概率统计习题课

合集下载

概率论与数理统计 习题课1-1

概率论与数理统计 习题课1-1
7 12
P( A B C ) =
事件的关系 互斥: 互斥:AB = φ 对立事件, 对立事件,样本空间的划分
P ( B A) = P ( B )
n个事件两两互斥,就称这n个事件互斥 个事件两两互斥,就称这n
独立
P ( A B ) = P ( A)
P ( AB ) = P ( A) P ( B )
n个事件独立的要求很高
3 1 1 2 4未中, 3 或者1、、未中, 伤 L因此总的概率为 C 4 6 2 3
3 4
1 3 1 1 ∴ P ( A) = 1 − P ( A ) = 1 − − C 4 6 6 2
4
3
1 n k k
条件概率
乘法公式
全概公式和贝叶斯公式
n个独立事件至少发生其一的概率
伯努利概型
在n重伯努利试验中,事件A恰好发生k次的概率 重伯努利试验中,事件A恰好发生k
k Pn (k ) = Cn p k q n − k , k = 0,1,2, L , n
1. B
掷两颗骰子,已知两颗骰子的点数之和为7 2. 掷两颗骰子,已知两颗骰子的点数之和为7,求其中 一颗为1的概率。 一颗为1的概率。 解:
3. 某人忘记了电话号码的最后一个数字,因此他随意地拨号, 某人忘记了电话号码的最后一个数字,因此他随意地拨号, 求他拨号不超过3次而接通电话的概率; (1)求他拨号不超过3次而接通电话的概率; 若已知最后一个数字是奇数,那么此概率是多少? (2)若已知最后一个数字是奇数,那么此概率是多少?
解:设A = {第 i 次拨号拨对 }, i = 1,2,3 i
1 3
表示施放4枚深水炸弹击沉潜水艇的事件 解 设A表示施放 枚深水炸弹击沉潜水艇的事件,则 表示施放 枚深水炸弹击沉潜水艇的事件,

