九年级上学期期末考试数学试卷(附参考答案与解析)

合集下载

人教版九年级上学期期末考试数学试卷(解析版)

人教版九年级上学期期末考试数学试卷(解析版)

人教版九年级上学期期末数学试卷(含答案)一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.22.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×1084.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a25.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.6.sin60°=()A.B.C.D.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=50008.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:29.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=.12.在函数y=﹣中,自变量x的取值范围是.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是.14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=,FP=.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.18.(6分)计算: 19.(6分)如图所示的正方形网格中,△ABC 的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 沿x 轴翻折得到△AB 1C 1,在图中画出△AB 1C 1.(2)将△ABC 以点A 为位似中心放大2倍.(3)求△ABC 的面积.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(在下列四个选项中,只有-项是符合题意的,请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣B.﹣2C.D.2【分析】根据绝对值的定义直接计算即可解答.【解答】解:﹣的绝对值为.故选:C.【点评】本题主要考查绝对值的性质.绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.下列食品标识中,既是轴对称图形又是中心对称图形的是()A.绿色饮品B.绿色食品C.有机食品D.速冻食品【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项不合题意;B、是轴对称图形,不是中心对称图形,故本选项不合题意;C、不是轴对称图形,是中心对称图形,故本选项不合题意;D、既是轴对称图形,又是中心对称图形,故本选项符合题意;故选:D.【点评】本题考查了轴对称图形及中心对称图形的知识,轴对称图形的关键是寻找对称轴,图形沿对称轴叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图形重合.3.电影《长津湖》票房突破58亿元,5800000000用科学记数法表示为()A.5.8×108B.5.8×109C.0.58×109D.58×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.【解答】解:5800000000=5.8×109.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解决问题的关键.4.下列运算结果正确的是()A.3a﹣a=2B.a2•a4=a8C.(a+2)(a﹣2)=a2﹣4D.(﹣a)2=﹣a2【分析】根据合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则正确计算即可求出正确答案.【解答】解:3a和a属于同类项,所以3a﹣a=2a,故A项不符合题意,根据同底数幂的乘法运算法则可得a2•a4=a6,故B项不符合题意,根据平方差公式(a+2)(a﹣2)=a2﹣4,故C项符合题意,(﹣a)2=a2,故D项不符合题意,故选:C.【点评】本题主要考查合并同类项原则、同底数幂的乘法运算法则、平方差公式以及幂的乘方运算法则,熟练运用运算法则是解题的关键.5.在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为()A.B.C.D.【分析】直接利用概率公式计算可得.【解答】解:在同一副扑克牌中抽取3张“红桃”,2张“方块”,1张“梅花”.将这6张牌背面朝上,从中任意抽取1张,是“红桃”的概率为=.故选:C.【点评】本题主要考查概率公式,随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.6.sin60°=()A.B.C.D.【分析】利用特殊角的三角函数值解答即可.【解答】解:sin60°=.故选:B.【点评】本题考查了特殊角的三角函数值.特指30°、45°、60°角的各种三角函数值.sin30°=;cos30°=;tan30°=;sin45°=;cos45°=;tan45°=1;sin60°=;cos60°=;tan60°=.7.某县为发展教育事业,加强了对教育经费的投入,2012年投入3000万元,预计2014年投入5000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.3000x2=5000B.3000(1+x)2=5000C.3000(1+x%)2=5000D.3000(1+x)+3000(1+x)2=5000【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设教育经费的年平均增长率为x,根据“2012年投入3000万元,预计2014年投入5000万元”,可以分别用x表示2012以后两年的投入,然后根据已知条件可得出方程.【解答】解:设教育经费的年平均增长率为x,则2013的教育经费为:3000×(1+x)万元,2014的教育经费为:3000×(1+x)2万元,那么可得方程:3000×(1+x)2=5000.故选:B.【点评】本题考查了一元二次方程的运用,解此类题一般是根据题意分别列出不同时间按增长率所得教育经费与预计投入的教育经费相等的方程.8.如图,在△ABC中,D、E两点分别在AB、AC边上,DE∥BC.若DE:BC=2:3,则S△ADE:S△ABC为()A.4:9B.9:4C.2:3D.3:2【分析】根据相似三角形的面积比等于对应边长的平方比.【解答】解:∵△ADE∽△ABC,DE:BC=2:3∴S△ADE:S△ABC=4:9故选:A.【点评】熟练掌握三角形的性质.9.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D.小雨休息前骑车的平均速度大于休息后骑车的平均速度【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可.【解答】解:A、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意;B、小雨休息前骑车的速度为每分钟=400(米),正确,不符合题意;C、小雨在上述过程中所走的路程为4200米,错误,符合题意;D、小雨休息后骑车的速度为每分钟=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意;故选:C.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.如图,有一斜坡AB,坡顶B离地面的高度BC为30cm,斜坡的倾角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75cm B.50cm C.30cm D.45cm【分析】根据正切的定义计算即可.【解答】解:在Rt△ABC中,∠C=90°,BC=30cm,tan A=,则=,解得:AC=75,则斜坡的水平距离AC为75cm,故选:A.【点评】本题考查的是解直角三角形的应用坡度坡角问题,掌握正切的定义是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2a2﹣8a=2a(a﹣4).【分析】原式提取2a即可得到结果.【解答】解:原式=2a(a﹣4),故答案为:2a(a﹣4)【点评】此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.在函数y=﹣中,自变量x的取值范围是x≥5.【分析】根据二次根式的性质被开方数大于等于0,列不等式求解.【解答】解:依题意,得x﹣5≥0,解得x≥5.【点评】本题考查的知识点为:二次根式的被开方数是非负数.13.某市在一次空气污染指数抽查中,收集到6天的数据如下:61,74,70,56,80,91.该组数据的中位数是72.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.【解答】解:从小到大排列此数据为:56,61,70,74,80,91,处在第3和第4位两个数的平均数为中位数,故中位数是(70+74)÷2=72.故答案为:72.【点评】本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数).14.关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则m的值为1.【分析】根据一元二次方程根的判别式的意义,方程x2+2x﹣(m﹣2)=0有两个相等的实数根,则有Δ=0,得到关于m的方程,解方程即可.【解答】解:∵关于x的一元二次方程x2+2x﹣(m﹣2)=0有两个相等的实数根,∴Δ=0,即22﹣4×1×[﹣(m﹣2)]=0,解得m=1.故答案为:1.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式Δ=b2﹣4ac:当Δ>0,方程有两个不相等的实数根;当Δ=0,方程有两个相等的实数根;当Δ<0,方程没有实数根.15.扇形的半径为5,圆心角等于120°,则扇形的面积等于π.【分析】根据扇形面积公式S=进行计算即可.【解答】解:S扇形==π.故答案为π.【点评】本题考查了扇形的面积的计算.解答该题的关键是熟记扇形的面积公式.16.如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C 恰好落在AD边上的点P处,则∠EFC=30°,FP=2.【分析】先求出DE=a,CE=2a,再根据翻折变换的性质可得PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE =∠PFE,然后根据直角三角形30°角所对的直角边等于斜边的一半求出∠DPE=30°,从而得到∠DPF,根据两直线平行,同旁内角互补求出∠CFP,再求出∠CFE=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出EF,利用勾股定理列式求出FC,从而得解.【解答】解:∵DC=3DE=3a,∴DE=a,CE=2a,由翻折变换得,PE=CE,FP=FC,∠EPF=∠C=90°,∠CFE=∠PFE,∴在Rt△DPE中,∠DPE=30°,∴∠DPF=∠EPF+∠DPE=90°+30°=120°,∵矩形对边AD∥BC,∴∠CFP=180°﹣∠DPF=180°﹣120°=60°,∴∠CFE=∠CFP=×60°=30°,∴EF=2CE=2×2a=4a,在Rt△CEF中,根据勾股定理得,FP=FC===2a,故答案为:30°,2a.【点评】本题考查了翻折变换的性质,矩形的性质,直角三角形30°角所对的直角边等于斜边的一半,熟记各性质并确定出直角三角形中30°的角是解题的关键.三、解答题(本大题共9个题,第17,18,19每题6分,第20,21题每题8分,第22,23题每题9分,第24,25题每题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:(﹣1)2021+|﹣2|+4sin30°﹣(﹣π)0.【分析】按照实数的运算法则依次展开计算即可得出答案.【解答】解:原式=﹣1+2+4×﹣1=﹣1+2+2﹣1=2.【点评】本题考查实数的混合运算,涉及绝对值、零指数幂、正整数幂,特殊角的三角函数值等知识,熟练掌握其运算法则,细心运算是解题的关键.18.(6分)计算:【分析】根据分式的运算法则即可求出答案.【解答】解:原式=×﹣=﹣==﹣1【点评】本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(6分)如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC沿x轴翻折得到△AB1C1,在图中画出△AB1C1.(2)将△ABC以点A为位似中心放大2倍.(3)求△ABC的面积.【分析】(1)利用轴对称变换的性质分别作出B ,C 的对应点B 1,C 1即可;(2)利用位似变换的性质分别作出B ,C 的对应点E ,F 即可;(3)把三角形的面积看成矩形的面积减去周围的三个三角形面积即可.【解答】解:(1)如图,△AB 1C 1即为所求;(2)如图,△AEF 即为所求;(3)△ABC 的面积=2×3﹣×1×2﹣×1×2﹣×1×3=2.5.【点评】本题考查作图﹣位似变换,轴对称变换等知识,解题的关键是掌握位似变换,轴对称变换的性质,属于中考常考题型.20.(8分)某校创建“环保示范学校”,为了解全校学生参加环保类社团的意愿,在全校随机抽取了50名学生进行问卷调查,问卷给出了五个社团供学生选择(学生可根据自己的爱好选择一个社团,也可以不选),对选择了社团的学生的问卷情况进行了统计,如表:社团名称 A .酵素制作社团B .回收材料小制作社团C .垃圾分类社团D .环保义工社团E .绿植养护社团 人数 10 15 5 10 5(1)填空:在统计表中,这5个数的中位数是 10 ;(2)根据以上信息,补全扇形图(图1)和条形图(图2);(3)该校有1400名学生,根据调查统计情况,请估计全校有多少学生愿意参加环保义工社团;(4)若小诗和小雨两名同学在酵素制作社团或绿植养护社团中任意选择一个参加,请用树状图或列表法求出这两名同学同时选择绿植养护社团的概率.【分析】(1)根据中位数的定义即可判断;(2)求出没有选择的百分比,高度和E相同,即可画出图形;(3)利用样本估计总体的思想解决问题即可;(4)画出树状图即可解决问题;【解答】解:(1)这5个数从小到大排列:5,5,10,10,15,故中位数为10,故答案为10.(2)没有选择的占1﹣10%﹣30%﹣20%﹣10%﹣20%=10%,条形图的高度和E相同;如图所示:(3)1400×20%=280(名)答:估计全校有多少学生愿意参加环保义工社团有280名;(4)酵素制作社团、绿植养护社团分别用A、B表示:树状图如图所示,共有4种可能,两人同时选择绿植养护社团只有一种情形,∴这两名同学同时选择绿植养护社团的概率=.【点评】此题考查了扇形统计图,条形统计图,列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理,如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)求∠APB的度数;(2)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【分析】(1)在△ABP中,求出∠P AB、∠PBA的度数即可解决问题;(2)作PH⊥AB于H.求出PH的值即可判定;【解答】解:(1)∵∠P AB=30°,∠ABP=120°,∴∠APB=180°﹣∠P AB﹣∠ABP=30°.(2)作PH⊥AB于H.∵∠BAP=∠BP A=30°,∴BA=BP=50,在Rt△PBH中,PH=PB•sin60°=50×=25,∵25>25,∴海监船继续向正东方向航行是安全的.【点评】本题考查的是解直角三角形的应用﹣方向角问题,正确根据题意画出图形、准确标注方向角、熟练掌握锐角三角函数的概念是解题的关键.22.(9分)在建设美好乡村活动中,某村民委员会准备在乡村道路两旁种植柏树和杉树.经市场调查发现:购买2棵柏树和3棵杉树共需440元,购买3棵柏树和1棵杉树共需380元.(1)求柏树和杉树的单价;(2)若本次美化乡村道路购买柏树和杉树共150棵(两种树都必须购买),且柏树的棵数不少于杉树的3倍,设本次活动中购买柏树x棵,此次购树的费用为w元.①求w与x之间的函数表达式,并写出x的取值范围?②要使此次购树费用最少,柏树和杉树各需购买多少棵?最少费用为多少元?【分析】(1)设柏树每棵m元,杉树每棵n元,可得:,即可解得柏树每棵100元,杉树每棵80元;(2)①由柏树的棵数不少于杉树的3倍,有x≥3(150﹣x),而w=100x+80(150﹣x)=20x+12000,即知w =20x+12000(x≥112.5且x是整数);②由一次函数性质可得柏树购买113棵,杉树购买37棵,最少费用为14260元.【解答】解:(1)设柏树每棵m元,杉树每棵n元,根据题意得:,解得,∴柏树每棵100元,杉树每棵80元;(2)①∵柏树的棵数不少于杉树的3倍,∴x≥3(150﹣x),解得x≥112.5,根据题意得:w=100x+80(150﹣x)=20x+12000,∴w=20x+12000(x≥112.5且x是整数);②∵20>0,∴w随x的增大而增大,∵x是整数,∴x最小取113,∴当x=113时,w取最小值20×113+12000=14260,此时150﹣x=150﹣113=37,答:要使此次购树费用最少,柏树购买113棵,杉树购买37棵,最少费用为14260元.【点评】本题考查二元一次方程组和一次函数的应用,解题的关键是读懂题意,列出方程组和函数关系式.23.(9分)如图,在△ABC中,以AB为直径的⊙O交BC于点D,与CA的延长线交于点E,⊙O的切线DF与AC垂直,垂足为F.(1)求证:AB=AC.(2)若CF=2AF,AE=4,求⊙O的半径.【分析】(1)连接OD,根据切线的性质得到OD⊥DF,进而得出OD∥AC,根据平行线的性质、等腰三角形的判定和性质定理证明结论;(2)连接BE、AD,根据圆周角定理得到AD⊥BC,BE⊥EC,根据等腰三角形的性质得到BD=DC,进而得到AC=12,得到答案.【解答】(1)证明:如图,连接OD,∵DF是⊙O的切线,∴OD⊥DF,∵DF⊥AC,∴OD∥AC,∴∠ODB=∠ACB,∵OB=OD,∴∠ODB=∠OBD,∴∠OBD=∠ACB,∴AB=AC;(2)解:如图,连接BE、AD,∵AB是⊙O的直径,∴AD⊥BC,BE⊥EC,∵AB=AC,∴BD=DC,∵DF⊥AC,BE⊥EC,∴DF∥BE,∵BD=DC,∴CF=FE,∵CF=2AF,AE=4,∴AC=12,∴AB=AC=12,∴⊙O的半径为6.【点评】本题考查的是切线的性质、圆周角定理、等腰三角形的判定,掌握圆的切线垂直于经过切点的半径是解题的关键.24.(10分)定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.【分析】(1)由于y=x+2m与y=都经过第一、第三象限,所以两个函数有公共点,可以判断两个函数是“合作函数”,再联立x+2=,解得x=﹣4或x=2,即可求“合作点”;(2)假设是“合作函数”,可求“合作点”为x=m+,再由|x|≤2,可得当﹣≤m≤时,是“合作函数”;当m>或m<﹣时,不是“合作函数”;(3)①由已知可得:x+2m=x2﹣(2m+1)x+(m2+4m﹣3),解得x=m+3或x=m﹣1,再由已知可得当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,因为只有一个“合作点”则﹣3≤m<1或2<m≤6;②y1+y2=(x﹣m)2+6m﹣3,由①可分两种情况求m的值:当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22=24,当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3=24,分别求出符合条件的m值即可.【解答】解:(1)∵y=x+2m是经过第一、第三象限的直线,y=是经过第一、第三象限的双曲线,∴两函数有公共点,∴存在x取同一个值,使得y1=y2,∴函数y=x+2m与y=是“合作函数”;当m=1时,y=x+2,∴x+2=,解得x=﹣4或x=2,∴“合作点”为x=2或x=﹣4;(2)假设函数y=x+2m与y=3x﹣1是“合作函数”,∴x+2m=3x﹣1,∴x=m+,∵|x|≤2,∴﹣2≤m+≤2,∴﹣≤m≤,∴当﹣≤m≤时,函数y=x+2m与y=3x﹣1(|x|≤2)是“合作函数”;当m>或m<﹣时,函数y=x+2m 与y=3x﹣1(|x|≤2)不是“合作函数”;(3)①∵函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,∴x+2m=x2﹣(2m+1)x+(m2+4m﹣3),∴x2﹣(2m+2)x+(m2+2m﹣3)=0,∴x=m+3或x=m﹣1,∵0≤x≤5时有唯一合作点,当0≤m+3≤5时,﹣3≤m≤2,当0≤m﹣1≤5时,1≤m≤6,∴﹣3≤m<1或2<m≤6时,满足题意;②∵y1+y2=x2﹣(2m+1)x+(m2+4m﹣3)+x+2m=x2﹣2mx+m2+6m﹣3=(x﹣m)2+6m﹣3,∴对称轴为x=m,∵﹣3≤m<1或2<m≤6,当﹣3≤m<1时,x=5时,y1+y2在0≤x≤5的有最大值为m2﹣4m+22,∴m2﹣4m+22=24,∴m=2+或m=2﹣,∴m=2﹣;当2<m≤6时,x=0时,y1+y2在0≤x≤5的有最大值为m2+6m﹣3,∴m2+6m﹣3=24,∴m=3或m=﹣9,∴m=3;综上所述:m=2﹣或m=3.【点评】本题考查二次函数的图象及性质;理解题意,熟练掌握一次函数、二次函数的图象及性质是解题的关键.25.(10分)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于A(3,0),D两点,与y轴交于点B,抛物线的对称轴与x轴交于点C(1,0),点E,P为抛物线的对称轴上的动点.(1)求该抛物线的解析式;(2)当BE+DE最小时,求此时点E的坐标;(3)若点M为对称轴右侧抛物线上一点,且M在x轴上方,N为平面内一动点,是否存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形?若存在,求出点M的坐标;若不存在,请说明理由.【分析】(1)由对称轴﹣=1,可知b=﹣2a,再将A(3,0)代入y=ax2﹣2ax+3,即可求函数的解析式;(2)连接BA交对称轴于点E,连接DE,当A、B、E三点共线时,BE+DE的值最小,又由∠OAB=45°,可求CE=2,则E(1,2);(3)设P(1,t),当AM为正方形的对角线时,PM=P A,过M点作MG⊥PC交于G,证明△PGM≌△ACP(AAS),可求M(1+t,t+2),再将M代入函数解析式即可求M(2,3);当∠P AM=90°时,AM=AP,过A点作AH⊥x 轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),求出M(3+t,2),再将M代入函数解析式即可求M(2+,2);当∠PMA=90°时,PM=AM,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),求出M(2+t,1+t),再将M代入函数解析式即可求M(,).【解答】解:(1)∵抛物线的对称轴与x轴交于点C(1,0),∴﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+3,将A(3,0)代入y=ax2﹣2ax+3,∴9a﹣6a+3=0,解得a=﹣1,∴y=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或x=3,∴D(﹣1,0),令x=0,则y=3,∴B(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线的对称轴为直线x=1,连接BA交对称轴于点E,连接DE,∵A、D关于直线x=1对称,∴DE=AE,∴BE+DE=AE+BE≥AB,当A、B、E三点共线时,BE+DE的值最小,∵OA=OB=3,∴∠OAB=45°,∴AC=CE,∵AC=2,∴CE=2,∴E(1,2);(3)存在点P,M,N,使得以A,P,M,N为顶点的四边形为正方形,理由如下:设P(1,t),当AM为正方形的对角线时,如图2,PM=P A,过M点作MG⊥PC交于G,∵∠MP A=90°,∴∠GPM+∠CP A=90°,∵∠GPM+∠GMP=90°,∴∠CP A=∠GMP,∵PM=AP,∴△PGM≌△ACP(AAS),∴GM=CP=t,PG=AC=2,∴M(1+t,t+2),∴t+2=﹣(t+1)2+2(t+1)+3,解得t=﹣2或t=1,∵M点在x轴上方,∴t=1,∴M(2,3);当∠P AM=90°时,AM=AP,如图3,过A点作AH⊥x轴,过M点作MH⊥AH交于点H,同理可证△MAH≌△P AC(AAS),∴AH=AC=2,CP=MH=﹣t,∴M(3+t,2),∴2=﹣(t+3)2+2(t+3)+3,解得t=﹣2+或t=﹣2﹣,∴M(2+,2)或(2﹣,2)(舍去);当∠PMA=90°时,PM=AM,如图4,过点M作TS∥x轴交对称轴于点T,过点A作AS⊥ST交于点S,同理可得△MPT≌△AMS(AAS),∴TP=SM,SA=MT,∴M(2+t,1+t),∴1+t=﹣(2+t)2+2(2+t)+3,解得t=﹣3+或t=﹣3﹣(舍去),∴M(,);综上所述:M点坐标为(2,3)或(2+,2)或(,).【点评】本题考查二次函数的图象及性质,熟练掌握二次函数的图象及性质,正方形的性质,三角形全等的判定及性质,分类讨论,数形结合是解题的关键.。

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案

九年级数学上册期末考试试卷附答案一、选择题(每小题3分,共36分)1.(3分)一元二次方程:x²-6x-6-0| 配方后化为( )A. (x-3)²-15B. (x-3)²-3C. (x+3)²-15D. (x+3)²-32.(3分) 抛物线y=2(x-3)²+4 顶点坐标是( )A.(3,4)B. (-3, 4)C. (3, -4)D. (2, 4)3.(3分) 如图,⊙O的直径AB=8,点C 在⊙O上, ∠ABC=30°,则 AC 的长是( )A. 2B.2√2C,2√3D.44.(3分) 在 Rt△ABC中,∠C -90°, AB -4, AC-1,则cosB 的值为( )A.√154B.14C.√1515D.4√1717 5.(3分) 下列命题为真命题的是( )A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相等6.(3分)如图所示,为测量出一垂直水平地面的某建筑物AB 的高度, 一测量人员在该建筑物附近C 处,测得建筑物顶端A 处的仰角大小为45°,随后沿直线BC 向前走了 100米后到达 D 处,在D 处测得A 处的仰角大小为30°,则建筑物AB 的高度约为( )米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据: √2≈1.41,√3≈1.73)A. 136B. 137C. 138D. 1397.(3分) 反比例函数 y −图象上三个点的坐标为(x ₁,y ₁).(x ₂,y ₂).(x ₂,y ₃).若 x ₁<0<x ₂<x ₃.则 y ₁,y ₂,y ₂的大小关系是( )A. y ₁<y ₂<y ₂B. y ₂<y ₁<y ₂C. y ₂<y ₂<y ₁D. y ₁<y ₂<y ₂8. (3分) 函数 y=ax²+bx+c 的图象如图所示, 那么关于x 的方程ax²+bx+c -3-0| 的根的情况是( )A.有两个不相等的实数根B. 有两个异号实数根C.有两个相等实数根D.无实数根9.(3分) 过三点A (2,2), B(6,2), C (4,5)的圆的圆心坐标为( ) A.锐角三角形 B.直角三角形 C.钝角三角形 D.等腰三角形A.y −3xB.y −4xC.y −5xD.y −6x 12.(3分) 如图所示, 抛物线 y=ax²+bx+c|的顶点为B(-1,3),与x 轴的交点A 在点(-3,0)和(-2,0)之间, 以下结论:①b²-4ac-0: ②a+b+c>0: ③2a -b-0: ④c -a-3A.(4,176)B. (4. 3)C.(5,176)D. (5. 3) 10.(3分)在△ABC中,若 cosA =√22,tanB =√3,则这个三角形一定是( )11.(3分)如图,正方形ABCD 的边长为5.点A 的坐标为(-4.0),点B 在y 轴上,若反比例函数y= k x(k ≠0)的图象过点C ,则该反比例函数的表达式为( )其中正确的有( )个.A. 1B. 2C. 3D. 4二、填空题(每小题4分,共24分)13.(4分)若抛物线y=x²-6x+m 与x轴没有交点,则m的取值范围是 .14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为 m.15.(4分)如图,O 是坐标原点,菱形OABC的顶点A 的坐标为(-3,4),顶点C在x轴的负半轴上,函数y=k(x<x0)的图象经过顶点B,则k的值为 .16.(4分) 将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是 .17.(4分)如图,点A、B、C是圆 O上的三点,且四边形ABCO 是平行四边形,OF⊥OC 交圆O于点F.则∠BAF= .(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,间该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A (1,4),抛物线与y轴交于点B(0,3),与x轴交于C、 D两点,点P是x轴上的一个动点.(1)求此抛物线的解析式:(2)求C、D两点坐标及△BCD的面积:(3)若点P在x轴上方的抛物线上,满足求点P的坐标。

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

陕西省西安市交通大学附属中学2023-2024学年九年级上学期期末数学试题(含解析)

