全国2018年10月高等教育自学考试00023高等数学(工本)试题

合集下载

000230000高等数学(工本)课程考试说明

000230000高等数学(工本)课程考试说明

000230000 高等数学(工本)课程考试说明一、本课程使用的教材、大纲高等数学(工本)课程指定使用的教材为:(1)《高等数学(工专)》(附大纲),全国高等教育自学考试指导委员会组编,吴纪桃、漆毅主编,北京大学出版社,2006版(2)《高等数学(工本)》(附大纲),全国高等教育自学考试指导委员会组编,陈兆斗、高瑞主编,北京大学出版社,2006版二、本课程的试卷题型及试题难易程度1.试卷题型结构表2.试卷分别针对识记、领会、简单应用、综合应用四个认知及能力层次命制试题,四个层次在试卷中所占的比例大致为识记占20%,领会占30%,简单应用占30%,综合应用占20%。

3.试卷难易度大致可分为容易、中等偏易、中等偏难、难四个等级,根据课程的特点,试卷中不同难易度试题所占的分数比例,大致依次为容易占30分,中等偏易占30分,中等偏难占20分,难占20分。

三、各章内容分数的大致分布根据自学考试大纲的要求,试卷在命题内容的分布上,兼顾考核的覆盖面和课程重点,力求点面结合。

教材具体各章所占分值情况如下:四、考核重点及难点1.高等数学(工专)教材部分第一章函数重点:基本初等函数、函数的特性。

难点:函数的复合。

第二章极限与连续重点:极限概念、极限运算、两个重要极限、连续性及间断点分类。

难点:两个重要极限及相应的各种变形形式。

第三章导数与微分重点:导数定义、微分概念、导数的几何意义、导数的物理意义、各种求导法则。

难点:复合函数求导、几类特殊函数的求导方法。

第四章微分中值定理与导数的应用重点:三个中值定理的内容、洛必达法则、函数的单调性、凹凸性、极值、最值之判定和实际应用。

难点:综合运用中值定理、函数的特征证明一些不等式或等式。

第五章一元函数积分学重点:不定积分、定积分概念及运算、定积分应用。

难点:不定积分的综合运算和变上限积分的求导数。

2. 高等数学(工本)教材部分第一章空间解析几何与向量代数重点:向量的运算、平面、直线、柱面、椭球面、圆锥面、旋转抛物面的标准方程及其图形。

2018_年成人高等学校专升本招生全国统一考试__高等数学(二)

2018_年成人高等学校专升本招生全国统一考试__高等数学(二)

2019/11、12一、选择题:本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中只有一个是符合题目要求的。

1.lim x →0x cos x=A.eB.2C.1D.02.若y =1+cos x ,则d y =A.(1+sin x )d x B.(1-sin x )d x C.sin x d x D.-sin x d x3.若函数f (x )=5x ,则f '(x )=A.5x-1B.x 5x-1C.5xln5 D.5x4.曲线y =x 3+2x 在点(1,3)处的法线方程是A.5x +y -8=0B.5x -y -2=0C.x +5y -16=0D.x-5y +14=05.∫12-xd x =A.ln 2-x +C B.-ln 2-x +C C.-1(2-x )2+C D.1(2-x )2+C 6.∫f '(2x )d x =A.12f (2x )+CB.f (2x )+CC.2f (2x )+CD.12f (x )+C7.若f (x )为连续的奇函数,则1-1∫f (x )d x =A.0B.2C.2f (-1)D.2f (1)8.若二元函数z =x 2y +3x +2y ,则əz əx=A.2xy +3+2yB.xy +3+2yC.2xy +3D.xy +39.设区域D ={(x ,y )0≤y ≤x 2,0≤x ≤1},则D 绕x 轴旋转一周所得旋转体的体积为A.π5 B.π3C.π2D.π10.设A ,B 为两个随机事件,且相互独立,P (A )=0.6,P (B )=0.4,则P (A-B )=A.0.24B.0.36C.0.4D.0.6二、填空题:每小题4分,共40分。

11.曲线y =x 3-6x 2+3x +4的拐点为.12.lim x →0(1-3x )1x=.13.若函数f (x )=x-arctan x ,则f '(x )=.14.若y =e 2x ,则d y =.15.设f (x )=x 2x ,则f '(x )=.16.∫(2x+3)d x=.17.1-1∫(x 5+x 2)d x=.18.π0∫sin x 2d x=.19.+∞0∫e -xd x=.20.若二元函数z=x 2y 2,则ə2z əx əy=.三、解答题:本大题共8小题,共70分。

