自动控制原理答案第3章
自动控制原理第三章课后习题答案
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理 第三章答案
3-1 解 该线圈的微分方程为 u =+diiR L dt对上式两边取拉氏变换,并令初始条件为零,可得传递函数为()1=()(+)+1I s RU s L R 时间常数+0.005T L R s ==,过渡时间=30.015s t T s =。
3-2 解 如图2-3-2所示系统的闭环传递函数为010()=(s)0.2+1+10+1H K C s KR S K Ts =其中0101+10H K K K =,0.21+10HT K =原系统的时间常数为0.2s ,放大系数为10,为了满足题目的要求,令0.02T s =和10K =,有0.9H K =和010K =。
3-3 解 设为温度计的输入,表示实际水温,设为温度计的输出,表示温度计的指示值,若实际水温为R (常值),则输入为幅值为R 的阶跃函数,输出为(t)=R(1-e )T c τ根据所给条件,有则时间常数。
3-4 解:所给传递函数的闭环极点为21,2=-1-n n s j ζωωζ±根据上式表达式,可以确定图2-3-3中的阴影部分为闭环极点可能位于的区域(考虑到对称性,只绘出s 平面的上半平面)。
图2-3-3 闭环极点可能位于的区域3-5解:典型二阶系统的传递函数为由如图2-3-4所示的响应曲线,可知峰值时间,超调量,根据二阶系统的性能指标计算公式和可以确定和,根据如图2-3-4所示曲线的终值,可以确定。
3-6 解:如图2-3-5所示系统的传递函数为是一个典型的二阶系统,其自然振荡频率为,令阻尼比可以确定,性能指标及分别为3-7 解:系统为典型二阶系统,自然振荡频率,阻尼比。
单位阶跃响应的表达式为(t>0)单位斜坡响应的表达式为3-8 解:当时,系统的闭环传递函数为其中,无阻尼自然振荡频率,阻尼比,单位阶跃响应的超调量峰值时间和过度过程时间分别为16.3%、0,36s和0.7s当,时系统的闭环传递函数为其中,无阻尼自然振荡频率,阻尼比,单位阶跃响应的超调量、峰值时间和过渡过程时间分别为30.9%、0.24s和0.7s。
自动控制原理第三章习题解答
tp =
1−ξ 2
= e −π 0.6 /
1−0.62
= e −π 0.6 /
1−0.62
= 9 .5 %
π
1 − ξ ωn
2
=
π
1.6
= 1.96( s )
ts =
3-5
3.5
ξω n
=
3.5 = 2.92( s ) 1.2
设单位反馈系统的开环传递函数为
G ( s) =
0.4 s + 1 s ( s + 0.6)
s5 s4 s3 s2 s1 s0
1 12 35 3 20 25 16 80 3 3 5 25 10 25
有一对虚根,系统不稳定 3-13 已知单位反馈系统的开环传递函数
G ( s) =
K (0.5s + 1) s ( s + 1)(0.5s 2 + s + 1)
试确定系统稳定时的 K 值范围。 解:系统特征方程为
ε 0 ,试问 k1 应满足什么条件?
