.用0.5毫米黑色墨水签字笔在答题卡上相应位置书写作答,在试题卷上作答,答案无效.2.作图可先用2B 铅笔画出,确定后必须用0.5毫米黑色墨水签字笔描黑. 二、填空题:本题共6小题,每小题4分,共24分.11.小华在解方程x 2=3x 时,只得出一个根x =3,则被他漏掉的一个根是x = ▲ . 12.若ab=52,则a−b a+b= ▲ .13.在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是 ▲ .14.小莉和小林同时站在阳光下,测得身高150 cm 的小莉影子长为120 cm ,小林的影子比小莉的影子长20cm ,则小林的身高比小莉高 ▲ cm.15.如图,点A ,B 为反比例函数y =kx (x >0)图象上的两点,过点A 作x 轴的垂线,垂足为C ,AC 与OB 交于点D ,OD =23OB . 若△OCD 的面积为2,则k 的值为 ▲ .16.如图,□ABCD 中,∠ACB =30°,AC 的垂直平分线分别交AC ,BC ,AD 于点O ,E ,F ,点P 在OF 上,连接AE ,P A ,PB . 若P A =PB ,现有以下结论: ①△P AB 为等边三角形; ②△PEB ∽△APF ; ③∠PBC -∠P AC =30°; ④EA =EB +EP .其中一定正确的是__▲__.(写出所有正确结论的序号)FOP EDCBA三、解答题:本题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分8分)解方程:2x2-4x-1=0.18.(本小题满分8分)如图,点E为矩形ABCD外一点,AE=DE.求证:△ABE≌△DCE.19.(本小题满分8分)已知关于x的方程x2﹣5x+m=0.(1)若方程有一根为﹣1,求m的值;(2)若方程无实数根,求m的取值范围.20.(本小题满分8分)如图,正方形ABCD的边长为2,点E为AD的中点,点F在BC的延长线上,且∠BEF=90°.求BF的长.21.(本小题满分8分)如图,已知△ABC,点D在BC延长线上,且CD=BC.(1)求作□ACDE;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,若F是DE的中点,连接BF交AC于点M,连接CE交BF于点N,求MNNF的值.EDCBADAFE DCBA22.(本小题满分10分)某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培蔬菜. 某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)与时间x(h)之间的函数关系如图所示,其中BC段是恒温阶段,CD段是某反比例函数图象的一部分,请根据图中信息解答下列问题:(1)求a的值;(2)大棚里栽培的一种蔬菜在温度为12℃到20℃的条件下最适合生长,若某天恒温系统开启前的温度是10℃,那么这种蔬菜一天内最适合生长的时间有多长?23.(本小题满分10分)某智力竞答节目共有10道选择题,每道题有且只有一个选项是正确的.小明已答对前7题,答对最后3题就能顺利通关,其中第8题有A,B两个选项,第9题和第10题都有A,B,C三个选项,假设这3道题小明都不会,只能从所有选项中随机选择一个,不过小明还有两次“求助”没有用(使用一次“求助”可以让主持人在该题的选项中去掉一个错误选项,每道题最多只能使用一次“求助”).(1)若小明在竞答第8题和第9题时都使用了“求助”,求小明能顺利通关的概率;(2)从概率的角度分析,如何使用两次“求助”,竞答通关的可能性更大.24.(本小题满分12分)如图①,在Rt △ABC 中,∠BAC =90°,AB =k ∙AC ,△ADE 是由△ABC 绕点A 逆时针旋转某个角度得到的,BC 与DE 交于点F ,直线BD 与EC 交于点G . (1)求证:BD =k ∙EC ; (2)求∠CGD 的度数;(3)若k=1(如图②),求证:A ,F ,G 三点在同一直线上.25.(本小题满分14分)抛物线y =ax 2+bx +c(a ≠0)经过点A (-4,0)和点B (5,94).(1)求证:a +b =14; (2)若抛物线经过点C (4,0).①点D 在抛物线上,且点D 在第二象限,并满足∠ABD =2∠BAC ,求点D 的坐标; ②直线y =kx −2(k ≠0)与抛物线交于M ,N 两点(点M 在点N 的左侧),点P 是直线MN 下方的抛物线上的一点,点Q 在y 轴上,且四边形MPNQ 是平行四边形,求点Q 的坐标.FA BDGECFGEDCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泉州市初中毕业班数学综合练习卷(一)
(时间120分钟,满分150分)
一 填空题(每小题3分,共36分)
1.-3的相反数是______.