A .B . . . 2.我们常常在建筑中看到四边形的元素.如图,墙面上砌出的菱形窗户的边长为框宽度忽略不计),其中较小的内角为A .4B .3.一元二次方程的根的情况为(A .有两个不相等的实数根D .无法确定3223210x x --=A .25.如图,“凸轮”的外围由以正三角形的顶点为圆心,以正三角形的边长为半径的三段等弧组成.已知正三角形的边长为A .B .13A .10.点在二次函数A .最大值二.填空题(本大题共14.如图,在矩形段上移动,并与意一点,连接90︒(),A m n 4-ABCD EF EF ,AN CM三.解答题(本大题共1115.计算:(1);(2)18.已知:如图,点为对角线点,.求证:.19.为贯彻落实党的二十大精神,全面建设社会主义现代化国家、兴,某校团委举办以“无悔青春献祖国,接力奋斗新时代赛,九年级(2)班的王伟和孙莉两人文采相当,且都想代表班级参赛,于是班长制作了()0π3128-+--2cos30tan60sin45cos45︒-︒+︒O ABCD Y E F DE BF =21.西安丰庆公园是现代生态景观与历史文化景观融为一体的皇家园林,园内的最高建筑.某数学活动小组想测量怡心阁的高度心阁的高度:小明沿后退到F 恰好看到标杆顶端22.类比一次函数的研究思路,九年级“励志”行探究.下面是他们的探究过程,请补充完整:(1)列表:下表是与的几组对应值,则的值为01654210BD x y m x ⋅⋅⋅5-4-3-2-1-y ⋅⋅⋅m(3)函数的图象和直线的交点坐标是______.23.如图,四边形是的内接四边形,为直径,点为弧的中点,延长交于点,为的切线.(1)求证:;(2)若,求的长.24.如图,在平面直角坐标系中,点的坐标为,连接,将线段绕着点逆时针旋转,点的对应点为点.(1)求经过三点的抛物线的表达式;(2)将抛物线沿着轴平移到抛物线,在抛物线上是否存在点,使得以为顶点的四边形为正方形,若存在,求平移的方式.若不存在,说明理由.|1|y x =-2y =ABCD O e BD D AC AD BC 、E DF O e CDF EDF ∠=∠2DF EF ==AD A ()4,2OA OA O 90︒A B ,,B O A L L x L 'L 'D ,,,B O A D图2图3【详解】解:观察图形可得,其主视图是3.A【分析】本题考查了根的判别式,根据题意算出根的判别式即可得;掌握根的判别式即可得.【详解】解:,23210x x --=在Rt ACD中,tan C故选B.【点睛】本题考查了锐角三角比的意义.将角转化到直角三角形中是解答的关键.7.C【分析】根据二次函数的性质判断出【详解】解:∵抛物线开口向下,∴a<0,9.B【分析】本题主要考查了同弧所对的圆周角相等,∠的圆周角相等得到ADC=【点睛】本题主要考查了等边三角形的性质,每个内角都相等.13.48【分析】本题考查了反比例函数与几何的综合.1求得相似比为,利用相似比求得∵平行于轴,∴轴,∴,∵,∴,AC x BAC ∠BD x ⊥BAC BDO ∽△△2OC BC =13BC BA BO BD ==18.详见解析【分析】根据平行四边形的性质得出,再证明线段的差得出,即可得出结论.【详解】证明:∵四边形是平行四边形,OEA OFC ∠=∠AOE ≌△△AD AE BC CF -=-ABCD依题意,∴,∵,∴,∴,设,2, 1.5,EM FD MD EF MN ====3 1.5 1.5CM CD MD =-=-=CM AN ∥CME ANE V V ∽CM EM AN EN=AN x =;(3)解:把代入中得:,解得:或,∴函数的图象和直线的交点坐标是:23.(1)见详解(2)【分析】(1)由“直径所对的圆周角等于”和圆周角定理可得2y =|1|y x =-|1|2x -==1x -3x =|1|y x =-2y =390︒设与交于点,∵是等腰直角三角形,AB OD M (),D m n BOA △(2)如图所示,连接AC、(3)如图所示,过点D作DH⊥。

天津市滨海区2022年九年级上学期《数学》期末试题与参考答案

天津市滨海区2022年九年级上学期《数学》期末试题与参考答案

天津市滨海新区2022年九年级上学期《数学》期末试卷及答案一、选择题本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 一元二次方程化成一般形式后,它的二次项系数和一次项系数分别是()A. B. C. D. 【答案】A【详解】一元二次方程化成一般形式为:它的二次项系数和一次项系数分别是5,-4故选:A .2. 抛物线的开口方向、对称轴分别是( )A. 向上,轴B. 向上,轴C. 向下,轴D. 向下,轴【答案】B【详解】 ,所以抛物线开口向上,,所以对称轴为 ,对称轴为轴.故选:B .2514x x -=54-,45-,51-,1-4,2514x x -=25410x x --=∴213y x =x y x y 13a = 0b = 02bx a =-=y3. 下列语句描述的事件为随机事件的是()A. 通常加热到时,水沸腾B. 经过有交通信号灯的路口,遇到红灯C. 任意画一个三角形,其内角和是D. 从三张扑克牌J ,Q ,K 中取出一张是A【答案】B 【详解】A. 通常加热到时,水沸腾是必然事件,不符合题意;B. 经过有交通信号灯的路口,遇到红灯是随机事件,符合题意;C. 任意画一个三角形,其内角和是是不可能事件,不符合题意;D. 从三张扑克牌J ,Q ,K 中取出一张是A 是不可能事件,不符合题意.故选:B .4. 下列标志既是轴对称图形又是中心对称图形的是( )A. B.C. D.【答案】C【详解】A .此图案是轴对称图形,不是中心对称图形,不符合题意;B .此图案仅是中心对称图形,不符合题意;C .此图案既是轴对称图形,又是中心对称图形,符合题意;D .此图案既不是轴对称图形,又不是中心对称图形,不符合题意;故选:C.100C ︒360︒100C ︒360︒5. 抛物线y=2(x+3)2+5的顶点坐标是( )A. (3,5)B. (﹣3,5)C. (3,﹣5)D. (﹣3,﹣5)【答案】B【详解】抛物线y=2(x+3)2+5的顶点坐标是(﹣3,5),故选B .6. 下列各点中与点关于原点对称的是()A. B. C. D. 【答案】B【详解】与点关于原点对称的点的坐标是:.故选:B .7. 不透明袋子中装有5个红球、3个绿球,这些球除了颜色外无其他差别,从袋子中随机摸出个球,摸出红球的概率是()A. B. C. D.【答案】D【详解】红球数量为5个,总的球数量为8个,∴从中随机摸出一球为红球的概率是.故选:D .(2,1)A -(2,1)(2,1)-(2,1)--(1,2)-(2,1)A -(2,1)-185833858588. 如图,在中,,,则的度数是( )A. B. C. D. 【答案】A【详解】在中,,故选:A .9. 如图,在中,,,则的度数是()A. B. C. D. 【答案】DO e »»=A B A C 75C ∠=︒A ∠30°40︒50︒60︒O e »»=A B A C 75C ∠=︒75B C ∴∠=∠=︒180A B C ∠+∠+∠=︒ 18030A B C ∴∠=︒-∠-∠=︒O e OA BC ⊥50AOC ∠=︒ADB ∠50︒30°20︒25︒【详解】连接OB,,,,故选:D .10. 如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A. 1米B. 2米C. 3米D. 4米【答案】C 【详解】设道路的宽为x,根据题意得20x+33x−x 2=20×33−510整理得x 2−53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.OA BC ⊥ 50AOC ∠=︒50AOB ∴∠=︒1252ADB AOB ∴∠=∠=︒11. 如图,在△中,,,点是的内心,则的度数是( )A. B. C. D. 【答案】A 【详解】∵点是的内心,∴BO 平分,CO 平分,∴,,∴.故选A .12. 如图,二次函数的图象经过点,且与轴交点的横坐标为,其中,.下列结论:①,②,③中,正确的结论有()ABC 60ABC ∠=︒50∠=°ACB O ABC V BOC ∠125︒120︒130︒135︒O ABC V ABC ∠ACB ∠1230C CBO AB ∠=∠=︒1225B BCO AC ∠=∠=︒012518CBO BCO BOC ∠=︒-∠=∠-︒20y ax bx c a =++≠()(1,2)-x 12x x ,121x --<<201x <<420a b c -+<20a b -<284b a ac +>A. 0个B. 1个C. 2个D. 3个【答案】D【详解】根据题意得:当x=-2时,y <0,∴,故①正确;∵二次函数的图象与轴交点的横坐标为,其中,.开口向下,∴抛物线的对称轴,a <0,∴,∴,故②正确;∵二次函数的图象经过点,且对称轴在直线x=-1的右侧,∴抛物线的顶点的纵坐标大于2,∴,∵a<0,∴,∴,故③正确;∴正确的有①②③,共3个.故选:D420a b c -+<20y ax bx c a =++≠()x 12x x ,121x --<<201x <<12bx a =->-2b a >20a b -<20y ax bx c a =++≠()(1,2)-2424ac b a ->248ac b a -<284b a ac +>二、填空题本大题共6小题,每小题3分,共18分.13. 抛物线可以由抛物线先向左平移个单位,再向下平移___________个单位得到的.【答案】3【详解】抛物线向左平移2个单位,向下平移3个单位得到的函数图象的解析式为:.故答案为:3.14. 在数学考试中,单项选择题(每个题目只有4个备选答案)是试卷的重要组成部分,当你遇到完全不会做的选择题时,如果你随便选择一个答案,那么你答对的概率为_________.【答案】【详解】根据题意得:答对的概率为.故答案为:15. 关于的一元二次方程有两个不相等的实数根,则的取值范围是_________.【答案】【详解】∵一元二次方程有两个不相等的实数根,∴∆,解得<2.故答案为:k<2.()223y x =+-2y x =22y x =()223y x =+-141414x 22230x x k ++-=k 2k <()224230k =-->k16. 中,,则的内切圆的半径长是_________.【答案】2【详解】设△ABC 的内切圆为⊙O,内切圆的半径为r ,∵AB=13,AC =5,BC =12,∴AB 2=AC 2+ BC 2,根据勾股定理的逆定理得△ABC 是直角三角形,∠C=90°,∴,根据三角形的面积公式可得:,∴15r=30,即r=2,故答案为:2.17. 当或()时,代数式的值相等,则时,代数式的值为_________.【答案】3【详解】由抛物线,∴抛物线的对称轴为直线x=2,∵当或()时,代数式的值相等,∴当或()时,抛物线的函数值相等,∴以a 、b 为横坐标的点关于直线x=2对称,∴,ABC V 13,5,12AB AC BC ===ABC V 1302ABC S AC BC =⋅=V 1115131215222ABC AOC AOB BOC S S S S r r r r =++=⨯+⨯+⨯=V V V V x a =x b =a b ¹243x x -+x a b =+243x x -+()224321y x x x =-+=--x a =x b =a b ¹243x x -+x a =x b =a b ¹243y x x =-+22a b +=∴a+b=4,∵,∴x=4,当x=4时,,即时,代数式的值为3.故答案为:318. 如图,为边长为的等边三角形,点分别为和的中点,点为内部一点,且,连接,将线段绕点按逆时针方向旋转得到,连接.(1)当三点共线时,线段的长度为_________;(2)在旋转过程中,线段的最小值为_________.【答案】①. ②. 1【详解】(1)是等边三角形,边长为,,为的中点,x a b =+244433y =-⨯+=x a b =+243x x -+ABC V 6DE ,AC BCF ABC V 2DF =BF BF B 60︒BG EG B F D 、、BFEG 2ABC ∆ 66AB AC ∴==D Q AC,,,,点、、三点共线,,,线段的长度为;(2)如图,作线段的中点,连接,作,连接,将线段绕点按逆时针方向旋转得到,连接,此时的值最小,是等边三角形,边长为,, ,点为的中点,点为的中点,点为的中点,,,,,,,132AD CD AC ∴===BD AC ⊥90ADB ∴∠=︒BD ∴=== B F D 2DF =2BF BD DF ∴=-=-∴BF 2-AB H DH 2DF =BF BF B 60︒BG EG EG ABC ∆ 66AB AC ∴==60ABC ∠=︒ D AC E BC H AB BD AC ∴⊥132BE BC ==132BH AB ==90ADB ∴∠=︒BH BE =132DH AB ∴==,,由旋转可知: ,,,,在和中,,,,在旋转过程中,线段的最小值为1.三、解答题本大题共7小题,共66分.解答应写出文字说明、演算步骤或证明过程.19. (1)因式分解法解方程:;(2)配方法解方程:.【答案】(1);(2)【详解】(1),解:提公因式,得,于是得,.2DF = 321HF DH DF ∴=-=-=BF BG =60FBC ∠=︒60ABC FBG ∴∠=∠=︒HBF EBG ∴∠=∠BHF ∆BEG ∆BH BEHBF EBGBF BG=⎧⎪∠=∠⎨⎪=⎩()BHF BEG SAS ∴∆≅∆1HF EG ∴==∴EG 220x x -=21090x x ++=121=02x x =,12=9=1x x --,220x x -=2-10x x =()02-10x x ==或121=02x x =,(2),解:移项,得,配方,得,,由此可得,.20. 如图,在半径为的中,弦的长为.(1)求的度数;(2)求点到的距离.【答案】(1) (2)到的距离为【小问1详解】解:在,,∵,∴为等边三角形,∴;【小问2详解】过点 作于点,21090x x ++=210=9x x +﹣22210+5=-95x x ++25=16x +()54x +=±12=9=1x x --,4O e AB 4AOB ∠O AB 60AOB ∠=︒OAB O e 4OA OB ==4AB =OAB V 60AOB ∠=︒O OC AB ⊥C在,于点,∴,∵ ,∴,在中,,,∴,∴到的距离为21. 甲口袋中装有个相同的小球,它们分别写有数字和,乙口袋中装有个相同的小球,它们分别写有数字,和.从两个口袋中各随机取一个小球.请用画树状图或列表的方法求:(1)取出的个小球上的数字之和是奇数的概率是多少?(2)取出的个小球上的数字全是偶数的概率是多少?【答案】(1) (2)【小问1详解】解:根据题意,可以画出如下的树状图O e OC AB ⊥C 12AC AB =4AB =2AC =Rt OAC △4AO =2AC =OC ==O AB 2123345221216所有可能出现的结果共有种等可能结果,取出个小球上的数字之和是奇数有种,∴取出的个小球上的数字之和是奇数的概率是;【小问2详解】解:取出个小球上的数字全是偶数有种,∴取出的个小球上的数字全是偶数的概率是.【点睛】本题主要考查了利用树状图或列表法求概率,明确题意,准确画出树状图或列出表格是解题的关键.22. 已知:内接于,.(1)如图①,点在上,若,求和的大小;(2)如图②,点在外,是的直径,与⊙相切于点,若,求的大小.【答案】(1) (2)62323162=21216ABD △O e »»AB AD =C e O 60BCD ∠=︒ABD ∠ADB ∠C e O BD e O BC O B 50BCD ∠=︒CDA ∠30ABD ADB ∠=∠=︒85CDA ∠=︒【小问1详解】解:∵四边形内接于,,∴,∵,∴,∴;【小问2详解】解:∵与相切于点,∴,∴∵在中,,∴∵是的直径,∴,∵,∴,,∴.23. 某村种的水稻2018年平均每公顷产8000kg ,2020年平均每公顷产9680kg ,求该村水稻每公顷产量的年平均增长率.ABCD O e 60BCD ∠=︒180120BAD BCD ∠=︒-∠=︒»»=AB AD AB AD =1(180)302ABD ADB BAD ∠=∠=︒-∠=︒BC O e B BD BC ⊥90CBD ∠=︒Rt BCD ∆50BCD ∠=︒9040BDC BCD ∠=︒-∠=︒BD O e 90BAD ∠=︒»»=AB AD AB AD =190452ABD ADB ∴∠=∠=⨯︒=︒454085CDA ADB BDC ∠=∠+∠=︒+︒=︒解题方案:设该村水稻每公顷产量的年平均增长率为x .(1)用含的代数式表示:①2019年种的水稻平均每公顷的产量为_________kg ;②2020年种的水稻平均每公顷的产量为_________kg ;(2)根据题意,列出相应方程_________;(3)解这个方程,得_________;(4)检验:_________;(5)答:该村水稻每公顷产量的年平均增长率为_________%.【答案】(1),(2)(3)(4)当x =-2.1时,不合题意,故舍去(5)10【小问1详解】解:根据题意,①2019年种的水稻平均每公顷的产量为kg ;②2020年种的水稻平均每公顷的产量为kg ;故答案为:;;【小问2详解】解:由题意,可列出方程:;x ()80001x +()280001x +()2800019680x +=120.1 2.1x x ==-,()80001x +()280001x +()80001x +()280001x +()2800019680x +=故答案为:;【小问3详解】解:,解得:;故答案为:;【小问4详解】解:检验:当x =-2.1时,不合题意,故舍去;故答案为:当x =-2.1时,不合题意,故舍去;【小问5详解】解:该村水稻每公顷产量的年平均增长率为;故答案为:10;24. 四边形和四边形均为正方形,正方形绕点A 顺时针旋转.(1)正方形绕点A 顺时针旋转到如图①位置时,且三点在同一直线上,则和的数量关系是_________;和的位置关系是_________;(2)正方形绕点A 顺时针旋转到如图②位置时,且点落在线段上.①求证:;②若,求的长;的()2800019680x +=()2800019680x +=120.1 2.1x x ==-,120.1 2.1x x ==-,0.110%x ==ABCD AEFG AEFG AEFG D A E 、、DG BE DG BE AEFG F DG ABE ADG V V ≌10,2AB DF ==BF(3)如图③,若,,正方形绕点A 顺时针旋转过程中,取的中点,连接,记的面积为S ,求S 的取值范围(直接写出结果即可).【答案】(1),(2)①见解析;②(3)【小问1详解】根据题意,得:∵四边形和四边形均为正方形∴,,和中∴∴,如图,延长DG ,交BE 于点K∵10AB =6AG =AEFG DG M CM CDM V DG BE =DG BE ⊥14BF =1040S ≤≤90DAB BAE ∠=∠=︒ABCD AEFG AD AB =AG AE =90BAE ∠=︒DAG △BAE V 90AD ABDAB BAE AG AE=⎧⎪∠=∠=︒⎨⎪=⎩()DAG BAE SAS V V ≌DG BE =ADG ABE ∠=∠90BAE ∠=︒∴∴∴故答案为:,【小问2详解】①∵四边形和均为正方形,∴∴,即在和中∴;②∵∴,∵∴点三点在一条直线上设正方形边长为,则,在中,由勾股定理得,即,整理得:,解得:.90ABE AEB ∠+∠=︒()18090DKE ABE AEB ∠=︒-∠+∠=︒DG BE⊥DG BE =DG BE⊥ABCD AEFG =90AB AD AE AG BAD EAG ===,,∠∠BAD EAD EAG EAD ∠-∠=∠-∠BAE DAG∠=∠ABE △ADG V =AB ADBAE DAGAE AG=⎧⎪∠∠⎨⎪=⎩()ABE ADG SAS V V ≌ABE ADGV V ≌90AEB AGD ∠=∠=︒90AEF ∠=︒,,B E F AEFG x 2DG BE x ==+Rt ADG V 222AD AG DG =+()22210=2x x ++22480x x +-=()1268x x ==-,舍∴;【小问3详解】如图,过点G 作,交延长线于点Q ,过点M 作∴∵点为的中点∴为的中位线∴∵,,正方形形∴,∵∴∴当点G 在直线AB 左侧时,∴当点G 在直线AB 右侧时,∴8614BF BE EF =+=+=GQ DA ⊥DA MP DA ⊥//MP GQ M DG MP DQG V 12DP DQ =10AB =6AG =ABCDcos 6cos AQ AG GAQ GAQ =⨯∠=⨯∠10DA CD AB ===0GAQ ∠≥0cos 1GAQ ≤∠≤06AQ ≤≤10DQ DA AQ AQ=-=-410DQ ≤≤10DQ DA AQ AQ=+=+1016DQ ≤≤综上,∴∵ ∴.25. 在平面直角坐标系中,抛物线与轴交于,两点,与轴交于点,连接,点是第一象限的抛物线上一动点.(1)求抛物线的解析式;(2)过点作于点.①若,求点坐标;②过点作轴于点,交于点,连接,当的周长取得最大值时,抛物线上是否存在一点,使,如果存在,请求出点的坐标,如果不存在,请说明理由.【答案】(1)(2)①点D 的坐标为(2,3);②存在,点P 的坐标为,,【小问1详解】解:把两点代入抛物线则,416DQ ≤≤28DP ≤≤152S CD DP DP =⨯=1040S ≤≤23y ax bx =++x ()3,0A ()1,0B -y C AC D D DE AC ⊥E DE CE =D D DH x ⊥H AC F 、DC DA DEF V P PAC ACD S S =△△P 2y x 2x 3=-++315,24⎛⎫ ⎪⎝⎭()()3,01,0A B -,23y ax bx =++933030a b a b ++=⎧⎨-+=⎩解得.∴抛物线的解析式为;【小问2详解】解:①连接CD ,当x =0时,y =3,即OC =3,∵OC=OA =3,∠AOC=90°,∴△AOC 为等腰直角三角形,∠CAO=45°.∵DE⊥AC,DE =CE ,∴△CDE 为等腰直角三角形,∠DCE=45°,∴∠DCE=∠OAC=45°,即CD∥OA.∴点C 和D 的纵坐标都等于3.把y =3代入抛物线解析式得,,解得(舍去),,∴点D 的坐标为(2,3).12a b =-⎧⎨=⎩2y x 2x 3=-++2y x 2x 3=-++2233x x -++=10x =22x =②∵DF⊥x 轴,∴DH⊥OA,∵∠CAO=45°,∴∠AFH=45°,∵DE⊥AC,∠DFE=∠AFH=45°,∴△DEF 为等腰直角三角形,∴则△DEF 的周长等于.∵,∴直线AC 的解析式为y =-x +3.设点D 的坐标为,,则.∴当时,DF 取得最大值,此时△DEF 的周长取得最大值.点D 的坐标为.∵,∴点P 和D 到直线AC 的距离相等.容易得知点P 和D 重合时符合题意,此时P 的坐标为.作直线l 和k 都和直线AC 平行,且到直线AC 的距离都相等,则直线l 的解析式为DE EF DF=)1DE EF DF DF ++=+()()3,00,3A C ,()2,23m m m -++(),3F m m -+()22239233324DF m m m m m m ⎛⎫=-++--+=-+=--+ ⎪⎝⎭32m =315,24⎛⎫⎪⎝⎭PAC ACD S S =△△315,24⎛⎫⎪⎝⎭,直线k 的解析式为.联立直线与抛物线得,解得,则点P 的坐标为,.综上所述:符合题意得点P 的坐标为,,.214y x=-+34y x =-+34y x =-+2y x 2x 3=-++23922x ⎛⎫-= ⎪⎝⎭12x x ==315,24⎛⎫ ⎪⎝⎭。

山东省济宁市曲阜市、鱼台县2023-2024学年九年级上学期期末数学试卷(含解析)

山东省济宁市曲阜市、鱼台县2023-2024学年九年级上学期期末数学试卷(含解析)