见习题 3-20 解答 3-2 设系统的微分方程式如下: (1)
&(t ) = 2r (t ) 0.2c
&&(t ) + 0.24c &(t ) + c(t ) = r (t ) (2) 0.04c
试求系统的单位脉冲响应 k(t)和单位阶跃响应 h(t)。已知全部初始条件为零。 解: (1) 因为 0.2 sC ( s ) = 2 R ( s ) 单位脉冲响应: C ( s ) = 10 / s 单位阶跃响应 h(t)
试求系统的超调量σ%、峰值时间tp 和调节时间ts。 解: h(t ) = 1 −
自动控制原理课后习题答案,第三章(西科技大学)
c(t ) 1
1
e
n t
1
2
sin(d t )(t 0)
1.6,
1 2
1.25,n 1.2 1.6 1.25 2, 0.6
n
d
1 2
s% e
1 2
tp 1.96s d
10 K 斜坡输入时: K v lim sG ( s ) s 0 10 1 ess 1 Kv 0.25 得:10 1 2.5K 稳态误差:
与二阶系统的典型形式对比,有
10 1 2n 10K
得:K=1.6,= 0.3,n=4
闭环传递函数为
(2)
则辅助方程的解为
s1.2 1
s3.4 5 j
劳斯表第一列出现了负数,系统不稳定。第一列元素符号变 化一次,可知系统存在一个s右半平面的特征根。系统有一 共轭纯虚根±5 j。
K (0.5s 1) 3-11 已知单位反馈系统的开环传函为G ( s) 2 s(s 1)(0.5s s 1) 试确定系统稳定时的K值范围。
系统稳定的 K 范围为 0 < K < 1.708。
100 3-15 已知单位反馈系统的开环传递函数 G பைடு நூலகம் s ) s ( s 10) 试求:
(1) 位置误差系数Kp,速度误差系数Kv和加速度误差系数Ka; (2) 当参考输入 r(t) = 1+ t + at2 时,系统的稳态误差。
解:(1)
-50
48
0 0 0 8 96 8 48 2 96 8 ( 50 ) 2 0 2 24 50 s 8 8 0 s1 24 96 8 ( 50 ) 112 .7 24 0 s -50
自动控制原理第三章答案
n
临界阻尼:ts 4.75T 4.75
1
4.75
n
1 0.95s 5
3-3 原系统传递函数为 G(s) 0.2s 1 , 现采用如题所示的负反馈方式,欲将反 馈系统的调节时间减小为原来的0.1倍, 并且保证原放大倍数不变,试确定参数 K0 , KH的值。 解:原系统传递函数 新系统传递函数
K 10
0
1 10K 10 (时间常数为
H
1 ) 10
K 0.9
H
问题 非标准形式 10K 0 1 1 10K H , 0 .2 s 1 Ts 1 1 10K H
3
3-4
已知系统的单位阶跃响应为 试求取系统的传递函数
y(t ) 1 e
t
e
2t
Y(s) X(s)
n
2
问题 1、没有完成 2、计算错误
0.146
8
1 KK
1
2
3-9 设题3-9图(a)所示的单位 阶跃响应如题3-9图(b)所示。 试确定系统参数K1,K2和a。
解:据题意
K K (s) s(s a ) K K K K s as K s 2 s 1 s(s a )
(s) s(0.1s 1)
K 1 s(0.1s 1) K 10K 0.1s s K s 10s 10K
2 2
对应二阶系统标准形式,取ζ=1,得
问题
1、没有求调节时间 2、临界阻尼,调节时间 计算错误
2 10 5
n n
5 10K K 2.5 10
t
p
0.1
1.1 1.0 100% 10% 1.1 根据二阶欠阻尼系统指标计算公式
自动控制原理习题及其解答第三章
第三章例3-1 系统的结构图如图3-1所示。
已知传递函数 )12.0/(10)(+=s s G 。
今欲采用加负反馈的办法,将过渡过程时间t s减小为原来的0.1倍,并保证总放大系数不变。
试确定参数K h 和K 0的数值。
解 首先求出系统的传递函数φ(s ),并整理为标准式,然后与指标、参数的条件对照。
一阶系统的过渡过程时间t s 与其时间常数成正比。
根据要求,总传递函数应为)110/2.0(10)(+=s s φ即HH K s K s G K s G K s R s C 1012.010)(1)()()(00++=+= )()11012.0(101100s s K K K HHφ=+++=比较系数得⎪⎩⎪⎨⎧=+=+1010110101100H HK K K 解之得9.0=H K 、100=K解毕。
例3-10 某系统在输入信号r (t )=(1+t )1(t )作用下,测得输出响应为:t e t t c 109.0)9.0()(--+= (t ≥0)已知初始条件为零,试求系统的传递函数)(s φ。
解 因为22111)(ss s s s R +=+=)10()1(10109.09.01)]([)(22++=+-+==s s s s s s t c L s C 故系统传递函数为11.01)()()(+==s s R s C s φ 解毕。
