自动驾驶汽车线控转向系统的制作技术
自动驾驶车辆的转向控制方法、设备及系统的制作技术
图片简介:本申请介绍了一种自动驾驶车辆的转向控制方法、装置及系统,方法包括:获取自动驾驶车辆的当前位置、当前方向及当前行驶速度;将当前位置及当前方向与目标轨迹进行对比,得到横向误差和航向误差;根据横向误差、航向误差、当前行驶速度及自动驾驶车辆的轴距和前视距离,得到自动驾驶车辆的目标角速率;利用角速率测量元件获取自动驾驶车辆的当前角速率,根据目标角速率与当前角速率的差值对自动驾驶车辆进行转向控制。
本申请公开的上述技术方案,利用自动驾驶车辆的角速率作为反馈值进行转向控制,在该过程中角速率测量元件的安装位置并不受限,因此,则可以尽量避免出现损坏和掉落等情况,从而可以提高自动驾驶车辆转向控制的控制效果。
技术要求1.一种自动驾驶车辆的转向控制方法,其特征在于,包括:获取自动驾驶车辆的当前位置、当前方向和当前行驶速度;将所述当前位置及所述当前方向与所述自动驾驶车辆的目标轨迹进行对比,得到横向误差和航向误差;根据所述横向误差、所述航向误差、所述当前行驶速度及预先获取到的所述自动驾驶车辆的轴距和前视距离,得到所述自动驾驶车辆的目标角速率;利用角速率测量元件获取所述自动驾驶车辆的当前角速率,并得到所述目标角速率与所述当前角速率的差值;根据所述差值对所述自动驾驶车辆进行转向控制。
2.根据权利要求1所述的自动驾驶车辆的转向控制方法,其特征在于,根据所述横向误差、所述航向误差、所述当前行驶速度及预先获取到的所述自动驾驶车辆的轴距和前视距离,得到所述自动驾驶车辆的目标角速率,包括:利用得到所述自动驾驶车辆车轮的目标角度;利用得到所述自动驾驶车辆的目标角速率;其中,λ为所述自动驾驶车辆车轮的目标角度,L为所述自动驾驶车辆的轴距,d为所述横向误差,ψ为所述航向误差,F为所述前视距离,v为所述当前行驶速度,δ为所述自动驾驶车辆的目标角速率。
3.根据权利要求1所述的自动驾驶车辆的转向控制方法,其特征在于,所述角速率测量元件具体为陀螺仪,且所述陀螺仪的一个轴被配置为所述自动驾驶车辆的天向轴。
线控转向系统工作原理
线控转向系统工作原理线控转向系统是一种被广泛应用于汽车技术中的创新技术。
它采用电子信号传输的方式,将车辆驾驶员的转向操作转化为车辆实际转向的动作。
这项技术通过电子信号的传输实现了驾驶员和车辆之间的无线联系,为车辆的操控性、稳定性和安全性带来了明显的提升。
线控转向系统主要由三个主要组成部分构成:转向传感器、转向控制单元和转向执行器。
转向传感器是整个系统的核心部件。
它负责感知驾驶员转动方向盘的动作,并将其转化为电子信号传输给控制单元。
转向传感器通常采用压力传感器或角位传感器,它们能够准确地感测到方向盘的角度和转向力的大小。
转向控制单元是系统的控制中枢。
它接收来自转向传感器的信号,并根据这些信号判断驾驶员的意图,然后发送相应的指令给转向执行器。
控制单元通常由微处理器和电路板组成,它能够实现信号处理、指令判断和数据传输等功能。
转向执行器是系统的执行机构。
它接收来自控制单元的指令,将电子信号转化为机械动作驱动车辆转向。
转向执行器通常由电动助力转向机构、电机和转向放大器等部件组成,能够实现精确、高效的转向反应。
在工作过程中,当驾驶员转动方向盘时,转向传感器感知到驾驶员的动作,并将这个信号传输给控制单元。
控制单元根据驾驶员的转向意图,通过发送相应的指令给转向执行器,使其按照驾驶员的意愿实现车辆的转向动作。
整个过程中,驾驶员只需要轻轻转动方向盘,系统会自动识别并执行相应的转向操作。
线控转向系统的工作原理简单而高效。
它不仅能够降低驾驶员的操作难度,还能够提高车辆的操控性和稳定性,并且对于车辆安全性的提升也起到了关键作用。
这项创新技术为汽车行业带来了新的发展机遇,将在未来得到更广泛的应用和推广。
自动驾驶系统及其自动驾驶转向控制设备的制作方法
本技术公开了一种自动驾驶转向控制装置,用于方向盘转向的农用机械,包括转向柱和转向控制机构,转向柱的转向轴与转向控制机构的转子通过套筒相连,套筒外周设有花键,转子具有沿轴向贯穿的安装孔,安装孔的侧壁具有用以与花键配合传动的键槽。
套筒和转子通过花键连接,装配过程中仅需将装有花键的套筒对应插入安装孔中即可,极大地提高了装配效率,简化了自动驾驶转向控制装置的结构。
同时花键与键槽的侧壁贴合传动,花键的受力面积大于现有技术中的螺栓,因而其传动强度也明显高于现有技术,保证了传动的稳定性。
本技术还提供了一种包括上述自动驾驶转向控制装置的自动驾驶系统,并具有传动稳定的优点。
技术要求1.一种自动驾驶转向控制装置,用于方向盘转向的农用机械,其特征在于,包括转向柱(9)和转向控制机构(5),所述转向柱(9)的转向轴与所述转向控制机构(5)的转子通过套筒(12)相连,所述套筒(12)外周设有花键(3),所述转子具有沿轴向贯穿的安装孔,所述安装孔的侧壁具有用以与所述花键(3)配合传动的键槽(11)。
2.根据权利要求1所述的自动驾驶转向控制装置,其特征在于,还包括方向盘骨架(4),所述方向盘骨架(4)中央具有沿厚度方向贯穿的过孔,所述套筒(12)穿过所述过孔连接所述方向盘骨架(4)与所述转子,所述过孔的侧壁具有用以与所述花键(3)配合传动的传动槽。
