金融数学专业攻读硕士学位研究生(学术型)

合集下载

金融学术型硕士研究生培养方案

金融学术型硕士研究生培养方案

金融学术型硕士研究生培养方案一、培养目标1.掌握金融学的核心理论:学生应具备深厚的金融理论基础,包括金融市场、金融机构、金融工具、投资与融资决策等方面的理论。

2.熟练掌握金融科研方法:学生应熟悉常用的金融经济学、计量经济学、数理统计学等方法,能够运用这些方法进行独立的金融研究。

3.具备独立科研能力:学生应能够独立进行金融研究,包括选题、调研、数据分析和论文撰写等环节。

4.具备国际视野和创新思维:学生应积极关注国际金融动态,了解国际金融市场和金融监管的最新进展,具备开拓创新的思维方式。

5.具备实际应用能力:学生应具备理论与实践相结合的能力,能够将学术成果应用于实际金融问题的解决。

二、培养内容1.专业课程学习:学生需修读一系列的金融学专业课程,包括金融市场、投资学、金融工程、国际金融等方面的核心课程。

这些课程旨在为学生打下扎实的金融理论基础。

2.学术研究训练:学生需参与科研课题的立项、论文撰写等活动,培养科研能力。

学校将组织学术沙龙、报告会等活动,提供与导师和其他研究生交流的机会,激发学术思维,培养独立科研能力。

3.学术论文写作:学生需撰写学术论文,体现研究成果。

在导师的指导下,学生需要选择合适的研究课题,进行调研和数据分析,撰写学术论文,并参与相关学术会议的展示与交流。

4.实践教学活动:学校将组织金融实践教学活动,如参观金融机构、企业、金融市场等,以加深学生对金融行业的实际操作和经验的理解。

5.学术交流与国际合作:学院将鼓励学生积极参与学术交流活动,包括国际学术会议、研讨会、学术交流访问等,提升国际视野和学术影响力。

三、培养方法为了提高金融学术型硕士研究生的培养质量,采取以下培养方法:1.导师制度:学生将由专业导师进行指导和教学。

导师将根据学生的兴趣和研究方向,制定个性化的培养计划,并定期指导学生进行科研工作。

2.小班教学:为了保证教学质量,控制班级规模,采取小班教学的方式。

以提高教师对学生的关注度和学生之间的互动。

金融数学专业硕士培养方案(优选.)

金融数学专业硕士培养方案(优选.)

金融数学与金融工程专业攻读硕士学位研究生培养方案(专业代码:070121)一、培养目标本专业培养适合在政府管理、金融保险、金融避险技术、工程技术、环保医学等部门从事信息处理、数据分析、经济预测等方面工作的高级专门人才;同时也为高等院校和科研机构培养能胜任金融数学与金融工程教学科研工作的高层次人才。

本专业培养的研究生能较好地掌握马克思主义基本原理和科学方法论,热爱祖国,坚持党的四项基本原则,具有团结协作精神和坚持真理献身科学的优良品质,有较高的创新能力,身心健康。

业务方面的要求为:硕士学位获得者应具有扎实的概率统计的基础理论知识和系统的专门知识。

了解目前本学科的进展和动向,能熟练运用计算机,能进行有关的理论或方法的研究,能运用专业知识解决某些实际应用问题。

较为熟练地掌握一门外国语,能阅读本专业的外文资料。

二、研究方向(一)金融数学、金融工程与金融管理研究股票、期权和其它衍生证券的定价问题,探讨证券的风险控制和随机计算的方法。

(二)非线性预期与倒向随机微分方程主要研究倒向随机微分方程的基本理论及其应用,理性与非理性预期。

(三)金融、保险中的数学理论和应用研究保险金融中的数学模型,为有关部门提供咨询服务。

(四)树立金融中的随机控制与随机分析方法利用随机分析研究经济及金融理论,揭示人们的理性预期、非理性预期以及偏好与信念之间的关系。

三、学习年限脱产研究生学习年限为2-3年,一般为3年,在职研究生的学习年限顺延一年。

四、应修总学分数应修总学分:不少于30学分,其中必修25学分。

五、课程设置(具体见课程设置一览表)1、必修课马克思主义理论课3学分第一外国语4学分、专业外语1学分。

学位基础课2门,不少于6学分,学位专业课2门,不少于4学分。

前沿讲座2学分:①讲座的目的和内容前沿讲座旨在使硕士生了解本学科和本研究方向的重要学术问题、前沿性问题及这些问题的最新研究方法、技术及进展状况,提高学生参与学术研究的兴趣和学术交流能力。

金融数学与金融工程专业攻读硕士学位研究生培养方案 (专业代码

金融数学与金融工程专业攻读硕士学位研究生培养方案 (专业代码

金融数学与金融工程专业攻读硕士学位研究生培养方案(专业代码:025100)嘿,亲爱的同学们,我要跟你聊聊金融数学与金融工程专业攻读硕士学位研究生的那些事儿。

这可是我根据十年方案写作经验,精心打造的方案哦,废话不多说,咱们直接进入主题。

一、培养目标咱们得明确一下培养目标。

这个专业的硕士毕业生,要具备扎实的金融数学和金融工程理论基础,掌握现代金融分析方法和技能,能熟练运用金融工具和模型,具备一定的创新能力和实践能力,能够在金融机构、政府部门、企事业单位从事金融管理、风险控制、资产定价等工作。

二、课程设置1.公共课程公共课程主要包括马克思主义理论、英语、数学、统计学等,这些课程是培养研究生综合素质的基础。

2.专业课程专业课程分为核心课程和选修课程。

(1)核心课程金融数学、金融工程、金融市场、金融风险管理、金融统计分析、投资学、公司金融等,这些课程是金融数学与金融工程专业的核心知识体系。

(2)选修课程金融衍生品、金融计量学、金融科技、金融伦理与法规、国际金融、金融市场模拟等,这些课程旨在拓宽研究生的知识面,提高专业技能。

3.实践环节实践环节主要包括实习、实践性课题研究、学术交流等,旨在提高研究生实践能力和创新能力。

三、培养方式1.课堂教学课堂教学采用讲授、讨论、案例分析等多种教学方法,注重培养学生的理论素养和实际操作能力。

2.实践教学实践教学包括实习、实践性课题研究等,要求研究生在实际工作中运用所学知识,提高解决实际问题的能力。

3.学术交流鼓励研究生参加国内外学术会议、研讨会,加强与同行学者的交流,拓宽学术视野。

四、学位论文学位论文是研究生培养的重要环节,要求研究生在导师指导下,独立完成具有一定学术价值和实际意义的论文。

论文选题应结合金融数学与金融工程领域的热点问题,注重实证分析和应用研究。

五、培养期限金融数学与金融工程专业攻读硕士学位研究生培养期限为2-3年,最长不超过4年。

六、考核与评价1.过程考核对研究生学习过程进行全面考核,包括课堂表现、作业完成情况、实践环节等。

金融硕士专业学位研究生培养方案

金融硕士专业学位研究生培养方案

金融硕士专业学位研究生培养方案金融硕士(025100)一、专业学位简介金融硕士(Master of Finance,简称MF)领域是以金融学、经济学、会计学、管理学等学科为基础,以金融理论与实务为对象,研究投融资管理技能、金融交易技术与操作、金融产品设计与定价、财务分析、金融风险管理以及相关领域的知识和技能的体系。

