株洲市九年级上学期期末数学试卷
株洲市九年级上学期数学期末考试试卷
株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·龙东) 下列图标中是中心对称图形的是()A .B .C .D .2. (2分) (2018九上·花都期中) 平面直角坐标系内一点关于原点对称的点的坐标是A .B .C .D .3. (2分) (2018九上·渠县期中) 关于x的一元二次方程x2+(m-2)x+m+1=0有两个相等的实数根,则m的值是()A . 0B . 8C . 4±2D . 0或84. (2分)两圆直径分别为4和6,圆心距为2,则两圆位置关系为()A . 外离B . 相交C . 外切D . 内切5. (2分)(2018·奉贤模拟) 在Rt△ABC中,∠C=90°,如果AC=2,cosA= ,那么AB的长是()A . 3B .C .D .6. (2分)如图,C是⊙O上一点,O为圆心,若∠C=40°,则∠AOB为()A . 20°B . 40°C . 80°D . 160°7. (2分) (2019九上·深圳期中) 函数的图象如图所示,那么函数的图象大致是()A .B .C .D .8. (2分)如图,在一个三角点阵中,从上向下数有无数多行,其中各行点数依次为2,4,6,…,2n,…,请你探究出前n行的点数和所满足的规律.若前n行点数和为930,则n=()A . 29B . 30C . 31D . 329. (2分)(2018·沧州模拟) 如图,已知在△ABC中,点D,E分别在边AB,AC上,DE∥BC,AD:BD=2:1,点F在AC上,AF:FC=1:2,联结BF,交DE于点G,那么DG:GE等于()A . 1:2B . 1:3C . 2:3D . 2:5.10. (2分)如图,直线,点A1坐标为(1,0),过点A1作x轴的垂线交直线于点B1B,以原点O为圆心,OB1长为半径画弧交x轴于点A2;再过点A2作x的垂线交直线于点B2 ,以原点O为圆心,OB2长为半径画弧交x轴于点A3 ,…,按此做法进行下去,点A5的坐标为()A . (16,0)B . (12,0)C . (8,0)D . (32,0)二、填空题 (共5题;共5分)11. (1分)一元二次方程x2+3﹣2 x=0的解是________.12. (1分) (2019九上·丹东期末) 反比例函数y=的图象,当x>0时,y随x的增大而增大,则k 的取值范围是________.13. (1分)直角三角形两直角边长为3和4,三角形内一点到各边距离相等,那么这个距离为________.14. (1分)(2019·海曙模拟) 已知圆锥的底面半径为,母线长为,则它的侧面展开图的面积等于________.15. (1分)如图,在5×5的正方形(每个小正方形的边长为1)网格中,格点上有A、B、C、D、E五个点,如果要求连接两个点之后线段的长度大于3且小于4,则可以连接________. (写出一个答案即可)三、解答题 (共8题;共48分)16. (2分) (2017七下·如皋期中) 如图1,在平面直角坐标系中,A(a,0),B(b,3),C(4,0),且满足(a+b)2+|a﹣b+6|=0.(1)求点A、B的坐标及三角形ABC的面积.(2)点P为x轴上一点,若三角形BCP的面积等于三角形ABC面积的两倍,求点P的坐标.(3)若点P的坐标为(0,m),设以点P、O、C、B为顶点的四边形面积为S,请用含m的式子表示S(直接写出结果).17. (10分)(2019·河北) 某球室有三种品牌的4个乒乓球,价格是7,8,9(单位:元)三种.从中随机拿出一个球,已知P(一次拿到8元球)=.(1)求这4个球价格的众数;(2)若甲组已拿走一个7元球训练,乙组准备从剩余3个球中随机拿一个训练.①所剩的3个球价格的中位数与原来4个球价格的中位数是否相同?并简要说明理由;②乙组先随机拿出一个球后放回,之后又随机拿一个,用列表法(如图)求乙组两次都拿到8元球的概率.又拿先拿18. (10分)已知关于x的一元二次方程x2﹣2x+m﹣1=0有两个实数根x1 , x2 .(1)求m的取值范围;(2)当x12+x22=6x1x2时,求m的值.19. (5分)如图,在Rt△ABC中,∠ACB=900 ,CD⊥AB于D,tan∠ABC= ,且BC=9cm,求AC,AB及CD 的长.20. (2分)某电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元,40元,商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.(1)(1)求商场销售A、B两种型号计算器的销售价格分别是多少元?(利润=销售价格﹣进货价格)(2)(2)商场准备用不多于2500元的资金购进A、B两种型号计算器共70台,问最少需要购进A型号的计算器多少台?21. (2分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.22. (2分) (2019九上·慈溪期中) 如图1,在⊙O中,点C为劣弧AB的中点,连接AC并延长至D,使CA=CD,连接DB并延长交⊙O于点E,连接AE.(1)求证:AE是⊙O的直径;(2)如图2,连接CE,⊙O的半径为5,AC长为4,求阴影部分面积之和.(保留与根号) .23. (15分) (2019九上·杭州月考) 在平面直角坐标系xOy中,已知抛物线 (k 为常数).(1)若抛物线经过点(1,k2),求k的值;(2)若抛物线经过点(2k,y1)和点(2,y2),且y1>y2 ,求k的取值范围;(3)若将抛物线向右平移1个单位长度得到新抛物线,当1≤x≤2时,新抛物线对应的函数有最小值,求k的值.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共48分)16-1、16-2、16-3、17-1、17-2、18-1、18-2、19-1、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。
湖南省株洲市九年级上学期数学期末试卷
湖南省株洲市九年级上学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2016九上·滨州期中) 若m是方程x2+x﹣1=0的根,则2m2+2m+2016的值为()A . 2016B . 2017C . 2018D . 20192. (2分)已知抛物线y=ax2+bx+c的开口向上,顶点坐标为(3,﹣2),那么该抛物线有()A . 最小值﹣2B . 最大值﹣2C . 最小值3D . 最大值33. (2分)桌面上有三张背面相同的卡片,正面分别写有数字1、2、3.先将卡片背面朝上洗匀.然后从中同时抽取两张,则抽到的两张卡片上的数字均为奇数的概率是()A .B .C .D .4. (2分)如图,已知抛物线y=x2+bx+c的对称轴为x=2,点A,B均在抛物线上,且AB与x轴平行,其中点A的坐标为(0,3),则点B的坐标为()A . (2,3)B . (3,2)C . (3,3)D . (4,3)5. (2分)(2018·龙湾模拟) 如图,⊙O的直径AB与弦CD垂直相交于点E,且AC=2,AE= .则的长是()A .B .C .D .6. (2分)电影胶片上每一个图片的规格为3.5cm×3.5cm,放映屏幕的规格为2m×2m,若放映机的光源S 距胶片20cm,要使放映的图象刚好布满整个屏幕,则光源S距屏幕的距离为()A . mB . mC . mD . 15m7. (2分)(2018·红桥模拟) 如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a-b+c>0;②3a+b=0;③b2=4a(c-n);④一元二次方程ax2+bx+c=n-1有两个不相等的实数根.其中正确结论的个数是()A . 1B . 2C . 3D . 48. (2分) (2016九上·嵊州期中) 下列说法中,正确的是()A . 到圆心的距离大于半径的点在圆内B . 圆的半径垂直于圆的切线C . 圆周角等于圆心角的一半D . 等弧所对的圆心角相等二、填空题 (共6题;共6分)9. (1分) (2020九上·芜湖月考) 已知关于的方程有两个实根,并且这两个实数根的平方和比两个根的积大21,则 ________.10. (1分) (2016九上·临洮期中) 二次函数y=x2﹣4x﹣3的顶点坐标是(________,________).11. (1分) (2015九上·宁波月考) 如图,AB是半圆O的直径,C为半圆上一点,N是线段BC上一点(不与B﹑C重合),过N作AB的垂线交AB于M,交AC的延长线于E,过C点作半圆O的切线交EM于F,若NC:CF=3:2,则sinB= ________ .12. (1分) (2019九上·阳新期末) 如图,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,已知∠P=50°,则∠ACB=________度.13. (1分)(2019·株洲模拟) 如图,分别以等边三角形的每个顶点为圆心、以边长为半径在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为9,则勒洛三角形的周长为________.14. (1分) (2019九上·长春期中) 如图,一个横截面为抛物线形的隧道底部宽12米、高6米.车辆双向通行,若规定车辆必须在中心线两侧、距离道路边缘2米的范围内行使,并保持车辆顶部与隧道有不少于米的空隙,则通过隧道车辆的高度限制应为________米.三、解答题 (共10题;共75分)15. (5分) (2019八下·北京期末) 解方程:.16. (5分)(2020·宽城模拟) 在一个不透明的盒子中装有三张卡片,分别标有数字1,2,5,这些卡片除数字不同外其余均相同.现从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片。
九年级上册株洲数学期末试卷测试卷(解析版)
九年级上册株洲数学期末试卷测试卷(解析版)一、选择题1.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB 的宽为8cm ,水面最深的地方高度为2cm ,则该输水管的半径为( )A .3cmB .5cmC .6cmD .8cm2.sin 30°的值为( ) A .3B .3 C .12D .223.已知⊙O 的半径是4,圆心O 到直线l 的距离d =6.则直线l 与⊙O 的位置关系是( ) A .相离 B .相切 C .相交 D .无法判断 4.在Rt △ABC 中,AB =6,BC =8,则这个三角形的内切圆的半径是( )A .5B .2C .5或2D .2或7-15.小华同学某体育项目7次测试成绩如下(单位:分):9,7,10,8,10,9,10.这组数据的中位数和众数分别为( ) A .8,10 B .10,9 C .8,9 D .9,106.把二次函数y =2x 2的图象向右平移3个单位,再向上平移2个单位后的函数关系式是( )A .22(3)2y x =-+B .22(3)2y x =++C .22(3)?2y x =-D .22(3)?2y x =+7.二次函数2(1)3y x =-+图象的顶点坐标是( ) A .(1,3) B .(1,3)- C .(1,3)- D .(1,3)-- 8.若两个相似三角形的相似比是1:2,则它们的面积比等于( )A .1:2B .1:2C .1:3D .1:49.如图,在圆内接四边形ABCD 中,∠A :∠C =1:2,则∠A 的度数等于( )A .30°B .45°C .60°D .80°10.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >> B .312y y y >= C .123y y y >> D .123y y y => 11.下列方程中,有两个不相等的实数根的是( ) A .x 2﹣x ﹣1=0 B .x 2+x +1=0 C .x 2+1=0 D .x 2+2x +1=0 12.用配方法解方程2250x x --=时,原方程应变形为( )A .2(1)6x -=B .2(1)6x +=C .2(1)9x +=D .2(1)9x -=二、填空题13.小亮测得一圆锥模型的底面直径为10cm ,母线长为7cm ,那么它的侧面展开图的面积是_____cm 2.14.如图,已知正六边形内接于O ,若正六边形的边长为2,则图中涂色部分的面积为______.15.抛物线286y x x =++的顶点坐标为______.16.如图,AB 、CD 、EF 所在的圆的半径分别为r 1、r 2、r 3,则r 1、r 2、r 3的大小关系是____.(用“<”连接)17.抛物线21(5)33y x =--+的顶点坐标是_______.18.已知,二次函数2(0)y ax bx c a =++≠的图象如图所示,当y <0时,x 的取值范围是________.19.关于x 的方程220kx x --=的一个根为2,则k =______.20.圆锥的母线长是5 cm,底面半径长是3 cm,它的侧面展开图的圆心角是____. 21.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 …y… 6 1 -2 -3 -2 m …下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.22.若圆弧所在圆的半径为12,所对的圆心角为60°,则这条弧的长为_____. 23.如图,在□ABCD 中,E 、F 分别是AD 、CD 的中点,EF 与BD 相交于点M ,若△DEM 的面积为1,则□ABCD 的面积为________.24.已知二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2),则y 1_____y 2.(填“>”“<”或“=”)三、解答题25.京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A 、B 和点C 、D ,先用卷尺量得AB=160m ,CD=40m ,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH 的长).26.已知二次函数y =(x -m )(x +m +4),其中m 为常数. (1)求证:不论m 为何值,该二次函数的图像与x 轴有公共点.(2)若A (-1,a )和B (n ,b )是该二次函数图像上的两个点,请判断a 、b 的大小关系. 27.如图,C 是直径AB 延长线上的一点,CD 为⊙O 的切线,若∠C =20°,求∠A 的度数.28.如图,AB为O的直径,PD切O于点C,交AB的延长线于点D,且∠=∠.2D A∠的度数.(1)求D(2)若O的半径为2,求BD的长.29.某景区检票口有A、B、C、D共4个检票通道.甲、乙两人到该景区游玩,两人分别从4个检票通道中随机选择一个检票.(1)甲选择A检票通道的概率是;(2)求甲乙两人选择的检票通道恰好相同的概率.30.一只不透明的袋子中装有1个红球和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,记录颜色后放回、搅匀,这样连续共计摸3次.(1)用树状图列出所有可能出现的结果;(2)求3次摸到的球颜色相同的概率.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.32.如图,E是正方形ABCD的CD边上的一点,BF⊥AE于F,(1)求证:△ADE∽△BFA;(2)若正方形ABCD的边长为2,E为CD的中点,求△BFA的面积,【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=12AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,∵OD⊥AB,∴AD=12AB=4cm,设OA=r,则OD=r﹣2,在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,解得r=5cm.∴该输水管的半径为5cm;故选:B.【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用. 2.C解析:C【解析】【分析】直接利用特殊角的三角函数值求出答案.【详解】解:sin 30°=1 2故选C【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关特殊角的三角函数值是解题关键.3.A解析:A【解析】【分析】根据直线和圆的位置关系的判定方法,即圆心到直线的距离大于半径,则直线与圆相离进行判断.【详解】解:∵圆心O到直线l的距离d=6,⊙O的半径R=4,∴d>R,∴直线和圆相离.故选:A.【点睛】本题考查直线与圆位置关系的判定.掌握半径和圆心到直线的距离之间的数量关系是解答此题的关键..4.D解析:D【解析】【分析】分AC为斜边和BC为斜边两种情况讨论.根据切线定理得过切点的半径垂直于三角形各边,利用面积法列式求半径长.【详解】第一情况:当AC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥AC, OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,10AC== ,∵=++ABC AOC BOC AOB S S S S ,∴11112222AB BC AB OF BC OE AC OD ,∴1111686810 2222r r r ,∴r=2.第二情况:当BC为斜边时,如图,设⊙O是Rt△ABC的内切圆,切点分别为D,E,F,连接OC,OA,OB,∴OD⊥BC, OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,2227AC BC AB ,∵=++ABC AOC BOC AOBS S S S ,∴11112222AB AC AB OF BC OD AC OE ,∴11116276827 2222r r r ,∴r=71.故选:D.【点睛】本题考查了三角形内切圆半径的求法及勾股定理,依据圆的切线性质是解答此题的关键.等面积法是求高度等线段长的常用手段.5.D解析:D【解析】试题分析:把这组数据从小到大排列:7,8,9,9,10,10,10,最中间的数是9,则中位数是9;10出现了3次,出现的次数最多,则众数是10;故选D.考点:众数;中位数.6.A解析:A 【解析】将二次函数22y x =的图象向右平移3个单位,再向上平移2个单位后的函数关系式为:22(3)2y x =-+.故选A.7.A解析:A 【解析】 【分析】根据二次函数顶点式即可得出顶点坐标. 【详解】∵2(1)3y x =-+,∴二次函数图像顶点坐标为:(1,3). 故答案为A. 【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a (x-h )2+k 中,对称轴为x=h ,顶点坐标为(h ,k ).8.D解析:D 【解析】 【分析】根据相似三角形面积的比等于相似比的平方解答即可. 【详解】解:∵两个相似三角形的相似比是1:2, ∴这两个三角形们的面积比为1:4, 故选:D . 【点睛】此题考查相似三角形的性质,掌握相似三角形面积的比等于相似比的平方是解决此题的关键.9.C解析:C 【解析】 【分析】设∠A 、∠C 分别为x 、2x ,然后根据圆的内接四边形的性质列出方程即可求出结论. 【详解】解:设∠A 、∠C 分别为x 、2x ,∵四边形ABCD 是圆内接四边形, ∴x +2x =180°,解得,x =60°,即∠A =60°, 故选:C . 【点睛】此题考查的是圆的内接四边形的性质,掌握圆的内接四边形的性质是解决此题的关键.10.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.11.A解析:A 【解析】 【分析】逐项计算方程的判别式,根据根的判别式进行判断即可. 