例3-3 设控制系统如图3-2所示。
试分析参数b 的取值对系统阶跃响应动态性能的影响。
解 由图得闭环传递函数为1)()(++=s bK T Ks φ系统是一阶的。
动态性能指标为)(3)(2.2)(69.0bK T t bK T t bK T t s r d +=+=+= 因此,b 的取值大将会使阶跃响应的延迟时间、上升时间和调节时间都加长。
解毕。
例 3-12 设二阶控制系统的单位阶跃响应曲线如图3-34所示。
试确定系统的传递函数。
解 首先明显看出,在单位阶跃作用下响应的稳态值为3,故此系统的增益不是1,而是3。
自动控制原理第3章习题解答
(2) k (t ) = 5t + 10 sin( 4t + 45 )
0
(3) k (t ) = 0.1(1 − e 解: (1) Φ ( s ) =
−t / 3
)
0.0125 s + 1.25
1
胡寿松自动控制原理习题解答第三章
(2) k (t ) = 5t + 10 sin 4t cos 45 + 10 cos 4t sin 45
3s 4 + 10s 3 + 5s 2 + s + 2 = 0
试用劳思稳定判据和赫尔维茨判据确定系统的稳定性。 解: 列劳思表如下:
s4 s3 s2 s1 s0
3 5 2 10 1 47 2 10 1530 0 − 47 2
由劳思表可以得到该系统不稳定。 3-12 已知系统特征方程如下,试求系统在 s 右半平面的根数及虚根值。 (1)
2ξω n = 70
ξ=
7 2 6
根据(3-17)
h(t ) = 1 +
e − t / T1 e − t / T12 + T2 / T1 − 1 T1 / T2 − 1
解:根据公式(3-17)
3
胡寿松自动控制原理习题解答第三章
自动控制原理参考答案-第3章
×100% = 35%
⇒ ξ = 0.32 ,又 t p =
π
ωn 1 − ξ 2 2 ⇒ K = ωn = 1.96 ; a = 2ξωn = 0.896
= 2.36 ⇒ ωn = 1.4 ;
题 3-5:某速度给定控制系统的动态结构图如题 3-5 图所示。在给定输入量为
r(t) = 10v 直流电压时要求期望的转速输出量为 c(t) = 1000r / min 。试问:稳态反馈
π ωn 1 − ξ
3
2
=
2 3 π = 0.73 ; 15
(∆ = 0.05) 或 ts = 4
ξωn
= 1.2
ξωn
= 1.6
(∆ = 0.02)
题 3-3: 题 3-3 图所示为一位置随动控制系统的动态结构图,输出量为电动机拖
动对象的旋转角度。将速度量反馈回输入端比较环节后构成负反馈内环,速度反 馈系数为τ。试计算:
胡尔维茨行列式 D = 0 5 0 1
10 0 6
0 − 10 10
0 0 0
D2 = 30 D3 = −300 D4 = −1800
0 0 5 0 − 10 D5 = 18000 胡尔维茨行列式非正定,系统不稳定. 题 3-7:已知三个控制系统的特征方程式如下,试应用劳斯稳定判据判定系统 的稳定性;对不稳定的系统要求指出不稳定的极点数;对存在不稳定虚根的要求
4 37
12 K − 40 100 K 70 K − 100
164 K − 1080 100 K 劳斯表: 37 11480 K 2 − 228900 K + 108000 1 s 164 K − 1080 0 s 100 K 若系统稳定则: 164 K − 1080 ⎧ >0 ⎪ 37 ⎪ 2 ⎪11480 K − 228900 K + 108000 >0 ⎨ 164 K − 1080 ⎪ 100 K > 0 ⎪ ⎪ ⎩ ⇒ k > 19.46 题 3-10:已知单位负反馈控制系统的开环传递函数为
《自动控制原理》答案 李红星 第三章
Φ(s) =
1 Ts + 1
由一阶系统阶跃响应特性可知:c ( 4T ) = 98 o o , 因此有 4T = 1 min , 得出 T = 0.25 min 。 视温度计为单位反馈系统,则开环传递函数为
G ( s) =
Φ( s) 1 = 1 − Φ ( s ) Ts
⎧K = 1 T ⎨ ⎩v =1
(2)
ω n2 G(s) 10 K Φ( s) = = = 2 1 + G ( s ) s 2 + (10τ + 1) s + 10 K s 2 + 2ζω n s + ω n
⎧ ζ = 0 .5 ⎪ω = 3.63 ⎨ n ⎪ ⎩τ = 0.263
⎧σ o = e −ζπ 1−ζ 2 = 16.3 o o ⎪ o π (3)由 ⎨ t = =1 ⎪ p ω 1−ζ 2 n ⎩
解:
3-10
已知单位反馈系统的开环传递函数为
G ( s) =
7( s + 1) s ( s + 4)( s 2 + 2 s + 2)
试分别求出当输入信号 r (t ) = 1(t ), t 和 t 2 时系统的稳态误差。