3.根据权利要求2所述的自动驾驶转向控制装置,其特征在于,所述套筒(12)具有沿轴向贯穿的通孔,所述转向柱(9)包括转向轴和套设于所述转向轴外周的轴套,所述转向轴穿过所述通孔,所述转向轴的上端与用以固定所述套筒(12)的紧固螺母(2)相连。
4.根据权利要求3所述的自动驾驶转向控制装置,其特征在于,还包括位于所述方向盘骨架(4)上方的方向盘上壳,所述方向盘上壳与所述方向盘骨架(4)卡接配合。
5.根据权利要求4所述的自动驾驶转向控制装置,其特征在于,所述方向盘骨架(4)具有沿径向延伸的支撑部,所述方向盘骨架(4)具有与所述支撑部卡接固定的卡接槽。
自动驾驶汽车的线控转向控制系统
自动驾驶汽车的线控转向控制系统发布时间:2021-03-02T04:48:07.699Z 来源:《中国科技人才》2021年第3期作者:刘琦[导读] 基于传统汽车电动助力转向系统的基本结构,文中设计转向角度控制器模块和扭矩控制器模块,实现线控转向控制系统,以用于自动驾驶汽车的自动转向控制。
东风小康汽车有限公司摘要:基于传统汽车电动助力转向系统的基本结构,文中设计转向角度控制器模块和扭矩控制器模块,实现线控转向控制系统,以用于自动驾驶汽车的自动转向控制。
其中转向角度控制器硬件使用STM32F4系列单片机,主要用于实时计算出转向扭矩值,实现转向角度的闭环控制;扭矩控制器模块主要由STM32单片机和扭矩信号生成电路构成,用于检测扭矩传感器输入及模拟扭矩传感器输出。
分别设计转向角度控制器软件和扭矩控制器软件,最后在某轿车上部署测试,车辆的转向角度控制快速精准,实现了自动驾驶车辆平台的转向控制功能。
关键词:自动驾驶汽车;线控转向系统;角度控制器;扭矩控制器引言:自从谷歌于2009年布局自动驾驶,自动驾驶技术引发了新一轮的产业热潮,且自动驾驶车辆在军事、工业、农业等各领域都有应用需求。
对于自动驾驶汽车,线控转向系统是无人驾驶汽车的重要执行机构,将驾驶意图中的转向信号通过电信号形形式发送到转向电机,由转向电机驱动转向轮。
传统驾驶汽车的转向控制是通过电动助力转向系统(ElectricPowerSteering,EPS)实现转向控制。
而电动助力转向系统是建立在传统机械转向系统的基础之上,由转向操纵机构、扭矩传感器、动力转向电动机转向传动机构转向角度传感器等系列机械和电子控制装置构成。
本设计根据目前的的。
而电动助力转向系统是建立在传统机械转向系统的基础之上,由转向操纵机构、扭矩传感器、动力转向电动机转向传动机构转向角度传感器等系列机械和电子控制装置构成。
本设计根据目前的电动助力转向系统的结构原理,设计线控转向控制系统,使汽车能根据实时的转向输入信息实现转向自动控制。
线控转向的工作过程
线控转向,也称为电子控制转向或线传转向,是一种先进的汽车转向技术。
与传统的机械转向系统相比,线控转向通过电子信号来控制和执行车辆的转向操作,提高了驾驶的安全性、舒适性和灵活性。
线控转向的工作过程可以分为以下几个步骤:
驾驶员输入:当驾驶员转动方向盘时,方向盘上的传感器会检测到驾驶员的输入信号,包括转动的角度和速度。
信号处理:转向控制系统接收到驾驶员的输入信号后,会进行信号处理和计算,确定车辆的目标转向角度和速度。
电子控制单元(ECU)决策:ECU根据车辆的当前状态、行驶环境等因素,对目标转向角度和速度进行修正和优化,以保证车辆的安全和稳定。
电机驱动:ECU将修正后的目标转向角度和速度发送给电机驱动系统。
电机驱动系统通过控制电机的电流和电压,来驱动转向机构的运动。
转向执行:电机驱动系统通过传动机构将电机的旋转运动转化为车轮的转向运动,从而实现车辆的转向。
在这个过程中,线控转向系统还需要通过传感器实时监测车轮的转向角度和速度,以确保转向的准确性和稳定性。
反馈控制:线控转向系统还具有反馈控制功能。
当车轮的实际转向角度与目标转向角度存在偏差时,系统会通过反馈控制算法来调整电机的输出,使车轮的转向角度逐渐逼近目标值。
这种反馈控制机制可以提高转向的精度和响应速度。
总的来说,线控转向系统通过电子控制技术来实现车辆的转向操作,具有更高的安全性、舒适性和灵活性。
线控转向系统研发生产方案(一)
线控转向系统研发生产方案一、实施背景随着汽车技术的不断发展,消费者对汽车驾驶体验的需求也在不断升级。
特别是在自动驾驶、电动化、网联化等趋势的推动下,汽车的驾驶控制系统已经从传统的机械液压系统转向了电子控制系统。
而其中,线控转向系统(SBW)作为新一代的汽车驾驶控制系统,其研发与生产成为了行业内的热点。
近年来,中国政府也出台了一系列政策,推动汽车产业的转型升级。
其中,线控转向系统的研发与生产被视为汽车产业未来发展的重要方向之一。
在此背景下,本方案旨在通过自主研发,推动线控转向系统的国产化生产,提升国内汽车产业的竞争力。
二、工作原理线控转向系统(SBW)是一种通过电信号来控制转向的装置。
在SBW中,方向盘与转向机之间没有传统的机械连接,而是通过电线进行信号传输。
当驾驶员转动方向盘时,SBW会通过传感器将信号传输到ECU(电子控制单元),然后ECU根据预设的算法对信号进行处理,最终控制电动机驱动转向机进行转向。
三、实施计划步骤1.技术研究:开展SBW的技术研究,包括传感器技术、ECU控制策略、电动机驱动技术等。
