齿轮噪音分析
齿轮噪音标准
齿轮噪音标准
齿轮噪音是指齿轮在运转过程中产生的声音,其大小与多种因素有关,如齿轮的设计、制造精度、材料、润滑剂、转速等。
一般来说,齿轮噪音的级别在40dB到50dB之间比较正常,而低于40dB或高于50dB的噪音则可能存在问题。
在齿轮传动系统中,齿轮的制造精度、安装精度和润滑剂的质量是影响齿轮噪音的主要因素。
如果齿轮的制造精度不高,安装不正确,或者润滑剂不足或质量不好,就会导致齿轮的磨损、发热和噪音增加。
为了降低齿轮噪音,我们可以采取以下措施:
1.提高齿轮的制造精度和安装精度,保证齿轮的啮合精度和平衡性。
2.选择合适的润滑剂,并保证其充足的供应,以减少齿轮的磨损和发热。
3.定期检查和维护齿轮传动系统,及时发现和解决问题。
4.对于要求高噪音级别的设备,可以选择加装消音器或采取其他降噪措施。
齿轮噪音的正常范围是40dB到50dB之间,如果超过这个范围,就需要检查齿轮传动系统是否存在问题,并采取相应的措施进行解决。
通过提高齿轮的制造和安装精度、选择合适的润滑剂、定期检查和维护等措施,可以有效地降低齿轮噪音,提高设备的使用寿命和效率。
齿轮噪音大的原因和解决方法
齿轮噪音大的原因和解决方法The document was finally revised on 2021齿轮噪音大的原因和解决方法(一)塑胶齿轮侧间隙取时的噪音最小;齿轮配合一般一硬一软,POM的应配尼龙的,一来不会粘合,也可以补偿误差;对于POM齿轮,噪声大,可以在POM料里加点尼龙,然后在用塑料齿轮脂加在其上,噪声要大大的降低,当然POM的齿轮一定要开模做。
(二)可能是速度太快或配合不好。
赛钢料耐磨,排除结构问题,噪音仍然是它比较突出的缺点,如果改用尼龙料会好些有以下可能:1:齿轮与轴的配合间隙过大,产生窜动;2:齿轮组中心距过大或过小,一般装配后,齿间应有10到15丝的空隙;齿轮噪音与齿轮的渐开线啮合有关(三)对于玩具牙箱,噪音是个大问题:1。
噪音源:噪声与速度成平方比,所以噪声都在高速级,一般只要解决了高速级的噪声,整体的噪声就解决了2。
中心距过小,有磨的声音,电流较大。
中心距过大,有碰的声音。
小模数齿轮中心距的经验值:a=m(z1+z2)/2+3.中心孔:有无孔斜,有无喇叭孔,孔与齿的同心度4。
齿形:齿形有无偏胖5。
润滑油:不但齿上要加润滑油,孔与轴上也要加润滑油6。
设计时注意齿轮箱要全封闭起来,可以大大的降低噪声听声音时可把电压调低,速度变慢来听,可以发现有无周期性的声音(四)总结以下几点降低噪音的方法,供大家参考。
1、蜗轮、蜗杆不能用同一种材料。
2、直接注塑的蜗轮、蜗杆,齿形精度很难控制,造成齿形厚薄不均,可以改成先注塑毛胚,再机加工,以保证精度。
3、保证中心距,不能忽大忽小,一般是上偏差~~,不能走下偏差,否则会卡死,阻力聚增。
4、保证蜗杆不串轴。
5、保证齿形精度。
6、保证轴向跳动不能大。
齿轮传动噪音产生的5种原因及6个降噪方法
齿轮传动噪音产生的5种原因及6个降噪方法齿轮振动的原因在于齿轮之间进行传动时,产生的摩擦、触碰,如此反复进行形成噪音。
齿轮传动噪音长时间存在,不仅影响生产环境,也会对操作人员的人身健康造成危害,因此,找到合理的方法降低齿轮传动噪音非常重要。
一、噪音产生的原因1、齿轮运行振动速度过快齿轮运行振动速度过快,主要是在齿轮传动中频率过快,造成的齿轮之间振动频率过快导致的。
齿轮运行中振动速度快,将影响振动的频率,产生噪音。
2、载荷冲击带来而定齿轮振动这里将齿轮传动看成一个振动的弹簧体系,齿轮自然成为这个体系中的一份子。
当齿轮受到不同程度的载荷时,振动的频率、扭转的方向也会不同,多数会形成圆周方向的振动力。
加上齿轮本身在处理噪音方面的问题,就会形成平顺而不尖叫的噪音。
3共振产生的噪音共振能够产生噪音是每个人都知道的,齿轮传动作为在生产间工作的主要方式,自然也会在运行中出现共振的情况。
通过齿轮传动带来的共振是基于齿轮自身刚性差产生的振动以及齿轮之间摩擦产生的振动在同一个振动的频率上,这时二者相互作用就容易产生共振的情况,出现共振带来的噪音。
4、部分齿轮表面光滑度不足众所周知,两种物体如果是平滑的,那么在相互摩擦时产生的振动就小,振动频率和高频波也会小,产生的噪音程度自然也小。
但是,很多的齿轮表面过于粗糙,相互摩擦时摩擦面大,振动频率高,产生的噪音也就大并且多。
5、缺少正确润滑方法支持在齿轮保养和噪音降低中,不仅仅是好的润滑剂可以降低齿轮之间的摩擦振动,好的润滑剂使用方法也是降低和减少噪音的重要方法。
传统的润滑剂使用方法是在齿轮表面加大润滑剂剂量,使其在运转中降低摩擦,但这种方法对噪音降低收效甚微。
以国外对齿轮保养和降低噪音对润滑作用的使用看,更注重润滑方法,即通过润滑剂充分注入齿轮内部的方法,降低噪音。
二、设计齿轮时预防噪音的措施总的来说,基于齿轮传动产生噪音的原因,将其归结为载荷、振动频率、齿轮摩擦以及轴承转动。
如何降低齿轮传动噪音