我校于2014年获得金融硕士专业学位招生资格,于2015年开始招收全日制专业学位硕士研究生。

本领域现有专硕导师13名,校外实践导师13名,研究生实践基地5个。

导师团队与长沙本地的金融机构密切合作,科研成果非常突出,主持了8项国家级科研项目和30多项省部级科研项目,获得省哲学社会科学优秀成果奖3项,教学成果奖2项,建设有《货币银行学》省级精品课程。

二、培养目标培养具有扎实的经济、金融学理论基础、良好的职业道德、富有创新的精神和进取的品格,较强的从事金融实际工作和其它相关工作能力的高层次应用型金融专业人才。

具体要求是:1.学习和掌握马克思主义基本原理,热爱祖国,拥护党的领导,遵纪守法,品德优良,具有正确的世界观、人生观和价值观,培育和践行社会主义核心价值观;具有从事特定职业工作的素养和创业精神;具有严谨治学态度,恪守学术道德和职业道德行为规范,积极为社会主义现代化建设服务。

2.具有扎实的金融学、经济学理论基础和专业知识,具有较宽的知识面,具有与金融管理和业务开展能力相适应的知识结构。

3.具备从事金融机构业务与管理的能力,具有熟练运用多种管理技术与现代信息处理技术分析和解决金融问题的技能,包括调研、决策、组织、协调、激励、定性定量分析方法的运用能力。

4. 身心健康,具有承担本领域范围内各项工作的良好体魄。

三、研究方向1.农村金融:农村金融体系改革与建设、涉农企业投融资实务、农村金融产品创新、农产品期货理论与实务。

2.金融机构经营与管理:涉农金融机构经营与管理、金融机构风险管理、村镇银行等新型金融机构业务与管理、商业银行业务与管理、担保理论与实务、信托理论与实务、租赁理论与实务等。

金融学硕士专业学位研究生培养方案

金融学硕士专业学位研究生培养方案

金融学硕士专业学位研究生培养方案金融学硕士专业学位研究生培养方案摘要:金融学硕士专业学位研究生培养方案旨在培养具有扎实的金融理论基础和实际金融操作能力,具备独立思考、创新和实践能力的高素质金融人才。

本文将从课程教学、实践教学、科研创新和国际化培养等方面介绍该培养方案的具体内容。

正文:一、课程教学金融学硕士专业学位研究生培养方案注重学生金融理论的理解和实践操作的掌握。

课程教学主要包括金融学基础课程和专业核心课程。

金融学基础课程包括金融市场与金融机构、金融工具与投资、金融法规与法律、金融市场定价与风险管理等。

专业核心课程包括金融统计分析、金融工程、金融建模与编程、投资银行业务与运作等。

此外,培养方案还安排学生参加国内外学术会议、金融实践课程、金融展览等活动,以拓宽学生的视野和增强学生的实践能力。

二、实践教学金融学硕士专业学位研究生培养方案鼓励学生积极参加金融实践课程,包括实习、实践项目和兼职等。

实习是指学生在研究生阶段进行的一种实践教育,旨在帮助学生将所学的理论知识应用到实际中去。

实践项目是指学生在研究生阶段参加的一种金融实践性项目,包括投资、风险管理、金融建模等。

兼职是指在研究生阶段进行的一种金融实践性兼职,旨在帮助学生提高实践能力和积累实践经验。

三、科研创新金融学硕士专业学位研究生培养方案鼓励学生积极参与科研工作,培养其独立思考和创新能力。

科研创新包括参与科研项目、发表学术论文和参与学术会议等。

此外,培养方案还为学生提供了与导师联系和沟通的机会,导师为学生提供了指导和帮助,以帮助学生更好地完成科研工作。

四、国际化培养金融学硕士专业学位研究生培养方案注重学生国际化培养,鼓励学生参与国际学术交流、交换项目和国际化实习等。

苏州大学金融数学专业硕士研究生培养方案

苏州大学金融数学专业硕士研究生培养方案

苏州大学金融数学专业硕士研究生培养方案(学科代码:070120)学科、专业简介:本学科拥有一支高水平和高素质的教师队伍,科学研究实力雄厚, 于2008 年开始招收硕士研究生。

现有正教授3人,副教授一人。

硕士生导师4人,主要研究方向包括金融风险理论与衍生品定价和保险数学与信用风险理论等。

近几年来,承担了从本科生到硕士生多层次人才培养的任务,同时承担了多项国家及省自然科学基金项目。

学科隶属的苏州大学金融工程研究中心和数学科学学院拥有现代化机房,中、外文期刊353种,资料室藏书达3.56万册。

一、培养目标:旨在培养金融数学基础较为扎实, 能在金融, 保险等机构从事金融产品设计和创新的实际工作人才。

二、研究方向:1. 金融风险理论与衍生品定价;2. 保险数学与信用风险理论.三、学制及学习年限:全日制硕士研究生学习年限不少于3年,允许延长年限不超过2年。

硕士生因故需延长学习年限,由硕士生本人提出申请,导师签署具体意见,经中心主任和数学院院长同意后,报研究生部批准。

四、学分要求:硕士研究生课程学习的学分应不少于35个学分(含必修环节4个学分)。

五、课程设置和课程教学(见后表)六、必修环节:必修环节包括文献阅读、学习研讨和学术报告、实习活动三方面内容。

七、科研与学位论文工作:学位论文工作应在导师指导下尽早开始,由硕士生本人独立完成。

论文要有一定的工作量,在论文题目确定后,用于论文工作的时间不少于一年。

硕士学位论文要求作者在金融学领域的理论和应用上有一定独特见解和有一定的系统性。

金融数学专业代码(070120)主要研究方向1. 金融风险理论与衍生品定价2. 保险数学与信用风险理论。

山东大学基础数学研究生培养方案

山东大学基础数学研究生培养方案

金融数学与金融工程专业攻读硕士学位研究生(学术型)培养方案(专业代码:070121)一、培养目标旨在培养我国金融数学与金融工程领域从事应用研究的专门人才。

具体要求如下:1、掌握当代社会主义优秀理论成果,热爱祖国,遵纪守法,品德高尚,有志于投身社会主义建设事业。

2、具有比较扎实的金融数学与金融工程理论基础,对金融数学与金融工程的某个研究方向上有系统的学习与研究;能够熟练掌握国内外金融数学与金融工程技术,并能够利用金融数学与金融工程技术解决实际应用问题。

3、掌握一门外国语,并能运用该门外国语比较熟练的阅读本专业的外文资料。

4、具有健康的体格和心理素质。

二、研究方向1、金融数学与金融工程2、量化金融与风险度量3、倒向随机微分方程与非线性期望4、金融随机分析5、计量经济三、学习年限全日制硕士研究生的学制为3年,硕士研究生原则上不予提前毕业,特别优秀者可提出申请,最长提前时间不能超过一年。