最新10月全国自学考试高等数学(工本)试题及答案解析

最新10月全国自学考试高等数学(工本)试题及答案解析

全国2018年10月自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共5小题,每小题3分,共15分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1. 向量a ={-1,-3,4}与x 轴正向的夹角α满足( )A. 0<1<α<2πB. α=2π C. 2π<α<π D. α=π2. 设函数f (x , y )=x +y, 则点(0,0)是f (x ,y )的( )A. 极值点B. 连续点C. 间断点D. 驻点3. 设积分区域D :x 2+y 2≤1, x ≥0, 则二重积分⎰⎰D ydxdy 的值( ) A. 小于零B. 等于零C. 大于零D. 不是常数 4. 微分方程xy ′+y =x +3是( )A. 可分离变量的微分方程B. 齐次微分方程C. 一阶线性齐次微分方程D. 一阶线性非齐次微分方程 5. 设无穷级数∑∞=1n p n收敛,则在下列数值中p 的取值为( )A. -2B. -1C. 1D. 2二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6. 已知向量a ={3,0,-1}和b ={1,-2,1} 则a -3b =___________.7. 设函数z =2x 2+y 2,则全微分dz=___________.8. 设积分区域D 由y =x , x =1及y =0所围成,将二重积分⎰⎰Ddxdy y x f ),(化为直角坐标下的二次积分为___________.9. 微分方程y ″+3y =6x 的一个特解y *=___________.10. 无穷级数14332232323232+++++n nΛ+…的和为___________. 三、计算题(本大题共12小题,每小题5分,共60分)11. 求过点(-1,-2,3)并且与直线223-=-=z y x 垂直的平面方程. 12. 求曲线x =t , y =t 2, z =t 3在点(1,1,1)处的切线方程.13. 求函数f (x , y , z )=xy 2+yz 2+zx 2在点P (1,2,1)处的梯度.14. 设方程e z -x 2y +z =3确定函数z =z (x , y ), 求xz ∂∂. 15. 计算二重积分⎰⎰--Dy x dxdy e 22,其中积分区域D :x 2+y 2≤2. 16. 计算三重积分⎰⎰⎰Ωxdxdydz ,其中积分区域Ω是由x =0, y =0, z =0及x +y +z =1所围成.17. 计算对坐标的曲线积分⎰++C dy x y xdx )(, 其中C 为从点(1,0)到点(2,1)的直线段.18. 计算对面积的曲面积分⎰⎰∑xyzdS ,其中∑为球面x 2+y 2+z 2=a 2(a >0). 19. 求微分方程(1+x )dx -(1+y )dy =0的通解.20. 求微分方程y ″+ y ′-12y =0的通解.21. 判断级数∑∞=+⋅13)1(2n n n n 的敛散性. 22. 求幂级数∑∞=12n n nx 的收敛区间. 四、综合题(本大题共3小题,每小题5分,共15分)23. 求函数f (x , y )=x 3+3xy 2-15x -12y 的极值点.24. 求曲面z=22y x +(0≤z ≤1)的面积.25. 将函数f (x )=ln(1+x )展开为x 的幂级数.。

2018年10月高等教育自学考试全国统一命题试卷

2018年10月高等教育自学考试全国统一命题试卷

2018年10月高等教育自学考试全国统一命题试卷数量方法(二) 试卷课程代码: 00994本试卷共5页,满分100分,考试时间150分钟。

考生答题注意事项:1. 本卷所有试卷必须在答题卡上作答。

答在试卷上的无效,试卷空白处和背面均可作草稿纸。

2. 第一部分为选择题。

必须对应试卷上的题号使用2B 铅笔将“答题卡”的相应代码涂黑。

3. 第二部分为非选择题。

必须注明大、小题号,使用0.5毫米黑色字迹签字笔作答。

4. 合理安排答题空间,超出答题区域无效。

第一部分 选择题一、单项选择题:本大题共20小题,每小题2分,共40分。

在每小题列出的备选项中只 有一项是最符合题目要求的,请将其选出。

1¥某车间全体工人曰产量的标准差是3,变异系数为0.2,则平均产量为( )A ¥10B ¥15C ¥18D ¥20 答案:B解析:152.03x ===νσ 2¥对于峰值偏向右边的单峰非对称直方图,一般来说( ) A ¥平均数<中位数<众数 B ¥众数<中位数<平均数C ¥中位数<众数<平均数D ¥平均数<众数<中位数 答案:A解析:峰值偏右,平均数不变,众数偏右变大,中位数偏右的比较慢3¥一个实验的样本空间为Ω={1,2,3,4,5,6,7,8,9,10},A={1,2,3,4},B={2,3}, C={2,4,6,8,10},则A ∩B ∩C =( )A ¥{2,3}B ¥{2,4}C ¥{3}D ¥{1,2,3,4,6,8} 答案:C解析:A ∩B={2,3},C ={1,3,5,7,9},A ∩B ∩C ={3}4¥随机变量的每一个可能取值与该随机变量数学期望之差的平方的数学期望,称为该 随机变量的( )A ¥方差B ¥分布律C ¥数学期望D ¥分布函数 答案:A解析:随机变量的每一个可能取值与该随机变量数学期望之差的平方的数学期望,称为该随机变量的方差5¥盒子里装了2个红球和3个蓝球,取出一个球后放回盒中再取下一个球。

