(新高考)高考数学二轮复习专题过关检测(十四)数列文
高考数学二轮复习数学数列多选题试题含答案
高考数学二轮复习数学数列多选题试题含答案一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是( ) A .68a = B .954S =C .135********a a a a a ++++=D .22212201920202019a a a a a +++= 【答案】ACD 【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案. 【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=,故C正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018a a a a a =-,可得22212201920202019201920202019a a a a a a a a+++==,故D 正确;故选:ACD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,考查方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意递推关系的灵活转换,属于中档题.2.斐波那契数列,又称黄金分割数列、兔子数列,是数学家列昂多·斐波那契于1202年提出的数列.斐波那契数列为1,1,2,3,5,8,13,21,……,此数列从第3项开始,每一项都等于前两项之和,记该数列为(){}F n ,则(){}F n 的通项公式为( )A .(1)1()2n nF n -+=B .()()()11,2F n F n F n n +=+-≥且()()11,21F F ==C .()1122n nF n ⎡⎤⎛⎛+-⎥=- ⎥⎝⎭⎝⎭⎦ D .()n n F n ⎡⎤⎥=+⎥⎝⎭⎝⎭⎦【答案】BC 【分析】根据数列的前几项归纳出数列的通项公式,再验证即可; 【详解】解:斐波那契数列为1,1,2,3,5,8,13,21,……,显然()()11,21F F ==,()()()3122F F F =+=,()()()4233F F F =+=,,()()()11,2F n F n F n n +=+-≥,所以()()()11,2F n F n F n n +=+-≥且()()11,21F F ==,即B 满足条件;由()()()11,2F n F n F n n +=+-≥, 所以()()()()11F n n F n n ⎤+-=--⎥⎣⎦所以数列()()1F n n ⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭是以12为首项,12为公比的等比数列, 所以()()1nF n n +-=⎝⎭11515()n F F n n -+=+, 令112nn n Fb -=⎛⎫+⎪⎝⎭,则11n n b ++,所以1n n b b +=-, 所以n b ⎧⎪⎨⎪⎪⎩⎭ 所以1n n b -+,所以()1115n n n nF n --⎤⎤⎛⎫+⎥⎥=+=- ⎪ ⎪⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦; 即C 满足条件; 故选:BC 【点睛】考查等比数列的性质和通项公式,数列递推公式的应用,本题运算量较大,难度较大,要求由较高的逻辑思维能力,属于中档题.3.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误;4.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.5.在递增的等比数列{}n a 中,已知公比为q ,n S 是其前n 项和,若1432a a =,2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列【答案】ABC 【分析】 计算可得2q,故选项A 正确;8510S =,122n n S ++=,所以数列{}2n S +是等比数列,故选项,B C 正确;lg lg 2n a n =⋅,所以数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 【详解】{}n a 为递增的等比数列,由142332,12,a a a a =⎧⎨+=⎩得23142332,12,a a a a a a ==⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4a a =⎧⎨=⎩,∵{}n a 为递增数列, ∴234,8a a =⎧⎨=⎩∴322a q a ==,212a a q ==,故选项A 正确; ∴2nn a =,()12122212nn nS +⨯-==--,∴9822510S =-=,122n n S ++=,∴数列{}2n S +是等比数列,故选项B 正确;所以122n n S +=-,则9822510S =-=,故选项C 正确.又lg 2lg 2lg nn n a ==⋅,∴数列{}lg n a 是公差为lg 2的等差数列,故选项D 错误. 故选:ABC. 【点睛】方法点睛:证明数列为等差(等比)数列常用的方法有: (1)定义法; (2)通项公式法 (3)等差(等比)中项法(4)等差(等比)的前n 项和的公式法.要根据已知灵活选择方法证明.6.已知等比数列{}n a 满足11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>.( )A .数列{}n a 的公比为pB .数列{}n a 为递增数列C .1r p =--D .当14p r-取最小值时,13-=n n a 【答案】BD 【分析】先结合已知条件,利用1n n n a S S -=-找到,p q 的关系,由11p q =-判断选项A 错误,由11pq p+=>判断B 正确,利用{}n a 通项公式和前n 项和公式代入已知式计算r p =-判断C 错误,将r p =-代入14p r-,利用基本不等式求最值及取等号条件,判断D 正确. 【详解】依题意,等比数列{}n a ,11a =,其前n 项和()*1,0n n S pa r n N p +=+∈>,设公比是q ,2n ≥时,11n n n n S pa rS pa r +-=+⎧⎨=+⎩,作差得,1n n n pa a pa +-=,即()11n n p a pa +=+,故11n n a p a p ++=,即1p q p +=,即11p q =-. 选项A 中,若公比为p ,则11p q q ==-,即210q q --=,即p q ==时,数列{}n a 的公比为p ,否则数列{}n a 的公比不为p ,故错误;选项B 中,由0p >知,1111p q p p +==+>,故111111n n n n a a q q p ---=⋅==⎛⎫+ ⎪⎝⎭是递增数列,故正确;选项C 中,由1n n S pa r +=+,11n n q S q-=-,11p q =-,1nn a q +=知, 1111111n n n n q p q q a qr S p q +--=-⋅=-=---=,故C 错误;选项D 中, 因为r p =-,故()1111444p p p r p p -=-=+≥=⋅-,当且仅当14p p =,即12p =时等号成立,14p r-取得最小值1,此时13p q p +==,113n n n a q --==,故正确.故选:BD. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解;2、当两个正数,a b的积为定值,要求这两个正数的和式的最值时,可以使用基本不等式a b +≥,当且仅当a b =取等号.7.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( ) A .22800a t =- B .175n n a a t +=- C .1n n a a +> D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t ta a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.8.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na = 【答案】ABC 【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N =-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=, 故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++,所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-= 故根据累加法得:()11121n a a n nn =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足, 故()*21n a n n N=-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确; 由等差数列前n 项和公式得:()21212n n n S n +-==,故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确; 对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC 【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.9.(多选题)已知函数()22()()n n f n n n ⎧=⎨-⎩当为奇数时当为偶数时,且()()1n a f n f n =++,则na 等于( )A .()21n -+B .21n -C .21nD .12n -【答案】AC 【分析】对n 进行分类讨论,按照()()1n a f n f n =++写出通项即可. 【详解】当n 为奇数时,()()()()22112121n a f n f n n n n n =++=-+=--=-+; 当n 为偶数时,()()()221121n a f n f n n n n =++=-++=+,所以()()()2121n n n a n n ⎧-+⎪=⎨+⎪⎩当为奇数时当为偶数时. 故选:AC . 【点睛】易错点睛:对n 进行分类讨论时,应注意当n 为奇数时,1n +为偶数;当n 为偶数时,1n +为奇数.10.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a = B .2nn S =C .38n T ≥D .12n T <【答案】ACD 【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断. 【详解】解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n n n a -=⋅=, 令12(1)n n n b n n a ++=+,12123(11)8b a +==+, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,3182n T ≤<,故CD 正确;故选:ACD.【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n n n a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和.。
高考数学二轮复习提高题专题复习数列多选题练习题附解析
高考数学二轮复习提高题专题复习数列多选题练习题附解析一、数列多选题1.两个等差数列{}n a 和{}n b ,其公差分别为1d 和2d ,其前n 项和分别为n S 和n T ,则下列命题中正确的是( )A .若为等差数列,则112da =B .若{}n n S T +为等差数列,则120d d +=C .若{}n n a b 为等差数列,则120d d ==D .若*n b N ∈,则{}n b a 也为等差数列,且公差为12d d +【答案】AB 【分析】对于A ,利用=对于B ,利用()2211332S T S T S T +=+++化简可得答案; 对于C ,利用2211332a b a b a b =+化简可得答案; 对于D ,根据112n n b b a a d d +-=可得答案. 【详解】对于A ,因为为等差数列,所以=即== 化简得()21120d a -=,所以112d a =,故A 正确;对于B ,因为{}n n S T +为等差数列,所以()2211332S T S T S T +=+++, 所以()11121111122223333a d b d a b a d b d +++=+++++, 所以120d d +=,故B 正确;对于C ,因为{}n n a b 为等差数列,所以2211332a b a b a b =+, 所以11121111122()()(2)(2)a d b d a b a d b d ++=+++, 化简得120d d =,所以10d =或20d =,故C 不正确;对于D ,因为11(1)n a a n d =+-,且*n b N ∈,所以11(1)n b n a a b d =+-()112111a b n d d =++--⎡⎤⎣⎦,所以()()1111211n b a a b d n d d =+-+-,所以()()()11111211112111n n b b a a a b d nd d a b d n d d +-=+-+-----12d d =, 所以{}n b a 也为等差数列,且公差为12d d ,故D 不正确. 故选:AB【点睛】关键点点睛:利用等差数列的定义以及等差中项求解是解题关键.2.设n S 是等差数列{}n a 的前n 项和,且12a =,38a =则( ) A .512a = B .公差3d =C .()261n S n n =+D .数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为64nn + 【答案】BCD 【分析】根据已知条件求出等差数列{}n a 的通项公式和前n 项和公式,即可判断选项A 、B 、C ,再利用裂项求和即可判断选项D. 【详解】因为数列{}n a 是等差数列,则312228a a d d =+=+=,解得:3d =,故选项B 正确; 所以()21331n a n n =+-⨯=-,对于选项A :535114a =⨯-=,故选项A 不正确;对于选项C :()()2222132612n n S n n n ++-⨯⎡⎤⎣⎦=⨯=+,所以故选项C 正确; 对于选项D :()()111111313233132n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以前n 项和为111111111325588113132n n ⎛⎫-+-+-++-⎪-+⎝⎭()611132322324n n n n n ⎛⎫=-== ⎪++⎝⎭+,故选项D 正确, 故选:BCD. 【点睛】方法点睛:数列求和的方法(1)倒序相加法:如果一个数列{}n a 的前n 项中首末两端等距离的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可以用倒序相加法(2)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可以用错位相减法来求;(3)裂项相消法:把数列的通项拆成两项之差,在求和时,中间的一些项可相互抵消,从而求得其和;(4)分组转化法:一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组转换法分别求和再相加减;(5)并项求和法:一个数列的前n 项和可以两两结合求解,则称之为并项求和,形如()()1nn a f n =-类型,可采用两项合并求解.3.已知等差数列{}n a 中,59a a =,公差0d >,则使得前n 项和n S 取得最小值的正整数n 的值是( ) A .5 B .6C .7D .8【答案】BC 【分析】分析出数列{}n a 为单调递增数列,且70a =,由此可得出结论. 【详解】在等差数列{}n a 中,59a a =,公差0d >,则数列{}n a 为递增数列,可得59a a <,59a a ∴=-,可得5975202a a a a +==>,570a a ∴<=,所以,数列{}n a 的前6项均为负数,且70a =, 因此,当6n =或7时,n S 最小. 故选:BC. 【点睛】方法点睛:本题考查等差数列前n 项和最大值的方法如下:(1)利用n S 是关于n 的二次函数,利用二次函数的基本性质可求得结果; (2)解不等式0n a ≥,解出满足此不等式的最大的n 即可找到使得n S 最小.4.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.5.已知数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则以下结论正确的是( ) A .11111n n n a a a +=-+ B .{}n a 是单调递增数列 C .211011111111a a a a +++>+++ D .若1212120111n n a a aa a a ⎡⎤+++=⎢⎥+++⎣⎦,则122n =([]x 表示不超过x 的最大整数) 【答案】ABD 【分析】利用裂项法可判断A 选项的正误;利用数列单调性的定义可判断B 选项的正误;利用裂项求和法可判断C 选项的正误;求出1212111nn a a aa a a ++++++的表达式,可判断D 选项的正误. 【详解】在数列{}n a 中,112a =,且()11n n n a a a +=+,n *∈N ,则()21110a a a =+>,()32210a a a =+>,,依此类推,可知对任意的n *∈N ,0n a >.对于A 选项,()()()111111111n n n n n n n n n a a a a a a a a a ++-===-+++,A 选项正确;对于B 选项,210n n n a a a +-=>,即1n n a a +>,所以,数列{}n a 为单调递增数列,B 选项正确;对于C 选项,由A 选项可知,11111n n n a a a +=-+, 所以,1212231011111110111111111111111a a a a a a a a a a a a ⎛⎫⎛⎫⎛⎫+++=-+-++-=-< ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭,C 选项错误; 对于D 选项,12122311111111111111111n n n n a a a a a a a a a a a ++⎛⎫⎛⎫⎛⎫+++=-+-++-=- ⎪ ⎪⎪+++⎝⎭⎝⎭⎝⎭, 所以,()()()12121212111111111111n nn n a a a a a a a a a a a a +-+++=+++++++++-+-+121111111112111n n n n n n a a a a a a ++⎛⎫⎛⎫=-+++=--=-+ ⎪ ⎪+++⎝⎭⎝⎭, 由112a =,且()11n n n a a a +=+得234a =,32116a =,又{}n a 是单调递增数列,则3n ≥时,1n a >,则101na <<, 从而1122120n n n a +⎡⎤-=-=⎢⎥⎣⎦+,得122n =,D 选项正确. 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.6.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果. 【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.7.设数列{}n a 的前n 项和为*()n S n N ∈,关于数列{}n a ,下列四个命题中正确的是( )A .若1*()n n a a n N +∈=,则{}n a 既是等差数列又是等比数列B .若2n S An Bn =+(A ,B 为常数,*n N ∈),则{}n a 是等差数列C .若()11nn S =--,则{}n a 是等比数列D .若{}n a 是等差数列,则n S ,2n n S S -,*32()n n S S n N -∈也成等差数列【答案】BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: 1*()n n a a n N +∈=,10n n a a +∴-=得{}n a 是等差数列,当0n a =时不是等比数列,故错; 选项B:2n S An Bn =+,12n n a a A -∴-=,得{}n a 是等差数列,故对;选项C: ()11nn S =--,112(1)(2)n n n n S S a n --∴-==⨯-≥,当1n =时也成立,12(1)n n a -∴=⨯-是等比数列,故对;选项D: {}n a 是等差数列,由等差数列性质得n S ,2n n S S -,*32()n n S S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.8.下列说法中正确的是( )A .数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+B .数列{}n a 成等比数列的充要条件是对于任意的正整数n ,都有212n n n a a a ++=C .若数列{}n a 是等差数列,则n S 、2n n S S -、32n n S S -也是等差数列D .若数列{}n a 是等比数列,则n S 、2n n S S -、32n n S S -也是等比数列 【答案】AC 【分析】利用等差中项法可判断A 选项的正误;取0n a =可判断B 选项的正误;利用等差数列求和公式以及等差中项法可判断C 选项的正误;取1q =-,n 为偶数可判断D 选项的正误. 【详解】对于A 选项,充分性:若数列{}n a 成等差数列,则对任意的正整数n ,n a 、1n a +、2n a +成等差数列,则121n n n n a a a a +++-=-,即122n n n a a a ++=+,充分性成立; 必要性:对任意的正整数n ,都有122n n n a a a ++=+,则121n n n n a a a a +++-=-, 可得出2132431n n a a a a a a a a +-=-=-==-=,所以,数列{}n a 成等差数列,必要性成立.