胶体化学-第五章乳状液及微乳状液
胶体化学之乳状液
![胶体化学之乳状液](https://img.taocdn.com/s3/m/76126191bceb19e8b8f6bad9.png)
导电法
O/W的导电性比W/O的要好。但使用离子型乳化剂 是,即使是W/O型乳状液,或水相体积分数很大的 W/O型乳状液,其导电性也颇为可观。
影响乳状液稳定性的因素:
乳状液特点:
多相系,相界面积大,表面自由能高,热力学不稳定系统。
1、表面张力的影响。
。
三、乳状液的破坏
乳状液的完全破坏叫破乳。
破乳的机理: 1.絮凝:此过程中,连续相在液滴与界面间排泄出来, 分散相的液珠聚集成团,但各液珠皆仍然存在,这 些团常常是可逆的。在液滴与界面之间“接触”面 的周界上的界面最薄。 2.聚结:此过程中,膜发生破裂,各个团合成一个大 滴,导致液滴数目的减少和乳状液的完全破坏。此 过程是不可逆的。
界面膜的强度和紧密程度是决定乳状液稳定性的重要因素: ①使用足量的乳化剂。 ②选择适合分子结构的乳化剂。
3、界面电荷的影响―乳状液稳定的电理论。 4、外相粘度的影响。 5、固体乳化剂对乳化液的稳定作用。
选择乳化剂的一般原则:
①具有良好的表面活性,可以降低表面张力,在形 成的乳化液外相中,有良好的溶解能力。 ②在油―水界面上,能够形成稳定的、紧密排列的界 面膜。 ③能够适当增大外相的粘度,减小液滴的聚结速度。 ④水溶性乳化剂和油溶性乳化剂混合使用,具有较 好的乳化效果。 ⑤应该满足乳化体系的特殊要求。 ⑥应该用最小的浓度和最低的成本达到乳化效果, 并且乳化工艺简单。
乳状液的应用:
乳状液在工农业生产、日常生活以及生理现象中 有着广泛应用。
1. 控制反应 许多化学反应是放热的,这会使温度急剧 升高,促进副反应的发生。如果将反应物制作成乳状液, 不仅可以利用其界面大、接触充分的特点提高反应效率, 而且大界面有利于散热,从而可以提高产率。 2. 农药乳剂 将杀虫药等制作成乳状液,可以使之均匀 地铺展在植物上,用量少且效率高。如顺式氯氰菊酯微 乳液就在农药上有了较好的运用。 3. 纺织工业 天然纤维与人造短纤维在纺前要用油剂处 理从而增强纤维的机械强度、减少摩擦和增加抗静电性 能等。 4. 乳化食品 乳化食品在生活中是非常常见的。我们日 常喝的牛奶、豆浆等都是天然的乳化食品,人造的有人 造奶油等等。 5. 制革工业 在皮革的加工上,我们常常要“上油”。 这里的“油”,便是乳状液。将它涂在表面上,可以提 高皮革的牢固度、柔软性和拉伸性能。
基础化学第五章胶体
![基础化学第五章胶体](https://img.taocdn.com/s3/m/024f69d35022aaea988f0f0b.png)
不同电解质对几种溶胶的临界聚沉浓度/mmol· L-1
As2S2(负溶胶) LiCl 58 NaCl 51 KCl 49.5 AgI(负溶胶) LiNO3 165 NaNO3 140 KNO3 136 Al2O3(正溶胶) NaCl 43.5 KCl 46 KNO3 60 K2SO4 K2Cr2O7 0.30 0.63
二、胶体分散系 2. 表面能
液体有自动缩小表面积的趋势。小的液滴聚 集变大,可以缩小表面积,降低表面能。表 面积减小过程是自发过程。 这个结论对固体物质同样适用。高度分散的 溶胶比表面大,所以表面能也大,它们有自 动聚积成大颗粒而减少表面积的趋势,称为 聚结不稳定性。
第二节 溶胶
一.
溶胶的基本性质
内旋转:分子链中 许多C-C单键, C 原子以sp3杂化,单 键能在键角不变条 件下绕键轴旋转。 柔性:内旋转导致 碳链构型改变,高 分子长链两端的距 离也随之改变。
第三节 高分子溶液
3.