【详解】 解:在x 2﹣x ﹣1=0中,△=(﹣1)2﹣4×1×(﹣1)=1+4=5>0,故该方程有两个不相等的实数根,故A 符合题意;在x 2+x +1=0中,△=12﹣4×1×1=1﹣4=﹣3<0,故该方程无实数根,故B 不符合题意; 在x 2+1=0中,△=0﹣4×1×1=0﹣4=﹣4<0,故该方程无实数根,故C 不符合题意; 在x 2+2x +1=0中,△=22﹣4×1×1=0,故该方程有两个相等的实数根,故D 不符合题意; 故选:A . 【点睛】本题考查根的判别式,解题的关键是记住判别式,△>0有两个不相等实数根,△=0有两个相等实数根,△<0没有实数根,属于中考常考题型.12.A解析:A 【解析】 【分析】方程常数项移到右边,两边加上1变形即可得到结果. 【详解】方程移项得:x 2−2x =5, 配方得:x 2−2x +1=6, 即(x−1)2=6.故选:A.【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.二、填空题13.35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:×10π×7=35πcm2.故答案是:35π.解析:35π.【解析】【分析】首先求得圆锥的底面周长,然后利用扇形的面积公式S=12lr即可求解.【详解】底面周长是:10π,则侧面展开图的面积是:12×10π×7=35πcm2.故答案是:35π.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.14.【解析】【分析】根据圆的性质和正六边形的性质证明△CDA≌△BDO,得出涂色部分即为扇形AOB的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA与BC交于D点∵正解析:2 3【解析】【分析】根据圆的性质和正六边形的性质证明△CDA ≌△BDO ,得出涂色部分即为扇形AOB 的面积,根据扇形面积公式求解.【详解】解:连接OA,OB,OC,AB,OA 与BC 交于D 点∵正六边形内接于O ,∴∠BOA=∠AOC=60°,OA=OB=OC=4,∴∠BOC=120°,OD ⊥BC,BD=CD∴∠OCB=∠OBC=30°,∴OD=1122OB OA DA , ∵∠CDA=∠BDO,∴△CDA ≌△BDO,∴S △CDA =S △BDO , ∴图中涂色部分的面积等于扇形AOB 的面积为:260223603ππ⨯=. 故答案为:23π.【点睛】本题考查圆的内接正多边形的性质,根据圆的性质结合正六边形的性质将涂色部分转化成扇形面积是解答此题的关键.15.【解析】【分析】直接利用公式法求解即可,横坐标为:,纵坐标为:.【详解】解:由题目得出:抛物线顶点的横坐标为:;抛物线顶点的纵坐标为:抛物线顶点的坐标为:(-4,-10).故答案为解析:()4,10--【解析】【分析】直接利用公式法求解即可,横坐标为:2b a-,纵坐标为:2 44ac ba-.【详解】解:由题目得出:抛物线顶点的横坐标为:84 221ba-=-=-⨯;抛物线顶点的纵坐标为:2244168246410 4414ac ba-⨯⨯--===-⨯抛物线顶点的坐标为:(-4,-10).故答案为:(-4,-10).【点睛】本题考查二次函数的知识,掌握二次函数的图象和性质是解题的关键.16.r3 <r2 <r1【解析】【分析】利用尺规作图分别做出、、所在的圆心及半径,从而进行比较即可. 【详解】解:利用尺规作图分别做出、、所在的圆心及半径∴r3 <r2 <r1故答案为:r解析:r3<r2<r1【解析】【分析】利用尺规作图分别做出AB、CD、EF所在的圆心及半径,从而进行比较即可.【详解】解:利用尺规作图分别做出AB、CD、EF所在的圆心及半径∴r 3 <r 2 <r 1故答案为:r 3 <r 2 <r 1【点睛】本题考查利用圆弧确定圆心及半径,掌握尺规作图的基本方法,准确确定圆心及半径是本题的解题关键.17.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 18.【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:x解析:13【解析】【分析】直接利用函数图象与x轴的交点再结合函数图象得出答案.【详解】解:如图所示,图象与x轴交于(-1,0),(3,0),故当y<0时,x的取值范围是:-1<x<3.故答案为:-1<x<3.【点睛】此题主要考查了抛物线与x轴的交点,正确数形结合分析是解题关键.19.1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故解析:1【解析】【分析】方程的根即方程的解,就是能使方程两边相等的未知数的值,利用方程解的定义就可以得到关于k的方程,从而求得k的值.【详解】把x=2代入方程得:4k−2−2=0,解得k=1故答案为:1.【点睛】本题主要考查了方程的根的定义,是一个基础的题目.20.216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,解析:216°.【解析】【分析】【详解】圆锥的底面周长为2π×3=6π(cm),设圆锥侧面展开图的圆心角是n°,则π5 180n⨯=6π,解得n=216.故答案为216°.【点睛】本题考查了圆锥的计算,正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.21.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可. 【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y=ax2+bx+c(a≠0),y与x的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.22.4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l ==4π,故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =(n 是弧所对应的圆心角度数)解析:4π【解析】【分析】直接利用弧长公式计算即可求解.【详解】l =6012180π⨯=4π, 故答案为:4π.【点睛】本题考查弧长计算公式,解题的关键是掌握:弧长l =180n r π(n 是弧所对应的圆心角度数) 23.16【解析】【分析】【详解】延长EF 交BC 的延长线与H,在平行四边形ABCD 中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM∴ ,∵F是CD的中点∴DF解析:16【解析】【分析】【详解】延长EF交BC的延长线与H,在平行四边形ABCD中,∵AD=BC,AD∥BC∴△DEF∽△CHF, △DEM∽△BHM ∴DE DFCH CF= ,2()DEMBMHS DES BH∆∆=∵F是CD的中点∴DF=CF∴DE=CH∵E是AD中点∴AD=2DE∴BC=2DE∴BC=2CH∴BH=3CH∵1DEMS∆=∴211()3BMHS∆=∴9BMHS∆=∴9CFHBCFMS S∆+=四边形∴9DEFBCFMS S∆+=四边形∴9DME DFMBCFMS S S∆∆++=四边形∴19BCDS∆+=∴8BCDS∆=∵四边形ABCD是平行四边形∴2816ABCDS=⨯=四边形故答案为:16.24.>【解析】【分析】根据二次函数y =ax2+bx+c(a >0)图象的对称轴为直线x =1,且经过点(﹣1,y1),(2,y2)和二次函数的性质可以判断y1 和y2的大小关系.【详解】解:∵二次解析:>【解析】【分析】根据二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,且经过点(﹣1,y 1),(2,y 2)和二次函数的性质可以判断y 1 和y 2的大小关系.【详解】解:∵二次函数y =ax 2+bx +c (a >0)图象的对称轴为直线x =1,∴当x >1时,y 随x 的增大而增大,当x <1时,y 随x 的增大而减小,∵该函数经过点(﹣1,y 1),(2,y 2),|﹣1﹣1|=2,|2﹣1|=1,∴y 1>y 2,故答案为:>.【点睛】本题考查了二次函数的增减性问题,掌握二次函数的性质是解题的关键.三、解答题25.该段运河的河宽为.【解析】【分析】过D 作DE ⊥AB ,可得四边形CHED 为矩形,由矩形的对边相等得到两对对边相等,分别在直角三角形ACH 与直角三角形BDE 中,设CH=DE=xm ,利用锐角三角函数定义表示出AH 与BE ,由AH+HE+EB=AB 列出方程,求出方程的解即可得到结果.【详解】解:过D 作DE AB ⊥,可得四边形CHED 为矩形,40HE CD m ∴==,设CH DE xm ==,在Rt BDE ∆中,60DBA ∠=︒,BE xm ∴=, 在Rt ACH ∆中,30BAC ∠=︒,AH ∴=,由160AH HE EB AB m ++==,得到33401603x x ++=, 解得:303x =,即303CH m =,则该段运河的河宽为303m .【点睛】考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.26.(1)见解析;(2) ①当n =-3时,a =b ;②当-3<n <-1时,a >b ;③当n <-3或n >-1时,a <b【解析】【分析】(1)方法一:当y=0时,(x-m )(x-m-4)=0,解得x 1=m ,x 2=-m-4,即可得到结论;方法二:化简得y =x 2+4x -m 2-4m ,令y =0,可得b 2-4ac ≥0,即可证明;(2)得出函数图象的对称轴,根据开口方向和函数的增减性分三种情况讨论,判断a 与b 的大小.【详解】(1)方法一:令y =0,(x -m )(x +m +4)=0,解得x 1=m ;x 2=-m -4.当m =-m -4,即m =-2,方程有两个相等的实数根,故二次函数与x 轴有一个公共点;当m ≠-m -4,即m ≠-2,方程有两个不相等的实数根,故二次函数与x 轴有两个公共点.综上不论m 为何值,该二次函数的图像与x 轴有公共点.方法二:化简得y =x 2+4x -m 2-4m .令y =0,b 2-4ac =4m 2+16m +16=4(m +2)2≥0,方程有两个实数根.∴不论m 为何值,该二次函数的图像与x 轴有公共点.(2)由题意知,函数的图像的对称轴为直线x =-2①当n =-3时,a =b ;②当-3<n <-1时,a >b③当n <-3或n >-1时,a <b【点睛】本题考查了二次函数的性质以及与方程的关系,把求二次函数y=ax 2+bx+c (a ,b ,c 是常数,a≠0)与x 轴的交点坐标问题转化为解关于x 的一元二次方程,并且注意分情况讨论. 27.35°【解析】【分析】连接OD ,根据切线的性质得∠ODC =90°,根据圆周角定理即可求得答案.【详解】连接OD ,∵CD 为⊙O 的切线,∴∠ODC =90°,∴∠DOC =90°﹣∠C =70°,由圆周角定理得,∠A =12∠DOC =35°. 【点睛】本题考查了切线的性质和圆周角定理,有圆的切线时,常作过切点的半径.28.(1)45D ∠=︒;(2)222BD =.【解析】 【分析】(1)根据等腰三角形性质和三角形外角性质求出∠COD=2∠A ,求出∠D=∠COD ,根据切线性质求出∠OCD=90°,即可求出答案;(2)由题意O 的半径为2,求出OC=CD=2,根据勾股定理求出BD 即可. 【详解】解:(1)∵OA=OC ,∴∠A=∠ACO ,∴∠COD=∠A+∠ACO=2∠A ,∵∠D=2∠A ,∴∠D=∠COD ,∵PD 切⊙O 于C ,∴∠OCD=90°,∴∠D=∠COD=45°;(2)∵∠D=∠COD ,O 的半径为2, ∴OC=OB=CD=2, 在Rt △OCD 中,由勾股定理得:22+22=(2+BD )2,解得:222BD =.【点睛】本题考查切线的性质,勾股定理,等腰三角形性质,三角形的外角性质的应用,主要考查学生的推理能力,熟练掌握切线的性质,勾股定理,等腰三角形性质,三角形的外角性质是解题关键.29.(1)14;(2)14.【解析】【分析】(1)直接利用概率公式求解;(2)通过列表展示所有9种等可能结果,再找出通道不同的结果数,然后根据概率公式求解.【详解】(1)解:一名游客经过此检票口时,选择A通道通过的概率=14,故答案为:14;(2)解:列表如下:共有16种可能结果,并且它们的出现是等可能的,“甲、乙两人选择相同检票通道”记为事件E,它的发生有4种可能:(A,A)、(B,B)、(C,C)、(D,D)∴P(E)=416=14.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.30.(1)见解析;(2)1 4【解析】【分析】(1)根据题意画树状图,求得所有等可能的结果;(2)由(1)可求得3次摸到的球颜色相同的结果数,再根据概率公式即可解答.【详解】(1)画树状图为:共有8种等可能的结果数;(2)3次摸到的球颜色相同的结果数为2,3次摸到的球颜色相同的概率=28=14.【点睛】本题考查列表法或树状图法求概率,解题的关键是不重复不遗漏地列出所有等可能的结果.31.(1)y=x2+2x﹣3;(2)存在,点P坐标为113331322⎛+⎝⎭或53715337-+-⎝⎭;(3)点N的坐标为(﹣4,1)【解析】【分析】(1)分别令y=0 ,x=0,可表示出A、B、C的坐标,从而表示△ABC的面积,求出a的值继而即可得二次函数解析式;(2)如图①,当点P在x轴上方抛物线上时,平移BC所在的直线过点O交x轴上方抛物线于点P,则有BC∥OP,此时∠POB=∠CBO,联立抛物线得解析式和OP所在直线的解析式解方程组即可求解;当点P在x轴下方时,取BC的中点D,易知D点坐标为(12,32-),连接OD并延长交x轴下方的抛物线于点P,由直角三角形斜边中线定理可知,OD=BD,∠DOB=∠CBO即∠POB=∠CBO,联立抛物线的解析式和OP所在直线的解析式解方程组即可求解.(3)如图②,通过点M到x轴的距离可表示△ABM的面积,由S△ABM=S△BNM,可证明点A、点N到直线BM的距离相等,即AN∥BM,通过角的转化得到AM=BN,设点N的坐标,表示出BN的距离可求出点N.【详解】(1)当y=0时,x2﹣(a+1)x+a=0,解得x1=1,x2=a,当x=0,y=a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,则2323y x y x x =⎧⎨=+-⎩,∴111232x y ⎧+=⎪⎪⎨+⎪=⎪⎩,221232x y ⎧-=⎪⎪⎨-⎪=⎪⎩,∴点P坐标为1322⎛+ ⎝⎭; ②当点P 在x 轴下方时,直线OP 的函数表达式为y =﹣3x ,则2323y x y x x =-⎧⎨=+-⎩∴1152152y x ⎧-=⎪⎪⎨-⎪=⎪⎩,2252152y x ⎧-=⎪⎪⎨+⎪=⎪⎩,∴点P坐标为⎝⎭, 综上可得,点P坐标为⎝⎭或⎝⎭;(3)如图,过点A 作AE ⊥BM 于点E ,过点N 作NF ⊥BM 于点F ,设AM 与BN 交于点G ,延长MN 与x 轴交于点H ;∵AB =4,点M 到x 轴的距离为d ,∴S △AMB =114222AB d d d ⨯⨯⨯== ∵S △MNB =2d ,∴S △AMB =S △MNB , ∴1122BM AE BM NF ⨯=⨯, ∴AE =NF ,∵AE ⊥BM ,NF ⊥BM ,∴四边形AEFN 是矩形,∴AN ∥BM ,∵∠MAN =∠ANB ,∴GN =GA ,∵AN ∥BM , ∴∠MAN =∠AMB ,∠ANB =∠NBM ,∴∠AMB =∠NBM ,∴GB =GM ,∴GN +GB =GA +GM 即BN =MA ,在△AMB 和△NBM 中AMB NB AM NB MB BM M =⎧=∠∠⎪⎨⎪⎩=∴△AMB ≌△NBM (SAS ),∴∠ABM =∠NMB ,∵OA =OC =3,∠AOC =90°,∴∠OAC =∠OCA =45°,又∵AN ∥BM ,∴∠ABM =∠OAC =45°,∴∠NMB =45°,∴∠ABM+∠NMB=90°,∴∠BHM=90°,∴M、N、H三点的横坐标相同,且BH=MH,∵M是抛物线上一点,∴可设点M的坐标为(t,t2+2t﹣3),∴1﹣t=t2+2t﹣3,∴t1=﹣4,t2=1(舍去),∴点N的横坐标为﹣4,可设直线AC:y=kx﹣3,则0=﹣3k﹣3,∴k=﹣1,∴y=﹣x﹣3,当x=﹣4时,y=﹣(﹣4)﹣3=1,∴点N的坐标为(﹣4,1).【点睛】本题主要考查二次函数的图象与性质,还涉及到全等三角形的判定及其性质、三角形面积公式等知识点,综合性较强,解题的关键是熟练掌握二次函数的图象与性质.32.(1)见详解;(2)4 5【解析】【分析】(1)根据两角相等的两个三角形相似,即可证明△ADE∽△BFA;(2)利用三角形的面积比等于相似比的平方,即可解答.【详解】(1)证明:∵BF⊥AE于点F,四边形ABCD为正方形,∴△ADE和△BFA均为直角三角形,∵DC∥AB,∴∠DEA=∠FAB,∴△ADE∽△BFA;(2)解:∵AD=2,E为CD的中点,∴DE=1,∴,∴AE AB =, ∵△ADE ∽△BFA ,∴245BFA ADE S S ∆∆==, ∵S △ADE =12×1×2=1, ∴S △BFA =45S △ADE =45. 【点睛】本题主要考查三角形相似的性质与判定,熟记相似三角形的判定是解决第(1)小题的关键;第(2)小题中,利用相似三角形的面积比是相似比的平方是解决此题的关键.。
湖南省株洲市九年级上学期数学期末考试试卷
湖南省株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八上·房山期中) 下列根式中属于最简二次根式的是()A .B .C .D .2. (2分) (2016九上·越秀期末) 方程的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 没有实数根D . 无法确定是否有实数根3. (2分) (2018九上·吴兴期末) 若△ABC的每条边长增加各自的10%得到△A′B′C′,则∠B′的度数与其对应角∠B的度数相比()A . 增加了10%B . 减少了10%C . 增加了(1+10%)D . 没有改变4. (2分)比较tan46°,cos29°,sin59°的大小关系是()A . tan46°<cos29°<sin59°B . tan46°<sin59°<cos29°C . sin59°<tan46°<cos29°D . sin59°<cos29°<tan46°5. (2分)已知关于x的方程x2-kx-6=0的一个根为x=3,则实数k的值为()A . 1B .C . 2D .6. (2分) (2020九上·莘县期末) 下列诗句所描述的事件中,是不可能事件的是()A . 黄河人海流B . 锄禾日当午C . 大漠孤烟直D . 手可摘星辰7. (2分)(2018·河北模拟) 如图,△ABC中,D,E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A . 4:2:1B . 5:3:1C . 25:12:5D . 51:24:108. (2分)如图,已知一坡面的坡度i=1:,则坡角α为()A . 15°B . 20°C . 30°D . 45°9. (2分)在Rt△ABC中,∠C=90°,若sinA=,则∠A的度数是A . 30°B . 45°C . 60°D . 90°10. (2分)(2017·福田模拟) 如图,已知E′(2,-1),F′(,),以原点O为位似中心,按比例尺1:2把△E′F′O扩大,则E′点对应点E的坐标为()A . (-4,2)B . (4,-2)C . (-1,-1)D . (-1,4)二、填空题 (共5题;共5分)11. (1分) (2016七下·临泽开学考) 若3a2-a-2=0,则5+2a-6a2=________12. (1分) (2018九上·长沙期中) 对于实数a,b,定义运算“﹡”:a﹡b= ,例如4﹡2,因为4>2,所以4﹡2=42﹣4×2=8.若x1 , x2是一元二次方程x2﹣5x+6=0的两个根,则x1﹡x2=________.13. (1分) (2019八上·泰州月考) 已知三角形中,则斜边上的高为________.14. (1分) (2019八下·海淀期中) 如果直线y=-2x+k与两坐标轴围成的三角形面积是8,则k的值为________.15. (1分)(2019·重庆模拟) 在矩形ABCD中,AB=4,BC=3,取CD中点E,连接BD、BE,将沿BE翻折成为,过点C作CM⊥BF于M,则CM+FC=________.三、解答题 (共8题;共59分)16. (5分)已知,,。