所以,数列{}n a 成等差数列的充要条件是对于任意的正整数n ,都有122n n n a a a ++=+,A 选项正确;对于B 选项,当数列{}n a 满足0n a =时,有212n n n a a a ++=,但数列{}n a 不是等比数列,B选项错误;对于C 选项,设等差数列{}n a 的公差为d ,则()112n n n dS na -=+,()2122122n n n d S na -=+,()3133132n n n dS na -=+, 所以,()()()22111322112222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, ()()()232111533122132222n n n n d n n d n n d S S na na na ---⎡⎤⎡⎤-=+-+=+⎢⎥⎢⎥⎣⎦⎣⎦, 所以,()()()()22232111532222n n n n n d n n d n n d S S S na na na ⎡⎤⎡⎤⎡⎤---⎢⎥⎢⎥⎢⎥-+=+++=+⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()22n n S S =-,所以,n S 、2n n S S -、32n n S S -是等差数列,C 选项正确;对于D 选项,当公比1q =-,且n 是偶数时,n S 、2n n S S -、32n n S S -都为0, 故n S 、2n n S S -、32n n S S -不是等比数列,所以D 选项错误. 故选:AC. 【点睛】 方法点睛;1.判断等差数列有如下方法:(1)定义法:1n n a a d +-=(d 为常数,n *∈N ); (2)等差中项法:()122n n n a a a n N*++=+∈;(3)通项法:n a p n q =⋅+(p 、q 常数);(4)前n 项和法:2n S p n q n =⋅+⋅(p 、q 常数).2.判断等比数列有如下方法: (1)定义法:1n na q a +=(q 为非零常数,n *∈N ); (2)等比中项法:212n n n a a a ++=⋅,n *∈N ,0n a ≠; (3)通项公式法:nn a p q =⋅(p 、q 为非零常数); (4)前n 项和法:nn S p q p =⋅-,p 、q 为非零常数且1q ≠.9.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;10.已知数列{}n a 的前n 项和为n S ,1+14,()n n a S a n N *==∈,数列12(1)n n n n a +⎧⎫+⎨⎬+⎩⎭的前n 项和为n T ,n *∈N ,则下列选项正确的是( ) A .24a = B .2nn S =C .38n T ≥D .12n T <【答案】ACD 【分析】在1+14,()n n a S a n N *==∈中,令1n =,则A 易判断;由32122S a a =+=,B 易判断;令12(1)n n n b n n a ++=+,138b =,2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,裂项求和3182n T ≤<,则CD 可判断. 【详解】解:由1+14,()n n a S a n N *==∈,所以2114a S a ===,故A 正确;32212822S a a =+==≠,故B 错误;+1n n S a =,12,n n n S a -≥=,所以2n ≥时,11n n n n n a S S a a -+=-=-,12n na a +=, 所以2n ≥时,2422n n n a -=⋅=,令12(1)n n n b n n a ++=+,12123(11)8b a +==+, 2n ≥时,()()1112211(1)12212n n n n n n n b n n a n n n n +++++===-++⋅+⋅,1138T b ==,2n ≥时,()()23341131111111118223232422122122n n n n T n n n ++=+-+-++-=-<⨯⋅⋅⋅⋅+⋅+⋅ 所以n *∈N 时,3182n T ≤<,故CD 正确;故选:ACD. 【点睛】方法点睛:已知n a 与n S 之间的关系,一般用()11,12n nn a n a S S n -=⎧=⎨-≥⎩递推数列的通项,注意验证1a 是否满足()12n n n a S S n -=-≥;裂项相消求和时注意裂成的两个数列能够抵消求和.。
高考文科数学数列专题复习(附答案及解析)
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考数学二轮复习数学数列多选题试题及答案
高考数学二轮复习数学数列多选题试题及答案一、数列多选题1.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++,数列{}n a 的前n 项为n S ,则( ) A .12n k += B .133n n a a +=- C .()2332n a n n =+D .()133234n n S n +=+- 【答案】ABD 【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可. 【详解】由题意可知,第1次得到数列1,3,2,此时1k = 第2次得到数列1,4,3,5,2,此时3k = 第3次得到数列1, 5,4,7,3,8,5,7,2,此时 7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k = 第n 次得到数列1,123,,,,k x x x x ,2 此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得: 123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈用等比数列求和可得()33132n n a -=+则 ()121331333322n n n a+++--=+=+23322n +=+ 又 ()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+ 所以 133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误. 123n n S a a a a =++++23133332222n n +⎛⎫=++++ ⎪⎝⎭()231331322nn --=+ 2339424n n +=+-()133234n n +=+-,故D 项正确. 故选:ABD. 【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.2.已知数列{}n a 的前n 项和为n S ,11a =,()1*11,221,21n n n a n ka k N a n k --+=⎧=∈⎨+=+⎩.则下列选项正确的为( ) A .614a =B .数列{}()*213k a k N-+∈是以2为公比的等比数列C .对于任意的*k N ∈,1223k k a +=-D .1000n S >的最小正整数n 的值为15 【答案】ABD 【分析】根据题设的递推关系可得2212121,21k k k k a a a a -+=-=-,从而可得22222k k a a +-=,由此可得{}2k a 的通项和{}21k a -的通项,从而可逐项判断正误.【详解】由题设可得2212121,21k k k k a a a a -+=-=-, 因为11a =,211a a -=,故2112a a =+=,所以22212121,12k k k k a a a a +++--==,所以22222k k a a +-=, 所以()222222k k a a ++=+,因为2240a +=≠,故220k a +≠, 所以222222k k a a ++=+,所以{}22k a +为等比数列,所以12242k k a -+=⨯即1222k k a +=-,故416214a =-=,故A 对,C 错. 又112122123k k k a ++-=--=-,故12132k k a +-+=,所以2121323k k a a +-+=+,即{}()*213k a k N -+∈是以2为公比的等比数列,故B 正确.()()141214117711S a a a a a a a =+++=++++++()()2381357911132722323237981a a a a a a a =+++++++=⨯-+-++-+=,15141598150914901000S S a =+=+=>,故1000n S >的最小正整数n 的值为15,故D 正确. 故选:ABD. 【点睛】方法点睛:题设中给出的是混合递推关系,因此需要考虑奇数项的递推关系和偶数项的递推关系,另外讨论D 是否成立时注意先考虑14S 的值.3.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,0n a ≠,且202021111212a a ++≤+( )A .若数列{}n a 为等差数列,则20210S ≥B .若数列{}n a 为等差数列,则10110a ≤C .若数列{}n a 为等比数列,则20200T >D .若数列{}n a 为等比数列,则20200a <【答案】AC 【分析】由不等关系式,构造11()212xf x =-+,易得()f x 在R 上单调递减且为奇函数,即有220200a a +≥,讨论{}n a 为等差数列、等比数列,结合等差、等比的性质判断项、前n 项和或积的符号即可. 【详解】 由202021111212a a ++≤+,得2020211110212212a a +-+-≤+, 令11()212x f x =-+,则()f x 在R 上单调递减,而1121()212212xx x f x --=-=-++, ∴12()()102121xx x f x f x -+=+-=++,即()f x 为奇函数,∴220200a a +≥,当{}n a 为等差数列,22020101120a a a +=≥,即10110a ≥,且2202020212021()02a a S +=≥,故A 正确,B 错误;当{}n a 为等比数列,201820202a a q=,显然22020,a a 同号,若20200a <,则220200a a +<与上述结论矛盾且0n a ≠,所以前2020项都为正项,则202012020...0T a a =⋅⋅>,故C 正确,D 错误. 故选:AC. 【点睛】关键点点睛:利用已知构造函数,并确定其单调性和奇偶性,进而得到220200a a +≥,基于该不等关系,讨论{}n a 为等差、等比数列时项、前n 项和、前n 项积的符号.4.已知数列{}n a 满足11a =,()111n n na n a +-+=,*n N ∈,其前n 项和为n S ,则下列选项中正确的是( )A .数列{}n a 是公差为2的等差数列B .满足100n S <的n 的最大值是9C .n S 除以4的余数只能为0或1D .2n n S na = 【答案】ABC 【分析】根据题意对()111n n na n a +-+=变形得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得()*21n a n n N =-∈,再依次讨论各选项即可得答案.【详解】解:因为()111n n na n a +-+=,故等式两边同除以()1n n +得:()1111111n n a a n n n n n n +=-+-=++, 所以()1111111n n a a n n n n n n -=-----=,()()12111221211n n a a n n n n n n --=------=--,,2111121122a a =-⨯-= 故根据累加法得:()11121n a a n nn =-≥-, 由于11a =,故()212n a n n =-≥,检验11a =满足, 故()*21n a n n N=-∈所以数列{}n a 是公差为2的等差数列,故A 选项正确; 由等差数列前n 项和公式得:()21212n n n S n +-==,故2100n n S =<,解得:10n <,故满足100n S <的n 的最大值是9,故B 选项正确; 对于C 选项,当*21,n k k N =-∈时,22441n n k S k ==-+,此时n S 除以4的余数只能为1;当*2,n k k N =∈时,224n n k S ==,此时n S 除以4的余数只能0,故C 选项正确;对于D 选项,222n S n =,()2212n n n n n n a =-=-,显然2n n S na ≠,故D 选项错误.故选:ABC 【点睛】本题考查累加法求通项公式,裂项求和法,等差数列的相关公式应用,考查运算求解能力,是中档题.本题解题的关键在于整理变形已知表达式得()1111111n n a a n n n n n n +=-+-=++,进而根据累加法求得通项公式.5.将()23nn ≥个数排成n 行n 列的一个数阵,如图:11a 12a 13a ……1n a21a 22a 23a ……2n a 31a 32a 33a ……3n a……1n a 2n a 3n a ……nn a该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知113a =,61131a a =+,记这2n 个数的和为S .下列结论正确的有( )A .2m =B .767132a =⨯C .()1212j ij a i -=+⨯D .()()221nS n n =+-【答案】ACD 【分析】由题中条件113a =,61131a a =+,得23531m m +=+解得m 的值可判断A ;根据第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列可判断BC ;由等差数列、等比数列的前n 项和公式可判断D. 【详解】由113a =,61131a a =+,得23531m m +=+,所以2m =或13m =-(舍去),A 正确;()666735132a m m =+=⨯,B 错误;()()112132212j j ij a i i --=-+⨯=+⨯⎡⎤⎣⎦,C 正确;()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++1121(12)(12)(12)121212n n n nn a a a ---=+++--- ()()()11211332(1)21212n nn n a a a n ++-⎛⎫=+++-=⨯- ⎪⎝⎭()()221n n n =+-,D 正确.故选:ACD. 【点睛】方法点睛:本题考查了分析问题、解决问题的能力,解答的关键是利用等比数列、等差数列的通项公式、求和公式求解,考查了学生的推理能力、计算能力.6.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误; ∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯①12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法; (4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.7.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-,则下列结论正确的是( )A .数列{}n a 为等比数列B .数列{}n S n +为等比数列C .数列{}n a 中10511a =D .数列{}2n S 的前n 项和为2224n n n +---【答案】BCD 【分析】由已知可得11222n n n n S n S nS n S n++++==++,结合等比数列的定义可判断B ;可得2n n S n =-,结合n a 和n S 的关系可求出{}n a 的通项公式,即可判断A ;由{}n a 的通项公式,可判断C ;由分组求和法结合等比数列和等差数列的前n 项和公式即可判断D. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++.又112S +=,所以数列{}n S n +是首项为2,公比为2的等比数列,故B 正确;所以2n n S n +=,则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,故A 错误;由当2n ≥时,121n n a -=-可得91021511a =-=,故C 正确;因为1222n n S n +=-,所以2311222...2221222...22n n S S S n ++++=-⨯+-⨯++-()()()23122412122 (2)212 (22412)2n n n n n n n n n ++--⎡⎤=+++-+++=-+=---⎢⎥-⎣⎦ 所以数列{}2n S 的前n 项和为2224n n n +---,故D 正确. 故选:BCD . 【点睛】关键点点睛:在数列中,根据所给递推关系,得到等差等比数列是重难点,本题由121n n S S n +=+-可有目的性的构造为1122n n S S n n +++=+,进而得到11222n n n n S n S nS n S n++++==++,说明数列{}n S n +是等比数列,这是解决本题的关键所在,考查了推理运算能力,属于中档题,8.已知等差数列{}n a 的前n 项和为n S ,218a =,512a =,则下列选项正确的是( ) A .2d =- B .122a =C .3430a a +=D .当且仅当11n =时,n S 取得最大值【答案】AC 【分析】先根据题意得等差数列{}n a 的公差2d =-,进而计算即可得答案. 【详解】解:设等差数列{}n a 的公差为d ,则52318312a a d d =+=+=,解得2d =-.所以120a =,342530a a a a +=+=,11110201020a a d =+=-⨯=, 所以当且仅当10n =或11时,n S 取得最大值. 故选:AC 【点睛】本题考查等差数列的基本计算,前n 项和n S 的最值问题,是中档题. 等差数列前n 项和n S 的最值得求解常见一下两种情况:(1)当10,0a d ><时,n S 有最大值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +<且0n a >的n 的取值范围确定;(2)当10,0a d <>时,n S 有最小值,可以通过n S 的二次函数性质求解,也可以通过求满足10n a +>且0n a <的n 的取值范围确定;二、平面向量多选题9.已知向量(22cos m x =,()1, sin2n x =,设函数()f x m n =⋅,则下列关于函数()y f x =的性质的描述正确的是 ( )A .()f x 的最大值为3B .()f x 的周期为πC .()f x 的图象关于点5,012π⎛⎫⎪⎝⎭对称 D .()f x 在,03π⎛-⎫⎪⎝⎭上是增函数 【答案】ABD 【分析】运用数量积公式及三角恒等变换化简函数()f x ,根据性质判断. 【详解】解:()22cos 2cos221f x m n x x x x =⋅==+2sin 216x π⎛⎫=++ ⎪⎝⎭,当6x k ππ=+,()k Z ∈时,()f x 的最大值为3,选项A 描述准确;()f x 的周期22T ππ==,选项B 描述准确; 当512x π=时,2sin 2116x π⎛⎫++= ⎪⎝⎭,所以()f x 的图象关于点5,112π⎛⎫⎪⎝⎭对称,选项C 描述不准确; 当,03x π⎛⎫∈- ⎪⎝⎭时,2,626x πππ⎛⎫+∈- ⎪⎝⎭,所以()f x 在,03π⎛-⎫⎪⎝⎭上是增函数,选项D 描述准确. 故选:ABD. 【点睛】本题考查三角恒等变换,正弦函数的图象与性质,属于中档题.10.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是ABC 的外心、重心、垂心,且M 为BC 的中点,则( )A .0GA GB GC ++=B .24AB AC HM MO +=-C .3AH OM =D .OA OB OC ==【答案】ABD 【分析】向量的线性运算结果仍为向量可判断选项A ;由12GO HG =可得23HG HO =,利用向量的线性运算()266AB AC AM GM HM HG +===-,再结合HO HM MO =+集合判断选项B ;利用222AH AG HG GM GO OM =-=-=故选项C 不正确,利用外心的性质可判断选项D ,即可得正确选项. 【详解】因为G 是ABC 的重心,O 是ABC 的外心,H 是ABC 的垂心, 且重心到外心的距离是重心到垂心距离的一半,所以12GO HG =, 对于选项A :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =, 又因为2GB GC GM +=,所以GB GC AG +=,即0GA GB GC ++=,故选项A 正确;对于选项B :因为G 是ABC 的重心,M 为BC 的中点,所以2AG GM =,3AM GM =,因为12GO HG =,所以23HG HO =, ()226663AB AC AM GM HM HG HM HO ⎛⎫+===-=- ⎪⎝⎭()646424HM HO HM HM MO HM MO =-=-+=-,即24AB AC HM MO +=-,故选项B 正确;对于选项C :222AH AG HG GM GO OM =-=-=,故选项C 不正确; 对于选项D :设点O 是ABC 的外心,所以点O 到三个顶点距离相等,即OA OB OC ==,故选项D 正确;故选:ABD. 【点睛】关键点点睛:本题解题的关键是利用已知条件12GO HG =得23HG HO =,利用向量的线性运算结合2可得出向量间的关系.AG GM。
高考数学二轮复习常考题型大通关(全国卷理数)-选择题:数列-