2.样品制作:根据技术研究结果,制作SBW样品。
3.试验验证:在实验室和实车上对SBW样品进行性能验证,包括转向灵敏度、响应速度、耐久性等。
4.批量生产:根据试验验证结果,对SBW进行优化改进后,开始批量生产。
5.市场推广:通过与汽车制造商合作,将SBW应用到汽车上,并进行市场推广。
四、适用范围本方案适用于各类乘用车、商用车等车辆的线控转向系统研发与生产。
五、创新要点1.采用先进的传感器技术,能够准确、快速地检测驾驶员的转向意图。
2.优化ECU控制策略,实现更快速、更精确的转向控制。
3.采用高效的电动机驱动技术,确保转向机的快速响应和稳定运行。
4.通过自主研发,掌握核心知识产权,为国内汽车产业的发展提供支持。
六、预期效果预计本方案的实施将带来以下效果:1.提高车辆的驾驶安全性:SBW能够更快地响应驾驶员的转向操作,缩短反应时间,从而提高驾驶安全性。
纯电动智能车辆线控转向系统设计与控制方法
实验验证
实验验证
为了验证所设计的纯电动智能车辆线控转向系统的有效性,需要进行实验验 证。实验流程包括以下步骤:
实验验证
1、搭建实验平台:组建纯电动智能车辆线控转向系统实验平台,包括车辆、 传感器、执行器、控制器等部件。
实验验证
2、数据采集:在实验过程中,通过传感器采集车辆的状态信息,如车速、角 速度、横摆角等。
实验验证
3、控制策略实施:根据所设计的控制策略,将控制指令发送给执行器,实现 线控转向系统的控制。
实验验证
4、实验结果分析:对实验数据进行整理和分析,对比不同控制策略下的实验 结果,评估所设计的纯电动智能车辆线控转向系统的性能。
实验验证
通过实验验证,可以证明所设计的纯电动智能车辆线控转向系统能够达到预 期效果。与传统的机械转向系统相比,线控转向系统具有更高的灵活性和可靠性, 能够更好地适应复杂路况和行驶需求。同时,应用PID控制、模糊控制或神经网 络控制等算法,可以进一步提高转向系统的性能和稳定性。
结论
结论
本次演示对纯电动智能车辆线控转向系统设计与控制方法进行了深入研究。 首先介绍了研究背景和研究现状,然后详细阐述了线控转向系统的设计方法,包 括系统架构、传感器、执行器、控制器等。接着介绍了PID控制、模糊控制和神 经网络控制等常用的控制方法,并分析了每种方法的优缺点。最后通过实验验证 了所设计的纯电动智能车辆线控转向系统的有效性。
系统设计
系统设计
在纯电动智能车辆线控转向系统设计方面,需要考虑到以下几个方面:
系统设计
1、系统架构:包括传感器、执行器、控器等部件的选型和布局。系统设计
2、传感器设计:为了实现精确的转向控制,需要选择合适的传感器来获取车 况信息。
线控转向的控制策略介绍
线控转向的控制策略介绍线控转向是一种由电子控制单元(ECU)通过电磁调节的方式控制驾驶员向左或向右转向的系统。
它主要通过控制车辆的方向盘和车轮转动来实现转向功能,具有精确度高、响应速度快、操控性好等优点。
线控转向的控制策略包括车辆动态模型建立、转向控制算法设计、系统参数辨识和控制性能评价等方面,下面将对其进行详细介绍。
首先,车辆动态模型的建立是进行转向控制策略设计的基础。
车辆动态模型主要包括车辆的横向运动和转向控制部分。
横向运动模型主要描述车辆的横向加速度和侧滑角度随时间变化的关系,一般采用基于差分方程的离散模型进行描述。
而转向控制部分主要包括转向角度、转向助力等变量的关系,通常使用动力学方程或力矩平衡方程描述。
通过建立准确的车辆动态模型,可以为转向控制策略的设计提供可靠的理论依据。
其次,转向控制算法的设计是线控转向的核心部分。
转向控制算法的设计旨在通过ECU对转向系统的电磁调节来实现精确的转向控制。
常见的转向控制算法包括PID控制算法、模糊控制算法和神经网络控制算法等。
PID控制算法是一种经典的控制算法,通过调节比例、积分和微分三个参数来实现对转向系统的控制。
模糊控制算法是一种基于模糊逻辑的控制算法,通过设定一系列模糊规则来实现对转向系统的控制。
神经网络控制算法则是通过训练神经网络模型来实现对转向系统的控制。
通过选择合适的转向控制算法,可以实现对转向系统的精确控制。
然后,系统参数辨识是线控转向的关键环节。
系统参数辨识主要是通过对转向系统的回归分析来确定系统的关键参数。
常见的系统参数辨识方法包括最小二乘法、极大似然估计法和蒙特卡罗法等。
最小二乘法是一种通过最小化残差平方和来确定系统参数的方法,通过对实测数据进行拟合来估计系统参数值。
极大似然估计法则是一种通过最大化似然函数来确定系统参数的方法,通过统计学原理对系统参数进行估计。
蒙特卡罗法则是一种通过随机采样的方式对系统参数进行估计。
通过系统参数辨识,可以获得准确的系统模型,进而实现对转向过程的控制。
线控转向系统功能安全设计技术
线控转向系统功能安全设计技术概述随着汽车工业的发展,车载电子系统变得越来越复杂,汽车的安全性成为了一个严峻的挑战。
线控转向系统作为汽车的重要部件之一,在提升车辆操控性和行驶安全性方面发挥着关键作用。
本文将深入探讨线控转向系统的功能安全设计技术。
二级标题1:线控转向系统的原理线控转向系统是通过电子信号控制车辆的转向动作,取代了传统的机械转向系统。
其原理是通过发送信号给转向电机,控制前轮的转向角度。