2023-2024学年山东省济宁市曲阜市、鱼台县九年级(上)期末数学试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线2.(3分)下列函数中,y 是x 反比例函数的是( )A .B .C .D .3.(3分)二次函数y =(x ﹣2)2﹣8的顶点坐标为( )A .(2,﹣8)B .(2,8)C .(﹣2,8)D .(﹣2,﹣8)4.(3分)某小组做“用频率估计棍率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )A .掷一枚一元硬币,落地后正面朝上B .在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C .一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D .任意写一个整数,它能被2整除2xy =-21y x =+2y x =2y x=-5.(3分)关于的方程mx2+2x+1=0有两个实数根,则m的取值范围是( )A.m<1B.m≤1C.m<1且m≠0D.m≤1且m≠06.(3分)如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠BDC的度数为( )A.62°B.52°C.28°D.56°7.(3分)如图,反比例函数的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值是( )A.3B.﹣3C.2D.﹣28.(3分)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于( )A.B.C.D.9.(3分)如图,在△ABC中,DE∥BC,AE:BE=3:4,BD与CE交于O,下列结论:①=;②=;③=;④=.其中正确结论的个数是( )A.1B.2C.3D.410.(3分)如图,一段抛物线y=﹣x2+4x(0≤x≤4),记为抛物线C1,它与x轴交于点O,A1;将抛物线C1绕点A1旋转180°得抛物线C2,交x轴于点A2;将抛物线C2绕点A2旋转180°得抛物线C3,交x轴于点A3.…如此进行下去,得到一条“波浪线”,若点M(2023,m)在此“波浪线”上,则m的值为( )A.﹣3B.3C.﹣4D.4二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)点P(﹣1,2)关于原点对称的点P′的坐标是 .12.(3分)若a、b是方程x2+2x﹣2023=0的两实数根,则a2+3a+b= .13.(3分)如图,一次函数y1=k1x+b与反比例函数的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为﹣1,则不等式的解集是 .14.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为 .15.(3分)如图所示,扇形AOB中,∠AOB=140°,点C为OA中点,OA=8,CD⊥AO交于D,以OC 为半径画交OB于E,则图中阴影部分面积为 .三、解答题:本大题共7小题,共55分.16.(6分)(1)解方程:x2+6x﹣7=0;(2)计算:4sin45°﹣+(﹣1)0﹣tan30°.17.(6分)如图,在直角坐标系中,边长为1的小正方形组成的网格中,给出了格点△ABC(顶点为网格线的交点),在给定的网格中,解答下列问题:(1)以A为位似中心,将△ABC按相似比2:1放大,得到△AB1C1,画出△AB1C1.(2)以C1为旋转中心,将△AB1C1顺时针旋转90°,得到△A1B2C1.①画出△A1B2C1;②求点A的运动路径长.18.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.19.(8分)曲阜尼山圣境孔子像,背山面湖,面南而立,为世界最高最大的孔子像,成为儒客和游人朝拜、瞻仰必到之处.一游客想知道孔子像AB的高度.如图,AB与水平面BD垂直,在点D处测得顶部A的仰角是37°,向前走了24米至点E处,测得此时顶部A的仰角是45°,请聪明的你帮他求出孔子像AB的高度.(参考数据:,,)20.(9分)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.(1)求证:CD是⊙O的切线.(2)若tan∠BED=,AC=9,求⊙O的半径.21.(8分)正方形ABCD的边长为4,AC,BD交于点E.在点A处建立平面直角坐标系如图所示.(1)如图1,双曲线过点E,求点E的坐标和反比例函数的解析式;(2)如图2,将正方形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线与AB交于点P.当△AEP为等腰三角形时,求m的值.22.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.2023-2024学年山东省济宁市曲阜市、鱼台县九年级(上)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.1.(3分)下面用数学家名字命名的图形中,既是轴对称图形,又是中心对称图形的是( )A .赵爽弦图B .笛卡尔心形线C .科克曲线D .斐波那契螺旋线【解答】解:A .是中心对称图形,不是轴对称图形,故此选项不合题意;B .不是中心对称图形,是轴对称图形,故此选项不合题意;C .既是中心对称图形,也是轴对称图形,故此选项符合题意;D .不是中心对称图形,也不是轴对称图形,故此选项不合题意;故选:C .2.(3分)下列函数中,y 是x 反比例函数的是( )A .B .C .D .【解答】解:A 、y =﹣不符合y =的形式,不是反比例函数,不符合题意;B 、y =不符合y =的形式,不是反比例函数,不符合题意;C 、y =是反比例函数,符合题意;D 、y =﹣x 2不符合y =的形式,不是反比例函数,不符合题意.故选:C .3.(3分)二次函数y =(x ﹣2)2﹣8的顶点坐标为( )A .(2,﹣8)B .(2,8)C .(﹣2,8)D .(﹣2,﹣8)【解答】解:已知二次函数顶点式:y =a (x ﹣h )2+k 的顶点为(h ,k ),∴y =(x ﹣2)2﹣8的顶点坐标为(2,﹣8).故选:A .4.(3分)某小组做“用频率估计棍率”的试验时,统计了某一结果出现的频率,绘制了如图所示的折线统计图,则符合这一结果的试验最有可能的是( )2xy =-21y x =+2y x =2y x=-A.掷一枚一元硬币,落地后正面朝上B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”C.一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃D.任意写一个整数,它能被2整除项不符合题意;此选项符合题意;近于0.33不符,此选项不符合题意;故选:B.5.(3分)关于的方程mx2+2x+1=0有两个实数根,则m的取值范围是( )A.m<1B.m≤1C.m<1且m≠0D.m≤1且m≠0【解答】解:∵关于的方程mx2+2x+1=0有两个实数根,∴m≠0且△≥0,即22﹣4×m×1≥0,解得m≤1且m≠0.故选:D.6.(3分)如图,AB为⊙O的直径,弦CD⊥AB,E为上一点,若∠CEA=28°,则∠BDC的度数为( )A.62°B.52°C.28°D.56°【解答】解:∵AB为⊙O的直径,弦CD⊥AB,∴=,∠BFD=90°,∴∠ABD=∠CEA=28°,∴∠BDC=90°﹣28°=62°.故选:A.7.(3分)如图,反比例函数的图象经过▱ABCD对角线的交点P,已知点A,C,D在坐标轴上,BD⊥DC,▱ABCD的面积为6,则k的值是( )A.3B.﹣3C.2D.﹣2【解答】解:设点B(a,b),∴OD=﹣a,BD=b,∵四边形ABCD为平行四边形,∴AB∥CD,点P为BD的中点,∵BD⊥CD,∴BD⊥AB,又∵∠DOA=90°,∴四边形ABDO为矩形,∴AB=OD,∴OD=CD=﹣a,∵▱ABCD的面积为6,∴CD•BD=6,即﹣ab=6,∵点P为BD的中点,∴点P的坐标为(a,b),∵反比例函数的图象经过点P,∴k=ab=﹣3.故选:B.8.(3分)如图,△ABC的顶点都是正方形网格中的格点,则cos∠ACB等于( )A.B.C.D.【解答】解:∵AB=5,BC==5,AC==,∴BA=BC,∴∠ACB=∠CAB,∴cos∠ACB=cos∠CAB==,故选:D.9.(3分)如图,在△ABC中,DE∥BC,AE:BE=3:4,BD与CE交于O,下列结论:①=;②=;③=;④=.其中正确结论的个数是( )A.1B.2C.3D.4【解答】解:∵AE:BE=3:4,∴,∵DE∥BC,∴△AED∽△ABC,∴,=,则①,②错误;∵DE∥BC,∴△EOD∽△COB,∴=,则③正确;∵△EOD∽△COB,∴,∴,∴,则④正确;故选:B.10.(3分)如图,一段抛物线y=﹣x2+4x(0≤x≤4),记为抛物线C1,它与x轴交于点O,A1;将抛物线C1绕点A1旋转180°得抛物线C2,交x轴于点A2;将抛物线C2绕点A2旋转180°得抛物线C3,交x轴于点A3.…如此进行下去,得到一条“波浪线”,若点M(2023,m)在此“波浪线”上,则m的值为( )A.﹣3B.3C.﹣4D.4【解答】解:∵y=﹣x2+4x=﹣x(x﹣4)(0≤x≤4),∴A1(4,0),∴整个函数图象,每隔4×2=8个单位长度,函数值就相等,∵2023÷8=252……7,∴m的值与x=7时的函数值相同,∵x=7在C2上,∵将抛物线C1绕点A1旋转180°得抛物线C2,交x轴于点A2,∴OA1=A1A2,∴A2(8,0),∴C2:y=(x﹣4)(x﹣8),当x=7时,y=m=(7﹣4)×(7﹣8)=﹣3;故选:A.二、填空题:本大题共5小题,每小题3分,共15分.11.(3分)点P(﹣1,2)关于原点对称的点P′的坐标是 (1,﹣2) .【解答】解:点P(﹣1,2)关于原点对称的点P′的坐标是(1,﹣2).故答案为:(1,﹣2).12.(3分)若a、b是方程x2+2x﹣2023=0的两实数根,则a2+3a+b= 2021 .【解答】解:∵a是方程x2+2x﹣2023=0的根,∴a2+2a﹣2023=0,即a2+2a=2023,∵a,b是方程x2+2x﹣2023=0的两个实数根,∴a+b=﹣2,∴a2+3a+b=a2+2a+a+b=2023﹣2=2021.故答案为:2021.13.(3分)如图,一次函数y1=k1x+b与反比例函数的图象相交于A,B两点,点A的横坐标为2,点B的横坐标为﹣1,则不等式的解集是 ﹣1<x<0或x>2 .【解答】解:由题意得,不等式的解集即为一次函数图象在反比例函数图象下方时自变量的取值范围,∴不等式的解集是﹣1<x<0或x>2.故答案为:﹣1<x<0或x>2.14.(3分)如图,在Rt△ABC中,∠BAC=90°,AB=3,BC=5,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为 .【解答】解:方法一:∵∠BAC=90°,AB=3,BC=5,∴AC===4,∵四边形APCQ是平行四边形,∴PO=QO,CO=AO=2,∵PQ最短也就是PO最短,∴过O作BC的垂线OP′,∵∠ACB=∠P′CO,∠CP′O=∠CAB=90°,∴△CAB∽△CP′O,∴,∴,∴OP′=,∴则PQ的最小值为2OP′=,方法二:过点A作AE⊥BC垂足为E当PQ⊥BC时,符合题意,则四边形AEPQ是矩形,∴PQ=AE=2.4.故答案为:.15.(3分)如图所示,扇形AOB中,∠AOB=140°,点C为OA中点,OA=8,CD⊥AO交于D,以OC为半径画交OB于E,则图中阴影部分面积为 8π+8 .【解答】解:如图,连接OD.∵点C为OA中点,OA=8,∴OC=OA=4,∵OD=OA=8,CD⊥AO,∴∠CDO=30°,∴∠COD=60°,∴S阴=S扇形OAB﹣S扇形OCE﹣(S扇形OAD﹣S△OCD)=﹣﹣(﹣×4×4)=8π+8,故答案为:8π+8.三、解答题:本大题共7小题,共55分.16.(6分)(1)解方程:x2+6x﹣7=0;(2)计算:4sin45°﹣+(﹣1)0﹣tan30°.【解答】解:(1)∵x2+6x﹣7=0,∴(x+7)(x﹣1)=0,∴x1=﹣7,x2=1(2)原式=17.(6分)如图,在直角坐标系中,边长为1的小正方形组成的网格中,给出了格点△ABC(顶点为网格线的交点),在给定的网格中,解答下列问题:(1)以A为位似中心,将△ABC按相似比2:1放大,得到△AB1C1,画出△AB1C1.(2)以C1为旋转中心,将△AB1C1顺时针旋转90°,得到△A1B2C1.①画出△A1B2C1;②求点A的运动路径长.【解答】解:(1)如图所示,△AB1C1即为所求;(2)①如图所示,△A1B2C1即为所求;②由图形可知,AC1==2,∴点A的运动路径为==π.18.(6分)2018年9月,第24届山东省运动会在青岛举行,有20名志愿者参加某分会场的工作,其中男生8人,女生12人.(1)若从这20人中随机选取一人作为联络员,求选到女生的概率;(2)若该分会场的某项工程只在甲、乙两人选一人,他们准备以游戏的方式决定由谁参加,游戏规则如下:将四张牌面数字分别为2,3,4,5的扑克牌洗匀后,数字朝下放于桌面,从中任取1张,不放回,再取1张,若牌面数字之和为偶数,则甲参加;否则乙参加,试问这个游戏公平吗?请用树状图或列表法说明理由.【解答】解:(1)∵共20名志愿者,女生12人,∴选到女生的概率是:=;(2)不公平,根据题意画图如下:∵共有12种情况,和为偶数的情况有4种,∴牌面数字之和为偶数的概率是=,∴甲参加的概率是,乙参加的概率是,∴这个游戏不公平.19.(8分)曲阜尼山圣境孔子像,背山面湖,面南而立,为世界最高最大的孔子像,成为儒客和游人朝拜、瞻仰必到之处.一游客想知道孔子像AB的高度.如图,AB与水平面BD垂直,在点D处测得顶部A的仰角是37°,向前走了24米至点E处,测得此时顶部A的仰角是45°,请聪明的你帮他求出孔子像AB的高度.(参考数据:,,)【解答】解:由题意得DE=24米,在Rt△ABE中,∠AEB=45°,∴∠BAE=45°,∴AB=BE.设AB=BE=x米,在Rt△ABD中,tan∠ADB=,∴tan37°=,∴≈,解得x=72,经检验x=72是原方程的解,∴AB=72米.答:孔子像AB的高度为72米.20.(9分)如图,AB为⊙O的直径,D、E是⊙O上的两点,延长AB至点C,连接CD,∠BDC=∠BAD.(1)求证:CD是⊙O的切线.(2)若tan∠BED=,AC=9,求⊙O的半径.【解答】(1)证明:连接OD,∵AB为⊙O的直径,∴∠ADB=90°,∴∠A+∠ABD=90°,∵OB=OD,∴∠ABD=∠ODB,∵∠BDC=∠A,∴∠BDC+∠ODB=90°,∴∠ODC=90°,∴OD⊥CD,∵OD是⊙O的半径,∴CD是⊙O的切线;(2)解:∵∠ADB=90°,tan∠BED=,∴,∵∠DCB=∠ACD,∠BDC=∠BAD,∴△BDC∽△DAC,∴=,∵AC=9,∴,∴CD=6,∴,∴BC=4,∴AB=AC﹣BC=9﹣4=5.∴⊙O的半径为.21.(8分)正方形ABCD的边长为4,AC,BD交于点E.在点A处建立平面直角坐标系如图所示.(1)如图1,双曲线过点E,求点E的坐标和反比例函数的解析式;(2)如图2,将正方形ABCD向右平移m(m>0)个单位长度,使过点E的双曲线与AB交于点P.当△AEP为等腰三角形时,求m的值.【解答】解:(1)∵正方形ABCD的边长为4,AC,BD交于点E,∴C(4,4),∵点E是OC的中点,∴E(2,2),将E点坐标代入双曲线,得2=,解得k1=4,∴双曲线的解析式为y=;(2)∵正方形边长为4,由(1)知E(2,2),∴AE=2,①当AP=AE=2时,∵P(m,2),E(m+2,2),点P、E在反比例函数图象上,∴2m=2(m+2),∴m=2+2;②当EP=AE时,点P与点B重合,∵P(m,4),E(m+2,2),点P、E在反比例函数图象上,∴4m=2(m+2),∴m=2;③当EP=AP时,点P、E不可能都在反比例函数图象上,故此情况不存在;综上所述,满足条件的m的值为2或2+2.22.(12分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B,与y轴交于点C,点B坐标为(6,0),点C坐标为(0,6),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接BD.(1)求抛物线的解析式及点D的坐标;(2)点F是抛物线上的动点,当∠FBA=∠BDE时,求点F的坐标;(3)若点M是抛物线上的动点,过点M作MN∥x轴与抛物线交于点N,点P在x轴上,点Q在坐标平面内,以线段MN为对角线作正方形MPNQ,请写出点Q的坐标.【解答】解:(1)把B、C两点坐标代入抛物线解析式可得,解得,∴抛物线解析式为y=﹣x2+2x+6,∵y=﹣x2+2x+6=﹣(x﹣2)2+8,∴D(2,8);(2)如图1,过F作FG⊥x轴于点G,连接FB,设F(x,﹣x2+2x+6),则FG=|﹣x2+2x+6|,∵∠FBA=∠BDE,∠FGB=∠BED=90°,∴△FBG∽△BDE,∴=,∵B(6,0),D(2,8),∴E(2,0),BE=4,DE=8,OB=6,∴BG=6﹣x,∴=,当点F在x轴上方时,有=,解得x=﹣1或x=6(舍去),此时F点的坐标为(﹣1,);当点F在x轴下方时,有=﹣,解得x=﹣3或x=6(舍去),此时F点的坐标为(﹣3,﹣);综上可知F点的坐标为(﹣1,)或(﹣3,﹣);(3)如图2,设对角线MN、PQ交于点O′,∵点M、N关于抛物线对称轴对称,且四边形MPNQ为正方形,∴点P为抛物线对称轴与x轴的交点,点Q在抛物线的对称轴上,设Q(2,2n),则M坐标为(2﹣n,n),∵点M在抛物线y=﹣x2+2x+6的图象上,∴n=﹣(2﹣n)2+2(2﹣n)+6,解得n=﹣1+或n=﹣1﹣,∴满足条件的点Q有两个,其坐标分别为(2,﹣2+2)或(2,﹣2﹣2).。

2022-2023学年云南省昆明市五华区九年级上学期期末数学试卷+答案解析(附后)

2022-2023学年云南省昆明市五华区九年级上学期期末数学试卷+答案解析(附后)

2022-2023学年云南省昆明市五华区九年级上学期期末数学试卷1. 小明同学的微信钱包部分账单明细如图所示,表示收入元,下列说法正确的是( )A. 表示收入元B.表示支出元C. 表示支出元D. 收支总和为元2. 下列运算正确的是( )A.B.C.D.3. 下列说法不正确的是( )A. 为了表明空气中各组成部分所占百分比宜采用扇形统计图B. 了解某班同学的视力情况采用全面调查C. 为了表示中国在历届冬奥会获得的金牌数量的变化趋势采用折线图D. 调查神舟十四号载人飞船各零部件的质量采用抽样调查 4. 反比例函数的图象位于( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 已知直线,将一块含角的直角三角板按如图方式放置,点A ,B 分别落在直线m ,n 上.若则的度数为( )A. B.C.D.6. 如图,为测量池塘两端A 、B 的距离,可先在平地上取一个点 O ,从点 O 不经过池塘可以直接到达点 A 和 B ,连接 OA , OB ,分别取 OA 、 OB 的中点 C , D ,连接CD 后,量出CD 的长为12米,那么就可以算出A ,B 的距离是( )A. 36米B. 24米C. 12米D. 6米7. 在中,为钝角.用直尺和圆规在边AB上确定一点使,则符合要求的作图痕迹是( )A. B.C. D.8. 要制作一个带盖的圆柱形礼品盒,下列设计的展开图中正确的是( )A. B.C. D.9. 按一定规律排列的等式:……,按此规律( )A. B. C. D.10. 《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900 里远的城市,所需时间比规定时间多1 天;若改为快马派送,则所需时间比规定时间少3 天,已知快马的速度是慢马的2 倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A. B.C. D.11. 若关于x的一元二次方程中,则这个方程的根的情况是( )A. 无实数根B. 有两个相等的实数根C. 有两个不等的实数根D. 不能确定12. 如图,已知菱形ABCD中,,点P 从点A 出发,以每秒1 个单位长度的速度沿的路线运动.设点P 运动时间为t ,为y ,则y 关于t 的函数图象大致为( )A. B.C. D.13. 2022年2月20日,北京冬奥会完美收官.据统计,从冬奥会的申办成功到冬奥会的顺利举办,共有346000000人参与冰雪运动.将346000000这个数用科学记数法表示为__________.14. 若代数式有意义,则实数x的取值范围是__________.15. 如图,四边形ABCD是的内接四边形,对角线BD 过点O,若,则的度数为__________16. 将一块直角三角板ABC 放置在平面直角坐标系中,顶点A与原点O重合,直角顶点C的坐标为,当绕点C旋转一个角时点B落在y 轴上,此时点A的坐标为__________.17. 分式:化简过程如下,请认真阅读并完成任务.第一步第二步第三步第四步任务一:填空以上化简步骤中,第_____步是通分;第_____步开始出现错误:任务二:写出正确的化简过程.18. 近年来网约车给人们的出行带来了便利,某学校数学兴趣小组对甲、乙两家网约车公司机月收入进行抽样调查,两家公司分别抽取10个司机的月收入单位:千元,调查后根统计结果绘制如下统计图:根据以上信息,整理分析数据如下表:平均月收入中位数众数方差甲公司666乙公司64请根据以上信息,解答下列问题:补全条形统计图;上表中的数据被污染,请你求出这个数据;某人打算从两家公司中选择一家做网约车司机,根据以上数据,你建议他择___________公司.填“甲”或“乙”19. 某西瓜种植户在直播平台销售西瓜时宣传:“我家西瓜又大又甜,平均都在5 公斤以上货到不满意包退款!”,当天最后还有五个西瓜封装在外观完全相同的纸箱中,所装西瓜的重量分别为4 公斤,5 公斤,6 公斤,6 公斤,7 公斤.这五个纸箱随机摆放.王先生下了当天的最后一单,发货员在不知道重量的情况下随机选择发货;若王先生下单只买了一个西瓜,则收到的西瓜重量超过5公斤的概率是___________;若王先生下单买了两个西瓜,请用列表法或画树状图法中的一种方法,求他收到西瓜重量符合卖家宣传的概率.20. 某校计划租用甲、乙两种客车送330名师生去研学基地开展综合实践活动.已知租用一辆甲型客车和一辆乙型客车共需600元,租用2辆甲型客车和3辆乙型客车共需1560元.甲客车每辆可坐30名师生,乙型客车每辆可坐45名师生.租用甲、乙两种客车每辆各需多少元?若学校计划租用8辆客车,怎样租车可使总费用最少?21. 两个矩形如图1放置,现在取BD 的中点P,连接PA,PE ,如图2,把图形分割成三部分,分别标记①,②,③,对应图形的面积分别记为,,用字母a、b分别表示、;若,求;若,求22. 已知二次函数求二次函数图象的对称轴;在平面直角坐标系中,若二次函数的图象经过,,,四点,请判断a,b,c,d 的大小,并说明理由.23. 如图所示,AB 是的直径,点D 在AB 上,点C 在上,,CD的延长线交于点在CD 的延长线上取一点 F ,使,求证:BF 是的切线;若,,求图中阴影部分的面积.24. 如图1,点E 是正方形ABCD 的边BC 上的动点点E 不与点B ,C 重合,连接AE ,于点 F ,于点求证:≌:如图2,在FE 上取点H ,使得,作的角平分线交AE 的延长线于点M ,直接写出的值;如图2,在的条件下,连接当点 E 运动时,试探究的值是否为定值?若是定值,请求出该定值;若不是定值,请说明理由.答案和解析1.【答案】C【解析】解:根据表示收入元,“收入”用正数表示,那么“支出”就用负数表示,于是表示支出元,故选根据表示收入元,可以得出“收入”用正数表示,从而“支出”就用负数表示,即可得出答案.2.【答案】B【解析】解:,选项错误,不符合题意;B. ,选项正确,符合题意;C. 无法合并,选项错误,不符合题意;D. ,选项错误,不符合题意;故选根据算式平方根的定义,合并同类项法则,零指数幂的运算法则,逐一进行计算,判断即可.3.【答案】D【解析】A. 为了表明空气中各组成部分所占百分比宜采用扇形统计图,选项正确;B. 了解某班同学的视力情况采用全面调查,选项正确;C. 为了表示中国在历届冬奥会获得的金牌数量的变化趋势采用折线图,选项正确;D.调查神舟十四号载人飞船各零部件的质量采用全面调查,选项错误,故选根据统计图的特点,可判断A、C;根据调查方式,可判断B、4.【答案】D【解析】解:反比例函数,,该函数图象在第四象限,故选5.【答案】B【解析】解:n,,,,,故选根据平行线的性质求得,再根据角的和差关系求得结果.6.【答案】B【解析】解:如下图,连接AB,、D分别为OA、OB的中点,为的中位线,又米,米.故选根据题意可知CD为三角形OAB的中位线,结合三角形中位线的性质即可获得答案.7.【答案】C【解析】解:,,,,点D为BC的垂直平分线与AB的交点.故选利用三角形外角性质得到,利用等腰三角形的判定得到,然后根据线段垂直平分线的作法对各选项进行判断.8.【答案】C【解析】解:A、可折叠出圆锥体,故不符合题意;B、可折叠出无盖圆柱体,故不符合题意;C、可折叠出圆柱体,故符合题意;D、可折叠出长方体,故不符合题意.故选根据四个选项的图形折合,看是否能折叠成圆柱体即可获得答案.9.【答案】C【解析】解:规律为:则中,解得:则等号右边为:,故选通过观察可以看出:规律为一个等式,等号左边为连续奇数的和,且奇数的个数、最后一个奇数都与等式的序数有关,即:第n个等式左边有n个奇数,最后一个奇数为;等号的右边为序数的平方,即: .10.【答案】B【解析】解:设规定时间为x天,慢马的速度为,快马的速度为,快马的速度是慢马的2倍,.故选根据题意先求得快马的速度和慢马的速度,根据快马的速度是慢马的2倍列分式方程即可.11.【答案】A【解析】解:对于关于x的一元二次方程,其根的判别式,,,即,先求出方程的根的判别式,结合m的取值范围进行判断判别式的情况即可得出方程根的情况.12.【答案】A【解析】解:菱形 ABCD 中,, ,,,在中,,当P 在 AB 上运动时,如图所示,过点 P 作于 M ,,且点 P 从点 A 出发,运动速度为每秒 1 个单位长度,设点 P 运动时间为 t ,,,,即 ,,,则,,当 P 在 BO 上运动时,如图所示,,故选点 P 从点 A 出发,过点 P 作于 M ,可证,,,可用含 t 的式子表示的值,根据运动时间,分类讨论由此即可求解.13.【答案】【解析】解:346000000用科学记数法表示为 .故答案为:14.【答案】【解析】代数式有意义,,,,故答案为:根据二次根式的性质和分式有意义的条件求解即可.15.【答案】25【解析】解:是的直径,,,,,故答案为: .根据圆周角定理得到,,再根据直角三角形的两锐角互余求解即可.16.【答案】或【解析】【分析】分两种情况:当B点在第二象限时,当B点在第三象限时,结合锐角三角函数,即可求解.【详解】解:当B点在第二象限时,旋转后点B落在y轴的点处,点A落在点处,作于点H,在中,,,,点C的坐标为,,,,,,,,,,,点的坐标为;当B点在第三象限时,同理旋转后点A的坐标为;综上所述,当绕点C旋转一个角时点B落在y轴上,此时点A的坐标为或 .故答案为:或17.【答案】一;二;解:.【解析】根据分式的性质,乘法公式进行检验即可求解;根据分式的性质,乘法公式进行检验即可求解;根据分式的性质,先计算括号,通分,进行分式的加减,再计算括号外面的乘除,即可求解.18.【答案】解:工资为 9 千元的人数为:人补全条形统计如图所示;解:乙公司10个司机月收入从小到大分别是4,4,4,4,4,5,5,9,9,单位:千元乙公司的中位数;甲.【解析】见答案.根据表格可知,甲乙两个公司的平均月收入相同,甲公司的中位数和众数比乙公司大,说明甲公司高工资段的人数较多,且甲公司的方差小于乙公司的方差,工资比较稳定,建议选择甲公司.故答案为:甲.19.【答案】解:所装西瓜的重量分别为 4 公斤, 5 公斤, 6 公斤, 6 公斤, 7 公斤,这 5 个西瓜中超过 5 公斤的有 3个 ,王先生下单只买了一个西瓜,则收到的西瓜重量超过 5 公斤的概率是: .解:根据题意可知:4566745667由表可以看出,所有可能出现的结果共有20种,这些结果出现的可能性相等.其中收到的西瓜平均重量在5公斤以上的结果有14种,即,,,,,,,,,,,,,他收到的西瓜重量符合卖家承诺 .【解析】根据所装西瓜的重量中超过 5公 斤所占的百分比即可求出概率;根据卖家要求列表求出两个西瓜平均超过 5 公斤的数量,最后算出百分比.20.【答案】解:设租用甲种客车每辆 x 元,租用乙种客车每辆 y 元,根据题意可得, ,解得 .答:租用甲种客车每辆240元,租用乙种客车每辆360元.设租用甲型客车 m 辆,则租用乙型客车辆,租车总费用为 w 元,则 ,解得 ,根据题意可知, ,又 , 随 m 的增大而减小,当 时,w 的最小值为 .答:当租用甲型客车2辆,租用乙型客车6辆,租车总费用最少为2640元.【解析】设租用甲种客车每辆 x 元,租用乙种客车每辆 y 元,根据题意列出二元一次方程组并求解即可获得答案;设租用甲型客车 m 辆,则租用乙型客车 辆,租车总费用为 w 元,根据题意列出一元一次不等式,求出 m 的取值范围,进而列出 w 关于 m 的函数关系式,根据一次函数的性质求解即可.21.【答案】由题意得,, , ,,,.由题可得,,当 时,.,即解得由题意得,.【解析】见答案.22.【答案】解:,二次函数图象的对称轴为直线 .由得抛物线对称轴为直线,当时,抛物线开口向上,,.当时,抛物线开口向下,,.【解析】见答案.23.【答案】证明:是的直径,,,,,,,,,,,,且OB是的半径,是的切线.解:如图所示,连接,,,,,,,,,图中阴影部分的面积为: .【解析】见答案.24.【答案】证明:四边形ABCD是正方形,,,,,,,,,在和中,,≌证明:四边形ABCD是正方形,,,,是AH的垂直平分线,,平分,,,,,,.的值是定值.理由如下:如图,过点A作交MD的延长线于点,由中得,四边形ABCD是正方形,,,,,在和中,,≌,,是等腰直角三角形,= ,,,故是定值.【解析】见答案.。