2018年10月高等教育自学考试《高等数学(一)》试题00020

2018年10月高等教育自学考试《高等数学(一)》试题00020

2018年10月高等教育自学考试《高等数学(一)》试题课程代码:00020一、单项选择题1.若极限4522lim 221=++++→x x k x x x ,则常数=k A .1 B .2 C .3 D .42.设函数2)(x x f =,x x g tan )(=,则当0→x 时A .)(x f 是比)(x g 高阶的无穷小量B .)(x f 是比)(x g 低阶的无穷小量C .)(x f 与)(x g 是同阶无穷小量,但不是等价无穷小量D .)(x f 与)(x g 是等价无穷小量3.下列函数中在点0=x 处导数不存在的是A .x y sin =B .x y tan =C .3x y =D .x y 2=4.若曲线x e x y -=在点),(00y x 处的切线斜率为0,则切点),(00y x 是A .(1,1-e)B .(-1,-1-e -1)C .(0,1)D .(0,-1)5.设函数)(x f 在区间[a ,b ]上可导,且0)('<x f ,若0)(>b f ,则在[a ,b ]上A .0)(>x fB .0)(<x fC .0)(=x fD .)(x f 的值有正有负6.已知0=x 是函数x x a y 3sin 31sin +=的驻点,则常数=a A .-2 B .-1 C .0 D .17.若x x f =)(',则=)(x fA .C x +3232B .C x +3223 C .C x +2332D .C x +2323 8.设函数)(x f 在区间[a ,b ]上连续,则下列等式正确的是A .)()(x f dt t f dx d x a =⎪⎭⎫ ⎝⎛⎰B .)()(x f dt t f dx d b x =⎪⎭⎫ ⎝⎛⎰ C .)()(x f dt t f dx d b a =⎪⎭⎫ ⎝⎛⎰ D .)()(x f dt t f dx d a b =⎪⎭⎫ ⎝⎛⎰ 9.微分方程0cos sin =+ydy xdx 的通解为A .C x y =+sin cosB .C x y =-sin cosC .C x y =+cos sinD .C x y =-cos sin10.设函数2ln ),(x x y y x f +=,则=∂∂-)2,2(x f A .0 B .1 C .2 D .3二、简单计算题 11.设等差数列{}n x 的公差2=d ,且1652=+x x ,求首项1x 。

自学考试 《高等数学(工本)》历年真题全套试题

自学考试 《高等数学(工本)》历年真题全套试题

自考00023《高等数学(工本)》历年真题集电子书目录1. 目录 (2)2. 历年真题 (5)2.1 00023高等数学(工本)200404 (5)2.2 00023高等数学(工本)200410 (7)2.3 00023高等数学(工本)200504 (9)2.4 00023高等数学(工本)200507 (11)2.5 00023高等数学(工本)200510 (14)2.6 00023高等数学(工本)200604 (15)2.7 00023高等数学(工本)200607 (18)2.8 00023高等数学(工本)200610 (21)2.9 00023高等数学(工本)200701 (24)2.10 00023高等数学(工本)200704 (26)2.11 00023高等数学(工本)200707 (28)2.12 00023高等数学(工本)200710 (29)2.13 00023高等数学(工本)200801 (34)2.14 00023高等数学(工本)200804 (35)2.15 00023高等数学(工本)200807 (36)2.16 00023高等数学(工本)200810 (38)2.17 00023高等数学(工本)200901 (39)2.18 00023高等数学(工本)200904 (40)2.19 00023高等数学(工本)200907 (42)2.20 00023高等数学(工本)200910 (43)2.21 00023高等数学(工本)201001 (45)2.22 00023高等数学(工本)201004 (46)2.23 00023高等数学(工本)201007 (47)2.24 00023高等数学(工本)201010 (49)2.25 00023高等数学(工本)201101 (50)2.26 00023高等数学(工本)201104 (52)2.27 00023高等数学(工本)201107 (54)2.28 00023高等数学(工本)201110 (55)2.29 00023高等数学(工本)201204 (57)3. 相关课程 (59)1. 目录历年真题()00023高等数学(工本)200404()00023高等数学(工本)200410()00023高等数学(工本)200504()00023高等数学(工本)200507()00023高等数学(工本)200510()00023高等数学(工本)200604()00023高等数学(工本)200607()00023高等数学(工本)200610()00023高等数学(工本)200701()00023高等数学(工本)200704() 00023高等数学(工本)200707() 00023高等数学(工本)200710() 00023高等数学(工本)200801() 00023高等数学(工本)200804() 00023高等数学(工本)200807() 00023高等数学(工本)200810() 00023高等数学(工本)200901() 00023高等数学(工本)200904() 00023高等数学(工本)200907()00023高等数学(工本)200910()00023高等数学(工本)201001()00023高等数学(工本)201004()00023高等数学(工本)201007()00023高等数学(工本)201010()00023高等数学(工本)201101()00023高等数学(工本)201104()00023高等数学(工本)201107()00023高等数学(工本)201110()00023高等数学(工本)201204() 相关课程()2. 历年真题2.1 00023高等数学(工本)200404高等数学(工本)试题(课程代码0023)一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