提前毕业的硕士研究生除完成培养方案规定的课程外,必须有一篇以上SCI/CSSCI论文发表,并须经学位委员会审核通过。

所取得的科研成果均要求研究生为第一作者,作者单位需为山东大学。

四、培养方式根据宽口径、厚基础的原则,提倡按一级学科培养硕士研究生;充分利用校内外优质教育资源,鼓励研究生进行“三种经历”,实行双导师合作培养。

五、应修满的总学分数应修总学分:30 ,其中必修24学分(含前沿讲座与社会实践),选修6学分。

六、课程的类别及设置硕士研究生课程分为必修课与选修课两大类。

1.必修课是为达到培养目标要求,保证研究生培养质量而必须学习的课程。

必修课分学位公共课、学位基础课和学位专业课。

学位基础课一般按一级学科进行设置,学位专业课一般按二级学科设置。

选修课必须包含2门专业课。

经学校批准建设的全英语教学课程要纳入培养方案的课程体系中。

(1)思想政治理论,计3学分;(2)第一外国语,计3学分。

由学科开设的专业必修课包括:(1)专业外语,计2学分, 学院考核。

金融数学专业攻读硕士学位研究生(学术型)培养方案设计

金融数学专业攻读硕士学位研究生(学术型)培养方案设计

金融数学专业攻读硕士学位研究生(学术型)培养方案(专业代码:070121)一、培养目标在本门学科上掌握坚实的理论基础和系统的专门知识;具有从事科学研究工作或独立担负专门技术工作的能力。

培养面向世界,面向未来,面向现代化,德智体全面发展的,为社会主义现代化建设服务的高层次专门人才。

具体要求是:1、较好地掌握马列主义、毛泽东思想和邓小平建设有中国特色的社会主义理论,坚持四项基本原则, 树立正确的世界观、人生观、价值观,遵纪守法,热爱祖国,热爱社会主义,具有勇于追求真理和献身于科学教育事业的敬业精神,富有历史责任感。

具有良好的道德品质和学术修养。

2、掌握本专业坚实的基础理论和系统的专业知识,了解本学科目前的进展与动向,具有从事科学研究工作或独立担负专门技术工作的能力。

3、掌握一门外国语,并能运用该门外国语比较熟练的阅读本专业的外文资料。

4、具有健康的体魄和心理素质。

二、研究方向1、非线性数学期望及其在金融中的应用2、保险,金融中的数学理论和应用3、随机分析在数理金融中的应用4、金融数学,金融工程与金融管理5、金融统计6、数理经济三、学习年限全日制硕士研究生的学制为3年,在校学习期限为2-3年。

原则上不提前毕业,对于特别优秀者,最多可提前一年。

提前毕业的硕士研究生除完成培养方案规定的课程外,必须有一篇以上SCI论文发表,并须经学位委员会审核通过。

所取得的科研成果均要求研究生为第一作者,作者单位需为山东大学。

四、培养方式根据宽口径、厚基础的原则,提倡按一级学科培养硕士研究生;充分利用校内外优质教育资源,鼓励研究生进行“三种经历”,实行双导师合作培养。

五、应修满的总学分数应修总学分:30 ,其中必修24学分(含前沿讲座与社会实践),选修6学分。

六、课程的类别及设置硕士研究生课程分为必修课与选修课两大类。

1.必修课是为达到培养目标要求,保证研究生培养质量而必须学习的课程。

必修课分学位公共课、学位基础课和学位专业课。

2023年金融数学专业考研院校

2023年金融数学专业考研院校

2023年金融数学专业考研院校金融数学是计算金融风险、理论建模、投资策略等方面的数学分支,是金融工程领域中必不可少的一部分。

随着金融行业的发展和信息化水平的提高,金融数学专业逐渐成为热门专业。

下面将向您介绍几所优秀的2023年金融数学专业考研院校。

1. 清华大学金融数学硕士清华大学金融学院拥有优秀的金融研究团队,金融数学专业在国内享有很高的声誉。

该专业重点培养学生在运用数学方法研究金融问题的能力,学生可以从事金融机构、投资银行、资产管理机构等工作。

课程安排严谨,学会包括数理统计、金融时间序列分析、衍生品定价与风险管理等课程。

2. 上海财经大学金融数学硕士上海财经大学金融数学硕士是金融工程领域的优秀专业之一。

该专业注重对数学基础和金融学基础知识的培养,以数学模型为基础,结合金融理论和实践开展研究。

专业设立的课程包括数学分析、随机过程、金融计算、选修课程等。

3. 北京大学金融数学硕士北京大学金融数学专业是由经济学院、物理学院和数学科学学院联合培养的研究生专业,培养学生掌握复杂金融问题的数学建模和定量分析方法。

该专业注重各种工具的实战应用,培养学生在应用数学、计算机科学和金融学方面的综合能力,课程主要包括数学分析、随机过程、金融计算等。

4. 中央财经大学金融数学硕士中央财经大学金融数学专业由管理科学与工程学院、统计与数学学院合作设立,师资力量雄厚、教学质量优秀。

课程设置涉及金融、统计、计算机科学等多个学科,旨在培养学生的金融建模、风险管理等能力。

主要课程包括微积分、运筹学、数理统计、衍生品定价、金融计算等。

总之,随着金融市场的迅速发展和变化,在金融机构和企业中需要大批量的金融数学专业人才,这些院校的金融数学专业均在各自领域有极高的地位。

希望能够为您提供一些参考,后续选择院校的时候要结合自己的专业兴趣、成绩和未来职业规划来进行选择。

金融数学专业研究生就业方向

金融数学专业研究生就业方向

金融数学专业研究生就业方向金融数学作为一门将数学与金融实践相结合的学科,为研究生提供了广泛而深入的就业机会。

以下是一些常见的金融数学专业研究生就业方向:1.量化研究员量化研究员是利用数学、统计学和计算机科学的知识,研究金融市场的定量规律和模型。

他们通常在投资银行、对冲基金、保险公司等金融机构工作,负责开发、测试和实施量化策略。

2.风险管理风险管理是确保金融机构在面临市场风险、信用风险和操作风险等各类风险时能够进行有效管理和控制的过程。

金融数学专业研究生可以利用他们的定量技能,从事风险评估、量化分析和模型开发等工作。

3.金融工程金融工程涉及金融产品的设计和开发,包括衍生品定价、对冲策略和结构化产品等。

金融数学专业研究生可以在金融机构或金融科技公司中从事金融工程相关工作,如量化建模、产品开发和交易策略等。

4.量化交易量化交易是利用数学模型和算法来进行交易决策的方法。

金融数学专业研究生可以从事量化交易策略的研究和开发,以及实际交易的实施和维护。

他们通常在投资银行、对冲基金和自营交易公司等工作。

5.数据分析数据分析是指对大量数据进行分析、挖掘和应用的过程。

金融数学专业研究生可以利用他们的数据处理和分析技能,在金融机构或数据分析公司中从事数据科学家、数据分析师或数据工程师等职业。

6.投资银行投资银行是主要从事证券承销、交易和资本运作业务的金融机构。

金融数学专业研究生可以在投资银行中从事量化分析、财务建模和风险管理等方面的工作。

7.资产定价资产定价是对资产价值的评估和预测,通常涉及对资产收益、风险和其他相关因素的定量分析。

金融数学专业研究生可以利用他们的定价模型和量化分析技能,在金融机构或投资公司中从事资产定价和价值评估等方面的工作。

8.企业融资企业融资是指为企业提供融资服务,包括股权融资、债权融资和其他融资方式。

金融数学专业研究生可以利用他们的财务建模和风险管理技能,在企业融资领域从事财务分析、投资评估和风险管理等方面的工作。

金融数学的主要考研方向有哪几个

金融数学的主要考研方向有哪几个

金融数学的主要考研方向有哪几个每年都会有很多金融数学专业的同学选择考研提升学历,那么本专业考研方向有哪几个?下面是由编辑为大家整理的“金融数学的主要考研方向有哪几个”,仅供参考,欢迎大家阅读本文。