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案

经济数学基础——概率统计课后习题答案1⽬录习题⼀ (1)习题⼆ (16)习题三 (44)习题四 (73)习题五 (97)习题六 (113)习题七 (133)1习题⼀写出下列事件的样本空间:(1) 把⼀枚硬币抛掷⼀次;(2) 把⼀枚硬币连续抛掷两次;(3) 掷⼀枚硬币,直到⾸次出现正⾯为⽌;(4) ⼀个库房在某⼀个时刻的库存量(假定最⼤容量为M ).解 (1) Ω={正⾯,反⾯} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)}(3) Ω={(正),(反,正),(反,反,正),…}(4) Ω={x ;0 ≤x ≤ m }掷⼀颗骰⼦的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数⼩于5”,D =“⼩于5的偶数点”,讨论上述各事件间的关系.解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对⽴事件,即B =A ;B 与D 互不相容;A ?D ,C ?D.3. 事件A i 表⽰某个⽣产单位第i 车间完成⽣产任务,i =1,2,3,B 表⽰⾄少有两个车间完成⽣产任务,C 表⽰最多只有两个车间完成⽣产任务,说明事件B 及B -C 的含义,并且⽤A i (i =1,2,3)表⽰出来. 解 B 表⽰最多有⼀个车间完成⽣产任务,即⾄少有两个车间没有完成⽣产任务.313221A A A A A A B ++=B -C 表⽰三个车间都完成⽣产任务321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++= 321A A A C B =-4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB ⽤⼀些互不相容事件的和表⽰出来.解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=- 5.两个事件互不相容与两个事件对⽴的区别何在,举例说明.解两个对⽴的事件⼀定互不相容,它们不可能同时发⽣,也不可能同时不发⽣;两个互不相容的事件不⼀定是对⽴事件,它们只是不可能同时发⽣,但不⼀定同时不发⽣. 在本书第6页例2中A 与D 是对⽴事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否⼀定互不相容?画图说明.解不⼀定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解由于AB ?A ?A+B ,A -B ?A ?A+B ,AB 与A -B 互不相容,且A =AB +(A -B).因此有A =C +F ,C 与F 互不相容,D ?A ?F ,A ?C.8. 袋内装有5个⽩球,3个⿊球,从中⼀次任取两个,求取到的两个球颜⾊不同的概率.解记事件A 表⽰“取到的两个球颜⾊不同”. 则有利于事件A 的样本点数⽬#A =1315C C .⽽组成试验的样本点总数为#Ω=235+C ,由古典概率公式有图1-1 图1-22P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表⽰有利于A 的样本点数⽬与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有⿊球的概率.解设事件B 表⽰“取到的两个球中有⿊球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P - 10. 抛掷⼀枚硬币,连续3次,求既有正⾯⼜有反⾯出现的概率.解设事件A 表⽰“三次中既有正⾯⼜有反⾯出现”, 则A 表⽰三次均为正⾯或三次均为反⾯出现. ⽽抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此43821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开⼀个门锁,今任取两把,求能打开门锁的概率.解设事件A 表⽰“门锁能被打开”. 则事件A 发⽣就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=C C A A P A P -##从9题-11题解中可以看到,有些时候计算所求事件的对⽴事件概率⽐较⽅便.12. ⼀副扑克牌有52张,不放回抽样,每次⼀张,连续抽取4张,计算下列事件的概率:(1)四张花⾊各异;(2)四张中只有两种花⾊.解设事件A 表⽰“四张花⾊各异”;B 表⽰“四张中只有两种花⾊”.,113113113113452##C C C C A , C Ω==)+#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P === 30006048+74366##)(452 )(.C ΩB B P === 13. ⼝袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹⾓的概率. 解设事件A 表⽰“取出的5枚硬币总值超过壹⾓”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##= 14. 袋中有红、黄、⿊⾊球各⼀个,每次任取⼀球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全⽩”,C =“全⿊”,D =“⽆红”,E =“⽆⽩”,F =“⽆⿊”,G =“三次颜⾊全相同”,H =“颜⾊全不相同”,I =“颜⾊不全相同”.解#Ω=33=27,#A =#B =#C =1,#D =#E =#F =23=8,#G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =243271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. ⼀间宿舍内住有6位同学,求他们中有4个⼈的⽣⽇在同⼀个⽉份的概率.解设事件A 表⽰“有4个⼈的⽣⽇在同⼀个⽉份”.#Ω=126,#A =21124611C C 0073.01221780##)(6==ΩA A P = 16. 事件A 与B 互不相容,计算P )(B A +.解由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P17. 设事件B ?A ,求证P (B )≥P (A ).证∵B ?A∴P (B -A )=P (B ) - P (A )∵P (B -A )≥0∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +bP (B -A )=P (B )-P (AB )=b -0.3a P(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中⼀次抽取三个,计算取到废品的概率.解设事件A 表⽰“取到废品”,则A 表⽰没有取到废品,有利于事件A 的样本点数⽬为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA -=##=0.225520. 已知事件B ?A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解因B ?A ,故P (B )≥P (A ),即ln a ≥ln b ,?a ≥b ,⼜因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都⼤于0,⽐较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的⼤⼩(⽤不等号把它们连接起来).解由于对任何事件A ,B ,均有AB ?A ?A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. ⼀个教室中有100名学⽣,求其中⾄少有⼀⼈的⽣⽇是在元旦的概率(设⼀年以365天计算).解设事件A 表⽰“100名学⽣的⽣⽇都不在元旦”,则有利于A 的样本点数⽬为#A =364100,⽽样本空间中样本点总数为#Ω=365100,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P = 0.239923. 从5副不同⼿套中任取4只⼿套,求其中⾄少有两只⼿套配成⼀副的概率.解设事件A 表⽰“取出的四只⼿套⾄少有两只配成⼀副”,则A 表⽰“四只⼿套中任何两只均不能配成⼀副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职⼯订阅报纸,93%的⼈订阅杂志,在不订阅报纸的⼈中仍有85%的职⼯订阅杂志,从单位中任找⼀名职⼯求下列事件的概率:(1)该职⼯⾄少订阅⼀种报纸或期刊;(2)该职⼯不订阅杂志,但是订阅报纸.解设事件A 表⽰“任找的⼀名职⼯订阅报纸”,B 表⽰“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学⽣们的数学与外语两科考试成绩,抽查⼀名学⽣,记事件A 表⽰数学成绩优秀,B 表⽰外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB P P (B |A)=7.0)()(=A P AB P P (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --== P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独⽴,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ).解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B ) ? 0.7=0.4+0.6P ( B )P ( B )=0.528. 设事件A 与B 的概率都⼤于0,如果A 与B 独⽴,问它们是否互不相容,为什么?解因P ( A ),P ( B )均⼤于0,⼜因A 与B 独⽴,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电⼦元件的寿命在1000⼩时以上的概率为0.8,求3个这种元件使⽤1000⼩时后,最多只坏了⼀个的概率.解设事件A i 表⽰“使⽤1000⼩时后第i 个元件没有坏”, i =1,2,3,显然A 1,A 2,A 3相互独⽴,事件A 表⽰“三个元件中最多只坏了⼀个”,则A =A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上⾯等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2=0.89630. 加⼯某种零件,需经过三道⼯序,假定第⼀、⼆、三道⼯序的废品率分别为0.3,0.2,0.2,并且任何⼀道⼯序是否出现废品与其他各道⼯序⽆关,求零件的合格率.解设事件A 表⽰“任取⼀个零件为合格品”,依题意A 表⽰三道⼯序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定⼆者独⽴,现在从外部打电话给该车间,求⼀次能打通的概率;第⼆次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数). 解设事件A i 表⽰“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42P (A 2)=0.58 × 0.42=0.2436P (A m )=0.58m -1 × 0.4232. ⼀间宿舍中有4位同学的眼镜都放在书架上,去上课时,每⼈任取⼀副眼镜,求每个⼈都没有拿到⾃⼰眼镜的概率.解设A i 表⽰“第i ⼈拿到⾃⼰眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表⽰“每个⼈都没有拿到⾃⼰的眼镜”. 显然B 则表⽰“⾄少有⼀⼈拿到⾃⼰的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i ) =)41(1213141≤≤=?j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j ) =41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3) =2411213141= 85241241121414)(3424=-?+?-?=C C B P 83)(1)(=-=B P B P 33. 在1,2,…,3000这3000个数中任取⼀个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A2A 3),P (A 2+A 3),P (A 2-A 3).解依题意P (A 2)=21,P (A 3)=31 P (A 2A 3)=P (A 6)=61 P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3) =32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=- 34. 甲、⼄、丙三⼈进⾏投篮练习,每⼈⼀次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率:(1)只有⼀⼈投中;(2)最多有⼀⼈投中;(3)最少有⼀⼈投中.解设事件A 、B 、C 分别表⽰“甲投中”、“⼄投中”、“丙投中”,显然A 、B 、C 相互独⽴.设A i 表⽰“三⼈中有i ⼈投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P ===0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C )=0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452(1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212(3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、⼄⼆⼈轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较⼤,为什么?解设事件A 2n -1B 2n 分别表⽰“甲在第2n -1次投中”与“⼄在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独⽴.设事件A 表⽰“甲先投中”.+++=)()()()(543213211A B A B A P A B A P A P A P=+++0.40.5)(0.60.40.50.60.42743.014.0=-= 计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较⼤.36. 某⾼校新⽣中,北京考⽣占30%,京外其他各地考⽣占70%,已知在北京学⽣中,以英语为第⼀外语的占80%,⽽京外学⽣以英语为第⼀外语的占95%,今从全校新⽣中任选⼀名学⽣,求该⽣以英语为第⼀外语的概率.解设事件A 表⽰“任选⼀名学⽣为北京考⽣”,B 表⽰“任选⼀名学⽣,以英语为第⼀外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个⾏政⼩区,其⼈⼝⽐为9 : 7 : 4,据统计资料,甲种疾病在该地三个⼩区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解设事件A 1,A 2,A 3分别表⽰从A 地任选⼀名居民其为南、北、中⾏政⼩区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表⽰“任选⼀名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005=0.003538. ⼀个机床有三分之⼀的时间加⼯零件A ,其余时间加⼯零件B ,加⼯零件A 时,停机的概率为0.3,加⼯零件B 时停机的概率为0.4,求这个机床停机的概率.解设事件A 表⽰“机床加⼯零件A ”,则A 表⽰“机床加⼯零件B ”,设事件B 表⽰“机床停⼯”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=?+?= 39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个⼝袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取⼀个球,放⼊与球上号数相同的⼝袋中,第⼆次从该⼝袋中任取⼀个球,计算第⼆次取到⼏号球的概率最⼤,为什么?解设事件A i 表⽰“第⼀次取到i 号球”,B i 表⽰第⼆次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成⼀个完全事件组.41)()(,21)(321===A P A P A P 41)|()|(,21)|(131211===A B P A B P A B P 41)|()|(,21)|(232221===A B P A B P A B P 61)|(,31)|(,21)|(333231===A B P A B P A B P 应⽤全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第⼆次取到1号球的概率最⼤.40. 接37题,⽤⼀种检验⽅法,其效果是:对甲种疾病的漏查率为5%(即⼀个甲种疾病患者,经此检验法未查出的概率为5%);对⽆甲种疾病的⼈⽤此检验法误诊为甲种疾病患者的概率为1%,在⼀次健康普查中,某⼈经此检验法查为患有甲种疾病,计算该⼈确实患有此病的概率.解设事件A 表⽰“受检⼈患有甲种疾病”,B 表⽰“受检⼈被查有甲种疾病”,由37题计算可知P (A )=0.0035,应⽤贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P += 01.09965.095.00035.095.00035.0=+ 25.0=41. 甲、⼄、丙三个机床加⼯⼀批同⼀种零件,其各机床加⼯的零件数量之⽐为5 : 3 : 2,各机床所加⼯的零件合格率,依次为94%,90%,95%,现在从加⼯好的整批零件中检查出⼀个废品,判断它不是甲机床加⼯的概率.解设事件A 1,A 2,A 3分别表⽰“受检零件为甲机床加⼯”,“⼄机床加⼯”,“丙机床加⼯”,B 表⽰“废品”,应⽤贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P 7305020+1030+06.05.006.05.0== (7)4)|(1)|(11=-=B A P B A P 42. 某⼈外出可以乘坐飞机、⽕车、轮船、汽车4种交通⼯具,其概率分别为5%,15%,30%,50%,乘坐这⼏种交通⼯具能如期到达的概率依次为100%,70%,60%与90%,已知该旅⾏者误期到达,求他是乘坐⽕车的概率.解设事件A 1,A 2,A 3,A 4分别表⽰外出⼈“乘坐飞机”,“乘坐⽕车”,“乘坐轮船”,“乘坐汽车”,B 表⽰“外出⼈如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P 1.05.04.03.03.015.0005.03.015.0?+?+?+??==0.20943. 接39题,若第⼆次取到的是1号球,计算它恰好取⾃Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应⽤贝叶斯公式 21212121)()|()()|(111111=?==B P A B P A P B A P 44. ⼀箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求⽽拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率. 解设事件A i 表⽰⼀箱中有i 件次品,i =0, 1, 2. B 表⽰“抽取的10件中⽆次品”,先计算P ( B )∑++?===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P 37.0)(31)|(0==B P B A P 45. 设⼀条昆⾍⽣产n 个卵的概率为λλ-=e !n p nn n =0, 1, 2, … 其中λ>0,⼜设⼀个⾍卵能孵化为昆⾍的概率等于p (0<p <1). 