解
G ( s) =
7( s + 1) s ( s + 4)( s 2 + 2 s + 2)
s →0
e ss = lim s Φ e ( s ) R ( s ) = lim s
s →0
Ts 10 ⋅ = 10T = 2.5°C Ts + 1 s 2
3-3
已知二阶系统的单位阶跃响应为
c(t ) = 10 − 12.5e −1.2t sin(1.6t + 53.1o )
自动控制理论第三章习题答案
解:系统开环传递函数
图 3-42
飞行控制系统
25K1
G0 (s)
=
1+
s(s + 0.8)
25K1 s(s + 0.8)
Kt
s
=
s(s
+
25K1 0.8) + 25K1Kt s
=
25K1
=
ω
2 n
s(s + 0.8 + 25K1Kt ) s(s + 2ξωn )
ω
2 n
=
36
=
25K1
K1
=
36 25
1
s(s + 1) + 10τ 2s
= 10(1 + τ1s) = 10 =
ω
2 n
s(s + 1) + 10τ 2s s(s + 2) s(s + 2ξωn )
s(s + 1)
ω
2 n
= 10
ωn = 10
2ξωn = 2
ξ= 1 10
σ % = e−ξπ / 1−ξ 2 = 35.1%
5
胡寿松自动控制原理习题解答第三章
单位脉冲响应: C(s) = 10 / s k(t) = 10 t ≥ 0
单位阶跃响应 h(t) C(s) = 10 / s2 h(t) = 10t t ≥ 0
(2) (0.04s2 + 0.24s + 1)C(s) = R(s)
单位脉冲响应: C(s)
=
0.04 s 2
1 + 0.24s
+1
C (s)
(1) s5 + 3s 4 + 12s3 + 24s 2 + 32s + 48 = 0 (2) s 6 + 4s5 − 4s 4 + 4s3 - 7s 2 - 8s + 10 = 0
自动控制原理第三章课后习题 答案(最新)
3-1 设系统的微分方程式如下:(1) )(2)(2.0t r t c =&(2) )()()(24.0)(04.0t r t c t c t c =++&&&试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC = 闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Tss s s G 1)(1)()(=Φ-Φ=⎩⎨⎧==11v TK 用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
自动控制原理课后习题答案第三章
第三章3-4 已知二阶系统的单位阶跃响应为1.20()1012.5sin(1.653.1)th t e t-=-+试求系统的超调量σ%、峰值时间tp和调节时间ts。
解:依题意pt t=时()0ph t'=,并且pt是使()ph t'第一次为零的时刻(pt≠)1.20()1012.5sin(1.653.1)th t e t-=-+1.2001012.5(cos53.1sin1.6sin53.1cos1.6)te t t-=-+1.20 1.20 1.2()15sin(1.653.1)20cos(1.653.1)25sin1.6t t th t e t e t e t---'=+-+=可见,当()h t'第一次为0时,1.6 1.96p pt tπ=⇒=,所以1.21.960180()1012.5sin(1.6 1.9653.1)10.95ph t eπ-⨯=-⨯⨯+=()()10.9510%100%100%9.5%()10ph t hhσ-∞-=⨯=⨯=∞根据调节时间st的定义:0.95()() 1.05()sh h t h∞<<∞,即1.29.51012.50.5te-<-<,得ln0.04 3.2122.681.2 1.2st>-==所以:%9.5% 1.96 2.68p st s t sσ===3-5设图3-3是简化的飞行控制系统结构图,试选择参数K1和Kt,使系统ωn=6、ζ=1。
图3-3 飞行控制系统分析:求出系统传递函数,如果可化为典型二阶环节形式,则可与标准二阶环节相对照,从而确定相应参数。
解对结构图进行化简如图所示。
故系统的传递函数为1121112525(0.8)()25(1)(0.825)251(0.8)t t K K s s s K K s s K K s K s s +Φ==++++++和标准二阶系统对照后可以求出:21120.81.44,0.312525nn t K K K ωζω-====3-7已知系统特征方程如下,试求系统在s 右半平面的根数及虚根值。
自动控制原理课后答案第3章
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
自动控制原理习题答案