10月全国自考高等数学(工本)试题及答案解析

10月全国自考高等数学(工本)试题及答案解析

1全国2018年10月高等教育自学考试高等数学(工本)试题课程代码:00023一、单项选择题(本大题共20小题,每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

1.已知函数f(x)=x ,g(x)=-x 2+4x-3,则函数f[g(x)]的定义域为( ) A.(-∞,+∞)B.(]1,∞-C.[1,3]D.空集 2.函数f(x)=xe -|sinx|在),(+∞-∞内是( ) A.奇函数 B.偶函数 C.周期函数D.有界函数3.已知函数f(x)=⎪⎩⎪⎨⎧≥+<-0x ,a x 0x ,)x 1(x1 在(-∞,+∞)内处处连续,则常数a=( )A.0B.1C.e -1D.e4.极限=-++++∞→)2n n 2n 21(lim n Λ( )A.41 B.21 C.21-D.-∞5.极限=π→x3sin x5sin lim x ( )A.35-B.-1C.1D.35 6.设函数y=='--y ,x 1x 212则( ) A.22x 1)x 21(4+- B.22x 1)x 21(2+-- C.22x 1)x 21(2-- D.22x 1)x 21(4---7.设函数y=x x ,则=')2(y ( ) A.4B.4ln22C.)2ln 1(41+ D.4(1+ln2) 8.设函数f(x 2)=x 4+x 2+1,则=')1(f ( )A.-1B.-2C.1D.39.若函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=f(b),则在a,b 之间满足)c (f '=0的点c( )A.必存在且只有一个B.不一定存在C.至少存在一个D.不存在 10.函数f(x)=ln(1+x 2)-x 在(-∞,+∞)内是( ) A.单调增函数 B.单调减函数 C.时而单增时而单减的函数 D.以上结论都不对11.已知一个函数的导数为y '=2x,且x=1时y=2,则这个函数是( ) A.y=x 2+CB.y=x 2+1C.23x 21y 2+=D.y=x+112.函数f(x)在[a,b]上连续是dx )x (f ba⎰存在的( )A.必要条件B.充分必要条件C.充分条件D.既不充分也不必要13.下列广义积分收敛的是( )A.dx x x ln 2⎰+∞B.dx x ln x 12⎰+∞ C.dx x ln x 12⎰+∞ D.dx x ln x 122⎰+∞ 14.在空间直角坐标系中,方程x=0表示的图形是( ) A.x 轴 B.原点(0,0,0) C.yoz 坐标面 D.xoy 坐标面15.设函数z=x y ,则=∂∂yz( )A.x y lnxB.yx y-1C.x yD.x y lnx+yx y-116.交换积分次序后,二次积分⎰⎰--=22x 40dy )y ,x (f dx2( )A.⎰⎰-2y 402dx )y ,x (f dy B.⎰⎰---2y 4y 422dx )y ,x (f dyC.⎰⎰--20y 42dx )y ,x (f dy D.⎰⎰--22y 402dx )y ,x (f dy17.设C 为圆周x=acost,y=asint(a>0,0≤t ≤2π),则曲线积分⎰=+C22ds )y x (( )3A.2πa 2B.2πa 3C.-πaD.πa 18.微分方程y y '=''的通解是y=( ) A.Ce x B.C 1e x +C 2 C.C 1e x +C 2xD.Ce x +x19.设无穷级数∑∞=1n na收敛,无穷级数∑∞=1n nb发散,则无穷级数∑∞=+1n n n)b a(( )A.条件收敛B.绝对收敛C.发散D.可能收敛也可能发散20.幂级数Λ++++753x 71x 51x 31x 的收敛域是( ) A.(-1,1) B.[)1,1- C.(]1,1-D.[-1,1]二、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。

自考00023《高等数学(工本)》考点押题版

自考00023《高等数学(工本)》考点押题版

1. a b a x bx a y b y a z bz
2. a b 的充要条件是: a b 0

3. cos( ab)
ab ab
2:向量的向量积{一级重点}{选择、计算} 公式:
i
1. a b a x
j ay by
k a z (a y bz a z b y )i (a z bx a x bz ) j (a x b y a y bx )k bz