如果卵的孵化是相互独⽴的,问此⾍的下⼀代有k 条⾍的概率是多少?解设事件A n =“⼀个⾍产下⼏个卵”,n =0,1,2….B R =“该⾍下⼀代有k 条⾍”,k =0,1,….依题意λλ-==e !)(n p A P nn n ≤≤=-n k q p C n k A B P k n k k nn k 00)|(>其中q =1-p . 应⽤全概率公式有∑∑∞=∞===k n n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n k k n q k p !)()(e !)( 由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有,2,1,0e )(e e !)()(===--k k p k p B P p pq kk λλλλλ习题⼆1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8.2. ⼀箱产品20件,其中有5件优质品,不放回地抽取,每次⼀件,共抽取两次,求取到的优质品件数X的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P m m 依次计算得X 的概率分布如下表所⽰:3. 上题中若采⽤重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取⼀件取到优质品的概率是1/4,取到⾮优质品的概率是3/4,且各次抽取结果互不影响,应⽤伯努利公式有{}1694302=??? ??==X P {}1664341112=??==C X P {}1614122=??? ??==X P 4. 第2题中若改为重复抽取,每次⼀件,直到取得优质品为⽌,求抽取次数X 的概率分布.解 X 可以取1, 2, …可列个值. 且事件{X = n }表⽰抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431???? ??-n .因此X 的概率分布为{}?=??==-,2,143411n n X P n 5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次⼀个直到取得新球为⽌,求下列随机变量的概率分布.(1)抽取次数X ; (2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=?====X P X P {}22091091121233=??==X P {}2201991011121234===X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P{}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若⼀次取出3个,求取到的新球数⽬X 的概率分布.解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P {}2202713122319===C C C X P {}22010823121329===C C C X P {}22084331239===C C X P 7. 已知P {X =n }=p n ,n =1, 2, 3, …, 求p 的值.解根据{}∑=∞=11n n X P =, 有 ∑-==∞=111n n pp P 解上⾯关于p 的⽅程,得p =0.5.8. 已知P {X =n }=p n , n =2, 4, 6, …,求p 的值.解 1122642=-=?+++p p p p p 解⽅程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值.解 ∑=+?++==10015050)10021(1n cc cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为⼀个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1, 且p n >0. 所以它可以是⼀个离散型概率分布.11. 随机变量X 只取1, 2, 3共三个值,其取各个值的概率均⼤于零且不相等并⼜组成等差数列,求X 的概率分布. 解设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需⼤于零,因此|d |<31, X 的概率分布为其中d 应满⾜条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c .解 {}∑∑∞=-∞====11e !1m mm m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm m m m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ解得λ--=e 11c 13. 甲、⼄⼆⼈轮流投篮,甲先开始,直到有⼀⼈投中为⽌,假定甲、⼄⼆⼈投篮的命中率分别为0.4及0.5,求:(1)⼆⼈投篮总次数Z 的概率分布;(2)甲投篮次数X 的概率分布;(3)⼄投篮次数Y 的概率分布.解设事件A i 表⽰在第i 次投篮中甲投中,j 表⽰在第j 次投篮中⼄投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独⽴.(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, …{})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B A B A p 212223211---+)5.06.04.0()5.06.0(1?+?=-n,2,13.07.01=?=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P)4.05.05.0(6.0)5.06.0(1?+=-n,2,13.042.01=?=-n n 14. ⼀条公共汽车路线的两个站之间,有四个路⼝处设有信号灯,假定汽车经过每个路⼝时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停⽌前进,其概率为0.4,求汽车开出站后,在第⼀次停车之前已通过的路⼝信号灯数⽬X 的概率分布(不计其他因素停车).解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24P { X =2 } =0.62×0.4=0.144P { X =3 } =0.63×0.4=0.0864P { X =4 } =0.64=0.1296 15. ∈=.,0],[,sin )(其他,b a x x x f 问f (x )是否为⼀个概率密度函数,为什么?如果 (1).π23 ,)3( ;π,0)2( ;2π,0======b a b a b a π解在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠?x x ,1d sin 2π0=?x x ⽽在??π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是⼀个概率密度函数.16. ≤=-.0,00e )(,22x x c x x f c x ,>其中c >0,问f (x )是否为密度函数,为什么?解易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,⼜1d e 202=?-∞+x c x c x f (x )是⼀个密度函数 .17. +=.0.2<<,2)(其他,a x a x x f 问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由.解如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==??++a x x a a a a由于x x f d )(?+∞∞-不是1,因此f ( x )不是密度函数.18. 设随机变量X ~f ( x )∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解 )arctan 2π(2arctan π2d )1(π22a x x x a a -π==+??+∞+∞ 解⽅程π2??a arctan - 2π=1 得 a = 0{}b x x x f b x P b b arctan π2|arctan π2d )(000==?=<<解关于b 的⽅程:π2arctan b =0.5 得 b =1.19. 某种电⼦元件的寿命X 是随机变量,概率密度为≥=.100,0,100100)(2<x x x x f 3个这种元件串联在⼀个线路中,计算这3个元件使⽤了150⼩时后仍能使线路正常⼯作的概率. 解串联线路正常⼯作的充分必要条件是3个元件都能正常⼯作. ⽽三个元件的寿命是三个相互独⽴同分布的随机变量,因此若⽤事件A 表⽰“线路正常⼯作”,则3])150([)(>X P A P ={}32d 1001502150=?∞+x x X P => 278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e -|x|,确定系数A ;计算P { |X | ≤1 }.解 A x A x A x x 2d e 2d e 10||=?=?=∞+-∞+∞--解得 A =21 {}??---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的⼆次⽅程4x 2+4xY +Y +2=0有实数根的概率. 解 4x 2+4xY +Y +2=0.有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P=0.622. 设随机变量X ~ f ( x ),-=.,01||,1)(2其他,<x x cx f确定常数c ,计算.21||≤X P解π|arcsin d 1111211c x c x x c==-?=--c =π131arcsin 2d 1121||0212121 2=π=-π=≤?-x x x X P23. 设随机变量X 的分布函数F ( x )为≥=.1,1,10,0,0)(x x x A x x F <<,<确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ).解连续型随机变量X 的分布函数是连续函数,F (1)= F (1-0),有A =1. =.,0,10,21)(其他<<x x x f{}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) .解 {}t x X P x F t x d e 21)(||-∞-?=≤=当t ≤ 0时,x t x t x F e 21d e 21)(=?=∞-当t >0时,t t t x F tx t t x d e 21d e 21d e 21)(-00||?+?=?=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么?解不能是分布函数,因F (-∞)= 1 ≠ 0.26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P .解 a x a x x a ==?+=∞+∞-∞+∞-arctan πd )1(π12 因此a =1x x t t t x F ∞-∞-=?+=arctan π1d )1(π1)(2 x arctan π121+= {}?+=?+=-102112d )1(π12d )1(π11||x x x x X P < 21arctan π210==x 27. 随机变量X 的分布函数F ( x ) 为:≤-=.2,02,1)(2x x x A x F ,>确定常数A 的值,计算{}40≤≤X P .解由F ( 2+0 )=F ( 2 ),可得4,041==-A A {}{})0()4(4X 040F F P X P -=≤=≤≤<28. 随机变量X ~f ( x ),f ( x )=,ee x x A -+确定A 的值;求分布函数F ( x ) . 解 ?+=?+=∞∞-∞∞--x A x A x x x x d e 1e d e e 12 A A x 2πe a r c t a n ==∞∞- 因此 A =π2, xtx t t t x F ∞-∞--=+=?e arctan π2d )e e (π2)(x e arctan π2= 29. 随机变量X ~f ( x ),=.,00,π2)(2其他<<a x x x f确定a 的值并求分布函数F ( x ) .解 220222ππd π21a x x x a a ==?= 因此,a = π当0<x <π时,=x x t t x F 0222πd π2)( 其他≥≤=π1,π0,π0,0)(22x x xx x F <<30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax ++-≤=-求X 的概率密度并计算a X P 10<<.解当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )≤=-.0,e 2,0,0)(23> x x a x x f ax(1010F a F a x P a x P -=≤=?<<<08.0e 2511≈-=-31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X =1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0}=P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n } =P { X =10-n }=,,2,1,31=n nY =l gX ,求Y 的概率分布.解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31n =1 , 2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a >0时,Y 的取值为[a 2+b , ab +b ],a x y hb y a y h x y 1)(,)(1)(='='-==],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,⽆论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 ,2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ). 解 y =cos x 在[0, 2π]上单调,在(0 , 1)上,h ( y ) = x =arccos y h′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π . 因此 -=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x , Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x 在(0 , 1)内单调 , x =ln y 可导,且x′y = y1 , f X ( x ) =1 0 < x < 1 , 因此有.,0,e 1,1)(其他 <<y y y f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有∞+=-.,0,0e )(其他<<,z z f z z 36. 随机变量X ~f ( x ) ,≤=-0,00,e )(x x x f x > Y = X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z 21 ≤=-.0,00e 21)(z ,z z z f z z > 37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X , Z = X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在?? -2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y yy f Y 即Y 服从区间(0 , 2π)上的均匀分布. z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-. 因此当z >0时, )1(π2])1(1[π21)(222z zz z fz +=+-= ??≤+=0,00,)1(π2)(2z z z z f z >即Z = X1 与X 同分布. 38. ⼀个质点在半径为R ,圆⼼在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) . 解如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是⼀个连续型随机变量,L 服从[0,πR ]上的均匀分布.≤≤=.,0π0,π1)(其他,R l R l f L M 点的横坐标X 也是⼀个随机变量,它是弧长L 的函数,且 X = R cos θ= R cos RL 函数x = R cos l / R 是l 的单调函数 ( 0< l <πR ) ,其反函数为 l = R arccos Rx 22xR R l x --=' 当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(xR R x R R x f X -=?--= 当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望.解根据第2题中所求出的X 概率分布,有2138223815138210=?+?+?=EX 亦可从X 服从超⼏何分布,直接计算2120521=?==N N n EX 在第3题中21161216611690=?+?+?=EX 亦可从X 服从⼆项分布(2,41),直接⽤期望公式计算: 21412=?==np EX 在第5题中图2-1(1) 3.122014220934492431=?+?+?+?=EX (2) 3.022013220924491430=?+?+?+?=EY 在第6题中,25.2220843220108222027122010=?+?+?+?=EX 在第11题中,??+++ -=d 313312d 311EX 31 |<d <|0 d 22+= 40. P { X = n } =nc , n =1, 2, 3, 4, 5, 确定C 的值并计算EX . 解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑?==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的⽐为1 : 2 : 3,计算EX . 解设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 }=3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=?+?+?-=EX 42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2 ? 解 EX =P { X =1 } =0.8,( EX )2 =0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n ,n 为正整数. 解当n 为奇数时,)(x f x n 是奇函数,且积分x x x n d e 0-∞?收敛,因此0d e 5.0||=?=-∞+∞-x x EX x n n 当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-?=?=!)1(d e 0n n x x x n =+Γ=?=-∞+44. 随机变量X ~f ( x ) ,-≤≤=.,0,21,2,10,)(<<x x x x x f计算EX n (n 为正整数) .解 x x x x x x x f x EX n n n n d )2(d d )(21101?-+?=?=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n 45. 随机变量X ~f ( x ) ,≤≤=.,0,10,)(其他x cx x f b b ,c 均⼤于0,问EX 可否等于1,为什么?其他其他。