第三章 线性系统的时域分析与校正习题及答案3-1 已知系统脉冲响应t e t k 25.10125.0)(-=试求系统闭环传递函数)(s Φ。
解 Φ()()./(.)s L k t s ==+00125125 3-2 设某高阶系统可用下列一阶微分方程T c t c t r t r t ••+=+()()()()τ近似描述,其中,1)(0<-<τT 。
试证系统的动态性能指标为 T T T t d ⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+=τln 693.0t T r =22. T T T t s ⎥⎦⎤⎢⎣⎡-+=)ln(3τ 解 设单位阶跃输入ss R 1)(=当初始条件为0时有:11)()(++=Ts s s R s C τ 11111)(+--=⋅++=∴Ts T s s Ts s s C ττC t h t T Te t T()()/==---1τ 1) 当 t t d = 时h t T Te t td ()./==---051τ12=--T T e t T d τ/ ; Tt T T d-⎪⎭⎫ ⎝⎛-=-τln 2ln ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+=∴T T T t d τln 2ln2) 求t r (即)(t c 从1.0到9.0所需时间)当 Tt eTT t h /219.0)(---==τ; t T T T 201=--[ln()ln .]τ 当 Tt eTT t h /111.0)(---==τ; t T T T 109=--[ln()ln .]τ 则 t t t T T r =-==21090122ln ... 3) 求 t sTt s s eTT t h /195.0)(---==τ ]ln 3[]20ln [ln ]05.0ln [ln TT T T T T T T T t s τττ-+=+-=--=∴3-3 一阶系统结构图如图3-45所示。
要求系统闭环增益2=ΦK ,调节时间4.0≤s t s ,试确定参数21,K K 的值。
自动控制原理 第三章课后答案
3-1设温度计需要在一分钟内指示出响应值的98%,并且假设温度计为一阶系统,求时间常数T 。
如果将温度计放在澡盆内,澡盆的温度以10C/min 的速度线性变化。
求温度计的误差。
解:c(t)=c(∞)98%t=4T=1 min r(t)=10te(t)=r(t)-c(t)c(t)=10(t-T+e )-t/T =10(T-e )-t/T =10T =2.5T=0.253-2电路系统如图所示,其中F C k R k R μ5.2,200,20110=Ω=Ω=。
设系统初始状态为零,试求:系统的单位阶跃响应8)()(1=t u t u c c 以及时的1t 值;解:R 1Cs+1R 1/R 0G (s )= u c (t)=K(1–e t T -)KTs +1=T=R 1C=0.5 K=R 1/R 0=10=10(1–e -2t )8=10(1–e -2t)0.8=1–e-2te -2t =0.2 t=0.8g(t)=e -t/T T Kt 1=0.8=4u c (t)=K(t-T+T e -t/T )=4R(s)=1s 2R(s)=1R(s)=1s 3T 2=K(s s+1/T+T s 2-1s 3-T 2)=1.2Ts 1s 3K +1U c (s)= -0.5t+0.25-0.25e -2t )12t 2u c (t)=10(3-3已知单位反馈系统的开环传递函数为)5(4)(+=s s s G 试求该系统的单位阶跃响应。
解:C(s)=s 2+5s+4R(s)4s(s+1)(s+4)C(s)=4R(s)=s1s+41+1/3s =4/3s +1-c(t)=1+ 4e 13-4t -t 3-e3-4已知单位负反馈系统的开环传递函数为 )1(1)(+=s s s G 试求该系统的上升时间r t 。
、峰值时间p t 、超调量%σ和调整时间s t 。
1s(s+1)G(s)=t p =d ωπ 3.140.866= =3.63t s = ζ3ωn=6t s = ζ4ωn =8解:C(s)=s 2+s+1R(s)12= 1ωn 2ωn ζ=1ζ=0.5=1ωn =0.866d ω= ωn 2 ζ1-=60o -1ζ=tg β21-ζt r =d ωπβ-= 3.14-3.14/30.866=2.42σ%=100%e -ζζπ1-2=16%e -1.83-6已知系统的单位阶跃响应为t te et c 10602.12.01)(---+= ,试求:(1)系统的闭环传递函数;(2)系统的阻尼比ζ和无阻尼自然震荡频率n ω;解:s+60+C(s)=0.21s 1.2s +10-s(s+60)(s+10)=600=s 2+70s+600C(s)R(s)600R(s)=s 12=600ωn2ωn ζ=70ζ=1.43=24.5ωn3-7设二阶控制系统的单位阶跃响应曲线如图所示,如果该系统为单位负反馈系统,试确定其开环传递函数。