2.全世界人口数大约是6100000000,用科学计数法表示:___________.
3.因式分解:224y x -=_______________________
4.计算:023(-)=___________.
5,当x___________时,分式13
x -有意义. 6.在一次数学测试中,某学习小组5人的成绩(单位:分)
是62、93、94、98、98.则这个学习小组测试成绩的标准差约是_____(精确到整数位).
7.如图,在正方形网格上有三个三角形,则与△FDE 相似的三
角形是___________.
8.今年,小李的年龄(x 岁)比他妈妈的年龄(y 岁)少25岁,
12年之后,他的年龄是妈妈的12
.依题意可列出关于x 、y 的二元一次方程组是________________________.
9.利用几何图形可以得到一些相关的代数关系式,请根据右图分解因式:22252a ab b ++=__________________.
10.用边长相等的正多边形磁砖铺地板,围绕一个顶点处的磁砖可以是2块正三角形磁砖和_____块正六边形磁砖.
11.三个筹码,第一个一面画上×,另一面画上○;第二个一面画上○,另一面画上#;第三个一面画上#,另一面画上×.甲、乙两人玩抛掷三个筹码的游戏,其游戏规则定为“掷出的三个筹码中 _________________则甲方赢;否则,乙方赢”时,这个游戏是公平的.
12.图(a)、(b)、(c)都是上底与腰长相等,下底是腰长的两倍的等腰梯形.图(a)的腰长是1,图(b)的腰长是2,则图(b)可以分割成4个图(a)的等腰梯形.
⑴若图(c)的腰长是4,则图(c)可以分割成_____个图(a)的等腰梯形;
⑵若图(c)的腰长是64,则图(c) 可以分割成_____个图(a)的等腰梯形.
二 选择题(每小题4分,共24分)
13.由四舍五入得到下列近似数,其中精确到万分位,且有3个有效数字的近似数是( ) (A )0.407 (B )4.2010 (C )5.08×610
(D )0.0407
14.某校开展学做手工活的实践活动,其中一小组13名同学在一节手工课中各自做的手工活的数量(单位:件)是7、7、8、8、8、8、9、10、10、11、13、15、16.则10是这13名同学在这一节手工课中所做手工活的数量的( )
(A )众数 (B )中位数 (C )平均数 (D )极差
15.在一个不透明的口袋中装着大小、外型一模一样的2个红球,3个蓝球,它们已
经在口袋中被搅匀了,则下列事件是必然事件的是( ).
(A )从口袋中任意取出1个球,是红球
(B )从口袋中任意取出2个球,是一个红球,一个蓝球 (C )从口袋中任意取出1个球,是白球
(D )从口袋中任意取出3个球,其中一定有蓝球 16.下列各式不正确的是( ) (A
(B )109->1011
- (C )0>-4 (D )-5.4<-4.5 17.如图,已知点A 在圆G 上,弦BC 过点G ,GA LK ⊥,下列结论正确的是( )
(A )在点A 与圆G 相切的圆有两个(B )2BCA BGA ∠=∠
(C )90CAB ∠=
(D )LK 是圆G 的切线 18.桌上摆着一个由若干个相同长方体组成的几何体,其正视图和左视图如图所示,组成这个几何体的长方形最少有( )
(A )2个 (B )3个 (C ) 4个 (D )5个
三 解答题(90分)
19.(8分)先化简,再求值:
22
44(1)24x xy y y x x y
-+---,其中14,2x y =-=-. 20.(8分)解不等式组:
{841
22x x x x +≥->+
21.(8分)中华人民共和国从1953年到2000年共进行了5次人口普查,根据第 二~第五次人口普查的结果制作了每10万人受教育程度的人数统计表如下:
⑴上表中加括号的数字“33961”表示什么含义?