高分子溶液的形成
①
②
③
溶胀:溶剂进入高分子链, 导致化合物舒展,体积成 倍增长。 高分子化合物先溶胀,后 溶解。 与水分子亲和力很强的高 分子化合物形成水合膜: 稳定性的主要原因。
上:高分子化合物在良溶 剂中 下:高分子化合物在不良 溶剂中
第三节 高分子溶液
二.
聚电解质溶液
蛋白质等高分子化合物在水溶液中往往以离子 形式存在,称为聚电解质(polyelectrolyte) 特征:
1.
①
链上有荷电基团很多
②
③ ④
电荷密度很大 对极性溶剂分子的亲合力很强 分为阳离子、阴离子、两性离子三类。
126 2.40 2.60 2.43 0.067 0.069 0.069
第五章 胶体
![第五章 胶体](https://img.taocdn.com/s3/m/45448607a6c30c2259019e5a.png)
一价负离子(对正溶胶)聚沉能力:
F- ﹥Cl- ﹥Br- ﹥I -﹥CNS-
(3)一些有机物离子具有非常强的聚沉能 力。特别是一些表面活性剂(脂肪酸盐)和聚酰 胺类化合物的离子,能有效地破坏溶胶使之聚 沉,这可能是有机物离子能被胶核强烈吸附的 缘故。 2.溶胶的相互聚沉:带相反电荷的溶胶有 相互聚沉能力。例如,用明矾净水*。
2.表面自由能(surface free energy) 任何两相的界面分子与其相内分子所处状况
不同,它们的能量也不同(图5-1)。 等温等压下的表面能称为表面自由能。 系统表面自由能和表面积的关系为
气相
液相
图5-1 液体内部及表层分子 受力情况示意图
dG表=dS (13.1) S ---系统表面积, ---比表面自由能,简称 比表面能(specific surface energy) 若dG表<0,则dS<0, 即:表面积缩小过程是自发过程。 故:液体呈球形是自发过程。 此结论对固体物质(dS<0)同样适用*。 高度分散的溶胶比表面大,所以表面能也大, 它们有自动聚积成大的颗粒而减小表面积的趋势, 称为聚结不稳定。 是热力学不稳定体系。
沸腾 FeCl 3 +3H 2 O F e(O H ) 3 +3H C l
部分Fe(OH)3与HCl作用:
Fe (O H ) 3 + H C l
Fe O C l+ 3 H 2 O
FeOCl
FeO +Cl
+
第五章 胶体(collidal) 和乳状液(emulsion)
![第五章 胶体(collidal) 和乳状液(emulsion)](https://img.taocdn.com/s3/m/c7f1721df78a6529647d5325.png)
乳状液的类型的鉴别
稀释法:加水稀释后稳定的是O/W 染色法:加油溶性苏丹Ⅲ,显微镜下看到红 色颗粒的是O/W 电导率法:电导率大的是O/W
小结
溶胶的稳定性因素、胶团结构、电动电位 和聚沉 高分子化合物溶液和凝胶 表面活性剂和胶束 乳离子
nFeO
+
(n-x)Cl
- x+
xCl-
吸附层
扩散层
AgNO3 + KI → AgI + KNO3
AgNO3过量
胶核 (AgI)m 吸附离子? Ag+ [(AgI)m· nAg+· (n-x)NO3-]x+· x NO3-
KI过量?