这种系统可以实现更精确、更灵敏的转向调整,并提供更多的安全功能。
二级标题2:线控转向系统的功能安全需求线控转向系统的功能安全设计技术必须满足一系列需求,以确保系统的可靠性和安全性。
以下是一些典型的功能安全需求:三级标题1:安全性目标•转向动作必须与驾驶员的意图一致,不会发生误操作或误解读。
•系统必须能够识别和纠正转向过程中的异常情况,如转向过度或转向失控。
•系统的响应速度必须达到一定的要求,以确保在紧急情况下能够及时响应。
三级标题2:故障和故障响应•系统必须能够检测和诊断任何故障,并采取相应的措施进行故障处理。
•在发生故障时,系统必须能够实现安全切换到备用模式,以确保车辆的基本操控功能仍可用。
•系统的备用模式必须经过充分测试和验证,具备相同的安全性能。
三级标题3:安全分析和验证•在设计过程中,必须进行详尽的安全分析,包括潜在的风险评估和安全性能要求分析。
•系统的安全性能必须通过严格的验证和测试来进行确认,包括功能测试、可靠性测试和温度、湿度等环境测试。
三级标题4:信息安全性•系统必须具备一定的信息安全性,以防止黑客攻击和未经授权的访问。
•通信和数据传输过程中的信息必须进行加密和认证,确保数据的完整性和机密性。
二级标题3:线控转向系统的功能安全设计技术为了满足上述的功能安全需求,线控转向系统的设计涉及到多个方面的技术。
三级标题1:双重通信和冗余设计为了提高系统的可靠性和容错能力,在线控转向系统中使用双重通信和冗余设计可以有效地降低单点故障的风险。
线控转向系统功能安全设计技术
线控转向系统功能安全设计技术一、引言线控转向系统是现代汽车中的重要组成部分,它通过电子信号控制转向器和转向泵,实现车辆的转向。
为了保证车辆的驾驶安全,线控转向系统需要进行功能安全设计。
本文将从以下几个方面介绍线控转向系统的功能安全设计技术。
二、功能安全概述1. 功能安全定义功能安全是指在特定的操作模式下,设备或系统能够在不出现危险失效的情况下执行其预期的安全功能。
2. 功能安全标准ISO 26262是汽车电子领域最为重要的功能安全标准。
该标准规定了汽车电子系统在各个开发阶段需要遵循的流程和方法,以确保其满足相应的安全性能要求。
三、线控转向系统功能安全设计技术1. 安全目标制定在线控转向系统设计过程中,需要根据ISO 26262标准制定相应的安全目标。
这些目标应该明确描述了所需实现的特定汽车操作模式下必须满足的限制条件和要求。
2. 危险分析与风险评估危险分析与风险评估是线控转向系统功能安全设计的重要环节。
通过对系统进行危险分析和风险评估,可以识别潜在的危险和安全问题,并制定相应的预防措施。
3. 安全性需求制定根据安全目标和危险分析结果,需要制定相应的安全性需求。
这些需求应该明确描述了系统需要满足的安全性能要求和限制条件。
4. 系统设计与验证在线控转向系统设计过程中,需要采用相应的技术手段来实现安全性能要求。
例如,采用双重或三重电路设计来保证转向信号的可靠性;采用故障检测和容错机制来保证系统在出现故障时能够及时发现并进行处理。
5. 系统测试与验证在线控转向系统开发完成后,需要进行相应的测试与验证。
这些测试应该覆盖所有可能出现的操作模式和故障情况,并确保系统能够满足安全性能要求。
6. 故障管理与诊断在线控转向系统运行过程中,可能会出现各种故障情况。
为了保证车辆驾驶安全,需要采用相应的故障管理与诊断技术,及时发现并处理故障。
四、结论线控转向系统是现代汽车中的重要组成部分,需要进行功能安全设计。
通过制定安全目标、进行危险分析与风险评估、制定安全性需求、系统设计与验证、系统测试与验证以及故障管理与诊断等技术手段,可以确保线控转向系统满足相应的安全性能要求,保证车辆驾驶安全。
线控转向系统的组成和工作原理
线控转向系统的组成和工作原理一、线控转向系统组成线控转向系统由6部分组成:1、导航仪:导航仪是线控转向系统的核心部件,它可以实时获取车辆的定位信息,并根据设定的路径向操纵员反馈当前位置相关的数据,以便操纵员对车辆实现更精确的控制和定位。
2、操纵杆:操纵杆是由操纵员直接控制车辆运行的手柄,操纵杆的操纵如同手控方向盘一样,操纵员通过操纵杆控制车辆的行驶方向和速度,经过线控转向系统的控制后驱动车辆向指定方向行驶。
3、指令接收器:指令接收器是接收来自导航仪发出的指令信息,并将其转换成机械和电气信号,传递给电控单元,从而实现车辆按照指定路线行驶。
4、电控单元:电控单元是将指令接收器获取的信号转换成机械指令,传递给操纵机构,实现对车辆转向和行驶方向的控制。
5、操纵机构:操纵机构是将电控单元发出的指令信号转换成转向角度,调节车辆的行驶方向,以实现线控转向系统的控制作用。
6、速度控制器:速度控制器是实现车辆的速度控制的装置,它可以根据实时获取的信息,控制车辆的行驶速度,以免超速等异常行为发生。
二、线控转向系统工作原理线控转向系统是由导航仪、操纵杆、指令接收器、电控单元、操纵机构和速度控制器组成,是自动驾驶技术的重要组成部分。
1、导航仪获取车辆的定位信息,并根据设定的路径向操纵员反馈当前位置相关的数据。
2、操纵杆接收来自导航仪反馈的指令信息,并将其转换成电气信号传递给电控单元。
3、电控单元将指令信息转换成机械指令,传递给操纵机构,实现对车辆转向和行驶方向的控制。