如何降低齿轮传动噪音啮合的齿轮对或齿轮组在传动时,由于相互的碰撞或摩擦激起齿轮体振动而辐射出来的噪声。
齿轮噪音形成的原因有许多。
一、齿轮传动系统的噪声分析为从设计角度出发降低齿轮传动系统的噪声,我们就应首先来分析一下齿轮系统噪声的种类和发生机理。
在齿轮系统中,根据机构的不同,噪声可分为加速噪声和自振噪声。
一方面,当轮齿啮合时,由于受到冲击,齿轮会产生很大的加速度,引起周围介质的扰动。
这种干扰产生的声辐射称为齿轮的加速噪声。
另一方面,在齿轮动态啮合力的作用下,系统的各个部分都会产生振动。
这些振动产生的声辐射称为自振铃噪声。
对于开式齿轮传动,加速度噪声由轮齿冲击处直接辐射出来,自鸣噪声则由轮体、传动轴等处辐射出来。
对于闭式齿轮传动,加速度噪声先辐射到齿轮箱内的空气和润滑油中,再通过齿轮箱辐射出来。
自鸣噪声则由齿轮体的振动通过传动轴引起支座振动,从而通过齿轮箱箱壁的振动而辐射出来。
一般说来,自鸣噪声是闭式齿轮传动的主要声源。
因此,齿轮系统的噪声强度不仅与轮齿啮合的动态激励力有关,而且还与轮体、传动轴.轴承及箱体等的结构形式、动态特性以及动态啮合力在它们之间的传递特性有关。
一般来说,齿轮系统的噪声主要由以下几个方面引起:1)齿轮设计方面。
参数选择不当,重合度过小,齿廓修形不当或没有修形,齿轮箱结构不合理等。
在齿轮加工方面,节距误差和齿形误差过大,齿侧间隙过大,表面粗糙度过大。
2)齿轮系及齿轮箱方面。
装配偏心,接触精度低,轴的平行度差,轴,轴承、支承的刚度不足,轴轴承回转精度不高,间隙不合适。
3)其他方面输入扭矩。
负载扭矩的波动,轴系的扭振,电动机及其它传动副的平衡情况等。
二、改善齿轮噪声的方案基于降低能耗和保护环境的理念,美国micava国际公司作为一个国际性的平台和载体在与世界上众多国家的优秀机构进行着卓有成效的合作同时,经过多年的努力和不断的探索,成功引进了世界先进的麦特雷blu-goo超级润滑剂,它是一种极好的齿轮箱添加剂,可以在部件上形成一种惰性材料薄膜,从而降低摩擦、齿轮噪音以及泄露。
齿轮啮合异响常见原因
齿轮啮合异响常见原因齿轮啮合异响是指在机械设备中齿轮进行啮合时发出的噪音或异常声音。
这种声音通常会引起人们的注意和疑虑,因为正常情况下,齿轮应该是无声或低噪音运转的。
齿轮啮合异响的出现可能是由于多种原因引起的,下面将详细介绍常见的几种原因。
第一种原因是齿轮的润滑不良。
正常情况下,齿轮表面应该进行适当的润滑以减少摩擦和磨损,从而降低噪音的产生。
然而,如果润滑不良,例如润滑油的质量不好、使用不当或是过多或过少的润滑物质都可能导致齿轮啮合异响。
这是因为润滑不良会增加齿轮的摩擦,并且可能导致齿轮表面损坏,从而产生噪音。
第二种原因是齿轮的不正常磨损。
齿轮在长时间的使用过程中,可能会因为各种因素(如负载过大、过热、不当安装等)而发生磨损。
当齿轮磨损严重时,齿轮之间的匹配不良,啮合时会产生异常的噪音。
通常情况下,齿轮磨损的部位会出现明显的磨损痕迹,可以通过检查齿面、齿宽和齿根来判断磨损情况。
第三种原因是齿轮的材质和制造质量问题。
齿轮的材质和制造质量直接关系到齿轮的耐磨性和强度。
如果齿轮的材质不合格或者制造过程中存在质量问题,例如齿面硬度不够、齿轮孔径不准确等,都会导致齿轮在工作时产生异响。
这是因为材质问题或制造质量问题会导致齿轮啮合不良,从而产生噪音。
第四种原因是齿轮的不正确安装和调整。
齿轮在安装和调整的过程中,需注意合适的啮合间隙和啮合角度。
如果安装不正确或调整不当,例如啮合间隙过大或过小、啮合角度错误等,都会导致齿轮在运转时发出异响。
这是因为不正确的安装和调整会使齿轮之间的匹配不良,进而产生噪音。
第五种原因是齿轮的振动问题。
在机械设备工作过程中,由于各种原因,如受力不均匀、轴承故障、不平衡等,齿轮可能会产生振动。
这种振动会导致齿轮啮合不稳定,从而产生噪音。
解决这种问题需要通过调整轴承、平衡齿轮等方式来减少振动。
综上所述,齿轮啮合异响的常见原因包括润滑不良、齿轮的不正常磨损、材质和制造质量问题、不正确的安装和调整以及齿轮的振动问题。
齿轮传动噪音影响因素和控制措施
齿轮传动噪音影响因素和控制措施浙江省温岭市317503摘要:齿轮传动噪音是机械传动中的一个重要问题,对机械设备的正常运行和工作环境都会产生不良影响。
本文旨在探讨齿轮传动噪音的影响因素和控制措施。
首先介绍了齿轮传动的基本原理和传动噪音的产生机理,然后分析了影响齿轮传动噪音的因素,包括齿轮参数、齿轮磨合、齿轮精度等。
最后提出了控制齿轮传动噪音的措施,包括改善齿轮参数、优化齿轮磨合、提高齿轮精度、减小齿轮间隙、降低齿轮转速、使用隔音材料等。
关键字:齿轮传动;传动噪音;影响因素;控制措施;一、引言齿轮传动是机械传动中广泛应用的一种形式,具有传动效率高、承载能力大、传动精度高等优点。
然而,在齿轮传动中,噪音问题一直是一大难题。
齿轮传动噪音会对机械设备的正常运行产生不良影响,也会对工作环境产生噪声污染。