[(AgI)m· nI-· (n-x) K+]x-· x K+
胶粒带电原因之二
胶核表面分子的解离也可造成胶粒带电: 硅酸(SiO2· H2O, 即H2SiO3)溶胶的表面 解离为SiO32-和H+
H2SiO3 HSiO3- HSiO3-+H+ SiO32- +H+
四、溶胶的相对稳定因素及聚沉
1、胶粒带电 2、溶胶表面的水合膜 3、Brownian运动 4、高分子化合物对溶胶的保护作用
金属氢氧化物为正溶胶,电泳时胶粒泳向 负极
金属硫化物、硅胶、金、银为负溶胶,电泳时胶 粒泳向正极
(四)溶胶不能透过半透膜
三、胶团结构——(一)带电原因:吸附
FeCl3 + H2O → Fe(OH) 3 +HCl FeOCl → FeO+ + Cl吸附离子 组成相似
[Fe(OH) 3]m
胶核 胶粒 胶团
(二)溶胶的动力学性质
溶胶粒子时刻处于无规则的运动状态,因而表 现出扩散、渗透、沉降等与溶胶粒子大小及形状 等属性相关的运动特性,称为动力学性质。 1. 布朗运动
第05章胶体
![第05章胶体](https://img.taocdn.com/s3/m/193401240242a8956bece4f2.png)
颗粒越大、越多;折光率相差越大散射越强。
(二)动力学性质——Brownian movement
1 Brownian movement:显微镜下可见胶体粒 子作不断改变速度和方向的无规则运动
颗粒越小, 温度越高, 布朗运动 越剧烈。
布朗运动 并不是胶 体特有的 性质。
2 扩散与沉降平衡 当溶胶中的胶粒存在浓度差时,胶粒从浓度 大的区域向浓度小的区域迁移,这种现象叫 扩散。
(一)溶胶的光学性质
当一束强光透过胶体时,可以看到一条光亮的 通路,这种现象叫做丁达尔现象。
用这种方法可以区别溶液和胶体。
产生原因:当颗粒大小d小于入射光波长入时 ,光环绕颗粒除入射光方向外,还向各方向散 射,即每个颗粒又作为一个光源,向各方向发 射光,散射出来的光称乳光。
产生条件: ①颗粒大小合适,d<λ(1-100nm之间) ②分散相折光率(n1)与分散介质折光率(n2)不 同。
氨基酸的 带电状态和在电场中的状况: 等电点
pH = pI pH < pI pH > pI
净电荷为零 带正电荷 带负电荷
在电场中不移动
在电场中移向负极
在电场中移向正 极
4 蛋白质在等电点时的性质
5 溶解度、黏度、渗透压、膨胀性最小 三 高分子溶液稳定性的破坏
加入高浓度无机盐,使蛋白质沉淀析出叫盐析。 实质是使蛋白质脱水,破坏水化膜,而析出。 盐析与溶胶聚沉不同: ①盐析用量大,聚沉用量少 ②盐析时正、负离子均起作用,聚沉时只与胶 粒电性相反的离子起作用。 ③除去电介质,蛋白质可以重新溶解即具可逆 性,而溶胶聚沉是不可逆的。
在胶体溶液中加入电解质,迫使一部分反离子 进入吸附层,使扩散层变薄,当电解质浓度加 大时,扩散层厚度可趋于零,在电场中不泳动
微乳液PPT课件
![微乳液PPT课件](https://img.taocdn.com/s3/m/967642feb1717fd5360cba1aa8114431b90d8eb9.png)
• 表活剂用量= 0.4% 采出量为72.6ml(油)/g(表活剂), 成本太高 • 表活剂用量= 0.25% 采油量只占水驱残余油的37.4%,效果不好 • 表活剂用量= 0.4% 采出量为127ml/g,驱油效果好
• 胶囊和微胶囊技术
–
胶囊以延迟破胶剂在油田中应用,改善裂缝导流能力,提高 33
油气井产量。
3
乳状液的结构
• 简单乳状液 • 双重或多重乳状
液:相当于简单乳
液的分散相(内相) 中又包含了尺寸更 小的分散质点,通 称包胶相,常用作 活性组分的贮器。
4
乳状液的制备 —— 混合方式
• 机械搅拌:以4000~8000r/min速度,设备简单、 操作方便;但分散度低、不均匀,易溶入空气。
• 胶体磨:国产设备可制取10mm左右的液滴。 • 超声波乳化器: • 均化器(homogenizer):是机械加超声波的复
中相微乳状液的特点:
•同时增溶油和水,可达60%~70%
•存在两个界面且界面张力均很低,约<10-2 mN/m
•大部分表面活性剂存在于中相微乳状液相中
在石油工业中,中相微乳状液的驱油效率最高,可达90%。
通过测定相图和界面张力,来研究影响因素。
26
水-表面活性剂-助表面活性剂三元系一般相图
各向异性 单相区
– 当盐量增加时,表活剂和油受到“盐析”,压缩 双电层,使O/W型微乳液的增溶量增加,油滴密 度下降而上浮,形成“新相”。
– 也可改变其它组分,来寻找匹配关系。
28
微乳状液的应用
• 石油工业:三次采油(?) • 能 源:提高辛烷值等 • 生化工程: • 日用工业:化妆品等
29
微乳状液的研究现状
乳状液
![乳状液](https://img.taocdn.com/s3/m/c5f9803fb90d6c85ec3ac6f2.png)
乳状液乳状液是我们生活中常见的胶体。
无论是在农业、工业、食品行业等等,都有着不可或缺的关键作用。
一、乳状液的概念乳状液是一种多相分散体系,由一种液体以极小的液滴形式分散在另一种与其不相混溶的液体而构成的。
乳状液一般不透明,液滴直径大多在100纳米~10微米之间,可用一般光学显微镜观察。
此外,不同大小的液滴表现出的外观也是不同的:二、乳状液的类型在乳状液中,一切不溶于水的有机液体(如苯、四氯化碳、原油等)统称为“油”。
乳状液可分为三大类:(1)油/水型(O/W)即水包油型。
其分散相(即内相)为油,分散介质(即外相)为水;(2)水/油型(W/O)即油包水型。
其外相为水,内相为油。
(3)多重乳状液(即W/O/W或O/W/O等),用途较为特殊。
三、乳状液类型的鉴别及影响类型的因素乳状液鉴别方法很简单,主要有三种。
一种是稀释法,用水去冲稀乳状液,如能混溶则其连续相必定是水相,因而是O/W型,如不能,则是W/O型。
另一种是染色法,乳化前在油相中加入少量染料,乳化后在显微镜下观察,液珠带色是O/W型,连续相带色则是 w/o型。
也可把染料溶于水相进行观察。
还有一种是导电法。
O/W的导电性比W/O的要好。
但使用离子型乳化剂是,即使是W/O型乳状液,或水相体积分数很大的W/O型乳状液,其导电性也颇为可观。
影响乳状液类型的理论大多是定性的或半定量的看法。
这些理论主要有:箱体积与乳状液类型、几何因素与乳状液类型、液滴聚结速度与乳状液类型和乳化剂的溶解度与乳状液类型。
四、乳状液的应用乳状液在工农业生产、日常生活以及生理现象中有着广泛应用。
1.控制反应许多化学反应是放热的,这会使温度急剧升高,促进副反应的发生。
如果将反应物制作成乳状液,不仅可以利用其界面大、接触充分的特点提高反应效率,而且大界面有利于散热,从而可以提高产率。
2.农药乳剂将杀虫药等制作成乳状液,可以使之均匀地铺展在植物上,用量少且效率高。
如顺式氯氰菊酯微乳液就在农药上有了较好的运用。
《胶体和乳状液》课件
![《胶体和乳状液》课件](https://img.taocdn.com/s3/m/ce3567b0951ea76e58fafab069dc5022abea4645.png)
不同点
胶体的分散相粒子大小在1-100nm之间,而乳状液中的液滴 大小通常在微米级别;胶体的稳定性相对较低,容易发生聚 沉,而乳状液的稳定性较高,可以在一定条件下保持稳定。
02
胶体的制备和性质
胶体的制备方法
01
02
03
研磨法
将固体物质研磨成细小颗 粒,然后分散在液体介质 中,形成胶体。
溶解法
将物质溶解在适当的溶剂 中,然后通过控制溶液的 浓度和温度等条件,制备 出胶体。
超声波法
利用超声波的振动能量将液体 破碎成微小液滴,形成乳状液
。
蒸馏法
将两种不相溶的液体加热至沸 腾,通过蒸馏作用分离出纯液
体。
化学反应法
通过化学反应生成两种不溶性 物质,再经过搅拌或研磨形成
乳状液。
乳状液的性质
分散相和分散介质
乳状液由分散相和分散介质组 成,分散相是小的液滴,分散
介质是连续的液体。
胶体和乳状液的破乳方法
物理破乳法
通过加热、搅拌、离心、电场、超声 波等物理手段,使胶体或乳状液中的 水滴或油滴发生聚结,从而破坏其稳 定性。