2022届高考数学二轮复习常考题型大通关(全国卷理数)选择题:数列1.等比数列{}n a 的各项均为正数,且564718a a a a +=,则3132310log log log a a a ++⋅⋅⋅+=()A .12B .10C .8D .32log 5+2.已知等差数列{}n a 中,79416,1a a a +==,则12a 的值是()A .15B .30C .31D .643.已知从1开始的连续奇数蛇形排列形成宝塔形数表,第一行为1,第二行为3,5,第三行为7,9,11,第四行为13,15,17,19,如图所示,在宝塔形数表中位于第i 行,第j 列的数记为,i j a ,比如3,24,25,49,15,23a a a ===,若,2017i j a =,则i j +=()A.64B.65C.71D.724.已知{}n a 为等差数列,若3489a a a ++=,则9S =()A.24B.27C.36D.545.已知{}n a 是等差数列,且34784,8a a a a +=-+=-,则这个数列的前10项和等于()A.16- B.30- C.32- D.60-6.已知等差数列{}n a 满足3456790a a a a a ++++=,则28a a +等于()A.18B.30C.36D.457.设等差数列{}n a 的前n 项和为n S ,若14611,6a a a =-+=-,则当n S 取最小值时,n 等于()A.6B.7C.8D.58.等差数列{}n a 中,已知611||||a a =,且公差0d >,则其前n 项和取最小值时n 的值为()A.6B.7C.8D.99.已知等差数列{}n a 的公差0d ≠,且139,,a a a 成等比数列,则1392410a a aa a a++++的值为()A .914B .1115C .1316D .151710.中国古代数学著作《算法统宗》中有这样一个问题:有一人走了378里路,第一天健步行走,从第二天起,由于脚痛,每天走的路程是前一天的一半,走了6天后到达目的地,则此人第二天走的路程为()A .96里B .189里C .192里D .288里11.记n S 为等比数列{}n a 的前n 项和,若23a a =89,5a =163,则()A .23nn a =B .13n n a -=C .312nn S -=D .213n n S -=12.已知数列{}n a 的前n 项和为n S ,满足21n n S a =-,则{}n a 的通项公式n a =()A .21n -B .12n -C .21n-D .21n +13.等比数列{}n a 各项均为正数,若12118,n n n a a a a ++=+=,则{}n a 的前6项和为()A.1365B.63C.6332D.1365102414.已知等比数列{}n a 的各项都为正数,当2n 时,22222n n a a -=,设2log n n b a =,数列()21(1)1nn n n b b ⎧⎫+⎪⎪-⎨⎬+⎪⎪⎩⎭的前n 项和为n S ,则2020S =()A.20202021B.20202021-C.20192020-D.2019202015.化简式子11111+++12233445(1)n n ++=⨯⨯⨯⨯+ ()A.n +11B.n n -+11C.n n +1 D.n n-1答案以及解析1.答案:B解析:{}n a ∵是各项均为正数的等比数列,4756a a a a =∴又475618a a a a +=,47569a a a a ==∴110293847569a a a a a a a a a a =====∴()3132310312310log log log log a a a a a a a ++⋅⋅⋅+=⋅⋅⋅∴51033log 9log 310===2.答案:A解析:由等差数列的性质得,79412a a a a +=+,∵79416,1a a a +==,∴1279415a a a a =+-=.故选A.3.答案:D解析:按照蛇形排列,第1行到第i 行末共有(1)122i i i ++++=个奇数,则第1行到第44行末共有990个奇数;第1行到第45行末共有1035个奇数;则2017位于第45行;而第45行是从右到左依次递增,且共有45个奇数;故2017位于第45行,从右到左第19列,则45,2772i j i j ==⇒+=,故选D4.答案:B解析:根据等差数列的通项公式,我们根据3489a a a ++=,易求也53a =,由等差数列的前 n 项和公式,我们易得()91992S a a =+,结合等差数列的性质“当2q m n =+时,2a q =a m +a n ”,得()1952a a a +=,即可得到答案.解:设等差数列{}n a 的公差为 d ,3489a a a ++= ()()()1112379a d a d a d ∴+++++=即()1349a d +=143a d ∴+=即53a =又()919992S a a =+=527a =5.答案:B解析:通解设{}n a 的公差为d ,则341781254,2138,a a a d a a a d +=+=-⎧⎨+=+=-⎩解得13,41,2a d ⎧=-⎪⎪⎨⎪=-⎪⎩所以{}n a 的前10项和10310911030422S ⨯⎛⎫⎛⎫=⨯-+⨯-=- ⎪ ⎪⎝⎭⎝⎭.故选B.优解因为数列{}n a 是等差数列,所以374856,22a a a a a a ++==,所以34785662a a a a a a ++++==-,所以{}n a 的前10项和()()110561*********a a a a S ++===-.故选B.6.答案:C解析:因为等差数列{}n a 满足3456790a a a a a ++++=,所以由题55590,18a a ==,285236a a a +==.7.答案:A解析:465676320,0a a a d a a +=-∴=-∴∴<>=,所以6S 最小8.答案:C解析:由0d >可得等差数列{}n a 是递增数列,又611||||a a =,所以611a a -=,即11510a d a d --=+,所以1152d a =-,则890,022d da a =-<=>,所以前8项和为前n 项和的最小值,故选C.9.答案:C解析:等差数列{}n a 中,因为139,,a a a 成等比数列,所以有2319a a a =⋅,即()()211128a d a a d +=⋅+,解得1d a =,所以该等差数列的通项为n a nd =,则1392410(139)13(2410)16a a a d a a a d ++++==++++,故选C .10.答案:A 解析:111113782481632x x x x x x +++++=,解得192x =,故962x =.11.答案:D解析:设公比为q ,有2314189163a q a q ⎧=⎪⎪⎨⎪=⎪⎩,解得1132a q ⎧=⎪⎨⎪=⎩,则1(12)213123n n n S --==-.12.答案:B解析:当1n =时,111121,1S a a a =-=∴=,当2n ≥时,11122,2n n n n n n n a S S a a a a ---=-=-∴=,因此12n n a -=13.答案:B解析:设公比为(0).q q >218,n n n a a a +++= 228,n n n a q a q a ∴+=228,q q ∴+=解得2q =或4q =-(舍),661(12)63,12S ⨯-∴==-故选B.14.答案:B解析: 数列{}n a 是各项都为正数的等比数列,∴当2n 时,222222n n na a a -==,2(2)n n a n ∴= ,又{}n a 为等比数列,*22,,log n n n n a n b a n ∴=∈∴==N ,()212111(1)(1)(1)1(1)1nn n n n n n b b n n n n ++⎛⎫∴-=-=-+ ⎪+++⎝⎭,2020111111122320192020S ⎛⎫⎛⎫⎛⎫∴=-+++--++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 111202012020202120212021⎛⎫+=-+=- ⎪⎝⎭,故选B.15.答案:C 解析:()n n n n =-++111∵11()n n +++⋅⋅⋅+⨯⨯⨯⨯+1111∴1223341n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-+⋅⋅⋅+-=-= ⎪ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎝⎭111111111122334111。
高考数学二轮复习数列多选题知识点及练习题含答案
高考数学二轮复习数列多选题知识点及练习题含答案一、数列多选题1.各项均为正数的等比数列{}n a 的前n 项积为n T ,若11a >,公比1q ≠,则下列命题正确的是( )A .若59T T =,则必有141T =B .若59T T =,则必有7T 是n T 中最大的项C .若67T T >,则必有78T T >D .若67T T >,则必有56T T >【答案】ABC 【分析】根据题意,结合等比数列的通项公式、等差数列的前n 项和公式,以及等比数列的性质,逐项分析,即可求解. 【详解】由等比数列{}n a 可知11n n a a q -=⋅,由等比数列{}n a 的前n 项积结合等差数列性质可知:()1211212111111123n n n n n n n n a a q a q a qa a T a a a q a q--+++-=⋅⋅⋅==⋅=对于A ,若59T T =,可得51093611a q a q =,即42611a q =,()71491426211141a q q T a ∴===,故A 正确;对于B ,若59T T =,可得42611a q =,即13211a q=,又11a >,故1q <,又59T T =,可知67891a a a a =,利用等比数列性质知78691a a a a ==,可知67891,1,1,1a a a a >><<,故7T 是n T 中最大的项,故B 正确;对于C ,若67T T >,则61572111a q a q >,即611a q <,又10a >,则1q <,可得76811871T T a a q a q <=<=,故78T T >,故C 正确; 对于D ,若67T T >,则611a q <,56651T a T a q ==,无法判断其与“1”的大小关系,故D 错误. 故选:ABC 【点睛】关键点点睛:本题主要考查了等比数列的通项公式及等差数列前n 项和公式,以及等比数列的性质的应用,其中解答中熟记等比数列的通项公式和性质及等差数列的求和公式,准确运算是解答的关键,着重考查了学生的推理与运算能力,属于较难题.2.某集团公司有一下属企业A 从事一种高科技产品的生产.A 企业第一年年初有资金2000万元,将其投入生产,到当年年底资金增长了40%,预计以后每年资金年增长率与第一年的相同.集团公司要求A 企业从第一年开始,每年年底上缴资金t 万元(800t <),并将剩余资金全部投入下一年生产.设第n 年年底A 企业上缴资金后的剩余资金为n a 万元.则( )A .22800a t =-B .175n n a a t +=- C .1n n a a +> D .当400t =时,33800a >【答案】BC 【分析】先求得第一年年底剩余资金1a ,第二年底剩余资金2a ,即可判断A 的正误;分析总结,可得1n a +与n a 的关系,即可判断B 的正误;根据题意,求得n a 的表达式,利用作差法即可比较1n a +与n a 的大小,即可判断C 的正误,代入400t =,即可求得3a ,即可判断D 的正误,即可得答案. 【详解】第一年年底剩余资金12000(140%)2800a t t =⨯+-=-, 第二年底剩余资金211712(140%)392055a a t a t t =⨯+-=-=-,故A 错误; 第三年底剩余资金3227109(140%)5488525t a a t a t =⨯+-=-=-,⋅⋅⋅ 所以第n +1年年底剩余资金为17(140%)5n n n a a t a t +=⨯+-=-,故B 正确; 因为212277777()()55555n n n n a a t a t t a t t ---=-=--=--12217777()[1()()]5555n n a t --=-+++⋅⋅⋅+117[1()]75()(2800)7515n n t t ---=---=11757()(2800)[()1]525n n t t -----=1775()(2800)522n t t --+, 所以111722775277[()(2800)]()(2800)555522552n n n n n n n t t ta a a t a a t t --+-=--=-=-+-=-,因为800t <,所以7280002t->, 所以11277()(2800)0552n n n ta a -+-=->,即1n n a a +>,故C 正确; 当400t =时,310910940054885488374438002525t a ⨯=-=-=<,故D 错误; 故选:BC 【点睛】解题的关键是根据123,,a a a ,总结出n a ,并利用求和公式,求得n a 的表达式,综合性较强,考查计算化简的能力,属中档题.3.已知数列{}n a ,{}n b 满足,11a =,11n n n a a a +=+,1(1)n n b n a =+,若23100100122223100b b b T b =++++,则( ) A .n a n = B .1n n b n =+ C .100100101T =D .10099100T =【答案】BC 【分析】 先证明数列1n a 是等差数列得1n a n =,进而得1(1)1n nn b n a n ==++,进一步得()211111n b n n n n n ==-++,再结合裂项求和得100100101T =. 【详解】 解:因为11nn n a a a +=+,两边取倒数得: 1111n n a a +=+,即1111n na a ,所以数列1n a 是等差数列,公差为1,首项为111a ,故()1111n n n a =+-⨯=,所以1n a n=, 所以1(1)1n n nb n a n ==++,故()211111n b n n n n n ==-++, 所以31002100122211112310022334100101b b b T b =++++=++++⨯⨯⨯11111111100122334100101101101⎛⎫⎛⎫⎛⎫=+-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 故BC 正确,AD 错误; 故选:BC 【点睛】本题考查数列通项公式的求解,裂项求和,考查运算求解能力,是中档题.本题解题的关键在于证明数列1na 是等差数列,进而结合裂项求和求解100T .4.关于等差数列和等比数列,下列四个选项中正确的有( ) A .若数列{}n a 的前n 项和22n S n =,则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等比数列C .若等比数列{}n a 是递增数列,则{}n a 的公比1q >D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,仍为等比数列 【答案】AB 【分析】对于A ,求出 42n a n =-,所以数列{}n a 为等差数列,故选项A 正确;对于B , 求出2n n a =,则数列{}n a 为等比数列,故选项B 正确;对于选项C ,有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 【详解】对于A ,若数列{}n a 的前n 项和22n S n =,所以212(1)(2)n S n n -=-≥,所以142(2)n n n a S S n n -=-=-≥,适合12a =,所以数列{}n a 为等差数列,故选项A 正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,所以122(2)nn S n -=-≥,所以12(2)n n n n a S S n -=-=≥,又1422a =-=,2218224a S S =-=--=, 212a a =则数列{}n a 为等比数列,故选项B 正确;对于选项C ,若等比数列{}n a 是递增数列,则有可能10,01a q <<<,不一定 1q >,所以选项C 错误;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故选项D 不正确. 故选:AB 【点睛】方法点睛:求数列的通项常用的方法有:(1)公式法;(2)归纳法;(3)累加法;(4)累乘法;(5)构造法. 要根据已知条件灵活选择方法求解.5.已知数列{}n a 的前n 项和为n S ,11a =,且1n n S a λ-=(λ为常数).若数列{}n b 满足2920n n a b n n -+-=,且1n n b b +<,则满足条件的n 的取值可以为( )A .5B .6C .7D .8【答案】AB 【分析】利用11a S =可求得2λ=;利用1n n n a S S -=-可证得数列{}n a 为等比数列,从而得到12n na ,进而得到nb ;利用10nnb b 可得到关于n 的不等式,解不等式求得n 的取值范围,根据n *∈N 求得结果.【详解】当1n =时,1111a S a λ==-,11λ∴-=,解得:2λ=21n n S a ∴=-当2n ≥且n *∈N 时,1121n n S a --=-1122n n nn n a S S a a ,即:12n n a a -=∴数列{}n a 是以1为首项,2为公比的等比数列,12n na2920n n a b n n =-+-,219202n n n n b --+-∴= ()()222111912092011280222n n n n nn n n n n n b b +--+++--+--+∴-=-=< 20n >,()()21128470n n n n ∴-+=--<,解得:47n <<又n *∈N ,5n ∴=或6 故选:AB 【点睛】关键点点睛:本题考查数列知识的综合应用,涉及到利用n a 与n S 的关系求解通项公式、等比数列通项公式的求解、根据数列的单调性求解参数范围等知识,解决本题的关键点是能够得到n b 的通项公式,进而根据单调性可构造出关于n 的不等式,从而求得结果,考查学生计算能力,属于中档题.6.已知数列{}n a ,{}n b 满足:12n n n a a b +=+,()*1312lnn n n n b a b n N n++=++∈,110a b +>,则下列命题为真命题的是( )A .数列{}n n a b -单调递增B .数列{}n n a b +单调递增C .数列{}n a 单调递增D .数列{}n b 从某项以后单调递增【答案】BCD 【分析】计算221122ln 2a b a b a b -=--<-,知A 错误;依题意两式相加{}ln +-n n a b n 是等比数列,得到()1113ln -+=+⋅+n n n a b a b n ,知B 正确;结合已知条件,计算10n n a a +->,即得C 正确;先计算()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-,再结合指数函数、对数函数增长特征知D 正确. 【详解】由题可知,12n n n a a b +=+①,1312lnn n n n b a b n ++=++②,①-②得,1131lnn n n n n a b a b n+++-=--,当1n =时,2211ln 2a b a b -=--,∴2211-<-a b a b ,故A 错误.①+②得,()113ln(1)3ln n n n n a b a b n n +++=+++-,()11ln(1)3ln n n n n a b n a b n +++-+=+-,∴{}ln +-n n a b n 是以11a b +为首项,3为公比的等比数列,∴()111ln 3-+-=+⋅n n n a b n a b ,∴()1113ln -+=+⋅+n n n a b a b n ,③又110a b +>,∴B 正确.将③代入①得,()()11113ln n n n n n n a a a b a a b n -+=++=++⋅+,∴()11113ln 0n n n a a a b n -+-=+⋅+>,故C 正确.将③代入②得,()()11113311ln 3ln ln n n n n n n n n b b a b b a b n n n -+++=+++=++⋅++,∴()11113ln(1)2ln n n n b b a b n n -+-=+⋅++-.由110a b +>,结合指数函数与对数函数的增长速度知,从某个()*n n N∈起,()1113ln 0n a b n -+⋅->,又ln(1)ln 0n n +->,∴10n n b b +->,即{}n b 从某项起单调递增,故D 正确. 故选:BCD . 【点睛】判定数列单调性的方法:(1)定义法:对任意n *∈N ,1n n a a +>,则{}n a 是递增数列,1n n a a +<,则{}n a 是递减数列;(2)借助函数单调性:利用()n a f n =,研究函数单调性,得到数列单调性.7.(多选)设数列{}n a 是等差数列,公差为d ,n S 是其前n 项和,10a >且69S S =,则( ) A .0d > B .80a =C .7S 或8S 为n S 的最大值D .56S S >【答案】BC 【分析】根据69S S =得到80a =,再根据10a >得到0d <,可得数列{}n a 是单调递减的等差数列,所以7S 或8S 为n S 的最大值,根据6560S S a -=>得65S S >,故BC 正确. 【详解】由69S S =得,960S S -=, 即7890a a a ++=,又7982a a a +=,830a ∴=,80a ∴=,∴B 正确;由8170a a d =+=,得17a d =-,又10a >,0d ∴<,∴数列{}n a 是单调递减的等差数列,()()0,70,9n n a n N n a n N n **⎧>∈≤⎪∴⎨<∈≥⎪⎩, 7S ∴或8S 为n S 的最大值,∴A 错误,C 正确; 6560S S a -=>,65S S ∴>,所以D 错误.故选:BC . 【点睛】关键点点睛:根据等差中项推出80a =,进而推出0d <是解题关键.8.设等差数列{a n }的前n 项和为S n ,公差为d .已知a 3=12,S 12>0,a 7<0,则( ) A .a 6>0 B .2437d -<<- C .S n <0时,n 的最小值为13 D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项 【答案】ABCD 【分析】S 12>0,a 7<0,利用等差数列的求和公式及其性质可得:a 6+a 7>0,a 6>0.再利用a 3=a 1+2d =12,可得247-<d <﹣3.a 1>0.利用S 13=13a 7<0.可得S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】 ∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0, 但是随着n 的增大而减小,可得:nn S a <0,但是随着n 的增大而增大.∴n =7时,nnS a 取得最小值.综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.二、平面向量多选题9.设a ,b ,c 是任意的非零向量,且它们相互不共线,给出下列选项,其中正确的有( )A .()a cbc a b c ⋅-⋅=-⋅ B .()()b c a c a b ⋅⋅-⋅⋅与c 不垂直 C .a b a b -<-D .()()22323294a b a b a b +⋅-=- 【答案】ACD 【分析】A ,由平面向量数量积的运算律可判断;B ,由平面向量垂直的条件、数量积的运算律可判断;C ,由a 与b 不共线,可分两类考虑:①若a b ≤,则a b a b -<-显然成立;②若a b >,由a 、b 、a b -构成三角形的三边可进行判断;D ,由平面向量的混合运算将式子进行展开即可得解. 【详解】选项A ,由平面向量数量积的运算律,可知A 正确; 选项B ,()()()()()()()()0b c a c a b c b c a c c a b c b c a c b c c a ⎡⎤⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-⋅⋅⋅=⎣⎦, ∴()()b c a c a b ⋅⋅-⋅⋅与c 垂直,即B 错误;选项C ,∵a 与b 不共线,∴若a b ≤,则a b a b -<-显然成立;若a b >,由平面向量的减法法则可作出如下图形:由三角形两边之差小于第三边,可得a b a b -<-.故C 正确;选项D ,()()22223232966494a b a b a a b a b b a b +⋅-=-⋅+⋅-=-,即D 正确. 故选:ACD 【点睛】本小题主要考查向量运算,属于中档题.10.如图,已知点O 为正六边形ABCDEF 中心,下列结论中正确的是( )A .0OA OC OB ++=B .()()0OA AF EF DC -⋅-= C .()()OA AF BC OA AF BC ⋅=⋅D .OF OD FA OD CB +=+-【答案】BC【分析】利用向量的加法法则、减法法则的几何意义,对选项进行一一验证,即可得答案. 【详解】对A ,2OA OC OB OB ++=,故A 错误;对B ,∵OA AF OA OE EA -=-=,EF DC EF EO OF -=-=,由正六边形的性质知OF AE ⊥,∴()()0OA AF EF DC -⋅-=,故B 正确; 对C ,设正六边形的边长为1,则111cos1202OA AF ⋅=⋅⋅=-,111cos602AF BC ⋅=⋅⋅=, ∴()()OA AF BC OA AF BC ⋅=⋅1122BC OA ⇔-=,式子显然成立,故C 正确; 对D ,设正六边形的边长为1,||||1OF OD OE +==,||||||||3FA OD CB OD DC CB OC OA AC +-=+-=-==,故D 错误;故选:BC. 【点睛】本题考查向量的加法法则、减法法则的几何意义,考查数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意向量的起点和终点.。