株洲市九年级上学期数学期末考试试卷
株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)若式子在实数范围内有意义,则x的取值范围是A . x<2B . x≤2C . x>2D . x≥22. (2分)方程(x+3)2﹣1=0的解是()A . x1=﹣2,x2=0B . x1=2,x2=0C . x=2D . x1=﹣2,x2=﹣43. (2分)(2019·崇左) 下列事件为必然事件的是()A . 打开电视机,正在播放新闻B . 任意画一个三角形,其内角和是180°C . 买一张电影票,座位号是奇数号D . 掷一枚质地均匀的硬币,正面朝上4. (2分)2sin60°的值等于()A . 1B .C .D .5. (2分)已知2x=3y(xy≠0),则下列各式中错误的是()A . =B . =C . =D . y= x6. (2分) (2017九上·东丽期末) 抛物线的顶点坐标是()A .B .C .D .7. (2分)如图,已知∠1=∠2,那么添加下列一个条件后,仍无法判定△ABC∽△ADE的是()A . ∠C=∠EB . ∠B=∠ADEC .D .8. (2分)(2017·南岸模拟) 若a=2,则a2﹣2a+4的值为()A . ﹣4B . 4C . 8D . 129. (2分)如果一个三角形的其中两边长分别是方程的两个根,那么连结这个三角形三边的中点,得到的三角形的周长可能是()A . 5.5B . 5C . 4.5D . 410. (2分) (2018九上·浦东期中) 把△ABC的各边长都增加两倍,则锐角A的正弦值()A . 增加2倍B . 增加4倍C . 不变D . 不能确定11. (2分)(2017·龙华模拟) 已知函数y=ax2+bx+c(a≠0)的图象与函数y=x﹣的图象如图所示,则下列结论:①ab>0;②c>﹣;③a+b+c<﹣;④方程ax2+(b﹣1)x+c+ =0有两个不相等的实数根.其中正确的有()A . 4 个B . 3 个C . 2 个D . 1 个12. (2分) (2019八下·博罗期中) 如图,矩形ABCD中,BC=2AB,对角线相交于O,过C点作CE⊥BD交BD 于E点,H为BC中点,连接AH交BD于G点,交EC的延长线于F点,下列5个结论:①EH=AB;②∠ABG=∠HEC;③△ABG≌△HEC;④S△GAD=S四边形GHCE ,⑤CF=BD.正确有()个.A . 1B . 2C . 3D . 4二、填空题 (共10题;共10分)13. (1分) (2018七上·龙港期中) 写出一个比小的无理数________.14. (1分) (2018九上·江苏月考) 已知关于x的方程(m+2)x²+4mx+1=0是一元二次方程,则m的取范围值是________.15. (1分)(2018·资阳) 一口袋中装有若干红色和白色两种小球,这些小球除颜色外没有任何区别,袋中小球已搅匀,蒙上眼睛从中取出一个白球的概率为.若袋中白球有4个,则红球的个数是________个16. (1分) (2016九下·邵阳开学考) 一等腰三角形的两边长分别为4cm和6cm,则其底角的余弦值为________.17. (1分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D、E.若AD=3,DB=2,BC=6,则DE的长为________ .18. (1分)抛物线y=ax2+2ax+c(a<0)向右平移2个单位后的新图上有两点A(x1 , y1),B(x2 , y2),在此函数图象上,如果x1<x2<0.则y1与y2的大小关系是________ .19. (1分)某企业2013年的年利润为100万元,2014年和2015年连续增长,且这两年的增长率相同,据统计2015年的年利润为125万元.若设这个相同的增长率为x,那么可列出的方程是________20. (1分) (2018九上·青浦期末) 如图,传送带和地面所成斜坡AB的坡度为,把物体从地面A处送到坡顶B处时,物体所经过的路程是12米,此时物体离地面的高度是________米.21. (1分) (2020八上·天桥期末) 已知三角形三边长分别是6,8,10,则此三角形的面积为________.22. (1分) (2017七下·简阳期中) 把一张对边平行的纸条折成如图那样,EF是折痕,若∠EFB=32°,则结论①∠C′EF=32°;②∠AEC=116°;③∠BFD=116°;④∠BGE=64°中,所有正确的结论序号有________.三、解答题 (共10题;共95分)23. (10分)(2017·泰兴模拟) 计算或解方程:(1)(﹣)﹣2+|3tan30°﹣1|﹣(π﹣3)°;(2) = ﹣3.24. (10分) (2016九上·乐至期末) 解方程(1) x2﹣4x﹣5=0(2) 2(x﹣2)2=(x﹣2)25. (7分)已知:如图,已知△ABC,(1)分别画出与△ABC关于y轴对称的图形△A1B1C1,并写出△A1B1C1各顶点坐标;A1(________,________)B1(________,________)C1(________,________)(2)△ABC的面积=________.26. (10分) (2015九上·宜昌期中) 宜兴科技公司生产销售一种电子产品,该产品总成本包括技术成本、制造成本、销售成本三部分,经核算,2013年该产品各部分成本所占比例约为2:a:1.且2013年该产品的技术成本、制造成本分别为400万元、1400万元.(1)确定a的值,并求2013年产品总成本为多少万元;(2)为降低总成本,该公司2014年及2015年增加了技术成本投入,确保这两年技术成本都比前一年增加一个相同的百分数m(m<50%),制造成本在这两年里都比前一年减少一个相同的百分数2m;同时为了扩大销售量,2015年的销售成本将在2013年的基础上提高10%,经过以上变革,预计2015年该产品总成本达到2013年该产品总成本的,求m的值.27. (10分)写出符合下列条件的数:(1)大于-1且小于3的所有整数;(1)大于-1且小于3的所有整数,就是求出介于-1与3之间的整数,借助数轴,找到两个界点-1,3的位置,读出两点间的整数即可;(2)在数轴上,与表示-4的点的距离是5的所有数.28. (13分)(2016·历城模拟) 我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了________名同学,其中C类女生有________名,D类男生有________名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.29. (5分)如图,一桥梁建设工地上有一架吊车,底座高AB=1.5米,吊臂长BC=18米,它与地面保持成30°角,现要将一个底面圆直径为8米,高为2米的圆柱体的钢筋混凝土框架,安装到离地面高度为6米的桥基上,问这架吊车能否完成这安装任务?请说明理由.(说明:图中钢索CO吊在长方体框架的上底面的中心处)30. (10分) (2016七上·泉州期中) 公安人员在破案时常常根据案发现场作案人员留下的脚印推断犯人的身高,如果用a表示脚印长度,b表示身高,关系接近于b=7a﹣3.07.(1)某人脚印长度为24.5cm,则他的身高约为多少?(2)在某次案件中,抓获了两名可疑人员,甲的身高为1.87m,乙的身高为1.75m,现场测量的脚印长度为26.9cm,请你帮助侦查一下,哪个可疑人员作案的可能性更大?31. (10分)如图所示,一根长2a的木棍(AB),斜靠在与地面(OM)垂直的墙(ON)上,设木棍的中点为P若木棍A端沿墙下滑,且B端沿地面向右滑行.(1)请判断木棍滑动的过程中,点P到点O的距离是否变化,并简述理由.(2)在木棍滑动的过程中,当滑动到什么位置时,的面积最大?简述理由,并求出面积的最大值.32. (10分)(2013·杭州) 如图,已知正方形ABCD的边长为4,对称中心为点P,点F为BC边上一个动点,点E在AB边上,且满足条件∠EPF=45°,图中两块阴影部分图形关于直线AC成轴对称,设它们的面积和为S1 .(1)求证:∠APE=∠CFP;(2)设四边形CMPF的面积为S2,CF=x,.①求y关于x的函数解析式和自变量x的取值范围,并求出y的最大值;②当图中两块阴影部分图形关于点P成中心对称时,求y的值.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共10题;共10分)13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、21-1、22-1、三、解答题 (共10题;共95分) 23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、27-1、27-2、28-1、28-2、28-3、29-1、30-1、30-2、31-1、31-2、32-1、。
湖南省株洲市九年级上学期数学期末考试试卷
湖南省株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020九上·德城期末) 一元二次方程的解是()A . = =1B . = =-1C . =1, =﹣1D . =1, =02. (2分)下列说法正确的是()A . 一个游戏的中奖概率是0.1,则做10次这样的游戏一定会中奖;B . 一组数据6,8,7,8,8,9,10的众数和中位数都是8;C . 为了解全国中学生的心理健康情况,应该采用普查的方式;D . 甲组数据方差,乙组数据方差,则乙组数据比甲组数据稳定.3. (2分)如图,等边△ABC的周长为16π,半径是2的⊙O从与AB相切于点D的位置出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了()A . 3周B . 4周C . 5周D . 6周4. (2分)飞机着陆后滑行的距离s(米)关于滑行的时间t(米)的函数解析式是s=60t﹣1.5t2 ,则飞机着陆后滑行到停止下列,滑行的距离为()A . 500米B . 600米C . 700米D . 800米5. (2分)圆锥的底面半径为8,母线长为9,则该圆锥的侧面积为().A .B .C .D .6. (2分)若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则实数k的取值范围是()A . k>﹣1B . k<1且k≠0C . k≥﹣1且k≠0D . k>﹣1且k≠07. (2分)在△ABC中,∠C=90°,AC=8,BC=6,则sinB的值是()A .B .C .D .8. (2分) (2016九上·宜城期中) 如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC 与∠BOC互补,则弦BC的长为()A . 4B . 3C . 2D .9. (2分)如图,已知正方形ABCD的边长为4,P是BC边上一动点(与B,C不重合)连接AP,作PE⊥AP 交∠BCD的外角平分线于E,设BP=x,△PCE的面积为y,则y与x的函数关系式是()A . y=﹣x2+4xB .C .D . y=x2﹣4x10. (2分)如图,点P为正方形ABCD的边CD上一点,BP的垂直平分线EF分别交BC、AD于E、F两点,GP⊥EP 交AD于点G,连接BG交EF于点 H,下列结论:①BP=EF;②∠FHG=45°;③以BA为半径⊙B与GP相切;④若G 为AD的中点,则DP=2CP.其中正确结论的序号是()A . ①②③④B . 只有①②③C . 只有①②④D . 只有①③④二、填空题 (共8题;共8分)11. (1分)分解因式:2a2﹣6a=________ .12. (1分) (2017九上·河源月考) 已知方程x2﹣4x﹣1=0的两个根分别为x1 , x2 ,则x1•x2=________;13. (1分)(2017·黑龙江模拟) 如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________.14. (1分) (2016九上·无锡期末) 某水库堤坝的横断面如图所示,迎水坡AB的坡度是1︰,堤坝高BC=50m,则AB=________m.15. (1分)如图,在⊙O 中,已知∠AOB=120°,则∠ACB=________.16. (1分)如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b >2a;③ax2+bx+c=0的两根分别为-3和1;④a-2b+c>0.其中正确的命题是 ________.(只要求填写正确命题的序号)17. (1分)如图,正△ABC的边长为9cm,边长为3cm的正△RPQ的顶点R与点A重合,点P,Q分别在AC,AB上,将△RPQ沿着边AB,BC,CA连续翻转(如图所示),直至点P第一次回到原来的位置,则点P运动路径的长为________ cm.(结果保留π)18. (1分)已知Rt△ABC,∠C=90°,AC=3,BC=6,则△ABC的外接圆面积是________.三、解答题 (共10题;共105分)19. (5分) (2017九上·潮阳月考) 解方程:20. (15分)(2018·江油模拟) 为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“国际象棋”、“音乐舞蹈”和“书法”等说个社团,要求每位学生都自主选择其中一个社团,为此,随机调查了本校部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向文学鉴赏国际象棋音乐舞蹈书法其他所占百分比a20%b10%5%根据统计图表的信息,解答下列问题:(1)求本次抽样调查的学生总人数及a、b的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生,试估计全校选择“音乐舞蹈”社团的学生人数.21. (5分)第十五届中国“西博会”将于2014年10月底在成都召开,现有20名志愿者准备参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工作只在甲、乙两人中选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取2张,若牌面数字之和为偶数,则甲参加,否则乙参加.试问这个游戏公平吗?请用树状图或列表法说明理由.22. (10分) (2019九上·兰州期末) 如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA,OB的长是关于x的一元二次方程的两个根,且OA>OB.(1)若点E为x轴上的点,且△AOE的面积为 .求:①点E的坐标;②证明:△AOE∽△DAO;(2)若点M在平面直角坐标系中,则在直线AB上是否存在点F,使以A,C,F,M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.23. (10分)如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)24. (5分)(2017·广东模拟) 如图,河的两岸l1与l2相互平行,A、B是l1上的两点,C、D是l2上的两点,某人在点A处测得∠CAB=90°,∠DAB=30°,再沿AB方向前进60米到达点E(点E在线段AB上),测得∠DEB=60°,求河的宽度.25. (15分)(2017·温州) 如图,已知线段AB=2,MN⊥AB于点M,且AM=BM,P是射线MN上一动点,E,D 分别是PA,PB的中点,过点A,M,D的圆与BP的另一交点C(点C在线段BD上),连结AC,DE.(1)当∠APB=28°时,求∠B和的度数;(2)求证:AC=AB.(3)在点P的运动过程中①当MP=4时,取四边形ACDE一边的两端点和线段MP上一点Q,若以这三点为顶点的三角形是直角三角形,且Q为锐角顶点,求所有满足条件的MQ的值;②记AP与圆的另一个交点为F,将点F绕点D旋转90°得到点G,当点G恰好落在MN上时,连结AG,CG,DG,EG,直接写出△ACG和△DEG的面积之比.26. (10分) (2016八下·青海期末) 如图,直线y=﹣x+10与x轴、y轴分别交于点B,C,点A的坐标为(8,0),P(x,y)是直线y=﹣x+10在第一象限内一个动点.(1)求△OPA的面积S与x的函数关系式,并写出自变量的x的取值范围;(2)当△OPA的面积为10时,求点P的坐标.27. (15分) (2016九上·南开期中) 如图,在平面直角坐标系中,圆M经过原点O,且与x轴、y轴分别相交于A(﹣8,0),B(0,﹣6)两点.(1)求出直线AB的函数解析式;(2)若有一抛物线的对称轴平行于y轴且经过点M,顶点C在圆M上,开口向下,且经过点B,求此抛物线的函数解析式;(3)设(2)中的抛物线交x轴于D、E两点,在抛物线上是否存在点P,使得S△PDE= S△ABC?若存在,请求出点P的坐标;若不存在,请说明理由.28. (15分) (2018九下·夏津模拟) 已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一个交点为C,抛物线的顶点为D,求出点C,D的坐标,并判断△BCD 的形状;(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共105分)19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、25-1、25-2、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
株洲九年级期末考试卷数学
株洲九年级期末考试卷数学一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. -1D. 22. 如果a,b是实数,且a > b,那么下列哪个不等式是正确的?A. a + 1 > b + 1B. a - 1 > b - 1C. a × 1 > b × 1D. a ÷ 1 > b ÷ 13. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π4. 一个二次方程x² + 4x + 4 = 0的解是:A. x = -2B. x = 2C. x = 1D. x = -15. 以下哪个是等差数列1, 3, 5, 7, ...的第10项?A. 19B. 21C. 23D. 256. 一个直角三角形的两条直角边分别是3和4,斜边的长度是:A. 5B. 6C. 7D. 87. 一个正方体的体积是64立方厘米,它的边长是:A. 4厘米B. 6厘米C. 8厘米D. 10厘米8. 一个数的平方根是4,这个数是:A. 16B. -16C. 8D. -89. 函数y = 2x + 3在x = 1处的值是:A. 5B. 6C. 7D. 810. 以下哪个是函数y = x² - 4x + 4的顶点坐标?A. (2, -4)B. (2, 0)C. (-2, 0)D. (0, 4)二、填空题(每题2分,共20分)11. 一个数的立方根是2,这个数是______。
12. 一个等差数列的首项是2,公差是3,第5项是______。
13. 一个直角三角形的斜边长是13,一条直角边长是5,另一条直角边长是______。
14. 一个圆的直径是14,它的周长是______。
15. 一个二次方程x² - 5x + 6 = 0的根是______和______。
16. 函数y = 3x - 2与x轴的交点坐标是______。
湖南省株洲市炎陵县2023-2024学年九年级上学期期末数学试题(含解析)
A .9.如图,点A ,
B ,
C A .10.二次函数,下列结论正确的为( )
①;②A .①④
B 二、填空题.