控制齿轮传动噪音是非常必要的。
本文将探讨齿轮传动噪音的影响因素和控制措施。
因此,研究齿轮传动噪音的影响因素和控制措施,对于提高机械传动的工作效率和可靠性具有重要意义。
二、齿轮传动的基本原理和传动噪音的产生机理1.齿轮传动的基本原理齿轮传动是一种通过齿轮的啮合来实现传动的机械传动方式。
齿轮传动具有传动效率高、承载能力大、传动精度高等优点,因此广泛应用于各种机械设备中。
齿轮传动还具有传动平稳、寿命长、维护方便等优点,因此在工程领域得到广泛应用。
齿轮传动的基本原理是通过齿轮之间的啮合来实现转动的传动。
齿轮之间的啮合方式有直齿轮啮合、斜齿轮啮合、蜗杆齿轮啮合等多种形式。
其中,直齿轮啮合最为常见,也是应用最广泛的一种啮合形式。
在直齿轮啮合中,齿轮的齿形为直线,因此齿轮间的啮合效率较高,能够承受较大的负载,且制造和维护较为简便。
2.传动噪音的产生机理齿轮传动噪音是由齿轮啮合时产生的振动和冲击声引起的。
当齿轮啮合时,由于齿轮齿形的不完美和齿轮间隙的存在,会产生振动和冲击力。
这些振动和冲击力会导致齿轮和机械系统产生噪声。
齿轮噪音的大小取决于多个因素,包括齿轮齿形的准确性、齿轮间隙的大小、齿轮磨合状态、齿轮材料和加工工艺等。
主轴箱齿轮噪音原因判断及分析
主轴箱齿轮噪音原因判断及分析摘要:齿轮噪音问题是工厂传动装配中经常会碰到的问题。
因为影响的原因不同,造成的噪音形式也不尽相同。
本文着重从齿轮噪音发生的机理出发,对卧加主轴箱噪音进行具体原因分析,并探讨噪音发生的原因及判断方法。
关键词:齿轮噪音,齿轮接触斑点,接触精度,侧隙中图分类号:tg162.733.1、周节误差周节误差可造成齿轮啮合冲击、齿顶顶起及角速度的变动,由此看来,法向周节误差对噪声影响是很大的。
齿轮转到有周节误差(尤其是正向周节误差)的轮齿时,角速度便急剧变化,由于受到冲击使整个齿轮轴系产生振动。
要是周节误差集中在上述轮齿附近,尽管这种振动是衰减振动,齿轮仍将不断地受到激振,从而使声压变大。
如果这种振动进一步变剧,振幅将冲击齿背,变成激烈的敲击声。
这种现象在低精度齿轮啮合中是屡见不鲜的。
很小的周节误差在齿轮低速运转时可能对噪声没有什么影响,可是在高速(尤其是超越一次共振点的速度区)运转时,就会引起很大的振动。
从动齿轮的轮齿在啮合起点处弯曲最大,加上周节误差的影响,使各轮齿的振动时大时小;相反,主动齿轮的轮齿在啮合终点处弯曲最大,周节误差对轮齿振动的影响较小。
因此,应在从动齿轮上采取措施,校正周节误差。
3.2、齿形误差齿形误差是由分度机构误差、刀具形状和误差、展成机构误差和刚性不足、切削力或磨削力的变化以及热处理变形等因素造成的。
在单项误差中,它对噪声的影响最大。
一般说来,齿形误差大,噪声就大。
但两者之间并不是简单的正比关系。
在不少情况下,噪声的大小,不仅决定于齿形误差的大小,更主要地决定于齿形形状。
图1是齿形误差完全相等而齿形一形状不同的三种齿轮与标准齿轮啮合时产生的噪声对比。
由图可知,齿形形状不同,噪声可相差约10分贝之多。
3.3、啮合误差通常,齿轮精度以一部分齿或齿的一个截面的单项误差来表示,但仅按此评定齿轮精度还是不够的,尚需采用啮合检验法来检查齿轮的综合精度。
啮合检验可分定中心距式(单啮检验)和可调中心距式(双啮检验)两种。
齿轮传动噪音产生的原因
齿轮传动噪音产生的原因齿轮传动是一种常见的机械传动方式,广泛应用于各种机械设备中。
然而,在齿轮传动过程中,噪音常常是一个令人头痛的问题。
那么,为什么齿轮传动会产生噪音呢?下面将从几个方面进行解析。
齿轮传动噪音的产生与齿轮的制造精度有关。
精度越高的齿轮,其齿面的配合越紧密,齿轮间的间隙越小,因此产生的噪音也会相对较小。
相反,如果齿轮的制造精度较低,齿面配合不紧密,齿轮间存在较大的间隙,就会产生较大的噪音。
齿轮传动噪音的产生与齿轮的材质有关。
齿轮通常由金属材料制成,例如钢、铁等。
这些金属材料在齿轮传动过程中会受到力的作用,产生振动。
这些振动会通过齿轮传递到其他部件,进而产生噪音。
此外,齿轮的材质也会影响其自身的噪音产生。
一些材料的内部结构不均匀,存在缺陷或杂质,容易产生噪音。
第三,齿轮传动噪音的产生与齿轮的齿形有关。
齿轮的齿形设计不合理或存在缺陷,例如齿形不平整、齿距不匀等,都会导致齿轮传动过程中产生较大的噪音。
此外,齿轮的齿数也会影响噪音的产生。
如果齿轮的齿数过少或过多,都会增加齿轮之间的相对速度差,从而产生噪音。
第四,齿轮传动噪音的产生与齿轮的润滑情况有关。
齿轮之间的配合表面在传动过程中会产生摩擦,摩擦力会产生噪音。
良好的润滑可以减少齿轮间的摩擦,从而减少噪音的产生。
因此,在齿轮传动中,适当选择合适的润滑方式和润滑剂对于降低噪音非常重要。
齿轮传动噪音的产生还与工作条件有关。
齿轮传动在工作过程中会受到很多因素的影响,例如负载大小、转速、工作温度等。
这些因素都会影响齿轮传动的运行状态,进而影响噪音的产生。