2025届高考数学二轮复习-数列题型解答题专项训练【含解析】
2025届高考数学二轮复习-数列题型解答题专项训练一、解答题1.已知数列{}n a 的前n 项和为n S ,且()113n n S a =-.(1)求1a ,2a ;(2)证明:数列{}n a 是等比数列.答案:(1)112a =-;214a =(2)数列{}n a 是首项和公比均为12-的等比数列解析:(1)当1n =时,()111113a S a ==-,所以112a =-.当2n =时,()22211123S a a =-+=-,所以214a =.(2)由()113n n S a =-,得()1111(2)3n n S a n --=-≥,所以()111(2)3n n n n n a S S a a n --=-=-≥,所以11(2)2n n a a n -=-≥.又112a =-,所以数列{}n a 是首项和公比均为12-的等比数列.所以数列{}n a 是以3为首项,2为公差的等差数列.(2)由(1)知()32121n a n n =+-=+.3.在数列{}n a 中,14a =,1431n n a a n +=-+,*n ∈N .(1)设n n b a n =-,求证:数列{}n b 是等比数列;(2)求数列{}n a 的前n 项和n S .答案:(1)见解析(2)()1412n n n ++-解析:(1)证明:1431,n n a a n +=-+11(1)43114()4,n n n n n b a n a n n a n b ++∴=-+=-+--=-=又111413,b a =-=-=∴数列{}n b 是首项为3、公比为4的等比数列;(2)由(1)可知134n n a n --=⨯,即134n n a n -=+⨯,()()()31411412142n n n n n n n S -++∴=+=--.4.在数列{}n a 中,616a =,点()()1,n n a a n *+∈N 在直线30x y -+=上.(1)求数列{}n a 的通项公式;(2)若2n n n b a =,求数列{}n b 的前n 项和n T .答案:(1)32n a n =-(2)见解析解析:(1)依题意,130n n a a +-+=,即13n n a a +-=,因此数列{}n a 是公差为3的等差数列,则63(6)32n a a n n =+-=-,所以数列{}n a 的通项公式是32n a n =-.(2)由(1)得(32)2n n b n =-⋅,则132421242(32)2n n T n =⨯+⨯+⋅⋅⋅+-⨯+⨯,于是23121242(35)2(32)2n n n T n n +=⨯+⨯+⋅⋅⋅+-⨯+-⨯,两式相减得2123112(12))23(222(32)22(312)232n n n n n T n n ++--=+++⋅⋅⋅+--⋅--⋅-=+⋅-1(532)10n n +⋅=--,所以1(35)210n n T n +=-⋅+.5.已知公差不为0的等差数列{}n a 的前n 项和为n S ,且636S =,1a ,3a ,13a 成等比数列.(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若不等式4n kT <对任意的*n ∈N 都成立,求实数k的取值范围.答案:(1)21n a n =-(2)2k ≥.解析:(1)设等差数列{}n a 公差为d ,由题意1211161536(2)(12)a d a d a a d +=⎧⎨+=+⎩,0d ≠,解得112a d =⎧⎨=⎩,所以12(1)21n a n n =+-=-;(2)由(1)111111()(21)(21)22121n n a a n n n n +==--+-+,所以1111111111(1)()((12323522121221n T n n n =-+-++-=--++,易知n T 是递增的且12n T <,不等式4n k T <对任意的*n ∈N 都成立,则142k ≥,所以2k ≥.6.已知数列{}n a 的前n 项和n S 满足24(1)n S n =+,n +∈N .(1)求数列{}n a 的通项公式;(2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,若对任意的n +∈N ,不等式25n T a a <-恒成立,求实数a 的取值范围.答案:(1) 1, 1 21, 24n n a n n =⎧⎪=⎨+≥⎪⎩(2)3a ≤-或4a ≥解析:(1)24(1)n S n =+当1n =时,214(11)a =+,即11a =当2n ≥时,由1n n n a S S -=-,故224(1)21n a n n n =+-=+,得214n n a +=.易见11a =不符合该式,故 1 121, 24n n a n n =⎧⎪=⎨+=⎪⎩,(2)由0n a >,易知n T 递增;112145T a a ==当2n ≥时,()()111611821232123n n a a n n n n +⎛⎫==- ⎪++++⎝⎭.从而41111111281285577921235235n T n n n ⎛⎫=+-+-++-=-< ⎪+++⎝⎭.又由25n T a a <-,故212a a ≤-,解得3a ≤-或4a ≥即实数a 的取值范围为3a ≤-或4a ≥7.记n S 为数列{}n a 的前n 项和,已知112a =,n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列.(1)求{}n a 的通项公式;(2)设()1nn n b a =-,求{}n b 的前2n 项和2n T .答案:(1)12n a n =(2)2n解析:(1)由n n S a ⎧⎫⎨⎬⎩⎭是公差为12的等差数列,且111S a =,则()11111222n n S n n a =+-⨯=+,即()21n n S n a =+,当2n ≥时,112n n S na --=,两式相减可得:()121n n n a n a na -=+-,整理可得11n n a na n -=-,故121121121121212n n n n n a a a n n a a n n a a a n ----=⋅⋅⋅⋅=⨯⨯⨯⨯-=-,将1n =代入上式,12n a =,故{}n a 的通项公式为12n a n =.(2)由()1nn n b a =-,则21212342221n n n n a a T b a a a a b b -=-+-+-+-+++=()()()()22121242132122n n n n n a a n a a a a a a a a --++=+++-+++=-()111122*********n nn n ⎡⎤=⨯+⨯-⨯-⨯⎢⎥⎦=-⎣.8.已知数列{}n a 是各项均为正数的等比数列,且11a =,34a =,数列{}n b 中()*221log log n n n b a a n +=+∈N .(1)求数列{}n b 的通项公式;(2)若数列{}n b 的前n 项和为n S ,数列{}n c 满足141n n c S =-,求数列{}n c 的前n 项和n T .答案:(1)21n b n =-(2)21n nT n =+解析:(1)正项等比数列{}n a 的公比为q ,由231a a q =,得24q =,而0q >,解得2q =,于是1112n n n a a q --==,由221log log n n n b a a +=+,得12222log o 21l g n n n n b -=+=-,所以数列{}n b 的通项公式21n b n =-.(2)由(1)知,21n b n =-,显然数列{}n b 是等差数列,21(21)2n n S n n +-=⋅=,2111111(4141(21)(21)22121n n c S n n n n n ====----+-+,所以11111111[(1)()()](1)2335212122121n nT n n n n =-+-++-=-=-+++.9.已知等差数列{}n a 前n 项和为n S ,满足33a =,410S =.数列{}n b 满足12b =,112n n n nb a b a ++=,*n ∈N .(1)求数列{}n a ,{}n b 的通项公式;(2)设数列{}n c 满足()1(1)32n n n n n c a b +-+=,*n ∈N ,求数列{}n c 的前n 项和n T .答案:(1)见解析(2)见解析解析:(1)设数列{}n a 的公差为d ,11234610a d a d +=⎧∴⎨+=⎩,解得11a =,1d =,n a n ∴=.()121n n n b b n ++=,112n n b n b n++∴=,且121b =,所以n b n ⎧⎫⎨⎬⎩⎭是等比数列,2n nb n∴=,2n n b n ∴=⋅(2)()()()()1111(1)3211(1)(1)(1)12212212n n n nn n n n n n n c n n n n n n ++++⎛⎫-+--==-+=- ⎪ ⎪+⋅⋅+⋅⋅+⋅⎝⎭,()1111(1)212n n n T n ++∴=---+⋅10.已知各项为正的数列{}n a 的首项为2,26a =,22211122n n n n n n n n a a a a a a a a +++++-=--.(1)求数列{}n a 的通项公式;(2)设数列{}n a 的前n 项和n S ,求数列{}28n n S a +-(其中*n ∈N )前n 项和的最小值.答案:(1)42n a n =-(2)最小值为38-解析:(1)因为22211122n n n n n n n n a a a a a a a a +++++-=--,所以有()()12120n n n n n a a a a a +++++-=,而0n a >,10n n a a +∴+≠,所以2120n n n a a a +++-=,则211121n n n n n n a a a a a a a a +++--=-=-=⋅⋅⋅=-,又12a =,26a =,∴214a a -=,由等差数列定义知数列{}n a 是以2为首项,4为公差的等差数列.∴数列{}n a 的通项公式为42n a n =-.(2)由(1)有2(1)=2+4=22n n n S n n -⨯,()()2282430253n n S a n n n n ∴+-=+-=+-,令280n n S a +->,有4,5,6,n =⋅⋅⋅;280n n S a +-<,有1,2n =;280n n S a +-=,有3n =.所以{}28n n S a +-前n 项和的最小值为()()()()215132252338+-++-=-,当且仅当2n =,3时取到.11.记n S 为数列{}n a 的前n 项和,已知2n S n =,等比数列{}n b 满足11b a =,35b a =.(1)求{}n a 的通项公式;(2)求{}n b 的前n 项和n T .答案:(1)()*21n a n n =-∈N (2)当3q =时,3122n n T =-;当3q =-时,1(3)44n n T -=-.解析:(1)当1n =时,111a S ==,当2n ≥时,1n n n a S S -=-22(1)n n =--21n =-,因为11a =适合上式,所以()*21n a n n =-∈N .(2)由(1)得11b =,39b =,设等比数列{}n b 的公比为q ,则2319b b q =⋅=,解得3q =±,当3q =时,()113311322n n nT ⋅-==--,当3q =-时,11(3)1(3)1(3)44nn n T ⎡⎤⋅---⎣⎦==---.12.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若4a ,7a ,9a 成等比数列,求n S 的最小值.答案:(1)证明见解析(2)12n =或13时,n S 取得最小值,最小值为-78解析:(1)由221nn S n a n+=+,得2n n 22S n a n n +=+,①所以2112(1)2(1)(1)n n S n a n n ++++=+++,②②-①,得112212(1)21n n n a n a n a n ++++=+-+,化简得11n n a a +-=,所以数列{}n a 是公差为1的等差数列.(2)由(1)知数列{}n a 的公差为1.由2749a a a =,得()()()2111638a a a +=++,解得112a =-.所以22(1)251256251222228n n n n n S n n --⎛⎫=-+==-- ⎪⎝⎭,所以当12n =或13时,n S 取得最小值,最小值为-78.13.已知数列{}n a 满足11a =,11,,22,n n n a n n a a n n +⎧+⎪=⎨⎪-⎩为奇数为偶数,数列{}n b 满足22n n b a =-.(1)求2a ,3a .(2)求证:数列{}n b 是等比数列,并求其通项公式.(3)已知12log n n c b =,求证:122311111n nc c c c c c -+++<.答案:(1)232a =,352a =-(2)证明见解析(3)证明见解析解析:(1)由数列{}n a 的递推关系,知2113122a a =+=,325222a a =-⨯=-.(2)()12221212211112(21)2(21)4(21)12222n n n n n n b a a n a n a n n a ++++=-=++-=+-=-+-=-()211222n n a b =-=.因为12122b a =-=-,所以数列{}n b 的各项均不为0,所以112n n b b +=,即数列{}n b 是首项为12-,公比为12的等比数列,所以1111222n nn b -⎛⎫⎛⎫=-=- ⎪⎪⎝⎭⎝⎭.(3)由(2)知11221log log 2nn n c b n ⎛⎫=== ⎪⎝⎭.所以12231111n nc c c c c c -+++1111223(1)n n =+++⨯⨯-1111112231n n=-+-++--11n=-1<.14.已知数列{}n a 是公比为2的等比数列,2a ,3a ,44a -成等差数列.(1)求数列{}n a 的通项公式;(2)若21log nn na b a +=,设数列{}n b 的前n 项和为n T ,求证:13n T ≤<.答案:(1)2n n a =(2)证明见解析解析:(1)因为2a ,3a ,44a -成等差数列,所以32424a a a =+-,又因为数列{}n a 的公比为2,所以2311122224a a a ⨯=+⨯-,即1118284a a a =+-,解得12a =,所以1222n n n a -=⨯=.(2)由(1)知2nn a =,则221log 1log 2122n n n nn n a n b a +++===,所以2323412222n nn T +=++++,①231123122222n n n n n T ++=++++,②①-②得23111111122222n nn n T ++⎛⎫=++++- ⎪⎝⎭212111111111122221111221122n n n n n n -+++⎛⎫-- ⎪++⎝⎭=+-=+---11112133122222n n n n n +++++=+--=-.所以3332n nn T +=-<.又因为102n n n b +=>,所以{}n T 是递增数列,所以11n T T ≥=,所以13n T ≤<.15.在①221n n b b =+,②212a b b =+,③1b ,2b ,4b 成等比数列这三个条件中选择符合题意的两个条件,补充在下面的问题中,并求解.已知数列{}n a 中,11a =,13n n a a +=,公差不等于0的等差数列{}n b 满足__________,__________求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n S .答案:选①②;选②③解析:因为11a =,13n n a a +=,所以{}n a 是以1为首项,3为公比的等比数列,所以13n n a -=.方案一:选①②.设数列{}n b 的公差为d ,因为23a =,所以123b b +=.因为221n n b b =+,所以1n =时,2121b b =+,解得123b =,273b =,所以53d =,所以533n n b -=,满足221n n b b =+,所以533n n n b n a -=,所以12123122712533333n n nn b b b n S a a a -=+++=++++,所以2341127125853333333n n n n n S +--=+++++,两式相减,得23111122111532515533109533333336233223n n n n n n n n n S ++++--+⎛⎫=++++-=+--=- ⎪⨯⨯⎝⎭,所以9109443n n n S +=-⨯.方案二:选②③.设数列{}n b 的公差为d ,因为2133a a ==,所以123b b +=,即123b d +=.因为1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以11d b ==,所以n b n =,所以13n n n b n a -=,所以120121121233333n n n n b b b n S a a a -=+++=++++,所以123111231333333n n nn n S --=+++++,两式相减,得1231211113132311333333233223n n n n n n n n n S -+⎛⎫=+++++-=--=- ⎪⨯⎝⎭,所以1923443n n n S -+=-⨯.方案三:选①③.设数列{}n b 的公差为d ,因为221n n b b =+,所以1n =时,2121b b =+,所以11d b =+.又1b ,2b ,4b 成等比数列,所以2214b b b =,即()()21113b d b b d +=+,化简得21d b d =.因为0d ≠,所以1b d =,此式与11d b =+矛盾.所以等差数列{}n b 不存在,故不符合题意.。
高考数学二轮复习专题过关检测—数列(含解析)