金融数学专业考研方向金融数学专业考研方向共有3个,该专业分别为金融硕士专业方向、数量经济学专业方向、金融工程专业方向。

金融硕士该硕士学位是专业学位,虽说对着数学有着一定的要求,但相对来说要求不会很高,而该方向在毕业后的职业路径一般是投资银行的投行部,或者去企业里做金融。

数量经济学主要就是会跨行业从事先关工作,但是两者之间都是有着关系的,从而在未来毕业后就是进入政策性银行,做政策制定,类似于国家央行或者世界银行这种,所以在未来发展上也是非常有空间的。

金融工程金融工程是指包括创新型金融工具与金融手段的设计、开发与实施,以及对金融问题给予创造性的解决。

金融工程的概念有狭义和广义两种。

狭义的金融工程主要是指利用先进的数学及通讯工具,在各种现有基本金融产品的基础上,进行不同形式的组合分解,以设计出符合客户需要并具有特定P/L性的新的金融产品。

而广义的金融工程则是指一切利用工程化手段来解决金融问题的技术开发,它不仅包括金融产品设计,还包括金融产品定价、交易策略设计、金融风险管理等各个方面。

本文采用的是广义的金融工程概念。

拓展阅读:金融数学专业就业方向本专业学生毕业后可可以到投资银行工作,或者进行商品贸易或国际贸易的公司(能源公司、航空公司、大型钢铁公司、矿业公司及国际大公司)处理商品价格风险及外汇风险。

从事行业:毕业后主要在金融、互联网、新能源等行业工作,大致如下:1、金融/投资/证券;2、互联网/电子商务;3、新能源;4、计算机软件;5、外包服务;6、其他行业;7、保险;8、电子技术/半导体/集成电路。

从事岗位:毕业后主要从事数据分析、产品经理、数据挖掘等工作,大致如下:1、数据分析师;2、产品经理;3、数据挖掘工程师;4、风控总监;5、数据分析;6、高级数据分析师;7、数据分析专员;8、量化研究员。

北大 金融数学与精算专业硕士

北大 金融数学与精算专业硕士

3、本项 目将采取 笔试、口 试或两者 相兼的方 式进行差 额复试, 以进一步 考察学生 的专业基 础、综合 分析能力 、解决实 际问题的 能力和动 手能力等 。 4、参加 复试的同 学一般应 达到复试 分数线, 复试人数 一般为招 生规模的 130%至 150%。 5、复试 不及格者 不予录取 。复试及 格者能否 录取,以 考生的总 成绩名次 为准。总 成绩包括 两部分, 即初试成 绩和复试 成绩。 6、具体 差额比例 和初试、 复试成绩 所占权重 由数学科 学学院根 据生源状 况在复试 前确定。
日常出国 管理 国家公派 研究生项 目
研究生学 术交流基 金 博士生短 期出国 (境)项 目 博士生国 际专题学 术研讨会 港澳台高 校交流项 目 其他交流 项目
动态信息 文件汇编 统计信息 下载专区
最新动态 学位授予 导师管理 学科建设 学位委员 会 优秀博士 学位论文 学科评议 组 专业学位 教指委 文理科工 作委员会 共建项目
北京大学 研究生招 生办公室 咨询电 话: 62751354 、 62756913
电子邮 件: grszsb@p .c n 网 址: http://g rs.pku.e /zs /zs_ss.h tml; 联系地 址:北京 大学红二 楼2102 室,邮编 为100871 。
版权所有 北京大学 研究生院 地址:北 京市海淀 区颐和园 路5号 邮编: 100871
硕士论文 应在第四 学期的4 月30日前 完成。导 师同意后 方能送审 。具体的 送审时间 按北京大 学研究生 院当年的 具体规定 为准。硕 士论文需 两位副教 授或以上 职称的评 议人评议 。论文评 议通过后 方可组织 答辩。具 体的答辩 要求将按 照数学科 学学院的 统一要求 进行。 本项目的 毕业生将 主要分布 在商业银 行金融市 场部门或 风险管理 部门,保 险公司精 算部,投 资银行或 基金公司 或证券投 资公司从 事定量分 析的部 门,以及 金融监管 机构和各 种咨询公 司从事金 融定量分 析相关的 岗位。

金融数学与金融工程专业攻读硕士学位研究生培养方案 (专业代码

金融数学与金融工程专业攻读硕士学位研究生培养方案 (专业代码

金融数学与金融工程专业攻读硕士学位研究生培养方案(专业代码:070121)一、培养目标本专业培养适合在政府管理、金融保险、金融避险技术、工程技术、环保医学等部门从事信息处理、数据分析、经济预测等方面工作的高级专门人才;同时也为高等院校和科研机构培养能胜任金融数学与金融工程教学科研工作的高层次人才。

本专业培养的研究生能较好地掌握马克思主义基本原理和科学方法论,热爱祖国,坚持党的四项基本原则,具有团结协作精神和坚持真理献身科学的优良品质,有较高的创新能力,身心健康。