例如,当负载过大时,齿轮之间的压力和摩擦会增加,从而增加噪音的产生。
齿轮传动噪音的产生是一个复杂的问题,涉及到齿轮的制造精度、材质、齿形、润滑情况以及工作条件等多个方面。
只有在这些方面都得到合理的设计和控制,才能有效降低齿轮传动噪音的产生。
因此,在实际的齿轮传动设计和应用中,需要综合考虑各种因素,采取相应的措施,以减少噪音对环境和人体的影响。
影响齿轮噪音的因素
一.齿轮类型对噪音的影响:不同类型的齿轮,由于它们的几何特性不同,将有不同形式的啮合过程。
例如:在载荷与速度相同的条件下,斜齿轮的噪音可比直齿轮低3~10dB;二.压力角对齿轮噪音的影响:为了传递一定的功率须保待F为定值。
如果增大压力角a,就得增大齿面法向力Fn,这在具有摩擦力的实际齿面上就会增大节线冲力和啮合冲力,因而导致振动和噪音级的增大。
虽齿轮中心距误差并不影响渐开线齿形的准确啮合,但其变动却引起工作压力角周期性变化。
例如:齿轮在轴上的偏心,将以齿轮的回转频率改为变其中心距,这样势必调制齿轮传动的振动和噪音的频率,调制的幅值将取决于偏心量的大小。
三.重合度对齿轮噪音的影响:轮齿在传递载荷时有不同程度数变动。
这样在进入和脱离啮合的瞬间就会产生沿啮合线方向的啮合冲力,因而造成扭转振动和噪音。
如果增加瞬间的平均齿数,即增大重合度,则可将载荷分配在较多的齿上,使齿面单位压力减小,从而减小轮齿的变形,改善进入啮合和脱离啮合时的冲击情况,因此也降低了齿轮传动的扭转振动和噪音。
重合度由1.19增大至2.07时在1000rpm时降低噪音4dB,而在2000rpm时降低噪音6dB。
对斜齿轮,可通过改变螺旋角β和齿宽b而增大重合度,而且可大大超过直齿轮,但螺旋角也不宜过大,否则另引起轴向振动。
增加齿数,大齿顶高系数或减少压力角均可增大重合度,减少振动和降低噪音。
四.齿轮精度对噪音的影响:齿轮噪音受齿轮精度的影响极大,降低齿轮噪音的第一步就是提高齿轮精度,对精度极度低的齿轮,采用其它任何降噪音措施都是徒劳的。
在单项误差这中,影响最大的是齿距(基节或周节)和齿形两项:1. 齿距:噪音与基节误差成正比例增减,当转速增高或者负荷增大时,噪音增减的梯度也增大,而且,在齿轮一转中,即使有一个齿距误差较大,则噪音也明显增大。
2. 齿形:只给出齿形误差的大小,并不能判断出其对噪音的影响,重要的是齿形的误差形状,例如在节点附近的”中凹“会使噪音增加很多。
齿轮噪音原因分析
齿轮噪音原因分析齿轮传动噪声产生原因及控制齿轮传动的噪音是很早以前人们就关注的问题。
但是人们一直未完全解决这一问题,因为齿轮传动中只要有很少的振动能量就能产生声波形成噪音。
噪音不但影响周围环境,而且影响机床设备的加工精度。
由于齿轮的振动直接影响设备的加工精度,满足不了产品生产工艺要求。
因此,如何解决变速箱齿轮传动的噪音尤为重要。
下面谈谈机械设备设计和修理中消除齿轮传动噪音的几种简单方法。
1噪音产生的原因1.1转速的影响齿轮传动若输出功率较低,则齿轮的振动频率升高,啮台冲击更加频密,高频波更高。
据有关资料了解,输出功率在1400转回/分钟时产生的振动频率超过5000h。
产生的声波超过88db构成噪音硬。
通常光学设备变速箱输入轴的输出功率都较低。
高达2000~2800转回/分钟。
因此,光学设备必须化解噪音问题就是须要研究的。
1.2载荷的影响我们将齿轮传动做为一个振动弹簧体系,齿轮本身做为质量的振动系统。
那么该系统由于受变化相同的冲击载荷,产生齿轮圆周方向改变振动,构成圆周方向的振动力。
加之齿轮本身刚性极差就可以产生周期振幅发生噪音。
这种噪音稳定而不尖叫声。
1.3齿形误差的影响齿形误差对齿轮的振动和噪音存有脆弱的影响。
齿轮的齿形曲线偏移标准渐开线形状,它的公法线长度误差也就减小。
同时齿形误差的偏移量并使齿顶上与齿根互相阻碍,发生齿顼棱边压板,从而产生振动和噪音。
1.4共振现象的影响齿轮的共振现象就是产生噪音的关键原因之一。
所谓共振现象就是一个齿轮由于刚性极差齿轮本身的固有振动频率与压板齿轮产生相同的振动频率,这时就可以产生共振现象。
由于共振现象的存有,齿轮的振动频率提升,产生低一级的振动噪音。
必须化解共振现象的噪音问题,只有提升齿轮的刚性。
1.5啮合齿面的表面粗糙度影响齿轮压板面粗糙度可以引起齿轮圆周方向振动,表面粗糙度越差,振动的幅度越大,频率越高,产生的噪音越大。
1.6润滑的影响对压板齿轮齿面杀菌较好可以增加齿轮的振动力,它与杀菌的方法有关。
齿轮泵噪声的机理分析与控制
齿轮泵噪声的机理分析与控制齿轮泵是一种常见的流体传动设备,其主要结构由齿轮、轴承、油路等组成,可用于输送不同种类和性质的流体。
但是,在齿轮泵的工作过程中,由于液体在齿间挤压和互相冲击造成的声波振动,导致噪声问题日益严重,严重影响了齿轮泵的稳定性和可靠性。
因此,本文将从机理分析与控制两个方面,对齿轮泵噪声进行深入探讨。
齿轮泵的噪声产生机理非常复杂,可分为两个方面,即液体噪声和结构噪声。