11.若△ABC ∽△A′B′C′,且为 .
12
S S >100︒y ax =1x =0abc >30a c +>
18.如图,B 是的弦,,则的度数是三、解答题.
A O 20ABC ∠=︒AO
B ∠
(1)
(2)若该县各学校的基本情况一致,试估计该县参考教师本次考试成绩在
数.
23.网络直播销售已经成为一种热门的销售方式,某生产商在一销售平台上进行直播销售板
kg
栗.已知板栗的成本价为6元/,每日销售量y(
(1)求反比例函数、直线(2)求的面积.
25.如图,AB 是⊙O 的直径,1k
y x
=
BMC △
设直线为:
OA ,y kx =55,k \=1,k =()()5,5,2,8,A B Q
解得:∴AB 为:
解得: 【点睛】本题考查的是利用待定系数法求解二次函数的解析式,坐标与图形面积,三角形三边关系的应用,勾股定理的应用,确定最大时P 的位置是解本题的关键.5''5,2''8k b k b +=⎧∴⎨+=⎩
'1,'10k b =-⎧⎨=⎩
10,y x =-+210,4y x y x x =-+⎧∴⎨=-⎩
52,,512x x y y ==-⎧⎧⎨⎨==⎩⎩
()2,12.
P ∴-PA PB -。
株洲市九年级上学期数学期末考试试卷
株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2019·汇川模拟) 下列函数中,自变量x的取值范围为x>1的是()A .B .C .D . y=(x﹣1)02. (2分)设=a,=b,用含a、b的式子表示,下列表示正确的是()A .B . 3aC .D .3. (2分) (2016九上·简阳期末) 一元二次方程(m﹣2)x2﹣4mx+2m﹣6=0有两个相等的实数根,则m等于()A . ﹣6或1B . 1C . ﹣6D . 24. (2分) (2020九上·景县期末) 平面直角坐标系中,已知点O(0,0)、A(0,2)、B(1,0),点P是反比例函数y= 象上的一个动点,过点P作PQ⊥x轴,垂足为点Q若以点O、P、Q为顶点的三角形与△OAB相似,则相应的点P共有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2017八下·萧山期中) 用配方法将方程变形,正确的是()A . (x-3)2=20B . (x-3)2=2C . (x+3)2=2D . (x+3)2=206. (2分) (2020九上·柳州期末) 如图,从圆 O 外一点引圆 P 的两条切线 PA , PB ,切点分别为 A ,B .如果∠APB=60°, PA=8 ,那么圆 O 的半径是()A . 4B .C .D .7. (2分) (2018九上·番禺期末) 已知二次函数的图象与轴的一个交点为(1,0),则它与轴的另一个交点坐标是()A . (1,0)B . (2,0)C . (-2,0)D . (-1,0)8. (2分)某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出,下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A .B .C .D .二、填空题 (共6题;共7分)9. (1分) (2016九上·盐城开学考) (﹣) =________.10. (1分)最简二次根式和是同类二次根式,则a=________ ,b=________ .11. (1分)(2017·信阳模拟) 如图,在△ABC中,DE是中位线,若四边形EDCB的面积是30cm2 ,则△AED 的面积是________.12. (1分)(2016·河池) 已知关于x的方程x2﹣3x+m=0的一个根是1,则m=________.13. (1分) (2019九上·普陀期末) 将抛物线先右平移2个单位,再向上平移3个单位,那么平移后所得新抛物线的表达式是________.14. (2分) (2018九上·孝感月考) 对称轴与轴平行且经过原点O的抛物线也经过,若的面积为4,则抛物线的解析式为________.三、解答题 (共10题;共79分)15. (5分) (2017九上·东莞开学考) 计算:× + ÷ .16. (10分)(2016·株洲) 已知二次函数y=x2﹣(2k+1)x+k2+k(k>0)(1)当k= 时,求这个二次函数的顶点坐标;(2)求证:关于x的一元次方程x2﹣(2k+1)x+k2+k=0有两个不相等的实数根;(3)如图,该二次函数与x轴交于A、B两点(A点在B点的左侧),与y轴交于C点,P是y轴负半轴上一点,且OP=1,直线AP交BC于点Q,求证:.17. (10分)如图甲,正方形被划分成16个全等的三角形,将其中若干个三角形涂黑,且满足下列条件:(1)涂黑部分的面积是原正方形面积的一半;(2)涂黑部分成轴对称图形.如图乙是一种涂法,请在图1~3中分别设计另外三种涂法.(在所设计的图案中,若涂黑部分全等,则认为是同一种涂法,如图乙与图丙)18. (10分) (2018九上·夏津开学考) 抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求出m的值,并画出这条抛物线;(2)求抛物线与x轴的交点和顶点坐标;(3)当x取什么值时,抛物线在x轴上方?(4)当x取什么值时,y的值随x的增大而减小.19. (10分) (2019九上·东莞期末) 受益于国家支持新能源汽车发展和“一带一路”倡议,某市汽车零部件生产企业的利润逐年提高,据统计,2017年的利润为2亿元,2019 年的利润为2.88亿元.(1)求该企业从2017年到2019年年利润的平均增长率?(2)若年利润的平均增长率不变,则该企业2020年的利润能后超过3.5亿元?20. (5分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高AB.21. (2分)一个不透明的布袋里装有3个球,其中2个红球,1个白球,它们除颜色外其余都相同。
株洲市九年级上学期数学期末考试试卷
株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题:(本大题共6题,每题4分,满分24分) (共6题;共24分)1. (4分)(2019·长春模拟) 在Rt△ABC中,∠C=90°,sinA= ,则tanB的值为()A .B .C .D .2. (4分) (2019七下·武昌期中) 如果小华在小丽北偏东40°的位置上,那么小丽在小华的()A . 南偏西50°B . 北偏东50°C . 南偏西40°D . 北偏东40°3. (4分) (2019九上·马山月考) 把抛物线y=﹣ x2向右平移2个单位,则平移后所得抛物线的解析式为()A . y=﹣ x2+2B . y=﹣(x+2)2C . y=﹣ x2﹣2D . y=﹣(x﹣2)24. (4分) (2016九上·鄂托克旗期末) 函数和在同一直角坐标系中图象可能是图中的()A .B .C .D .5. (4分)(2017·松江模拟) 已知非零向量,,,下列条件中,不能判定∥ 的是()A . ∥ ,∥B .C . =D . = , =6. (4分)(2019·岐山模拟) 如图,在平行四边形ABCD中,AC、BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=3,则下列结论:① ;②S△BCE=30;③S△ABE=9;④△AEF∽△ACD,其中一定正确的是()A . ①②③④B . ①③C . ②③④D . ①②③二、填空题:(本大题共12题,每题4分,满分48分) (共12题;共48分)7. (4分) (2019九上·定安期末) 若,则的值是________.8. (4分) (2018九上·金山期末) 计算: ________.9. (4分)如果二次函数y=x2﹣8x+m﹣1的顶点在x轴上,那么m=________.10. (4分)(2020·亳州模拟) 抛物线y=x2﹣2在y轴右侧的部分是________.(填“上升”或“下降”)11. (4分)如果点C是线段AB的黄金分割点,AC>BC,AB=100cm,则BC=________cm.12. (4分)(2018·济宁) 如图,点A是反比例函数y= (x>0)图象上一点,直线y=kx+b过点A并且与两坐标轴分别交于点B,C,过点A作AD⊥x轴,垂足为D,连接DC,若△BOC的面积是4,则△DOC的面积是________.13. (4分)(2018·嘉定模拟) 如果△ ∽△ ,且对应面积之比为,那么它们对应周长之比为________.14. (4分)直角三角形的两条直角边为3,4,则这个直角三角形斜边上的高为________。
九年级上册株洲数学期末试卷测试卷(解析版)
九年级上册株洲数学期末试卷测试卷(解析版)一、选择题1.如图,等边三角形ABC 的边长为5,D 、E 分别是边AB 、AC 上的点,将△ADE 沿DE 折叠,点A 恰好落在BC 边上的点F 处,若BF =2,则BD 的长是( )A .2B .3C .218D .2472.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人 B .6人C .4人D .8人3.已知3sin 2α=,则α∠的度数是( ) A .30° B .45°C .60°D .90°4.若关于x 的一元二次方程240ax bx ++=的一个根是1x =-,则2015a b -+的值是( ) A .2011B .2015C .2019D .20205.如图,某水库堤坝横断面迎水坡AB 的坡比是1:3,堤坝高BC=50m ,则应水坡面AB 的长度是( )A .100mB .3mC .150mD .36.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k ≠07.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A 10B 310C .13D 108.如图,AB 是⊙O 的弦,∠BAC =30°,BC =2,则⊙O 的直径等于( )A .2B .3C .4D .69.已知圆内接正六边形的边长是1,则该圆的内接正三角形的面积为( ) A .43B .23C .334D .32210.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根B .有两个实数根C .有一个实数根D .无实数根11.下列方程中,是一元二次方程的是( ) A .2x +y =1B .x 2+3xy =6C .x +1x=4 D .x 2=3x ﹣212.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题13.O 的半径为4,圆心O 到直线l 的距离为2,则直线l 与O 的位置关系是______.14.二次函数2y ax bx c =++的图象如图所示,给出下列说法:①ab 0<;②方程2ax bx c 0++=的根为1x 1=-,2x 3=;③a b c 0++>;④当x 1>时,y 随x 值的增大而增大;⑤当y 0>时,1x 3-<<.其中,正确的说法有________(请写出所有正确说法的序号).15.抛物线21(5)33y x =--+的顶点坐标是_______. 16.如图,D 、E 分别是△ABC 的边AB ,AC 上的点,AD AB =AEAC,AE =2,EC =6,AB =12,则AD 的长为_____.17.若32x y =,则x y y+的值为_____. 18.△ABC 是等边三角形,点O 是三条高的交点.若△ABC 以点O 为旋转中心旋转后能与原来的图形重合,则△ABC 旋转的最小角度是____________.19.一元二次方程x 2﹣3x+2=0的两根为x 1,x 2,则x 1+x 2﹣x 1x 2=______.20.如图,港口A 在观测站 O 的正东方向,OA =4km ,某船从港口A 出发,沿北偏东15°方向航行一段距离后到达 B 处,此时从观测站O 处测得该船位于北偏东60°的方向,则该船与观测站之间的距离(即OB 的长)为 _____km.21.已知点P (x 1,y 1)和Q (2,y 2)在二次函数y =(x +k )(x ﹣k ﹣2)的图象上,其中k ≠0,若y 1>y 2,则x 1的取值范围为_____.22.一个口袋中放有除颜色外,形状大小都相同的黑白两种球,黑球6个,白球10个.现在往袋中放入m 个白球和4个黑球,使得摸到白球的概率为35,则m =__. 23.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,; ④=3m -.其中,正确的有___________________.24.如图,Rt △ABC 中,∠ACB =90°,BC =3,tan A =34,将Rt △ABC 绕点C 顺时针旋转90°得到△DEC ,点F 是DE 上一动点,以点F 为圆心,FD 为半径作⊙F ,当FD =_____时,⊙F 与Rt △ABC 的边相切.三、解答题25.(1)计算:()212cos6020202π-⎛⎫++-︒ ⎪⎝︒⎭(2)若关于x 的方程22210x x m ++-=有两个相等的实数根,求m 的值.26.某校为了丰富学生课余生活,计划开设以下社团:A .足球、B .机器人、C .航模、D .绘画,学校要求每人只能参加一个社团小丽和小亮准备随机报名一个项目. (1)求小亮选择“机器人”社团的概率为______;(2)请用树状图或列表法求两人至少有一人参加“航模”社团的概率.27.随着移动互联网的快速发展,基于互联网的共享单车应运而生.为了解某小区居民使用共享单车的情况,某研究小组随机采访该小区的10位居民,得到这10位居民一周内使用共享单车的次数分别为:17,12,15,20,17,0,7,26,17,9. (1)这组数据的中位数是 ,众数是 ; (2)计算这10位居民一周内使用共享单车的平均次数;(3)若该小区有200名居民,试估计该小区居民一周内使用共享单车的总次数. 28.从甲、乙两台包装机包装的质量为300g 的袋装食品中各抽取10袋,测得其实际质量如下(单位:g )甲:301,300,305,302,303,302,300,300,298,299 乙:305,302,300,300,300,300,298,299,301,305 (1)分别计算甲、乙这两个样本的平均数和方差; (2)比较这两台包装机包装质量的稳定性.29.已知:△ABC 在直角坐标平面内,三个顶点的坐标分别为A (0,3)、B (3,4)、C (2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC 向下平移4个单位长度得到的△A 1B 1C 1,点C 1的坐标是 ; (2)以点B 为位似中心,在网格内画出△A 2B 2C 2,使△A 2B 2C 2与△ABC 位似,且位似比为2:1,点C 2的坐标是 ;(3)△A 2B 2C 2的面积是 平方单位.30.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.31.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.(1)求抛物线的表达式;(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同时,点Q 从点A 出发,在线段AC 上以每秒53个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒).①当t 为何值时,DPQ ∆得面积最小?②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.32.如图,在矩形ABCD 中,AB=2,E 为BC 上一点,且BE=1,∠AED=90°,将AED 绕点E 顺时针旋转得到A ED ''△,A′E 交AD 于P , D′E 交CD 于Q ,连接PQ ,当点Q 与点C 重合时,AED 停止转动. (1)求线段AD 的长;(2)当点P 与点A 不重合时,试判断PQ 与A D ''的位置关系,并说明理由;(3)求出从开始到停止,线段PQ的中点M所经过的路径长.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】根据折叠得出∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,求出∠DFB =∠FEC,证△DBF∽△FCE,进而利用相似三角形的性质解答即可.【详解】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC=5,∵沿DE折叠A落在BC边上的点F上,∴△ADE≌△FDE,∴∠DFE=∠A=60°,AD=DF,AE=EF,设BD=x,AD=DF=5﹣x,CE=y,AE=5﹣y,∵BF=2,BC=5,∴CF=3,∵∠C=60°,∠DFE=60°,∴∠EFC+∠FEC=120°,∠DFB+∠EFC=120°,∴∠DFB=∠FEC,∵∠C=∠B,∴△DBF∽△FCE,∴BD BF DFFC CE EF==,即2535x xy y-==-,解得:x =218, 即BD =218, 故选:C . 【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知折叠的性质、相似三角形的判定定理.2.B解析:B 【解析】 【分析】找出这组数据出现次数最多的那个数据即为众数. 【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次, ∴这组数据的众数是6. 故选:B. 【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.3.C解析:C 【解析】 【分析】根据特殊角三角函数值,可得答案. 【详解】解:由sin 2α=,得α=60°, 故选:C . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键.4.C解析:C 【解析】 【分析】根据方程解的定义,求出a-b ,利用作图代入的思想即可解决问题. 【详解】∵关于x 的一元二次方程240ax bx ++=的解是x=−1, ∴a−b+4=0, ∴a−b=-4,∴2015−(a−b)=2215−(-4)=2019. 故选C. 【点睛】此题考查一元二次方程的解,解题关键在于掌握运算法则.5.A解析:A 【解析】∵堤坝横断面迎水坡AB 的坡比是1,∴BCAC ,∵BC=50,∴,∴100==(m ).故选A6.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.7.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sin10BC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.8.C解析:C 【解析】 【分析】如图,作直径BD ,连接CD ,根据圆周角定理得到∠D =∠BAC =30°,∠BCD =90°,根据直角三角形的性质解答. 【详解】如图,作直径BD,连接CD,∵∠BDC和∠BAC是BC所对的圆周角,∠BAC=30°,∴∠BDC=∠BAC=30°,∵BD是直径,∠BCD是BD所对的圆周角,∴∠BCD=90°,∴BD=2BC=4,故选:C.