自动控制原理参考答案-第3章
10 0 6
0 − 10 10
0
D2 = 30
D3 = −300 0 0 1 0 D4 = −1800 0 0 5 0 − 10 D5 = 18000 胡尔维茨行列式非正定,系统不稳定. 题 3-7:已知三个控制系统的特征方程式如下,试应用劳斯稳定判据判定系统 的稳定性;对不稳定的系统要求指出不稳定的极点数;对存在不稳定虚根的要求
劳斯表: 由于出现全零行: F ( s) = 2s 4 + 12s 2 + 16 = 0 解得系统不稳定的闭环极点: s1,2 = ±2 j ; s3,4 = ± 2 j
s2
(3)
特征方程: s 6 + 2s5 + 32s 4 + 20s 2 + s + 6 = 0 s6 1 32 20 6 5 s 2 0 1 4 s 32 19.5 6 3 劳斯表: s −1.22 0.625 s 2 35.89 6 1 s 0.83 0 s 6 首列元素符号改变 2 次,系统不稳定,不稳定的极点有 2 个. 题 3-8:已知某单位负反馈控制系统的开环传递函数为
(1)
(2)
2 = 0.35 ; 4 s 2 + 2s 1 ess = lim sE ( s) = lim s[1 − T ( s )]R ( s) = lim s 2 = 0.25 s →0 s →0 s →0 s + 2s + 8 s 2 二阶系统最佳参数: ξ = 0.707 ,又 2ζωn = 8τ + 2 , ωn = 2.83 ⇒ τ = 0.25
第三章
题 3-1:某单位负反馈闭环控制系统的开环传递函数为 G(s) = 5 ,试求闭环系统
自动控制原理第三章课后习题答案解析(最新)
3-1(1) )(2)(2.0t r t c= (2) )()()(24.0)(04.0t r t c t c t c=++ 试求系统闭环传递函数Φ(s),以及系统的单位脉冲响应g(t)和单位阶跃响应c(t)。
已知全部初始条件为零。
解:(1) 因为)(2)(2.0s R s sC =闭环传递函数ss R s C s 10)()()(==Φ 单位脉冲响应:s s C /10)(= 010)(≥=t t g单位阶跃响应c(t) 2/10)(s s C = 010)(≥=t t t c(2))()()124.004.0(2s R s C s s =++ 124.004.0)()(2++=s s s R s C 闭环传递函数124.004.01)()()(2++==s s s R s C s φ 单位脉冲响应:124.004.01)(2++=s s s C t e t g t 4sin 325)(3-= 单位阶跃响应h(t) 16)3(61]16)3[(25)(22+++-=++=s s s s s s Ct e t e t c t t 4sin 434cos 1)(33----=3-2 温度计的传递函数为11+Ts ,用其测量容器内的水温,1min 才能显示出该温度的98%的数值。
若加热容器使水温按10ºC/min 的速度匀速上升,问温度计的稳态指示误差有多大?解法一 依题意,温度计闭环传递函数11)(+=ΦTs s 由一阶系统阶跃响应特性可知:o o T c 98)4(=,因此有 min 14=T ,得出 min 25.0=T 。
视温度计为单位反馈系统,则开环传递函数为Ts s s s G 1)(1)()(=Φ-Φ= ⎩⎨⎧==11v T K用静态误差系数法,当t t r ⋅=10)( 时,C T Ke ss ︒===5.21010。
解法二 依题意,系统误差定义为 )()()(t c t r t e -=,应有 1111)()(1)()()(+=+-=-==ΦTs TsTs s R s C s R s E s e C T s Ts Ts ss R s s e s e s ss ︒==⋅+=Φ=→→5.210101lim )()(lim 23-3 已知二阶系统的单位阶跃响应为)1.536.1sin(5.1210)(2.1o tt et c +-=-试求系统的超调量σ%、峰值时间tp 和调节时间ts 。
自动控制原理(孟华)第3章习题解答
3.1.已知系统的单位阶跃响应为)0(2.1.0)(16≥-+=--t e e t c tt 0021试求:(1)系统的闭环传递函数Φ(s)=?(2) 阻尼比ζ=?无自然振荡频率ωn =? 解:(1)由c (t )得系统的单位脉冲响应为t te et g 10601212)(--+-=600706006011210112)]([)(2++=+-+==Φs s s s t g L s (2)与标准2222)(nn ns s ωζωω++=Φ对比得: 5.24600==n ω,429.1600270=⨯=ζ3.2.设图3.36 (a )所示系统的单位阶跃响应如图3.36 (b )所示。
试确定系统参数,1K 2K 和a 。