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

江苏省南京市秦淮区2023-2024学年上学期期末检测九年级数学试卷(含解析)

2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg 4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 .8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 .10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = °.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 .12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 cm2.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 环.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 .15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 .16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 .三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 y2.(填“>”“<”或“=”)19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 .21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 .2023-2024学年江苏省南京市秦淮区九年级(上)期末数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卷相应位置上)1.(2分)下列函数中,y与x之间的关系是二次函数的是( )A.y=1﹣3x3B.y=x2﹣5xC.y=x4+2x2﹣1D.【分析】根据二次函数的定义判断即可.【解答】解:A、y=1﹣3x3,x的最高次数是3,不是二次函数,不符合题意;B、y=x2﹣5x,是二次函数,符合题意;C、y=x4+2x2﹣1,x的最高次数是4,不是二次函数,不符合题意;D、y=,不是二次函数,不符合题意.故选:B.2.(2分)若⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,则点P与⊙O的位置关系是( )A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.无法确定【分析】根据点P到圆心的距离与圆的半径比较大小即可得出结论.【解答】解:∵⊙O的半径为2,在同一平面内,点P与圆心O的距离为1,1<2,∴点P与⊙O的位置关系是:点P在⊙O内,故选:C.3.(2分)某班5名学生的体重(单位:kg)分别为:51,53,47,51,60,则这组数据的众数与中位数分别是( )A.60kg,51kg B.51kg,47kg C.60kg,47kg D.51kg,51kg【分析】众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:众数是一组数据中出现次数最多的数,在这一组数据中51出现了1次,次数最多,故众数是51kg;将这组数据从小到大的顺序排列为:47,51,51,53,60,处于中间位置的那个数是51,那么由中位数的定义可知,这组数据的中位数是51kg.4.(2分)下列图形中,既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.正八边形【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、是轴对称图形,不是中心对称图形,不符合题意;D、既是轴对称图形,又是中心对称图形,符合题意.故选:D.5.(2分)一元二次方程﹣2(2x+1)2+a2=0(a是常数,a≠0)的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定有没有实数根【分析】根据一元二次方程根的判别式解答即可.【解答】解:一元二次方程﹣2(2x+1)2+a2=0可化为﹣8x2﹣8x+a2﹣2=0,∵a=﹣8,b=﹣8,c=a2﹣2,a≠0,∴Δ=(﹣8)2﹣4×(﹣8)×(a2﹣2)=64+32a2﹣64=32a2>0,∴方程有两个不相等的实数根.故选:A.6.(2分)如图,在平面直角坐标系中,A,B两点的坐标分别为(2,0),(0,2),二次函数y=x2﹣2ax+b(a,b是常数)的图象的顶点在线段AB上,则b的最小值为( )A.0B.C.D.2【分析】先用a,b表示出二次函数图象的顶点坐标,再结合该顶点在线段AB上即可解【解答】解:∵二次函数解析式为y=x2﹣2ax+b(a,b是常数),∴顶点坐标为(a,﹣a2+b).又∵A(2,0),B(0,2),∴直线AB的函数解析式为y=﹣x+2.∵二次函数图象的顶点在线段AB上,∴﹣a2+b=﹣a+2,且0≤a≤2,则b=a2﹣a+2=()2+,∴当a=时,b有最小值为.故选:C.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请7.(2分)一元二次方程x2﹣x=0的根是 x1=0,x2=1 .【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【解答】解:方程变形得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1.8.(2分)若x1,x2是一元二次方程2x2﹣7x+5=0的两根,则x1+x2的值是 .【分析】直接利用根与系数的关系求解.【解答】解:根据根与系数的关系得x1+x2=﹣=.故答案为:.9.(2分)若△ABC内接于⊙O,∠AOB=120°,则圆周角∠ACB的度数 60°或120° .【分析】分点C在优弧和劣弧上两种情况,当点C在优弧上时,可直接利用圆周角定理得到∠ACB是∠AOB的一半,当点C在劣弧上时,可以优弧上找点D,则可求得∠ADB 是∠AOB的一半,再利用圆内接四边形的性质可求得∠ACB【解答】解:如图1,当点C在优弧上时,则∠ACB=∠AOB=60°;如图2,当点C在劣弧上时,在优弧上找点D,连接DA、DB,则可得∠ADB=∠AOB=60°,又∵四边形ACBD为圆的内接四边形,∴∠ADB+∠ACB=180°,∴∠ACB=180°﹣60°=120°,∴∠ACB的度数是60°或120°;故答案为:60°或120°.10.(2分)如图,四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=80°,则∠DCE = 80 °.【分析】利用圆内接四边形的对角互补和邻补角的性质求解.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠DCB=180°,又∵∠DCE+∠DCB=180°∴∠DCE=∠A=80°故答案为:80.11.(2分)某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元.设平均每次降低成本的百分率为x,可得方程 36(1﹣x)2=25 .【分析】根据某产品原来每件成本是36元,连续两次降低成本后,现在成本是25元,可以列出相应的方程.【解答】解:由题意可得,36(1﹣x)2=25,故答案为:36(1﹣x)2=25.12.(2分)圆锥的底面半径为3cm,母线长为5cm,则圆锥的表面积为 15π cm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面圆的半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15π(cm2).故答案为:15π.13.(2分)杭州亚运会射箭比赛中,某运动员6箭的成绩(单位:环)依次是x1,x2,x3,x1+1,x2+2,x3+3.若前3箭的平均成绩为7环,则这6箭的平均成绩为 8 环.【分析】根据前3箭的平均成绩为7环,可以得到前三箭的总环数,从而可以得到这六箭的总环数,从而可以得到平均成绩.【解答】解:由题意可得,x1+x2+x3=3×7=21,∴(x1+x2+x3+x1+1+x2+2+x3+3)÷6=48÷6=8(环),即这6箭的平均成绩为8环,故答案为:8.14.(2分)如图,点B,C在⊙O上,D为的中点,直径AD交BC于点E,AD=6,,则DE的长为 3﹣ .【分析】连接OB,根据圆心角、弦、弧的关系推出AD⊥BC,根据垂径定理求出BE=BC=,再根据勾股定理求解即可.【解答】解:如图,连接OB,∵D为的中点,直径AD交BC于点E,∴AD⊥BC,∴BE=BC=,∵AD=6,∴OB=OD=3,在Rt△BOE中,OB2=OE2+BE2,∴32=OE2+,∴OE=或OE=﹣(舍去),∴DE=OD﹣OE=3﹣,故答案为:3﹣.15.(2分)在平面直角坐标系中,函数y=x2﹣2x﹣3的图象与x轴交于点A,B,将函数y =x2﹣2x﹣3的图象向上平移,平移后的图象与x轴交于点C,D.若AB=2CD,则平移后的图象对应的函数表达式为 y=x2﹣2x .【分析】先解方程x2﹣2x﹣3=0得到A(﹣1,0),B(3,0),则AB=4,所以CD=2,由于函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,对称轴为直线x=1,而C、D关于直线x=1对称,所以C(0,0),D(2,0),然后利用交点式写出平移后抛物线的解析式.【解答】解:当y=0时,x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∴AB=3﹣(﹣1)=4,∵AB=2CD,∴CD=2,∵函数y=x2﹣2x﹣3的图象向上平移时对称轴不变,仍然为直线x=1,∴C(0,0),D(2,0),∴平移后抛物线的解析式为y=x(x﹣2),即y=x2﹣2x.故答案为:y=x2﹣2x.16.(2分)如图,在△ABC中,∠ACB=90°,点D,E分别在BC,AC上,DE与△ABC 的内切圆O相切.若△ABC的面积是30,△CDE的周长是4,则AB的长为 13 .【分析】过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,根据切线长定理得到AF=AH,BF=BG,CG=CH,ME=HE,MD=GD,由△CDE的周长是4求出CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,根据勾股定理得到xy=2(x+y)+4①,根据三角形的面积公式得到xy=60﹣2(x+y)②,①②求得x+y即可.【解答】解:过点分别作OF⊥AB于点F,OG⊥BC于点G,OH⊥AC于点H,∵⊙O是△ABC的内切圆,∴AF=AH,BF=BG,CG=CH,∵DE与⊙O相切,设切点为M,∴ME=HE,MD=GD,∵△CDE的周长是4,CG+CH=4,∴CG=CH=2,设BG=BF=x,AF=AH=y,则AB=x+y,BC=x+2,AC=y+2,∵∠ACB=90°,∴AB2=BC2+AC2,∴(x+y)2=(x+2)2+(y+2)2,化简得xy=2(x+y)+4①,∵△ABC的面积是30,∴BC•AC=30,∴(x+2)(y+2)=60,∴xy=60﹣2(x+y)②,由①②得x+y=13,∴AB=13.故答案为:13.三、解答题(本大题共11小题,共88分.请在答题卷指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(8分)解下列方程:(1)x2+2x﹣4=0;(2)x(x﹣3)=3﹣x.【分析】(1)利用配方法得到(x+1)2=5,然后利用直接开平方法解方程;(2)先移项,再利用因式分解法把方程转化为x﹣3=0或x+1=0,然后解两个一次方程即可.【解答】解:(1)x2+2x﹣4=0,x2+2x=4,x2+2x+1=5,(x+1)2=5,x+1=±,所以x1=﹣1+,x2=﹣1﹣;(2)x(x﹣3)=3﹣x,x(x﹣3)+x﹣3=0,(x﹣3)(x+1)=0,x﹣3=0或x+1=0,所以x1=3,x2=﹣1.18.(6分)已知二次函数y=ax2+bx+c中,函数y与自变量x的部分对应值如表:x…0123…y…5212…(1)求该二次函数的表达式;(2)若点A(﹣1,y1),B(4,y2)在这个函数的图象上,则y1 > y2.(填“>”“<”或“=”)【分析】(1)用待定系数法即可解决问题.(2)分别求出y1和y2即可解决问题.【解答】解:(1)由题知,将点(0,5),(1,2),(2,1)分别代入函数表达式得,,解得,所以该二次函数表达式为y=x2﹣4x+5.(2)当x=﹣1时,;当x=4时,;∴y1>y2.故答案为:>.19.(8分)如图,用篱笆围成一块矩形花圃,该花圃一侧靠墙,而且有一道隔栏(隔栏也用篱笆制作),已知所用篱笆的总长为24m,花圃的面积为45m2,墙的最大可用长度为10m,求边AB的长.【分析】设边AB边的长为x m,根据花圃的面积为45m2,列出一元二次方程,解之取符合题意的值即可.【解答】解:设边AB边的长为x m,由题意得:x(24﹣3x)=45,整理得:x2﹣8x+15=0,解得:x1=3(不符合题意,舍去),x2=5,答:边AB的长为5m.20.(8分)如图,已知△ABC内接于⊙O,AD是⊙O的直径,连接BD,CD,BC平分∠ABD.(1)求证∠CAD=∠ABC;(2)若AD=6,则AC的长为 3 .【分析】(1)由角平分线的性质和圆周角定理可得∠DBC=∠ABC=∠CAD;(2)由圆周角定理可得,由弧长公式可求解.【解答】(1)证明:∵BC平分∠ABD,∴∠DBC=∠ABC,∵∠CAD=∠DBC,∴∠CAD=∠ABC;(2)解:∵∠CAD=∠ABC,∴=,∴AC=CD,∵AD是⊙O的直径,AD=6,∴∠ACD=90°,在Rt△ACD中,2AC2=AD2=62,解得:AC=3.故答案为:3.21.(8分)一只不透明的袋子中装有1个白球和a个红球,这些球除颜色外都相同.已知从袋中任意摸出1个球是白球的概率是.(1)a的值是 2 ;(2)先从袋中任意摸出1个球,记录颜色后放回、搅匀,再从中任意摸出1个球,求2次摸到的球颜色不同的概率.【分析】(1)直接利用概率公式可得答案.(2)列表可得出所有等可能的结果数以及2次摸到的球颜色不同的结果数,再利用概率公式可得出答案.【解答】解:∵从袋中任意摸出1个球是白球的概率是,∴,解得a=2,经检验,a=2是原方程的解且符合题意.故答案为:2.(2)列表如下:白红红白(白,白)(白,红)(白,红)红(红,白)(红,红)(红,红)红(红,(红,(红,白)红)红)共有9种等可能的结果,其中2次摸到的球颜色不同的结果有4种,∴2次摸到的球颜色不同的概率为.22.(8分)已知P是⊙O上一点,在⊙O上作两点A,B,使得∠APB分别满足以下条件:(1)在图①中,∠APB=90°;(2)在图②中,∠APB=30°.(说明:第(1)题只用无刻度的直尺作图,第(2)题只用圆规作图;保留作图痕迹,不写作法.)【分析】(1)过O点画直线交⊙O于点A、B,则根据圆周角定理得到∠APB满足条件;(2)任取点A,以A为圆心,AO为半径画弧交⊙O于点B,则△AOB为等边三角形,所以∠AOB=60°,然后根据圆周角定理得到∠APB满足条件.【解答】解:(1)如图①,∠APB为所作;(2)如图②,∠APB为所作;23.(8分)已知关于x的方程x2﹣(2m+2)x+m2+2m=0.(1)求证:无论m取何值,方程总有两个不相等的实数根;(2)若方程有一个根为1,求m的值.【分析】(1)先求出Δ的值,再判断出其符号即可;(2)把x=1代入方程,求出m的值即可.【解答】(1)证明:方程x2﹣(2m+2)x+m2+2m=0中,∵a=1,b=﹣(2m+2),c=m2+2m,∴Δ=[﹣(2m+2)]2﹣4×1×(m2+2m)=4>0,∴无论m取何值,方程总有两个不相等的实数根;(2)∵方程有一个根为1,∴12﹣(2m+2)×1+m2+2m=0,即m2﹣1=0,∴m=±1.24.(7分)2023年12月14日,一股冷空气开始影响我市,我市连续7天的天气情况如下:上述天气情况包括了每天的天气状况(如阴转小雨,小雨转多云等)、气温(如“5/17℃”指当天最低和最高气温分别是5℃和17℃)、风向和风级.(1)计算这7天最低气温的平均数和方差.(2)阅读冷空气等级标准表:序号等级冷空气来临的48小时内日最低气温变化情况①弱冷空气降温幅度小于6℃②中等强度冷空气降温幅度大于或等于6℃,但小于8℃③较强冷空气降温幅度大于或等于8℃且日最低气温超过8℃④强冷空气降温幅度大于或等于8℃,且日最低气温不超过8℃⑤寒潮降温幅度大于或等于10℃且日最低气温不超过4℃本次来临的冷空气的等级是 ⑤ .(填序号)(3)本次冷空气来临后,除导致气温下降外,还带来哪些天气情况的变化?请写出一个结论.【分析】(1)根据平均数和方差的定义列式计算即可;(2)对照表格可得答案;(3)参照天气情况图可得答案.【解答】解:(1)这7天最低气温的平均数=4(℃),方差为×[(17﹣4)2+(5﹣4)2+(0﹣4)2+(0﹣4)2+(2﹣4)2+(6﹣4)2+(﹣2﹣4)2]=;(2)由题意知,本次来临的冷空气的等级是⑤,故答案为:⑤;(3)本次冷空气来临后,除导致气温下降外,还带来雨雪.25.(8分)2023年12月18日晚,甘肃省积石山县发生6.2级地震.“一方有难,八方支援”,某商家决定将后续一个月销售某商品获得的利润全部捐赠给灾区.已知购进该商品的成本为10元/件,当售价为12元时,平均每天可以卖出1200件.调查发现,该商品每涨价1元,平均每天少售出100件.当每件商品的售价是多少元时,该商家捐赠的金额最大?最大捐赠金额是多少?(一个月按30天计算)【分析】依据题意,设每件商品的售价是x元,先求出每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100(x﹣17)2+4900,再由二次函数的性质进行判断可以得解.【解答】解:由题意,设每件商品的售价是x元,∴每天的利润为w=(x﹣10)[1200﹣100(x﹣12)]=(x﹣10)(2400﹣100x)=﹣100x2+3400x﹣24000=﹣100(x﹣17)2+4900.∴当每件商品的售价是17元时,利润最大为4900元.∴每月最大利润为147000元.答:当每件商品的售价是17元时,该商家捐赠的金额最大,最大捐赠金额是147000元.26.(9分)阅读下列内容:如果点P(a,b)在一次函数y=x+1的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?下面是解决问题的一种途径.所以点(2a,2b)一定在函数y=x+2的图象上.根据阅读内容解决下列问题:(1)如果点P(a,b)在反比例函数的图象上,那么点(2a,2b)一定在哪个函数的图象上呢?填写下面的空格.(2)如果点P(a,b)在一次函数y=2x的图象上,判断点(a+b,ab)一定在哪个函数的图象上?说明理由.【分析】(1)根据点P(a,b)在反比例函数的图象上,得ab=2,对于点(2a,2b),则x=2a,y=2b,则xy=4ab=8,由此可得出答案;(2)根据点P(a,b)在一次函数y=2x的图象上,得b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,进而得得,由此可得出结论.【解答】解:(1)∵点P(a,b)在反比例函数的图象上,∴ab=2,对于点(2a,2b),则x=2a,y=2b,∴xy=4ab,将ab=2代入xy=4ab,得xy=8,即,∴点(2a,2b)一定在这个函数的图象上;如下图所示:(2)点(a+b,ab)一定在这个函数的图象上,理由如下:∵点P(a,b)在一次函数y=2x的图象上,∴b=2a,对于(a+b,ab),则x=a+b=3a,y=ab=2a2,∵x=3a,∴,∴.∴点(a+b,ab)一定在这个函数的图象上.27.(10分)如图,已知A,B是⊙O的2个三等分点,C是优弧AB上的一个动点(点C不与A,B两点重合),连接AB,BC,AC.D,E分别是,的中点,连接DE,分别交AC,BC于点F,G.(1)当点C运动到优弧AB的中点时,直接写出DE与AB的关系.(2)求证FG+AB=AF+BG.(说明:第(2)题共5分,如果你觉得困难,可以在(1)的条件下证明,证明正确得2分.)(3)若I是AE,BD的交点,点O与点I的距离记为d.当AB=6时,d取值范围是 0≤d<2 .【分析】(1)当点C运动到优弧AB的中点时,连接AD,AE,BE,利用同圆中等弧所对的圆周角相等可以推导出DE∥AB,再证明四边形ABED是矩形可以得出DE=AB;(2)在条件(1)下,连接CE,根据圆周角相等和等腰三角形可以推导出BG=2FG,最后推导出FG+AB=AF+BG;(3)根据点C的运动轨迹就可以推导出d的取值范围.【解答】解:(1)当点C运动到优弧AB的中点时,DE∥AB且DE=AB,连接AD,BE,AE,CE,∵A,B是⊙O的2个三等分点,∴==,∴AB=AC=BC,∴△ABC是等边三角形,又∵D,E分别是,的中点,∴===,∴∠DEA=∠EAB=∠DEC=∠CBE=∠DAC=∠CED=∠ECB=30°,∴DE∥AB,∴∠DAB=∠EBA=90°,∴DA⊥AB,EB⊥AB,∴四边形ABED是矩形,∴AB=DE;证明:(2)在(1)的条件下,∵∠ACB=60°,FG∥AB,∴∠CFG=∠CGF=60°,∴△CFG为等边三角形,∴CF=FG=CG,又∵∠CED=∠ECB=30°,∴CG=GE,∵在△GEB中,∠GBE=30°,∠GEB=90°,∴BG=2GE=2FG,∵AB=AF+CF,∴AB+FG=AF+CF+FG=AF+BG;解:(3)连接OB,作OM⊥AB,∵当点C运动到优弧AB的中点时,此时AE,BD的交点I与圆心O重回,∴点O与点I的距离d为0,∵A,B是⊙O的2个三等分点,∴劣弧对的圆心角为120°,∴∠OBM=30°,又∵AB=6,∴OB=2,∵OI≤OB+IB,∴当点C运动到点A或点B时,OI=OB=2,∵点C不与A,B两点重合,∴OI<2,∴0≤d<2,故答案为:0≤d<2.。

2023-2024学年安徽省合肥市蜀山区九年级(上)期末考试数学试卷+答案解析

2023-2024学年安徽省合肥市蜀山区九年级(上)期末考试数学试卷+答案解析

2023-2024学年安徽省合肥市蜀山区九年级(上)期末考试数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列图形中,是中心对称图形的是()A. B. C. D.2.若点是反比例函数图象上一点,则此函数图象一定经过点()A. B. C. D.3.如图,将绕点O,按逆时针方向旋转后得到,若,则的度数是()A. B. C. D.4.如果将抛物线向右平移1个单位,再向上平移2个单位,那么所得的抛物线的表达式是()A. B. C. D.5.在坡度的山坡上种树,要求相邻两棵树之间的水平距离是6米,则斜坡上相邻两棵树之间的坡面距离是()A.6米B.米C.13米D.米6.一个球从地面竖直向上弹起,球距离地面的高度米与经过的时间秒满足函数关系式,那么球弹起后又回到地面所花的时间秒是()A.1B.2C.5D.107.如图,正五边形ABCDE内接于,点F在上.若,则度数为()A. B. C. D.8.如图,点D是为钝角边BC上一点,若,,,,则的面积是()A. B.3 C. D.69.已知二次函数为常数,且,给出如下结论:①函数图象一定经过第二、三、四象限;②函数图象一定不经过第一象限;③当时,y随x的增大而增大;④当时,y随x的增大而减小.其中所有正确....结论的序号是()A.①②B.②③C.①③D.②④10.在中,,,点M是CB的中点,点P是CA上一点,AM与BP相交于点N,连接CN,若,则下列结论错误..的是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

11.若,则__________.12.抛物线与y轴的交点坐标是__________.13.如图,在的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧AC为格点外接圆的一部分,小正方形边长为1,则的长为__________.14.如图,在中,,,,O,D分别为AB,BC的中点,E为边AC上动点,为直角三角形,点F在DE的上方,且,若点E与点C重合,则DF的长是__________;点E运动过程中OF的最小值为__________.三、计算题:本大题共1小题,共8分。

辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)

辽宁省沈阳市皇姑区2023-2024学年九年级上学期期末数学试题(含解析)

....A .2B .45.若x =﹣1是方程x 2+x +m =A .﹣1B .06.如图,反比例函数的图象经过A .120mm B .30mmC .75k y x=A .C .9.如图,正方形ABCD 的对角线作ON ⊥OM ,交CD 于点N A .C .2150216x ⨯=2150150216x +=0c <<0a b c -+12.如图,E是正方形ABCD的边BCABCD AD AB,:三、解答题(本题共8小题,共过程)16.计算(1)计算:0(3)2cos30π--︒(1)请在图中画出路灯灯泡出画法);(2)经测量米,度的长.20.数学活动小组欲测量山坡上一棵大树得大树底端C 的仰角为,测得山坡坡角2OB =BF OP 53︒CBM ∠(1)设点的坐标为,求反比例函数的解析式;(2)若,求直线的解析式.22.问题情境数学活动课上,学习小组进行探究活动,老师给出如下问题:在中,,垂足为,且,点是边上一动点(点不与点连接,过点作交线段于点.各小组在探究过程中提出了以下问题:(1)“智慧小组”提出问题:M (),m n 92AN =MN ABC V CD AB ⊥D AD BD >E AC E DE C CF DE ⊥AD F四边形是正方形,是射线上的动点,点在线段的延长线上,且,连接,将线段绕点顺时针旋转得到,连接,设,四边形的面积为(可等于0).(1)如图①,当点由点运动到点过程中,发现是关于的二次函数,并绘制成如图②所示的图象,抛物线经过原点且顶点为,请根据图象信息,回答下列问题:①正方形的边长为___________(直接填空);②求关于的函数关系式;(2)如图③,当点在线段的延长线上运动时,求关于的函数关系式;(3)若在射线上从下至上依次存在不同位置的两个点,对应的四边形的面积与四边形的面积相等,当时,求四边形的面积.参考答案与解析1.B 【分析】根据左视图是从左边得到的图形进行解答即可.【详解】从左边看,为一个长方形,中间有两条横线,如下图所示:,故选B .【点睛】本题考查了三视图的知识,左视图是从左边看到的视图,要注意长方形被横向分成ABCD E AB F DA AF AE =ED ED E 90︒EG EF BF BG 、、AE x =EFBG y x y ,E A B y x ()24,ABCD y x E AB y x AB 12E E ,1E FBG 2E FBG 122BE BE -=1E FBG【详解】∴,DF AD =∵,,,,,,()4,2A -2AE ∴=4OE =AE CF ∥ AOE COF ∴∽△△C AE OE O CF OF OA ∴==42由折叠与对应易知:∵∴,即又∵x=时,可获得利润最大A A '90EAO AEO ∠+∠=AEO AGD ∠=∠ADG FHE ∠=∠=当∠MDE=90°时,如图2,∴,∵∠DBC=∠C=∠E ,∠BMF=∠∴∠BFM=∠MDE=90°,【点睛】本题考查了勾股定理、直角三角形的性质、折叠的性质、三角形的内角和定理以及155544BM =-=(2)∵∴,∴,∴,MO OE AB OE ⊥⊥AB OP ∥POF ABF V V ∽13AB BF BF OP OF BF OB ===+由(1)知;,,,DCE FBC △∽△∴BF CF CD DE=BF CF = 2CD DE ∴==此时,,,,,,EF CD ∥3BD = 4CD =CD AB ⊥225BC BD CD ∴=+=90B BCD ACD ∠=︒-∠=∠ BDC ∠,,,,,,CF DE ⊥ CD AB ⊥90CDG GDF DFG ∴∠=︒-∠=∠EFG DFG ∴∠=∠90DGF EGF ∠=︒=∠ GF GF =,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=90DEA EDA ∠+∠= EDA GEH ∴∠=∠EG ED = DAE ∠=,,,,,,设,则,,,90DEG ∠=︒ 90DEA GEH ∴∠+∠=︒90DEA EDA ∠+∠=︒ EDA GEH ∴∠=∠EG ED = DAE GHE ∠=∠=()AAS DAE GEH ∴V V ≌1AE m =14BE m =-122BE BE -= 22BE m ∴=-设,则,,,,在中,令得:在中,令得:1AE n =14BE n =-122BE BE -= 22BE n ∴=-224(2)6AE AB BE n n ∴=+=+-=-24(04)y x x x =-+≤≤x n =y 四边形24(4)y x x x =->6x n =-y 四边形。