2
1
dx
r2 ( )
r1 ( )
rdr
z 2 ( r , )
z1 ( r , )
f (r cos , r sin , z )dz
x r cos sin 3. 利用球面坐标计算: 为 y r sin sin y r cos
z z u z v x u x v x
z z u z v y u y v y
2. 设 z f (u, v), u ( x, y ), v ( x, y )
dz z du z dv dx u dx v dx
3. 设 F ( x, y, z ) 0
f ( x, y)dxdy, 曲面 : z
D

f ( x, y )
2. 设 V 为 的体积: V dv
3. 设 为曲面 z f ( x, y )
曲面的面积为 S


1 f x2 f y2 d
第四章 曲线积分与曲面积分
1:两类曲线积分的计算{一类重点}{计算题} 公式: 1. 对弧长的曲线积分计算: {1}若 L: y f ( x), a x b ,则

全国2020年10月自考00023高等数学(工本)试题及答案

全国2020年10月自考00023高等数学(工本)试题及答案

D020·00023(附参考答案)绝密★考试结束前2020年10月高等教育自学考试全国统一命题考试高等数学(工本)(课程代码:00023)1.请考生按规定用笔将所有试题的答案涂、写在答题纸上。

2.答题前,考生务必将自己的考试课程名称、姓名、准考证号黑色字迹的签字笔或钢笔填写在答题纸规定的位置上。

选择题部分注意事项:每小题选出答案后,用2B 铅笔把答题纸上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

不能答在试题卷上。

一、单项选择题:本大题共5小题,每小题2分,共10分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.在空间直角坐标系中,点(2,-1,-9)在A.第一卦限B.第四卦限C.第五卦限D.第八卦限 2.极限()y xy y x 3sin lim 02→→ A.等于2B.等于3C.等于6D.不存在 3.已知dy e dx e y x y x ---是某函数u (x ,y )的全微分,则u (x ,y )=A.y x e -B.y x e --C.x y e -D.x y e -- 4.方程y dxdy =的通解为 A.Cx e y = B.x Ce y = C.x e C y += D.x C e e y +=5.下列无穷级数中,条件收敛的无穷级数是A.()∑∞=--111n n nB.()∑∞=•-1251n n n nC.()∑∞=+•-111n n n nD.()∑∞=--1121n nn非选择题部分注意事项:用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上。

二、填空题:本大题共5空,每空2分,共10分。

6.设向量{}{}1,2,3,0,1,1--=βα,则βα-2= .7.已知()()2,y x y x xy f +=-,则()y x f ,= . 8.设()404:≤≤=+x y x C ,则对弧长的曲线积分()ds y x C+⎰2= . 9.微分方程2x '=y 满足初始条件()00=y 的特解•y = .10.设函数()x f 是周期为π2的周期函数,()x f 的傅里叶级数为()nx n n n sin 212111∑∞=+•-+,则()x f 的傅里叶系数1a = .三、计算题:本大题共12小题,每小题5分,共60分。

高等数学(工本)00023历年试题及参考答案

高等数学(工本)00023历年试题及参考答案

高等数学(工本)历年试题及参考答案 自学考试高等数学(工本)试题一、单项选择题(本大题共5小题,每小题3分,共15分) 1.在空间直角坐标系下,方程2x 2+3y 2=6表示的图形为( ) A .椭圆 B .柱面 C .旋转抛物面D .球面2.极限021lim →→y x arcsin(x +y 2)=( )A .6πB .3π C .2π D .π3.设积分区域22:y x Ω+≤R 2,0≤z ≤1,则三重积分⎰⎰⎰=+Ωdxdydz y xf )(22( )A .⎰⎰⎰π200102)(Rdz r f drd θ B .⎰⎰⎰π20012)(Rdz r f rdrd θC .⎰⎰⎰+π20122)(Rrdz y x f dr d θD .⎰⎰⎰π102)(Rdz r f rdrd θ4.以y =sin 3x 为特解的微分方程为( ) A .0=+''y y B .0=-''y y C .09=+''y y D .09=-''y y5.设正项级数∑∞=1n nu收敛,则下列无穷级数中一定发散的是( )A .∑∞=+1100n nuB .∑∞=++11)(n n n u uC .∑∞=1)3(n nuD .∑∞=+1)1(n nu二、填空题(本大题共5小题,每小题2分,共10分)请在每小题的空格中填上正确答案。