【点睛】本题考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半;半圆(或直径)所对的圆周角是直角;90°圆周角所对的弦是直径;熟练掌握圆周角定理是解题关键.9.C解析:C【解析】【分析】根据圆内接正六边形的边长是1可得出圆的半径为1,利用勾股定理可求出该内接正三角形的边长为3,高为32,从而可得出面积.【详解】解:由题意可得出圆的半径为1,∵△ABC为正三角形,AO=1,AD BC⊥,BD=CD,AO=BO,∴1DO2=,32AD=,∴223BD OB OD=-=,∴BC3=∴1333322ABCS=⨯=.故选:C.【点睛】本题考查的知识点是正多边形的性质以及解直角三角形,根据圆内接正多边形的边长求出圆的半径是解此题的关键.10.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.11.D解析:D【解析】【分析】利用一元二次方程的定义判断即可.【详解】解:A、原方程为二元一次方程,不符合题意;B、原式方程为二元二次方程,不符合题意;C、原式为分式方程,不符合题意;D、原式为一元二次方程,符合题意,故选:D.【点睛】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的解析:相交【解析】【分析】由圆的半径为4,圆心O到直线l的距离为2,利用直线和圆的位置关系,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.【详解】解:∵⊙O的半径为4,圆心O到直线L的距离为2,∵4>2,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.【点睛】本题考查知道知识点是圆与直线的位置关系,若d<r,则直线与圆相交;若d>r,则直线与圆相离;若d=r,则直线与圆相切.14.①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-=1,∴ab <0,①正确;∵二次函数y=ax2+b解析:①②④【解析】【分析】根据抛物线的对称轴判断①,根据抛物线与x 轴的交点坐标判断②,根据函数图象判断③④⑤.【详解】解:∵对称轴是x=-2b a=1, ∴ab <0,①正确; ∵二次函数y=ax 2+bx+c 的图象与x 轴的交点坐标为(-1,0)、(3,0),∴方程x 2+bx+c=0的根为x 1=-1,x 2=3,②正确;∵当x=1时,y <0,∴a+b+c <0,③错误;由图象可知,当x >1时,y 随x 值的增大而增大,④正确;当y >0时,x <-1或x >3,⑤错误,故答案为①②④.【点睛】本题考查的是二次函数图象与系数之间的关系,二次函数y=ax 2+bx+c 系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.15.(5,3)【解析】【分析】根据二次函数顶点式的性质直接求解.【详解】解:抛物线的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质其顶点坐标为(h ,k ),题目比较解析:(5,3)【解析】【分析】根据二次函数顶点式2()y a x h k =-+的性质直接求解.【详解】 解:抛物线21(5)33y x =--+的顶点坐标是(5,3)故答案为:(5,3).【点睛】本题考查二次函数性质2()y a x h k =-+其顶点坐标为(h ,k ),题目比较简单. 16.3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】解:∵=,AE =2,EC =6,AB =12,∴=,解得:AD =3,故答案为:3.【点睛】本题解析:3【解析】【分析】把AE =2,EC =6,AB =12代入已知比例式,即可求出答案.【详解】 解:∵AD AB =AE AC,AE =2,EC =6,AB =12, ∴12AD =226+, 解得:AD =3,故答案为:3.【点睛】 本题考查了成比例线段,灵活的将已知线段的长度代入比例式是解题的关键.17..【解析】【分析】根据比例的合比性质变形得:【详解】∵,∴故答案为:.【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.解析:52.【解析】【分析】根据比例的合比性质变形得:325.22 x yy++==【详解】∵32xy=,∴325.22 x yy++==故答案为:5 2 .【点睛】本题主要考查了合比性质,对比例的性质的记忆是解题的关键.18.120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形解析:120°.【解析】试题分析:若△ABC以O为旋转中心,旋转后能与原来的图形重合,根据旋转变化的性质,可得△ABC旋转的最小角度为180°﹣60°=120°.故答案为120°.考点:旋转对称图形.19.1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.【详解】解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=解析:1【解析】【分析】利用根与系数的关系得到x1+x2=3,x1x2=2,然后利用整体代入的方法计算.解:根据题意得:x1+x2=3,x1x2=2,所以x1+x2-x1x2=3-2=1.故答案为:1.【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-ba,x1x2=ca.20.2+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥O解析:23+2【解析】【分析】作AD⊥OB于点D,根据题目条件得出∠OAD=60°、∠DAB=45°、OA=4km,再分别求出AD、OD、BD的长,从而得出答案.【详解】如图所示,过点A作AD⊥OB于点D,由题意知,∠AOD=30°,OA=4km,则∠OAD=60°,∴∠DAB=45°,在Rt△OAD中,AD=OAsin∠AOD=4×sin30°=4×12=2(km),OD=OAcos∠AOD=4×cos30°=433km),在Rt△ABD中,BD=AD=2km,∴OB=OD+BD=32(km),故答案为:32.本题主要考查解直角三角形的应用−方向角问题,解题的关键是构建合适的直角三角形,并熟练运用三角函数进行求解.21.x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2解析:x1>2或x1<0.【解析】【分析】将二次函数的解析式化为顶点式,然后将点P、Q的坐标代入解析式中,然后y1>y2,列出关于x1的不等式即可求出结论.【详解】解:y=(x+k)(x﹣k﹣2)=(x﹣1)2﹣1﹣2k﹣k2,∵点P(x1,y1)和Q(2,y2)在二次函数y=(x+k)(x﹣k﹣2)的图象上,∴y1=(x1﹣1)2﹣1﹣2k﹣k2,y2=﹣2k﹣k2,∵y1>y2,∴(x1﹣1)2﹣1﹣2k﹣k2>﹣2k﹣k2,∴(x1﹣1)2>1,∴x1>2或x1<0.故答案为:x1>2或x1<0.【点睛】此题考查的是比较二次函数上两点之间的坐标大小关系,掌握二次函数的顶点式和根据函数值的取值范围求自变量的取值范围是解决此题的关键.22.5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,解得m=5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公解析:5【解析】【分析】根据概率公式列出方程,即可求出答案.【详解】解:由题意得,10m 3610m 45+=+++ 解得m =5,经检验m =5是原分式方程的根,故答案为5.【点睛】本题主要考查了概率公式,根据概率公式列出方程是解题的关键.23.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x 轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y =ax 2+bx+c (a≠0)的顶点为(2,-3),结论正确;②b 2﹣4ac =0,结论错误,应该是b 2﹣4ac>0;③关于x 的方程ax 2+bx+c =﹣2的解为x 1=1,x 2=3,结论正确;④m =﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.24.或【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5解析:209或145【解析】【分析】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,解直角三角形得到AC=4,AB=5,根据旋转的性质得到∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,根据相似三角形的性质得到DF=209;如图2,当⊙F与Rt△ABC的边AC相切时,延长DE交AB于H,推出点H为切点,DH为⊙F的直径,根据相似三角形的性质即可得到结论.【详解】如图1,当⊙F与Rt△ABC的边AC相切时,切点为H,连接FH,则HF⊥AC,∴DF=HF,∵Rt△ABC中,∠ACB=90°,BC=3,tan A=BCAC=34,∴AC=4,AB=5,将Rt△ABC绕点C顺时针旋转90°得到△DEC,∴∠DCE=∠ACB=90°,DE=AB=5,CD=AC=4,∵FH⊥AC,CD⊥AC,∴FH∥CD,∴△EFH∽△EDC,∴FH CD =EF DE , ∴4DF =55DF -, 解得:DF =209; 如图2,当⊙F 与Rt △ABC 的边AC 相切时,延长DE 交AB 于H ,∵∠A =∠D ,∠AEH =∠DEC∴∠AHE =90°,∴点H 为切点,DH 为⊙F 的直径,∴△DEC ∽△DBH ,∴DE BD =CD DH , ∴57=4DH, ∴DH =285, ∴DF =145, 综上所述,当FD =209或145时,⊙F 与Rt △ABC 的边相切, 故答案为:209或145. 【点睛】 本题考查了切线的判定和性质,相似三角形的判定和性质,旋转的性质,正确的作出辅助线是解题的关键.三、解答题25.(1)6;(2)1m =.【解析】【分析】(1)根据负指数幂和0次幂法则,特殊三角函数值分别算出原算式中的每一项,然后进行实数运算即可. (2)根据一元二次方程根的判别式与根个数的关系,可得出b 2-4ac=0,列方程求解.【详解】解:(1)()2012cos6020202π-⎛⎫++- ⎪⎝⎭︒ 12412=⨯++ 6=;(2)∵22210x x m ++-=有两个相等的实数根,∴b 2-4ac=22-4(2m-1)=0,∴m=1.【点睛】本题考查实数运算和一元二次方程根的判别式与根个数的关系,掌握负指数幂,0次幂和特殊三角形函数值及根的判别式是解答此题的关键.26.(1)14;(2)716; 【解析】【分析】(1)属于求简单事件的概率,根据概率公式计算可得;(2)用列表格法列出所有的等可能结果,从中确定符合事件的结果,根据概率公式计算可得.【详解】解:(1)小亮随机报名一个项目共有4种等可能结果,分别为A.足球、B.机器人、C.航模、D.绘画,其中选择“机器人”的有1种,为B.机器人,所以选择“机器人”的概率为P=14. (2)用列表法表示所有可能出现的结果如图:从表格可以看出,总共有16种结果,每种结果出现的可能性相同,其中至少有一人参加“航模”社团有7种,分别为(A,C),(B,C),(C,A), (C,B),(C,C), (C,D),(D,C),所以两人至少有一人参加“航模”社团的概率P=716. 【点睛】 本题考查的是求简单事件的概率和两步操作事件的概率,用表格或树状图表示总结果数是解答此类问题的关键.27.(1)16,17;(2)14;(3)2800.【解析】【分析】(1)将数据按照大小顺序重新排列,计算出中间两个数的平均数即是中位数,出现次数最多的即为众数;(2)根据平均数的概念,将所有数的和除以10即可;(3)用样本平均数估算总体的平均数.【详解】(1)按照大小顺序重新排列后,第5、第6个数分别是15和17,所以中位数是(15+17)÷2=16,17出现3次最多,所以众数是17,故答案为16,17;(2)10791215173202610⨯+++++⨯++=()14, 答:这10位居民一周内使用共享单车的平均次数是14次;(3)200×14=2800答:该小区居民一周内使用共享单车的总次数为2800次.【点睛】本题考查了中位数、众数、平均数的概念以及利用样本平均数估计总体.抓住概念进行解题,难度不大,但是中位数一定要先将所给数据按照大小顺序重新排列后再求,以免出错.28.(1)甲平均数301,乙平均数301,甲方差3.2,乙方差4.2;(2)甲包装机包装质量的稳定性好,见解析【解析】【分析】(1)根据平均数就是对每组数求和后除以数的个数;根据方差公式计算即可;(2)方差大说明这组数据波动大,方差小则波动小,就比较稳定.依此判断即可.【详解】解:(1)x 甲=110(1+0+5+2+3+2+0+0﹣2﹣1)+300=301, x 乙=110(5+2+0+0+0+0﹣2﹣1+1+5)+300=301, 2s 甲=110[(301﹣301)2+(301﹣300)2+(301﹣305)2+(301﹣302)2+(301﹣303)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2]=3.2;2 s乙=110[(301﹣305)2+(301﹣302)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣300)2+(301﹣298)2+(301﹣299)2+(301﹣301)2+(301﹣305)2]=4.2;(2)∵2s甲<2s乙,∴甲包装机包装质量的稳定性好.【点睛】本题考查了平均数和方差,正确掌握平均数及方差的求解公式是解题的关键. 29.(1)(2,﹣2);(2)(1,0);(3)10.【解析】试题分析:(1)根据平移的性质得出平移后的图从而得到点的坐标;(2)根据位似图形的性质得出对应点位置,从而得到点的坐标;(3)利用等腰直角三角形的性质得出△A2B2C2的面积.试题解析:(1)如图所示:C1(2,﹣2);故答案为(2,﹣2);(2)如图所示:C2(1,0);故答案为(1,0);(3)∵=20,=20,=40,∴△A2B2C2是等腰直角三角形,∴△A2B2C2的面积是:××=10平方单位.故答案为10.考点:1、平移变换;2、位似变换;3、勾股定理的逆定理30.8+83【解析】 【分析】过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.【详解】解:过点A 作AD ⊥BC ,垂足为点D ,在Rt △ADB 中,∵sin AD ABC AB ∠=, ∴sin AD AB ABC =⋅∠= 1842⨯= ∵cos BD ABC AB∠=, ∴3cos 843BD AB ABC =⋅∠=⨯= 在Rt △ADC 中,∵45ACB ︒∠=,∴45CAD ︒∠=,∴AD =DC =4∴ 111()(443)4883222ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.31.(1)233384y x x =-++;(2)① 32t =;②123453172417,3,,,26176t t t t t ===== 【解析】【分析】(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.【详解】解:(1)由题意知:A (0,3),C (4,0),∵抛物线经过A 、B 两点, ∴3316408c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384y x x =-++. (2)① ∵四边形ABCD 是矩形,∴∠B =90O , ∴AC 2=AB 2+BC 2=5; 由2333384x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,∵∠FAQ =∠BAC , ∠QFA =∠CBA ,∴△QFA ∽△CBA . ∴AQ QF AC BC=, ∴5335AQ QF BC t t AC =⋅=⋅=. 同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32.② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-+. 三角形直角的位置不确定,需分情况讨论:当DPG 90∠=︒时,根据勾股定理可得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 整理,解方程即可得解;当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;当PDG 90∠=︒时,同理用勾股定理得出:()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭; 整理求解可得t 的值.由此可得出t 的值为:132t =,23t =,3176t =,42417t =,517145t -=.【点睛】本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.32.(1)5;(2)PQ ∥A D '',理由见解析;(35 【解析】【分析】(1)求出AE 5ABE ∽△DEA ,由AD AE AE BE=可求出AD 的长; (2)过点E 作EF ⊥AD 于点F ,证明△PEF ∽△QEC ,再证△EPQ ∽△A'ED',可得出∠EPQ =∠EA'D',则结论得证;(3)由(2)知PQ ∥A ′D ′,取A ′D ′的中点N ,可得出∠PEM 为定值,则点M 的运动路径为线段,即从AD 的中点到DE 的中点,由中位线定理可得出答案.【详解】解:(1)∵AB =2,BE =1,∠B =90°,∴AE 22AB BE +2221+5∵∠AED =90°,∴∠EAD+∠ADE =90°,∵矩形ABCD 中,∠ABC =∠BAD =90°,∴∠BAE+∠EAD =90°,∴∠BAE =∠ADE ,∴△ABE ∽△DEA ,∴AD AE AE BE =, ∴55=, ∴AD =5; (2)PQ ∥A ′D ′,理由如下:∵5,5AD AE ==,∠AED =90° ∴22DE DA AE =-=225(5)-=25,∵AD =BC =5,∴EC =BC ﹣BE =5﹣1=4,过点E 作EF ⊥AD 于点F ,则∠FEC =90°,∵∠A'ED'=∠AED =90°,∴∠PEF =∠CEQ ,∵∠C =∠PFE =90°,∴△PEF ∽△QEC ,∴2142EP EF EQ EC ===, ∵51225EA EA ED ED ''===, ∴EP EA EQ ED ''=, ∴PQ ∥A ′D ′;(3)连接EM ,作MN ⊥AE 于N ,由(2)知PQ ∥A ′D ′,∴∠EPQ =∠A ′=∠EAP ,又∵△PEQ为直角三角形,M为PQ中点,∴PM=ME,∴∠EPQ=∠PEM,∵∠EPF=∠EAP+∠AEA′,∠NEM=∠PEM+∠AEA′∴∠EPF=∠NEM,又∵∠PFE=∠ENM﹣90°,∴△PEF∽△EMN,∴NM EMEF PE=PQ2PE为定值,又∵EF=AB=2,∴MN为定值,即M的轨迹为平行于AE的线段,∵M初始位置为AD中点,停止位置为DE中点,∴M的轨迹为△ADE的中位线,∴线段PQ的中点M所经过的路径长=1AE2=5.【点睛】本题考查了矩形的性质,相似三角形的判定与性质,勾股定理,平行线的判定,中位线定理等知识,熟练掌握相似三角形的判定与性质是解题的关键.。