本科概率1-全概,习题课(白底)

本科概率1-全概,习题课(白底)

概率统计第一章习题课
习题一
4. 从一副扑克牌的 张黑桃 中,有放回抽三次 , 13 求取出的三张牌中: (1)没有同号的概率 ; (2)有同号的概率.
13 ⋅12 ⋅11 P( A) = 133
13 ⋅12 ⋅11 P( A) = 1 − P( A) = 1 − 133
5.某城市有A, B, C三种报纸.在居民中, 订A报的占 45%, 订B报的占35%, 订C报的占30%,同时订A与 B报的占10%,同时订A与C报的占8%,同时订B与 C报的占5%,同时订A, B与C报的占3%, 求下列概率:
P ( A3 ) = P ( H1H2 H3 )
加法公式 独立性
P(A1)=0.36; P(A2)=0.41; P(A3)=0.14. P(B)=P(A1)P(B |A1)+ P(A2)P(B|A2)+ P(A3)P(B |A3) =0.36×0.2+0.41 ×0.6+0.14 ×1 =0.458 × 即飞机被击落的概率为0.458. 即飞机被击落的概率为
P( (1)只订A报的; AB C ) = P( A) − P( AB) − P( AC) + P( ABC ) = 0.3
(2)只订A与B报的; P( ABC ) = P( AB) − P( ABC ) = 0.07 (3)只订一种报的; P( ABC ) + P( ABC ) + P( ABC) = 0.73 (4)恰好订两种报的;P( ABC ) + P( ABC ) + P( ABC) = 0.14
∑ P( A ) P( B|A )
k =1 k k
3
将这里得到的公式一般化, 将这里得到的公式一般化,就得到 贝叶斯公式