⑵用折线统计图表示第二~第五次人口普查每10万人中具有大学文化程度的人数比例.
22.(8分)某城市规定,轮椅行走斜坡的倾斜角不得超过9
.该城市湖滨公园入门处的台阶边有一个斜坡,经测量得到它的铅垂高度是0.5m,坡面的水平长度是1.2m.请问该公园入门处的斜坡是否适合轮椅行走,请说明理由;若不适合轮椅行走,重新修建的坡面起点离原坡面起点至少多长?(精确到0.1m)
23.(8分)画出等边三角形BAC 绕点B 顺时针旋转90 后的图形(△BA C ''),并连接AC '、CA '.
⑴直接写出ABC '∠、CAC '∠、A CB '∠、CA B '∠的度数;
⑵利用结论⑴判断四边形CAC A ''的形状,并进行证明.
24.(8分)如图,把三张完全相同的纸片分别画上正方形和正三角形,做拼图游戏:两张三角形的纸片拼成菱形,一张三角形纸片和一张正方形纸片拼成房子.将这三张纸片放在盒子里搅匀任取两张
⑴用树状图或列表法计算它们能拼成房子的概率;
⑵有人用一个骰子及规定:“这个骰子中点数为1、2的面表示正方形纸片,点数为3、4、5、6的面表示两张三角形纸片,连续抛这个骰子两次表示任取两张纸片.”进行上述拼图游戏的模拟试验,估计它们能拼成房子的概率.你认为正确吗,请说明理由.
25.(8分)如图,在平行四边形ABCD 中,E 、F 分别是AD 、BC 的中点.
⑴证明:△BEF ≌△DFE ;
⑵证明:若90BEC ∠= ,H 是EC 与FD 的交点,
G 是EB 的中点,探索GH 与EF 的大小关系,并加以
证明.
26.(8分)一小球从斜坡O 点处抛出,球的抛出路线可以用二次函数21(4)82y x =--+刻画,斜坡(OA)可以用一次函数12
y x =刻画.
⑴在直角坐标系中画出球的抛出路线草图.当小球离点O
的水平距离为多少时,小球离斜坡的铅垂高度(即小球离点O
的水平距离为x 时的高度减去此时斜坡的高度)是2;⑵当小球
离点O 的水平距离为多少时,小球离斜坡的铅垂高度达到最大,
并求出这个最大值.
B
27.(13分)某外语学校在圣诞节要举行汇报演出,需要准备一些圣诞帽,为了培养学生的动手能力,学校决定自己制作这些圣诞帽.如果圣诞帽(圆锥形状)的规格是母线长42厘米,底面直径为16厘米.
⑴求圣诞帽的侧面展开图(扇形)的圆心角的度数(精确到度);
⑵已知A种规格的纸片能做3个圣诞帽,B种规格的纸片能做4个圣诞帽,汇报演出需要26个圣诞帽,写出A种规格的纸片y张与B种规格的纸片x张之间的函数关系式及其x的最大值与最小值;若自己制作时,A、B两种规格的纸片各买多少张时,才不会浪费纸张?
⑶现有一张边长为79厘米的正方形纸片,它最多能制作几个这种规格的圣诞帽(圣诞帽的粘接处忽略不计).请在比例尺为1:15的正方形纸片上画出圣诞帽的侧面展开图的裁剪草图,并利用所学的数学知识说明其可行性.
28.(13分)如图,已知正三角形ABC的边长AB是480毫米.一质点D从点B出发,沿BA方向,以每秒钟10毫米的速度向点A运动.
⑴建立合适的直角坐标系,用运动时间t(秒)表示点D的坐标;
⑵过点D在三角形ABC的内部作一个矩形DEFG,其中EF在BC边上,G在AC边上.在图中找出点D,使矩形DEFG 是正方形(要求所表达的方式能体现出找点D的过程);
⑶过点D、B、C作平行四边形,当t为何值时,由点C、B、
D、F组成的平行四边形的面积等于三角形ADC的面积,并求
此时点F的坐标.。

相关文档
最新文档