4、操纵机构将电控单元发出的指令信号转换成转向角度,调节车辆的行驶方向,以实现线控转向系统的控制作用。
5、速度控制器根据实时获取的信息控制车辆的行驶速度,以免超速等异常行为发生。
自动驾驶线控系统的设计与应用研究
2、软件设计
2、软件设计
软件设计是实现矿卡自动驾驶的核心。根据传感器采集的数据,通过高级算 法进行数据分析和处理,生成车辆行驶所需的指令。这些指令将通过控制器传输 到执行器,实现对车辆底盘的控制。在行驶过程中,系统还需要对车辆的运行状 态进行实时监测,以确保行驶安全。
3、线控系统与车辆行驶的关系
3、线控系统与车辆行驶的关系
线控系统在自动驾驶中扮演着重要角色。通过线控系统,可以实现对车辆的 精确控制,从而实现自动驾驶。例如,在车辆行驶过程中,线控系统可以根据预 先设定的路径和速度计划,自动控制车辆的转向和油门刹车,确保车辆稳定地行 驶在预定路线上。此外,线控系统还可以与其他传感器和控制系统配合,实现更 加复杂的功能,如自动泊车、自适应巡航等。
自动驾驶线控系统的设计与应 用研究
目录
01 一、自动驾驶线控系 统设计
03 参考内容
02
二、自动驾驶线控系 统应用研究
内容摘要
随着科技的不断发展,自动驾驶技术成为了当今研究的热点之一。线控系统 作为自动驾驶技术的关键组成部分,越来越受到研究者的。本次演示将从自动驾 驶线控系统的设计及应用两个方面进行研究,探讨线控系统的工作原理、设计思 路、应用场景、优缺点以及发展趋势。
(2)应用领域扩大:目前自动驾驶线控系统的应用主要集中在汽车领域,未 来将逐渐扩展到其他交通工具和领域,例如轨道交通、航空航天等。
3、发展趋势和前景分析
线控转向系统控制技术综述
线控转向系统控制技术综述线控转向系统控制技术是一种先进的汽车控制系统技术,其目的是通过电线或电缆代替机械连接来控制车辆的转向。
本文综述了线控转向系统控制技术的原理、方法及其在汽车、船舶、飞机等领域的广泛应用,同时指出该技术所面临的挑战和问题,并探讨可能的解决方案。
关键词:线控转向,控制系统,汽车,船舶,飞机,挑战,解决方案线控转向系统控制技术是一种新兴的汽车控制系统技术,其基本原理是通过电线或电缆将驾驶员的转向指令传输到车辆的转向器上,以实现车辆的转向控制。
该技术的出现彻底改变了传统机械转向系统的结构,提高了车辆的机动性和稳定性。
本文将详细介绍线控转向系统控制技术的原理和方法,并探讨其在汽车、船舶、飞机等领域的广泛应用及所面临的挑战和问题。
线控转向系统控制技术的基本原理是利用电线或电缆将驾驶员的转向指令传输到车辆的转向器上,以实现车辆的转向控制。
该技术主要包括以下几个环节:指令发送:驾驶员通过方向盘向车辆发送转向指令。
指令传输:电线或电缆将转向指令传输到车辆的转向器上。
指令执行:车辆的转向器根据接收到的指令实现车辆的转向控制。
反馈控制:控制系统根据车辆的实时位置和速度对转向指令进行修正,以确保车辆能够准确地达到驾驶员的期望位置。
线控转向系统控制技术在近年来得到了广泛的研究和应用,已成功应用于多种车型中。
线控转向系统控制技术在汽车、船舶、飞机等领域的广泛应用线控转向系统控制技术在汽车领域的应用已经得到了广泛认可,并成为许多高档车型的标准配置。
除此之外,该技术也在船舶和飞机控制领域得到了应用。
在船舶控制中,线控转向系统控制技术可以使得船舶在狭小的水域中实现灵活的转向,提高船舶的机动性和稳定性。
在飞机控制中,该技术可以实现更加精确的飞行姿态控制,从而提高飞行的安全性和准确性。
然而,线控转向系统控制技术在应用过程中也面临着一些挑战和问题。
电线或电缆的传输距离和稳定性会受到不同程度的影响,这需要进一步提高传输技术的可靠性和稳定性。
线控转向--自动驾驶路径与方向的精确控制
线控转向--自动驾驶路径与方向的精确控制线控转向,即Steer-By-Wire,能够无束缚地得到无人驾驶进行转弯的指令目标输入和汽车的转向轮的变化之间的关系,可以控制转向机构和行驶需要之间的关系,这样能够对车辆进行调节。
其直接掌控着自动驾驶路径与方向的精确控制。
1. 线控转向发展历程自1894年乘用车安装第1款现代意义上具备方向盘的转向系统开始,其转向系统大致经历了5个阶段:早期的纯机械转向系统;福特最早提出的液压助力转向系统;丰田首推的电子液压助力转向系统;新一代的电动助力转向系统;摆脱机械连接的线控转向系统和具有主动转向功能的前轮主动转向系统等。
1.1. 电子液压助力转向(EHPS)驾驶员在方向盘上施加转动力矩和角度;方向盘带动转向柱转动;转向柱通过其底部和转向机相连的齿轮齿条机构,将转向柱的转动变为转向机齿条的横向直线运动;转向扭矩传感器检测到驾驶员输入了方向盘扭矩;根据驾驶员输入的扭矩,以及车速等信息,ECU计算并控制电动机带动转向助力泵转动,产生高压液体;液压通过转向油管传递到液压助力转向机上,液压推动液压助力转向机上的双作用液压缸的活塞,产生压力,对齿条的横向直线运动进行助力;转向机两端的转向横拉杆,通过推动或拉动转向节来改变车轮的方向;车轮与地面间产生横向力,车辆转向。