化学破乳法
通过添加化学试剂,如电解质、聚合 物、表面活性剂等,改变胶体或乳状 液的界面性质,使其失去稳定性。
破乳剂的应用与选择
破乳剂的应用
破乳剂广泛应用于石油、化工、制药、食品等领域,用于将油水分离,提高油品质量,回收油品等。
活性剂,可以增加分散相的稳定性。这些稳定剂可以提供电荷屏蔽、空
间位阻或增加界面张力等作用。
02
控制粒子或乳滴大小
通过控制制备过程中的条件,如搅拌速度、温度和时间,可以控制粒子
或乳滴的大小,从而影响其稳定性。较小的粒子或乳滴通常具有更高的
《胶体和乳状液》课件
![《胶体和乳状液》课件](https://img.taocdn.com/s3/m/f24b8033f342336c1eb91a37f111f18583d00cf5.png)
胶体制备和应用
1
制备
胶体可以通过溶胶-凝胶法、电沉积法等方法制备。
2
应用
胶体在涂料、化妆品和医药等领域中有广泛应用。
3
图像OCR
胶体有助于改善图像识别和文字识别的准确性。
乳状液的基本定义和特点
1 乳状液
乳状液是由液滴分散在液体介质中形成的混合物。
2 特点
乳状液具有微乳化、稳定和流动性。
1 电荷
胶体颗粒在溶液中带有电荷,影响胶体的稳定性。
2 电动势
胶体颗粒在电场中受到作用,产生移动现象。
乳状液与胶体的区别
乳状液 胶体
由液滴分散在液体中。 由固体颗粒分散在液体中。
乳状液的分类和性质
乳状液分类
1. 水包油型 2. 油包水型 3. 多重乳型
乳状液性质
• 乳化稳定性 • 体积分数 • 粒径分布
乳状液制备和应用
1
应用
2
乳状液在食品、化妆品和制药等领域中
有广泛应用。
3
制备
乳状液可以通过乳化剂和物理搅拌等方 法制备。
《胶体和乳状液》PPT课 件
探索胶体和乳状液的世界。了解它们的基本定义、特点和分类。探讨它们在 化学和生物领域中的应用。一起来揭开胶体化学的奥秘吧!
什么是胶体和乳状液
胶体
胶体是由细小颗粒分散在介质中形成的一种混合物。
乳状液
乳状液是由液滴分散在液体介质中形成的混合物。
胶体的基本定义和特点
1 粒子大小
• 黏度 • 光学性质 • 电导率
胶体中的溶剂和溶质
溶剂 溶质
为溶质提供分散介质。 在溶剂中分散的物质。
胶体的表观性质和真实性质
医用基础化学教案 第五章 胶体和乳状液
![医用基础化学教案 第五章 胶体和乳状液](https://img.taocdn.com/s3/m/b440060e6d175f0e7cd184254b35eefdc8d315bd.png)
第一节胶体——高度分散系统胶体一词是英国化学家格莱谟(T.Graham) 于1861年首次提出的,格莱谟在研究溶液中溶质分子的扩散时发现,一些物质如无机盐可以通过半透膜,且扩散速率很快,当蒸发溶剂时,这些物质易形成晶体析出,另一类物质如明胶、蛋白质、氢氧化铝等,扩散速率很慢,且很难甚至不能透过半透膜,蒸发溶剂时,这些物质不能形成晶体,而是成粘稠的胶态。
椐此,他把前一类物质称为晶体(Crystalloid),后一类称为胶体。
俄国化学家韦曼(Веймарн)40多年后对200多种物质进行了实验,实验结果表明,任何物质既可制成晶体也可制成胶体。
许多晶体物质在适当的介质中,也能制成具有胶体特征的体系。
例如,把晶体物质NaOH分散在酒精中形成的分散系就具有缓慢扩散、不能通过半透膜等性质。
他认为,晶体和胶体并不是不同的两类物质,而是物质的两种不同的存在状态。
现代科学则认为,胶体是粒子大小在1nm~100nm之间高度分散于另一连续相中,形成的分散系(colloidal system)。
一种或数种物质分散在另一种物质中所形成系统称为分散系,其中被分散的物质称为分散相(dispersed phase),而容纳分散相的连续介质称为分散介质(dispersed medium)。
消毒用的碘酒就是碘分散在酒精中形成的分散系,其中碘是分散相,酒精是分散介质。
医药用的各种注射液、合剂、乳剂、气雾剂等都是分散系。
各种分散系统的分类见表5-1。