高考数学二轮复习专题过关检测—数列一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021·内蒙古包头一模)在数列{a n }中,a 1=2,a n+1-a n -2=0,则a 5+a 6+…+a 14=( ) A.180B.190C.160D.1202.(2021·北京朝阳期末)已知等比数列{a n }的各项均为正数,且a 3=9,则log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=( ) A.52B.53C.10D.153.(2021·湖北荆州中学月考)设等比数列{a n }的前n 项和为S n ,若S10S 5=12,则S15S 5=( )A.12B.13C.23D.344.(2021·北京师大附属中学模拟)我国明代著名乐律学家明宗室王子朱载堉在《律学新说》中提出十二平均律,即是现代在钢琴的键盘上,一个八度音程从一个c 键到下一个c 1键的8个白键与5个黑键(如图),从左至右依次为:c ,#c ,d ,#d ,e ,f ,#f ,g ,#g ,a ,#a ,b ,c 1的音频恰成一个公比为√212的等比数列的原理,也即高音c 1的频率正好是中音c 的2倍.已知标准音a 的频率为440 Hz,则频率为220√2 Hz 的音名是( )A.dB.fC.eD.#d5.(2021·四川成都二诊)已知数列{a n}的前n项和S n=n2,设数列{1a n a n+1}的前n项和为T n,则T20的值为()A.1939B.3839C.2041D.40416.(2021·河南新乡二模)一百零八塔位于宁夏吴忠青铜峡市,是始建于西夏时期的喇嘛式实心塔群,是中国现存最大且排列最整齐的喇嘛塔群之一.一百零八塔,因塔群的塔数而得名,塔群随山势凿石分阶而建,由下而上逐层增高,依山势自上而下各层的塔数分别为1,3,3,5,5,7,…,该数列从第5项开始成等差数列,则该塔群最下面三层的塔数之和为()A.39B.45C.48D.517.(2021·陕西西安铁一中月考)在1到100的整数中,除去所有可以表示为2n(n∈N*)的整数,则其余整数的和是()A.3 928B.4 024C.4 920D.4 9248.已知函数f(n)={n2,n为奇数,-n2,n为偶数,且a n=f(n)+f(n+1),则a1+a2+a3+…+a100等于()A.0B.100C.-100D.10 200二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2021·辽宁沈阳三模)已知等比数列{a n}的前n项和S n=4n-1+t,则()A.首项a1不确定B.公比q=4C.a2=3D.t=-1410.(2021·山东临沂模拟)已知等差数列{a n}的前n项和为S n,公差d=1.若a1+3a5=S7,则下列结论一定正确的是()A.a5=1B.S n的最小值为S3C.S1=S6D.S n存在最大值11.已知数列{a n}是等差数列,其前30项和为390,a1=5,b n=2a n,对于数列{a n},{b n},下列选项正确的是() A.b10=8b5 B.{b n}是等比数列C.a1b30=105D.a3+a5+a7a2+a4+a6=20919312.(2021·广东广州一模)在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;……第n(n∈N*)次得到数列1,x1,x2,x3,…,x k,2.记a n=1+x1+x2+…+x k+2,数列{a n}的前n项和为S n,则()A.k+1=2nB.a n+1=3a n-3C.a n =32(n 2+3n )D.S n =34(3n+1+2n-3) 三、填空题:本题共4小题,每小题5分,共20分.13.(2021·山西太原检测)在等差数列{a n }中,若a 2,a 2 020为方程x 2-10x+16=0的两根,则a 1+a 1 011+a 2 021等于 .14.(2021·江苏如东检测)已知数列{a n }的前n 项和为S n ,且S n =2a n -2,则数列{log 2a n }的前n 项和T n = .15.将数列{2n-1}与{3n-2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 .16.(2021·新高考Ⅰ,16)某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20 dm ×12 dm 的长方形纸,对折1次共可以得到10 dm ×12 dm,20 dm ×6 dm 两种规格的图形,它们的面积之和S 1=240 dm 2,对折2次共可以得到5 dm ×12 dm,10 dm ×6 dm,20 dm ×3 dm 三种规格的图形,它们的面积之和S 2=180 dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为 ;如果对折n 次,那么∑k=1nS k =dm 2.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)(2021·海南海口模拟)已知正项等比数列{a n },a 4=116,a 5a 7=256. (1)求数列{a n }的通项公式; (2)求数列{|log 2a n |}的前n 项和.18.(12分)(2021·全国甲,理18)已知数列{a n}的各项均为正数,记S n为{a n}的前n项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{a n}是等差数列;②数列{√S n}是等差数列;③a2=3a1.19.(12分)(2021·山东济宁二模)已知数列{a n}是正项等比数列,满足a3是2a1,3a2的等差中项,a4=16.(1)求数列{a n}的通项公式;(2)若b n=(-1)n log2a2n+1,求数列{b n}的前n项和T n.20.(12分)(2021·山东临沂一模)在①S nn =a n+12,②a n+1a n=2S n,③a n2+a n=2S n这三个条件中任选一个,补充在下面的问题中,并解答该问题.已知正项数列{a n}的前n项和为S n,a1=1,且满足.(1)求a n;(2)若b n=(a n+1)·2a n,求数列{b n}的前n项和T n.21.(12分)(2021·山东泰安一中月考)为了加强环保建设,提高社会效益和经济效益,某市计划用若干年更换1万辆燃油型公交车,每更换一辆新车,则淘汰一辆旧车,更换的新车为电力型车和混合动力型车.今年年初投入了电力型公交车128辆,混合动力型公交车400辆,计划以后电力型车每年的投入量比上一年增加50%,混合动力型车每年比上一年多投入a 辆.(1)求经过n 年,该市被更换的公交车总数F (n );(2)若该市计划用7年的时间完成全部更换,求a 的最小值.22.(12分)(2021·广东广州检测)已知数列{a n }满足a 1=23,且当n ≥2时,a 1a 2…a n-1=2a n-2.(1)求证:数列{11−a n}是等差数列,并求数列{a n }的通项公式;(2)记T n =12a 1a 2…a n ,S n =T 12+T 22+…+T n 2,求证:当n ∈N *时,a n+1-23<S n .答案及解析1.B 解析 因为a n+1-a n =2,a 1=2,所以数列{a n }是首项为2,公差为2的等差数列.所以a n =2+(n-1)×2=2n.设{a n }的前n 项和为S n ,则S n =n(2+2n)2=n 2+n.所以a 5+a 6+…+a 14=S 14-S 4=190.2.C 解析 因为等比数列{a n }的各项均为正数,且a 3=9,所以log 3a 1+log 3a 2+log 3a 3+log 3a 4+log 3a 5=log 3(a 1a 2a 3a 4a 5)=log 3(a 35)=log 3(95)=log 3(310)=10.3.D 解析 由题意可知S 5,S 10-S 5,S 15-S 10成等比数列.∵S 10S 5=12,∴设S 5=2k ,S 10=k ,k ≠0,∴S 10-S 5=-k ,∴S 15-S 10=k2,∴S 15=3k2,∴S 15S 5=3k22k =34. 4.D 解析 因为a 的音频是数列的第10项,440=220√2×212=220√2×(2112)10−4,所以频率为220√2 Hz 是该数列的第4项,其音名是#d.5.C 解析 当n=1时,a 1=S 1=1;当n ≥2时,a n =S n -S n-1=n 2-(n-1)2=2n-1.而a 1=1也符合a n =2n-1,所以a n =2n-1.所以1an a n+1=1(2n-1)(2n+1)=12(12n-1-12n+1),所以T n =12(1−13+13-15+⋯+12n-1-12n+1)=121-12n+1=n2n+1,所以T 20=202×20+1=2041. 6.D 解析 设该数列为{a n },依题意,可知a 5,a 6,…成等差数列,且公差为2,a 5=5.设塔群共有n 层,则1+3+3+5+5(n-4)+(n-4)(n-5)2×2=108,解得n=12.故最下面三层的塔数之和为a 10+a 11+a 12=3a 11=3×(5+2×6)=51.7.D 解析 由2n ∈[1,100],n ∈N *,可得n=1,2,3,4,5,6,所以21+22+23+24+25+26=2×(1−26)1−2=126.又1+2+3+ (100)100×1012=5 050,所以在1到100的整数中,除去所有可以表示为2n (n ∈N *)的整数,其余整数的和为5 050-126=4 924.8.B 解析 由已知得当n 为奇数时,a n =n 2-(n+1)2=-2n-1,当n 为偶数时,a n =-n 2+(n+1)2=2n+1.所以a 1+a 2+a 3+…+a 100=-3+5-7+…+201=(-3+5)+(-7+9)+…+(-199+201)=2×50=100.9.BCD 解析 当n=1时,a 1=S 1=1+t ,当n ≥2时,a n =S n -S n-1=(4n-1+t )-(4n-2+t )=3×4n-2.由数列{a n }为等比数列,可知a 1必定符合a n =3×4n-2, 所以1+t=34,即t=-14.所以数列{a n }的通项公式为a n =3×4n-2,a 2=3, 数列{a n }的公比q=4.故选BCD . 10.AC 解析 由已知得a 1+3(a 1+4×1)=7a 1+7×62×1,解得a 1=-3.对于选项A,a 5=-3+4×1=1,故A 正确.对于选项B,a n =-3+n-1=n-4,因为a 1=-3<0,a 2=-2<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误.对于选项C,S6-S1=a2+a3+a4+a5+a6=5a4,又因为a4=0,所以S6-S1=0,即S1=S6,故C正确.对于选项D,因为S n=-3n+n(n-1)2=n2-7n2,所以S n无最大值,故D错误.11.BD解析设{a n}的公差为d,由已知得30×5+30×29d2=390,解得d=1629.∴a n=a1+(n-1)d=16n+12929.∵b n=2a n,∴b n+1b n =2a n+12a n=2a n+1-a n=2d,故数列{b n}是等比数列,B选项正确.∵5d=5×1629=8029≠3,∴b10b5=(2d)5=25d≠23,∴b10≠8b5,A选项错误.∵a30=a1+29d=5+16=21,∴a1b30=5×221>105,C选项错误.∵a4=a1+3d=5+3×1629=19329,a5=a1+4d=5+4×1629=20929,∴a3+a5+a7a2+a4+a6=3a53a4=a5a4=209193,D选项正确.12.ABD解析由题意,可知第1次得到数列1,3,2,此时k=1,第2次得到数列1,4,3,5,2,此时k=3,第3次得到数列1,5,4,7,3,8,5,7,2,此时k=7,第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时k=15,……第n次得到数列1,x1,x2,x3,…,x k,2,此时k=2n-1,所以k+1=2n,故A项正确.当n=1时,a 1=1+3+2=6,当n=2时,a 2=a 1+2a 1-3=3a 1-3,当n=3时,a 3=a 2+2a 2-3=3a 2-3,……所以a n+1=3a n -3,故B 项正确. 由a n+1=3a n -3,得a n+1-32=3(a n -32),又a 1-32=92,所以{a n -32}是首项为92,公比为3的等比数列,所以a n -32=92×3n-1=3n+12,即a n =3n+12+32,故C 项错误.S n =(322+32)+(332+32)+…+(3n+12+32)=343n+1+2n-3,故D 项正确.13.15 解析 因为a 2,a 2 020为方程x 2-10x+16=0的两根,所以a 2+a 2 020=10.又{a n }为等差数列,所以a 1+a 2 021=a 2+a 2 020=2a 1 011=10,即a 1 011=5. 所以a 1+a 1 011+a 2 021=3a 1 011=15. 14.n(n+1)2解析 因为S n =2a n -2,所以当n ≥2时,S n-1=2a n-1-2,两式相减,得a n =2a n -2a n-1,即a n =2a n-1.当n=1时,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,所以a n =2n . 所以log 2a n =n ,所以T n =n(n+1)2.15.3n 2-2n 解析 数列{2n-1}的项均为奇数,数列{3n-2}的所有奇数项均为奇数,所有偶数项均为偶数,并且显然{3n-2}中的所有奇数均能在{2n-1}中找到,所以{2n-1}与{3n-2}的所有公共项就是{3n-2}的所有奇数项,这些项从小到大排列得到的新数列{a n }是以1为首项,以6为公差的等差数列.所以{a n }的前n 项和为S n =n×1+n(n-1)2×6=3n 2-2n.16.5 240(3−n+32n) 解析 对折3次共可以得到52 dm ×12 dm,5 dm ×6 dm,10 dm ×3 dm,20dm ×32dm 四种规格的图形,面积之和S 3=4×30=120 dm 2;对折4次共可以得到54 dm ×12 dm,52dm ×6 dm,5 dm ×3 dm,10 dm ×32dm,20 dm ×34dm 五种规格的图形,S 4=5×15=75 dm 2.可以归纳对折n 次可得n+1种规格的图形,S n =(n+1)·2402ndm 2.则∑k=1nS k =S 1+S 2+…+S n =240221+322+423+…+n+12n . 记T n =221+322+423+…+n+12n , ① 则12T n =222+323+…+n2n +n+12n+1.②①与②式相减,得T n -12T n =12T n =221+122+123+…+12n −n+12n+1=32−n+32n+1. 故T n =3-n+32n .故∑k=1nS k =240·T n =240(3−n+32n).17.解 (1)设正项等比数列{a n }的公比为q (q>0).由等比数列的性质可得a 5a 7=a 62=256,因为a n >0,所以a 6=16.所以q 2=a6a 4=256,即q=16.所以a n =a 6q n-6=16×16n-6=16n-5. (2)由(1)可知log 2a n =log 216n-5=4n-20,设b n =|log 2a n |=|4n-20|,数列{b n }的前n 项和为T n . ①当n ≤5,且n ∈N *时,T n =n(16+20-4n)2=18n-2n 2;②当n ≥6,且n ∈N *时,T n =T 5+(4+4n-20)(n-5)2=18×5-2×52+(2n-8)(n-5)=2n 2-18n+80.综上所述,T n={18n-2n2,n≤5,且n∈N*,2n2-18n+80,n≥6,且n∈N*.18.证明若选①②⇒③,设数列{a n}的公差为d1,数列{√S n}的公差为d2.∵当n∈N*时,a n>0,∴d1>0,d2>0.∴S n=na1+n(n-1)d12=d12n2+(a1-d12)n.又√S n=√S1+(n-1)d2,∴S n=a1+d22(n-1)2+2√a1d2(n-1)=d22n2+(2√a1d2-2d22)n+d22-2√a1d2+a1,∴d12=d22,a1-d12=2√a1d2-2d22,d22-2√a1d2+a1=0,∴d22=d12,d2=√a1,即d1=2a1,∴a2=a1+d1=3a1.若选①③⇒②,设等差数列{a n}的公差为d.因为a2=3a1,所以a1+d=3a1,则d=2a1,所以S n=na1+n(n-1)2d=na1+n(n-1)a1=n2a1,所以√S n−√S n-1=n√a1-(n-1)√a1=√a1.所以{√S n}是首项为√a1,公差为√a1的等差数列.若选②③⇒①,设数列{√S n}的公差为d,则√S2−√S1=d,即√a1+a2−√a1=d.∵a2=3a1,∴√4a1−√a1=d,即d=√a1,∴√S n=√S1+(n-1)d=√a1+(n-1)√a1=n√a1,即S n =n 2a 1,当n ≥2时,a n =S n -S n-1=n 2a 1-(n-1)2a 1=(2n-1)a 1, 当n=1时,a 1符合式子a n =(2n-1)a 1,∴a n =(2n-1)a 1,n ∈N *,∴a n+1-a n =2a 1, 即数列{a n }是等差数列.19.解 (1)设正项等比数列{a n }的公比为q (q>0).因为a 3是2a 1,3a 2的等差中项,所以2a 3=2a 1+3a 2,即2a 1q 2=2a 1+3a 1q ,因为a 1≠0,所以2q 2-3q-2=0,解得q=2或q=-12(舍去).所以a 4=a 1q 3=8a 1=16,解得a 1=2.所以a n =2×2n-1=2n . (2)由(1)可知a 2n+1=22n+1,所以b n =(-1)n log 2a 2n+1=(-1)n log 222n+1=(-1)n (2n+1), 所以T n =(-1)1×3+(-1)2×5+(-1)3×7+…+(-1)n (2n+1), -T n =(-1)2×3+(-1)3×5+(-1)4×7+…+(-1)n+1·(2n+1), 所以2T n =-3+2[(-1)2+(-1)3+…+(-1)n]-(-1)n+1(2n+1)=-3+2×1−(−1)n-12+(-1)n (2n+1)=-3+1-(-1)n-1+(-1)n (2n+1)=-2+(2n+2)(-1)n ,所以T n =(n+1)(-1)n -1. 20.解 (1)若选①,则2S n =na n+1.当n=1时,2S 1=a 2,又S 1=a 1=1,所以a 2=2. 当n ≥2时,2S n-1=(n-1)a n ,所以2a n =na n+1-(n-1)a n ,即(n+1)a n =na n+1,所以an+1n+1=a n n(n ≥2).又a 22=1,所以当n ≥2时,an n =1,即a n =n.又a 1=1符合上式,所以a n =n.若选②,则当n=1时,2S 1=a 2a 1,可得a 2=2. 当n ≥2时,2S n-1=a n a n-1,可得2a n =a n a n+1-a n a n-1. 由a n >0,得a n+1-a n-1=2.又a 1=1,a 2=2,所以{a 2n }是首项为2,公差为2的等差数列,{a 2n-1}是首项为1,公差为2的等差数列,所以a n =n.若选③,因为a n 2+a n =2S n ,所以当n ≥2时,a n-12+a n-1=2S n-1,两式相减得a n 2+a n -a n-12-a n-1=2a n ,即(a n +a n-1)(a n -a n-1-1)=0.由a n >0,得a n -a n-1-1=0,即a n -a n-1=1,所以{a n }是首项为1,公差为1的等差数列,所以a n =n.(2)由(1)知b n =(n+1)·2n ,所以T n =2×2+3×22+4×23+…+(n+1)·2n , 2T n =2×22+3×23+4×24+…+(n+1)·2n+1, 两式相减,得-T n =4+22+23+ (2)-(n+1)·2n+1=4+4(1−2n-1)1−2-(n+1)·2n+1=4-4+2n+1-(n+1)·2n+1=-n·2n+1,所以T n =n·2n+1.21.解 (1)设a n ,b n 分别为第n 年投入的电力型公交车、混合动力型公交车的数量,依题意,数列{a n }是首项为128,公比为1+50%=32的等比数列,数列{b n }是首项为400,公差为a 的等差数列.所以数列{a n }的前n 项和S n =128×[1−(32)n ]1−32=256[(32)n-1],数列{b n }的前n 项和T n =400n+n(n-1)2a.所以经过n 年,该市被更换的公交车总数F (n )=S n +T n =256[(32)n-1]+400n+n(n-1)2a.(2)若用7年的时间完成全部更换,则F (7)≥10 000, 即256[(32)7-1]+400×7+7×62a ≥10 000,即21a ≥3 082,所以a ≥3 08221.又a ∈N *,所以a 的最小值为147.22.证明 (1)因为当n ≥2时,a 1a 2…a n-1=2a n-2,所以a 1a 2…a n =2an+1-2,两式相除,可得a n =1a n+1-11a n-1,所以11−a n=a n+11−a n+1=11−an+1-1,所以11−an+1−11−a n=1(n ≥2).又a 1=23,所以a 2=34,11−a 1=3,11−a 2=4,所以11−a 2−11−a 1=1,所以11−an+1−11−a n=1(n ∈N *),所以数列{11−a n}是首项为3,公差为1的等差数列.所以11−a n=3+(n-1)×1=n+2,所以a n =n+1n+2.(2)因为T n =12a 1a 2…a n =12×23×34×…×n+1n+2=1n+2,所以T n 2=1(n+2)2>1(n+2)(n+3)=1n+2−1n+3,所以S n=T12+T22+…+T n2>13−14+14−15+…+1n+2−1n+3=13−1n+3=1-1n+3−23=n+2 n+3−23=a n+1-23,所以当n∈N*时,a n+1-23<S n.。
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习(附答案)
2023届新高考数学二轮复习:专题(数列中的复杂递推式问题)提分练习【总结】1、叠加法:+-=1()n n a a f n ;2、叠乘法:+=1()n na f n a ;3、构造法(等差,等比):①形如+=+1n n a pa q (其中,p q 均为常数-≠(1)0pq p )的递推公式,()+-=-1n n a t p a t ,其中=-1qt p,构造+-=-1n n a t p a t,即{}-n a t 是以-1a t 为首项,p 为公比的等比数列.②形如+=+1n n n a pa q (其中,p q 均为常数,-≠()0pq q p ),可以在递推公式两边同除以+1n q ,转化为+=+1n n b mb t 型.③形如++=-11n n n n a a d a a ,可通过取倒数转化为等差数列求通项.4、取对数法:+=1t n n a a .5、由n S 和n a 的关系求数列通项(1)利用-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n ,化n S 为n a . (2)当n a 不易消去,或消去n S 后n a 不易求,可先求n S ,再由-⎧=⎪⎨≥⎪⎩,-,111=2n n n S n a S S n 求n a .6、数列求和:(1)错位相减法:适用于一个等差数列和一个等比数列(公比不等于1)对应项相乘构成的数列求和=⋅n n n c a b 型 (2)倒序相加法 (3)裂项相消法 常考题型数列的通项公式裂项方法【典型例题】例1.已知数列{}n a 满足14a =且121n n a a a a +++⋯+=,设2log n n b a =,则122320172018111b b b b b b ++⋯+的值是( ) A.20174038B.30254036C.20172018D.20162017例2.已知数列{}n a 的通项公式为*)n a n N =∈,其前n 项和为n S ,则在数列1S ,2S ,⋯,2019S 中,有理数项的项数为( )A.42 B.43 C.44 D.45例3.对于*n N ∈,2314121122232(1)2n n n n +⨯+⨯+⋯+⨯=⨯⨯+ .例4.设曲线1()n y x n N ++=∈在点(1,1)处的切线与x 轴的交点的横坐标为n x ,则201712017220172016log log log x x x ++⋯+的值为 .例5.在数1和2之间插入n 个正数,使得这2n +个数构成递增等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,*n N ∈.(1)数列{}n a 的通项公式为n a = ;(2)2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅+⋯+⋅= .例6.数列{}n a 中,*111,()2(1)(1)n n n na a a n N n na +==∈++,若不等式2310n ta n n++…恒成立,则实数t 的取值范围是 .【过关测试】 一、单选题1.(2023·江西景德镇·统考模拟预测)斐波那契数列{}n a 满足121a a ==,()*21n n n a a a n ++=+∈N ,设235792023k a a a a a a a +++++⋅⋅⋅+=,则k =( )A.2022 B.2023 C.2024 D.20252.(2023·全国·模拟预测)1678年德国著名数学家莱布尼兹为了满足计算需要,发明了二进制,与二进制不同的是,六进制对于数论研究有较大帮助.例如123在六进制下等于十进制的32162636306⨯+⨯+⨯=.若数列n a 在十进制下满足21n n n a a a +++=,11a =,23a =,n n b a =,则六进制1232022b b b b 转换成十进制后个位为( ) A.2B.4C.6D.83.(2023秋·广东·高三统考期末)在数列{}n a 中,11,0n a a =>,且()221110n n n n na a a n a ++--+=,则20a 的值为( ) A.18B.19C.20D.214.(2023秋·江西·高三校联考期末)设,a b ∈R ,数列{}n a 中,11a =,1n n a ba a +=+,*N n ∈,则下列选项正确的是( )A.当1a =,1b =-时,则101a =B.当2a =,1b =时,则22n S n n =-C.当0a =,2b =时,则2n n a =D.当1a =,2b =时,则21nn a =-5.(2023·全国·高三专题练习)已知数列{}n a 满足21112nn n a a a +++=,且11a =,213a =,则2022a =( )A.12021B.12022C.14043D.140446.(2023·安徽淮南·统考一模)斐波那契数列因以兔子繁殖为例子而引入,故又称为“兔子数列”.此数列在现代物理、准晶体结构、化学等领域都有着广泛的应用,斐波那契数列{}n a 可以用如下方法定义:21n n n a a a ++=+,且121a a ==,若此数列各项除以4的余数依次构成一个新数列{}n b ,则数列{}n b 的前2023项的和为( ) A.2023B.2024C.2696D.26977.(2023秋·江苏扬州·高三校考期末)已知数列{}n a 满足1122n n n n a a a a ++++=,且11a =,213a =,则2022a =( ) A.12021B.12022C.14043D.140448.(2023·全国·高三专题练习)已知数列{}n a 满足211232n n n n n n a a a a a a ++++-=,且1231a a ==,则7a =( ) A.163B.165C.1127D.1129一、倒数变换法,适用于1nn n Aa a Ba C+=+(,,A B C 为常数)二、取对数运算 三、待定系数法 1、构造等差数列法 2、构造等比数列法①定义构造法。