江西省九江市都昌县2023-2024学年九年级上学期期末数学试卷(含解析)

江西省九江市都昌县2023-2024学年九年级上学期期末数学试卷(含解析)

2023-2024学年江西省九江市都昌县九年级(上)期末数学试卷一、单选题(本题共6小题,每小题3分,共18分)1.(3分)下列方程中,属于一元二次方程是( )A.2x+1=0B.x2+y=5C.x2+x=5D.x2+1=02.(3分)正方形具有而菱形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线平分一组对角D.对角线互相平分3.(3分)反比例函数的图象经过点(﹣2,1),则下列说法错误的是( )A.k=﹣2B.函数图象分布在第二、四象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小4.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,D为BC上一点,将△ABC沿AD折叠后,点C恰好落在斜边AB的中点E处,则折痕AD的长为( )A.B.C.D.65.(3分)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为( )A.1B.2C.3D.46.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,则下列结论:①abc<0;②关于x的一元二次方程ax2+bx+c=0的根是﹣1,3;③a+2b=c;④y最大值=.其中正确的有( )个.A.1B.2C.3D.4二、填空题(本题共6小题,每题3分)7.(3分)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .8.(3分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2= .9.(3分)如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=图象上,则图中过点A的双曲线解析式是 .10.(3分)如果将抛物线y=(x﹣1)2先向左平移2个单位,再向上平移1个单位,那么所得的新抛物线的解析式为 .11.(3分)如图,△ABO与△A'B'O是以原点O为位似中心的位似图形,且相似比为2:1,点A'的坐标为(2,﹣1),则点A的坐标为 .12.(3分)如图,已知正方形ABCD的边长为4,点E是边BC的中点,连接AE,DE,将AE绕点E旋转得到线段FE,连接BF,当∠DEF=90°时,BF的长为 .三、解答题(本题共5小题,每题6分)13.(6分)如图,AC平分∠BAD,∠B=∠ACD.(1)求证:△ABC∽△ACD;(2)若AB=2,AC=3,求AD的长.14.(6分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?15.(6分)某市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有 种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种方案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)16.(6分)请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.17.(6分)已知:如图,正方形ABCD的边长为6,将其绕点A顺时针旋转30°得到正方形AEFG,FG与BC 相交于点H.(1)求证:BH=GH;(2)求BH的长.四、(本题共3小题,每题8分)18.(8分)如图,反比例函数图象与一次函数的图象交于点A(﹣4,a)与点B.(1)求a的值与反比例函数关系式;(2)连接OA,OB,求S△AOB;(3)若y1>y2,请结合图象直接写出x的取值范围.19.(8分)图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点.现测得AB=BE=ED=CD=15cm,经多次调试发现当点B,E所在直线垂直经过CD的中点F时(如图3所示)放置较平稳.(1)求平稳放置时灯座DC与灯杆DE的夹角的大小;(2)为保护视力,写字时眼睛离桌面的距离应保持在30cm,为防止台灯刺眼,点A离桌面的距离应不超过30cm,求台灯平稳放置时∠ABE的最大值.(结果精确到0.01°,参考数据:≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科学计算器)20.(8分)我国古代数学家赵爽利用影子对物体进行测量的方法,至今仍有借鉴意义.如图1,身高1.5m的小王晚上在路灯灯柱AH下散步,他想通过测量自己的影长来估计路灯的高度,具体做法如下:先从路灯底部A向东走20步到M处,发现自己的影子端点落在点P处,作好记号后,继续沿刚才自己的影子走4步恰好到达点P处,此时影子的端点在点Q处,已知小王和灯柱的底端在同一水平线上,小王的步间距保持一致.(1)请在图中画出路灯O和影子端点Q的位置.(2)估计路灯AO的高,并求影长PQ的步数.(3)无论点光源还是视线,其本质是相同的,日常生活中我们也可以直接利用视线解决问题.如图2,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.测得DF=0.5m,EF=0.3m,CD=10m,小明眼睛到地面的距离为1.5m,则树高AB为 m.五、(本题共2小题,每题9分)21.(9分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?22.(9分)(1)如图1,在正方形ACDE中,点F,G分别在边AE,AC上,若∠FDG=45°,则FG,EF,CG之间的数量关系为: ;(提示:以点D为旋转中心,将△DCG顺时针旋转90°)解决问题:(2)如图2,若把(1)中的正方形改为等腰直角三角形,∠ADC=90°,E,F是底边AC上任意两点,且满足∠EDF=45°,试探究AE,EF,FC之间的关系;拓展应用:(3)如图3,若把(1)中的正方形改为菱形ACDE,∠E=60°,菱形的边长为8,G,F分别为边AC,AE 上任意两点,且满足∠FDG=60°,请直接写出四边形DFAG的面积.六、(本题12分)23.(12分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.2023-2024学年江西省九江市都昌县九年级(上)期末数学试卷参考答案与试题解析一、单选题(本题共6小题,每小题3分,共18分)1.(3分)下列方程中,属于一元二次方程是( )A.2x+1=0B.x2+y=5C.x2+x=5D.x2+1=0【解答】解:A、2x+1=0是一元一次方程,故该选项不符合题意;B、x2+y=5,含有两个未知数且最高次数为2,所以不是一元二次方程,故该选项不符合题意;C、x2+x=5,只含有一个未知数且最高次数为2,所以是一元二次方程,故该选项符合题意;D、x2+1=0为分式方程,故该选项不符合题意.故选:C.2.(3分)正方形具有而菱形不一定具有的性质是( )A.对角线相等B.对角线互相垂直C.对角线平分一组对角D.对角线互相平分【解答】解:∵正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角,菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角,∴正方形具有而菱形不一定具有的性质是对角线相等.故选:A.3.(3分)反比例函数的图象经过点(﹣2,1),则下列说法错误的是( )A.k=﹣2B.函数图象分布在第二、四象限C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【解答】解:∵反比例函数的图象经过点(﹣2,1),∴k=﹣2×1=﹣2.故A正确;∵k=﹣2<0,∴双曲线y=﹣分布在第二、四象限,故B选项正确;∵当k=﹣2<0时,反比例函数y=﹣在每一个象限内y随x的增大而增大,即当x>0或x<0时,y随x的增大而增大.故C选项正确,D选项错误,综上,说法错误的是D,故选:D.4.(3分)如图,在Rt△ABC中,∠C=90°,AC=3,D为BC上一点,将△ABC沿AD折叠后,点C恰好落在斜边AB的中点E处,则折痕AD的长为( )A.B.C.D.6【解答】解:根据折叠,可知AE=AC=3,∠CAD=∠EAD,∵点E为AB的中点,∴AB=6,∵∠C=90°,∴cos∠BAC==,∴∠BAC=60°,∴∠CAD=∠EAD=30°,∵cos∠CAD=,∴AD=,故选:A.5.(3分)已知实数x,y满足x2+3x+y﹣3=0,则x+y的最大值为( )A.1B.2C.3D.4【解答】解:∵x2+3x+y﹣3=0,∴y=﹣x2﹣3x+3,∴x+y=﹣x2﹣2x+3=﹣(x+1)2+4,∴当x=﹣1时,x+y有最大值4,故选:D.6.(3分)如图,已知抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,则下列结论:①abc<0;②关于x的一元二次方程ax2+bx+c=0的根是﹣1,3;③a+2b=c;④y最大值=.其中正确的有( )个.A.1B.2C.3D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①正确;∵抛物线的对称轴为直线x=1,抛物线与x轴的一个交点坐标为(3,0),∴抛物线与x轴的另一个交点坐标为(﹣1,0),∴关于x的一元二次方程ax2+bx+c=0的根是﹣1,3,所以②正确;∵当x=﹣1时,y=0,∴a﹣b+c=0,而b=﹣2a,∴a+2a+c=0,即c=﹣3a,∴a+2b﹣c=a﹣4a+3a=0,即a+2b=c,所以③正确;∵当x=1时,函数有最大值y=a+b+c,函数有最大值y=a﹣2a+c=﹣a+c=c+c=c,所以④正确;故选:D.二、填空题(本题共6小题,每题3分)7.(3分)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为 .【解答】解:画树状图如下:共有9种等可能的结果,其中是偶数的结果有5种,∴是偶数的概率为,故答案为:.8.(3分)设x1,x2是一元二次方程x2﹣x﹣1=0的两根,则x1+x2+x1x2= 0 .【解答】解:∵x1、x2是方程x2﹣x﹣1=0的两根,∴x1+x2=1,x1×x2=﹣1,∴x1+x2+x1x2=1﹣1=0.故答案为:0.9.(3分)如图所示,Rt△AOB中,∠AOB=90°,OA=4,OB=2,点B在反比例函数y=图象上,则图中过点A的双曲线解析式是 y=﹣ .【解答】解:设点B的坐标是(m,n),因为点B在函数y=的图象上,则mn=2,则BD=n,OD=m,则AC=2m,OC=2n,设过点A的双曲线解析式是y=,A点的坐标是(﹣2n,2m),把它代入得到:2m=,则k=﹣4mn=﹣8,则图中过点A的双曲线解析式是y=﹣.故答案为:y=﹣.10.(3分)如果将抛物线y=(x﹣1)2先向左平移2个单位,再向上平移1个单位,那么所得的新抛物线的解析式为 y=(x+1)2+1 .【解答】解:将抛物线y=(x﹣1)2先向左平移2个单位,再向上平移1个单位,那么所得的新抛物线的解析式为:y=(x﹣1+2)2+1,即y=(x+1)2+1.故答案为y=(x+1)2+1.11.(3分)如图,△ABO与△A'B'O是以原点O为位似中心的位似图形,且相似比为2:1,点A'的坐标为(2,﹣1),则点A的坐标为 (﹣4,2) .【解答】解:由题意得:△ABO与△A'B'O是以原点O为位似中心的位似图形,且相似比为2:1,又∵A'(2,﹣1),且原图形与位似图形是异侧,∴点A的坐标是[2×(﹣2),﹣1×(﹣2)],即点A的坐标是(﹣4,2).故答案为:(﹣4,2).12.(3分)如图,已知正方形ABCD的边长为4,点E是边BC的中点,连接AE,DE,将AE绕点E旋转得到线段FE,连接BF,当∠DEF=90°时,BF的长为 2或2 .【解答】解:如图,将AE绕点E逆时针旋转得到线段FE,过点F作FH⊥BC,交CB的延长线于H,∴EF=AE,∵点E是BC的中点,∴BE=EC=2,又∵∠ABC=∠DCB=90°,AB=CD,∴△ABE≌△DCE(SAS),∴AE=DE,∴AE=EF=DE,∵∠DEF=90°,∴∠DEC+∠FEH=90°=∠FEH+∠EFH,∴∠DEC=∠EFH,又∵∠DCE=∠EHF=90°,∴△DCE≌△EHF(AAS),∴FH=EC=2,EH=CD=4,∴BH=2,∴BF==2;如图,将AE绕点E顺时针旋转得到线段F'E,过点F作F'H'⊥BC,交CB的延长线于H',同理可求H'F'=BE=2,EH'=CD=4,∴BH'=6,∴BF'==2,故答案为:2或2.三、解答题(本题共5小题,每题6分)13.(6分)如图,AC平分∠BAD,∠B=∠ACD.(1)求证:△ABC∽△ACD;(2)若AB=2,AC=3,求AD的长.【解答】(1)解:∵AC平分∠BAD,∴∠BAC=∠CAD.∵∠B=∠ACD,∴△ABC∽△ACD;(2)∵△ABC∽△ACD,∴.∵AB=2,AC=3,∴AD=.14.(6分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?【解答】解:设每千克水果应涨价x元,依题意得方程:(500﹣20x)(10+x)=6000,整理,得x2﹣15x+50=0,解这个方程,得x1=5,x2=10.要使顾客得到实惠,应取x=5.答:每千克水果应涨价5元.15.(6分)某市体育中考现场考试内容有三项:50米跑为必测项目;另在立定跳远、实心球(二选一)和坐位体前屈、1分钟跳绳(二选一)中选择两项.(1)每位考生有 4 种选择方案;(2)用画树状图或列表的方法求小明与小刚选择同种方案的概率.(友情提醒:各种方案用A、B、C、…或①、②、③、…等符号来代表可简化解答过程)【解答】解:(1)每位考生可选择:50米跑、立定跳远、坐位体前屈(用A表示);50米跑、实心球、坐位体前屈(用B表示);50米跑、立定跳远、1分钟跳绳(用C表示);50米跑、实心球、1分钟跳绳(用D表示);共用4种选择方案.故答案为4.(2)用A、B、C、D代表四种选择方案.(其他表示方法也可)解法一:用树状图分析如下:解法二:用列表法分析如下:小刚小明A B C DA(A,A)(A,B)(A,C)(A,D)B(B,A)(B,B)(B,C)(B,D)C(C,A)(C,B)(C,C)(C,D)D(D,A)(D,B )(D,C)(D,D)两人选择的方案共有16种等可能的结果,其中选择同种方案有4种,所以小明与小刚选择同种方案的概率==.16.(6分)请仅用无刻度的直尺在下列图1和图2中按要求画菱形.(1)图1是矩形ABCD,E,F分别是AB和AD的中点,以EF为边画一个菱形;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【解答】解:(1)如图所示:四边形EFGH即为所求的菱形;(2)如图所示:四边形AECF即为所求的菱形.17.(6分)已知:如图,正方形ABCD的边长为6,将其绕点A顺时针旋转30°得到正方形AEFG,FG与BC 相交于点H.(1)求证:BH=GH;(2)求BH的长.【解答】(1)证明:连接AH,依题意,正方形ABCD与正方形AEFG全等,∴AB=AG,∠B=∠G=90°.(1分)在Rt△ABH和Rt△AGH中,AH=AH,AB=AG,∴Rt△ABH≌Rt△AGH.(2分)∴BH=GH.(3分)(2)解:∵∠1=30°,△ABH≌△AGH,∴∠2=∠3=30°.(4分)在Rt△ABH中,∵∠2=30°,AB=6,∴BH=AB•tan30°=6×=2.四、(本题共3小题,每题8分)18.(8分)如图,反比例函数图象与一次函数的图象交于点A(﹣4,a)与点B.(1)求a的值与反比例函数关系式;(2)连接OA,OB,求S△AOB;(3)若y1>y2,请结合图象直接写出x的取值范围.【解答】解:(1)将A(﹣4,a)代入中,得a=1;将A(﹣4,1)代入中,得k=﹣4,所以反比例函数关系式;(2)由,解得或,所以A(﹣4,1),B(2,﹣2),设一次函数与y轴交于点C(0,﹣1),故S△AOB=S△AOC+S△BOC==3;(3)观察图象,若y1>y2,则﹣4<x<0或x>2.19.(8分)图1是一种可折叠台灯,它放置在水平桌面上,将其抽象成图2,其中点B,E,D均为可转动点.现测得AB=BE=ED=CD=15cm,经多次调试发现当点B,E所在直线垂直经过CD的中点F时(如图3所示)放置较平稳.(1)求平稳放置时灯座DC与灯杆DE的夹角的大小;(2)为保护视力,写字时眼睛离桌面的距离应保持在30cm,为防止台灯刺眼,点A离桌面的距离应不超过30cm,求台灯平稳放置时∠ABE的最大值.(结果精确到0.01°,参考数据:≈1.732,sin7.70°≈0.134,cos82.30°≈0.134,可使用科学计算器)【解答】解:(1)由题意得:DF=CD=cm,EF⊥CD,∴cos D=,∴∠D=60°;答:平稳放置时灯座DC与灯杆DE的夹角是60°;(2)如图3,过A作AH⊥BE交EB的延长线于H,∴HF=30,∵EF=15×=,∴BH=30﹣BE﹣EF=15﹣,∴cos∠ABH=≈0.134,∴∠ABH≈82.30°,∴∠ABE=97.70°.答:台灯平稳放置时∠ABE的最大值是97.70°.20.(8分)我国古代数学家赵爽利用影子对物体进行测量的方法,至今仍有借鉴意义.如图1,身高1.5m的小王晚上在路灯灯柱AH下散步,他想通过测量自己的影长来估计路灯的高度,具体做法如下:先从路灯底部A向东走20步到M处,发现自己的影子端点落在点P处,作好记号后,继续沿刚才自己的影子走4步恰好到达点P处,此时影子的端点在点Q处,已知小王和灯柱的底端在同一水平线上,小王的步间距保持一致.(1)请在图中画出路灯O和影子端点Q的位置.(2)估计路灯AO的高,并求影长PQ的步数.(3)无论点光源还是视线,其本质是相同的,日常生活中我们也可以直接利用视线解决问题.如图2,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.测得DF=0.5m,EF=0.3m,CD=10m,小明眼睛到地面的距离为1.5m,则树高AB为 9 m.【解答】解:(1)如图:点O和点Q即为所求;(2)设AO=x米,PQ=y步,由题得:MP=4步,AM=20步,MN=BP=1.5米,AO∥MN∥BP,∴△MNP∽△AOP,△BPQ∽△AOQ,∴==,即:==,解得:x=9,y=4.8,所以路灯AO的高是9米,影长PQ的步数4.8步;(3)在Rt△DEF中,DE==0.4(米),∵∠D=∠D,∠DEF=∠DCB=90°,∴△DEF∽△DCB,∴=,∴=,解得:BC=7.5(米),∴7.5+1.5=9(米),故答案为:9米.五、(本题共2小题,每题9分)21.(9分)某商店购进了一种消毒用品,进价为每件8元,在销售过程中发现,每天的销售量y(件)与每件售价x(元)之间存在一次函数关系(其中8≤x≤15,且x为整数).当每件消毒用品售价为9元时,每天的销售量为105件;当每件消毒用品售价为11元时,每天的销售量为95件.(1)求y与x之间的函数关系式.(2)若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为多少元?(3)设该商店销售这种消毒用品每天获利w(元),当每件消毒用品的售价为多少元时,每天的销售利润最大?最大利润是多少元?【解答】解:(1)设每天的销售量y(件)与每件售价x(元)函数关系式为:y=kx+b,由题意可知:,解得:,∴y与x之间的函数关系式为:y=﹣5x+150;(2)(﹣5x+150)(x﹣8)=425,解得:x1=13,x2=25(舍去),∴若该商店销售这种消毒用品每天获得425元的利润,则每件消毒用品的售价为13元;(3)w=y(x﹣8),=(﹣5x+150)(x﹣8),w=﹣5x2+190x﹣1200,=﹣5(x﹣19)2+605,∵8≤x≤15,且x为整数,当x<19时,w随x的增大而增大,∴当x=15时,w有最大值,最大值为525.答:每件消毒用品的售价为15元时,每天的销售利润最大,最大利润是525元.22.(9分)(1)如图1,在正方形ACDE中,点F,G分别在边AE,AC上,若∠FDG=45°,则FG,EF,CG之间的数量关系为: FG=EF+CG ;(提示:以点D为旋转中心,将△DCG顺时针旋转90°)解决问题:(2)如图2,若把(1)中的正方形改为等腰直角三角形,∠ADC=90°,E,F是底边AC上任意两点,且满足∠EDF=45°,试探究AE,EF,FC之间的关系;拓展应用:(3)如图3,若把(1)中的正方形改为菱形ACDE,∠E=60°,菱形的边长为8,G,F分别为边AC,AE 上任意两点,且满足∠FDG=60°,请直接写出四边形DFAG的面积.【解答】解:(1)FG=EF+CG,理由如下:如图,以点D为旋转中心,将△DCG顺时针旋转90°得△DEH,∴△CDG≌EDH,∴DG=DH,∠CDG=∠EDH,CG=EH,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠CDE=90°,∵∠GDF=45°,∴∠CDG+∠EDF=∠EDH+∠EDF=45°,∴∠GDF=∠HDF=45°,∵DF=DF,∴△GDF≌△HDF(SAS),∴GF=HF,∴GF=EH+EF=CG+EF;∴FG=EF+CG;故答案为:FG=EF+CG,(2)AE2+FC2=EF2,理由如下:∵△ADC是等腰直角三角形,∠ADC=90°,∴∠DAC=∠C=45°,如图,以点D为旋转中心,将△DCF顺时针旋转90°得△DAG,∴△DCF≌DAG,∴DF=DG,∠CDF=∠ADG,CF=AG,∠DAG=∠C=45°,∵∠FDE=45°,∴∠CDF+∠ADE=∠ADG+∠ADE=45°,∴∠FDE=∠GDE=45°,∵DE=DE,∴△FDE≌△GDE(SAS),∴EF=EG,∵∠EAG=∠DAE+∠DAG=45°+45°=90°,∴AE2+AG2=EG2,∴AE2+FC2=EF2;(3)如图,连接AD,∵四边形ACDE是菱形,∠E=60°,∴△ADE,△ADC是等边三角形,∴AD=CD=8,∠C=∠DAE=∠ADC=60°,∵∠FDG=60°,∴∠ADF+∠ADG=∠CDG+∠ADG=60°,∴∠ADF=∠CDG,∴△ADF≌△CDG(ASA),∴四边形DFAG的面积=△ADF的面积+△ADG的面积=△CDG的面积+△ADG的面积=△ADC的面积=×82=16.六、(本题12分)23.(12分)如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=2OB,与y轴交于点C,连接BC,抛物线对称轴为直线x=,D为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点O,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.【解答】解:(1)设OB=t,则OA=2t,则点A、B的坐标分别为(2t,0)、(﹣t,0),则x==(2t﹣t),解得:t=1,故点A、B的坐标分别为(2,0)、(﹣1,0),则抛物线的表达式为:y=a(x﹣2)(x+1)=ax2+bx+2,解得:a=﹣1,b=1,故抛物线的表达式为:y=﹣x2+x+2;(2)对于y=﹣x2+x+2,令x=0,则y=2,故点C(0,2),由点A、C的坐标得,直线AC的表达式为:y=﹣x+2,设点D的横坐标为m,则点D(m,﹣m2+m+2),则点F(m,﹣m+2),则DF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m,∵﹣1<0,故DF有最大值,DF最大时m=1,∴点D(1,2);(3)存在,理由:点D(m,﹣m2+m+2)(m>0),则OE=m,DE=﹣m2+m+2,以点O,D,E为顶点的三角形与△BOC相似,则,即=或2,即=或2,解得:m=1或﹣2(舍去)或或(舍去),经检验m=1或是方程的解,故m=1或.。