表5-1 分散系统的分类分散相粒子大小分散系类型分散相粒子性质举例<1n m 小分子、离子分真溶液散系小分子或离子均相、稳定系统;分散相粒子扩散快NaCl水溶液、C6H12O6水溶液等1nm~100nm 胶体分散系溶胶胶粒(分子、离子、原子聚集体)多相、热力学不稳定系统,有相对稳定性;分散相粒子扩散较慢Fe(OH)3、As2S3溶胶及Au、S等单质溶胶等高分子溶液高分子均相、稳定系统;分散相粒子扩散慢蛋白质、核酸水溶液,橡胶的苯溶液等>100nm 粗分散系(悬浊液、乳状液)粗分散粒子非均相、不稳定系统;易聚沉或分层泥浆、乳汁等第二节溶胶溶胶可分为液溶胶、气溶胶和固溶胶。
胶体和乳状液
![胶体和乳状液](https://img.taocdn.com/s3/m/8834440876c66137ee0619cb.png)
外加电解质 不敏感,加入大量造成 敏感,加入少量引起聚沉 离子的影响 盐析
(二)高分子化合物溶液对溶胶的保护作用
高分子化合物分子将溶胶胶粒包裹起来,在胶 粒表面形成保护膜,削弱了胶粒聚集的可能性
意义:保护作用在生命体中非常重要。
例: 1. 医用胃肠道造影的硫酸钡合剂是阿拉伯胶 保护的硫酸钡溶胶。 2. 如微溶电解质MgCO3或Ca3(PO4)2等,在血 液中的浓度比在体外纯水中的浓度高了近5倍,这 是因为它们在血液中被蛋白质保护的缘故。当保 护蛋白质减少时,这些溶胶状态的微溶就会因聚 沉而形成结石。
用量多, 一定范 需要一定 围内可 的助表面 与油水 活性剂 混合 用量相对 不混溶 少,不需 要助表面 活性剂
微乳液特征:
1.
具有超低的表面活性
稳定
2.有很大的增容量
W/O型油增量5%,O/W型油增量60%
3.粒子直径小 4.热力学稳定
煮沸As2S3溶胶,会有As2S3的黄色沉淀。
第三节 高分子化合物溶液
一、高分子化合物溶液及其稳定性 高分子化合物(polymer)指相对分子质量大于1万的化 合物
高分子化合物在液态的分散介质中形成的单相分子、 离子分散系统称为高分子化合物溶液。 高分子化合物溶液的分散粒径在1~100nm的胶体分 散系范围内,所以也有一些胶体分散系共有的性质。
(三)表面活性剂
表面活性剂:凡是能显著降低溶液的表面张
力,产生正吸附的物质(表面活性物质)
表面活性剂的结构特征
表面活性剂分子结构上的特征:
既含有亲水的极性基团——亲水基,如-OH、 -COOH、-NH2、 -SH、-SO3H等;
又含有疏水的非极性基团——疏水基,一些直 链的或带侧链的有机烃基
《应用胶体与界面化学》05乳状液及微乳状液
![《应用胶体与界面化学》05乳状液及微乳状液](https://img.taocdn.com/s3/m/a88476a74028915f814dc221.png)
三. 乳化剂选择方法
1. HLB: hydrophilic-lipophile balance, 亲水亲油平衡 HLB值越大,亲水性越强,反之,亲油性越强
用途 油酸钠 18HLB值水溶液外观
水包油型乳化剂 13
10 润湿剂 8
6 油包水型乳化剂
3
油酸 1
透明
半透明至透明 稳定乳状液分散 搅拌后形成乳状液分散 不良分散 不分散
γ12 A1
微乳形成
γ12 A2
∆G=∆Aγ12-T∆S
三. 微乳液的相性质(了解)
S
S
S
O/W
W/O
W
O
W
OW
O
四. 微乳液的一般应用 微乳液的特性:
1. 有高度分散的小液滴 2. 有大的界面面积和特殊的微环境 3. 低的界面张力和对水和油的大的增溶能力
应用:
化妆品、三次采油、超细粒子的制备、催化
固体粉末乳化剂:金属碱性盐、炭黑、SiO2、粘土 特点:尺寸小,比表面积大,吸附在油-水界面形成固体颗 粒单层膜或多层膜
二. 乳化剂选择的一般原则
(1) 降低界面张力,并能在界面上吸附
(2) 在分散相周围形成保护膜,使界面膜具有较高的 黏度和力学性能
(3) 根据用途和欲得的乳状液类型选择
(4) 要能用最小的浓度和最低的成本达到乳化效果; 乳化工艺简单
多重乳状液的液膜