概率论第一章习题课

概率论第一章习题课

概率论与数理统计第一章习题课1. 掷3枚硬币, 求出现3个正面的概率. 解: 设事件A ={出现3个正面}基本事件总数n =23, 有利于A 的基本事件数n A =1, 即A 为一基本事件,则125.08121)(3====n n A P A .2. 10把钥匙中有3把能打开门, 今任取两把, 求能打开门的概率. 解: 设事件A ={能打开门}, 则A 为不能打开门基本事件总数210C n =, 有利于A 的基本事件数27C n A =, 467.0157910212167)(21027==⨯⨯⋅⨯⨯==C C A P因此, 533.0467.01)(1)(=-=-=A P A P .3. 100个产品中有3个次品,任取5个, 求其次品数分别为0,1,2,3的概率.解: 设A i 为取到i 个次品, i =0,1,2,3,基本事件总数5100C n =, 有利于A i 的基本事件数为3,2,1,0,5973==-i C C n i i i则138.09833209495432194959697396979899100543213)(856.0334920314719969798991009394959697)(510049711510059700=⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯=⨯===⨯⨯⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C n n A P00006.09833512196979697989910054321)(006.0983359532195969739697989910054321)(51002973351003972322=⨯⨯==⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯====⨯⨯=⨯⨯⨯⨯⨯⋅⨯⨯⨯⨯⨯⨯⨯⨯===C C n n A P C C C n n A P4. 一个袋内有5个红球, 3个白球, 2个黑球, 计算任取3个球恰为一红, 一白, 一黑的概率.解: 设A 为任取三个球恰为一红一白一黑的事件,则基本事件总数310C n =, 有利于A 的基本事件数为121315C C C n A =, 则25.0412358910321)(310121315==⨯⨯⨯⨯⨯⨯⨯===C C C C n n A P A5. 两封信随机地投入四个邮筒, 求前两个邮筒内没有信的概率以及第一个邮筒内只有一封信的概率.解: 设A 为前两个邮筒没有信的事件, B 为第一个邮筒内只有一封信的事件,则基本事件总数1644=⨯=n , 有利于A 的基本事件数422=⨯=A n , 有利于B 的基本事件数632=⨯=B n , 则25.041164)(====n n A P A 375.083166)(====n n B P B . 6. 为防止意外, 在矿内同时设有两种报警系统A 与B , 每种系统单独使用时, 其有效的概率系统A 为0.92, 系统B 为0.93, 在A 失灵的条件下, B 有效的概率为0.85, 求(1) 发生意外时, 这两个报警系统至少有一个有效的概率 (2) B 失灵的条件下, A 有效的概率解: 设A 为系统A 有效, B 为系统B 有效, 则根据题意有P (A )=0.92, P (B )=0.93, 85.0)|(=A B P(1) 两个系统至少一个有效的事件为A ∪B , 其对立事件为两个系统都失效, 即B A B A = , 而15.085.01)|(1)|(=-=-=A B P A B P , 则988.0012.01)(1)(012.015.008.015.0)92.01()|()()(=-=-==⨯=⨯-==B A P B A P A B P A P B A P(2) B 失灵条件下A 有效的概率为)|(B A P , 则829.093.01012.01)()(1)|(1)|(=--=-=-=B P B A P B A P B A P 7. 用3个机床加工同一种零件, 零件由各机床加工的概率分别为0.5, 0.3, 0.2, 各机床加工的零件为合格品的概率分别等于0.94, 0.9, 0.95, 求全部产品中的合格率.解: 设A 1,A 2,A 3零件由第1,2,3个机床加工, B 为产品合格,A 1,A 2,A 3构成完备事件组.则根据题意有P (A 1)=0.5, P (A 2)=0.3, P (A 3)=0.2, P (B |A 1)=0.94, P (B |A 2)=0.9, P (B |A 3)=0.95,由全概率公式得全部产品的合格率P (B )为93.095.02.09.03.094.05.0)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P8. 12个乒乓球中有9个新的3个旧的, 第一次比赛取出了3个, 用完后放回去, 第二次比赛又取出3个, 求第二次取到的3个球中有2个新球的概率.解: 设A 0,A 1,A 2,A 3为第一次比赛取到了0,1,2,3个新球, A 0,A 1,A 2,A 3构成完备事件组.设B 为第二次取到的3个球中有2个新球. 则有22962156101112321)|(,552132101112789321)(,442152167101112321)|(,55272101112389321)(,552842178101112321)|(,2202710111239321)(,552732189101112321)|(,2201101112321)(312162633123933121527231213292312142813122319131213290312330=⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯===⋅⨯⨯⋅⨯⨯⨯⨯===⨯⨯⨯⨯==C C C A B P C C A P C C C A B P C C C A P C C C A B P C C C A P C C C A B P C C A P根据全概率公式有455.01562.02341.00625.00022.022955214421552755282202755272201)|()()(30=+++=⋅+⋅+⋅+⋅==∑=i i i A B P A P B P9. 某商店收进甲厂生产的产品30箱, 乙厂生产的同种产品20箱, 甲厂每箱100个, 废品率为0.06, 乙厂每箱装120个, 废品率是0.05, 求:(1)任取一箱, 从中任取一个为废品的概率;(2)若将所有产品开箱混放, 求任取一个为废品的概率. 解: (1) 设B 为任取一箱, 从中任取一个为废品的事件. 设A 为取到甲厂的箱, 则A 与A 构成完备事件组4.05020)(,6.05030)(====A P A P 05.0)|(,06.0)|(==AB P A B P 056.005.04.006.06.0)|()()|()()(=⨯+⨯=+=A B P A P A B P A P B P(2) 设B 为开箱混放后任取一个为废品的事件.则甲厂产品的总数为30×100=3000个, 其中废品总数为3000×0.06=180个,乙厂产品的总数为20×120=2400个, 其中废品总数为2400×0.05=120个, 因此...055555555.0540030024003000120180)(==++=B P10. 有两个口袋, 甲袋中盛有两个白球, 一个黑球, 乙袋中盛有一个白球两个黑球. 由甲袋中任取一个球放入乙袋, 再从乙袋中取出一个球, 求取到白球的概率.解: 设事件A 为从甲袋中取出的是白球, 则A 为从甲袋中取出的是黑球, A 与A 构成完备事件组. 设事件B 为从乙袋中取到的是白球. 则P (A )=2/3, P (A )=1/3, P (B |A )=2/4=1/2, P (B |A )=1/4, 则根据全概率公式有417.012541312132)|()()|()()(==⨯+⨯=+=A B P A P A B P A P B P11. 上题中若发现从乙袋中取出的是白球, 问从甲袋中取出放入乙袋的球, 黑白哪种颜色可能性大?解: 事件假设如上题, 而现在要求的是在事件B 已经发生条件下, 事件A 和A 发生的条件概率P (A |B )和P (A |B )哪个大, 可以套用贝叶斯公式进行计算, 而计算时分母为P (B )已上题算出为0.417, 因此2.0417.04131)()|()()|(8.0417.02132)()|()()|(=⨯===⨯==B P A B P A P B A P B P A B P A P B A PP (A |B )>P (A |B ), 因此在乙袋取出的是白球的情况下, 甲袋放入乙袋的球是白球的可能性大.12. 假设有3箱同种型号的零件, 里面分别装有50件, 30件和40件, 而一等品分别有20件, 12件及24件. 现在任选一箱从中随机地先后各抽取一个零件(第一次取到的零件不放回). 试求先取出的零件是一等品的概率; 并计算两次都取出一等品的概率.解: 称这三箱分别为甲,乙,丙箱, 假设A 1,A 2,A 3分别为取到甲,乙,丙箱的事件, 则A 1,A 2,A 3构成完备事件组. 易知P (A 1)=P (A 2)=P (A 3)=1/3. 设B 为先取出的是一等品的事件. 则6.04024)|(,4.03012)|(,4.05020)|(321======A B P A B P A B P 根据全概率公式有467.036.04.04.0)|()()(31=++==∑=i i i A B P A P B P 设C 为两次都取到一等品的事件, 则38.039402324)|(1517.029301112)|(1551.049501920)|(240224323021222502201=⨯⨯===⨯⨯===⨯⨯==C C A C P C C A C P C C A C P根据全概率公式有22.033538.01517.01551.0)|()()(31=++==∑=i i i A C P A P C P13. 发报台分别以概率0.6和0.4发出信号“·”和“—”。