九年级(上)期末数学试卷附答案解析

九年级(上)期末数学试卷附答案解析

九年级(上)期末数学试卷一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<23.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.64.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm25.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4二、填空题9.一元二次方程x2=3x的解是:.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.参考答案与试题解析一、选择题1.下列方程中,一元二次方程有()①3x2+x=20;②2x2﹣3xy+4=0;③;④x2=1;⑤A.2个B.3个C.4个D.5个【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①符合一元二次方程定义,正确;②方程含有两个未知数,错误;③不是整式方程,错误;④符合一元二次方程定义,正确;⑤符合一元二次方程定义,正确.故选B.【点评】判断一个方程是否是一元二次方程时,首先判断方程是整式方程,若是整式方程,再把方程进行化简,化简后是含有一个未知数,并且未知数的最高次数是2,在判断时,一定要注意二次项系数不是0.2.若关于x的方程mx2﹣4x+2=0有实数根,则m的取值范围是()A.m≤2 B.m≠0 C.m≤2且m≠0 D.m<2【考点】根的判别式;一元一次方程的解;一元二次方程的定义.【分析】分类讨论:当m=0,方程变形为﹣4x+2=0,一元一次方程有实数解;当m≠0,根据判别式的意义得到△=(﹣4)2﹣4m×2≥0,解得m≤2,然后综合两种情况即可.【解答】解:当m=0,方程变形为﹣4x+2=0,方程的解为x=;当m≠0,△=(﹣4)2﹣4m×2≥0,解得m≤2;综上所知当m≤2时,方程有实数根.故选:A.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根的判别式△=b2﹣4ac.当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.3.一条排水管的截面如下左图所示,已知排水管的半径OB=10,水面宽AB=16,则排水管内水的最大深度是()A.4 B.5 C.6D.6【考点】垂径定理的应用;勾股定理.【分析】过O作OD⊥AB交AB于C,交圆于点D,根据垂径定理求出BC的长,再根据勾股定理求出OC的长,由CD=OD﹣OC即可得出结论.【解答】解:过O作OD⊥AB交AB于C,交圆于点D,如图所示:∴OD=OB=10,∵AB=16,∴由垂径定理得:BC=AB=8,∴OC===6,∴CD=OD﹣OC=10﹣6=4.故选A.【点评】本题考查了垂径定理的应用、勾股定理等知识;熟练掌握垂径定理与勾股定理是解决问题的关键.4.一个半径为2cm的圆的内接正六边形的面积是()A.24cm2B.6cm2C.12cm2 D.8cm2【考点】正多边形和圆.【分析】根据正六边形的边长等于半径进行解答即可.【解答】解:∵正六边形内接于半径为2cm的圆内,∴正六边形的半径为2cm,∵正六边形的半径等于边长,∴正六边形的边长a=2cm;∴正六边形的面积S=6××2×2sin60°=6cm2.故选B.【点评】本题考查的是正六边形的性质,熟知正六边形的边长等于半径是解答此题的关键.5.如图,若AB是⊙O的直径,CD是⊙O的弦,∠ABD=55°,则∠BCD的度数为()A.35°B.45°C.55°D.75°【考点】圆周角定理.【分析】首先连接AD,由直径所对的圆周角是直角,即可求得∠ADB=90°,由直角三角形的性质,求得∠A的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠BCD的度数.【解答】解:连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABD=55°,∴∠A=90°﹣∠ABD=35°,∴∠BCD=∠A=35°.故选A.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握辅助线的作法,注意直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.6.函数y=﹣2x2﹣8x+m的图象上有两点A(x1,y1),B(x2,y2),若x1<x2<﹣2,则()A.y1<y2B.y1>y2C.y1=y2D.y1、y2的大小不确定【考点】二次函数图象上点的坐标特征;二次函数的性质.【分析】根据x1、x2与对称轴的大小关系,判断y1、y2的大小关系.【解答】解:∵y=﹣2x2﹣8x+m,∴此函数的对称轴为:x=﹣=﹣=﹣2,∵x1<x2<﹣2,两点都在对称轴左侧,a<0,∴对称轴左侧y随x的增大而增大,∴y1<y2.故选:A.【点评】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键.7.函数y=ax2与y=﹣ax+b的图象可能是()A.B.C. D.【考点】二次函数的图象;一次函数的图象.【分析】可根据a>0时,﹣a<0和a<0时,﹣a>0分别判定.【解答】解:当a>0时,﹣a<0,二次函数开口向上,当b>0时一次函数过一,二,四象限,当b <0时一次函数过二,三,四象限;当a<0时,﹣a>0,二次函数开口向下,当b>0时一次函数过一,二,三象限,当b<0时一次函数过一,三,四象限.所以B正确.故选:B.【点评】本题主要考查了二次函数及一次函数的图象,解题的关键是根据a,b的取值来判定二次函数及一次函数的图象的正误.8.如图,有一圆锥形粮堆,其正视图是边长为6m的正三角形ABC,粮堆母线AC的中点P处有一老鼠正在偷吃粮食,此时,小猫正在B处,它要沿圆锥侧面到达P处捕捉老鼠,则小猫所经过的最短路程是()m.A.3 B.3C.3D.4【考点】平面展开-最短路径问题.【分析】求这只小猫经过的最短距离的问题首先应转化为圆锥的侧面展开图的问题,转化为平面上两点间的距离的问题.根据圆锥的轴截面是边长为6cm的等边三角形可知,展开图是半径是6的半圆.点B是半圆的一个端点,而点P是平分半圆的半径的中点,根据勾股定理就可求出两点B和P 在展开图中的距离,就是这只小猫经过的最短距离.【解答】解:圆锥的底面周长是6π,则6π=,∴n=180°,即圆锥侧面展开图的圆心角是180度.则在圆锥侧面展开图中AP=3,AB=6,∠BAP=90度.∴在圆锥侧面展开图中BP=m.故小猫经过的最短距离是3m.故选C.【点评】本题考查的是平面展开﹣最短路线问题,根据题意画出圆锥的侧面展开图,利用勾股定理求解是解答此题的关键.二、填空题9.一元二次方程x2=3x的解是:x1=0,x2=3.【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程.【解答】解:(1)x2=3x,x2﹣3x=0,x(x﹣3)=0,解得:x1=0,x2=3.故答案为:x1=0,x2=3.【点评】本题考查了解一元二次方程的方法.当把方程通过移项把等式的右边化为0后方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用.当化简后不能用分解因式的方法即可考虑求根公式法,此法适用于任何一元二次方程.10.将抛物线y=3x2﹣2向左平移2个单位,再向下平移3个单位,则所得抛物线的解析式为y=3(x+2)2﹣5.【考点】二次函数图象与几何变换.【专题】几何变换.【分析】先确定抛物线y=3x2﹣2的顶点坐标为(0,﹣2),再根据点平移的规律得到点(0,﹣2)平移后所得对应点的坐标为(﹣2,﹣5),然后根据顶点式写出平移后的抛物线解析式.【解答】解:抛物线y=3x2﹣2的顶点坐标为(0,﹣2),点(0,﹣2)向左平移2个单位,再向下平移3个单位所得对应点的坐标为(﹣2,﹣5),所以所得抛物线的解析式为y=3(x+2)2﹣5.故答案为y=3(x+2)2﹣5.【点评】本题考查了二次函数与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.11.设x1,x2是方程x2﹣3x﹣2=0的两个根,则代数式x12+x22的值为13.【考点】根与系数的关系.【分析】根据根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故答案为:13.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.12.点P(﹣2,3)将点P绕点O逆时针旋转90°,则P的坐标为(﹣3,2).【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】如图,作PQ⊥y轴于点Q,由P点坐标得PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,根据旋转的性质得∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,然后根据第二象限点的坐标特征可写出P′点的坐标.【解答】解:如图,作PQ⊥y轴于点Q,∵点P坐标为(﹣2,3),∴PQ=2,OQ=3,把△OPQ绕点O逆时针旋转90°得到△OP′Q′,∴∠QOQ′=90°,∠OQ′P′=∠OQP=90°,P′Q′=PQ=2,OQ′=OQ=3,∴P′点的坐标为(﹣3,2).故答案为(﹣3,2).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把点旋转的问题转化为直角三角形旋转的问题和画出旋转图形.13.若函数y=mx2+2x+1的图象与x轴只有一个公共点,则常数m的值是0或1.【考点】抛物线与x轴的交点;一次函数的性质.【专题】分类讨论.【分析】需要分类讨论:①若m=0,则函数为一次函数;②若m≠0,则函数为二次函数.由抛物线与x轴只有一个交点,得到根的判别式的值等于0,且m 不为0,即可求出m的值.【解答】解:①若m=0,则函数y=2x+1,是一次函数,与x轴只有一个交点;②若m≠0,则函数y=mx2+2x+1,是二次函数.根据题意得:△=4﹣4m=0,解得:m=1.故答案为:0或1.【点评】此题考查了一次函数的性质与抛物线与x轴的交点,抛物线与x轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.14.一个底面直径是80cm,母线长为90cm的圆锥的侧面展开图的圆心角的度数为160°.【考点】圆锥的计算.【专题】计算题.【分析】根据圆锥的底面直径求得圆锥的侧面展开扇形的弧长,再利用告诉的母线长求得圆锥的侧面展开扇形的面积,再利用扇形的另一种面积的计算方法求得圆锥的侧面展开图的圆心角即可.【解答】解:∵圆锥的底面直径是80cm,∴圆锥的侧面展开扇形的弧长为:πd=80π,∵母线长90cm,∴圆锥的侧面展开扇形的面积为:lr=×80π×90=3600π,∴=3600π,解得:n=160.故答案为:160°.【点评】本题考查了圆锥的有关计算,解决此类题目的关键是明确圆锥的侧面展开扇形与圆锥的关系.15.抛物线y=﹣x2+bx+c的部分图象如图所示,若y>0,则x的取值范围是﹣3<x<1.【考点】二次函数的图象.【专题】压轴题.【分析】根据抛物线的对称轴为x=﹣1,一个交点为(1,0),可推出另一交点为(﹣3,0),结合图象求出y>0时,x的范围.【解答】解:根据抛物线的图象可知:抛物线的对称轴为x=﹣1,已知一个交点为(1,0),根据对称性,则另一交点为(﹣3,0),所以y>0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点评】此题的关键是根据二次函数的对称轴与对称性,找出抛物线y=﹣x2+bx+c的完整图象.16.如图,把直角三角形ABC的斜边AB放在定直线l上,按顺时针方向在l上转动两次,使它转到△A″B″C″的位置.设BC=2,AC=2,则顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是π+2.【考点】旋转的性质;扇形面积的计算.【分析】在△ABC中,BC=2,AC=2,根据勾股定理得到AB的长为4.求出∠CAB、∠CBA,顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的面积是两个扇形的面积+△A′BC″的面积.根据扇形的面积公式可以进行计算.【解答】解:∵在Rt△ACB中,BC=2,AC=2,∴由勾股定理得:AB=4,∴AB=2BC,∴∠CAB=30°,∠CBA=60°,∴∠ABA′=120°,∠A″C″A′=90°,S=++×2×2=π+2,故答案为:π+2.【点评】本题考查了扇形的面积计算,勾股定理,含30度角的直角三角形的性质的应用,本题的关键是弄清顶点A运动到点A″的位置时,点A经过的路线与直线l所围成的图形的形状.三、解答题17.(2015秋•红河州期末)(1)解方程:(2x﹣3)2=9(2)化简:(﹣1)3﹣|1﹣|+()﹣2×(π﹣3.14)0﹣.【考点】实数的运算;平方根;零指数幂;负整数指数幂.【专题】计算题;实数.【分析】(1)方程利用平方根定义开方即可求出解;(2)原式第一项利用乘方的意义计算,第二项利用绝对值的代数意义计算,第三项利用负整数指数幂、零指数幂法则计算,最后一项化为最简二次根式,计算即可得到结果.【解答】解:(1)开方得:2x﹣3=3或2x﹣3=﹣3,解得:x1=3,x2=0;(2)原式=﹣1﹣+1+4﹣2=4﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(2012•潘集区模拟)已知关于x的方程x2+(m+2)x+2m﹣1=0.(1)求证:方程有两个不相等的实数根.(2)当m为何值时,方程的两根互为相反数?并求出此时方程的解.【考点】根的判别式;根与系数的关系.【专题】计算题.【分析】(1)先计算出△=(m+2)2﹣4(2m﹣1),变形得到△=(m﹣2)2+4,由于(m﹣2)2≥0,则△>0,然后根据△的意义得到方程有两个不相等的实数根;(2)利用根与系数的关系得到x1+x2=0,即m+2=0,解得m=﹣2,则原方程化为x2﹣5=0,然后利用直接开平方法求解.【解答】(1)证明:△=(m+2)2﹣4(2m﹣1)=m2﹣4m+8=(m﹣2)2+4,∵(m﹣2)2≥0,∴(m﹣2)2+4>0,即△>0,所以方程有两个不相等的实数根;(2)设方程的两个根为x1,x2,由题意得:x1+x2=0,即m+2=0,解得m=﹣2,当m=﹣2时,方程两根互为相反数,当m=﹣2时,原方程为x2﹣5=0,解得:x1=﹣,x2=.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程和根与系数的关系.19.(2014•槐荫区二模)“低碳生活,绿色出行”,自行车正逐渐成为人们喜爱的交通工具.某运动商城的自行车销售量自2013年起逐月增加据统计,该商城1月份销售自行车64辆,3月份销售了100辆.若该商城前4个月的自行车销量的月平均增长率相同,问该商城4月份卖出多少辆自行车?【考点】一元二次方程的应用.【专题】销售问题.【分析】首先根据1月份和3月份的销售量求得月平均增长率,然后求得4月份的销量即可【解答】解:设前4个月自行车销量的月平均增长率为x,根据题意列方程:64(1+x)2=100,解得x1=﹣225%(不合题意,舍去),x2=25%,100×(1+25%)=125(辆).答:该商城4月份卖出125辆自行车.【点评】本题考查了一元二次方程的应用,解题关键是根据题意列出方程,这也是本题的难点.20.(2015秋•红河州期末)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);(4)求出(2)△A2BC2的面积是多少.【考点】作图-旋转变换;作图-轴对称变换.【专题】计算题;作图题.【分析】(1)根据关于x轴对称的点的坐标特征,写出点A、B、C的对应点A1、B1、C1的坐标,然后描点即可得到△A1B1C1;(2)利用网格特点和旋转的性质,画出点A、C的对应点A2、C2,则可得到△A2BC2;(3)C点旋转到C2点所经过的路径是以B点为圆心,BC为半径,圆心角为90°的弧,然后根据弧长公式计算即可;(4)利用一个矩形的面积分别减去三个三角形的面积可计算出△A2BC2的面积.【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);(2)如图,△A2BC2为所作;(3)BC==,所以C点旋转到C2点所经过的路径长==π;(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了轴对称变换.21.(2015秋•红河州期末)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球,(除颜色外其余都相同),其中白球有两个,黄球有1个,现从中任意摸出一个球是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法表示两次摸到球的所有可能结果,并求两次摸到的球都是白球的概率.【考点】列表法与树状图法;概率公式.【分析】(1)直接利用概率公式,结合摸出一个球是白球的概率为求出答案;(2)采用列表法或树状图法,解题时要注意是放回实验还是不放回实验.【解答】解:(1)设蓝球个数为x个,则由题意得=,解得:x=1,答:蓝球有1个;(2)故两次摸到都是白球的概率==.【点评】此题主要考查了树状图法求概率,解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.22.(2007•贵阳)某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格调查,平均每天销售90箱,价格每提高1元,平均每天少销售3箱.(1)求平均每天销售量y(箱)与销售价x(元/箱)之间的函数关系式.(2)求该批发商平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式.(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?【考点】二次函数的应用.【专题】方程思想.【分析】本题是通过构建函数模型解答销售利润的问题.依据题意易得出平均每天销售量(y)与销售价x(元/箱)之间的函数关系式为y=90﹣3(x﹣50),然后根据销售利润=销售量×(售价﹣进价),列出平均每天的销售利润w(元)与销售价x(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.【解答】解:(1)由题意得:y=90﹣3(x﹣50)化简得:y=﹣3x+240;(3分)(2)由题意得:w=(x﹣40)y(x﹣40)(﹣3x+240)=﹣3x2+360x﹣9600;(3分)(3)w=﹣3x2+360x﹣9600∵a=﹣3<0,∴抛物线开口向下.当时,w有最大值.又x<60,w随x的增大而增大.∴当x=55元时,w的最大值为1125元.∴当每箱苹果的销售价为55元时,可以获得1125元的最大利润.(4分)【点评】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=时取得.23.(2015秋•红河州期末)△ABC的内切圆⊙O与BC,CA,AB分别相切于点D、E、F,且AB=9cm,BC=14cm,CA=13cm,求AF、BD、CE的长.【考点】三角形的内切圆与内心.【分析】根据切线长定理,可设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.再根据题意列方程组,即可求解.【解答】解:根据切线长定理,设AE=AF=xcm,BF=BD=ycm,CE=CD=zcm.根据题意,得,解得:.即AF=4cm、BD=5cm、CE=9cm.【点评】此题要熟练运用切线长定理.注意解方程组的简便方法:三个方程相加,得到x+y+z的值,再进一步用减法求得x,y,z的值.24.(2015秋•红河州期末)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2﹣4(a≠0)与x轴交于A、B两点,与y轴交于点C,其中点A的坐标为(﹣3,0)(1)求该抛物线的解析式;(2)若点P在抛物线上,且S△POC=4S△BOC,求点P的坐标;(3)设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.【考点】二次函数综合题.【分析】(1)由对称轴确定h的值,代入点A坐标即可求解;(2)设出点P坐标并表示△POC的面积根据题意列出方程求解即可;(3)设出点Q,D坐标并表示线段QD的长度,建立二次函数,运用二次函数的最值求解即可.【解答】解:(1)由题意对称轴为直线x=﹣1,可设抛物线解析式:y=a(x+1)2﹣4,把点A(﹣3,0)代入可得,a=1,∴y=(x+1)2﹣4=x2+2x﹣3,(2)如图1,y=x2+2x﹣3,当x=0时,y=﹣3,所以点C(0,﹣3),OC=3,令y=0,解得:x=﹣3,或x=1,∴点B(1,0),OB=1,设点P(m,m2+2m﹣3),此时S△POC=×OC×|m|=|m|,S△BOC==,由S△POC=4S△BOC得|m|=6,解得:m=4或m=﹣4,m2+2m﹣3=21,或m2+2m﹣3=5,所以点P的坐标为:(4,21),或(﹣4,5);(3)如图2,设直线AC的解析式为:y=kx+b,把A(﹣3,0),C(0,﹣3)代入得:,解得:,所以直线AC:y=﹣x﹣3,设点Q(n,﹣n﹣3),点D(n,n2+2n﹣3)所以:DQ=﹣n﹣3﹣(n2+2n﹣3)=﹣n2﹣3n=﹣(n+)2+,所以当n=﹣时,DQ有最大值.【点评】此题主要考查二次函数综合问题,会求函数解析式,会根据面积相等建立方程并准确求解,知道运用二次函数可以解决线段最值问题,是解题的关键.。

2022-2023学年山东省济南市天桥区九年级上学期期末考试数学试卷含详解

2022-2023学年山东省济南市天桥区九年级上学期期末考试数学试卷含详解
A.3B.4C.6D.8
9.如图,菱形 的三个顶点 在 上,对角线 交于点 ,若 的半径是 ,则图中阴影部分的面积是( )
A. B. C. D.
10.已知二次函数 ,当 时,函数值y随x增大而减小,且对于 相应的函数值y,总满足 ,则实数a的取值范围是( )
A. B. C. D.
第Ⅱ卷(非选择题共110分)
【分析】根据四边形 是菱形,得 ,即 是等边三角形,根据 ,所以图中阴影部分的面积
【详解】解:∵四边形 是菱形,
是等边三角形,
图中阴影部分的面积 .
故选∶A.
【点睛】本题考查的是扇形面积的计算,平行四边形的性质,掌握扇形的面积公式是解题的关键.
10.已知二次函数 ,当 时,函数值y随x增大而减小,且对于 相应的函数值y,总满足 ,则实数a的取值范围是( )
1.一元二次方程 的根是( )
A. B. C.D.
3.已知反比例函数 ,下列各点中,在此函数图象上的点的是()
A.( ,1)B.(2,2)C.(1,2)D.(2, )
4.在一个不透明 盒子中装有n个除颜色外完全相同的球,其中有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子,通过大量重复试验后,发现摸到红球的频率稳定在 左右,则n的值大约为()
A. B. C. D.
B
【分析】根据周长比等于相似比进行解答即可.
【详解】解: 个相似三角形的对应中线比是 ,
两个相似三角形的相似比为 ,
它们的周长比是 ,
故选:B.
【点睛】本题考查了相似三角形的相似比,熟知相似三角形的周长比等于相似比是解题的关键.
6.矩形具有而菱形不一定具有的性质是()
A.对角线互相平分B.对角线相等C.邻边相等D.对角线互相垂直

2023-2024学年安徽省合肥市包河区九年级(上)期末考试数学试卷+答案解析

2023-2024学年安徽省合肥市包河区九年级(上)期末考试数学试卷+答案解析

2023-2024学年安徽省合肥市包河区九年级(上)期末考试数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下面四个图形中,可以看作是中心对称图形的是()A. B. C. D.2.已知点A是外一点,且的半径为6,则OA的长可能为()A.2B.4C.6D.83.已知反比例函数的图象经过点,那么该反比例函数图象也一定经过点()A. B. C. D.4.将抛物线沿着y轴向上平移1个单位后,所得新抛物线的表达式是()A. B. C. D.5.如图,MN是的切线,M是切点,连结OM、若,则度数为()A. B. C. D.6.若点,,都在二次函数的图象上,则,,的大小关系是()A. B. C. D.7.小明准备画一个二次函数的图像,他首先列表如下,但在填写函数值时,不小心把其中一个蘸上了墨水表中,那么这个被蘸上了墨水的函数值是()x…0123…y…3430…A. B.3 C.4 D.08.如图,某零件的外径为12cm ,用一个交叉卡钳可测量零件的内孔直径若,且量得,则零件的厚度x 为()A.2cmB.C.1cmD.9.在中,已知,,,那么AC 的长等于()A.1B.9C.D.10.如图,在边长为1的正方形网格中,点A 、B 、C 、D 、E 都在小正方形顶点的位置上,连接AB 、CD 相交于点P ,根据图中提示添加的辅助线,可以得到的值等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。

11.抛物线的顶点坐标为__________.12.已知,那么__________.13.已知线段MN 的长是10cm ,点P 是线段MN 的黄金分割点,则较长线段MP 的长是__________14.如图,AB 为半圆O 的直径,现将一块等腰直角三角板如图放置,锐角顶点P 在半圆上,斜边过点B ,一条直角边交该半圆于点若,则的长为__________.当P 点为弧三等分点时,扇形POB的面积为__________.三、计算题:本大题共1小题,共8分。

2023-2024学年福建省泉州市鲤城区九年级(上)期末数学试卷+答案解析

2023-2024学年福建省泉州市鲤城区九年级(上)期末数学试卷+答案解析

2023-2024学年福建省泉州市鲤城区九年级(上)期末数学试卷一、选择题:本题共10小题,每小题4分,共40分。

在每小题给出的选项中,只有一项是符合题目要求的。

1.下列选项中是一元二次方程的是()A. B. C. D.2.的值等于()A. B. C. D.13.下列事件中,属于必然事件的是()A.泉州明天会下大雨B.在369个人中,一定有两个人在同日出生C.打开电视机,正好在播新闻D.小明这学期数学期末考试得分是1464.下列二次根式中,能与合并的是()A. B. C. D.5.用配方法解一元二次方程时,配方正确的是()A. B. C. D.6.如图,D是边AB上一点,添加一个条件后,仍不能使∽的是()A.B.C.D.7.抛物线经过平移得到抛物线,则平移过程正确的是()A.先向左平移4个单位,再向下平移3个单位B.先向左平移4个单位,再向上平移3个单位C.先向右平移4个单位,再向下平移3个单位D.先向右平格4个单位,再向上平移3个单位8.如图,若与是位似图形,则位似中心的坐标为()A. B. C. D.9.如图,点A,B,C在半径为5的上,,则的值为()A.B.C.D.10.已知抛物线的顶点为,点,,在该抛物线上,当恒成立时,的最小值为()A.1B.2C.4D.3二、填空题:本题共6小题,每小题4分,共24分。

11.若式子在实数范围内有意义,则x的取值范围是______.12.已知则______.13.一只盒子中有红球10个,白球6个,黑球a个,每个球除颜色外都相同,从中任取一个球,取得“红球”的概率与“不是红球”的概率相同,那么a的值是______.14.若直线l上有四点A,B,C,D,直线l外有一点P,则经过图中的三个点作圆,最多可以作______个.15.一个等腰三角形的底边长是6,腰长是一元二次方程的一个根,则此三角形的周长是______.16.如图,为等边三角形,点D在外,连接BD、若,,,则______.三、计算题:本大题共1小题,共8分。

九年级(上)期末数学试卷(附答案解析)

九年级(上)期末数学试卷(附答案解析)