1.液体噪声液体噪声是齿轮泵噪声的主要来源,其产生原因是由于工作液在齿间旋转、挤压和相互碰撞时,会产生强烈的压力波和流动噪声。
具体可以分为以下几方面:(1)压力波震荡。
由于齿轮在运动时,液体在齿间的挤压作用下,产生了瞬时的局部扰动,发出一系列的压力波,进而引起传递、反射和干扰,形成了一定的噪声。
(2)液体附着和剥离。
液体在运动时,会形成覆盖在齿形上的薄膜,当液体从齿压边剥离时,会产生一定的涡流和振动,进而形成噪声。
(3)液体流动噪声。
由于工作液体在流动过程中,会遇到各种阻力、转弯等因素,产生较强的噪声。
2.结构噪声结构噪声是指由于泵的各个结构零件的振动与碰撞而产生的噪声,主要源于齿轮、轴承、油路等部分。
(1)齿轮噪音。
齿轮作为齿轮泵的核心零件,在运转过程中,由于轴向力和径向力的作用,会产生不稳定的弯曲振动,进而导致声音的产生。
(2)轴承噪音。
轴承作为泵的转动部分,其精度与平衡度对泵的稳定性和噪声的大小都有着很大的影响。
(3)油路噪音。
油路作为润滑系统,其某些部位由于压力和流量的作用,会产生液流噪声,造成噪声问题。
由于齿轮泵噪声的机理比较复杂,减少噪声的方法也是多种多样,可以采取下列控制措施:1.优化齿轮泵结构设计。
齿轮泵的设计一旦确定,其结构就很难改变。
因此,在设计时,需要通过减少齿面装配间隙、优化齿轮形状、减少变形、优化齿轮的数量和前后压力平衡等,来减少液体噪声和结构噪声。
2.提高材料质量。
在齿轮泵的制造和加工过程中,需要选择高强度、耐磨性和抗腐蚀性能优良的材料,以提高齿轮泵的可靠性和消除噪声。
机械传动系统中的齿轮噪音与振动分析
机械传动系统中的齿轮噪音与振动分析引言在现代工业生产中,机械传动系统扮演着重要的角色,用于将动力从一个装置传递到另一个装置。
然而,随着机械传动系统的运转,齿轮噪音与振动问题会逐渐显现。
这些问题不仅会降低机械系统的工作效率,还可能影响工作环境和操作员的健康。
因此,深入了解机械传动系统中的齿轮噪音与振动分析,对于改善机械系统的工作性能至关重要。
一、齿轮噪音的成因分析齿轮噪音是指机械传动装置中齿轮的运动过程中产生的声音。
其主要成因包括以下几个方面。
1.1 齿轮啮合不均匀齿轮啮合不均匀是产生噪音的主要原因之一。
这种不均匀可能由齿轮制造过程中的误差、齿轮磨损等因素引起。
当齿轮啮合不均匀时,会引起冲击载荷,导致噪音产生和振动增加。
1.2 齿轮渐开线误差齿轮的渐开线误差是指齿轮齿面曲线不完全符合正常渐开线的情况。
这种误差会导致齿轮在啮合过程中产生振动和噪音。
1.3 齿轮材料与硬度问题齿轮的材料和硬度也会对噪音产生影响。
如果齿轮材料的强度不足或硬度差异较大,就容易在啮合过程中产生振动和噪音。
二、齿轮振动的分析方法为了解决齿轮传动系统中的振动问题,需要采用适当的分析方法来评估和解决。
2.1 齿轮传动系统的模态分析模态分析是一种用于研究物体振动的方法。
在齿轮振动分析中,通过对齿轮系统进行模态分析,可以得到齿轮系统的固有频率和模态形态,进而评估系统的稳定性和预测系统的振动情况。
2.2 有限元分析有限元分析是一种应用广泛的结构分析方法。
在齿轮振动分析中,可以利用有限元分析来模拟齿轮系统的动态响应。
通过对齿轮系统进行有限元分析,可以预测系统的振动模式、频率响应和应力分布等信息,为振动问题的解决提供参考。
三、齿轮噪音与振动控制方法为了减少齿轮传动系统中的噪音与振动问题,可以采用以下控制方法。
3.1 齿轮润滑适当的齿轮润滑可以减少齿轮啮合过程中的摩擦和噪音。
选择合适的齿轮润滑剂,确保齿轮表面的润滑膜厚度,可以有效降低噪音的产生。
齿轮的噪音分析
齿轮的噪音下图是生产车用齿轮,工作机械,减速机等的公司提出的关于齿轮的振动及噪音的调查结果。
噪音,振动的原因1.齿轮精度2.组装精度3.齿面光洁度及最后加工方法4.齿轮箱形状5.齿轮的轮滑6.轴承7.材质8.齿轮的设计9.驱动机与负载的变化10.运作条件11.轴与轴系12.齿轮的形状13.齿轮的磨损14.碰痕15.其他各种原因分别来看,如下所示。
设计上的原因⋯⋯⋯⋯⋯⋯⋯⋯ 35%制作上的原因⋯⋯⋯⋯⋯⋯⋯⋯ 30%使用方法的原因⋯⋯⋯⋯⋯⋯⋯ 20%不正确的组装⋯⋯⋯⋯⋯⋯⋯⋯ 15%原因 (对噪音产生影响的原因)1.齿接触不良2.齿距误差过大3.齿形误差过大4.齿轮轴的传动扭矩有波动5.齿面光洁度差6.中心距离过小7.转速太快8.滚珠轴承,滚子轴承产生噪音9.齿轮箱将噪音扩大10.热处理所造成的翘曲变形对策 (制作静音旋转的齿轮需要)按正确的齿距制作齿轮,做到没有齿距误差齿形要拥有正确的渐开曲线轮齿施加鼓形加工由于轮齿的挠曲而产生的齿距误差,对从动齿轮的齿顶进行修正加工 ( 削端加工 )增加同时啮合齿数齿轮箱有正确的开孔位置,设计成不产生振动或吸收振动的形状齿轮箱的形状设计为近似于圆形安装冲击吸收器吸收齿轮箱的振动对齿面周围的棱角施加倒角加工组装时注意齿面不发生片面接触轴与轴 ( 驱动轴,齿轮轴‧‧‧等之间 ) 使用弹性联轴器齿顶附近施加削端加工以修正齿形(适合使用在高速旋转的情况下)施行最后精加工,去除齿面的伤痕,保证平滑的齿面一般采用剃齿或磨削加工。