2023届广东省新高考数学复习专项(数列)练习(附答案)
2023届广东省新高考数学复习专项(数列)练习1.(2022ꞏ广东深圳ꞏ深圳市光明区高级中学校考模拟预测)已知各项都为正数的数列{}n a 满足1+32nn n a a +=⋅,11a = .(1)若2n n n b a =-,求证:{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .2.(2022ꞏ广东珠海ꞏ珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P . 3.(2022ꞏ广东韶关ꞏ统考一模)已知数列{}n a 的首项145a =,且满足143n n n a a a +=+,设11n nb a =-. (1)求证:数列{}n b 为等比数列;(2)若1231111140na a a a ++++> ,求满足条件的最小正整数n . 4.(2022ꞏ广东广州ꞏ华南师大附中校考三模)已知等差数列{}n a 中,33a =,66a =,且1,2,n n n a a n b n +⎧=⎨⎩为奇数为偶数.(1)求数列{}n b 的通项公式及前2n 项和;(2)若212n n n c b b -=⋅,记数列{}n c 的前n 项和为n S ,求n S . 5.(2022ꞏ广东韶关ꞏ统考二模)已知数列{}n a 前n 项和为n S ,()*111041n n n n a a a a S n +=≠⋅=-∈N ,,. (1)证明:24;n n a a +-=(2)设 ()12nn n n c a =-⋅+,求数列{}n c 的前2n 项和2n T . 6.(2022ꞏ广东ꞏ统考模拟预测)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明); (2)若()()311log 3log 33n n n c S S +=--⋅-,求{}n c 的前n 项和n T ,并证明:1126n T -<≤-.7.(2022ꞏ广东ꞏ统考模拟预测)设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤--- 恒成立,求实数λ的最小值.8.(2022ꞏ广东中山ꞏ中山纪念中学校考模拟预测)已知正项数列{}n a ,其前n 项和n S 满足()*2,N n n n a S a n n -=∈.(1)求{}n a 的通项公式;(2)证明:222121112nS S S +++< . 9.(2022ꞏ广东广州ꞏ统考一模)已知等差数列{}n a 的前n 项和为n S ,且()*6324,21n n S S a a n ==+∈N .(1)求数列{}n a 的通项公式;(2)设12n n n b a -=,求数列{}n b 的前n 项和n T .10.(2023ꞏ广东东莞ꞏ校考模拟预测)已知数列{}n a 满足:112a =,对n N +∀∈,都有1122n n a na +=++. (1)设,n n b a n n N +=-∈,求证:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .11.(2022ꞏ广东ꞏ校联考模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =.(1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .12.(2022ꞏ广东ꞏ统考模拟预测)已知数列{}n a 中,15a =且()12212,n n n a a n n *-=+-∈N …,11n n a b n -=+ (1)求证:数列{}n b 是等比数列;(2)从条件①{}n n b +,②{}n n b ⋅中任选一个,补充到下面的问题中并给出解答. 求数列______的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.13.(2022ꞏ广东汕头ꞏ统考三模)已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}n c :1b ,1a ,2b ,2a ,3a ,3b ,4a ,5a ,6a ,4b ,……,求数列{}n c 中前50项的和50T .14.(2022ꞏ广东佛山ꞏ统考三模)设各项非零的数列{}n a 的前n 项和记为n S ,记123n n T S S S S =⋅⋅⋅⋅⋅,且满足220n n n n S T S T --=.(1)求1T 的值,证明数列{}n T 为等差数列并求{}n T 的通项公式;(2)设(1)n n nc na -=,求数列{}n c 的前n 项和n K .15.(2022ꞏ广东茂名ꞏ统考模拟预测)设数列{}n a 的首项11a =,132nn n a a +=⋅-.(1)证明:数列{}2nn a -是等比数列;(2)设()()234nn n b a n =--,求数列{}n b 的前n 项和n T16.(2022ꞏ广东ꞏ统考三模)已知数列{n a }的前n 项和n S ,11a =,0n a >,141n n n a a S +=-. (1)计算2a 的值,求{n a }的通项公式;(2)设()11nn n n b a a +=-,求数列{n b }的前n 项和n T .17.(2022ꞏ广东广州ꞏ统考二模)问题:已知*n ∈N ,数列{}n a 的前n 项和为n S ,是否存在数列{}n a ,满足111,1n n S a a +=≥+,__________﹖若存在.求通项公式n a ﹔若不存在,说明理由.在①1n a +=﹔②()12n n a S n n -=+≥;③121n n a a n +=+-这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.18.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-. (1)证明:数列{}1n n a a +-是等比数列;(2)若()()()()22231321265log 1log 1nn n n n n b a a ++-⋅++=+⋅+,求数列{}n b 的前n 项和nT .19.(2022ꞏ广东韶关ꞏ校考模拟预测)数列{}n a 满足:31232n a n a a a +++=+ 12(1)2n n ++-⋅,*n ∈N . (1)求数列{}n a 的通项公式; (2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m的取值范围.20.(2022ꞏ广东梅州ꞏ统考二模)已知n S 是数列{}n a 的前n 项和,11a =,___________.①n *∀∈N ,14n n a a n ++=;②数列n S n ⎧⎫⎨⎬⎩⎭为等差数列,且n S n ⎧⎫⎨⎬⎩⎭的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解: (1)求n a ; (2)设()121n n n n n a a b a a +++=⋅,求数列{}n b 的前n 项和n T .21.(2022ꞏ广东佛山ꞏ统考二模)已知数列{n a }的前n 项和为n S ,且满足()()*1311,N ,5n n nS n S n n n a +-+=+∈= (1)求1a 、2a 的值及数列{n a }的通项公式n a : (2)设1n n n b a a +=,求数列{n b }的前n 项和n T22.(2022ꞏ广东茂名ꞏ统考模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n ∈N .(1)求数列{}n a 的通项公式;(2)记sin2n n n b a π=⋅,求数列{}n b 的前100项的和100T . 23.(2022ꞏ广东ꞏ统考一模)已知正项数列{}n a ,其前n 项和n S 满足*(2)1()n n n a S a n -=∈N .(1)求证:数列{}2n S 是等差数列,并求出n S 的表达式;(2)数列{}n a 中是否存在连续三项k a ,1k a +,2k a +,使得1k a ,11k a +,21k a +构成等差数列?请说明理由.24.(2022ꞏ广东肇庆ꞏ校考模拟预测)设数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式n a ;(2)记n b =11n n b b +⎧⎫⎨⎬+⎩⎭的前n 项和n T .25.(2022ꞏ广东揭阳ꞏ普宁市华侨中学校考二模)已知数列{}n a 的前n 项和为n S ,在①()1*122n n S n N -⎛⎫+=∈ ⎪⎝⎭②11a =,()*122n n S a n N ++=∈,③()*123111121n nn N a a a a ++++=-∈ 这三个条件中任选一个,解答下列问题: (1)求{}n a 的通项公式:(2)若2log n n b a =,求数列{}n b 的前n 项和n T26.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 的前n 项和为n S ,且()()2*112,210n n n a S a S n +=+-+=∈N .(1)求证:数列11n S ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列21n n S ⎧⎫⎨⎬-⎩⎭的前n 项和n T .27.(2022ꞏ广东韶关ꞏ统考一模)在①112,2n n n a a a +=+=;②22n n S a =-;③122n n S +=-这三个条件中任选一个,补充在下列问题中,并做出解答.设数列{}n a 的前n 项和为n S ,__________,数列{}n b 是等差数列,12461,21o b b b =++=.(1)求数列{}n a 和{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .28.(2022ꞏ广东佛山ꞏ校联考模拟预测)已知数列{}n a 满足11a =,22a =,且对任意*N n ∈,都有2132n n n a a a ++=-.(1)求证:{}1n n a a +-是等比数列,并求{}n a 的通项公式;(2)求使得不等式1212154m m a a a ++⋅⋅⋅+≤成立的最大正整数m . 29.(2023ꞏ广东茂名ꞏ统考一模)已知n S 为数列{}n a 的前n 项和,0n a >,224n n n a a S +=.(1)求数列{}n a 的通项公式: (2)若11n n n b a a +=,n T 为数列{}n b 的前n 项和.求n T ,并证明:1184n T ≤≤. 30.(2022ꞏ广东茂名ꞏ统考一模)已知数列{}n a ,{}n b 满足145n n n a b b ++=,1156n n n a ba +++=,且12a =,11b =(1)求2a ,2b 的值,并证明数列{}n n a b -是等比数列; (2)求数列{}n a ,{}n b 的通项公式.参考答案1.(2022ꞏ广东深圳ꞏ深圳市光明区高级中学校考模拟预测)已知各项都为正数的数列{}n a 满足1+32nn n a a +=⋅,11a = .(1)若2n n n b a =-,求证:{}n b 是等比数列; (2)求数列{}n a 的前n 项和n S .2.(2022ꞏ广东珠海ꞏ珠海市第三中学统考二模)已知数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,1221n n n a b n -+=+-,221n n n T S n -=--.(1)求11,a b 及数列{}n a ,{}n b 的通项公式;(2)设()*21N 2n n n a n k c k b n k=-⎧=∈⎨=⎩,,,求数列{}n c 的前2n 项和2n P .3.(2022ꞏ广东韶关ꞏ统考一模)已知数列{}n a 的首项145a =,且满足13n n n a a +=+,设11n nb a =-. (1)求证:数列{}n b 为等比数列; (2)若1111140a a a a ++++> ,求满足条件的最小正整数n . ⎫∴n 的最小值为140.4.(2022ꞏ广东广州ꞏ华南师大附中校考三模)已知等差数列{}n a 中,33a =,66a =,且1,2,n n n a a n b n +⎧=⎨⎩为奇数为偶数.(1)求数列{}n b 的通项公式及前2n 项和;(2)若212n n n c b b -=⋅,记数列{}n c 的前n 项和为n S ,求n S .5.(2022ꞏ广东韶关ꞏ统考二模)已知数列{}n a 前n 项和为n S ,()*111041n n n n a a a a S n +=≠⋅=-∈N ,,. (1)证明:24;n n a a +-=(2)设 ()12nn n n c a =-⋅+, 求数列{}n c 的前2n 项和2n T .6.(2022ꞏ广东ꞏ统考模拟预测)定义:对于任意一个有穷数列,第一次在其每相邻的两项间都插人这两项的和,得到的新数列称之为一阶和数列,如果在一阶和数列的基础上再在其相邻的两项间插入这两项的和称之为二阶和数列,以此类推可以得到n 阶和数列,如{1,5}的一阶和数列是{1,6,5},设它的n 阶和数列各项和为n S .(1)试求{1,5}的二阶和数列各项和2S 与三阶和数列各项和3S ,并猜想n S 的通项公式(无需证明);(2)若()()1log 3log 33n c S S =--⋅-,求{}n c 的前n 项和n T ,并证明:11n T -<≤-.7.(2022ꞏ广东ꞏ统考模拟预测)设等差数列{}n a 的前n 项和为n S ,已知535S =,且4a 是1a 与13a 的等比中项,数列{}n b 的前n 项和245n T n n =+.(1)求数列{}{}n n a b 、的通项公式; (2)若14a <,对任意*n ∈N 总有1122111444n nS b S b S b λ+++≤--- 恒成立,求实数λ的最小值.8.(2022ꞏ广东中山ꞏ中山纪念中学校考模拟预测)已知正项数列{}n a ,其前n 项和n S 满足()*2,N n n n a S a n n -=∈.(1)求{}n a 的通项公式;(2)证明:2221112S S S +++< . (n 9.(2022ꞏ广东广州ꞏ统考一模)已知等差数列{}n a 的前n 项和为n S ,且()*6324,21n n S S a a n ==+∈N . (1)求数列{}n a 的通项公式;(2)设12n n n b a -=,求数列{}n b 的前n 项和n T . 【答案】(1)21n a n =-10.(2023ꞏ广东东莞ꞏ校考模拟预测)已知数列{}n a 满足:112a =,对n N +∀∈,都有1122n n a na +=++. (1)设,n n b a n n N +=-∈,求证:数列{}n b 是等比数列; (2)设数列{}n a 的前n 项和为n S ,求n S .11.(2022ꞏ广东ꞏ校联考模拟预测)已知各项均为正数的数列{}n a 满足()22*11230n n n n a a a a n ++--=∈N ,且13a =. (1)求{}n a 的通项公式;(2)若31log n n n b a a +=,求{}n b 的前n 项和n T .12.(2022ꞏ广东ꞏ统考模拟预测)已知数列{}n a 中,15a =且()12212,n n n a a n n *-=+-∈N …,11n n a b n -=+ (1)求证:数列{}n b 是等比数列;(2)从条件①{}n n b +,②{}n n b ⋅中任选一个,补充到下面的问题中并给出解答. 求数列______的前n 项和n T .注:如果选择多个条件分别解答,按第一个解答计分.)13.(2022ꞏ广东汕头ꞏ统考三模)已知各项均为正数的数列{}n a 中,11a =且满足221122n n n n a a a a ++-=+,数列{}n b 的前n 项和为n S ,满足213n n S b +=.(1)求数列{}n a ,{}n b 的通项公式;(2)若在k b 与1k b +之间依次插入数列{}n a 中的k 项构成新数列{}n c :1b ,1a ,2b ,2a ,3a ,3b ,4a ,5a ,6a ,4b ,……,求数列{}n c 中前50项的和50T .【答案】(1)21n a n =-,13n n b -=(2)1152214.(2022ꞏ广东佛山ꞏ统考三模)设各项非零的数列{}n a 的前n 项和记为n S ,记123n n T S S S S =⋅⋅⋅⋅⋅,且满足220n n n n S T S T --=.(1)求1T 的值,证明数列{}n T 为等差数列并求{}n T 的通项公式;(2)设(1)n n nc na -=,求数列{}n c 的前n 项和n K .15.(2022ꞏ广东茂名ꞏ统考模拟预测)设数列{}n a 的首项11a =,132nn n a a +=⋅-.(1)证明:数列{}2nn a -是等比数列;(2)设()()234nn n b a n =--,求数列{}n b 的前n 项和n T()34nn ⨯⨯-()34nn ⨯⨯-()34nn ⨯⨯-16.(2022ꞏ广东ꞏ统考三模)已知数列{n a }的前n 项和n S ,11a =,0n a >,141n n n a a S +=-. (1)计算2a 的值,求{n a }的通项公式;(2)设()11nn n n b a a +=-,求数列{n b }的前n 项和n T .17.(2022ꞏ广东广州ꞏ统考二模)问题:已知*n ∈N ,数列{}n a 的前n 项和为n S ,是否存在数列{}n a ,满足111,1n n S a a +=≥+,__________﹖若存在.求通项公式n a ﹔若不存在,说明理由.在①1n a +=﹔②()12n n a S n n -=+≥;③121n n a a n +=+-这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,按第一个解答计分.当2n ≥时,221(21)(23)88n n n a S S n n n -=-=---=-显然,1n =时,上式不成立,所以1,188,2n n a n n =⎧=⎨-≥⎩. 选②:当2n ≥时,1n n a S n -=+,即1n n S a n -=- 所以11(1)()n n n n n a S S a n a n -+=-=-+-- 整理得112(1)n n a a ++=+ 又2123a S =+=,214a +=所以{1}n a +从第二项起,是以2为公比,4为首项的等比数列∴当2n ≥时,211422n n n a -++=⋅=,即121n n a +=-显然,1n =时,上式成立,所以121nn a +=-选③:121n n a a n +=+- 112()n n a n a n +∴++=+又112a +={}n a n ∴+是以2为公比和首项的等比数列 2n n a n ∴+=,即2n n a n ∴=-18.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 满足12a =,28a =,2143n n n a a a ++=-. (1)证明:数列{}1n n a a +-是等比数列;(2)若()()()()22231321265log 1log 1nn n n n n b a a ++-⋅++=+⋅+,求数列{}n b 的前n 项和nT .19.(2022ꞏ广东韶关ꞏ校考模拟预测)数列{}n a 满足:31232n a n a a a +++=+ 12(1)2n n ++-⋅,*n ∈N . (1)求数列{}n a 的通项公式; (2)设()()111nn n n a b a a +=--,n T 为数列{}n b 的前n 项和,若23n T m <-恒成立,求实数m的取值范围.20.(2022ꞏ广东梅州ꞏ统考二模)已知n S 是数列{}n a 的前n 项和,11a =,___________.①n *∀∈N ,14n n a a n ++=;②数列n S n ⎧⎫⎨⎩⎭为等差数列,且n S n ⎧⎫⎨⎬⎩⎭的前3项和为6.从以上两个条件中任选一个补充在横线处,并求解:(1)求n a ; (2)设()121n n n n n a a b a a +++=⋅,求数列{}n b 的前n 项和n T .21.(2022ꞏ广东佛山ꞏ统考二模)已知数列{n a }的前n 项和为n S ,且满足()()*1311,N ,5n n nS n S n n n a +-+=+∈=(1)求1a 、2a 的值及数列{n a }的通项公式n a : (2)设1n n n b a a +=,求数列{n b }的前n 项和n T 【答案】(1)121,3a a ==;21n a n =-;22.(2022ꞏ广东茂名ꞏ统考模拟预测)已知数列{}n a 的前n 项和为n S ,满足()213n n S a =-,*n ∈N .(1)求数列{}n a 的通项公式; (2)记sinn n n b a π=⋅,求数列{}n b 的前100项的和100T .23.(2022ꞏ广东ꞏ统考一模)已知正项数列{}n a ,其前n 项和n S 满足*(2)1()n n n a S a n -=∈N .(1)求证:数列{}2n S 是等差数列,并求出n S 的表达式;(2)数列{}n a 中是否存在连续三项k a ,1k a +,2k a +,使得1k a ,11k a +,21k a +构成等差数列?请说明理由.24.(2022ꞏ广东肇庆ꞏ校考模拟预测)设数列{}n a 的前n 项和为n S ,满足22n n S a =-. (1)求数列{}n a 的通项公式n a ;(2)记n b =11n n b b +⎧⎫⎨⎬+⎩⎭的前n 项和n T .25.(2022ꞏ广东揭阳ꞏ普宁市华侨中学校考二模)已知数列{}n a 的前n 项和为n S ,在①()1*122n n S n N -⎛⎫+=∈ ⎪⎝⎭②11a =,()*122n n S a n N ++=∈,③()*123111121n n n N a a a a ++++=-∈ 这三个条件中任选一个,解答下列问题: (1)求{}n a 的通项公式:(2)若2log n n b a =,求数列{}n b 的前n 项和n T26.(2022ꞏ广东茂名ꞏ统考二模)已知数列{}n a 的前n 项和为n S ,且()()2*112,210n n n a S a S n +=+-+=∈N .(1)求证:数列11n S ⎧⎫⎨⎬-⎩⎭为等差数列;(2)求数列21n n S ⎧⎫⎨⎬-⎩⎭的前n 项和n T .27.(2022ꞏ广东韶关ꞏ统考一模)在①112,2n n n a a a +=+=;②22n n S a =-;③122n n S +=-这三个条件中任选一个,补充在下列问题中,并做出解答.设数列{}n a 的前n 项和为n S ,__________,数列{}n b 是等差数列,12461,21o b b b =++=. (1)求数列{}n a 和{}n b 的通项公式; (2)设n n n c a b =⋅,求数列{}n c 的前n 项和n T .28.(2022ꞏ广东佛山ꞏ校联考模拟预测)已知数列{}n a 满足11a =,22a =,且对任意*N n ∈,都有2132n n n a a a ++=-.(1)求证:{}1n n a a +-是等比数列,并求{}n a 的通项公式; (2)求使得不等式12154m a a a ++⋅⋅⋅+≤成立的最大正整数m .29.(2023ꞏ广东茂名ꞏ统考一模)已知n S 为数列{}n a 的前n 项和,0n a >,224n n n a a S +=.(1)求数列{}n a 的通项公式: (2)若1n b a a =,n T 为数列{}n b 的前n 项和.求n T ,并证明:11n T ≤≤.30.(2022ꞏ广东茂名ꞏ统考一模)已知数列{}n a ,{}n b 满足145n nn a b b ++=,116n n n a +++=,且12a =,11b =(1)求2a ,2b 的值,并证明数列{}n n a b -是等比数列; (2)求数列{}n a ,{}n b 的通项公式.。