九年级(上)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=54.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦x y=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.56.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣18.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣29.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离km.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示).(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为元,今年生产的这种玩具每件的出厂价为元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列事件中是必然事件的是()A.平安夜下雪B.地球在自转的同时还不停的公转C.所有人15岁时身高必达到1.70米D.下雨时一定打雷【分析】根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:A、平安夜下雪是随机事件,故A错误;B、地球在自转的同时还不停的公转,是必然事件,故B正确;C、所有人15岁时身高必达到1.70米是随机事件,故C错误;D、下雪时一定打雷是不可能事件,故D错误;故选:B.2.下列图形既是轴对称图形又是中心对称图形的是()A.B. C.D.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可作出判断.【解答】解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后不能与原图形重合,此图形不是中心对称图形,也不是轴对称图形,故此选项错误;D、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误.故选:A.3.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3 B.(x﹣2)2=3 C.(x﹣2)2=5 D.(x+2)2=5【分析】方程常数项移到右边,两边加上4变形后,即可得到结果.【解答】解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.4.下列关系式中:①y=2x;;③y=﹣;④y=5x+1;⑤y=x2﹣1;⑥y=;⑦xy=11,y是x的反比例函数的共有()A.4个B.3个C.2个D.1个【分析】分别根据反比例函数、二次函数及一次函数的定义对各小题进行逐一分析即可.【解答】解:①y=2x是正比例函数;可化为y=5x,是正比例函数;③y=﹣符合反比例函数的定义,是反比例函数;④y=5x+1是一次函数;⑤y=x2﹣1是二次函数;⑥y=不是函数;⑦xy=11可化为y=,符合反比例函数的定义,是反比例函数.故选C.5.如图,弦CD垂直于⊙O的直径AB,垂足为H,且CD=,BD=,则AB的长为()A.2 B.3 C.4 D.5【分析】根据垂径定理和相交弦定理求解.【解答】解:连接OD.由垂径定理得HD=,由勾股定理得HB=1,设圆O的半径为R,在Rt△ODH中,则R2=()2+(R﹣1)2,由此得2R=3,或由相交弦定理得()2=1×(2R﹣1),由此得2R=3,所以AB=3故选B.6.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【分析】根据反比例函数的性质:对于反比例函数y=,当k>0时,在每一个象限内,函数值y随自变量x的增大而减小;当k<0时,在每一个象限内,函数值y随自变量x增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.7.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x>1 B.x<1 C.x>﹣1 D.x<﹣1【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又∵对称轴是直线x=﹣=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大而增大.故选B.8.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1 B.2π﹣1 C.π﹣1 D.π﹣2【分析】已知BC为直径,则∠CDB=90°,在等腰直角三角形ABC中,CD垂直平分AB,CD=DB,D为半圆的中点,阴影部分的面积可以看做是扇形ACB的面积与△ADC的面积之差.【解答】解:在Rt△ACB中,AB==2,∵BC是半圆的直径,∴∠CDB=90°,在等腰Rt△ACB中,CD垂直平分AB,CD=BD=,∴D为半圆的中点,S阴影部分=S扇形ACB﹣S△ADC=π×22﹣×()2=π﹣1.故选A.9.已知两点A(5,6)、B(7,2),先将线段AB向左平移一个单位,再以原点O为位似中心,在第一象限内将其缩小为原来的得到线段CD,则点A的对应点C的坐标为()A.(2,3)B.(3,1)C.(2,1)D.(3,3)【分析】先根据点平移的规律得到A点平移后的对应点的坐标为(4,6),然后根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k求解.【解答】解:∵线段AB向左平移一个单位,∴A点平移后的对应点的坐标为(4,6),∴点C的坐标为(4×,6×),即(2,3).故选A.10.如图,D、E分别是△ABC边AB、BC上的点,DE∥AC,若S△BDE:S△CDE=1:3,则的值为()A.B.C.D.【分析】由S△BDE:S△CDE=1:3,得到=,于是得到=,根据DE∥AC,推出△BDE∽△ABC,根据相似三角形的性质即可得到结论.【解答】解:∵S△BDE:S△CDE=1:3,∴=,∴=,∵DE∥AC,∴△BDE∽△ABC,∴==,故选D.11.如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD.若点B的坐标为(2,0),则点C的坐标为()A.(﹣1,)B.(﹣2,)C.(﹣,1)D.(﹣,2)【分析】作CH⊥x轴于H,如图,先根据一次函数图象上点的坐标特征确定A(2,2),再利用旋转的性质得BC=BA=2,∠ABC=60°,则∠CBH=30°,然后在Rt△CBH中,利用含30度的直角三角形三边的关系可计算出CH=BC=,BH=CH=3,所以OH=BH﹣OB=3﹣2=1,于是可写出C点坐标.【解答】解:作CH⊥x轴于H,如图,∵点B的坐标为(2,0),AB⊥x轴于点B,∴A点横坐标为2,当x=2时,y=x=2,∴A(2,2),∵△ABO绕点B逆时针旋转60°得到△CBD,∴BC=BA=2,∠ABC=60°,∴∠CBH=30°,在Rt△CBH中,CH=BC=,BH=CH=3,OH=BH﹣OB=3﹣2=1,∴C(﹣1,).故选:A.12.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是()A.①②B.③④C.①④D.①③【分析】①由抛物线的对称轴为直线x=1,一个交点A(﹣1,0),得到另一个交点坐标,利用图象即可对于选项①作出判断;②根据抛物线开口方向判定a的符号,由对称轴方程求得b与a的关系是b=﹣2a,将其代入(3a+b),并判定其符号;③根据两根之积=﹣3,得到a=﹣,然后根据c的取值范围利用不等式的性质来求a的取值范围;④把顶点坐标代入函数解析式得到n=a+b+c=c,利用c的取值范围可以求得n的取值范围.【解答】解:①∵抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),对称轴直线是x=1,∴该抛物线与x轴的另一个交点的坐标是(3,0),∴根据图示知,当x>3时,y<0.故①正确;②根据图示知,抛物线开口方向向下,则a<0.∵对称轴x=﹣=1,∴b=﹣2a,∴3a+b=3a﹣2a=a<0,即3a+b<0.故②错误;③∵抛物线与x轴的两个交点坐标分别是(﹣1,0),(3,0),∴﹣1×3=﹣3,∴=﹣3,则a=﹣.∵抛物线与y轴的交点在(0,2)、(0,3)之间(包含端点),∴2≤c≤3,∴﹣1≤﹣≤﹣,即﹣1≤a≤﹣.故③正确;④根据题意知,a=﹣,﹣=1,∴b=﹣2a=,∴n=a+b+c=c.∵2≤c≤3,∴≤c≤4,即≤n≤4.故④错误.综上所述,正确的说法有①③.故选D.二、填空题(共6小题,每小题3分,满分18分)13.在比例尺为1:1000 000的地图上,量得甲、乙两地的距离是15cm,则两地的实际距离150 km.【分析】设两地的实际距离为xcm,根据比例尺的定义得到15:x=1:1000 000,然后根据比例的性质计算出x,再把单位由cm化为km即可.【解答】解:设两地的实际距离为xcm,根据题意得15:x=1:1000 000,所以x=15000000cm=150km.故答案为150.14.如果两个相似三角形的相似比为2:3,那么这两个相似三角形的面积比为4:9.【分析】根据相似三角形的面积比等于相似比的平方可直接得出结果.【解答】解:∵两个相似三角形的相似比为2:3,∴这两个相似三角形的面积比为4:9.15.某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有18个.【分析】让球的总数×黄色玻璃球的概率即为所求的黄色玻璃球的球数.【解答】解:∵摸到红球、黄球、蓝球的频率为35%、25%和40%,∴摸到黄球的概率为0.25,故口袋中黄色玻璃球有0.25×72=18(个).故答案为:18.16.如图,正六边形ABCDEF内接于圆O,半径为4,则这个正六边形的边心距OM为2.【分析】由正六边形的性质得出∠AOM=60°,OA=4,求出∠OAM=30°,由含30°角的直角三角形的性质得出OM=OA=2即可.【解答】解:∵六边形ABCDEF是正六边形,OM⊥AC,∴∠AOM=60°,∠OMA=90°,OA=4,∴∠OAM=30°,∴OM=OA=2,即这个正三角形的边心距OM为2;故答案为:2.17.如图,点A在双曲线上,点B在双曲线y=上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为2.【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的矩形的面积S的关系S=|k|即可判断.【解答】解:过A点作AE⊥y轴,垂足为E,∵点A在双曲线上,∴四边形AEOD的面积为1,∵点B在双曲线y=上,且AB∥x轴,∴四边形BEOC的面积为3,∴四边形ABCD为矩形,则它的面积为3﹣1=2.故答案为:2.18.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB 的度数为30°(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)90°﹣α.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是45°<α<60°.【分析】(1)由条件可得出AB=BC=AC,再利用旋转可得出QM=MC,证得CB=CD=BA,再由三角形外角的性质即可得出结论;(2)由(1)可得BM为AC的垂直平分线,结合条件可以得出Q,C,A在以P为圆心,PA为半径的圆上,由圆周角定理可得∠ACQ=∠APQ=α,可得出∠CDB和α的关系;(3)借助(2)的结论和PQ=QD,可得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,结合∠BAD >∠PAD>∠MAD,代入可得出α的范围.【解答】解:(1)如图1,∵BA=BC,∠BAC=60°,∴AB=BC=AC,∠ABC=60°,∵M为AC的中点,∴MB⊥AC,∠CBM=30°,AM=MC.∵PQ由PA旋转而成,∴AP=PQ=QM=MC.∵∠AMQ=2α=120°,∴∠MCQ=60°,∠QMD=30°,∴∠MQC=60°.∴∠CDB=30°.故答案为:30°;(2)如图2,连接PC,∵由(1)得BM垂直平分AC,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC=PA,∴Q,C,A在以P为圆心,PA为半径的圆上,∴∠ACQ=∠APQ=α,∴∠BAC=∠ACD,∴DC∥BA,∴∠CDB=∠ABD=90°﹣α.故答案为:90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.故答案为:45°<α<60°.三、解答题(共7小题,满分66分)19.已知关于x的一元二次方程x2+2x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,求关于x的二次函数y=x2+2x+k﹣1的图象的对称轴和顶点坐标.【分析】(1)根据一元二次方程x2+2x+k﹣1=0有实数根,可推△≥0,求出k的取值范围,得出k 的数值即可;(2)分别把k的值代入方程2x2+4x+k﹣1=0,解得结果根据方程有两个非零的整数根进行分析,确定k的值,进一步利用二次函数的性质确定对称轴和顶点坐标.【解答】解:(1)∵关于x的一元二次方程x2+2x+k﹣1=0有实数根,∴△=4﹣4(k﹣1)≥0.∴k≤2.∵k为正整数,∴k=1,2;(2)设方程x2+2x+k﹣1=0的两根为x1,x2,则x1+x2=﹣2,x1•x2=k﹣1,当k=1时,方程x2+2x+k﹣1=0有一个根为零;当k=2时,方程x2+2x+k﹣1=0有两个相同的非零实数根﹣1.k=2符合题意.二次函数y=x2+2x+1=(x+1)2,对称轴是x=﹣1,顶点坐标是(﹣1,0).20.在x2□2x□1的空格中,任意填上“+”“﹣”,求其中能构成完全平方的概率(列出表格或画出树形图)【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与其中能构成完全平方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有4种等可能的结果,其中能构成完全平方的有2种情况,∴其中能构成完全平方的概率为:=.21.如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数y=的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(﹣6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式.(2)根据图象直接回答:当x为何值时,一次函数的值小于反比例函数的值.【分析】(1)先由点C的坐标求出反比例函数的关系式,再由DE=3,求出点D的坐标,把点C,点D的坐标代入一次函数关系式求出k,b即可求一次函数的关系式.(2)由图象可知:一次函数的值小于反比例函数的值.【解答】解:(1)点C(﹣6,﹣1)在反比例函数y=的图象上,∴m=﹣6×(﹣1)=6,∴反比例函数的关系式为y=,∵点D在反比例函数y=上,且DE=3,∴y=3,代入求得:x=2,∴点D的坐标为(2,3).∵C、D两点在直线y=kx+b上,∴,解得:,∴一次函数的关系式为y=x+2.(2)由图象可知:当x<﹣6或0<x<2时,一次函数的值小于反比例函数的值.22.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知圆心0到BD的距离为3,求AD的长.【分析】(1)由同弧所对的圆周角相等求得∠CAB=∠CDB=40°,然后根据平角是180°求得∠BPD=115°;最后在△BPD中依据三角形内角和定理求∠B即可;(2)过点O作OE⊥BD于点E,则OE=3.根据直径所对的圆周角是直角,以及平行线的判定知OE∥AD;又由O是直径AB的半径可以判定O是AB的中点,由此可以判定OE是△ABD的中位线;最后根据三角形的中位线定理计算AD的长度.【解答】解:(1)∵∠CAB=∠CDB(同弧所对的圆周角相等),∠CAB=40°,∴∠CDB=40°;又∵∠APD=65°,∴∠BPD=115°;∴在△BPD中,∴∠B=180°﹣∠CDB﹣∠BPD=25°;(2)过点O作OE⊥BD于点E,则OE=3.∵AB是直径,∴AD⊥BD(直径所对的圆周角是直角);∴OE∥AD;又∵O是AB的中点,∴OE是△ABD的中位线,∴AD=2OE=6.23.一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x 倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤1).(1)用含x的代数式表示,今年生产的这种玩具每件的成本为(10+7x)元,今年生产的这种玩具每件的出厂价为(12+6x)元.(2)求今年这种玩具的每件利润y元与x之间的函数关系式.(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?注:年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量.【分析】(1)根据题意今年这种玩具每件的成本比去年成本增加0.7x倍,即为(10+10•0.7x)元/件;这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,即为(12+12•0.5x)元/件;(2)今年这种玩具的每件利润y等于每件的出厂价减去每件的成本价,即y=(12+6x)﹣(10+7x),然后整理即可;(3)今年的年销售量为(2+2x)万件,再根据年销售利润=(每件玩具的出厂价﹣每件玩具的成本)×年销售量,得到w=2(1+x)(2﹣x),然后把它配成顶点式,利用二次函数的最值问题即可得到答案.【解答】解:(1)10+7x;12+6x;(2)y=(12+6x)﹣(10+7x),∴y=2﹣x (0<x≤1);(3)∵w=2(1+x)•y=2(1+x)(2﹣x)=﹣2x2+2x+4,∴w=﹣2(x﹣0.5)2+4.5∵﹣2<0,0<x≤1,∴w有最大值,∴当x=0.5时,w最大=4.5(万元).答:当x为0.5时,今年的年销售利润最大,最大年销售利润是4.5万元.24.如图1,△ABC是等腰直角三角形,四边形ADEF是正方形,D、F分别在AB、AC边上,此时BD=CF,BD⊥CF成立.(1)当正方形ADEF绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明;若不成立,请说明理由.(2)当正方形ADEF绕点A逆时针旋转45°时,如图3,延长BD交CF于点G.①求证:BD⊥CF;②当AB=5,AD=时,求线段BG的长.【分析】(1)由△ABC是等腰直角三角形和ADEF是正方形得到判断△ABD≌△ACF的条件;(2)由全等得到∠BGC=90°,利用勾股定理计算即可.【解答】解:(1)BD=CF成立.理由:∵△ABC是等腰直角三角形,∴AB=AC,∵ADEF是正方形,∴AD=AF,∠BAC=∠DAF,∴∠BAC﹣∠DAC=∠DAF﹣∠DAC,即∠BAD=∠CAF,在△ABD和△ACF中∴△ABD≌△ACF,∴BD=CF.(2)①由(1)全等得:∠ABD=∠ACE,∴∠GBC+∠GCB=∠GBC+∠ACF+∠ACB=(∠ABG+∠GBC)+∠ACB=45°+45°=90°,∴∠BGC=90°,∴BG⊥CF.②过D作DH⊥AB于H,AH=DH=AD÷=1,∴BH=3,∴BD==,延长AD交BC于P,则BP=CP,(AD平分∠BAC,AB=AC,等腰三角形三线合一)由∠BCG=90°知:DP∥CG,∴=1,∴BG=2BD=2.25.已知二次函数的图象如图.(1)求它的对称轴与x轴交点D的坐标;(2)将该抛物线沿它的对称轴向上平移,设平移后的抛物线与x轴,y轴的交点分别为A、B、C 三点,若∠ACB=90°,求此时抛物线的解析式;(3)设(2)中平移后的抛物线的顶点为M,以AB为直径,D为圆心作⊙D,试判断直线CM与⊙D的位置关系,并说明理由.【分析】(1)根据对称轴公式求出x=﹣,求出即可;(2)假设出平移后的解析式即可得出图象与x轴的交点坐标,再利用勾股定理求出即可;(3)由抛物线的解析式可得,A,B,C,M各点的坐标,再利用勾股定理逆定理求出CD⊥CM,即可证明.【解答】解:(1)由,得x=﹣=﹣=3,∴D(3,0);(2)方法一:如图1,设平移后的抛物线的解析式为,则C(0,k)OC=k,令y=0即,得,x2=3﹣,∴A,B,∴,=2k2+8k+36,∵AC2+BC2=AB2即:2k2+8k+36=16k+36,得k1=4,k2=0(舍去),∴抛物线的解析式为,方法二:∵,∴顶点坐标,设抛物线向上平移h个单位,则得到C(0,h),顶点坐标,∴平移后的抛物线:,当y=0时,,得,x2=3+,∴A,B,∵∠ACB=90°,∴△AOC∽△COB,则OC2=OA•OB,即,解得h1=4,h2=0(不合题意舍去),∴平移后的抛物线:;(3)方法一:如图2,由抛物线的解析式可得,A(﹣2,0),B(8,0),C(0,4),M,过C、M作直线,连接CD,过M作MH垂直y轴于H,则MH=3,∴,,在Rt△COD中,CD==AD,∴点C在⊙D上,∵,∴DM2=CM2+CD2∴△CDM是直角三角形,∴CD⊥CM,∴直线CM与⊙D相切.方法二:如图3,由抛物线的解析式可得A(﹣2,0),B(8,0),C(0,4),M,作直线CM,过D作DE⊥CM于E,过M作MH垂直y轴于H,则MH=3,,由勾股定理得,∵DM∥OC,∴∠MCH=∠EMD,∴Rt△CMH∽Rt△DME,∴得DE=5,由(2)知AB=10,∴⊙D的半径为5.∴直线CM与⊙D相切.。

九年级上学期期末考试数学试卷(附答案)

九年级上学期期末考试数学试卷(附答案)

九年级上学期期末考试数学试卷(附答案)一.单选题。

(每小题4分,共40分)1.﹣5的相反数是()A.15B.﹣15C.5D.﹣52.如图是一根空心方管,它的左视图是()A. B. C. D.3.一个数是8600,这个数用科学计数法表示8600为()A.8.6×102B.8.6×103C.86×102D.0.86×1044.下列各式计算正确的是()A.3x+3y=6xyB.4xy2-5xy2=﹣1C.﹣2(x-3)=﹣2x+6D.2a+a=3a25.把20个除颜色外完全相同的小球,放在一个不透明的盒子中,其中有m个白球,做大量重复试验,每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子里,最终发现摸到白球的频率稳定在35%左右,则m的值大约是()A.7B.8C.9D.106.关于菱形一定具有的性质,下列说法错误的是()A.对角线互相平分B.对角线互相垂直C.邻边相等D.对角线相等7.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,下列关系正确的是()A.sinA=BCAC B.tanB=ACABC.cosA=CDACD.sinB=CDBC(第7题图)(第8题图)(第9题图)8.如图,点A,B是反比例函数y=kx(x>0)图象上的两点,AC⊥x轴于点C,BD⊥x轴于点D,连接OA ,BC ,若点C (1,0),BD=2,△BCD 面积为3,则△AOC 的面积是( ) A.2 B.3 C.4 D.59.如图,已知点C ,D 是以AB 为直径的半圆O 的三等分点,圆的半径为1,则图中阴影部分面积是( )A.16π B.316π C.124π D.112π+√3410.如图,二次函数y=ax 2+bx+c 的图象的顶点在第一象限,且过点(0,1)和(﹣1,0)下列结论:①ab >0,②b 2-4ac >0,③0<a+b+c <2,④0<b <1,⑤当y >﹣1时,x >0,其中正确结论个数是( )A.2个B.3个C.4个D.5个(第10题图)二.填空题。

2024年北京燕山区初三上学期期末考数学试卷和答案

2024年北京燕山区初三上学期期末考数学试卷和答案

燕山地区2023—2024学年第一学期九年级期末考试数学试卷2024.1一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.....1.下列图案是我国国产品牌汽车的标识,其中是中心对称图形的是A .B .C .D .2.已知点P 在半径为r 的⊙O 内,且OP =3,则r 的值可能为A .1B .2C .3D .43.下列函数中,当0x >时,y 随x 的增大而减小的是A .y =xB .y =1x +C .y =2x D .y =2x -4.一个小球在如图所示的地板上自由滚动,并随机停留在某块方砖上.如果每一块方砖除颜色外完全相同,则小球最终停留在白砖上的概率是A .13B .49C .59D .235.如图,点A ,B 在⊙O 上,点C 是劣弧AB ︵的中点,∠AOC =80°,则∠CDB 的大小为A .40°B .45°C .60°D .80°6.电影《志愿军:雄兵出击》于国庆档上映,首周累计票房约3.5亿元,第三周累计票房约6.8亿元.若每周累计票房的增长率相同,设增长率为x ,根据题意可列方程为A .23.5 6.8x =B .3.5(1 6.8)x +=C .23.5(1) 6.8x +=D .23.5(1) 6.8x -=7.如图,在平面直角坐标系xOy 中,△ABC 的三个顶点都在格点上,则△ABC 外接圆的圆心坐标为A .(3,2)B .(2,3)C .(2,2)D .(3,3)8.平面直角坐标系xOy 中,已知二次函数y =ax 2+bx (a ≠0)的部分图象如图所示,给出下面三个结论:①a •b >0;②二次函数y =ax 2+bx (a ≠0)有最大值4;③关于x 的方程ax 2+bx =0有两个实数根14=-x ,20=x .上述结论中,所有正确结论的序号是A .①②B .①③C .②③D .①②③二、填空题(共16分,每题2分)9.平面直角坐标系xOy 中,与点P (-4,1)关于原点对称的点的坐标是.10.一元二次方程(3)3x x x -=-的解是.11.将抛物线212y x =向左平移1个单位长度,得到抛物线的解析式为.12.已知某二次函数的图象开口向上,且顶点坐标为(1,3),则这个二次函数解析式可以是.13.如图,P A ,PB 是⊙O 的两条切线,切点为A ,B ,若∠AOB =90°,P A =3,则⊙O 的半径为.14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,连接AD ,若OE =3,CD =8,则AD 的长为.15.在一个不透明的盒子中共装有40个球,其中有a 个红球,这些球除颜色外无其他差别.为估计a 的值,小颖做摸球试验,她将盒子里面的球充分搅匀,任意摸出1个球记下颜色再放回,不断重复上述过程,记录实验数据如下:摸球的次数n 2050100200300400500摸到红球的次数m133262117181238301摸到红球的频率mn0.650.640.620.5850.6030.5950.602根据以上数据,估计a 的值约为.16.2023年第19届杭州亚运会的举办带热了吉祥物“宸宸、琮琮和莲莲”的销售.某网店经营亚运会吉祥物玩偶礼盒装,每盒进价为30元.当地物价部门规定,该礼盒销售单价最高不能超过50元/盒.在销售过程中发现该礼盒每周的销量y (件)与销售单价x (元)之间近似满足函数关系:2180-y x =+(30≤x ≤50).(1)设该网店每周销售该礼盒所获利润为w (元),则w 与x 的函数关系式为;(2)该网店每周销售该礼盒所获最大利润为元.(第14题)(第13题)宸宸琮琮莲莲三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-23题,每题5分,第24-26题,每题6分,第27-28题,每题7分)解答应写出文字说明,演算步骤或证明过程.17.解方程:220+-=.41x x18.已知250-,求代数式22=x x-x x x-+-的值.3(2)(1)19.2023年7月31日,北京遭遇140年以来最大的暴雨,房山地区受灾严重.为了做好防汛救灾工作,某社区特招募志愿工作者,小东和小北积极报名参加,根据社区安排,志愿者被随机分到A组(信息登记),B组(物资发放),C组(垃圾清运)的其中一组.(1)小东被分配到A组是事件(填“必然”,“随机”或“不可能”);小东被分配到A组的概率是.(2)请用列表或画树状图的方法,求出小东和小北被分配到同一组的概率.20.如图,将△ABC绕点B逆时针旋转得到△DBE,点C的对应点E恰好落在AB上.(1)若BC=6,BD=9,求线段AE的长.(2)连接AD,若∠C=110°,∠BAC=40°,求∠BDA的度数.21.阅读下面的材料一元二次方程及其解法最早出现在公元前两千年左右的古巴比伦人的《泥板文书》中.到了中世纪,阿拉伯数学家阿尔·花拉子米在他的代表作《代数学》中记载了求一元二次方程正数解的几何解法,我国三国时期的数学家赵爽在其所著《勾股圆方图注》中也给出了类似的解法.以x2+10x=39为例,花拉子米的几何解法步骤如下:①如图1,在边长为x的正方形的两个相邻边上作边长分别为x和5的矩形,再补上一个边长为5的小正方形,最终把图形补成一个大正方形;②一方面大正方形的面积为(x+)2,另一方面它又等于图中各部分面积之和,因为x2+10x=39,可得方程(x+)2=39+,则方程的正数解是x =.根据上述材料,解答下列问题.(1)补全花拉子米的解法步骤②;(2)根据花拉子米的解法,在图2的两个构图①②中,能够得到方程x 2-6x =7的正数解的正确构图是(填序号).22.已知关于x 的一元二次方程22(2)0x x m -+-=有两个不相等的实数根.(1)求m 的取值范围;(2)若m 为正整数,请你写出一个满足条件的m 值,并求出此时方程的根.23.已知二次函数23(0)+y ax bx a =+≠的图象经过点A (1,0),B (3,0).(1)求该函数的解析式;(2)当x >3时,对于x 的每一个值,函数y x n =+的值小于二次函数23+y ax bx =+的值,结合函数图象,直接写出n 的取值范围.24.如图,在△ABC 中,∠ACB =90°,点D 在AB 上,以AD 为直径作⊙O 与BC 相切于点E ,连接DE 并延长交AC 的延长线于点F .(1)求证:AF =AD ;(2)若CE =4,CF =2,求⊙O 的半径.图1①②25.学校组织九年级学生进行跨学科主题学习活动,利用函数的相关知识研究某种化学试剂的挥发情况.在两种不同的场景A 和场景B 下做对比实验,设实验过程中,该试剂挥发时间为x 分钟时,在场景A ,B 中的剩余质量分别为y 1,y 2(单位:克).下面是某研究小组的探究过程,请补充完整:记录y 1,y 2与x 的几组对应值如下:x (分钟)05101520…y 1(克)2523.52014.57…y 2(克)252015105…(1)在同一平面直角坐标系xOy 中,描出上表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数y 1,y 2的图象;(2)进一步探究发现,场景A 的图象是抛物线的一部分,y 1与x 之间近似满足函数关系210.04+y x bx c =-+.场景B 的图象是直线的一部分,y 2与x 之间近似满足函数关系2y ax c =+(a ≠0).请分别求出场景A ,B 满足的函数关系式;(3)查阅文献可知,该化学试剂的质量不低于4克时,才能发挥作用.在上述实验中,记该化学试剂在场景A ,B 中发挥作用的时间分别为x A ,x B ,则x A x B (填“>”,“=”或“<”).26.在平面直角坐标系xOy 中,点M (-1,m ),N (3,n )在抛物线2y ax bx c =++(a >0)上,设抛物线的对称轴为x =t .(1)若m =n ,求t 的值;(2)若c <m <n ,求t 的取值范围.27.如图,△ABC 为等边三角形,点M 为AB 边上一点(不与点A ,B 重合),连接CM ,过点A 作AD ⊥CM 于点D ,将线段AD 绕点A 顺时针旋转60°得到线段AE ,连接BE .(1)依题意补全图形,直接写出∠AEB 的大小,并证明;(2)连接ED 并延长交BC 于点F ,用等式表示BF 与FC 的数量关系,并证明.28.在平面直角坐标系xOy 中,对于⊙C 和⊙C 外一点P 给出如下定义:连接CP 交⊙C 于点Q ,作点P 关于点Q 的对称点P′,若点P′在线段CQ 上,则称点P 是⊙C 的“关联点”.例如,图中P 为⊙C 的一个“关联点”.(1)⊙O 的半径为1.①如图1,在点A (2-,0),B (2,2),D (0,3)中,⊙O 的“关联点”是;②已知点M 在直线323y x =-上,且点M 是⊙O 的“关联点”,求点M 的横坐标m 的取值范围.(2)直线31()y x =--与x 轴,y 轴分别交于点E ,点F ,⊙T 的圆心为T (t ,0),半径为2,若线段..EF ..上所有点....都是⊙T 的“关联点”,直接写出t 的取值范围.图1备用图燕山地区2023—2024学年第一学期九年级期末考试数学试卷答案及评分参考2024年1月阅卷须知:1.为便于阅卷,本试卷答案中有关解答题的推导步骤写得较为详细,阅卷时,只要考生将主要过程正确写出即可。