错填、不填均无分。

6.向量a ={1,1,2}与x 轴的夹角=α__________. 7.设函数22),(y x xy y x f -=,则=)1,(x yf __________.8.设∑是上半球面z =221y x --的上侧,则对坐标的曲面积分⎰⎰∑=dxdy y 3__________.9.微分方程x y y sin 3='+'''的阶数是__________.10.设)(x f 是周期为2π的函数,)(x f 在[)ππ,-上的表达式为[)[)⎪⎩⎪⎨⎧∈-∈=.π,0,23sin .0,π,0)(x x x x f )(x S 是)(x f 的傅里叶级数的和函数,则S (0) =__________.三、计算题(本大题共12小题,每小题5分,共60分)11.设平面π过点P 1(1,2,-1)和点P 2(-5,2,7),且平行于y 轴,求平面π的方程. 12.设函数22ln y x z +=,求yx z∂∂∂2.13.设函数232y x e z -=,求全微分dz .14.设函数)2,(22xy y x f z -=,其中f (u , v )具有一阶连续偏导数,求xz ∂∂和y z ∂∂. 15.求曲面x 2+y 2+2z 2=23在点(1,2,3)处的切平面方程. 16.计算二重积分⎰⎰+D dxdy y x )sin(22,其中积分区域D :x 2+y 2≤a 2.17.计算三重积分⎰⎰⎰Ωzdxdydz ,其中Ω是由曲面z =x 2+y 2,z =0及x 2+y 2=1所围区域.18.计算对弧长的曲线积分⎰Cds x 2,其中C 是圆周x 2+y 2=4的上半圆.19.计算对坐标的曲线积分⎰+-+-Cdy y x dx y )21()31(,其中C 为区域D :| x |≤1,| y |≤1 的正向边界曲线.20.求微分方程02=-+-dy e dx e y x y x 的通解. 21.判断无穷级数∑∞=--+1212)1(1n n n 的敛散性. 22.将函数51)(+=x x f 展开为x +1的幂级数. 四、综合题(本大题共3小题,每小题5分,共15分)23.设函数)(x yz ϕ=,其中)(u ϕ为可微函数.证明:0=∂∂+∂∂y zy x z x24.设曲线y =y (x )在其上点(x , y )处的切线斜率为xyx -24,且曲线过点(1,1),求该曲线的方程. 25.证明:无穷级数∑∞=-=++-+121)122(n n n n .全国2011年1月自学考试高等数学(工本)试题一、单项选择题(本大题共5小题。

高等数学(工专)自考习题答案

高等数学(工专)自考习题答案

《高等数学(工专)》自考习题答案《高等数学(工专)》真题:驻点的概念单选题1.函数f(x,y)=x2+xy+y2+x-y+1的驻点为()。

A.(1,-1)B.(-1,-1)C.(-1,1)D.(1,1)正确答案:C答案解析:本题考查驻点的概念。

对x的偏导数为2x+y+1,对y的偏导数为x+2y-1,由于求驻点,也就是偏导数为0的点,所以2x+y+1=0,x+2y-1=0,得到x=-1,y=1。

《高等数学(工专)》真题:矩阵逆的求法单选题1.如果A2=10E,则(A+3E)-1=()。

A.A-2EB.A+2EC.A+3ED.A-3E正确答案:D答案解析:本题考查矩阵逆的求法。

A2-9E=E,(A+3E)(A-3E)=E,(A+3E)-1=A-3E《高等数学(工专)》真题:连续的概念单选题A.f(x)在(-∞,1)上连续B.f(x)在(-1,+∞)上连续C.f(x)在(-∞,0)∪(0,+∞)上连续D.f(x)在(-∞,+∞)上连续正确答案:C答案解析:本题考查连续的概念。

《高等数学(工专)》真题:矩阵的计算性质单选题1.设A是k×l阶矩阵,B是m×n阶矩阵,如果A·CT·B有意义,则C是()矩阵。

A.k×nB.k×mC.l×mD.m×l正确答案:D答案解析:本题考查矩阵的计算性质。

首先我们判断CT是l×m阶矩阵,所以C是m×l阶矩阵。

《高等数学(工专)》真题:连续的定义单选题1.试确定k的值,使f(x)在x=1处连续,其中()A.k=-2B.k=-1C.k=0D.k=2正确答案:D答案解析:本题考查连续的定义。

《高等数学(工专)》真题:矩阵的性质单选题1.关于矩阵的乘法的说法,正确的是()。

A.单位矩阵与任意一个同阶方阵必不可交换。

B.一般情形下,矩阵乘法满足交换律。

C.如果AB=O,则A=O。

D.数量矩阵与任意一个同阶方阵必可交换。

【全国自考历年真题10套】00023高等数学(工本)2012月10月至2019年10月试题

【全国自考历年真题10套】00023高等数学(工本)2012月10月至2019年10月试题
∂x∂y
∫∫∫ 8.设积分区域 Ω : x2 + y2 + z2 ≤ 9 ,三重积分 f (x2 + y2 + z2 )dv 在球面坐标下三次积分为 Ω
__________.
9.微分方程 y′′ + y =2ex 的一个特解 y*=__________.
∑ 10.已知无穷级数