概率统计课后习题解答第1章

概率统计课后习题解答第1章

21.某车间有 5 台车床,每台车床由于种种原因,时常需要停车,设各台车 床停车或开车是相互独立的, 若每台车床在任一时刻处于停车状态的概率为 1/3, 试分别求在任一时刻车间里有 0,3,5 台车床处于停车状态的概率. 解:此题为 5 重伯努利概型。 22.设甲、乙两个篮球运动员投篮命中率分别为 0.7 和 0.6,现每人投篮三次, 试求: (1)两人进球数相等的概率。 (2)甲比乙进球数多的概率。 解:设甲、乙两人的进球数分别为 x 和 y,则 ( 1) 1 1 P( X Y ) 0.330.43 C3 0.7 0.32 C3 0.6 0.42 C32 0.7 2 0.3 C32 0.62 0.4 0.730.63 0.321 ( 2) 1 1 P( X Y ) C3 0.7 0.32 0.43 C32 0.7 2 0.3(0.43 C3 0.6 0.42 ) 3 3 1 2 2 2 0.7 (0.4 C3 0.6 0.4 C3 0.6 0.4) 0.436 23.一商店出售的某种型号的晶体管是甲、乙、丙三家工厂生产的,其中乙 厂产品占总数的 50%,另两家工厂的产品各占 25%,已知甲、乙、丙各厂产品 合格率分别为 0.90、0.80、0.70,试求随意取出一只晶体管是合格品的概率。 解:设 A 表示随意取出一只晶体管是合格品,Bi(i=1,2,3)分别表示取出的 产品由甲、乙、丙厂家生产,则由全概率公式有
P ( A B ) 1 P ( A B ) 1 P ( A B ) 1 r.
12.已知 P(A)=0.7; P( A B )=0.3,试求 P( AB )。 解:由 P( AB ) P( A AB) P( A) P( AB) 0.7 P( AB) 得 P( AB) 0.7 0.3 0.4 ,从而 P( AB )=10.4 = 0.6。 注意:教材上题目印刷错误 13.盒中有 10 小球,其中有 4 个是红色,从中任取两球,已知取出的两球至 少有一个是红色,求另一球也是红色的概率。 解:设取出的两球至少有一个是红色用 A 表示,则 P( A) P( A1 ) P( A2 )

概率论与数理统计随机变量及其分布习题课

概率论与数理统计随机变量及其分布习题课
2
01 排列及其逆序数
解 以X表示此人外出时电话铃响的次数, 由题意知X~π(2t), t表示外出的总时间,则X的的分布律为
当t=10/60=1/6时, (1)
,故所求概率为
(2)设外出最长时间为t(单位:h), 因为X~π(2t),
3
01 排列及其逆序数
因此无电话打进的概率为

要使


解之得
0.3466小时约为21分钟,因此,某人应控制外出时间小
16
01 排列及其逆序数
ꢀ例8 设随机变量
,记
, 则A. p随着 μ的增加而增加
C. p随着μ的增加而减少
B. p随着 σ的增加而增加 D. p随着σ的增加而减少

因为 为单调增函数, p σ
,
所以 随着 的增加而增加
应选B.
17
01 排列及其逆序数
ꢀ例9 测量某距离时,随机误差X(单位:cm)具有密度函数:
则性。
6
01 排列及其逆序数 ꢀ例3 设随机变量X的概率密度为 为X的分布函数, 求 解 由题意知,X的分布函数为
因此,
F(x)
7
01 排列及其逆序数 ꢀ例4 设某加油站每周补给一次油,如果这个加油站每 周的销售量(单位:千升)为一随机变量,其密度函数为
试问该加油站的储油罐需要多大,才能把一周内断油的概 率控制在5%以下?
,求
解 当y≤0时,Y的密度函数为 当y>0时,Y的分布函数为
的分布. ;
对上式两边关于y求导,得
20
01 排列及其逆序数 即
这是伽玛分布
的概率密度函数.
21
01 排列及其逆序数
ꢀ例11 设电流I是一个随机变量,它均匀分布在9A~11A 之间.若此电流通过2Ω的电阻,在其上消耗的功率W=2I2, 求W的概率密度.

概率论与数理统计习题课1

概率论与数理统计习题课1
(1)有机床需要工人照管的概率;
(2)机床因无人照管而停工的概率.
解:设 A 机床甲不需要工人照顾, B 机床乙不需要工人照顾, C 机床丙不需要工人照顾,
依题意,A、B、C 相互独立。
2019/7/17
16
第1章 习 题 课
(1) P( A B C ) P( ABC )
)

1

29 90

61 90
.
3
P(B1B2 ) P( Ai )P(B1B2 | Ai )
i 1
1 ( 3 7 7 8 5 20) 2 . 3 10 9 15 14 25 24 9
2019/7/17
21
第1章 习 题 课
从而
P ( B1
|
B2 )

P(B1B2 ) P(B2 )
于是 P( A) p 0.25(1 p) p [0.25(1 p)]2 p .
这是一个几何级数求和问题。由于公比
0 0.25(1 p) 1,该级数收敛。
P( A)
p
.
1 0.25(1 p)
若甲乙胜率相同,则
p
0.5 p 3 .
1 0.25(1 p)
i 1,2,3,.
A 甲获胜,
B 乙获胜,
2019/7/17
18
第1章 习 题 课
则 A A1 A1B2B3 A4 A1B2B3 A4B5B6 A7 ;
P( A1 ) p ; P( A1B2B3 A4 ) 0.25(1 p) p ; P( A1B2B3 A4B5B6 A7 ) [0.25(1 p)]2 p ;

概率统计教案2章习题课二

概率统计教案2章习题课二

出版社,2015 年 8 月.
参 [3] 郑一,戚云松,陈倩华,陈健. 光盘:概率论与数理统计教案、作业册与

试卷考题及答案、数学实验视频. 大连理工大学出版社,2015 年 8

月.
献 [4] 王玉敏,郑一,林强. 概率论与数理统计教学实验教材. 中国科学技术
出版社,2007 年 7 月.
联系方式:zhengone@
k
讲评 这两条性质常用来判断一个数列{pk}是否是某个离散型随机变量 的概率分布, 或者确定概率分布中的待定参数. 只有 pk同时满足上述两条性质, 数列{pk}才能作为某个离散型随机变量的分布律.
2. 伯努利概型 在 n 重伯努利试验中, 事件 A 恰好发生 k 次的概率为
P{X=k}= Cnk pk qnk , k 0,1, 2, n . 讲评 n 重伯努利试验是一种很重要的数学模型. 它有广泛的应用, 是研 究与应用最多的模型之一. 3. 分布函数 设 X 是一个随机变量(包括离散型及非离散型). x 是任意实数, 定义
《概率论与数理统计》教案 第二章习题课 郑一,戚云松,陈倩华,陈健 编著 大连理工大学出版社出版
第 80 页

第二章 随机变量及其概率分布内容习题课

课时:2



(1) 熟练计算离散型随机变量及其概率分布问题;
教 (2) 熟练计算连续型随机变量及其概率密度问题; 学 (3) 熟练计算随机变量的分布函数; 目 (4) 熟练计算随机变量函数的概率分布问题。 的
(4) 若 f (x) 在点 x 处连续, 则有 ′F x ( ) = f ( ) x ; (5) 对连续型随机变量 x,总有P{X =a} =0 < ∞ − ,a ∞+ <. 讲评 性质(1)和(2)是连续型随机变量的概率密度 f (x) 必须具有的特性, 常用来检查某一函数 f (x) 是否是连续型随机变量的概率密度. 性质(3)和(4)是 由概率密度的定义导出的性质. 性质(3)和(4)表明:随机变量 X 落在区间 (a,b] 内的概率等于曲线 y f (x) 与 x=a, x=b 及 x 轴所围成的曲边梯形的面积. 性质 (5)表明:对于连续型随机变量 X , 总有

概率统计习题课1

概率统计习题课1
求(1)参数A; (1)参数A 参数 (2)分布函数F(x); (2)分布函数F(x); 分布函数F(x) (3)落入区间[0,π/4]的概率. (3)落入区间[0,π/4]的概率. 落入区间[0, 的概率 (4)下面方程有实根的概率. (4)下面方程有实根的概率. 下面方程有实根的概率
大卫: 大卫:思索者
例1:设A,B是相互独立的事件,P(A∪B)=0.6,P(A)=0.4, 是相互独立的事件,P(A∪B)=0.6,P(A)=0.4, 求P(B). P(B).
P( A ∪ B ) = P( A) + P ( B ) P( AB )
P( A ∪ B) = P( A) + P( B) P( A) P( B)

bHale Waihona Puke af ( x)dx = ∫ cos xdx = sin b sin a
a
b
练习5 下面那个函数不可作为随机变量X的分布函数? 练习5:下面那个函数不可作为随机变量X的分布函数?( )
0 x < 0 2 x ( A) F ( x) = 0 ≤ x <1 2 1 x ≥ 1
ln(1 + x) (C ) F ( x) = 1 + x 0
X 1 ~ b ( 20, 0.01) .
P{ X 1 ≥ 2} = 1 P{ X < 2} = 1 P{ X = 0} P{ X = 1} = 0.0169
80台设备不能得到及时维护 P"80台设备不能得到及时维护" 80台设备不能得到及时维护" = P( A ∪ A ∪ A ∪
1 2 3
(1 P( A) ) P( B) = P( A ∪ B) P( A)
P ( A ∪ B ) P ( A) 1 P( B) = = 1 P ( A) 3