介于被包封内相和连续外相间的中间相称为液膜
水相 油相 W/O/W 液相, 油膜
多重乳状液的制备
W/O/W:先用HLB值低的乳化剂制备W/O型稳定的初级乳状液 再将初级乳状液分散于溶有HLB值高的乳化剂的水相中
图5.12 W/O/W型多重乳状液的液滴结构和各组分的作用
化学胶体
![化学胶体](https://img.taocdn.com/s3/m/fd44c87b6c175f0e7dd13736.png)
【细颗粒物】
细颗粒物比表面大,吸附性强,可携带重金属等,对人体影响十分严重 人类开始把空气中细颗粒物含量作为重要的大气质量标准:
PM2.5年均值不超过10μg/m3,日均值不超过25μg/m3
第三节
高分子溶液
第三节 高分子溶液
高分子化合物:单个分子相对分子量在 以上的大分子 (一般来说)
包括:蛋白质、核酸、糖原、存在体液中重要物质
非均相 热力学不稳定 分散相粒子不能透过
滤纸和半透膜
葡萄糖水溶液
氢氧化铁溶胶 蛋白质溶液 超过或达到临界浓度 的十二烷基硫酸钠溶
液 乳汁 泥浆
【比表面】
■ 分散度:分散相在介质中分散的程度(常用比表面来表示) ■ 比表面(S0):单位体积物质所具有的表面积
S0=S/V 该式说明,胶体分散相粒子的总表面积随分散程度增大时,比表面积也相应增大 溶胶是高度分散的多相分散系统,高度分散使得分散相表面积急剧增大。 当物质形成高度分散系统时,因表面积大大增加,表面性质就十分突出。 界面:相与相之间的接触面 表面:习惯上,把固相或液相与气相的界面称为表面
■ Fe(OH)3溶胶
溶胶
FeCl3 (aq) +3H2O (l) → Fe(OH)3 (aq) + 3HCl (aq)
Fe(OH)3 (s) + HCl (aq) → FeOCl (aq) + 2H2O (l) FeOCl (aq) → FeO+ (aq) + Cl- (aq)
Fe(OH)3胶核吸附溶胶中与其组成类似的FeO而带正电,而溶胶中电性相反的Cl-则
的次数叫聚合度,以n表示。
• 天然橡胶 链节为异戊二烯单位(-C5H8-) 。化学式可写作(C5H8)n • 纤维素、淀粉、糖原或高分子右旋糖酐,链节为葡萄糖单位(-
胶体化学乳状液
![胶体化学乳状液](https://img.taocdn.com/s3/m/96663fb6336c1eb91b375d0f.png)
乳状液: 一种或几种液体以液珠形式分散在另 一种与其不互溶(或部分互溶)液体中所形成的 分散系统. 如牛奶, 含水石油, 炼油厂的废水, 乳化农药等. 乳化作用: 油水互不相溶,只有加入乳化剂才 能得到比较稳定的乳状液, 乳化剂的这种作用 称为乳化作用. 常用的乳化剂多为表面活性剂, 某些固体也能起乳化作用.
HLB值=
亲水基质量 亲水基质量+憎水基质量
×100/5
例如:石蜡无亲水基,所以HLB=0 聚乙二醇,全部是亲水基,HLB=20。
其余非离子型表面活性剂的HLB值介于0~20之间。
HLB值愈大, 亲水性愈强. 该值可作为选择表面 活性剂的参考.
• 表面活性物质的HLB值与应用的对应关系
表 面 活 性 物 质 加 水 后 的 性 质 HLB 值
1.乳状液的类型与鉴别
乳状液的类型: •水包油型, 微小油滴分散在水中, 符号O/W. •油包水型, 微小水滴分散在油中, 符号W/O. (1)染色法 用水溶性染料,被染的相为水相. (2)稀释法 如能被水稀释为O/W;能被油稀释 为W/O. (3)导电法 非离子型乳化剂, O/W型导电性远 好于W/O型.
(4)界面膜的稳定作用
乳化过程也可以理解为分散相液滴表面的 成膜过程, 界面膜的厚度, 特别是膜的强度和韧 性, 对乳状液的稳定性起着举足轻重的作用.
(5)固体粉末的稳定作用
油
水
•固体颗粒在油-水界面上的三种润湿情况
以 , 及 表示 油 OW OS
乳状液分层不是真正的破坏,而是分为两个乳状液,在一层中分散相比原来的多,在另一层中则相反。
(右) < 90, 颗粒能被水润湿而更多地进入水中. (右) < 90 , 颗粒能被水润湿而更多地进入水中.