弧齿伞形齿轮的最终精加工为研磨。
以上内容摘自技术评论社大山政一着【齿轮组装作业的秘诀】下图是「KHK 标准齿轮」噪音试验的一例。
▲ - ▲: S45C 不经热处理(SS2.5-24,SS2.5-48)△ - △:尼龙齿轮(PS2.5-24,PS2.5-48)● - ●: S45C 轮齿经淬火研磨加工(SSG2.5-24,SSG2.5-48)○ - ○: SCM415 全件渗碳淬火轮齿研磨加工(MSGB2.5-24,MSGB2.5-48)。
齿轮噪音的分析与控制
小 , 数 就越 多 , 齿 这样 就 可 以提 高重 合度 , 保 传 动平 稳 , 确 有效 地 合考 虑 热处 理 过程 中 的各 个 环节 ,才 能 有效 地解 决热 处理 的变 形
降低 噪 音 。 同时 , 尽 可 能地 使主 从 动 齿轮 的 齿数 互 为质 数 , 应 目的
问题 。
的方法 综 合考 虑 。 随着 对 菲金 属材 料 的 研究 和 开发 地不 断 深入 , 新 材 料和 新技 术 地 不断 出现 ,相信 非 金属 材料 的齿 轮会 被越 来 越 多
的 使用 。
1 齿 轮 参 数 的 选 择
齿轮 参数 的 选择 是 决 定齿轮 噪 音 的首 要 因素 , 实践 证 明 , 过 通
zg j 堡 l 。hau ne n Yi
齿轮 噪音 的分析 与控 制
陈 新
( 福建 日立工机有 限公 司, 福建 福州 3 0 1) 5 0 4 摘 要: 在现代齿轮 加工中, 齿轮噪 音的控制 已成 为一 个重要 的质量 控制环节 。主 要从齿轮 的参 数、 一 结构 、 精度和 材料的选择 , 以及 热处理的
此外 , 过选 择 低压 力 角 也可 以有 效 增大 重 合度 , 通 综合 强 度 方 织 应 力 2 , 形 就 是这 2 应 力综 合 作 用 的结 果 。除 此之 外 , 种 变 种 还 面 的考 虑 , 国通 常采 用标 准 值 2 。 我 0 。在 结构 允 许 的情 况 下 , 可 要 考 虑材 料 的成 分 、齿 轮 的形状 和 介 质 的冷 却速 度 等 因素 对 变形 也 以考 虑 采用 斜齿 轮 以增 加 重 合度 , 齿轮 螺 旋 角 以取大 值 为 宜 , 斜 但 的影 响 。热 处理 变 形是 十分 复 杂 的 问题 , 要综 合 分析 , 出变 形 的 得 原则 上螺 旋 角 以不大 于 3 。 O 为宜 ,否 则 会 大 幅度 降低 齿轮 的 弯 曲 主 因是 热应 力还 是组 织 应力 , 后 采取 各种 措 施 加 以控制 。 然 强度 和造 成 加工 和装 配 的 困难 , 响 实 际的 重合 度 。 影 优 化热 处 理 的工 艺 可 以很好 地 控制 变 形 。这 里所 说 的 热处 理
齿轮传动噪音产生的5种原因及6个降噪方法
齿轮传动噪音产生的5种原因及6个降噪方法齿轮振动的原因在于齿轮之间进行传动时,产生的摩擦、触碰,如此反复进行形成噪音。
齿轮传动噪音长时间存在,不仅影响生产环境,也会对操作人员的人身健康造成危害,因此,找到合理的方法降低齿轮传动噪音非常重要。
一、噪音产生的原因1、齿轮运行振动速度过快齿轮运行振动速度过快,主要是在齿轮传动中频率过快,造成的齿轮之间振动频率过快导致的。
齿轮运行中振动速度快,将影响振动的频率,产生噪音。
2、载荷冲击带来而定齿轮振动这里将齿轮传动看成一个振动的弹簧体系,齿轮自然成为这个体系中的一份子。
当齿轮受到不同程度的载荷时,振动的频率、扭转的方向也会不同,多数会形成圆周方向的振动力。
加上齿轮本身在处理噪音方面的问题,就会形成平顺而不尖叫的噪音。
3共振产生的噪音共振能够产生噪音是每个人都知道的,齿轮传动作为在生产间工作的主要方式,自然也会在运行中出现共振的情况。
通过齿轮传动带来的共振是基于齿轮自身刚性差产生的振动以及齿轮之间摩擦产生的振动在同一个振动的频率上,这时二者相互作用就容易产生共振的情况,出现共振带来的噪音。
4、部分齿轮表面光滑度不足众所周知,两种物体如果是平滑的,那么在相互摩擦时产生的振动就小,振动频率和高频波也会小,产生的噪音程度自然也小。
但是,很多的齿轮表面过于粗糙,相互摩擦时摩擦面大,振动频率高,产生的噪音也就大并且多。
5、缺少正确润滑方法支持在齿轮保养和噪音降低中,不仅仅是好的润滑剂可以降低齿轮之间的摩擦振动,好的润滑剂使用方法也是降低和减少噪音的重要方法。
传统的润滑剂使用方法是在齿轮表面加大润滑剂剂量,使其在运转中降低摩擦,但这种方法对噪音降低收效甚微。
以国外对齿轮保养和降低噪音对润滑作用的使用看,更注重润滑方法,即通过润滑剂充分注入齿轮内部的方法,降低噪音。