(a) (b)图3.36 习题3.2图解:系统的传递函数为22212212112)(1)()(nn n s K K as s K K K a s s K a s s K s W ωζωω++=++=+++= 又由图可知:超调量 43133p M -== 峰值时间 ()0.1p t s =代入得⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧==-==--221121.01312K K eK n n ζωπωζζπ 解得:213ln ζζπ-=;33.0≈ζ,3.331102≈-=ζπωn ,89.110821≈=nK ω, 98.213.3333.022≈⨯⨯≈=n a ζω,32==K K 。
3.3. 给定典型二阶系统的设计性能指标:超调量p σ5≤%,调节时间 s t 3<s ,峰值时间1<p t s ,试确定系统极点配置的区域,以获得预期的响应特性。
解:设该二阶系统的开环传递函数为()()22nn G s s s ωξω=+ 则满足上述设计性能指标:⎪⎪⎪⎩⎪⎪⎪⎨⎧<-=<=≤=--113305.0212ζωπζωσζζπn p ns p t t e得:69.0≥ζ,1>n ζωπζω>-21n由上述各不等式得系统极点配置的区域如下图阴影部分所示:3.4.设一系统如图3.37所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
School of Electronic Engineering, Dongguan University of Technology
【习题3-1】:
已知某控制系统结构图,其中T m =0.2,K =5,求系统的单位阶跃响应性能。
1
)对比二阶系统开环传递函数的一般表达式:
2)解得:3)进而解得:4)超调量:5)调节时间:6)峰值时间:7)上升时间:
School of Electronic Engineering, Dongguan University of Technology
【习题3-2】:
已知某控制系统结构图,系统的单位阶跃响应曲线,试确定系统参数K 1、的值。
)闭环传递函数:2)从曲线中可以直接获得:3))计算系统的参数:
)比较二阶系统闭环传递函数的一般式:
阶跃响应的输出通常用h(t)表示,代替c(t)
()()()
lim lim t s c c t sC s →∞
→∞==
School of Electronic Engineering, Dongguan University of Technology
【习题3-3】:
已知某控制系统结构图,要求系统的阻尼比ζ=0.6,试确定K t 的值,并计算动态性能指标:t p 、t s 和σp 的值。
1)闭环传递函数:
2)比较二阶系统闭环传递函数的一般式:3)解得:
4
)计算系统的动态性能:
School of Electronic Engineering, Dongguan University of Technology
【习题3-4】:
已知某控制系统结构图,要求系统的超调量σp =16.3%,峰值时间t p =1 秒,求K 与τ。
1)根据超调量和峰值时间的定义,有:
2)计算系统的特征参数:3)闭环传递函数:
4)比较二阶系统的闭环传递函数的一般形式:5)解得:
【习题3-5】:系统的特征方程为:20=0
School of Electronic Engineering, Dongguan University of Technology
【习题3-7】:特征方程为:结论:=0
全为零构造辅助特征方程
School of Electronic Engineering, Dongguan University of Technology
【习题3-9】:已知单位反馈系统的开环传递函数为:
试确定系统稳定时K 的范围:解:闭环特征方程为:
劳斯表:
结论:0<K
<1.708
School of Electronic Engineering, Dongguan University of Technology
【习题3-10】:已知控制系统结构图,要求闭环系统特征根全部位于垂线s =-0.2 之左。
试确定参数k 的取值范围。
解:闭环特征方程为:
将z=s-0.2 代入特征方程得:根据三阶系统稳定性充要条件:结论:0.15<K <2.84
【习题3-11】:已知单位反馈系统的开环传递函数,试求输入分别为)=2t、【习题3-13】:已知控制系统结构图,如果
时系统在扰动作用下的稳态输出及稳态误差。
()
()
()()()
()
2
12
1
d
G s
s D s
G s G s H s
=
+
()
()()
()()()
()
2
d
H s G s
s D s =-
【习题3-14】:已知控制系统结构图,其中r(t)=t ,d(t)=0.5,计算该系统的稳态110.5
e ===20+=。