湖南省株洲市九年级上学期数学期末考试试卷
湖南省株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)科学家测得肥皂泡的厚度约为0.000 000 7米,用科学记数法表示为()A . 0.7×10-6米B . 0.7×10-7米C . 7×10-7米D . 7×10-6米2. (2分)若2m=3,2n=4,则23m-2n等于()A . 1B .C .D .3. (2分)(2017·武汉) 在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:成绩/m 1.50 1.60 1.65 1.70 1.75 1.80人数232341则这些运动员成绩的中位数、众数分别为()A . 1.65、1.70B . 1.65、1.75C . 1.70、1.75D . 1.70、1.704. (2分) (2020九上·龙岩期末) 方程x(x﹣5)=0的根是()A . 5B . ﹣5,5C . 0,﹣5D . 0,55. (2分) (2016九上·呼和浩特期中) 如果抛物线y=﹣x2+bx+c经过A(0,﹣2),B(﹣1,1)两点,那么此抛物线经过()A . 第一、二、三、四象限B . 第一、二、三象限C . 第一、二、四象限D . 第二、三、四象限6. (2分)(2020·威海) 如图,在平行四边形ABCD中,对角线,,,为的中点,E为边上一点,直线交于点F,连结,.下列结论不成立的是()A . 四边形为平行四边形B . 若,则四边形为矩形C . 若,则四边形为菱形D . 若,则四边形为正方形7. (2分)(2017·日照) 已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a+b+c=0;③a﹣b+c<0;④抛物线的顶点坐标为(2,b);⑤当x<2时,y随x增大而增大.其中结论正确的是()A . ①②③B . ③④⑤C . ①②④D . ①④⑤8. (2分)一个正方形的边长增加了2 ,面积相应增加了32 ,则原正方形的边长为()A .B .C .D .二、填空题 (共6题;共6分)9. (1分)若m=,则m5﹣2m4﹣2011m3的值是________.10. (1分)(2017·宁夏) 分解因式:2a2﹣8=________.11. (1分) (2017七下·费县期中) 已知点P在第四象限,且到x轴的距离是3,到y轴的距离是2,则点P 的坐标为________.12. (1分)(2017·宜兴模拟) 已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是________.13. (1分)若关于x的一元二次方程a(x+m)2-3=0的两个实数根分别为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点坐标为________.14. (1分)如图,BC为⊙O的弦,OA⊥BC交⊙O于点A,∠AOB=70°,则∠ADC=________.三、解答题 (共9题;共89分)15. (5分)计算:(1);(2).16. (5分) (2016八上·九台期中) 如图,已知AB=AD,且AC平分∠BAD,求证:BC=DC.17. (6分) (2018八上·宁城期末) 探究归纳题:(1)试验分析:如图1,经过A点可以做________条对角线;同样,经过B点可以做________条;经过C点可以做________条;经过D点可以做________条对角线.通过以上分析和总结,图1共有________条对角线.(2)拓展延伸:运用(1)的分析方法,可得:图2共有________条对角线;图3共有________条对角线;(3)探索归纳:对于n边形(n>3),共有________条对角线.(用含n的式子表示)(4)特例验证:十边形有________对角线.18. (7分) (2019八下·天河期末) 如图,矩形OBCD中,OB=5,OD=3,以O为原点建立平面直角坐标系,点B ,点D分别在x轴,y轴上,点C在第一象限内,若平面内有一动点P ,且满足S△POB= S矩形OBCD ,问:(1)当点P在矩形的对角线OC上,求点P的坐标;(2)当点P到O , B两点的距离之和PO+PB取最小值时,求点P的坐标.19. (16分) (2018九上·瑞安月考) 为了解某区八年级学生身体素质情况,该区从全区八年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是________;(2)图1中∠α的度数是________;并把图2条形统计图补充完整________;(3)该区八年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为________;(4)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.20. (10分)如图,二次函数y=x2﹣4x+m的图象与y轴交于点C,点B是点C关于该二次函数图象的对称轴对称的点.已知一次函数y=kx+b的图象经过该二次函数图象上点A(1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,直接写出满足kx+b≥x2﹣4x+m的x的取值范围.(3)在抛物线的对称轴上是否存在一点P使得PA+PC最小,求P点坐标及最小值.21. (10分) (2016八下·固始期末) 在△ABC中,∠C=90°,AC=6,BC=8,D、E分别是斜边AB和直角边CB 上的点,把△ABC沿着直线DE折叠,顶点B的对应点是B′.(1)如图(1),如果点B′和顶点A重合,求CE的长;(2)如图(2),如果点B′和落在AC的中点上,求CE的长.22. (15分) (2019九上·中原月考) 随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少元:从网上购买张电影票的费用和现场购买张电影票的费用共元.(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?(2) 2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加张.经统计,5月5日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出5月5日当天现场购票每张电影票的价格为多少元?23. (15分)(2020·定海模拟) 在长、宽均为45米的十字路口,现遇到红灯,有10辆车依次呈一直线停在路口的交通白线后,每两辆车间隔为2.5米,每辆车长5米,每辆车的速度v(米/秒)关于时间t(秒)的函数如图1所示。
九年级上册株洲数学期末试卷测试卷(解析版)
九年级上册株洲数学期末试卷测试卷(解析版)一、选择题1.有9名同学参加歌咏比赛,他们的预赛成绩各不相同,现取其中前4名参加决赛,小红同学在知道自己成绩的情况下,要判断自己能否进入决赛,还需要知道这9名同学成绩的( ) A .平均数B .方差C .中位数D .极差2.如图,ABC ∆与A B C '''∆是以坐标原点O 为位似中心的位似图形,若点A 是OA '的中点,ABC ∆的面积是6,则A B C '''∆的面积为( )A .9B .12C .18D .243.若将半径为24cm 的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为( ) A .3cmB .6cmC .12cmD .24cm4.如图,在平面直角坐标系xOy 中,点A 为(0,3),点B 为(2,1),点C 为(2,-3).则经画图操作可知:△ABC 的外心坐标应是( )A .()0,0B .()1,0C .()2,1--D .()2,0 5.已知一元二次方程x 2+kx-3=0有一个根为1,则k 的值为( ) A .−2B .2C .−4D .46.△ABC 的外接圆圆心是该三角形( )的交点.A .三条边垂直平分线B .三条中线C .三条角平分线D .三条高7.如图,AB 是O 的直径,AC 切O 于点A ,若70C ∠=︒,则AOD ∠的度数为( )A .40°B .45°C .60°D .70°8.生产季节性产品的企业,当它的产品无利润时就会及时停产.现有一生产季节性产品的企业,一年中获得利润y 与月份n 之间的函数关系式是y =-n 2+15n -36,那么该 企业一年中应停产的月份是( ) A .1月,2月 B .1月,2月,3月 C .3月,12月D .1月,2月,3月,12月9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( ) A .144(1﹣x )2=100 B .100(1﹣x )2=144 C .144(1+x )2=100 D .100(1+x )2=144 10.把函数212y x =-的图象,经过怎样的平移变换以后,可以得到函数()21112y x =--+的图象( ) A .向左平移1个单位,再向下平移1个单位 B .向左平移1个单位,再向上平移1个单位 C .向右平移1个单位,再向上平移1个单位 D .向右平移1个单位,再向下平移1个单位11.如图,在O 中,AB 是O 的直径,点D 是O 上一点,点C 是弧AD 的中点,弦CE AB ⊥于点F ,过点D 的切线交EC 的延长线于点G ,连接AD ,分别交CF BC 、于点P Q 、,连接AC .给出下列结论:①BAD ABC ∠=∠;②GP GD =;③点P 是ACQ的外心;④AP AD ⋅CQ CB =⋅.其中正确的是( )A .①②③B .②③④C .①③④D .①②③④12.如图,点P (x ,y )(x >0)是反比例函数y=kx(k >0)的图象上的一个动点,以点P 为圆心,OP 为半径的圆与x 轴的正半轴交于点A ,若△OPA 的面积为S ,则当x 增大时,S 的变化情况是( )A .S 的值增大B .S 的值减小C .S 的值先增大,后减小D .S 的值不变二、填空题13.如图,A 、B 、C 是⊙O 上三点,∠ACB =30°,则∠AOB 的度数是_____.14.圆锥的母线长为5cm ,高为4cm ,则该圆锥的全面积为_______cm 2.15.如图,已知菱形ABCD 中,4AB =,C ∠为钝角,AM BC ⊥于点M ,N 为AB 的中点,连接DN ,MN .若90DNM ∠=︒,则过M 、N 、D 三点的外接圆半径为______.16.将正整数按照图示方式排列,请写出“2020”在第_____行左起第_____个数.17.如图,∠C=∠E=90°,AC=3,BC=4,AE=2,则AD=_________ .18.已知圆锥的侧面积为20πcm 2,母线长为5cm ,则圆锥底面半径为______cm . 19.如图(1),在矩形ABCD 中,将矩形折叠,使点B 落在边AD 上,这时折痕与边AD 和BC 分别交于点E 、点F .然后再展开铺平,以B 、E 、F 为顶点的△BEF 称为矩形ABCD 的“折痕三角形”.如图(2),在矩形ABCD 中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E 的坐标为_________________________.20.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,设增长率为x ,则可列方程为______.21.如图,ABC 是⊙O 的内接三角形,AD 是△ABC 的高,AE 是⊙O 的直径,且AE=4,若CD=1,AD=3,则AB 的长为______.22.已知二次函数2(0)y ax bx c a =++≠,y 与x 的部分对应值如下表所示:x… -1 0 1 2 3 4 … y…61-2-3-2m…下面有四个论断:①抛物线2(0)y ax bx c a =++≠的顶点为(23)-,; ②240b ac -=;③关于x 的方程2=2ax bx c ++-的解为12=13x x =,;④=3m .其中,正确的有___________________.23.如图,在⊙O中,分别将弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,若⊙O的半径为4,则四边形ABCD的面积是__________________.24.如图,四边形ABCD中,∠A=∠B=90°,AB=5cm,AD=3cm,BC=2cm,P是AB 上一点,若以P、A、D为顶点的三角形与△PBC相似,则PA=_____cm.三、解答题25.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.26.在矩形ABCD中,AB=3,AD=5,E是射线..DC上的点,连接AE,将△ADE沿直线AE 翻折得△AFE.(1)如图①,点F恰好在BC上,求证:△ABF∽△FCE;(2)如图②,点F在矩形ABCD内,连接CF,若DE=1,求△EFC的面积;(3)若以点E、F、C为顶点的三角形是直角三角形,则DE的长为.27.如图,宾馆大厅的天花板上挂有一盏吊灯AB,某人从C点测得吊灯顶端A的仰角为35︒,吊灯底端B的仰角为30,从C点沿水平方向前进6米到达点D,测得吊灯底端B 的仰角为60︒.请根据以上数据求出吊灯AB的长度.(结果精确到0.1米.参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,2≈1.41,3≈1.73)28.如图,矩形OABC中,A(6,0)、C(0,23)、D(0,33),射线l过点D且与x轴平行,点P、Q分别是l和x轴正半轴上动点,满足∠PQO=60°.(1)①点B的坐标是;②当点Q与点A重合时,点P的坐标为;(2)设点P的横坐标为x,△OPQ与矩形OABC的重叠部分的面积为S,试求S与x的函数关系式及相应的自变量x的取值范围.29.如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,∠ACB=90°,∠BAC=30°,OD=3cm,开始的时候BD=1cm,现在三角板以2cm/s 的速度向右移动.(1)当点B于点O重合的时候,求三角板运动的时间;(2)三角板继续向右运动,当B点和E点重合时,AC与半圆相切于点F,连接EF,如图2所示.①求证:EF平分∠AEC;②求EF的长.30.如图,四边形ABCD内接于⊙O,AC为⊙O的直径,D为AC的中点,过点D作DE∥AC,交BC的延长线于点E.(1)判断DE与⊙O的位置关系,并说明理由;(2)若CE=163,AB=6,求⊙O的半径.31.如图①,抛物线y=x2﹣(a+1)x+a与x轴交于A、B两点(点A位于点B的左侧),与y轴交于点C.已知△ABC的面积为6.(1)求这条抛物线相应的函数表达式;(2)在抛物线上是否存在一点P,使得∠POB=∠CBO,若存在,请求出点P的坐标;若不存在,请说明理由;(3)如图②,M是抛物线上一点,N是射线CA上的一点,且M、N两点均在第二象限内,A、N是位于直线BM同侧的不同两点.若点M到x轴的距离为d,△MNB的面积为2d,且∠MAN=∠ANB,求点N的坐标.32.如图示,AB是O的直径,点F是半圆上的一动点(F不与A,B重合),弦AD平分BAF∠,过点D作DE AF⊥交射线AF于点AF.(1)求证:DE 与O 相切:(2)若8AE =,10AB =,求DE 长;(3)若10AB =,AF 长记为x ,EF 长记为y ,求y 与x 之间的函数关系式,并求出AF EF ⋅的最大值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】9人成绩的中位数是第5名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可. 【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少. 故选:C . 【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、极差、方差的意义,掌握相关知识点是解答此题的关键.2.D解析:D 【解析】 【分析】根据位似图形的性质,再结合点A 与点A '的坐标关系可得出两个三角形的相似比,再根据面积比等于相似比的平方即可得出答案. 【详解】解:∵△ABC 与△A B C '''是以坐标原点O 为位似中心的位似图形,且A 为O A '的中心, ∴△ABC 与△A B C '''的相似比为:1:2;∵位似图形的面积比等于相似比的平方,∴△A B C '''的面积等于4倍的△ABC 的面积,即4624⨯=. 故答案为:D. 【点睛】本题考查的知识点是位似图形的性质,位似是特殊的相似,熟记位似图形的面积比等于相似比的平方是解题的关键.3.C解析:C 【解析】 【分析】易得圆锥的母线长为24cm ,以及圆锥的侧面展开图的弧长,也就是圆锥的底面周长,除以2π即为圆锥的底面半径. 【详解】解:圆锥的侧面展开图的弧长为:2π24224π⨯÷=, ∴圆锥的底面半径为:()24π2π12cm ÷=. 故答案为:C. 【点睛】本题考查的知识点是圆锥的有关计算,熟记各计算公式是解题的关键.4.C解析:C 【解析】外心在BC 的垂直平分线上,则外心纵坐标为-1.故选C.5.B解析:B 【解析】分析:根据一元二次方程的解的定义,把x=1代入方程得关于k 的一次方程1-3+k=0,然后解一次方程即可.详解:把x=1代入方程得1+k-3=0, 解得k=2. 故选B .点睛:本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.A解析:A 【解析】 【分析】根据三角形的外接圆的概念、三角形的外心的概念和性质直接填写即可. 【详解】解:△ABC的外接圆圆心是△ABC三边垂直平分线的交点,故选:A.【点睛】本题考查了三角形的外心,三角形的外接圆圆心即为三角形的外心,是三条边垂直平分线的交点,正确理解三角形外心的概念是解题的关键.7.A解析:A【解析】【分析】先依据切线的性质求得∠CAB的度数,然后依据直角三角形两锐角互余的性质得到∠CBA 的度数,然后由圆周角定理可求得∠AOD的度数.【详解】解:∵AC是圆O的切线,AB是圆O的直径,∴AB⊥AC,∴∠CAB=90°,又∵∠C=70°,∴∠CBA=20°,∴∠AOD=40°.故选:A.【点睛】本题主要考查的是切线的性质、圆周角定理、直角三角形的性质,求得∠CBA=20°是解题的关键.8.D解析:D【解析】【分析】【详解】当-n2+15n-36≤0时该企业应停产,即n2-15n+36≥0,n2-15n+36=0的两个解是3或者12,根据函数图象当n≥12或n≤3时n2-15n+36≥0,所以1月,2月,3月,12月应停产.故选D9.D解析:D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x),2013年的产量为100(1+x)(1+x)=100(1+x)2,即所列的方程为100(1+x)2=144,故选D.点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.10.C解析:C【解析】【分析】根据抛物线顶点的变换规律作出正确的选项.