高考数学二轮复习数列多选题知识点及练习题及答案
高考数学二轮复习数列多选题知识点及练习题及答案一、数列多选题1.已知数列{}n a 的前n 项和为n S ,则下列说法正确的是( )A .若21,n S n =-则{}n a 是等差数列B .若21,nn S =-则{}n a 是等比数列C .若{}n a 是等差数列,则995099S a =D .若{}n a 是等比数列,且10,0,a q >>则221212n n n S S S -+⋅>【答案】BC 【分析】由n S 求n a ,根据通项公式可判断AB 是否正确,由等差数列的性质可判断C ,取1n =时,结合等比数列求和公式作差比较13S S ⋅与22S 大小即可判断D. 【详解】对于A 选项,若21n S n =-,当2n ≥时,21n a n =-,10a =不满足21n a n =-,故A错误;对于B 选项,若21nn S =-,则1112,21,1n n n n S S n a S n --⎧-=≥=⎨==⎩,由于11a =满足12n n a -=,所以{}n a 是等比数列,故B 正确;对于C 选项,若{}n a 是等差数列,则()199995099992a a S a +==,故C 正确. 对于D 选项,当1n =时,()()222222132111110S S S a q qa q a q ⋅-=++-+=-<,故当1n =时不等式不等式,故221212n n n S S S -+⋅>不成立,所以D 错误.故选:BC 【点睛】本题考查数列的前n 项和为n S 与n a 之间的关系,等差数列的性质,等比数列的前n 项和为n S 的公式等,考查运算求解能力.本题D 选项解题的关键将问题特殊化,讨论1n =时,13S S ⋅与22S 大小情况.此外还需注意一下公式:11,2,1n n n S S n a S n --≥⎧=⎨=⎩;若{}n a 是等差数列,则()2121n n S n a -=-.2.已知数列{}n a 的前n 项和为n S ,且1a p =,122n n S S p --=(2n ≥,p 为常数),则下列结论正确的有( ) A .{}n a 一定是等比数列B .当1p =时,4158S =C .当12p =时,m n m n a a a +⋅= D .3856a a a a +=+【答案】BC 【分析】对于A 选项,若0p =,则数列{}n a 不是等比数列,当0p ≠时,通过题目条件可得112n n a a -=,即数列{}n a 为首项为p ,公比为12的等比数列,然后利用等比数列的通项公式、前n 项和公式便可得出B ,C ,D 是否正确. 【详解】由1a p =,122n n S S p --=得,()222a p p p +-=,故22pa =,则2112a a =,当3n ≥时,有1222n n S S p ---=,则120n n a a --=,即112n n a a -=, 故当0p ≠时,数列{}n a 为首项为p ,公比为12的等比数列;当0p =时不是等比数列,故A 错误;当1p =时,441111521812S ⎛⎫⨯- ⎪⎝⎭==-,故B 正确; 当12p =时,12nn a ⎛⎫= ⎪⎝⎭,则12m nm n m n a a a ++⎛⎫⋅== ⎪⎝⎭,故C 正确;当0p ≠时,38271133+22128a a p p ⎛⎫=+=⎪⎝⎭,而56451112+22128a a p p ⎛⎫=+= ⎪⎝⎭, 故3856a a a a +>+,则D 错误; 故选:BC.3.设数列{}n a 前n 项和n S ,且21n n S a =-,21log n n b a +=,则( ) A .数列{}n a 是等差数列 B .12n n aC .22222123213n na a a a -++++= D .122334111111n n b b b b b b b b +++++< 【答案】BCD 【分析】利用n S 与n a 的关系求出数列{}n a 的通项公式,可判断AB 选项的正误;利用等比数列的求和公式可判断C 选项的正误;利用裂项求和法可判断D 选项的正误. 【详解】对任意的n *∈N ,21n n S a =-.当1n =时,11121a S a ==-,可得11a =; 当2n ≥时,由21n n S a =-可得1121n n S a --=-, 上述两式作差得122n n n a a a -=-,可得12n n a a -=,所以,数列{}n a 是首项为1,公比为2的等比数列,11122n n n a --∴=⨯=,A 选项错误,B选项正确;()221124n n na --==,所以,22221231441143nn n a a a a --==-++++,C 选项正确; 212log log 2nn n b a n +===,()1111111n n b b n n n n +==-++, 所以,12233411111111111111112233411n n b b b b b b b b n n n +++++=-+-+-++-=-<++, D 选项正确. 故选:BCD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.4.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为20【答案】BCD 【分析】由等差数列的求和公式和通项公式,结合等比数列的中项性质,解方程可得首项和公差,求得等差数列的通项n a 和n S ,由二次函数的最值求法和二次不等式的解法可得所求值,判断命题的真假. 【详解】等差数列{}n a 的前n 项和为n S ,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,可得2739a a a =,即2111(6)(2)(8)a d a d a d +=++,化为1100a d +=,② 由①②解得120a =,2d =-, 则202(1)222n a n n =--=-,21(20222)212n S n n n n =+-=-, 由221441()24n S n =--+,可得10n =或11时,n S 取得最大值110; 由0n S >,可得021n <<,即n 的最大值为20. 故选:BCD 【点睛】方法点睛:数列最值常用的方法有:(1)函数(单调性)法;(2)数形结合法;(3)基本不等式法.要结合已知条件灵活选择合适的方法求解.5.在数列{}n a 中,如果对任意*n N ∈都有211n n n na a k a a +++-=-(k 为常数),则称{}n a 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0C .若32nn a =-+,则数列{}n a 是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 【答案】BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}n a ,考虑121,1,1n n n a a a ++===,211n n n na a a a +++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na a a a a a +++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32nn a =-+,2113n n n na a a a +++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n n a q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.6.将2n 个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .18181103354kk i a =⨯+=∑C .(31)3ij ja i =-⨯ D .()1(31)314n S n n =+- 【答案】ABD 【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a ,进而可得ii a ,根据错位相减法可求得181kki a=∑,再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假. 【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去),A 正确; ∴()()11113213313j j j ij i a a i m i ---⎡⎤=⋅=+-⨯⋅=-⋅⎣⎦,C 错误;∴()1313i ii a i -=-⋅,0171811223318182353533S a a a a =+++⋯+=⨯+⨯+⋯+⨯① 12181832353533S =⨯+⨯+⋯+⨯②,①-②化简计算可得:1818103354S ⨯+=,B 正确;S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn )()()()11211131313131313nnnn a a a ---=+++---()()231131.22nn n +-=- ()1=(31)314n n n +-,D 正确; 故选:ABD. 【点睛】方法点睛:数列求和的常用方法:(1)对于等差等比数列,利用公式法直接求和;(2)对于{}n n a b 型数列,其中{}n a 是等差数列,{}n b 是等比数列,利用错位相减法求和;(3)对于{}n n a b +型数列,利用分组求和法;(4)对于11n n a a +⎧⎫⎨⎬⎩⎭型数列,其中{}n a 是公差为()0d d ≠的等差数列,利用裂项相消法求和.7.斐波那契数列{}n a :1,1,2,3,5,8,13,21,34,…,又称黄金分割数列,是由十三世纪意大利数学家列昂纳多·斐波那契以兔子繁殖为例子而引入,故又称为“兔子数列”,其通项公式1122n nn a ⎡⎤⎛⎛-⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦,是用无理数表示有理数的一个范例,该数列从第三项开始,每项等于其前相邻两项之和,即21n n n a a a ++=+,记该数列{}n a 的前n 项和为n S ,则下列结论正确的是( )A .10711S a =B .2021201920182a a a =+C .202120202019S S S =+D .201920201S a =-【答案】AB 【分析】选项A 分别求出710S a ,可判断,选项B 由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+可判断,选项C ,由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可判断.选项D.由()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-可判断.【详解】因为10143S =,711143a =,所以10711S a =,则A 正确;由21n n n a a a ++=+,得()112n n n a a a n +-=+≥,相加得2n a +12n n a a -=+,所以2021201920182a a a =+,所以B 正确; 因为202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,所以2021202020191S S S =++,所以C 错误; 因为()()()()()123324354652122n n n n n S a a a a a a a a a a a a a a a a +++=++++=-+-+-+-++-=-21n a +=-,所以201920211S a =-,所以D 错误.故选:AB. 【点睛】关键点睛:本题考查数列的递推关系的应用,解答本题的关键是由202112342021S a a a a a =+++++,202012S a a =+++2020a ,两式错位相减可得202120201220192019101S S a a a S -=+++++=+,以及由递推关系可得()()()()()324354652122n n n n S a a a a a a a a a a a a +++=-+-+-+-++-=-,属于中档题.8.在n n n A B C (1,2,3,n =)中,内角,,n n n A B C 的对边分别为,,n n n a b c ,n n n A B C 的面积为n S ,若5n a =,14b =,13c =,且222124n n n a c b ++=,222124n n n a b c ++=,则( ) A .n n n A B C 一定是直角三角形 B .{}n S 为递增数列 C .{}n S 有最大值 D .{}n S 有最小值【答案】ABD 【分析】先结合已知条件得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,得A 正确,再利用面积公式得到递推关系1221875=644n n S S ++,通过作差法判定数列单调性和最值即可. 【详解】 由222124n n n a c b ++=,222124n n n a b c ++=得,222222112244n n n n n n a c a b bc+++++=+()2221122n n n a b c =++()2225122n n b c =++,故()222211125=252n n n n b c b c +++-+-, 又221125=0b c +-,22250n n b c ∴+-=,22225=n n n b c a ∴+=,故n n n A B C 一定是直角三角形,A 正确;n n n A B C 的面积为12n n n S b c =,而()4222222222221124224416n n n n n n n n n n n n a b c a b c a c a b b c +++++++=⨯=, 故()42222222222111241875161875==1616641n n n n n n n n n n n a b c a b b S S c c S +++++++==+,故22212218751875==6446434n n n n n S S SS S +-+--,又22125=244n n n n n b c b c S +=≤(当且仅当=n n b c 22121875=06344n n n S SS +∴--≥,又由14b =,13c =知n n b c ≠不是恒成立,即212n n S S +>,故1n n S S +>,故{}n S 为递增数列,{}n S 有最小值16=S ,无最大值,故BD 正确,C 错误. 故选:ABD. 【点睛】本题解题关键是利用递推关系得到()222211125=252n n n n b c b c +++-+-,进而得到22225=n n n b c a +=,再逐步突破.数列单调性常用作差法判定,也可以借助于函数单调性判断.二、平面向量多选题9.在OAB 中,4O OC A =,2O OD B =,AD 、BC 的交点为M ,过M 作动直线l 分别交线段AC 、BD 于E 、F 两点,若OE OA λ=,(),0OB OF μλμ=>,则λμ+的不可能取到的值为( )A .27+ B .37+ C .37+ D .47+ 【答案】ABC 【分析】先证明结论:当O 为直线EF 外一点时,E 、F 、M 三点共线(),OM xOE yOF x y R ⇔=+∈,1x y +=.计算出1377OM OA OB =+,设OM xOE yOF =+,结合OE OA λ=,(),0OB OF μλμ=>可得出13177x y λμ+=+=,然后将λμ+与1377λμ+相乘,展开后利用基本不等式求出λμ+的最小值,即可得出结论.【详解】先证明结论:当O 为直线EF 外一点时,E 、F 、M 三点共线(),OM xOE yOF x y R ⇔=+∈,1x y +=.充分性:若E 、F 、M 三点共线,则存在k ∈R ,使得=EM k EF ,即()OM OE k OF OE -=-,所以,()1OM k OE kOF =-+,因为(),OM xOE yOF x y R =+∈,则()11x y k k +=-+=,充分性成立; 必要性:因为(),OM xOE yOF x y R =+∈且1x y +=,所以,()1OM xOE x OF =+-,即()OM OF x OE OF -=-,所以,FM xFE =, 所以,E 、F 、M 三点共线.本题中,取OC 的中点N ,连接DN ,如下图所示:D 、N 分别为OB 、OC 的中点,则DN //BC 且12DN BC =, 14OC OA =,67AC AN ∴=,即67AC AN =,//BC DN ,即//CM DN ,67AM AC AD AN ∴==,67AM AD ∴=, 12AD OD OA OB OA =-=-,6611377277OM OA AM OA AD OA OB OA OA OB ⎛⎫=+=+=+-=+ ⎪⎝⎭, E 、F 、M 三点共线,O 为直线EF 外一点,则(),OM xOE yOF x y R =+∈且1x y +=.OE OA λ=,(),0OB OF μλμ=>,则OM xOE yOF xOA yOB λμ=+=+,所以,1737x y λμ⎧=⎪⎪⎨⎪=⎪⎩,可得1737x y λμ⎧=⎪⎪⎨⎪=⎪⎩,由1x y +=可得13177λμ+=,由基本不等式可得()131********μλλμλμλμλμ⎛⎫⎛⎫⎛⎫+=++=++≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭47+=.当且仅当μ=时,等号成立.所以,λμ+的最小值为47+,ABC 选项均不满足47λμ++≥. 故选:ABC. 【点睛】关键点点睛:解本题的关键在于以下两点:(1)利用三点共线的结论:当O 为直线EF 外一点时,E 、F 、M 三点共线(),OM xOE yOF x y R ⇔=+∈,1x y +=.利用该结论推出13177λμ+=; (2)利用基本不等式求出λμ+的最小值.10.下列各式结果为零向量的有( ) A .AB BC AC ++ B .AB AC BD CD +++ C .OA OD AD -+ D .NQ QP MN MP ++-【答案】CD 【分析】对于选项A ,2AB BC AC AC ++=,所以该选项不正确;对于选项B ,2AB AC BD CD AD +++=,所以该选项不正确;对于选项C ,0OA OD AD -+=,所以该选项正确;对于选项D ,0NQ QP MN MP ++-=,所以该选项正确. 【详解】对于选项A ,2AB BC AC AC AC AC ++=+=,所以该选项不正确;对于选项B ,()()2AB AC BD CD AB BD AC CD AD AD AD +++=+++=+=,所以该选项不正确;对于选项C ,0OA OD AD DA AD -+=+=,所以该选项正确; 对于选项D ,0NQ QP MN MP NP PN ++-=+=,所以该选项正确. 故选:CD 【点睛】本题主要考查平面向量的加法和减法法则,意在考查学生对这些知识的理解掌握水平.。
2025高考数学二轮复习数列
用两式相除(即比值)的方式进行相关计算.
对点练1
(1)(2024·新高考Ⅱ,12)设Sn为等差数列{an}的前n项和,若a3+a4=7,3a2+a5=5,
则S10=
95
.
解析 (方法一)设数列{an}的公差为d,因为
a3+a4=a1+2d+a1+3d=2a1+5d=7,3a2+a5=3(a1+d)+a1+4d=4a1+7d=5,
和为Tn,若
,
m,使得4S1,S3,Sm成等比数列?
,且b1=2,T4=5T2,是否存在大于2的正整数
解 设{an}的公差为 d,{bn}的公比为 q(q>0).
由题意知 q≠1,由
1 (1-4 )
T4=5T2,得
1-
=
51 (1-2 )
,
1-
整理得 1+q2=5,因为 q>0,所以 q=2.所以 bn=2n.
∴b1=a2-2a1=3.
∵Sn+1=4an+2,∴当n≥2时,Sn=4an-1+2,
∴an+1=Sn+1-Sn=4an-4an-1,∴an+1-2an=2(an-2an-1).