电子液压助力转向机构1.2. 电动助力转向(EPS)第一种是对转向柱的转矩进行助力,这种叫C -EPS (Column - EPS);第二种是对转向柱底端的齿轮齿条机构中的齿轮进行助力,这种叫P - EPS(Pinion - EPS);第三种是在转向机上对齿条的直线运动进行助力,这种叫R - EPS(Rack - EPS);而R - EPS根据传动的方式不同,又可以分为R-EPS,DP-EPS(双小齿轮EPS)和BD-EPS(带传动EPS)。
1.3. 线控转向(SBW)狭义上说,SBW系统特指没有机械连接的转向系统,这是从系统的结构上进行的一个区分。
汽车线控转向系统的结构与技术原理分析
汽车线控转向系统的结构与技术原理分析一、线控转向系统的结构及工作原理(一)线控转向系统的结构汽车线控转向系统主要由转向盘模块、前轮转向模块、主控制器(ECU)以及自动防故障系统组成。
1.转向盘模块转向盘模块包括转向盘组件、转向盘转角传感器、力矩传感器、转向盘回正力矩电机。
其主要功能是将驾驶员的转向意图(通过测量转向盘转角)转换成数字信号并传递给主控制器,同时主控制器向转向盘回正力矩电机发送控制信号,产生转向盘回正力矩,以提供给驾驶员相应的路感信息。
2.前轮转向模块前轮转向模块包括前轮转角传感器、转向执行电机、电机控制器和前轮转向组件等。
其功能是将测得的前轮转角信号反馈给主控制器,并接受主控制器的命令,控制转向盘完成所要求的前轮转角,实现驾驶员的转向意图。
3.主控制器主控制器对采集的信号进行分析处理,判别汽车的运动状态,向转向盘回正力矩电机和转向电机发送命令,控制两个电机协调工作。
主控制器还可以对驾驶员的操作指令进行识别,判定在当前状态下驾驶员的转向操作是否合理。
当汽车处于非稳定状态或驾驶员发出错误指令时,前轮线控转向系统将自动进行稳定控制或将驾驶员错误的转向操作屏蔽,以合理的方式自动驾驶车辆,使汽车尽快恢复到稳定状态。
4.自动防故障系统自动防故障系统是线控转向系统的重要模块,它包括一系列的监控和实施算法,针对不同的故障形式和故障等级做出相应的处理,以求最大限度的保持汽车的正常行驶。
线控转向技术采用严密的故障检测和处理逻辑,以最大程度地提高汽车安全性能。
(二)线控转向系统的工作原理其工作过程:来自转向盘传感器和各种车辆当前状态的信息送给电子控制子系统后,利用计算机对这些信息进行控制运算,然后对车辆转向子系统发出指令,使车辆转向。
同时车轮转向子系统中的转向阻力传感器给出的信息也经电子控制子系统,传给转向盘子系统中模拟路感的部件。
二、线控转向系统的性能特点由于线控转向系统中的转向盘和转向轮之间没有机械连接,是断开的,通过总线传输必要的信息,故该系统也称作柔性转向系统。
线控转向系统转向电机控制算法与软件建模研究
线控转向系统转向电机控制算法与软件建模研究线控转向系统是一种辅助驾驶技术,通过电子控制单元(ECU)和转向电机来实现车辆的转向功能。
转向电机控制算法及软件建模是线控转向系统的关键部分,直接影响到车辆的转向稳定性和安全性。
本文将探讨转向电机控制算法的研究及软件建模方法。
首先,转向电机控制算法的研究是线控转向系统设计的核心。
传统的转向系统采用机械连接实现转向,而线控转向系统通过电子控制来实现转向,转向电机控制算法的设计将直接影响到转向系统的性能。
常见的转向电机控制算法包括PID控制、模糊控制、神经网络控制等。
不同的算法适用于不同的转向系统,需要根据实际情况选择最合适的控制算法。
其次,转向电机控制算法的研究需要考虑到转向系统的动态特性和稳定性。
转向电机控制算法需要实现对车辆转向角度的精确控制,同时还需要考虑到转向系统的动态响应速度和稳定性。
在设计控制算法时,需要通过建立转向系统的数学模型来分析系统的动态特性,并根据实际需求调整控制算法的参数,以实现系统的稳定控制。
此外,转向电机控制算法的研究还需要考虑到转向系统的实时性和鲁棒性。
转向系统需要实时响应驾驶员的转向指令,控制算法的设计需要保证系统的实时性,确保转向系统能够及时、准确地响应转向指令。
同时,转向系统需要具备一定的鲁棒性,能够适应不同的工况和环境变化,确保系统的稳定性和安全性。
最后,转向电机控制算法的研究还需要考虑到软件建模的问题。
软件建模是转向系统设计的重要环节,通过建立转向系统的仿真模型,可以对控制算法进行仿真验证,优化系统的性能。
软件建模需要考虑到转向系统的控制逻辑、传感器数据处理、电机控制等方面,确保系统的功能完整性和稳定性。
综上所述,转向电机控制算法的研究及软件建模是线控转向系统设计的重要内容,需要综合考虑转向系统的动态特性、稳定性、实时性和鲁棒性等因素,通过合理的算法设计和软件建模,实现转向系统的高效、稳定的控制,提高车辆的转向性能和安全性。
基于自动驾驶需求的线控转向设计方法
基于自动驾驶需求的线控转向设计方法下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!一、引言随着自动驾驶技术的发展,车辆转向系统作为自动驾驶的核心部件之一,其设计变得尤为重要。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本技术属于汽车转向系统中的线控转向系统技术领域,具体地说是一种自动驾驶汽车线控转向系统的设计。