【详解】 抛物线212y x =-的顶点坐标是00(,),抛物线线()21112y x =--+的顶点坐标是11(,), 所以将顶点00(,)向右平移1个单位,再向上平移1个单位得到顶点11(,), 即将函数212y x =-的图象向右平移1个单位,再向上平移1个单位得到函数()21112y x =--+的图象. 故选:C .【点睛】 主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.11.B解析:B【解析】【分析】①由于AC 与BD 不一定相等,根据圆周角定理可判断①;②连接OD ,利用切线的性质,可得出∠GPD=∠GDP ,利用等角对等边可得出GP=GD ,可判断②;③先由垂径定理得到A 为CE 的中点,再由C 为AD 的中点,得到CD AE =,根据等弧所对的圆周角相等可得出∠CAP=∠ACP ,利用等角对等边可得出AP=CP ,又AB 为直径得到∠ACQ 为直角,由等角的余角相等可得出∠PCQ=∠PQC ,得出CP=PQ ,即P 为直角三角形ACQ 斜边上的中点,即为直角三角形ACQ 的外心,可判断③;④正确.证明△APF ∽△ABD ,可得AP×AD=AF×AB ,证明△ACF ∽△ABC ,可得AC 2=AF×AB ,证明△CAQ ∽△CBA ,可得AC 2=CQ×CB ,由此即可判断④;【详解】解:①错误,假设BAD ABC ∠=∠,则BD AC =,AC CD =,∴AC CD BD ==,显然不可能,故①错误.②正确.连接OD . GD 是切线,DG OD ∴⊥,∴∠+∠=︒,GDP ADO90=,OA OD∴∠=∠,ADO OAD∠=∠,∠+∠=︒,GPD APFAPF OAD90∴∠=∠,GPD GDP∴=,故②正确.GD GP⊥,③正确.AB CE∴AE AC=,=,AC CD∴CD AE=,∴∠=∠,CAD ACEPC PA∴=,AB是直径,∴∠=︒,90ACQCAP CQP∠+∠=︒,∴∠+∠=︒,90 ACP QCP90∴∠=∠,PCQ PQC∴==,PC PQ PA∠=︒,ACQ90∆的外心.故③正确.∴点P是ACQ④正确.连接BD.∠=∠=︒,PAF BAD90AFP ADB∠=∠,APF ABD∽,∴∆∆∴AP AF=,AB ADAP AD AF AB∴⋅=⋅,∠=∠=︒,AFC ACBCAF BAC∠=∠,90∴∆∆∽,ACF ABC可得2=,AC AF AB∠=∠,∠=∠,CAQ ABCACQ ACB∽,可得2∴∆∆CAQ CBA=⋅,AC CQ CBAP AD CQ CB∴⋅=⋅.故④正确,故选:B.【点睛】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.12.D解析:D【解析】【分析】作PB⊥OA于B,如图,根据垂径定理得到OB=AB,则S△POB=S△PAB,再根据反比例函数k的几何意义得到S△POB=12|k|,所以S=2k,为定值.【详解】作PB⊥OA于B,如图,则OB=AB,∴S△POB=S△PAB.∵S△POB=12|k|,∴S=2k,∴S的值为定值.故选D.【点睛】本题考查了反比例函数系数k的几何意义:在反比例函数y=kx图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.二、填空题13.60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB =2∠ACB=60°.故答案为:60°.【点解析:60°【解析】【分析】直接利用圆周角定理,即可求得答案.【详解】∵A、B、C是⊙O上三点,∠ACB=30°,∴∠AOB的度数是:∠AOB=2∠ACB=60°.故答案为:60°.【点睛】考查了圆周角定理的运用,同弧或等弧所对的圆周角等于圆心角的一半.14.24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底解析:24π【解析】【分析】利用圆锥的母线长和圆锥的高求得圆锥的底面半径,表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.【详解】解:∵圆锥母线长为5cm,圆锥的高为4cm,∴底面圆的半径为3,则底面周长=6π,∴侧面面积=12×6π×5=15π;∴底面积为=9π,∴全面积为:15π+9π=24π.故答案为24π.【点睛】本题利用了圆的周长公式和扇形面积公式求解.15.【解析】【分析】通过延长MN 交DA 延长线于点E ,DF⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt△DMF 和Rt△DCF 中,利用勾股定理列方程求DM 长,根1【解析】【分析】通过延长MN 交DA 延长线于点E ,DF ⊥BC,构造全等三角形,根据全等性质证出DE=DM,,再通过AE=BM=CF,在Rt △DMF 和Rt △DCF 中,利用勾股定理列方程求DM 长,根据圆的性质即可求解.【详解】如图,延长MN 交DA 延长线于点E ,过D 作DF ⊥BC 交BC 延长线于F,连接MD,∵四边形ABCD 是菱形,∴AB=BC=CD=4,AD ∥BC,∴∠E=∠EMB, ∠EAN=∠NBM,∵AN=BN,∴△EAN ≌BMN,∴AE=BM,EN=MN,∵90DNM ∠=︒,∴DN ⊥EM,∴DE=DM,∵AM ⊥BC,DF ⊥BC,AB=DC,AM=DF∴△ABM ≌△DCF,∴BM=CF,设BM=x,则DE=DM=4+x,在Rt △DMF 中,由勾股定理得,DF 2=DM 2-MF 2=(4+x)2-42,在Rt △DCF 中,由勾股定理得,DF 2=DC 2-CF 2=4 2-x 2,∴(4+x)2-42=4 2-x 2,解得,x 1=2,x 2=232(不符合题意,舍去)∴DM=2,∴90DNM ∠=︒∴过M 、N 、D 三点的外接圆的直径为线段DM, ∴其外接圆的半径长为1312DM .31.【点睛】本题考查菱形的性质,全等的判定与性质,勾股定理及圆的性质的综合题目,根据已知条件结合图形找到对应的知识点,通过“倍长中线”构建“X字型”全等模型是解答此题的突破口,也是解答此题的关键.16.4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第解析:4【解析】【分析】根据图形中的数字,可以写出前n行的数字之和,然后即可计算出2020在多少行左起第几个数字,本题得以解决.【详解】解:由图可知,第一行1个数,第二行2个数,第三行3个数,…,则第n行n个数,故前n个数字的个数为:1+2+3+…+n=(1)2n n+,∵当n=63时,前63行共有63642⨯=2016个数字,2020﹣2016=4,∴2020在第64行左起第4个数,故答案为:64,4.【点睛】本题考查了数字类规律探究,从已有数字确定其变化规律是解题的关键.17..【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△AB解析:10 3.【解析】试题分析:由∠C=∠E=90°,∠BAC=∠DAE可得△ABC∽△ADE,根据相似三角形的对应边的比相等就可求出AD的长.试题解析:∵∠C=∠E=90°,∠BAC=∠DAE∴△ABC∽△ADE∴AC:AE=BC:DE∴DE=83∴103AD=考点: 1.相似三角形的判定与性质;2.勾股定理.18.4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积解析:4【解析】【分析】由圆锥的母线长是5cm,侧面积是20πcm2,求圆锥侧面展开扇形的弧长,然后再根据锥的侧面展开扇形的弧长等于圆锥的底面周长求解.【详解】解:由圆锥的母线长是5cm,侧面积是20πcm2,根据圆锥的侧面展开扇形的弧长为:2405Slrπ===8π,再根据锥的侧面展开扇形的弧长等于圆锥的底面周长,可得822lrπππ===4cm.故答案为:4.【点睛】本题考查圆锥的计算,掌握公式正确计算是解题关键.19.(,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=解析:(32,2).【解析】【分析】【详解】解:如图,当点B与点D重合时,△BEF面积最大,设BE=DE=x,则AE=4-x,在RT△ABE中,∵EA2+AB2=BE2,∴(4-x)2+22=x2,∴x=52,∴BE=ED=52,AE=AD-ED=32,∴点E坐标(32,2).故答案为:(32,2).【点睛】本题考查翻折变换(折叠问题),利用数形结合思想解题是关键.20.3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解析:3000(1+ x)2=4320【解析】【分析】设增长率为x,则2010年绿化面积为3000(1+x)m2,则2021年的绿化面积为3000(1+x)(1+x)m2,然后可得方程.【详解】解:设增长率为x,由题意得:3000(1+x)2=4320,故答案为:3000(1+x)2=4320.【点睛】本题考查了由实际问题抽象出一元二次方程,关键是正确理解题意,找出题目中的等量关系.21.【解析】【分析】利用勾股定理求出AC,证明△ABE∽△ADC,推出,由此即可解决问题.【详解】解:∵AD是△ABC的高,∴∠ADC=90°,∴,∵AE是直径,∴∠ABE=90°,【解析】【分析】利用勾股定理求出AC ,证明△ABE ∽△ADC ,推出AB AE AD AC =,由此即可解决问题. 【详解】解:∵AD 是△ABC 的高,∴∠ADC=90°,∴AC ==∵AE 是直径,∴∠ABE=90°,∴∠ABE=∠ADC ,∵∠E=∠C ,∴△ABE ∽△ADC , ∴AB AE AD AC=, ∴3AB =∴AB =故答案为:5 【点睛】本题考查相似三角形的判定和性质,勾股定理、圆周角定理等知识,解题的关键是正确寻找相似三角形解决问题.22.①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛解析:①③.【解析】【分析】根据图表求出函数对称轴,再根据图表信息和二次函数性质逐一判断即可.【详解】由二次函数y =ax 2+bx+c (a≠0),y 与x 的部分对应值可知:该函数图象是开口向上的抛物线,对称轴是直线x=2,顶点坐标为(2,-3);与x轴有两个交点,一个在0与1之间,另一个在3与4之间;当y=-2时,x=1或x=3;由抛物线的对称性可知,m=1;∴①抛物线y=ax2+bx+c(a≠0)的顶点为(2,-3),结论正确;②b2﹣4ac=0,结论错误,应该是b2﹣4ac>0;③关于x的方程ax2+bx+c=﹣2的解为x1=1,x2=3,结论正确;④m=﹣3,结论错误,∴其中,正确的有. ①③故答案为:①③【点睛】本题考查了二次函数的图像,结合图表信息是解题的关键.23.【解析】【分析】作OH⊥AB,延长OH交于E,反向延长OH交CD于G,交于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD是平行解析:163【解析】【分析】作OH⊥AB,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,根据折叠的对称性及三角形全等,证明AB=CD,又因AB∥CD,所以四边形ABCD 是平行四边形,由平行四边形面积公式即可得解.【详解】如图,作OH⊥AB,垂足为H,延长OH交O于E,反向延长OH交CD于G,交O于F,连接OA、OB、OC、OD,则OA=OB=OC=OD=OE=OF=4,∵弧AB、弧CD沿两条互相平行的弦AB、CD折叠,折叠后的弧均过圆心,∴OH=HE=1×4=22,OG=GF=1×4=22,即OH=OG,又∵OB=OD,∴Rt△OHB≌Rt△OGD,∴HB=GD,同理,可得AH=CG= HB=GD∴AB=CD又∵AB ∥CD∴四边形ABCD 是平行四边形,在Rt △OHA 中,由勾股定理得:==∴AB=∴四边形ABCD 的面积=AB ×GH=故答案为:.【点睛】本题考查圆中折叠的对称性及平行四边形的证明,关键是作辅助线,本题也可通过边、角关系证出四边形ABCD 是矩形.24.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.②当AD :BC =PA +PB 时,3=25x x-,解得x =3, ∴当A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,AP 的值为2或3. 故答案为2或3.【点睛】本题考查了相似三角形的问题,掌握相似三角形的性质以及判定定理是解题的关键.三、解答题25.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.26.(1)证明见解析;(2)513;(3)53、5、155(345)-【解析】【分析】(1)利用同角的余角相等,证明∠CEF=∠AFB,即可解决问题;(2)过点F作FG⊥DC交DC与点G,交AB于点H,由△FGE∽△AHF得出AH=5GF,再利用勾股定理求解即可;(3)分①当∠EFC=90°时; ②当∠ECF=90°时;③当∠CEF=90°时三种情况讨论解答即可.【详解】(1)解:在矩形ABCD中,∠B=∠C=∠D=90°由折叠可得:∠D=∠EFA=90°∵∠EFA=∠C=90°∴∠CEF+∠CFE=∠CFE+∠AFB=90°∴∠CEF=∠AFB在△ABF和△FCE中∵∠AFB=∠CEF,∠B=∠C=90°△ABF∽△FCE(2)解:过点F作FG⊥DC交DC与点G,交AB于点H,则∠EGF=∠AHF=90°在矩形ABCD中,∠D=90°由折叠可得:∠D=∠EFA=90°,DE=EF=1,AD=AF=5∵∠EGF=∠EFA=90°∴∠GEF+∠GFE=∠AFH+∠GFE=90°∴∠GEF=∠AFH在△FGE和△AHF中∵∠GEF=∠AFH,∠EGF=∠FHA=90°∴△FGE∽△AHF∴EFAF=GFAH∴15=GFAH∴AH=5GF在Rt△AHF中,∠AHF=90°∵AH2+FH2=AF2∴(5 GF)2+(5-GF)2=52∴GF=5 13∴△EFC的面积为12×513×2=513;(3)解:①当∠EFC=90°时,A 、F 、C 共线,如图所示:设DE=EF=x,则CE=3-x, ∵AC=22223534AD CD +=+=,∴CF=34-x, ∵∠CFE=∠D=90°, ∠DCA=∠DCA,∴△CEF ∽△CAD, ∴CE EF CA AD =,即534x =,解得:ED=x=5(345)-; ②当∠ECF=90°时,如图所示:∵AD=1AF =5,AB=3, ∴1BF 221AF AB -设1DE =x,则1E C =3-x,∵∠DCB=∠ABC=90°, 111CF E F AB ∠=∠∴11CE F ∽1BF A ,∴11111E C E F F B F A =,即345x x -=,解得:x=1E D =53; 由折叠可得 :222E F E D = ,设2E C x =,则2223E F DE x ==+,2549CF =+=, 在RT △22E F C 中,∵2222222CF CE E F +=,即9²+x²=(x+3)²,解得x=2E C =12, ∴231215DE =+=;③当∠CEF=90°时,AD=AF,此时四边形AFED是正方形,∴AF=AD=DE=5,综上所述,DE的长为:53、5、15、5(345).【点睛】本题考查了翻折的性质,相似三角形的判定与性质,勾股定理,掌握翻折的性质,分类探讨的思想方法是解决问题的关键.27.吊灯AB的长度约为1.1米.【解析】【分析】延长CD交AB的延长线于点E,构建直角三角形,分别在两个直角三角形△BDE和△AEC 中利用正弦和正切函数求出AE长和BE长,即可求解.【详解】解:延长CD交AB的延长线于点E,则∠AEC=90°,∵∠BDE=60°,∠DCB=30°,∴∠CBD=60°﹣30°=30°,∴∠DCB=∠CBD,∴BD=CD=6(米)在Rt△BDE中,sin∠BDE=BE BD,∴BE=BD•sin∠BDE═6×sin60°=3≈5.19(米),DE=12BD=3(米),在Rt△AEC中,tan∠ACE=AE CE,∴AE=CE•tan∠ACE=(6+3)×tan35°≈9×0.70=6.30(米),∴AB=AE﹣BE≈6.30﹣5.19≈1.1(米),∴吊灯AB的长度约为1.1米.【点睛】本题考查解直角三角形的应用,解答此题的关键是构建直角三角形,利用锐角三角函数进行解答.28.(1)①(6,23),②(3,33);(2)()()()()2434303313333523123595439xxx x xSx xx⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩【解析】【分析】(1)①由四边形OABC是矩形,根据矩形的性质,即可求得点B的坐标;②由正切函数,即可求得∠CAO的度数,③由三角函数的性质,即可求得点P的坐标;(2)分别从当0≤x≤3时,当3<x≤5时,当5<x≤9时,当x>9时去分析求解即可求得答案.【详解】解:(1)①∵四边形OABC是矩形,∴AB=OC,OA=BC,∵A(6,0)、C(0,23),∴点B的坐标为:(6,23);②如图1:当点Q与点A重合时,过点P作PE⊥OA于E,∵∠PQO=60°,D(0,3∴3∴AE=3tan60PE=,∴OE=OA-AE=6-3=3, ∴点P 的坐标为(3,33);故答案为:①(6,23),②(3,33); (2)①当0≤x ≤3时,如图,OI =x ,IQ =PI •tan 60°=3,OQ =OI +IQ =3+x ;由题意可知直线l ∥BC ∥OA , ∴31333EF PE DC OQ PO DO ====, ∴EF =133+x () 此时重叠部分是梯形,其面积为:S 梯形=12(EF +OQ )•OC =43(3+x ) ∴4343x S =+. 当3<x ≤5时,如图AQ =OI +IO -OA =x +3-6=x -3AH 3x -3)S=S 梯形﹣S △HAQ =S 梯形﹣12AH •AQ 433+x 23x (-3) ∴231333S x x =+ ③当5<x ≤9时,如图∵CE ∥DP ∴CO CE DO DP = ∴2333CE x= ∴23CE x = 263BE x =- S=12(BE +OA )•OC =3(12﹣23x ) ∴23123S x =-+. ④当x >9时,如图∵AH ∥PI∴AO AH OI PI = ∴633x =∴183AH =S=12543.综上:24343033313333523123595439xxx x xSx xx⎧+≤≤⎪⎪⎪-+-<≤⎪⎪=⎨⎪-+<≤⎪⎪⎪>⎪⎩()()()().【点睛】此题考查了矩形的性质,相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质等知识.此题综合性较强,难度较大,注意数形结合思想与分类讨论思想的应用.29.(1)2s(2)①证明见解析,②33√【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)①连接OF,由AC与半圆相切于点F,易得OF⊥AC,然后由∠ACB=90°,易得OF∥CE,继而证得EF平分∠AEC;②由△AFO是直角三角形,∠BAC=30°,OF=OD=3cm,可求得AF的长,由EF平分∠AEC,易证得△AFE是等腰三角形,且AF=EF,则可求得答案.