un
n =1
=1 +
2 3
h→0
h
D. lim f (x0 + h, y0 ) − f (x0 , y0 )
h→0
h
∫ 3.设积分曲线 L : x2 + y2 = 1 ,则对弧长的曲线积分 (x + y)ds = L
A.0 C. π 4.微分方程 xy′ + y=
x2 + y2 是
B.1 D.2 π
A.可分离变量的微分方程
B.齐次微分方程
24.求由平面 z= 0, x + y= 1 及曲 z = xy 面所围立体的体积. 25.将函数 f (x) = sin 2x 展开为 x 的幂级数.
00023# 高等数学(工本)试题 第3页(共3页)
绝密 ★ 考试结束前
全国 2013 年 10 月高等教育自学考试
高等数学(工本)试题
课程代码:00023
00023# 高等数学(工本)试题 第1页(共3页)
C.一阶线性齐次微分方程
D.一阶线性非齐次微分方程
5.已知函数 f (x) 是周期为 2π 的周期函数,它在 [-π,π) 上的表达式为
f
(x)
=
0, −π ≤ x 1, 0 ≤ x <
< π
0

全国2018年10月自学考试00020高等数学(一)试题

全国2018年10月自学考试00020高等数学(一)试题

全国2018年10月高等教育自学考试高等数学(一)试题 课程代码:00020一、单项选择题:本大题共l0小题,每小题3分,共30分。

在每小题列出的备选项中只有一项是最符合题目要求的,请将其选出。

1.若极限22125lim 42x x x k x x →++=++,则常数k =() A .1 B .2 C .3D .42.()()2,tan ,0f x x g x x x ==→设函数则当时() A .()()f x g x 是比高阶的无穷小量 B .()()f x g x 是比低阶的无穷小量C .()()f x g x 是比同阶的无穷小量,但不是等价无穷小量D .()()f x g x 是比是等价无穷小量 3.下列函数中在点x =0处导数不存在的是() A .sin y x = B .tan y x =C .y =D .2xy =4.()()0000,0,xy x e x y x y =-若曲线在点处的切线斜率为,则切点是() A .()1,1e - B .()11,1e ---- C .()0,1D .()0,1-5.()[]()()[],00,,f x a b f x f b a b <>‘设函数在区间上可导,且,若则在上()A .()0f x >B .()0f x <C .()=0f xD .()f x 的值有正有负6.已知x=0是函数1sin sin 33y a x x =+的驻点,则常数a =() A .-2 B .-1 C .0D .17.()()f x f x =‘若则()A .2323x C +B .2332x C +C .3223x C +D .3232x C +8.()[],f x a b 设函数在区间上连续,则下列等式正确的是()A .()()()t xa d f dt f x dx =⎰B .()()()t bx d f dt f x dx =⎰C .()()()t bad f dt f x dx=⎰D .()()()t abd f dt f x dx=⎰9.微分方程sin cos 0xdx ydy +=的通解为() A .cos sin y x C += B .cos sin y x C -= C .sin cos y x C +=D .sin cos y x C -=10.()()22,2,ln ,ff x y y x x x -∂=+=∂设函数则()A .0B .1C .2D .3二、简单计算题:本大题共5小题,每小题4分,共20分。

10月全国自考高等数学(工专)试题及答案解析

10月全国自考高等数学(工专)试题及答案解析

1全国2018年10月高等教育自学考试高等数学(工专)试题课程代码:00022一、单项选择题(本大题共30小题,1—20每小题1分,21—30每小题2分,共40分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