概率论与数理统计(经管类)课后习题_第一章

概率论与数理统计(经管类)课后习题_第一章

P (A3|B) =
PB
%% .
通过计算得出第二产成产的概率最大.
0.2319
习题 1.4
1. 设 P(A)=0.4, P A B (1) A 与 B 互不相容; (2) A 与 B 相互独立;
(3) A B. 解: (1) P(B)= P A B
0.7,求在下列条件下分别求 P(B): P A 0.7 0.4 0.3;
(2)P A B (3) P A B
1 P A P B ,P B 1
PA B PA
P A P B P AB P A P B
1 0.5 0.5; P A =0.7.
2. 甲乙两人独立地各向同一目标射击一次,其中命中率分别为 0.6 和 0.7,求目标被命中的概率.若已知
目标被命中,求它是甲射中的概率.
P =
AB
=P
A
P AB = .
.
0.4
PA
PA
.
3.设 P(A)= ,P(B|A)= , P(A|B)= ,求 P A B
解:P(AB)= P(A)* (B|A)=
,
P AB
P(B)=
P A|B
PA B
PA
PB
P AB
11 1 4 6 12
1 3
4.设P A 0.3, P B
解: P B|A B
0.4, P AB 0.5, 求 P B|A B .
11.设 P(A)=0.7,P(B)=0.6,P(A‐B)=0.3,求P AB , P A B , P AB . 解: P AB 1 P AB 1 P A P A B 1 0.4 0.6 P A B P A P B P AB P A P B P A P A B P AB 1 P A B 1 0.9 0.1

习题课2

习题课2

e−5 ⋅ 5k ≈∑ ≈ 0.986305. k! k=0
点评: 点评 保险业是概率论的生长点和重要应用领 域之一. 本例为简化起见, 不计利息与管理费. 域之一 本例为简化起见 不计利息与管理费
13
设随机变量X 在区间[2, 上服从均匀 例7 设随机变量 在区间 ,5]上服从均匀 分布,现对X 次独立观测, 分布,现对 进行 3 次独立观测,试求至少有 两次观测值大于3的概率 的概率。 两次观测值大于 的概率。 设随机变量Y 解 设随机变量 是3次独立观测中观测值大 次独立观测中观测值大 的次数, 于3的次数 则 Y ~ B(3, p),其中p是X大于3的概率. 的次数 由题意知 X 的概率密度为
P( Ak ) = P( X = k) =
1 k 对k ≥ 1, P(B Ak ) = ( ) , 2 λk −λ 1 k P( Ak B) = P( Ak )P(B Ak ) = e ⋅ ( ) , k! 2
10
k!
e , k = 0,1,2,⋯
∴P(B) = P ∑Ak B = ∑P( Ak B) k=1 k=1
X − 200 P( A ) = P{X ≤ 200} = P ≤ −0.8 1 25 =φ−0.8) = 0.212; ( φ P( A2 ) = P{200 ≤ X ≤ 240}= 2 (0.8) − 1 = 0.576;
15
P( A3 ) = 1 − P( A ) − P( A2 ) = 0.212. 1
1
一般要学会做三类习题: 一般要学会做三类习题: ①利用某些已知条件求出随机变量的分布律或 密度函数; 密度函数; 利用分布律或分布函数,求出某些事件的概率; ②利用分布律或分布函数,求出某些事件的概率; 利用分布律或密度函数,求出分布函数。 ③利用分布律或密度函数,求出分布函数。 4. 二维随机变量及其联合分布函数; 二维随机变量及其联合分布函数; 二维离散型随机变量及其联合分布律; 二维离散型随机变量及其联合分布律; 二维连续型随机变量及其联合概率密度。 二维连续型随机变量及其联合概率密度。 5. 二维随机变量的边缘分布和条件分布。 二维随机变量的边缘分布和条件分布。 6. 随机变量的相互独立性。 随机变量的相互独立性。 7. 随机变量函数的分布。 随机变量函数的分布。

概率论与数理统计第二章习题课

概率论与数理统计第二章习题课

y 1 e
2 x单调,反函数为:1 x ( y ) ln(1 y ) 2 1 x ( y ) 2(1 y )
1 2e ln(1 y ) 2(1 y ) 0 1 0 y 1 其它 0
返回 下页 结束
0 y 1 其它
下页
结束

(二)概率分布已知,相关问题的计算 4.设离散型随机变量X的概率分布为
X p 0 0.25 1 0.2 3 α 7 0.3
求 (1)α;(2)分布函数;(3)P{0<X<5}
解:(1)由 pk 1
k
得α=0.25
x0 0 0.25 0 x 1 0.45 1 x 3 0.7 3 x 7 x7 1
典型例题
一、离散型随机变量 (一)求概率分布 1.一批零件有9件合格品,3件次品,安装机器时,从中任取 一个,直到取到正品,就下列两种取样方式 a)放回取样;b)不放回取样,计算抽取次数X的概率分布.
2.设某种试验成功的概率为p,独立重复试验直到试验成功两次, 求试验次数X的概率分布.
3. 抛掷一枚不均匀的硬币,出现正面的概率为p (0<p<1),
(3) f ( x) F ( x)
x 2 xe , x 0 x0 0,
2
解:(1)利用F(+∞)=1,及F(x)
在x=0处的连续性得: A=1 A+B=0 所以A=1,B= -1
1-e 即:F ( x) 0,
x2 2
,x0 x0
首页
上页
, k 2,3,
3. 抛掷一枚不均匀的硬币,出现正面的概率为p (0<p<1),
设X为一直掷到正、反面都出现时所需要的次数,求X的分布列。

第4,5章习题课1概率统计

第4,5章习题课1概率统计

第四、五章习题1、 已知连续型随机变量X 的概率密度为1221)(---=x x e x f π试求X 的数学期望和方差。

2. 设随机变量X 与Y 相互独立,且X ~N (1,2),Y ~N (0,1),求Z =2X -Y +3的概率密度。

3. 已知随机变量X 的概率密度为⎪⎪⎩⎪⎪⎨⎧≤>+=--⨯-0202)(822222x e a x ae e a x f x x xππλ 其中常数a >0,λ>0未知,且知E (X )=1。

求常数a ,λ。

4. 设X ,Y 是两个互相独立且均服从正态分布))21(,0(2N 的随机变量,求E (|X -Y |),D (|X -Y |)。

5. 现有n 个袋子,每袋装有a 只白球和b 只黑球(a >0,b >0),先从第一个袋中摸出一球,记下颜色后就把它放入第二个袋中,照这种办法依次摸下去,最后从第n 个袋中摸出一球,并记下颜色。

若在这n 次摸球中所得的白球总数为S n ,求E (S n )。

6.袋中有N 个球,其中白球数X 是随机变量,且知其数学期望E (X)=n ,(n ≤N )。

今从袋中随机摸一球,求获得白球的概率。

7.设随机变量X 在[0,2]上服从均匀分布,Y 服从参数为1的指数分布,且X 与Y 相互独立,试求E (XY ),D (XY )。

8. 设随机变量X 服从参数为1的指数分布,求E (X +e -2X )9. 设随机变量X 在[-1,2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧<-=>=01000,1X X X Y 求D ( Y ).10.已知随机变量⎩⎨⎧>>=+-其他 000, y x e )y ,x (f ~)Y ,X ()y x ( 求:E (X ),E (XY ),P (X <Y ),又问X 与Y 是否相关?11. 设二维随机变量(X ,Y )的密度函数为)],(),([21),(21y x y x y x p ϕϕ+= 其中),(1y x ϕ,),(2y x ϕ都是二维正态密度函数,且它们对应的二维随机变量的相关系数分别为1/3和-1/3,它们的边缘密度函数所对应的随机变量的数学期望都是0,方差都是1。

概率统计习题课八xin

概率统计习题课八xin
2
R = X ≥ 1.96 ,试证样品容量 n 应取 25
由已知条件, 证明: 由已知条件,若 H 0为真 Z =
其拒绝域为
X
{
}
Z ≥ zα 2 ,
R=
zα 2
σ n = z 0.025 = 1.96
~ N (0,1)

X ≥ Zα 2 ⋅ σ
而题中知拒绝域
{ X ≥ 1.96}
n = 1.96 ⋅ 5 / n
知拒绝域为
X − 70 t= ≥ tα / 2(n − 1), S/ n
由 n = 36, X = 66.5, S = 15, t 0.025 ( 35) = 2.0301,
X − 70 66.5 − 70 得t = = = 1.4 < 2.0301, S/ n 15 / 36 所以接受 H 0 , 认为全体考生的平均成 绩是70分.
数理统计
解 已知 X = 101, n = 10, S = 2, α = 0.05
由题意 (1)、 需检验
H 0 : µ = 100 ↔ H1 : µ ≠ 100
拒绝域
t =
X − 100 S n
≥ t α 2 ( 9) tα 2 (9) = 2.2622
接受H 0
X − 100 t = = 1.5 < 2.2622 S n
拒绝域为
t ≥ tα / 2(n1 + n2 − 2).
由 t0.025 (10 + 8 − 2) = t 0.025 (16) = 2.1199,
9 × 40.96 + 7 × 14.44 S = = 29.3575, S w = 5.418, 16 X −Y 27.3 − 30.5 得t = = = 1.245 < 2.1199, 1 1 5.418 × 0.474 Sw + n1 n2 所以接受 H 0 , 认为抗折强度的期望无 显著差异.