该转向系统组成上包括主控制器、转向操纵机构、转向执行机构、横拉杆、转向轮、电磁离合器和车轮转角传感器等;本技术是一种结构简单的自动驾驶汽车线控转向系统,改进了目前已有的线控转向系统结构使其更好地应用在自动驾驶汽车上,保证自动驾驶汽车能实现前轮线控转向,并且在转向电机出现故障时,该系统可以转化为传统机械式转向系统,使汽车的转向具有良好的可控性和安全性,解决了线控转向系统目前存在的问题。
权利要求书1.一种自动驾驶汽车线控转向系统,其特征在于,该转向系统包括主控制器、横拉杆、转向轮、转向操纵机构、转向执行机构、常开式电磁离合器(11)和车轮转角传感器;所述转向操纵机构包括力感电机(5)、三级行星齿轮减速机构(6)、锥齿轮(7)、方向盘转距传感器(8)、方向盘转角传感器(9)和方向盘(10);所述转向执行机构包括转向电机(1)、常闭式电磁离合器(2)、蜗轮蜗杆减速机构(3)、齿轮齿条转向器(4);所述主控制器的输入与车轮转角传感器、方向盘转距传感器(8)、方向盘转角传感器(9)相连;所述主控制器的输出与转向操纵机构中的力感电机(5)相连;所述力感电机(5)的输出轴与三级行星齿轮减速机构(6)中的高速级太阳轮(601)连接;所述三级行星齿轮减速机构(6)的输出轴与锥齿轮(7)的输入轴连接;所述锥齿轮(7)的输出端与方向盘(10)的转向轴连接,其上有方向盘转矩传感器(8)和转角传感器(9);所述齿轮齿条转向器(4)与横拉杆连接;所述横拉杆与转向轴的转向臂连接;所述转向轴与转向轮连接;所述常开式电磁离合器(11)的内花键与锥齿轮(7)输出轴的外花键连接;所述常闭式电磁离合器(2)的内花键与转向电机(1)输出轴上的外花键相啮合;所述蜗轮蜗杆减速机构(3)中的蜗杆轴(303)的外花键与常闭式电磁离合器(2)的内花键相啮合。
2.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述蜗轮蜗杆减速机构(3)还包括蜗杆(301)、蜗轮(302)、蜗轮轴(304);所述蜗杆轴(303)与常闭式电磁离合器(2)相连;所述常闭式电磁离合器(2)与转向电机(1)相连;所述蜗杆(301)与蜗轮(302)相啮合;所述蜗轮轴(304)设置在蜗轮(302)的中间孔内通过平键与蜗轮(302)固定,蜗轮轴上有一部分为齿轮轴(401);所述蜗轮轴(304)上齿轮轴(401)一侧的末端设置有滚针轴承。
3.根据权利要求3所述一种自动驾驶汽车线控转向系统,其特征在于,所述蜗轮轴(304)上蜗轮(302)处有一对深沟球轴承。
4.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述三级行星齿轮减速机构(6)还包括高速级太阳轮(601)、高速级行星轮(602)、高速级行星架(603)、中速级太阳轮(604)、中速级行星轮(605)、中速级行星架(606)、低速级太阳轮(607)、低速级行星轮(608)、低速级行星架(609)和齿圈(610);所述高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)通过行星架上的短轴与高速级行星架(603)、中速级行星架(606)和低速级行星架(609)连接;所述高速级太阳轮(601)与高速级行星轮(602)相啮合;所述中速级太阳轮(604)与中速级行星轮(605)相啮合;所述低速级太阳轮(607)和低速级行星轮(608)相啮合;所述齿圈(610)的内齿与高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)相啮合,外部固定在力感电机(5)的壳体上。
5.根据权利要求4所述一种自动驾驶汽车线控转向系统,其特征在于,所述高速级太阳轮(601)、中速级太阳轮(604)、低速级太阳轮(607)、高速级行星轮(602)、中速级行星轮(605)和低速级行星轮(608)的模数均相同,均采用直齿齿轮。
6.根据权利要求1所述一种自动驾驶汽车线控转向系统,其特征在于,所述齿轮齿条转向器(4)包括齿轮(401)和齿条(402);所述齿轮(401)与齿条(402)相啮合;所述齿轮(401)采用斜齿轮;所述齿条(402)的两个端头与左右横拉杆端头连接在一起。
技术说明书一种自动驾驶汽车线控转向系统技术领域本技术属于汽车转向系统中的线控转向系统技术领域,具体的说是一种自动驾驶汽车线控转向系统。
背景技术随着汽车智能化水平的发展,汽车转向系统也从传统的机械式转向逐渐发展为液压助力转向、电控助力转向以及如今在自动驾驶汽车中常见的线控转向。
线控转向系统除了原始的方向盘和转向轮装置外,还增加了主控制器(ECU)、电动机、自动防故障系统、传感器等辅助机构。
转向时,主控制器ECU获得来自于车速、转速等传感器传来的数据信息,主控制器根据接收到的信息分别向转向电机和力感电机发送控制指令,使转向电机输出一定的转矩,并通过转向系统将动力传递到转向器,进而带动车轮转向。
力感电机输出的动力经减速器减速增扭后传到方向盘处,带动方向盘转动。
同时,转向执行机构还可以将车轮转角信息反馈给ECU,ECU将该信息输送到转向盘处使驾驶员更好地了解到路感信息。
和传统转向系统相比线控系统取消了一部分机械连接结构,因此更有利于降低整车重量;同时,只有在汽车转向时,转向电机处才有功率输出,更有利于减少能源消耗。