试题解析:(1)∵当点B于点O重合的时候,BO=OD+BD=4cm,∴t=42=2(s);∴三角板运动的时间为:2s;(2)①证明:连接O与切点F,则OF⊥AC,∵∠ACE=90°,∴EC⊥AC,∴OF∥CE,∴∠OFE=∠CEF,∵OF=OE,∴∠OFE=∠OEF,∴∠OEF=∠CEF,即EF平分∠AEC;②由①知:OF⊥AC,∴△AFO是直角三角形,∵∠BAC=30°,OF=OD=3cm,∴tan30°=3AF,∴AF=33cm,由①知:EF平分∠AEC,∴∠AEF=∠CEF=12∠AEC=30°,∴∠AEF=∠EAF,∴△AFE是等腰三角形,且AF=EF,∴EF=33cm.30.(1)DE与⊙O相切;理由见解析;(2)4.【解析】【分析】(1)连接OD,由D为AC的中点,得到AD CD=,进而得到AD=CD,根据平行线的性质得到∠DOA=∠ODE=90°,求得OD⊥DE,于是得到结论;(2)连接BD,根据四边形对角互补得到∠DAB=∠DCE,由AD CD=得到∠DAC=∠DCA =45°,求得△ABD∽△CDE,根据相似三角形的性质即可得到结论.【详解】(1)解:DE与⊙O相切证:连接OD,在⊙O中∵D为AC的中点∴AD CD=∴AD=DC∵AD=DC,点O是AC的中点∴OD⊥AC∴∠DOA=∠DOC=90°∵DE∥AC∴∠DOA=∠ODE=90°∵∠ODE=90°∴OD⊥DE∵OD⊥DE,DE经过半径OD的外端点D∴DE与⊙O相切.(2)解:连接BD∵四边形ABCD是⊙O的内接四边形∴∠DAB+∠DCB=180°又∵∠DCE+∠DCB=180°∴∠DAB=∠DCE∵AC为⊙O的直径,点D、B在⊙O上,∴∠ADC=∠ABC=90°∵AD CD=,∴∠ABD=∠CBD=45°∵AD=DC,∠ADC=90°∴∠DAC=∠DCA=45°∵DE∥AC∴∠DCA=∠CDE=45°在△ABD和△CDE中∵∠DAB=∠DCE,∠ABD=∠CDE=45°∴△ABD∽△CDE∴ABCD=ADCE∴6CD=163AD∴AD=DC=42, CE=163,AB=6,在Rt△ADC中,∠ADC=90°,AD=DC=42,∴AC=22AD DC+=8∴⊙O的半径为4.【点睛】本题考查了直线与圆的位置关系,等腰直角三角形的性质,圆周角定理,相似三角形的判定和性质,正确的识别图形是解题的关键.31.(1)y =x 2+2x ﹣3;(2)存在,点P 坐标为⎝⎭或⎝⎭;(3)点N 的坐标为(﹣4,1) 【解析】【分析】(1)分别令y =0 ,x =0,可表示出A 、B 、C 的坐标,从而表示△ABC 的面积,求出a 的值继而即可得二次函数解析式;(2)如图①,当点P 在x 轴上方抛物线上时,平移BC 所在的直线过点O 交x 轴上方抛物线于点P ,则有BC ∥OP ,此时∠POB =∠CBO ,联立抛物线得解析式和OP 所在直线的解析式解方程组即可求解;当点P 在x 轴下方时,取BC 的中点D ,易知D 点坐标为(12,32-),连接OD 并延长交x 轴下方的抛物线于点P ,由直角三角形斜边中线定理可知,OD =BD ,∠DOB =∠CBO 即∠POB =∠CBO ,联立抛物线的解析式和OP 所在直线的解析式解方程组即可求解.(3)如图②,通过点M 到x 轴的距离可表示△ABM 的面积,由S △ABM =S △BNM ,可证明点A 、点N 到直线BM 的距离相等,即AN ∥BM ,通过角的转化得到AM =BN ,设点N 的坐标,表示出BN 的距离可求出点N .【详解】(1)当y =0时,x 2﹣(a +1)x +a =0,解得x 1=1,x 2=a ,当x =0,y =a∴点C 坐标为(0,a ),∵C (0,a )在x 轴下方∴a <0∵点A 位于点B 的左侧,∴点A 坐标为(a ,0),点B 坐标为(1,0),∴AB =1﹣a ,OC =﹣a ,∵△ABC 的面积为6, ∴()()1162a a --=, ∴a 1=﹣3,a 2=4(因为a <0,故舍去),∴a =﹣3,∴y =x 2+2x ﹣3;(2)设直线BC :y =kx ﹣3,则0=k ﹣3,∴k =3;①当点P 在x 轴上方时,直线OP 的函数表达式为y =3x ,。
湖南省株洲市九年级上学期数学期末考试试卷
湖南省株洲市九年级上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019九上·伍家岗期末) “用长分别为5cm、12cm、1cm的三条线段可以围成直角三角形”这一事件是()A . 必然事件B . 不可能事件C . 随机事件D . 以上都不是2. (2分)(2020·无锡) 下列选项错误的是()A .B .C .D .3. (2分)(2020·文山模拟) 如图,、是⊙ 的两条弦,连接、.若∠,则∠ 的度数为()A .B .C .D .4. (2分) (2019九上·博白期中) 抛物线的顶点坐标是()A . (-2.-3)B . (2,3)C . (-2,3)D . (-3,2)5. (2分)若点C数线段AB的黄金分割点,且AC>BC,则下列说法正确的有()①AB= AC;②AC=3﹣ AB;③AB:AC=AC:AB;④AC≈0.618AB.A . 1个B . 2个C . 3个D . 4个6. (2分) (2018九上·东台月考) △ABC中,∠B=90°,AB=1,BC=2,则sinA=()A .B .C .D .7. (2分) (2018九上·前郭期末) 如图,在△ABC中,点D、E分别在边AB、AC上,下列条件中不能判断△ABC∽△AED的是()A . ∠AED=∠BB . ∠ADE=∠CC .D .8. (2分)(2018·萧山模拟) 如图,在等边三角形ABC中,点P是BC边上一动点(不与点B,C重合),连接AP,作射线PD,使∠APD=60°,PD交AC于点D,已知AB=a,设CD=y,BP=x,则y与x函数关系的大致图象是()A .B .C .D .9. (2分) (2017九上·浙江月考) 若二次函数 y=ax2+bx+c(a<0) 的图象经过点(2,0),且其对称轴为直线 x=−1 ,则使函数值 y>0 成立的 x 的取值范围是()A . x<−4 或 x>2B . −4 ≤ x ≤ 2C . x ≤ −4 或x ≥ 2D . −4<x<210. (2分) (2020九上·北海期末) 有一副三角板,含45°的三角板的斜边与含30°的三角板的长直角边相等,如图,将这副三角板直角顶点重合拼放在一起,点B,C,E在同一直线上,若BC=2,则AF的长为()A . 2B . 2 ﹣2C . 4﹣2D . 2 ﹣二、填空题 (共6题;共6分)11. (1分) (2020九下·广陵月考) 已知在一个布袋中有红球6个,黄球若干个,它们除颜色外都相同.若随机取出一个球恰好是黄球的概率是,则黄球的个数是________.12. (1分)(2016·南京模拟) 如图,抛物线y=﹣x2﹣2x+3与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1 ,将C1关于点B的中心对称得C2 , C2与x轴交于另一点C,将C2关于点C的中心对称得C3 ,连接C1与C3的顶点,则图中阴影部分的面积为________.13. (1分) (2019八上·江阴期中) 如图,在△ABC中,CD⊥AB于点D,E是AC的中点,若AD=3,DC=4,则DE的长为________.14. (1分)(2018·邵阳) 如图所示,在等腰△ABC中,AB=AC,∠A=36°,将△ABC中的∠A沿DE向下翻折,使点A落在点C处.若AE= ,则BC的长是________.15. (1分) (2020九上·兰考期末) 在△ABC中,若∠A=30°,∠B=45°,AC=,则BC=________.16. (1分) (2017九上·宛城期中) 在△ABC中,∠ABC=90°,已知AB=3,BC=4,点Q是线段AC上的一个动点,过点Q作AC的垂线交直线AB于点P,当△PQB为等腰三角形时,线段AP的长为________.三、解答题 (共7题;共60分)17. (5分)某校举办的课外活动中,有一项是小制作评比.作品上交时限为3月1日至30日,组委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:4:1. 第三组的件数是12. 请你回答:(1)本次活动共有__________件作品参赛;各组作品件数的中位数是_________件.(2)经评比,第四组和第六组分别有10件和2件作品获奖,那么你认为这两组中哪个组获奖率较高?为什么?(3)小制作评比结束后,组委会决定从4件最优秀的作品A、B、C、D中选出两件进行全校展示,请用树状图或列表法求出刚好展示B、D的概率.18. (5分)如图所示,已知在Rt△ABC中,CD是斜边AB上的高,若AD=8cm,BD=2cm,求CD的长.19. (10分)如图,PA,PB是☉O的切线,切点分别为A,B,BC为☉O的直径,连结AB,AC,OP.求证:(1)∠APB=2∠ABC(2)AC∥OP.20. (5分)(2020·大邑模拟) 我国第一艘国产航空母舰山东舰2019年12月17日在海南三亚某军港交付海军,中国海军正式迈入双航母时代.如图,在一次海上巡航任务中,山东舰由西向东航行,到达A处时,测得小岛C位于它的北偏东方向,再航行一段距离到达B处,测得小岛C位于它的北偏东方向,且与山东舰相距30海里。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
株洲市九年级上学期期末数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020七下·贵阳开学考) 随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()元.A .B .C .D .2. (2分) (2016九下·萧山开学考) 如图,在△ABC中,BC=10,∠B=60°,∠C=45°,则点A到BC的距离是()A . 10﹣5B . 5+5C . 15﹣5D . 15﹣103. (2分)(2020·广西模拟) 下列命题中假命题是()A . 位似图形上的任意一对对应点到位似中心的距离的比等于位似比B . 正五边形的每一个内角等于108°C . 一组数据的平均数、中位数和众数都只有一个D . 方程x2-6x+9=0有两个实数根4. (2分)下列命题中,假命题是()A . 三角形任意两边之和大于第三边B . 方差是描述一组数据波动大小的量C . 两相似三角形面积的比等于周长的比的平方D . 不等式的-x<1的解集是x<-15. (2分) (2017九上·温江期末) 一个公共房门前的台阶高出地面2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A . 斜坡AB的坡度是18°B . 斜坡AB的坡度是tan18°C . AC=2tan18°米D . AB= 米6. (2分) (2017九上·温江期末) 设抛物线C1:y=x2向右平移2个单位长度,再向下平移3个单位长度得到抛物线C2 ,则抛物线C2对应的函数解析式是()A . y=(x﹣2)2﹣3B . y=(x+2)2﹣3C . y=(x﹣2)2+3D . y=(x+2)2+37. (2分) (2017九上·温江期末) 如图,l1∥l2∥l3 ,直线a,b与l1 , l2 , l3分别相交于A,B,C 和点D,E,F,若 = ,DE=6,则EF的长是().A .B .C . 10D . 68. (2分) (2017九上·温江期末) 如图,已知⊙O的直径AB⊥CD于点E,则下列结论一定错误的是()A . CE=DEB . AE=OEC . =D . △OCE≌△ODE9. (2分) (2017九上·温江期末) 二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是()A . 抛物线开口向下B . 抛物线经过点(2,3)C . 抛物线的对称轴是直线x=1D . 抛物线与x轴有两个交点10. (2分) (2017九上·温江期末) 如图,点A和点B都在反比例函数y= 的图象上,且线段AB过原点,过点A作x轴的垂线段,垂足为C,P是线段OB上的动点,连接CP.设△ACP的面积为S,则下列说法正确的是()A . S>3B . S>6C . 3≤S≤6D . 3<S≤6二、填空题 (共5题;共5分)11. (1分) (2019九上·昌平期中) 甲、乙两人在太阳光下行走,同一时刻他们的身高与其影长之比的关系是________12. (1分) (2019九下·温州竞赛) 一运动员乘雪橇以10米/秒的速度沿坡比为1:的斜坡笔直滑下,若下滑的垂直高度为1000米,则该运动员滑到坡底所需的时间为________秒.13. (1分) (2017八下·西城期中) 将直线向下平移个单位长度得到的直线解析式为________.14. (1分)(2020·江阴模拟) 如图,正方形OABC的边长为8,A、C两点分别位于x轴、y轴上,点P在AB上,CP交OB于点Q,函数y=的图像经过点Q,若S△BPQ=S△OQC ,则k的值为________.15. (1分) (2018八上·河南期中) 如图所示,直线 y=x+2 与两坐标轴分别交于 A、B 两点,点 C 是 OB 的中点,D、E 分别是直线 AB、y 轴上的动点,则△CDE 周长的最小值是________.三、解答题 (共15题;共106分)16. (10分)(2011·杭州) 在△ABC中,AB= ,AC= ,BC=1.(1)求证:∠A≠30°;(2)将△ABC绕BC所在直线旋转一周,求所得几何体的表面积.17. (5分) (2017九上·温江期末) 甲、乙两个不透明的口袋,甲口袋中装有3个分别标有数字1、2、3的小球,乙口袋中装有分别标有数字4、5的小球,它们的形状、大小完全相同,现随机从甲口袋中摸出一个小球记下数字,再从乙口袋中摸出一个小球记下数字.请用列表或树状图的方法(只选其中一种)求出两个数字之和能被3整除的概率.18. (10分) (2017九上·温江期末) 如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.(1)求双曲线解析式;(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.19. (10分) (2016九上·滁州期中) 如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D、E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)若∠ABD=45°,AC=3时,求BF的长.20. (10分) (2016九上·兴化期中) 某网店销售某款童装,每件售价60元,每星期可卖300件,为了促销,该网店决定降价销售.市场调查反映:每降价1元,每星期可多卖30件.已知该款童装每件成本价40元,设该款童装每件售价x元,每星期的销售量为y件.(1)求y与x之间的函数关系式;(2)当每件售价定为多少元时,每星期的销售利润最大,最大利润多少元?21. (10分) (2016九上·兖州期中) 为进一步发展基础教育,自2014年以来,某县加大了教育经费的投入,2014年该县投入教育经费6000万元.2016年投入教育经费8640万元.假设该县这两年投入教育经费的年平均增长率相同.(1)求这两年该县投入教育经费的年平均增长率;(2)若该县教育经费的投入还将保持相同的年平均增长率,请你预算2017年该县投入教育经费多少万元.22. (10分)(2017·达州模拟) 如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F 在AC的延长线上,且∠CBF= ∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF= ,求BC和BF的长.23. (1分) (2017九上·温江期末) 如图,一次函数y=kx+b(k、b为常数,且k≠0)和反比例函数y= (x >0)的图象交于A、B两点,利用函数图象直接写出不等式<kx+b的解集是________.24. (1分) (2017九上·温江期末) 现有三张分别标有数字1、2、6的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回),再从中任意抽取一张,将上面的数字记为b,这样的数字a,b能使关于x的一元二次方程x2﹣2(a﹣3)x﹣b2+9=0有两个正根的概率为________25. (1分) (2017九上·召陵期末) 如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为________.26. (1分) (2017九上·温江期末) 如图,在直角坐标系中,点A,B分别在x轴,y轴上,点A的坐标为(﹣1,0),∠ABO=30°,线段PQ的端点P从点O出发,沿△OBA的边按O→B→A→O运动一周,同时另一端点Q随之在x轴的非负半轴上运动,如果PQ= ,那么当点P运动一周时,点Q运动的总路程为________.27. (1分) (2017九上·温江期末) 如图,边长为4的正方形ABCD内接于点O,点E是上的一动点(不与A、B重合),点F是上的一点,连接OE、OF,分别与AB、BC交于点G,H,且∠EOF=90°,有以下结论:① = ;②△OGH是等腰三角形;③四边形OGBH的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+ .其中正确的是________(把你认为正确结论的序号都填上).28. (10分) (2017九下·梁子湖期中) 如图所示,港口B位于港口O正西方向120km处,小岛C位于港口O 北偏西60°的方向.一艘游船从港口O出发,沿OA方向(北偏西30°)以vkm/h的速度驶离港口O,同时一艘快艇从港口B出发,沿北偏东30°的方向以60km/h的速度驶向小岛C,在小岛C用1h加装补给物资后,立即按原来的速度给游船送去.(1)快艇从港口B到小岛C需要多长时间?(2)若快艇从小岛C到与游船相遇恰好用时1h,求v的值及相遇处与港口O的距离.29. (11分) (2017九上·温江期末) 【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: = ;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若 = ,则的值为________;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.30. (15分) (2017九上·温江期末) 如图1,在平面直角坐标系中,抛物线y=﹣ x2+bx+c与x轴交与点A(﹣3,0),点B(9,0),与y轴交与点C,顶点为D,连接AD、DB,点P为线段AD上一动点.(1)求抛物线的解析式;(2)过点P作BD的平行线,交AB于点Q,连接DQ,设AQ=m,△PDQ的面积为S,求S关于m的函数解析式,以及S的最大值;(3)如图2,抛物线对称轴与x轴交与点G,E为OG的中点,F为点C关于DG对称的对称点,过点P分别作直线EF、DG的垂线,垂足为M、N,连接MN,当△PMN为等腰三角形时,求此时EM的长.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共5分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共15题;共106分)16-1、16-2、17-1、18-1、18-2、19-1、19-2、20-1、20-2、21-1、21-2、22-1、22-2、23-1、24-1、25-1、26-1、27-1、28-1、28-2、29-1、29-2、29-3、30-1、30-2、。