二、设计齿轮时预防噪音的措施总的来说,基于齿轮传动产生噪音的原因,将其归结为载荷、振动频率、齿轮摩擦以及轴承转动。
齿轮泵噪声的机理分析与控制
齿轮泵噪声的机理分析与控制齿轮泵是一种常见的液压传动元件,其工作原理是通过齿轮的旋转来吸入和排出液体,从而实现液体的输送功能。
在齿轮泵的工作过程中,常常会产生噪音,给工作环境和使用者带来不便。
对齿轮泵噪声的机理进行深入分析,并提出有效的控制方法,对于提高齿轮泵的工作效率和使用体验具有重要的意义。
齿轮泵噪声的机理分析:1. 齿轮之间的齿隙和啮合间隙引起的噪声:齿轮泵工作时,齿轮之间的齿隙和啮合间隙会引起金属间的冲击和摩擦,产生高频噪声。
这是齿轮泵噪声的主要来源之一。
2. 液体流动引起的噪声:在齿轮泵内,液体在高速流动时会产生湍流、涡流和液体弹射等现象,产生水波声和湍流噪声。
3. 齿轮和轴承的摩擦引起的噪声:齿轮运转时,齿轮与轴承之间会产生摩擦和冲击,从而产生噪音。
4. 压力脉动引起的共振噪声:由于齿轮泵工作液压系统的特性,常会产生压力脉动,当压力脉动频率与泵体或管道的固有频率相匹配时,就会产生共振噪声。
5. 其他:齿轮泵的密封装置以及传动系统的松动和刚度不足也会导致噪音的产生。
1. 优化齿轮设计:通过合理设计齿轮的齿数、模数和模数系数等参数,减小齿轮之间的齿隙和啮合间隙,降低啮合冲击和摩擦,从而减小齿轮啮合噪声。
2. 采用减振和消音措施:在齿轮泵的结构设计中,采用减振材料,如橡胶隔离垫板、减振橡胶等,以减少结构传递和辐射噪声。
在泵体和管道周围加装隔音材料,减少液体流动和压力脉动对外界的传播。
3. 优化液体的流动状态:通过优化齿轮泵的内部结构,减小液体流动时的阻力和湍流程度,平滑液体的流动状态,减小水波声和湍流噪声。
4. 加强润滑和密封:在齿轮泵的润滑和密封方面,选择合适的润滑剂和密封件,保证齿轮和轴承的良好润滑,减小摩擦和冲击产生的噪音。
5. 控制压力脉动:通过加装减压阀、蓄能器等装置,降低液压系统的脉动噪音;或者通过调整液压系统的工作参数,减小压力脉动的频率和幅度,从而减少共振噪声的产生。
6. 加强设备维护:对齿轮泵的传动系统、润滑系统、密封系统等进行定期检查和维护,保证设备的正常运转,减小由于设备问题引起的噪音。
行星齿轮箱出现噪音的分析及处理方法
行星齿轮箱出现噪音的分析及处理方法背景介绍行星齿轮箱是一种用于变速和转速的机械装置,广泛应用于工业生产线和机械制造业等领域。
在行星齿轮箱的运行过程中,有时会出现异常噪音,严重影响了其运转效率和寿命。
因此,分析行星齿轮箱噪音的来源并采取措施进行处理,将对提升机械设备的运行效率和减少维修成本具有重要作用。
声音的来源在行星齿轮箱的运行过程中,声音主要来自于以下几个方面:1. 传动齿轮脱落或磨损行星齿轮箱中的传动齿轮是整个机械结构的核心,如果由于制造不合格、使用时间过长等原因导致齿轮磨损或松动,会产生不正常的噪音。
2. 轴承故障或磨损轴承是行星齿轮箱运行过程中起着支撑和减摩作用的部件,如果轴承故障或磨损,对齿轮箱的运行状态带来极大的影响。
3. 润滑与密封不良润滑和密封不良也是行星齿轮箱噪音的来源之一,如果机械部件缺乏足够的润滑油或密封技术不良,就会导致噪声过大。
噪音的处理方法行星齿轮箱出现噪音时,需要采取一些有效的处理方法,以减少其对机械设备的影响。
以下是一些常见的噪音处理方法:1. 检查齿轮脱落和磨损首先,需要检查行星齿轮箱中的齿轮是否存在脱落或磨损等问题。
如果有问题,需要及时更换或修复相应的机械部件,以恢复良好的运行状态。
2. 更换轴承另外,如果发现行星齿轮箱的轴承存在问题,就需要及时更换可靠的轴承。
同时,需要定期对轴承进行检查和保养,防止轴承出现故障或磨损。
3. 加强润滑和密封对于润滑和密封不良的情况,需要加强相应的措施,使机械设备的润滑和密封性能得到有效保障。
比如,可以针对具体情况加大润滑油的使用量,或优化润滑油的质量,并加强部件的密封性能等。
结论综上所述,行星齿轮箱出现噪音的原因可能来自于齿轮脱落或磨损、轴承故障或磨损,以及润滑和密封不良等方面。
要对这些问题进行有效的处理,保障机械设备的良好运行状态,我们可以采取检查方案和更换零部件、加强润滑和密封等多种措施,来减小行星齿轮箱噪音的发生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在现代齿轮加工中,齿轮噪声控制已成为一个重要的质量控制环节,齿轮噪声控制水平不仅代表一个齿轮制造厂的质量水平,而且直接受到有关环保法规的制约。
剃齿是一种广泛采用的齿轮精加工方法,特别在轿车齿轮加工中,90%以上的齿轮精加工均采用剃齿。
这不仅因为剃齿具有较高的加工效率和较低的加工成本,可大幅度提高齿轮精度和表面粗糙度,而且剃齿能实现齿形修形及采取热处理变形补偿措施,从而降低齿轮传动噪声,提高齿轮承载能力和安全系数,延长齿轮工作寿命。
一、齿轮传动噪声的影响因素及控制方法
齿轮噪声更准确地应称为齿轮传动噪声,其声源为齿轮啮合传动中的相互撞击。