业务方面的要求为:硕士学位获得者应具有扎实的概率统计的基础理论知识和系统的专门知识。

了解目前本学科的进展和动向,能熟练运用计算机,能进行有关的理论或方法的研究,能运用专业知识解决某些实际应用问题。

较为熟练地掌握一门外国语,能阅读本专业的外文资料。

二、研究方向(一)金融数学、金融工程与金融管理研究股票、期权和其它衍生证券的定价问题,探讨证券的风险控制和随机计算的方法。

(二)非线性预期与倒向随机微分方程主要研究倒向随机微分方程的基本理论及其应用,理性与非理性预期。

(三)金融、保险中的数学理论和应用研究保险金融中的数学模型,为有关部门提供咨询服务。

(四)树立金融中的随机控制与随机分析方法利用随机分析研究经济及金融理论,揭示人们的理性预期、非理性预期以及偏好与信念之间的关系。

三、学习年限脱产研究生学习年限为2-3年,一般为3年,在职研究生的学习年限顺延一年。

四、应修总学分数应修总学分:不少于30学分,其中必修25学分。

五、课程设置(具体见课程设置一览表)1、必修课马克思主义理论课3学分第一外国语4学分、专业外语1学分。

学位基础课2门,不少于6学分,学位专业课2门,不少于4学分。

前沿讲座2学分:(1)讲座课的内容:数学学科及其下属的二级学科组织的综合或专题报告会(2)每学期至少参加3次讲座,以书面报告的形式进行考核。

要求对数学中若干重要方向的发展有所了解。

北大金融数学考研

北大金融数学考研

北大金融数学考研北大金融数学考研500字北大金融数学考研,是指报考北京大学金融数学硕士专业的考研过程。

金融数学是一门交叉学科,融合了金融学和数学的知识,培养学生掌握金融领域的数学方法和模型,同时具备计算机应用能力和金融工程实践能力。

报考北大金融数学考研,首先需要具备相关的学术背景和基础。

由于金融数学属于理科中的数学范畴,所以理科背景比较有优势。

数学、统计学、应用数学、金融学等相关专业的本科生,具备基本的数学基础和金融知识,更容易适应金融数学的学习。

当然,其他专业的学生也可以报考,只要具备一定的数学基础和学习能力,通过培养和学习,也可以逐渐适应金融数学的学习要求。

准备北大金融数学考研,需要全面了解考研的内容和要求。

金融数学是综合性较强的学科,涉及的知识领域较广,包括数学、概率论、随机过程、金融统计、金融经济学等方面的内容。

在备考期间,可以通过查阅教材、参加培训班、刷题等方式,系统学习和巩固相关的知识点。

除了学习和巩固知识,还需要进行一定的考前准备。

对于金融数学考研来说,数学分析、线性代数、概率论和数理统计等基础课程的掌握非常重要。

在备考过程中,可以通过刷题和做模拟题来检验自己的学习成果,并及时纠正自己的不足之处。

北大金融数学考研是一项相对较难的考试,竞争激烈。

所以,备考中需要保持积极的心态,合理规划学习时间,科学利用各种学习资源,做好复习和总结工作。

此外,还需要具备一定的应变能力和处理问题的能力,灵活运用所学知识解决实际问题。

总结起来,北大金融数学考研需要具备一定的学术背景和基础,全面了解考研的内容和要求,并进行备考准备,包括学习和巩固知识、刷题和做模拟题、保持积极心态等。

希望通过努力和准备,能够顺利考取北大金融数学研究生,实现自己的人生目标。

金融学术型硕士研究生培养方案

金融学术型硕士研究生培养方案

48 3 3
马克思主义 学院
经济学院
经济学院 金融学院
国际金融研究
32 2

金融理论前沿
32 2

课 商业银行经营管理 32 2
2
金融学院
2
金融学院
2 金融学院
金融经济学
32 2 2
金融学院
必修课学时、学分小计 400 25 13, 10, 2
宏观金融管理与国际金融模块
货币经济学
32 2 2
金融学院
金融学院学术型硕士研究生 实践与创新计分表
项目 等级或内容
学 分
备注
全国性学交流/宣读
术会议及论文
[1] 谢剑平著.《投资学:基本原理与实务》,北京大学出版社2005年
[2] 拉姆•拉玛纳山(Ramu Ramanathan),薛菁睿译. 《应用经济计量学 (原书第5版)》 ,机械工业出版社,2003年9月,第1版 [3] 安格斯•麦迪森(Angus Maddison),伍晓鹰译.《世界经济千年史》 (英),北京大学出版社,2009年1月,第1版 [4] 斯蒂芬·A·罗斯.《公司金融》,机械工业出版(第九版)2012年 [5] 达摩达尔·N·古扎拉蒂,唐·C·波特.《计量经济学基础》,中国人民 大学出版社,第五版
2 2 非本院
课程学时、学分合计 中期考核
毕业/学位论文
实践与 创新 补修课
1232 77 21, 10学分
30, 26 √ →
金融学 保险学
文课 程
金融学硕士研究生阅读书目
一、必读书目
[1] 卡尔•瓦什著.《货币理论与货币政策》(第三版),格致出版社, 2012版
[2] 王江著.《金融经济学》,中国人民大学出版社,2006年6月

北大数院金融专硕

北大数院金融专硕

北大数院金融专硕
北大数院金融专硕是由北京大学数学科学学院推出的专业硕士学位,培养复合型的金融人才。

该专业课程设置紧密结合了数学、统计、计算机科学和金融学的理论和实践。

主要教学内容包括数学金融、计量金融、风险管理、金融工程、投资银行、证券等。

培养目标:该专业旨在培养具备严格的数学、统计、计算机科学基础和扎实的金融知识、具有创新精神和实践能力的优秀金融人才。

毕业生可在企事业单位、银行、保险、基金、券商、科技公司等各类金融机构从事金融产品设计、交易、风控、数据分析、量化投资、金融科技等多个领域的工作。

学制和课程设置:该专业学制为2年,主要课程包括高等数学、金融数学、计量经济学、数据结构与算法、微观经济学、宏观经济学、风险管理、金融工程、金融市场分析、证券投资分析等。

学生还可以根据个人兴趣选择相应的选修课程,如金融数据分析、金融科技、实证金融等。

招生要求:本专业对报考者的要求较高,要求本科生应具有数学、统计、计算机等相关专业的学习经历,且具有较好的英语语言表达能力。

考生需参加全国硕士研究生入学考试,并要求数学、英语两门科目考试成绩均在60%以上。

同时还要进行面试环节,综合考察报考者的数学和金融知识、科研能力、个人综合素质等因素。

金融数学方向硕士研究生培养模式探讨_何树红

金融数学方向硕士研究生培养模式探讨_何树红

收稿日期:2011-08-12基金项目:国家自然科学基金(61063011);云南大学教改项目:金融数学方向硕士研究生培养模式探究,专项经费资助作者简介:何树红(1966-),男,云南玉溪人,博士,教授,从事数理金融与风险管理研究;李凯敏(1987-),女,云南保山人,在读研究生,从事数理金融与风险管理研究;李志勇(1985-),男,四川达州人,在读研究生,从事数理金融与风险管理研究;许萌(1987-),男,陕西咸阳人,在读研究生,从事数理金融与风险管理研究。

金融数学方向硕士研究生培养模式探讨何树红,李凯敏,李志勇,许萌(云南大学数学与统计学院经济学院,昆明650091)摘要:随着金融在经济发展中的重要性不断凸显,金融行业的风险管理也呈现多样化发展,金融数学作为一门研究金融风险管理的新兴交叉学科,受到人们的广泛关注。

根据金融数学学科特点和我国金融市场的发展现状,培养具有专业分析能力和操作技能的高层次、复合型金融数学人才,符合金融行业日益增长的风险管理需要。

本文拟深入解析金融数学学科的本质和发展趋势,探讨金融数学方向研究生的培养模式,探索金融数学学科建设的方向和合理框架,以适应国内对金融数学人才的需求。

关键词:金融数学;教学改革;知识体系;培养模式中图分类号:G421文献标志码:A 文章编号:1002-2589(2011)27-0096-04引言金融数学(Financial Mathematics )包括数理金融分析、金融计量学和金融风险与收益分析。

金融数学是运用数学工具和模型分析方法研究人们的消费与投资决策,各种金融资产的价值与风险评估、风险处理与收益优化、资产组合市场效率等问题。

把有关金融产品的行为分析和活动结果进行严谨的数学处理,使之严格和科学[1]。

金融数学以求找到金融中内在规律,用数学和统计方法进行量化分析,并用于指导实践。

金融理论的中心问题是研究在不确定的环境下对资源进行分配和利用。

其主要对象是金融市场上的投资和交易,时间和不确定性是影响金融行为的主要因素,它们互相作用与影响,其复杂性需要一定的数学工具来研究。

金融数学工程理学硕士

金融数学工程理学硕士

金融数学工程理学硕士是一种研究生学位,专注于金融市场和投资策略的数学模型和算法的开发和应用。

该课程涵盖了金融市场的基本概念、风险管理、资产定价、衍生品定价、随机过程、数值计算等方面的内容。

该课程的目标是培养学生具备扎实的数学基础和编程技能,能够运用数学工具和计算机技术解决实际金融问题。

毕业生可以在银行、证券公司、保险公司、基金管理公司等金融机构从事量化投资、风险管理、交易策略等方面的工作,或者在学术界从事金融数学的研究工作。

该课程通常要求学生完成一定数量的课程学习和实践项目,如金融模拟交易、金融衍生品定价等。

此外,一些学校还会要求学生参加实习或海外交流项目,以提高学生的实践经验和跨文化沟通能力。

金融数学专业考研科目

金融数学专业考研科目

金融数学专业考研科目
金融数学专业考研考思想政治理论、英语一、数学分析、线性代数与常微分方程。

需要注意的是金融数学专业可以考不同专业的研究生,每个专业的研究生考试专业科目不同。

扩展资料
全国硕士研究生统一招生考试(Unified National Graduate Entrance Examination,简称“考研”或“统考”)是指教育主管部门和招生机构为选拔研究生而组织的.相关考试的总称,由国家考试主管部门和招生单位组织的初试和复试组成。