又bn=an+1-2an,∴bn=2bn-1,
∴{bn}是首项为3,公比为2的等比数列.
n-1
(2)由(1)可得 bn=an+1-2an=3×2 ,∴
1 + 3 = 8,
1 = 12,
21 + 2 = 8,
当选取①②时,有
所以
解得
4 + 5 = -16,
2021届高考数学二轮复习常考题型大通关(新高考)多项选择题:数列
2021届高考数学二轮复习常考题型大通关(新高考)多项选择题:数列1.若数列{}n a 满足1112,1nn na a a a ++==-,则( ) A.312a =B.712a =-C.202013a =D.20202020S =2.设等比数列{}n a 的公比为q ,则下列说法正确的是( ) A.数列{}1n n a a +是公比为2q 的等比数列 B.数列{}1n n a a ++是公比为q 的等比数列 C.数列{}1n n a a +-是公比为q 的等比数列 D.数列1n a ⎧⎫⎨⎬⎩⎭是公比为1q 的等比数列3.等差数列{}n a 是递增数列,满足753a a =,前 n 项和为n S ,下列结论正确的是( ) A.0d >B.10a <C.当5n =时n S 最小D.0n S >时n 的最小值为84.设等比数列{}n a 的公比为 q ,其前 n 项和为n S ,前 n 项积为n T ,并且满足条件7178811,1,01a a a a a ->><-,则下列结论正确的是( ) A.01q <<B.791a a <C.n T 的最大值为7TD.n S 的最大值为7SA.571S F =-B.561S S =-C.201920211S F =-D.201920201S F =-6.在递增的等比数列{}n a 中,n S 是数列{}n a 的前 n 项和,若142332,12a a a a =+=,则下列说法正确的是( ) A.数列{}n a 的公比为1B.数列{}2n S +是等比数列C.8510S =D.数列{}lg n a 是公差为2的等差数列7.若n S 为数列{}n a 的前n 项和,且21n n S a =+,则下列说法正确的是( ) A.516a =-B.563S =-C.数列{}n a 是等比数列D.数列{}1n S +是等比数列8.已知数列{}n a 满足(){}*1122,2,,1n n n a na n n a a n -=-=≥∈-N 的前 n 项和为n S ,则( ) A.28a =-B.2n n a n =-⋅C.330S =-D.1(1)22n n S n +=-⋅-9.已知数列{}n a 的通项公式为114293n n n a --⎛⎫⎛⎫=- ⎪⎪⎝⎭⎝⎭,则数列{}n a 中( )A.1a 是最大项B.3a 是最小项C.有最小项,没有最大项D.既没有最大项也没有最小项10.已知数列{}n a 是等差数列,{}n b 是等比数列,1122331,2,7,13a b a b a b ==+=+=.记, ,, ,n n na n cb n ⎧=⎨⎩为奇数为偶数数列{}nc 的前n 项和为n S ,则( )A.21n a n =-B.2n n b = C 91409S =D.()2242413nn S n n =-+-答案以及解析1.答案:BC解析:因为1112,1n n na a a a ++==-,所以1223121113,112a a a a a a ++==-==---,344534111,2131a a a a a a ++====--,所以数列{}n a 是以4为周期的周期数列.由以上可知A 错误;734312a a a +===-,B 正确;20205054431a a a ⨯===,C 正确;()2020123411353550550523236S a a a a ⎛⎫=+++=⨯--+=-⎪⎝⎭,D 错误. 2.答案:AD 解析:对于A ,由211(2)n n n na a q n a a +-=≥知数列{}1n n a a +是公比为2q 的等比数列;对于B ,当1q =-时,数列{}1n n a a ++的项中有0,不是等比数列;对于C ,当1q =时,数列{}1n n a a +-的项中有0,不是等比数列;对于D ,11111n n n n a a a q a ++==,所以数列1n a ⎧⎫⎨⎬⎩⎭是公比为1q 的等比数列.故选AD. 3.答案:ABD解析:由题意,设等差数列{}n a 的公差为 d ,由753a a =,得()11634a d a d +=+,得13a d =-,由等差数列{}n a 是递增数列,可知0d >,则10a <,故A ,B 正确;因为21(1)7222n n n d d dS a n n n -=+=-,由7722dn d -=-=可知,当3n =或4时n S 最小,故C 错误;令27022n d dS n n =->,解得0n <(舍去)或7n >,即0n S >时n 的最小值为8,故D 正确.故选ABD. 4.答案:ABC 解析:717878811,1,0,1,01,011a a a a a a q a ->><∴><<∴<<-,A 正确;27981a a a =<,B 正确;7T 是数列{}n T 中的最大项,故C 正确;781,01,n a a S ><<∴的最大值不是7S ,故D 不正确.故选ABC. 5.答案:AC解析:由题意得12(3)n n n F F F n --=+≥,所以3123123323111S F F F F F F F F F =++=+++-=++-=43544345655456711,11,11,F F F S F S F F F S F S F F F +-=-=+=+-=-=+=+-=-,所以201920211S F =-.6.答案:BC解析:设等比数列{}n a 的公比为q ,因为142332,12a a a a =+=,所以232332,12,a a a a =⎧⎨+=⎩解得234,8a a =⎧⎨=⎩或238,4,a a =⎧⎨=⎩因为数列{}n a 递增,所以234,8,a a =⎧⎨=⎩因此2q =,故A 错误;212aa q ==,因此()12122,2212n nn n n a S +⨯-===--,所以91822510,22n n S S +=-=+=,所以数列{}2n S +是等比数列,故B ,C 正确;lg lg 2lg 2n n a n ==⋅,因此数列{}lg n a 是公差为lg2的等差数列,故D 错误.故选BC. 7.答案:AC解析:因为n S 为数列{}n a 的前 n 项和,且21n n S a =+,所以11121a S a ==+,所以11a =-.当2n ≥时,1122n n n n n a S S a a --=-=-,即12n n a a -=,所以数列{}n a 是以1-为首项,2为公比的等比数列,故C 正确;451216a =-⨯=-,故A 正确;2121n n n S a =+=-+,所以552131S =-+=-,故B 错误;因为110S +=,所以数列{}1n S +不是等比数列,故D 错误.故选AC. 8.答案:ABD 解析:由题意可得,()*32412312342,2,2,,22,1231n n a a a a nn n a a a a n -=⨯=⨯=⨯=⨯≥∈-N ,以上式子左、右分别相乘得()1*122,n na n n n a -=⋅≥∈N ,把12a =-代入,得()*22,n n a n n n =-⋅≥∈N ,又12a =-符合上式,故数列{}n a 的通项公式为()*22,8n n a n n a =-⋅∈=-N ,故A ,B 正确;()212222n n S n =-⨯+⨯++⋅,则23121222(1)22n n n S n n +⎡⎤=-⨯+⨯++-⋅+⋅⎣⎦,两式相减,得()231111*22222222(1)22n n n n n n S n n n n ++++=++++-⋅=--⋅=-⋅-∈N ,故334S =-,故C 错误,D 正确.9.答案:AB 解析:2111142229333n n n n n a ----⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=-=-⎢⎥ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,令123n t -⎛⎫= ⎪⎝⎭,则 t 是区间(0,1]内的值,221124n a t t t ⎛⎫=-=-- ⎪⎝⎭,所以当1n =,即1t =时,n a 取得最大值,3n =时,123n -⎛⎫⎪⎝⎭的值最接近12,此时n a 取得最小值,所以该数列既有最大项又有最小项. 10.答案:ABD解析:设数列{}n a 的公差为 d ,数列{}n b 的公比为(0)q q ≠,依题意有2127,12213,d q d q ++=⎧⎨++=⎩得2,2,d q =⎧⎨=⎩故21,2n n n a n b =-=,故A ,B 正确;则21212243,4n n n n n c a n c b --==-==,所以数列{}n c 的前2n 项和()()21321242n n n S a a a b b b -=+++++++=()414(143)214nn n -+-+=-()29894241,3853nn n S S a -+-=+=,故C 错误,D 正确.。
高考数学二轮复习数列多选题测试及答案
高考数学二轮复习数列多选题测试及答案一、数列多选题1.已知数列{}n a 的首项1a m =且满足()()14751221nn a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,其中n *∈N ,则下列说法中正确的是( )A .当1m =时,有3n n a a +=恒成立B .当21m =时,有47n n a a ++=恒成立C .当27m =时,有108111n n a a ++=恒成立D .当()2km k N *=∈时,有2n kn k aa +++=恒成立【答案】AC 【分析】题设中的递推关系等价为1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,根据首项可找到{}n a 的局部周期性,从而可得正确的选项. 【详解】因为()()14751221n n a a n n a a +⎡⎤=-⋅-⋅+-⋅-⎣⎦,故1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数, 当1m =即11a =时,24a =,32a =,41a =,故{}n a 为周期数列且3n n a a +=,故A 正确.当21m =即121a =时,264a =,同理416a =,58a =,64a =,72a =,81a =,故58a a ≠,故B 错误.当2km =即12ka =时,根据等比数列的通项公式可有11222k kk a -⎛⎫= ⎪⎝⎭=,+1+21,4k k a a ==,+32k a =, +1+3k k a a ≠,故D 错误.对于C ,当27m =时,数列{}n a 的前108项依次为:27,82,42,124,62,31,94,47,142,71,214,107,322,161,484242,121,364,182,91,274,, 137,412,206,103,310,155,466,233,700,350,175,526,263,790,395,1186,593,1780, 890,445,1336,668,334,167,502,251,754,377,1132,566,283,850,425,1276,638,319,958,479,1438,719,2158,1079,3238,1619,4858,2429,7288,3644,1822,911,2734, 1367,4102,2051,6154,3077,9232,4616,2308,1154,577,1732,866,433,1300,650, 325,976,488,244,122,61,184,92,46,23,70,35,106,53,160,80,40,20,10,5,16,故1098a =,1104a =,1112a =,1121a =,1134a =,所以109112n n a a ++=对任意1n ≥总成立.(备注:因为本题为多选题,因此根据A 正确,BD 错误可判断出C 必定正确,可无需罗列出前108项) 故选:AC. 【点睛】方法点睛:对于复杂的递推关系,我们应该将其化简为相对简单的递推关系,对于数列局部周期性的研究,应该从特殊情况中总结出一般规律,另外,对于多选题,可以用排除法来确定可选项.2.意大利著名数学家斐波那契在研究兔子的繁殖问题时,发现有这样的一列数:1,1,2,3,5,8,…,该数列的特点是:前两个数均为1,从第三个数起,每一个数都等于它前面两个数的和.人们把这样的一列数组成的数列{}n f 称为斐波那契数列. 并将数列{}n f 中的各项除以4所得余数按原顺序构成的数列记为{}n g ,则下列结论正确的是( ) A .20192g = B .()()()()222123222022210f f f f f f -+-=C .12320192688g g g g ++++=D .22221232019201820202f f f f f f ++++=【答案】AB 【分析】由+2+1+n n n f f f =可得()2+112121n n n n n n n n f f f f f f f f +++++=-=-,可判断B 、D 选项;先计算数列{}n g 前几项可发现规律,使用归纳法得出结论:数列{}n g 是以6为最小正周期的数列,可判断A 、C 选项. 【详解】 对于A 选项:12345678910111211,2,3,1,0,1,12310g g g g g g g g g g g g ============,,,,,,,所以数列{}n g 是以6为最小正周期的数列,又20196336+3=⨯,所以20192g =,故A 选项正确;对于C 选项:()()12320193361+1+2+3+1+0+1+1+22692g g g g ++++=⨯=,故C 选项错误;对于B 选项:斐波那契数列总有:+2+1+n n n f f f =,所以()()22222232122232221f f f f f f f f =-=-,()()22121222021222120f f f f f f f f =-=-, 所以()()()()222123222022210f f f f f f -+-=,故B 正确; 对于D 选项:()212+2+1112+n n n f f f f f f f f ==∴=,,,()222312321f f f f f f f f =-=-,()233423432f f f f f f f f =-=-,,()2+112121n n n n n n n n f f f f f f f f +++++=-=-。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(新高考)高考数学二轮复习专题过关检测(十四)数列文
专题过关检测(十四) 数 列
1.(2019·北京高考)设{a n }是等差数列,a 1=-10,且a 2+10,a 3+8,a 4+6成等比数列.
(1)求{a n }的通项公式;
(2)记{a n }的前n 项和为S n ,求S n 的最小值. 解:(1)设{a n }的公差为d . 因为a 1=-10,
所以a 2=-10+d ,a 3=-10+2d ,a 4=-10+3d . 因为a 2+10,a 3+8,a 4+6成等比数列, 所以(a 3+8)2
=(a 2+10)(a 4+6), 所以(-2+2d )2=d (-4+3d ), 解得d =2.
所以a n =a 1+(n -1)d =2n -12. (2)由(1)知,a n =2n -12.
则当n ≥7时,a n >0;当n ≤6时,a n ≤0. 所以S n 的最小值为S 5=S 6=-30.
2.(2019·洛阳统考)已知等差数列{a n }的公差d ≠0,若a 3+a 9=22,且a 5,a 8,a 13成等比数列.
(1)求数列{a n }的通项公式;
(2)设b n =(a n +1)
2a n a n +1
,求数列{b n }的前n 项和S n .
解:(1)设数列{a n }的首项为a 1,依题意,
⎩
⎪⎨⎪⎧
2a 1+10d =22,(a 1+7d )2
=(a 1+4d )(a 1+12d ),
解得a 1=1,d =2,
∴数列{a n }的通项公式为a n =2n -1. (2)∵b n =
(a n +1)
2
a n a n +1
=4n 2
(2n -1)(2n +1)=4n 2
4n 2-1=1+1(2n -1)(2n +1)=1+1
2
⎝ ⎛⎭
⎪⎫12n -1-12n +1,
∴S n =1+12×⎝ ⎛⎭⎪⎫1-13+1+12×⎝ ⎛⎭⎪⎫13-15+…+1+12⎝ ⎛⎭⎪⎫12n -1-12n +1=n +12⎝ ⎛
⎭
⎪⎫1-12n +1=
2n 2
+2n
2n +1
. 3.(2019·长沙统考)已知数列{a n }的首项a 1=3,a 3=7,且对任意的n ∈N *
,都有a n -2a n +1+a n +2=0,数列{b n }满足b n =a 2n -1,n ∈N *
.
(1)求数列{a n },{b n }的通项公式;
(2)求使b 1+b 2+…+b n >2 018成立的最小正整数n 的值. 解:(1)令n =1得,a 1-2a 2+a 3=0,解得a 2=5. 又由a n -2a n +1+a n +2=0知,
a n +2-a n +1=a n +1-a n =…=a 2-a 1=2,
故数列{a n }是首项a 1=3,公差d =2的等差数列, 于是a n =2n +1,b n =a 2n -1=2n
+1. (2)由(1)知,b n =2n
+1.
于是b 1+b 2+…+b n =(21
+22
+ (2)
)+n =2(1-2n
)1-2
+n =2n +1
+n -2.
令f (n )=2
n +1
+n -2,易知f (n )是关于n 的单调递增函数,
又f (9)=210
+9-2=1 031,f (10)=211
+10-2=2 056, 故使b 1+b 2+…+b n >2 018成立的最小正整数n 的值是10.
4.已知数列{a n }的前n 项和为S n ,数列⎩⎨⎧⎭⎬⎫
S n n 是首项为1,公差为2的等差数列.
(1)求数列{a n }的通项公式;
(2)设数列{b n }满足a 1b 1+a 2b 2+…+a n b n =5-(4n +5)·⎝ ⎛⎭
⎪⎫12n
,求数列{b n }的前n 项和T n .
解:(1)因为数列⎩⎨⎧⎭
⎬⎫
S n n 是首项为1,公差为2的等差数列,
所以S n n
=1+2(n -1)=2n -1. 所以S n =2n 2
-n . 当n =1时,a 1=S 1=1;
当n ≥2时,a n =S n -S n -1=(2n 2
-n )-[2(n -1)2
-(n -1)]=4n -3, 当n =1时,a 1=1也符合上式.
所以数列{a n }的通项公式a n =4n -3(n ∈N *
).
(2)当n =1时,a 1b 1=1
2,所以b 1=2a 1=2;
当n ≥2时,由a 1b 1+a 2b 2+…+a n b n =5-(4n +5)⎝ ⎛⎭
⎪⎫12n
,
所以a 1b 1+a 2b 2
+…+
a n -1
b n -1=5-(4n +1)⎝ ⎛⎭
⎪⎫12n -1
. 两式相减,得a n b n =(4n -3)⎝ ⎛⎭
⎪⎫12n
.
因为a n =4n -3,
所以b n =4n -3(4n -3)⎝ ⎛⎭
⎪
⎫12n
=2n
(当n =1时,也符合此式).
又b n +1b n =2n +12
n =2,则数列{b n }是首项为2,公比为2的等比数列. 所以T n =2(1-2n
)1-2
=2n +1-2.
5.(2019·天津高考)设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,
b 2=a 3,b 3=4a 2+3.
(1)求{a n }和{b n }的通项公式. (2)设数列{c n }满足c n =⎩⎪⎨⎪
⎧
1,n 为奇数,b n
2
,n 为偶数.求a 1c 1+a 2c 2+…+a 2n c 2n (n ∈N *
).
解:(1)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .
依题意,得⎩
⎪⎨⎪⎧
3q =3+2d ,
3q 2
=15+4d ,解得⎩
⎪⎨
⎪⎧
d =3,
q =3,
故a n =3+3(n -1)=3n ,b n =3×3n -1
=3n
.
所以{a n }的通项公式为a n =3n ,{b n }的通项公式为b n =3n
. (2)a 1c 1+a 2c 2+…+a 2n c 2n
=(a 1+a 3+a 5+…+a 2n -1)+(a 2b 1+a 4b 2+a 6b 3+…+a 2n b n ) =⎣
⎢⎡
⎦
⎥⎤n ×3+
n (n -1)
2
×6+(6×31+12×32+18×33+…+6n ×3n )
=3n 2
+6(1×31
+2×32+…+n ×3n
). 记T n =1×31
+2×32
+…+n ×3n
,① 则3T n =1×32
+2×33
+…+n ×3
n +1
,②
②-①得,2T n =-3-32
-33
- (3)
+n ×3
n +1
=-3(1-3n )1-3+n ×3n +1
=
(2n -1)3n +1
+3
2
.
所以a 1c 1+a 2c 2+…+a 2n c 2n =3n 2
+6T n =3n 2
+3×
(2n -1)3
n +1
+32=
(2n -1)3n +2
+6n 2
+9
2
(n
∈N *
).
6.(2019·江苏高考节选)定义首项为1且公比为正数的等比数列为“M 数列”. (1)已知等比数列{a n }(n ∈N *
)满足:a 2a 4=a 5,a 3-4a 2+4a 1=0,求证:数列{a n }为“M
数列”;
(2)已知数列{b n }(n ∈N *
)满足:b 1=1,1S n =2b n -2b n +1
,其中S n 为数列{b n }的前n 项和.
求数列{b n }的通项公式.
解:(1)证明:设等比数列{a n }的公比为q , 所以a 1≠0,q ≠0.
由⎩⎪⎨
⎪⎧
a 2a 4=a 5,a 3-4a 2+4a 1=0,得⎩
⎪⎨⎪⎧
a 21q 4=a 1q 4
,
a 1q 2
-4a 1q +4a 1=0,
解得⎩
⎪⎨
⎪⎧
a 1=1,q =2.
因此数列{a n }为“M 数列”. (2)因为1S n =2b n -2
b n +1
,所以b n ≠0.
由b 1=1,S 1=b 1,得11=21-2
b 2,则b 2=2.
由1S n =2b n -2b n +1,得S n =b n b n +12(b n +1-b n ). 当n ≥2时,由b n =S n -S n -1,得
b n =
b n b n +12(b n +1-b n )-b n -1b n
2(b n -b n -1)
,
整理得b n +1+b n -1=2b n .
所以数列{b n }是首项和公差均为1的等差数列. 因此,数列{b n }的通项公式为b n =n (n ∈N *
).。