2010-2023历年宁夏银川市九年级上学期期末考试数学试卷(带解析)

2010-2023历年宁夏银川市九年级上学期期末考试数学试卷(带解析)

2010-2023历年宁夏银川市九年级上学期期末考试数学试卷(带解析)第1卷一.参考题库(共20题)1.一元二次方程的根是()A.x1=1,x2=6B.x1=2,x2=3C.x1=1,x2=-6D.x1=-1,x2=62.依次连接菱形各边中点所得到的四边形是.3.“一方有难,八方支援”.今年11月2日,某县出现洪涝灾害,牵动着全县人民的心,县人民医院准备从甲、乙、丙三位医生和A、B两名护士中选取一位医生和一名护士支援防汛救灾工作.(1)若随机选一位医生和一名护士,用树状图(或列表法)表示所有可能出现的结果.(2)求恰好选中医生甲和护士A的概率.4.如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点.(1)求反比例函数的解析式;(2)如下图,已知点A在第一象限,且同时在上述两个函数的图象上,求点A的坐标;(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由.5.下列命题中,正确的是()A.四边相等的四边形是正方形B.四角相等的四边形是正方形C.对角线相等的菱形是正方形D.对角线垂直且相等的四边形是正方形6.解方程:7.计算.8.下列四个几何体中,主视图、左视图与俯视图是全等图形的几何体是()A.球B.圆柱C.三棱柱D.圆锥9.如图,在中,AB =AC,D是底边BC的中点,作DE⊥AB于E,DF⊥AC于F,求证:DE = DF.证明:(①)在BDE和中,,≌(②)(③)⑴上面的证明过程是否正确?若正确,请写出①、②和③的推理根据.⑵请你写出另一种证明此题的方法.10.已知正比例函数与反比例函数的一个交点是(2,3),则另一个交点是 .11.如图,AB⊥BC,AD⊥CD,垂足分别为B、D,若CB=CD,则≌,理由是A.SASB.AASC.HLD.ASA12.某厂规定,该厂家属区的每户居民如果一个月的用电量不超过A度,那么这个月该户只要交10元用电费,如果超过A度,则这个月仍要交10元用电费外,超过部分还要按每度元交费.(1)该厂某户居民2月份用电90度,超过了规定的度,则超过部分应交费_____ ___元.(用含A的式子表示);(2)下表是这户居民3月,4月的用电情况和交费情况.月份用电量(度)交电费总数(元)3月80254月4510根据上表的数据,求该厂规定的A是多少?13.请你写出一个反比例函数的解析式,使它的图象在第二、四象限.14.如果矩形的面积为6cm2,那么它的长cm与宽cm之间的函数关系用图象表示大致是A.B.C.D.15.如图,E、F是□ABCD对角线上的两点,且.求证:(1);(2).16.下列函数中,属于反比例函数的是()A.B.C.D.17.如图,有一块直角三角形纸片,两条直角边AC=6cm,BC=8cm.若将直角边A C沿直线折叠,使它落在斜边AB上,且与AE重合,则CD等于()A.2cmB.3cmC.4cmD.5cm18.在Rt△ABC中,∠C = 90°,a = 4,b = 3,则cosA的值是()A.B.C.D.19.初三(1)班共有48名团员要求参加青年志愿者活动,根据实际需要,团支部从中随机选择12名团员参加这次活动,该班团员小明能参加这次活动的概率是.20.已知,如图,AB、DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影BC=3m.(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.第1卷参考答案一.参考题库1.参考答案:D2.参考答案:矩形3.参考答案:解:(1)用树状图或列表法表示所有可能结果如下:(2)(恰好选中医生甲和护士A)=,∴恰好选中医生甲和护士A的概率是.4.参考答案:解:(1)由题意得②-①得∴反比例函数的解析式为.(2)由解得,∵点A在第一象限,∴点A的坐标为(1,1)(3),OA与x轴所夹锐角为45°,①当OA为腰时,由OA=OP得P1(,0),P2(-,0);由OA=AP得P3=(2,0).②当OA为底时,得P4=(1,0).∴符合条件的点有4个,分别是(,0),(-,0),(2,0),(1,0)5.参考答案:C6.参考答案:x1=1,x2=27.参考答案:-8.参考答案:A9.参考答案:解:(1)①等边对等角;②AAS;③全等三角形的对应边相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级上学期期末考试数学试卷(附参考答案与解析)班级:___________姓名:___________考号:___________一、选择题(每小题3分,共60分)1.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有()A.1个B.2个C.3个D.4个2.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)3.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°4.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.5.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=96.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:257.在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°8.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x19.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠010.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或411.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.812.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.13.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()A.7B.8C.8或17D.7或1714.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=4515.如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于()A.45°B.55°C.65°D.70°16.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2C.2:3D.4:917.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE :S△CDB的值等于()A.1:B.1:C.1:2D.2:318.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=19.如图,⊙O的半径为R,以圆内接正方形ABCD的顶点B为圆心,AB为半径.画弧AC,则阴影部分的面积是()A.(π﹣1)R2B.R2C.(π﹣2)R2D.20.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个二、填空题(每小题3分,共12分)21.如图,过y轴上任意一点P,作x轴的平分线,分别于反比例函数y=和y=的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为.22.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.23.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为.24.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.三、解答题25.青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.26.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)27.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y2=(m为常数,且m≠0)的图象交于点A(﹣2,1)、B(1,n).(1)求反比例函数和一次函数的解析式;(2)连结OA、OB,求△AOB的面积;(3)直接写出当y1<y2<0时,自变量x的取值范围.28.如图,在△ABC中,AB=AC,点P、D分别是BC、AC边上的点,且∠APD=∠B.(1)求证:AC•CD=CP•BP;(2)若AB=10,BC=12,当PD∥AB时,求BP的长.29.如图,等腰三角形ABC中,AC=BC=10,AB=12,以BC为直径作⊙O交AB于点D,交AC 于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求cos∠E的值.参考答案与解析一、选择题(每小题3分,共60分)1.下列说法:①位似图形都相似;②位似图形都是平移后再放大(或缩小)得到;③直角三角形斜边上的中线与斜边的比为1:2;④两个相似多边形的面积比为4:9,则周长的比为16:81中,正确的有()A.1个B.2个C.3个D.4个【考点】位似变换;直角三角形斜边上的中线;相似多边形的性质.【分析】位似就是特殊的相似,因而第一个是正确的;直角三角形斜边上的中线等于斜边的一半,因而斜边上的中线与斜边的比为1:2;相似性面积的比等于相似比的平方,周长比等于相似比.【解答】解:①位似图形都相似,③直角三角形斜边上的中线与斜边的比为1:2,正确.故选B.2.如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)【考点】位似变换;坐标与图形性质.【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k解答.【解答】解:∵点A(﹣3,6),以原点O为位似中心,相似比为,把△ABO缩小∴点A的对应点A′的坐标是(﹣1,2)或(1,﹣2)故选D.3.利用反证法证明“直角三角形至少有一个锐角不小于45°”,应先假设()A.直角三角形的每个锐角都小于45°B.直角三角形有一个锐角大于45°C.直角三角形的每个锐角都大于45°D.直角三角形有一个锐角小于45°【考点】反证法.【分析】熟记反证法的步骤,从命题的反面出发假设出结论,直接得出答案即可.【解答】解:用反证法证明命题“在直角三角形中,至少有一个锐角不小于45°”时,应先假设直角三角形的每个锐角都小于45°.故选:A.4.如图,点A为∠α边上的任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示cosα的值,错误的是()A.B.C.D.【考点】锐角三角函数的定义.【分析】利用垂直的定义以及互余的定义得出∠α=∠ACD,进而利用锐角三角函数关系得出答案.【解答】解:∵AC⊥BC,CD⊥AB∴∠α+∠BCD=∠ACD+∠BCD∴∠α=∠ACD∴cosα=cos∠ACD===只有选项C错误,符合题意.故选:C.5.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1B.(x﹣2)2=1C.(x+2)2=9D.(x﹣2)2=9【考点】解一元二次方程-配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.6.如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是()A.1:3B.1:4C.1:5D.1:25【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定定理得到△DOE∽△COA,根据相似三角形的性质定理得到=,==,结合图形得到=,得到答案.【解答】解:∵DE∥AC∴△DOE∽△COA,又S△DOE :S△COA=1:25∴=∵DE∥AC ∴==∴=∴S△BDE 与S△CDE的比是1:4故选:B.7.在△ABC中,若角A,B满足|cosA﹣|+(1﹣tanB)2=0,则∠C的大小是()A.45°B.60°C.75°D.105°【考点】特殊角的三角函数值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据非负数的性质得出cosA=,tanB=1,求出∠A和∠B的度数,继而可求得∠C 的度数.【解答】解:由题意得,cosA=,tanB=1则∠A=30°,∠B=45°则∠C=180°﹣30°﹣45°=105°.故选D.8.若点(x1,y1),(x2,y2),(x3,y3)都是反比例函数y=﹣图象上的点,并且y1<0<y2<y3,则下列各式中正确的是()A.x1<x2<x3B.x1<x3<x2C.x2<x1<x3D.x2<x3<x1【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的解析式判断出函数图象所在的象限及在每一象限内函数的增减性,再根据y1<0<y2<y3判断出三点所在的象限,故可得出结论.【解答】解:∵反比例函数y=﹣中k=﹣1<0∴此函数的图象在二、四象限,且在每一象限内y随x的增大而增大∵y1<0<y2<y3∴点(x1,y1)在第四象限,(x2,y2)、(x3,y3)两点均在第二象限∴x2<x3<x1.故选D.9.关于x的一元二次方程kx2+2x﹣1=0有两个不相等的实数根,则k的取值范围是()A.k>﹣1B.k>1C.k≠0D.k>﹣1且k≠0【考点】根的判别式.【分析】方程有两个不相等的实数根,则△>0,由此建立关于k的不等式,然后可以求出k 的取值范围.【解答】解:由题意知k≠0,△=4+4k>0解得k>﹣1且k≠0.故选D.10.若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为()A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或4【考点】一元二次方程的解.【分析】把x=﹣2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【解答】解:根据题意,将x=﹣2代入方程x2+ax﹣a2=0,得:4﹣3a﹣a2=0,即a2+3a﹣4=0左边因式分解得:(a﹣1)(a+4)=0∴a﹣1=0,或a+4=0解得:a=1或﹣4故选:C.11.如图,⊙O是△ABC的外接圆,∠B=60°,⊙O的半径为4,则AC的长等于()A.4B.6C.2D.8【考点】垂径定理;含30度角的直角三角形;勾股定理;圆周角定理.【分析】首先连接OA,OC,过点O作OD⊥AC于点D,由圆周角定理可求得∠AOC的度数,进而可在构造的直角三角形中,根据勾股定理求得弦AC的一半,由此得解.【解答】解:连接OA,OC,过点O作OD⊥AC于点D∵∠AOC=2∠B,且∠AOD=∠COD=∠AOC∴∠COD=∠B=60°;在Rt△COD中,OC=4,∠COD=60°∴CD=OC=2∴AC=2CD=4.故选A.12.将一副三角板如下图摆放在一起,连接AD,则∠ADB的正切值为()A.B.C.D.【考点】解直角三角形.【分析】过点A构造∠ADB所在的直角三角形,设AE为1,得到DE的值,相除即可.【解答】解:作AE⊥BD,交DB的延长线于点E.由题意可得:∠ABE=∠CBD=45°设AE=1,则AB=∴BC=∵Rt△BCD是等腰直角三角形∴BD=∴DE=1+∴tan∠ADB=1÷(+1)=.故选D.13.在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()A.7B.8C.8或17D.7或17【考点】解直角三角形.【分析】首先根据特殊角的三角函数值求得∠B的度数,然后分锐角三角形和钝角三角形分别求得BD和CD的长后即可求得线段BC的长.【解答】解:∵cos∠B=∴∠B=45°当△ABC为钝角三角形时,如图1∵AB=12,∠B=45°∴AD=BD=12∵AC=13∴由勾股定理得CD=5∴BC=BD﹣CD=12﹣5=7;当△ABC为锐角三角形时,如图2BC=BD+CD=12+5=17故选D.14.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是()A.x(x﹣1)=45B.x(x+1)=45C.x(x﹣1)=45D.x(x+1)=45【考点】由实际问题抽象出一元二次方程.【分析】先列出x支篮球队,每两队之间都比赛一场,共可以比赛x(x﹣1)场,再根据题意列出方程为x(x﹣1)=45.【解答】解:∵有x支球队参加篮球比赛,每两队之间都比赛一场∴共比赛场数为x(x﹣1)∴共比赛了45场∴x(x﹣1)=45故选A.15.如图,⊙O内切于△ABC,切点为D、E、F,若∠B=50°,∠C=60°,连接OE,OF,DE,DF,∠EDF等于()A.45°B.55°C.65°D.70°【考点】三角形的内切圆与内心.【分析】首先根据三角形的内角和定理求得∠A=70°.再根据切线的性质定理和四边形的内角和定理,得∠EOF=110度.再根据圆周角定理,得∠EDF=55°.【解答】解:∵∠B=50°,∠C=60°∴∠A=70°∴∠EOF=110°∴∠EDF=∠EOF=55°.故选B.16.有3个正方形如图所示放置,阴影部分的面积依次记为S1,S2,则S1:S2等于()A.1:B.1:2C.2:3D.4:9【考点】正方形的性质.【分析】设小正方形的边长为x,再根据相似的性质求出S1、S2与正方形面积的关系,然后进行计算即可得出答案.【解答】解:设小正方形的边长为x,根据图形可得:∵=∴=∴=∴S1=S正方形ABCD∴S1=x2∵=∴=∴S2=S正方形ABCD∴S2=x2∴S1:S2=x2:x2=4:9;故选D.17.如图,△ABC内接于⊙O,AB是⊙O的直径,∠B=30°,CE平分∠ACB交⊙O于E,交AB于点D,连接AE,则S△ADE :S△CDB的值等于()A.1:B.1:C.1:2D.2:3【考点】相似三角形的判定与性质;圆周角定理.【分析】由AB是⊙O的直径,得到∠ACB=90°,根据已知条件得到,根据三角形的角平分线定理得到=,求出AD=AB,BD=AB,过C作CF⊥AB于F,连接OE,由CE平分∠ACB交⊙O于E,得到OE⊥AB,求出OE=AB,CF=AB,根据三角形的面积公式即可得到结论.【解答】解:∵AB是⊙O的直径∴∠ACB=90°∵∠B=30°∴∵CE平分∠ACB交⊙O于E∴=∴AD=AB,BD=AB过C作CF⊥AB于F,连接OE∵CE平分∠ACB交⊙O于E∴=∴OE⊥AB∴OE=AB,CF=AB∴S△ADE :S△CDB=(AD•OE):(BD•CF)=():()=2:3.故选D.18.股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是()A.(1+x)2=B.(1+x)2=C.1+2x=D.1+2x=【考点】由实际问题抽象出一元二次方程.【分析】股票一次跌停就跌到原来价格的90%,再从90%的基础上涨到原来的价格,且涨幅只能≤10%,所以至少要经过两天的上涨才可以.设平均每天涨x,每天相对于前一天就上涨到1+x.【解答】解:设平均每天涨x.则90%(1+x)2=1即(1+x)2=故选B.19.如图,⊙O的半径为R,以圆内接正方形ABCD的顶点B为圆心,AB为半径.画弧AC,则阴影部分的面积是()A.(π﹣1)R2B.R2C.(π﹣2)R2D.【考点】扇形面积的计算;正方形的性质.【分析】圆的面积减去正方形的面积,可将劣弧与正方形的每条边所围成的面积求出,阴影部分的面积为扇形ABC的面积加上劣弧与正方形的边所围成的面积的一半.【解答】解:∵⊙O的半径为R∴正方形的边长为R;劣弧与正方形的边所围成的面积为:πR2﹣(R)2=(π﹣2)R2;扇形的面积为:==πR2;故阴影部分的面积为(π﹣2)R2+πR2=(π﹣1)R2.故选A.20.如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③DF=DC;④tan∠CAD=.其中正确的结论有()A.4个B.3个C.2个D.1个【考点】相似形综合题.【分析】①四边形ABCD是矩形,BE⊥AC,则∠ABC=∠AFB=90°,又∠BAF=∠CAB,于是△AEF ∽△CAB,故①正确;②由AE=AD=BC,又AD∥BC,所以,故②正确;③过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故③正确;④CD与AD的大小不知道,于是tan∠CAD的值无法判断,故④错误.【解答】解:过D作DM∥BE交AC于N∵四边形ABCD是矩形∴AD∥BC,∠ABC=90°,AD=BC∵BE⊥AC于点F∴∠EAC=∠ACB,∠ABC=∠AFE=90°∴△AEF∽△CAB,故①正确;∵AD∥BC∴△AEF∽△CBF∴∵AE=AD=BC∴∴CF=2AF,故②正确∵DE∥BM,BE∥DM∴四边形BMDE是平行四边形∴BM=DE=BC∴BM=CM∴CN=NF∵BE⊥AC于点F,DM∥BE∴DN⊥CF∴DF=DC,故③正确;设AD=a,AB=b由△BAE∽△ADC,有.∵tan∠CAD==故④错误故选B.二、填空题(每小题3分,共12分)21.如图,过y轴上任意一点P,作x轴的平分线,分别于反比例函数y=和y=的图象交于A点和B点,若C为x轴上任意一点,连接AC,BC,则△ABC的面积为3.【考点】反比例函数系数k的几何意义.【分析】先设P(0,b),由直线AB∥x轴,则A,B两点的纵坐标都为b,而A,B分别在反比例函数y=﹣和y=的图象上,可得到A点坐标为(﹣,b),B点坐标为(,b),从而求出AB的长,然后根据三角形的面积公式计算即可.【解答】解:设P(0,b)∵直线AB∥x轴∴A,B两点的纵坐标都为b,而点A在反比例函数y=﹣的图象上∴当y=b,x=﹣,即A点坐标为(﹣,b)又∵点B在反比例函数y=的图象上∴当y=b,x=,即B点坐标为(,b)∴AB=﹣(﹣)=∴S△ABC=•AB•OP=••b=3.故答案为:3.22.如图,6个形状、大小完全相同的菱形组成网格,菱形的顶点称为格点.已知菱形的一个角(∠O)为60°,A,B,C都在格点上,则tan∠ABC的值是.【考点】菱形的性质;解直角三角形.【分析】如图,连接EA、EB,先证明∠AEB=90°,根据tan∠ABC=,求出AE、EB即可解决问题.【解答】解:如图,连接EA,EC,设菱形的边长为a,由题意得∠AEF=30°,∠BEF=60°,AE= a,EB=2a∴∠AEC=90°∵∠ACE=∠ACG=∠BCG=60°∴E、C、B共线在Rt△AEB中,tan∠ABC===.故答案为.23.如图1是某公司的图标,它是由一个扇环形和圆组成,其设计方法如图2所示,ABCD是正方形,⊙O是该正方形的内切圆,E为切点,以B为圆心,分别以BA、BE为半径画扇形,得到如图所示的扇环形,图1中的圆与扇环的面积比为4:9.【考点】扇形面积的计算.【分析】要求图1中的圆与扇环的面积比,就要先根据面积公式先计算出面积.再计算比.【解答】解:设正方形的边长为2,则圆的面积为π,扇环的面积为(4π﹣π)=π所以图1中的圆与扇环的面积比为4:9.24.如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是6.【考点】三角形的外接圆与外心.【分析】首先证明AB=AC=a,根据条件可知PA=AB=AC=a,求出⊙D上到点A的最大距离即可解决问题.【解答】解:∵A(1,0),B(1﹣a,0),C(1+a,0)(a>0)∴AB=1﹣(1﹣a)=a,CA=a+1﹣1=a∴AB=AC∵∠BPC=90°∴PA=AB=AC=a如图延长AD交⊙D于P′,此时AP′最大∵A(1,0),D(4,4)∴AD=5∴AP′=5+1=6∴a的最大值为6.故答案为6.三、解答题25.青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.【考点】一元二次方程的应用;二元一次方程组的应用.【分析】(1)分别利用投资了112万元,建成40个公共自行车站点、配置720辆公共自行车以及投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车进而得出等式求出答案;(2)利用2016年配置720辆公共自行车,结合增长率为x,进而表示出2018年配置公共自行车数量,得出等式求出答案.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:答:每个站点造价为1万元,自行车单价为0.1万元.(2)设2016年到2018年市政府配置公共自行车数量的年平均增长率为a.根据题意可得:720(1+a)2=2205解此方程:(1+a)2=即:a1==75%,a2=﹣(不符合题意,舍去)答:2016年到2018年市政府配置公共自行车数量的年平均增长率为75%.26.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【考点】解直角三角形的应用.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN 中利用tan72°=,求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°∴tan72°=∴AN≈12.3∵MN∥BC,AB∥CM∴四边形MNBC是平行四边形∴BN=CM=∴AB=AN+BN=13.8米.27.如图,在平面直角坐标系xOy中,一次函数y1=ax+b(a,b为常数,且a≠0)与反比例函数y 2=(m 为常数,且m ≠0)的图象交于点A (﹣2,1)、B (1,n ).(1)求反比例函数和一次函数的解析式;(2)连结OA 、OB ,求△AOB 的面积;(3)直接写出当y 1<y 2<0时,自变量x 的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A 坐标代入反比例函数解析式中求出m 的值,即可确定出反比例函数解析式;将B 坐标代入反比例解析式中求出n 的值,确定出B 坐标,将A 与B 坐标代入一次函数解析式中求出a 与b 的值,即可确定出一次函数解析式;(2)设直线AB 与y 轴交于点C ,求得点C 坐标,S △AOB =S △AOC +S △COB ,计算即可;(3)由图象直接可得自变量x 的取值范围.【解答】解:(1)∵A (﹣2,1)∴将A 坐标代入反比例函数解析式y 2=中,得m=﹣2∴反比例函数解析式为y=﹣;将B 坐标代入y=﹣,得n=﹣2∴B 坐标(1,﹣2)将A 与B 坐标代入一次函数解析式中,得解得a=﹣1,b=﹣1∴一次函数解析式为y 1=﹣x ﹣1;(2)设直线AB 与y 轴交于点C令x=0,得y=﹣1∴点C 坐标(0,﹣1)∴S △AOB =S △AOC +S △COB =×1×2+×1×1=;(3)由图象可得,当y 1<y 2<0时,自变量x 的取值范围x >1.28.如图,在△ABC 中,AB=AC ,点P 、D 分别是BC 、AC 边上的点,且∠APD=∠B . (1)求证:AC•CD=CP•BP ;(2)若AB=10,BC=12,当PD ∥AB 时,求BP 的长.【考点】相似三角形的判定与性质.【分析】(1)易证∠APD=∠B=∠C ,从而可证到△ABP ∽△PCD ,即可得到=,即AB•CD=CP•BP ,由AB=AC 即可得到AC•CD=CP•BP ;(2)由PD ∥AB 可得∠APD=∠BAP ,即可得到∠BAP=∠C ,从而可证到△BAP ∽△BCA ,然后运用相似三角形的性质即可求出BP 的长.【解答】解:(1)∵AB=AC ,∴∠B=∠C .∵∠APD=∠B ,∴∠APD=∠B=∠C .∵∠APC=∠BAP +∠B ,∠APC=∠APD +∠DPC∴∠BAP=∠DPC∴△ABP ∽△PCD∴=∴AB•CD=CP•BP.∵AB=AC∴AC•CD=CP•BP;(2)∵PD∥AB,∴∠APD=∠BAP.∵∠APD=∠C,∴∠BAP=∠C.∵∠B=∠B∴△BAP∽△BCA∴=.∵AB=10,BC=12∴=∴BP=.29.如图,等腰三角形ABC中,AC=BC=10,AB=12,以BC为直径作⊙O交AB于点D,交AC 于点G,DF⊥AC,垂足为F,交CB的延长线于点E.(1)求证:直线EF是⊙O的切线;(2)求cos∠E的值.【考点】切线的判定;勾股定理.【分析】(1)求证直线EF是⊙O的切线,只要连接OD证明OD⊥EF即可;(2)根据∠E=∠CBG,可以把求cos∠E的值得问题转化为求cos∠CBG,进而转化为求Rt△BCG 中,两边的比的问题.【解答】(1)证明:如图方法1:连接OD、CD.∵BC是直径∴CD⊥AB.∵AC=BC.∴D是AB的中点.∵O为CB的中点∴OD∥AC.∵DF⊥AC∴OD⊥EF.∴EF是O的切线.方法2:∵AC=BC∴∠A=∠ABC∵OB=OD∴∠DBO=∠BDO∵∠A+∠ADF=90°∴∠EDB+∠BDO=∠A+∠ADF=90°.即∠EDO=90°∴OD⊥ED∴EF是O的切线.(2)解:连BG.∵BC是直径∴∠BDC=90°.∴CD==8.=AC•BG∵AB•CD=2S△ABC∴BG===.∴CG==.∵BG⊥AC,DF⊥AC∴BG∥EF.∴∠E=∠CBG∴cos∠E=cos∠CBG==.。

相关文档
最新文档