齿轮传动中的撞击主要由齿轮啮合刚性的周期性变化以及齿轮传动误差和安装误差引起。
齿轮啮合刚性的周期性变化对传动噪声的影响啮合刚性的变化是指齿轮传动中因同时啮合齿数不同而引起的啮合轮齿承受载荷的变化,并由此引起轮齿变形量的变化。
在直齿轮传动中,啮合线上的同时啮合齿数在1~2对之间变化,而其传动的扭矩近似恒定。
因此,当一对轮齿啮合时,全部载荷均作用于该对轮齿,其变形量较大;当两对轮齿啮合时,载荷由两对轮齿共同承担,每对轮齿的负荷减半,此时轮齿变形量较小。
这一结果使齿轮的实际啮合点并非总是处于啮合线的理论啮合位置,由此产生的传动误差使输出轴的运动滞后于输入轴
的运动。
主、被动齿轮在啮合线外进入啮合时,其速度的瞬时差异造成在被动齿轮齿顶处产生撞击。
在不同载荷下齿轮传动产生的噪声程度不同,其原因在于不同载荷下轮齿产生的变形量不同,造成的撞击程度不同。
斜齿轮的啮合刚性取决于啮合轮齿的接触线总长度,故同时啮合齿数的变化对啮合刚性影响不大。
齿轮传动误差和安装误差对传动噪声的影响齿轮传动装置空载运行时,传动噪声的影响因素主要为齿轮的加工误差和安装误差,包括齿形误差、齿距误差、齿圈跳动、安装后齿轮的轴线度、平行度及中心距误差等。
当然,这些误差对传动装置在负载下运行的传动噪声也有影响。
a. 齿形误差会引起与啮合频率相同的传动误差及噪声,是引起啮合频率上噪声分量的主要原因。
中凹齿形是不能接受的,加工中应尽量避免。
b. 齿距误差为随机误差,产生的噪声频率与啮合频率不同,不会提高啮合频率上的噪声幅度,但会加宽齿轮噪声音频的带宽。
c. 轴线在节平面上投影的不平行、齿向误差以及轴在传动负载下的变形会使轮齿在齿宽方向上的接触长度缩短,造成啮合刚性下降,由此产生的传动误差及齿轮传动啮合刚性的周期性变化是产生噪声的另一原因,其对斜齿轮传动影响更大。
控制齿轮噪声的有效途径——齿轮修缘齿轮传动中的撞击是产生噪声的主要原因,因此,消除或减小齿轮传动中的撞击是降低噪声的有效途径。
采用齿轮修缘能有效减小齿轮传动中的撞击,从而控制齿轮
传动噪声,因此该方法在齿轮传动设计中得到了广泛应用。
齿轮修缘在某些场合下比提高齿轮精度更为有效。
虽然提高齿轮精度可以减小齿轮传动误差,降低齿轮传动噪声(尤其是空载状态下的噪声),但在负载下可能会因轮齿变形而产生传动误差,且随着载荷增加,传动误差及噪声也随之增大。
而采用齿轮修缘却能有效改善这一现象。
图1所示为标准齿形修缘曲线。
齿轮DPS5,直径6.0",d为一对轮齿啮合时的轮齿变形量图1 标准齿形修缘曲线齿轮修缘方式主要有长修缘、短修缘和齿向修缘。
长修缘长修缘的齿顶和齿根修缘起始点分别位于单一齿廓啮合时的最高点和最低点,齿顶和齿根修缘量等于特定载荷下一对齿啮合时的轮齿变形量。
长修缘可保证在特定载荷下齿轮的传动误差最小。
当载荷变化时,因轮齿变形量不同,会产生一定的传动误差(空载下传动误差最大)。
长修缘适用于传动载荷和传动速度恒定的场合。
图2和图3分别为标准齿轮副和采用长修缘的齿轮副的传动误差随传动载荷变化的情况。
图2 传动载荷变化对标准齿轮副传动误差的影响图3 传动载荷变化对按载荷2进行长修缘的齿轮副传动误差的影响
短修缘为消除或降低齿轮副设计载荷下的噪声,可采用能有效防止齿顶撞击的短修缘方式。
短修缘的修缘量应等于在齿轮设计载荷下一对齿廓接触时的轮齿变形量。
优化载荷可在零载荷和齿轮设计载荷之间选取。
轮齿的修缘起始点应分别靠近齿顶和齿根,以保证有足够长的
齿面无修形,即保证在啮合线上至少有一个基距的长度范围为标准渐开线齿形传动。
因此,短修缘的起始点应位于一对齿啮合的最高点与一个基距长度范围内的非修形部分的端点之间。
短修缘适用于承受多种载荷的齿轮传动。
图4为短修缘齿轮副在不同载荷下的传动误差。
图4 短修缘齿轮副在不同载荷下的传动误差
齿向修缘齿向修缘对于减小大螺旋角斜齿轮的传动误差尤为重要。
由于斜齿轮的啮合刚性与同时啮合轮齿的接触线总长度成正比,如啮合轮齿的接触线总长度保持恒定,则齿轮的传动误差将不受传动载荷变动的影响。
如果齿轮轴线不平行,在载荷作用下轴的变形或齿轮齿向的热处理变形将使齿轮的载荷移向轮齿一端,使齿面的实际接触宽度缩短。
这不仅会造成轮齿局部过载损坏,而且会使斜齿轮啮合的接触线总长度急剧减小,从而严重影响斜齿轮传动的啮合刚性,导致因载荷变动而产生传动误差。
将轮齿在齿向上修成鼓形或锥形可减小轴线不平行及轴负载后变形的影响,但对鼓形量应严格控制,因为鼓形量过大会造成啮合轮齿接触线总长度变短,影响齿轮的啮合刚性。
为消除或减小传动误差,有必要对齿形和齿向同时进行修缘。
在某些特殊场合,对斜齿轮齿面进行拓扑修缘可使齿轮传动噪声显著降低。
试验证明:①齿向修缘可降低传动噪声2~8分贝;②齿形修缘可降低传动噪声5分贝(尤其适用于直齿轮传动);③减小齿面粗糙度可降低传动噪声0~7分贝;④齿形误差、S形及中凹齿形可增加传动噪声18分贝;⑤齿距误差可增加传动噪声7分贝。