是一项选拔性考试,所录取学历类型为普通高等教育。

普通高等教育统招硕士研究生招生按学位类型分为学术型硕士和专业型硕士研究生两种;按学习形式分为全日制研究生、非全日制研究生两种,均采用相同考试科目和同等分数线选拔录取。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

金融数学专业攻读硕士学位研究生(学术型)培养方案(专业代码:070121)一、培养目标在本门学科上掌握坚实的理论基础和系统的专门知识;具有从事科学研究工作或独立担负专门技术工作的能力。

培养面向世界,面向未来,面向现代化,德智体全面发展的,为社会主义现代化建设服务的高层次专门人才。

具体要求是:1、较好地掌握马列主义、毛泽东思想和邓小平建设有中国特色的社会主义理论,坚持四项基本原则, 树立正确的世界观、人生观、价值观,遵纪守法,热爱祖国,热爱社会主义,具有勇于追求真理和献身于科学教育事业的敬业精神,富有历史责任感。

具有良好的道德品质和学术修养。

2、掌握本专业坚实的基础理论和系统的专业知识,了解本学科目前的进展与动向,具有从事科学研究工作或独立担负专门技术工作的能力。

3、掌握一门外国语,并能运用该门外国语比较熟练的阅读本专业的外文资料。

4、具有健康的体魄和心理素质。

二、研究方向1、非线性数学期望及其在金融中的应用2、保险,金融中的数学理论和应用3、随机分析在数理金融中的应用4、金融数学,金融工程与金融管理5、金融统计6、数理经济三、学习年限全日制硕士研究生的学制为3年,在校学习期限为2-3年。

原则上不提前毕业,对于特别优秀者,最多可提前一年。

提前毕业的硕士研究生除完成培养方案规定的课程外,必须有一篇以上SCI论文发表,并须经学位委员会审核通过。

所取得的科研成果均要求研究生为第一作者,作者单位需为山东大学。

四、培养方式根据宽口径、厚基础的原则,提倡按一级学科培养硕士研究生;充分利用校内外优质教育资源,鼓励研究生进行“三种经历”,实行双导师合作培养。

五、应修满的总学分数应修总学分:30 ,其中必修24学分(含前沿讲座与社会实践),选修 6学分。

六、课程的类别及设置硕士研究生课程分为必修课与选修课两大类。

1.必修课是为达到培养目标要求,保证研究生培养质量而必须学习的课程。

必修课分学位公共课、学位基础课和学位专业课。

学位基础课一般按一级学科进行设置,学位专业课一般按二级学科设置。

经学校批准建设的全英语教学课程要纳入培养方案的课程体系中。

如本专业培养方案中有2门及以上全英语教学必修课程的,相应专业研究生可免修专业外语,直接获得相应学分。

(1)思想政治理论,计3学分;(2)第一外国语,计3学分。

由学科开设的专业必修课包括:(1)专业外语,计2学分;重在培养研究生的学术论文外语写作和国际学术交流能力。

如学习2门及以上全英语专业必修课程(培养计划课程表中所标注的全英语课程,是学院全英语系列课程项目建设中的全英语课程,但是否已开始全英语授课,需经学院审核批准后,以授课语言全英语为准),可免修专业外语,并通过申请可直接获得相应学分。

(2)学位基础课2门,不少于6学分[高等概率论(全英语课程)、高等数理统计(全英语课程)、现代泛函分析或高等泛函分析(全英语课程。

需具有较好的泛函分析基础)任选其一、近世代数基础或高等近世代数(全英语课程。

需具有大学抽象代数基础)任选其一];(3)学位专业课2门;(3选2,随机过程(全英语课程)、倒向随机微分方程、线性统计模型(全英语课程))(4)前沿讲座,计2学分;前沿讲座旨在使研究生熟悉本学科的重要学术理论和前沿性成果,提高硕士研究生参与学术活动的兴趣和学术交流能力。

包括研究生的个人研究专题综述、参加著名学者的学术报告等。

可采用讨论班、学术论坛、参加学术会议等多种形式,内容包括国内外研究动态介绍、文献讲座、新技术与新成果介绍等。

硕士前沿讲座成绩考核分为两个部分:硕士生听取专家主讲前沿系列报告不少于15讲,考核人由导师或组织部门的负责人签字;硕士在学期间参与讨论主讲讲稿或个人研究专题报告2篇,每篇报告不少于2000字,附前沿报告考核登记表由导师组成员评定成绩,并写出评语,考核成绩按优、良、中、及格、不及格五级计分。

考核合格者记录1学分。

于第五学期末将个人前沿报告登记表(包括核准的听讲记录15次、考核评语及前沿讲座书面报告2篇),交研究生教务办公室登录前沿讲座成绩。

(5)社会实践,计2学分;社会实践,计2学分。

各专业可根据学科实际,本着与专业学习相结合、与了解和解决热点实际问题相结合、学院将提供硕士研究生教学实践、科研实践和社会实践的岗位供研究生选择和锻炼,也可到导师联系好的校外实习基地实习。

参加社会实践不少于50个学时。

研究生本人需填写《山东大学研究生教学实践考核表》或《山东大学研究生社会实践考核表》,各岗位负责人要对实践者写出考核评语,考核合格者方可取得社会实践2学分。

2.选修课是为拓宽研究生知识面、完善知识结构或加深某方面知识而开设的课程。

选修课分为专业选修课和非专业选修课。

非专业选修课包括跨一级学科选课和学校开设的公共选修课。

鼓励跨研究生学科选课。

学校开设的研究生公共选修课包括:(1)硕士研究生第二外国语,每周4学时,一学期,计2学分;(2)体育课,计1学分;(3)心理学课程,计1学分;(4)由学科开设的专业选修课不少于2门(详见专业课程设置表)。

3.补修课跨学科或以同等学力考入的研究生必须补修1门,数学一级学科本科生的学位基础课程:数学分析、高等代数、常微分方程,具体详见专业课程设置表。

4.课程学分的计算方法(1)研究生课程学分的计算,要根据课程的难易程度和研究生所需要的平均学习时间合理计算,一般16-18学时为1学分,实验类课程24-32学时为1学分。

每门必修课不超过3学分,选修课不超过2学分。

(2)补修本科生课程成绩必须合格但不记学分。

七、中期筛选硕士生实行中期筛选制度。

第三学期末或第四学期初进行硕士研究生中期筛选。

硕士研究生应在中期考核前完成培养方案规定课程的学习,确定论文写作计划结合学位论文开题报告对硕士生进行中期筛选。

筛选内容包括:1.政治思想考核:主要考核学生平时的政治学习 , 思想表现 ,道德品质和组织纪律性。

考核小组应参照硕士生的“操行评定”、政治课学习成绩 , 听取导师和政治辅导员对每个学生政治思想表现情况的介绍 , 做出实事求是的评价。

2.业务学习考核:以学科综合考试为主 , 并结合硕士生的课程学习完成情况、科研能力、专业外语水平等进行综合评定。

(1) 学科综合考试 : 考试范围应包括学位课程和专业选修主干课程 , 要着重考核硕士生掌握本学科基础理论和专门知识的广度和深度以及综合运用所学知识分析问题、解决问题的能力。