(一)(每小题1分,共20分)1.函数y=arcsin 22x -的定义域是( ) A.[-2,2]B.[0,4]C.[-2,0]D.[0,2] 2.下列函数中是奇函数的为( ) A.y=|sinx| B.y=2x+cosx C.y=xD.y=sin x3.下列函数中不是初等函数的为( ) A.y=x 2+sin2x B.y=x x C.y=ln(x+1x 2+)D.f(x)=⎩⎨⎧>≤0x ,10x ,04.=→x xsin lim0x ( )A.0B.1C.2D.∞5.=-∞→n 2n )n 11(lim ( ) A.e -2 B.e -1 C.e D.e 2 6.抛物线y=x 2上(1,1)点处的切线方程为( ) A.y-1=2(x-1) B.y-1=2x(x-1) C.y-1=-2(x-1) D.y-1=x 2(x-1)7.设f(x)=cos2x,则=π')4(f ( )A.2B.0C.-1D.-28.设=⎪⎩⎪⎨⎧==-dxdyey e x tt 则( ) A.e 2tB.-e 2t2C.e -2tD.-e -2t9.如果函数f(x)在[a,b]上满足罗尔定理的条件,则至少存在一点c,使得0)c (f =',其中c 满足( )A.a ≤c ≤bB.a<c<bC.2ba c +=D.2ab c -=10.函数32x y =的单调增加的区间是( ) A.()+∞∞-, B.(]0,∞- C.[)+∞,0D.[)+∞-,111.函数y=lnx 的图形( ) A.仅有垂直渐近线 B.仅有水平渐近线 C.既有垂直渐近线又有水平渐近线D.无渐近线12.函数y=e x 的图形在()+∞∞-,( ) A.下凹 B.上凹C.有拐点D.有垂直渐近线13.⎰=-2x41dx ( )A.arcsin2x+CB.arcsin2xC.x 2arcsin 21D.C x 2arcsin 21+ 14.⎰=+dx 1xx 62( )A.arctgx 3+CB.arctgx 3C.C arctgx 313+D.3arctgx 3115.设Φ(x)=Φ'=⎰)1(,dt e t x 02则( ) A.0 B.e C.2eD.4e16.⎰π=π+20dx )2x sin(( ) A.-2 B.-1 C.1D.217.设z=yx 2+e xy ,则=∂∂)2,1(y z( )A.1+e 2B.2+e 23C.4+2e 2D.1+2e 2 18.设f(x,y)=x 3+2y 3,则对任何x,y 均有f(-x,-y)=( ) A.f(x,y) B.-f(x,y) C.f(y,x) D.-f(y,x) 19.微分方程的通解为x1dx dy =( ) A.C x 12+-B.C x 12+ C.ln|x|D.ln|x|+C20.若级数∑∞=+1n 2p n1发散,则( )A.p ≤-1B.p>-1C.p ≤0D.p>0(二)(每小题2分,共20分) 21.设f(x)1x 12-=,则f(1-0)==-→)x (f lim 1x ( )A.∞B.0C.1D.222.设⎪⎩⎪⎨⎧≥+<=0x ,1x 0x ,x xsin )x (f 2则f(x)( )A.在x=0间断B.是有界函数C.是初等函数D.是连续函数23.设e x +xy=1,则=dxdy( ) A.-e xB.x e y x +C.xe y x +-D.xe x -24.n 为正整数,则=+∞→nx x xln lim( ) A.∞ B.不存在 C.1 D.0 25.函数y=x 3+3x 2-1的单调减少的区间是( )A.(]2,-∞-B.[-2,0]C.[)+∞-,2D.[)+∞,026.过点(2,-8,3)且垂直于平面x+2y-3z-2=0的直线方程为( )4A.33z 28y 12x -+=-=+ B.(x-2)+2(y+8)-3(z-3)=0 C.(x+2)+2(y-8)-3(z+3)=0 D.33z 28y 12x --=+=- 27.设积分域(σ)可表示成:a ≤x ≤b,)x (1ϕ≤y ≤)x (2ϕ,则二重积分⎰⎰σσ)(d )y ,x (f 化成先对y 积分后再对x 积分的累次积分为( ) A.⎰⎰ϕϕba)x ()x (21dx )y ,x (f dyB.⎰⎰ϕϕba)x ()x (y d )y ,x (f dx21C.⎰⎰ϕϕ)x ()x (ba21dx )y ,x (f dyD.⎰⎰ϕϕ)x ()x (ba21dy )y ,x (f dx28.设y 1与y 2是二阶线性非齐次方程)0)x (f )(x (f y )x (Q y )x (P y ≠=+'+''的任意两个线性无关的特解,则对应的齐次方程0y )x (Q y )x (P y =+'+''的解为( ) A.y 1+y 2B.)y y (2121+ C.C 1y 1+C 2y 2D.y 1-y 229.用待定系数法求方程1x y 2y 2-='+''的特解时,应设特解( ) A.)c bx ax (x y 2++=B.c bx ax y 2++=C.x 22e )c bx ax (x y -++=D.)c ax (x y 2+=30.级数∑∞=1n 2n1sin ( )A.发散B.的敛散性不能确定C.收敛D.的部分和无极限 二、计算题(本大题共7小题,每小题6分,共42分)31.求.x xtgx lim 30x -→ 32.求⎰-+.dx x1x arccos 1233.设).0(f 0x ,00x ,x1sin x )x (f 2'⎪⎩⎪⎨⎧=≠=求34.计算⎰+10x.dx e 11535.计算二重积分⎰⎰σσ++π)(2222d y x )y x sin(,其中(σ)是:1≤x 2+y 2≤4.36.把函数f(x)=ln(1+x)展开成麦克劳林级数. 37.设.dxyd ,x a y 2222求-=三、应用和证明题(本大题共3小题,每小题6分,共18分)38.求一曲线的方程,它通过原点,且曲线上任意点(x,y)处的切线斜率等于2x+y.39.求曲线x1y =与直线x=1,x=2及y=0所围成的平面图形绕x 轴旋转而成的旋转体的体积. 40.设.xy zy x z ),1x ,0x (x z 22y∂∂∂=∂∂∂≠>=验证。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档