在法兰克福汽车博览会上,奔驰公司展示了其新一代应用线控转向技术的自动驾驶样车。
同年,由操纵杆操纵的线控转向系统被列为自动驾驶领域十大新技术之一。
2015年12 月,采用线控转向技术的百度无人车首次进行道路实测,在高速公路等多种复杂路况下通过了自动驾驶道路测试,最快时速度可以达到每小时100公里。
目前,线控转向系统大面积应用在自动驾驶汽车的转向系统中,主要是因为其减轻了驾驶员的操作,在各种不同的道路环境下,都能保证汽车准确可靠地进行转向,对提高整个系统的驾驶平顺性和道路交通安全性具有十分深远的研究意义。
如今,线控转向系统已经在船舶、飞机和许多工程机械中得到了广泛的应用,其在提高汽车的空间利用率、减少事故发生率等方面有着突出的优势。
技术内容本技术提供了一种结构简单的自动驾驶汽车线控转向系统,改进了目前已有的线控转向系统结构使其更好地应用在自动驾驶汽车上,保证自动驾驶汽车能实现前轮线控转向,并且在转向电机出现故障时,可以转化为传统机械式转向系统,使汽车的转向系统具有良好的可控性和安全性,解决了线控转向系统存在的问题。
本技术技术方案结合附图说明如下:一种自动驾驶汽车线控转向系统,该转向系统包括主控制器、横拉杆、转向轮、转向操纵机构、转向执行机构、常开式电磁离合器11和车轮转角传感器;所述转向操纵机构包括力感电机5、三级行星齿轮减速机构6、锥齿轮7、方向盘转距传感器8、方向盘转角传感器9和方向盘10;所述转向执行机构包括转向电机1、常闭式电磁离合器2、蜗轮蜗杆减速机构3、齿轮齿条转向器4;所述主控制器的输入与车轮转角传感器、方向盘转距传感器 8、方向盘转角传感器9相连;所述主控制器的输出与转向操纵机构中的力感电机5相连;所述力感电机5的输出轴与三级行星齿轮减速机构6中的高速级太阳轮601连接;所述三级行星齿轮减速机构6的输出轴与锥齿轮7的输入轴连接;所述锥齿轮7的输出端与方向盘10的转向轴连接,其上有方向盘转矩传感器8和转角传感器9;所述齿轮齿条转向器4 与横拉杆连接;所述横拉杆与转向轴的转向臂连接;所述转向轴与转向轮连接;所述常开式电磁离合器11的内花键与锥齿轮7输出轴的外花键连接;所述常闭式电磁离合器2的内花键与转向电机1输出轴上的外花键相啮合;所述蜗轮蜗杆减速机构3中的蜗杆轴303的外花键与常闭式电磁离合器2的内花键相啮合。
所述蜗轮蜗杆减速机构3还包括蜗杆301、蜗轮302、蜗轮轴304;所述蜗杆轴303与常闭式电磁离合器2相连;所述常闭式电磁离合器2与转向电机1相连;所述蜗杆301与蜗轮302相啮合;所述蜗轮轴304设置在蜗轮302的中间孔内通过平键与蜗轮302固定,蜗轮轴上有一部分为齿轮轴401;所述蜗轮轴304上齿轮轴401一侧的末端设置有滚针轴承。
所述蜗轮轴304上蜗轮302处有一对深沟球轴承。
所述三级行星齿轮减速机构6还包括高速级太阳轮601、高速级行星轮602、高速级行星架603、中速级太阳轮604、中速级行星轮605、中速级行星架606、低速级太阳轮607、低速级行星轮608、低速级行星架609和齿圈610;所述高速级行星轮602、中速级行星轮 605和低速级行星轮608通过行星架上的短轴与高速级行星架603、中速级行星架606和低速级行星架609连接;所述高速级太阳轮601与高速级行星轮602相啮合;所述中速级太阳轮604与中速级行星轮605相啮合;所述低速级太阳轮607和低速级行星轮608相啮合;所述齿圈610的内齿与高速级行星轮602、中速级行星轮605和低速级行星轮608相啮合,外部固定在力感电机5的壳体上。
所述高速级太阳轮601、中速级太阳轮604、低速级太阳轮607、高速级行星轮602、中速级行星轮605和低速级行星轮608的模数均相同,均采用直齿齿轮。
所述齿轮齿条转向器4包括齿轮401和齿条402;所述齿轮401与齿条402相啮合;所述齿轮401采用斜齿轮;所述齿条402的两个端头与左右横拉杆端头连接在一起。
本技术的有益效果为:1.本技术中在转向操纵机构和转向传动机构之间有一个常开式电磁离合器,正常工作时它是断开的,当系统发生故障时闭合。
保证了汽车在正常情况下,通过线控的方式实现转向;当系统中任一部件发生故障时,通过传统机械方式实现汽车转向。
保证了自动驾驶汽车在任何情况下都能正常转向,符合汽车设计时对转向系统有转向稳定性的要求。
2.本技术中,转向盘和转向轮的转动分别由转向电机和力感电机来控制。
转向轮处减速机构采用蜗轮蜗杆减速机构,减速比更大;转向盘处减速机构采用三级行星排减速机构,效率高,占用空间体积小,减速比更大。
3.与传统机械式转向系统相比,省去了机械连接结构,简化了生产工艺和制造过程,更有利于降低整车的重量,避免了正面碰撞时转向系统对驾驶员的二次伤害以及减小了底盘的震动,提高了驾驶舒适性。
4.该系统中,转向电机和力感电机由控制器ECU控制,其输出的转矩、转速数值是经过计算的,有利于节约电机输出的能源,保证只有在汽车需要转向时电机处才有功率输出,这样更有利于减少能源消耗,对环境更加友好;5.本技术采用两个电磁离合器,一个位于转向电机和蜗轮蜗杆减速器之间,采用常闭式电磁离合器,确保线控转向系统只在特定的车速范围内起作用。
当高于规定车速时,离合器分离,暂停助力作用。