考试形式可采用笔试或口试和笔试相结合的方式。

综合考试试卷(或纪录)由各培养单位留存备查。

专业外语水平考核 , 由各专业考核小组负责安排。

(2) 科研能力的考核应结合论文开题报告、不少于4000字的文献综述报告、论文进展情况和科研成果等进行。

学位论文的开题报告应公开进行。

中期筛选成绩不合格者,按《山东大学研究生学籍管理实施细则》有关规定处理。

八、学位论文撰写学位论文是对研究生科研能力的全面训练,学位论文是衡量研究生综合能力和能否获得学位的重要依据。

硕士学位论文应对所研究的课题有新的见解,表明作者具有从事科学研究工作或独立承担专门技术工作的能力。

硕士生至少用一年半的时间参加科学研究及撰写学位论文。

1、选题和开题报告硕士生在导师指导下,于第三学期初完成论文选题工作。

研究课题必须具备科学性、创新性和可行性,应强调与国家自然科学基金项目、国家社科基金项目、博士点基金项目、省部级以上的重点科研项目、重点学科科研项目、重点实验室和重点科研基地研究项目等相结合。

硕士生应于第三学期末或第四学期初,中期筛选时提交论文撰写计划,并向教研室或指导小组做开题报告和不少于4000字的文献综述报告,经过专业组专家讨论认为选题合适,计划切实可行,方能正式开展论文撰写工作。

2、定期检查学位论文进展情况导师定期检查其硕士研究生学位论文进展情况,要求硕士生在一定范围内报告论文进展情况,导师及指导小组成员参加,帮助硕士生分析论文工作进展中的难点,及时给予指导,促进论文研究工作的顺利进展。

硕士学位论文的写作要求,需按照《山东大学学位论文规范(试行)》有关规定执行,于第五学期完成学位论文的写作。

3、认真进行学位论文的全面审查硕士生应在申请学位论文答辩前3-5个月向本专业和相关专业有关教师、导师、指导小组成员全面地报告学位论文进展情况及取得的成果,广泛征求意见,进一步修改和完善学位论文,论文字数不低于2万字。

提倡硕士学位论文预答辩。

4、严格执行各项规章制度,保证学位授予质量硕士学位论文完成后,导师、指导小级及院、总(所)学位评定分委员会主席和主管院、主任,按照《山东大学授予硕士、博士学位工作细则》认真组织做好学位论文的审阅和答辩的各项工作,保证学位授予质量。

硕士学位论文仍执行10%校外匿名评审规定,如外审结果不符合学校答辩及申请学位的要求,则答辩无效。

5、论文发表要求硕士生在学期间,撰写学位论文是对硕士研究生科研能力的全面训练,学位论文是衡量研究生综合能力和能否获得学位的重要依据。

鼓励硕士研究生毕业前在国内外重要学术期刊上发表学术论文。

所取得的科研成果均要求研究生为第一作者,以山东大学为第一作者单位。

本学科重要学术刊物名称参见SCI刊物目录。

6、参考文献:本学科SCI、EI及《自动化学报》(中科院自动化所)、《系统科学与数学》(中科院系统所)、《应用数学学报》、《数学物理学报》、《运筹学学报》、《Frontier of Mathematics》、《Algebra Colloquium》、《数学学报》、《数学年刊》、《应用概率统计》、《软件学报》、《计算数学》、《Dynamics of Continuous, Discrete and Impulsive Systems,Seris A》杂志相关内容。

附本学科SCI杂志目录:ABSTRACT AND APPLIED ANAL YSIS;ACTA APPLICANDAE MA THEMATICAE;ACTA ARITHMETICA;ACTA MA THEMA TICA HUNGARICA;ACTA MA THEMA TICA SCIENTIA;Acta Mathematica Sinica;Acta Mathematica Sinica, English Series;ACTA MA THEMA TICA SINICA-ENGLISH SERIES;Acta Mathematicae Applicatae Sinica;ACTA MA THEMA TICAE APPLICATAE SINICA-ENGLISH SERIES;ACTA MECHANICA SINICA;Acta. Math. Hungar.;Adv Comput Math;Advances in Mathematics;Advances in Water Resources;AEQUATIONES MA THEMATICAE;ALGORITHMICA ;ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS;Ann. Polon. Math;ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMA TICA;ANNALES POLONICI MATHEMATICI;ANNALS OF PROBABILITY;ANNALS OF STATISTICS;ANZIAM JOURNAL;Appl Math Optim;APPLICABLE ANAL YSIS;APPLIED MA THEMATICAL MODELLING;APPLIED MA THEMATICS AND COMPUTA TION;APPLIED MA THEMATICS AND MECHANICS-ENGLISH EDITION;APPLIED MA THEMATICS LETTERS;ARCHIV DER MA THEMATIK;ARS COMBINATORIA;Ars Combinatoria;ASIAN JOURNAL OF CONTROL;ATMOSPHERIC ENVIRONMENT;AUTOMA TICA;Bernoulli;BMC Bioinformatics;Bull. Korean Math. Soc.;Bull. Malays. Math. Sci. Soc.;BULLETIN OF THE KOREAN MA THEMA TICAL SOCIETY;C. R. Acad. Sci. Paris;C. R. Acad. Sci. Paris, Ser. I;Calcolo;Canad. J. Math.;Cent. Eur. J. Math.;CHAOS SOLITONS & FRACTALS;Chinese Annals of Mathematics;CHINESE ANNALS OF MATHEMA TICS SERIES B;CHINESE JOURNAL OF ELECTRONICS;CIRCUITS SYSTEMS AND SIGNAL PROCESSING;Commun. Math. Phys.;COMMUNICATIONS IN ALGEBRA;Communications in Algebra;COMMUNICATIONS IN MATHEMA TICAL PHYSICS;COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION;COMMUNICATIONS IN STA TISTICS-THEORY AND METHODS;COMMUNICATIONS IN THEORETICAL PHYSICS;Complex Variables and Elliptic Equations;COMPTES RENDUS MA THEMA TIQUE;COMPUTATIONAL GEOSCIENCES;Computational Statistics and Data Analysis;COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING;COMPUTER-AIDED DESIGN;COMPUTERS & GRAPHICS-UK;COMPUTERS & MATHEMATICS WITH APPLICATIONS;Computers and Electrical Engineering;Computers and Mathematics with Applications;COMPUTING;CZECHOSLOV AK MATHEMATICAL JOURNAL;DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS;DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B;DISCRETE APPLIED MATHEMA TICS;Discrete Dynamics in Nature and Society;DISCRETE MATHEMATICS;DYNAMICAL SYSTEMS-AN INTERNA TIONAL JOURNAL ;DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES ;A-MA THEMATICAL ANAL YSIS;ELECTRONIC JOURNAL OF COMBINATORICS;ELECTRONIC JOURNAL OF PROBABILITY;ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUA TIONS;ESAIM: Control, Optimisation and Calculus of Variations;ESAIM: Mathematical Modelling Numerical Analysis;Eur. Phys. J. Special Topics;EUROPEAN JOURNAL OF OPERATIONAL RESEARCH;Finance Stoch;Forum Math., Ahead of Print;FRONTIERS OF MATHEMATICS IN CHINA;FUZZY SETS AND SYSTEMS ;GEORGIAN MATHEMA TICAL JOURNAL;Graph and Combinatorics;HIROSHIMA MATHEMA TICAL JOURNAL;HOUSTON JOURNAL OF MATHEMA TICS;IEEE TRANSACTIONS ON AUTOMA TIC CONTROL;IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS ;AND COMPUTER SCIENCES;IET CONTROL THEORY AND APPLICATIONS;IMA Journal of Applied Mathematics;IMA Journal of Numerical Analysis;INDIAN JOURNAL OF PURE & APPLIED MA THEMATICS;INFORMA TION PROCESSING LETTERS;INFORMA TION SCIENCES;INSURANCE MA THEMATICS & ECONOMICS;Int J Cardiovasc Imaging;INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS;International Journal of Algebra;INTERNATIONAL JOURNAL OF BIFURCA TION AND CHAOS;International Journal of Computational Intelligence Systems;INTERNATIONAL JOURNAL OF COMPUTER MA THEMA TICS;INTERNATIONAL JOURNAL OF CONTROL;INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS;INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE;International Journal of Number Theory;INTERNATIONAL JOURNAL OF NUMERICAL ANAL YSIS AND MODELING;INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL;ISRAEL JOURNAL OF MATHEMATICS;J Appl Math Comput;J Control Theory Appl;J Syst Sci Complex;J. Korean Math. Soc;J. Math. Anal. Appl.;JOURNAL OF ALGEBRA;Journal of Algebra Applications;Journal of Applied Mathematics;JOURNAL OF COMPUTATIONAL AND APPLIED MA THEMATICS;JOURNAL OF COMPUTATIONAL MATHEMATICS;JOURNAL OF COMPUTATIONAL PHYSICS;JOURNAL OF DIFFERENCE EQUA TIONS AND APPLICATIONS;Journal of Differential Equations;Journal of Functional Analysi;JOURNAL OF GRAPH THEORY;Journal of Industrial and Management Optimization;JOURNAL OF INFORMA TION SCIENCE AND ENGINEERING;JOURNAL OF MATHEMA TICAL ANAL YSIS AND APPLICATIONS;JOURNAL OF MATHEMA TICAL PHYSICS;JOURNAL OF MATHEMA TICS OF KYOTO UNIVERSITY;JOURNAL OF MULTIV ARIATE ANAL YSIS;JOURNAL OF NONPARAMETRIC STATISTICS;JOURNAL OF NUMBER THEORY;JOURNAL OF OPTIMIZATION THEORY AND APPLICA TIONS;JOURNAL OF PHYSICS A-MATHEMA TICAL AND THEORETICAL;JOURNAL OF SCIENTIFIC COMPUTING;Journal of Statistical Planning and Inference;JOURNAL OF SYSTEMS ENGINEERING AND ELECTRONICS;JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY;Journal of the Franklin Institute;JOURNAL OF VISUAL COMMUNICA TION AND IMAGE REPRESENTATION;KODAI MATHEMA TICAL JOURNAL;Linear Algebra and its Applications;Linear and Multilinear Algebra;LITHUANIAN MA THEMA TICAL JOURNAL;MATCH-COMMUNICA TIONS IN MATHEMA TICAL AND IN COMPUTER CHEMISTRY;Math. Meth Appl. Sci.;Math. Nachr.,;Math. Proc. Camb. Phil. Soc.;Mathematical and Computational Applications;MATHEMATICAL AND COMPUTER MODELLING;MATHEMATICAL NOTES;MATHEMATICAL PROBLEMS IN ENGINEERING;MATHEMATICS AND COMPUTERS IN SIMULATION;MECHANICS OF TIME-DEPENDENT MA TERIALS;METRIKA;MICHIGAN MATHEMA TICAL JOURNAL;Monatsh Math;MONA TSHEFTE FUR MA THEMATIK;NETWORKS;NEUROCOMPUTING;Nonlinear Analysis;Nonlinear Analysis: Real World Applications;NONLINEAR ANAL YSIS-REAL WORLD APPLICATIONS;NONLINEAR ANAL YSIS-THEORY METHODS & APPLICATIONS;NONLINEAR DYNAMICS;NONLINEARITY;Nucleic Acids Research;Numer Methods Partial Differential Eq;Numer. Math. Theor. Meth. Appl.;NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS;OPERATIONS RESEARCH LETTERS;Optical Engineering;Optics Letters;OPTIMAL CONTROL APPLICATIONS & METHODS;PACIFIC JOURNAL OF MATHEMA TICS;PARALLEL COMPUTING;PHYSICA A-STA TISTICAL MECHANICS AND ITS APPLICATIONS;PHYSICA D-NONLINEAR PHENOMENA;PHYSICS LETTERS A;Potential Anal;PROBABILITY THEORY AND RELATED FIELDS;Proc. Japan Acad.;PROCEEDINGS OF THE AMERICAN MA THEMATICAL SOCIETY;PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMA TICAL SCIENCES;PROGRESS IN NATURAL SCIENCE;PUBLICATIONES MA THEMATICAE-DEBRECEN;PURE AND APPLIED MATHEMA TICS QUARTERL Y ;Quart. J. Math;QUARTERL Y JOURNAL OF MATHEMATICS;RAMANUJAN JOURNAL;RESULTS IN MA THEMA TICS;Risk and Decision Analysis;SCANDINA VIAN JOURNAL OF STATISTICS;Science China: Information Sciences;Science China: Mathematics;SCIENCE CHINA-INFORMATION SCIENCES;SCIENCE CHINA-MATHEMATICS;SCIENCE IN CHINA SERIES A-MATHEMATICS;SCIENCE IN CHINA SERIES F-INFORMA TION SCIENCES;SCIENCE IN CHINA SERIES G-PHYSICS MECHANICS & ASTRONOMY;SIAM J. NUMER. ANAL.;SIAM JOURNAL ON CONTROL AND OPTIMIZATION;SIAM JOURNAL ON DISCRETE MA THEMATICS;SIAM JOURNAL ON NUMERICAL ANAL YSIS;STATISTICS & PROBABILITY LETTERS;STOCHASTIC ANAL YSIS AND APPLICATIONS;STOCHASTIC PROCESSES AND THEIR APPLICATIONS;SYSTEMS & CONTROL LETTERS;THEORETICAL COMPUTER SCIENCE;Transactions of the American Mathematical Society, TURKISH JOURNAL OF MATHEMA TICS Ultrasound in Med. &Biol.;Z. Angew. Math. Phys.;ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES;ACTA MA THEMA TICA SINICA-ENGLISH SERIES;ACTA MA THEMA TICAE APPLICATAE SINICA-ENGLISH SERIES;ANNALS OF PROBABILITY;ANNALS OF STATISTICS;APPLIED MA THEMATICS AND COMPUTA TION;Bernoulli;COMMUNICATIONS IN STA TISTICS-THEORY AND METHODS;COMPTES RENDUS MA THEMA TIQUE;EUROPEAN JOURNAL OF OPERATIONAL RESEARCH;IET CONTROL THEORY AND APPLICATIONS;JOURNAL OF COMPUTATIONAL AND APPLIED MA THEMATICS;JOURNAL OF MULTIV ARIATE ANAL YSIS;METRIKA;NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS;PROBABILITY THEORY AND RELATED FIELDS;SIAM JOURNAL ON CONTROL AND OPTIMIZATION;SIAM JOURNAL ON NUMERICAL ANAL YSIS;STATISTICS & PROBABILITY LETTERS;STOCHASTIC PROCESSES AND THEIR APPLICATIONS;。

相关文档
最新文档