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及答案详解

概率论与数理统计课后习题集及解答第一章 随机事件和概率一. 填空题1. 设A, B, C 为三个事件, 且=-=⋃⋃=⋃)(,97.0)(,9.0)(C AB P C B A P B A P 则____. 解.)(1)(1)()()()(ABC P AB P ABC P AB P ABC AB P C AB P +--=-=-=-=)(C B A P ⋃⋃-)(B A P ⋃= 0.97-0.9 = 0.072. 设10件产品中有4件不合格品, 从中任取两件, 已知所取两件产品中有一件是不合格品, 另一件也是不合格品的概率为_______.解. }{合格品二件产品中有一件是不=A , }{二件都是不合格品=B511)()()()()|(2102621024=-===c c c c A P B P A P AB P A B P 注意: }{合格品二件产品中有一件是不=}{不合格品二件产品中恰有一件是 +}{二件都是不合格品 所以B AB B A =⊃,; }{二件都是合格品=A 3. 随机地向半圆a x ax y (202-<<为正常数)内掷一点, 点落在半圆内任何区域的概率与区域的面积成正比, 则原点和该点的连线与x 轴的夹角小于4π的概率为______. 解. 假设落点(X, Y)为二维随机变量, D 为半圆. 则121)),((2==∈a kD Y X P π, k 为比例系数. 所以22ak π= 假设D 1 = {D 中落点和原点连线与x 轴夹角小于4π的区域}πππ121)2141(2)),((22211+=+=⨯=∈a a a D k D Y X P 的面积. 4. 设随机事件A, B 及其和事件A ⋃B 的概率分别是0.4, 0.3, 0.6, 若B 表示B 的对立事件, 则积事件B A 的概率)(B A P = ______.解. =+-+=)()()()(B A P B P A P AB P 0.4 + 0.3-0.6 = 0.13.01.04.0)()()(=-=-=AB P A P B A P .5. 某市有50%住户订日报, 有65%住户订晚报, 有85%住户至少订这两种报纸中的一种, 则同时订这两种报纸的住户的百分比是________. 解. 假设A = {订日报}, B = {订晚报}, C = A + B. 由已知 P(A) = 0.5, P(B) = 0.65, P(C) = 0.85.所以 P(AB) = P(A) + P(B)-P(A + B) = 0.5 + 0.65-0.85 = 0.3.6. 三台机器相互独立运转, 设第一, 第二, 第三台机器不发生故障的概率依次为0.9, 0.8, 0.7, 则这三台机器中至少有一台发生故障的概率________. 解. 设A i 事件表示第i 台机器运转不发生故障(i = 1, 2, 3). 则 P(A 1) = 0.9, P(A 2) = 0.8, P(A 3) = 0.7,)()()(1)(1)()(321321321321A P A P A P A A A P A A A P A A A P -=-==++ =1-0.9×0.8×0.7=0.496.7. 电路由元件A 与两个并联元件B, C 串联而成, 若A, B, C 损坏与否相互独立, 且它们损坏的概率依次为0.3, 0.2, 0.1, 则电路断路的概率是________. 解. 假设事件A, B, C 表示元件A, B, C 完好.P(A) = 0.7, P(B) = 0.8, P(C) = 0.9. 事件线路完好 = A(B + C) = AB + AC.P(A(B + C) ) = P(AB + AC) = P(AB)+P(AC)-P(ABC) = P(A)P(B) + P(A)P(C)-P(A)P(B)P(C) = 0.7×0.8 +0.7×0.9-0.7×0.8×0.9 = 0.686. 所以 P(电路断路) = 1-0.686 = 0.314.8. 甲乙两人投篮, 命中率分别为0.7, 0.6, 每人投三次, 则甲比乙进球多的概率______. 解. 设X 表示甲进球数, Y 表示乙进球数.P(甲比乙进球多) = P(X = 3, Y = 2) +P(X = 3, Y = 1) + P(X = 3, Y = 0) + P(X = 2, Y = 1) +P(X = 2, Y = 0) + P(X = 1, Y = 0) = P(X = 3)P(Y = 2) +P(X = 3)P(Y = 1) + P(X = 3)P(Y = 0) + P(X = 2)P(Y = 1) +P(X = 2)P(Y = 0) + P(X = 1)P(Y = 0)=+⋅⋅⋅21336.04.07.0c +⋅⋅⋅6.04.07.02233c 334.07.0⋅++⋅⋅⋅⋅⋅2132134.06.07.03.0c c +⋅⋅⋅32134.07.03.0c 32134.03.07.0⋅⋅⋅c= 0.148176 + 0.098784 +0.021952 + 0.127008 + 0.028224 + 0.012096 = 0.43624.9. 三人独立破译一密码, 他们能单独译出的概率分别为41,31,51, 则此密码被译出的概率_____.解. 设A, B, C 表示事件甲, 乙, 丙单独译出密码., 则41)(,31)(,51)(===C P B P A P . P(A + B + C) = P(A) + P(B) + P(C)-P(AB)-P(AC)-P(BC) + P(ABC)= P(A) + P(B) + P(C)-P(A)P(B)-P(A)P(C)-P(B)P(C) + P(A)P(B)P(C) =53413151413141513151413151=⋅⋅+⋅-⋅-⋅-++.二.单项选择题.1. 以A 表示“甲种产品畅销, 乙种产品滞销”, 则对立事件A 为(A) “甲种产品滞销, 乙种产品畅销” (B) “甲、乙产品均畅销”(C) “甲种产品滞销” (D) “甲产品滞销或乙产品畅销” 解. (D)是答案.2. 设A, B, C 是三个事件, 与事件A 互斥的事件是(A) C A B A + (B) )(C B A + (C) ABC (D) C B A ++ 解. ==++C B A A )C B A A(φ, 所以(D)是答案. 3. 设A, B 是任意二个事件, 则(A) P(A ⋃B)P(AB)≥P(A)P(B) (B) P(A ⋃B)P(AB)≤P(A)P(B) (C) P(A -B)P(B -A)≤P(A)P(B)-P(AB) (D)41)()(≥--A B P B A P . 解. P(A + B)P(AB)-P(A)P(B) = (P(A) + P(B)-P(AB))P(AB)-P(A)P(B) =-P(A)(P(B)-P(AB)) + P(AB)(P(B)-P(AB) =-(P(B)-P(AB))(P(A)-P(AB)) =-P(B -A)P(A -B) ≤ 0 所以(B)是答案 .4. 事件A 与B 相互独立的充要条件为(A) A + B = Ω (B) P(AB) = P(A)P(B) (C) AB = φ (D) P(A + B) = P(A) + P(B) 解. (B)是答案.5. 设A, B 为二个事件, 且P(AB) = 0, 则(A) A, B 互斥 (B) AB 是不可能事件 (C) AB 未必是不可能事件 (D) P(A) = 0或P(B) = 0. 解. 概率理论中 P(A) = 0不能推出A 为不可能事件(证明超出大纲要求). 所以(C)是答案. 6. 设A, B 为任意二个事件, 且A ⊂B, P(B) > 0, 则下列选项必然成立的是 (A) P(A) < P(A|B) (B) P(A) ≤ P(A|B) (C) P(A) > P(A|B) (C) P(A) ≥ P(A|B) 解. )()()()()()|(A P B P A P B P AB P B A P ≥==(当B = Ω时等式成立). (B)是答案.7. 已知 0 < P(B) < 1, 且P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B), 则下列选项必然成立的是 (A))B |P(A )B |P(A ]B |)A P[(A 2121+=+ (B) P(A 1B +A 2B) = P(A 1B) +P(A 2B)(C) P(A 1 +A 2) = P(A 1|B) +P(A 2|B)(D) P(B) = P(A 1)P(B|A 1) + P(A 2)P(B|A 2)解. 由P[(A 1 + A 2)|B] = P(A 1|B) + P(A 2|B)得到)()()()()(])[(2121B P B A P B P B A P B P B A A P +=+, 所以P(A 1B +A 2B) = P(A 1B) +P(A 2B). (B)是答案.三. 计算题1. 某厂生产的产品次品率为0.05, 每100个产品为一批, 抽查产品质量时, 在每批中任取一半来检查, 如果发现次品不多于1个, 则这批产品可以认为合格的, 求一批产品被认为是合格的概率.解. P(该批产品合格) = P(全部正品) + P(恰有1个次品)=2794.050100154995*********=+c cc c c2. 书架上按任意次序摆着15本教科书, 其中有5本是数学书, 从中随机地抽取3本, 至少有一本是数学书的概率.解. 假设A={至少有一本数学书}. A ={没有数学书}P(A ) =9124315310=c c , P(A) = 1-P(A ) = 91673. 全年级100名学生中有男生80名, 来自北京的20名中有男生12名. 免修英语的40名学生中有男生32名, 求出下列概率: i. 碰到男生情况不是北京男生的概率;ii. 碰到北京来的学生情况下是一名男生的概率; iii. 碰到北京男生的概率;iv. 碰到非北京学生情况下是一名女生的概率; v. 碰到免修英语的男生的概率.解. 学生情况: 男生 女生 北京 12 8 免修英语 32 8 总数 80 20i. P(不是北京|男生) =20178068=ii. P(男生|北京学生) =532012=iii. P(北京男生) =10012iv. P(女生|非北京学生) =8012v. P(免修英语男生) =100324. 袋中有12个球, 其中9个是新的, 第一次比赛时从中取3个, 比赛后任放回袋中, 第二次比赛再从袋中任取3个球, 求: i. 第二次取出的球都是新球的概率;ii. 又已知第二次取出的球都是新球, 第一次取到的都是新球的概率.解. i. 设B i 表示第一次比赛抽到i 个新球(i = 0, 1, 2, 3). A 表示第二次比赛都是新球. 于是312339)(c c c B P i i i -=, 31239)|(c c B A P i i -=)()(1)()|()()(3603393713293823193933092312323123933930c c c c c c c c c c c c c c c c c B A P B P A P i i i i i i i +++===∑∑=--=146.0484007056)201843533656398411()220(12==⨯⨯+⨯⨯+⨯⨯+⨯⨯=ii. 215484007056)220(20184)()()|()|(2333=⨯⨯==A P B P B A P A B P5. 设甲、乙两袋, 甲袋中有n 个白球, m 个红球, 乙袋中有N 个白球, M 个红球, 今从甲袋中任取一只放入乙袋, 再从乙袋中任取一球, 问取到白球的概率. 解. 球的情况: 白球 红球 甲袋 n m 乙袋 N M假设 A = {先从甲袋中任取一球为白球} B = {先从甲袋中任取一球为红球} C = {再从乙袋中任取一球为白球} P(C) = P(C|A)P(A) + P(C|B)P(B)nm mM N N m n n M N N +⋅++++⋅+++=111 ))(1()1(n m M N NmN n +++++=第二章 随机变量及其分布一. 填空题1. 设随机变量X ~B(2, p), Y ~B(3, p), 若P(X ≥ 1) =95, 则P(Y ≥ 1) = _________. 解. 94951)1(1)0(=-=≥-==X P X P 94)1(2=-p , 31=p 2719321)0(1)1(3=⎪⎭⎫⎝⎛-==-=≥Y P Y P2. 已知随机变量X 只能取-1, 0, 1, 2四个数值, 其相应的概率依次为cc c c 162,85,43,21, 则c = ______. 解. 2,16321628543211==+++=c cc c c c 3. 用随机变量X 的分布函数F(x)表示下述概率:P(X ≤ a) = ________. P(X = a) = ________.P(X > a) = ________. P(x 1 < X ≤ x 2) = ________.解. P(X ≤ a) = F(a) P(X = a) = P(X ≤ a)-P(X < a) = F(a)-F(a -0) P(X > a) = 1-F(a) P(x 1 < X ≤ x 2) = F(x 2)-F(x 1)4. 设k 在(0, 5)上服从均匀分布, 则02442=+++k kx x 有实根的概率为_____.解. k 的分布密度为⎪⎩⎪⎨⎧=051)(k f 其它50≤≤kP{02442=+++k kx x 有实根} = P{03216162≥--k k } = P{k ≤-1或k ≥ 2} =535152=⎰dk 5. 已知2}{,}{kbk Y P k a k X P =-===(k = 1, 2, 3), X 与Y 独立, 则a = ____, b = ____, 联合概率分布_____, Z = X + Y 的概率分布为_____. 解. 116,132==++a a a a . 4936,194==++b b b b(X, Y)的联合分布为ab = 216α, 539=α α249)3()1()3,1()2(==-===-===-=abY P X P Y X P Z P α66)2,1()3,2()1(=-==+-===-=Y X P Y X P Z Pα251)1,1()2,2()3,3()0(=-==+-==+-====Y X P Y X P Y X P Z P α126)2,3()1,2()1(=-==+-====Y X P Y X P Z Pα723)1()3()1,3()2(==-===-====abY P X P Y X P Z P6. 已知(X, Y)联合密度为⎩⎨⎧+=0)sin(),(y x c y x ϕ 其它4,0π≤≤y x , 则c = ______, Y 的边缘概率密度=)(y Y ϕ______.解.12,1)sin(4/04/0+==+⎰⎰c dxdy y x c ππ所以⎩⎨⎧++=0)sin()12(),(y x y x ϕ 其它4,0π≤≤y x当 40π≤≤y 时))4cos()(cos 12()sin()12(),()(4y y dx y x dx y x y Y +-+=++==⎰⎰∞+∞-πϕϕπ所以⎪⎩⎪⎨⎧+-+=0))4cos()(cos 12()(y y y Y πϕ 其它40π≤≤y7. 设平面区域D 由曲线2,1,01e x x y xy ====及直线围成, 二维随机变量(X, Y)在D 上服从均匀分布, 则(X, Y)关于X 的边缘密度在x = 2处的值为_______. 解. D 的面积 =2121=⎰e dx x. 所以二维随机变量(X, Y)的密度为: ⎪⎩⎪⎨⎧=021),(y x ϕ 其它D y x ∈),(下面求X 的边沿密度:当x < 1或x > e 2时 0)(=x X ϕ 当1 ≤ x ≤ e 2时 ⎰⎰===∞+∞-x X x dy dy y x x 102121),()(ϕϕ, 所以41)2(=X ϕ. 8. 若X 1, X 2, …, X n 是正态总体N(μ, σ2)的一组简单随机样本, 则)(121n X X X nX +++=服从______. 解. 独立正态分布随机变量的线性函数服从正态分布.μ==⎪⎭⎫ ⎝⎛∑∑==n i i n i i X E n X n E 11)(11, nX D nX n D ni in i i 2121)(11σ==⎪⎭⎫ ⎝⎛∑∑==所以 ),(~2nN X σμ9. 如果(X, Y)的联合分布用下列表格给出,且X 与Y 相互独立, 则α = ______, β = _______.解.213161)1(,18)3(,9)2(,31)2(=+==+==+==++==Y P Y P Y P X P βαβα 132)3()2()1(=++==+=+=βαY P Y P Y P⎪⎪⎩⎪⎪⎨⎧+++=======+++=======)181)(31()3()2()3,2()91)(31()2()2()2,2(ββαβαβααY P X P Y X P Y P X P Y X P两式相除得βαβα=++18191, 解得 βα2=, 92,91==αβ.10. 设(X, Y)的联合分布律为3122 0 122 则 i. Z = X + Y 的分布律 ______. ii. V = X -Y 的分布律______.iii. U= X 2 + Y -2的分布律_______. 解.二. 单项选择题1. 如下四个函数哪个是随机变量X 的分布函数(A)⎪⎪⎩⎪⎪⎨⎧=221)(x F 0022≥<≤--<x x x , (B) ⎪⎩⎪⎨⎧=1sin 0)(x x F ππ≥<≤<x x x 00(C) ⎪⎩⎪⎨⎧=1sin 0)(x x F 2/2/00ππ≥<≤<x x x , (D) ⎪⎪⎩⎪⎪⎨⎧+=1310)(x x F 212100≥<≤<x x x解. (A)不满足F(+∞) = 1, 排除(A); (B)不满足单增, 排除(B); (D)不满足F(1/2 + 0) = F(1/2), 排除(D); (C)是答案. 2. ),4,2,0(!/)( ===-k k ec k X P kλλ是随机变量X 的概率分布, 则λ, c 一定满足(A) λ > 0 (B) c > 0 (C) c λ > 0 (D) c > 0, 且 λ > 0 解. 因为),4,2,0(!/)( ===-k k ec k X P kλλ, 所以c > 0. 而k 为偶数, 所以λ可以为负.所以(B)是答案.3. X ~N(1, 1), 概率密度为ϕ(x), 则(A)5.0)0()0(=≥=≤X P X p (B)),(),()(+∞-∞∈-=x x x ϕϕ (C) 5.0)1()1(=≥=≤X P X p (D) ),(),(1)(+∞-∞∈--=x x F x F 解. 因为E(X) = μ = 1, 所以5.0)1()1(=≥=≤X P X p . (C)是答案.4. X, Y 相互独立, 且都服从区间[0, 1]上的均匀分布, 则服从区间或区域上的均匀分布的随机变量是(A) (X, Y) (B) X + Y (C) X 2 (D) X -Y 解. X ~⎩⎨⎧=01)(x ϕ其它10≤≤x , Y ~⎩⎨⎧=01)(y ϕ其它10≤≤y . 所以(X, Y)~⎩⎨⎧=01),(y x ϕ其它1,0≤≤y x .所以(A)是答案.5. 设函数⎪⎪⎩⎪⎪⎨⎧=120)(xx F 1100>≤<≤x x x 则(A) F(x)是随机变量X 的分布函数. (B) 不是分布函数.(C) 离散型分布函数. (D)连续型分布函数.解. 因为不满足F(1 + 0) = F(1), 所以F(x)不是分布函数, (B)是答案.6. 设X, Y 是相互独立的两个随机变量, 它们的分布函数为)(),(y F x F Y X , 则Z = max(X, Y)的分布函数是(A) )(z F Z = max{)(),(z F z F Y X } (B) )(z F Z = max{|)(||,)(|z F z F Y X } (C) )(z F Z = )()(z F z F Y X (D) 都不是解. }{}),{m ax ()()(z Y z X P z Y X P z Z P z F Z ≤≤=≤=≤=且 )()()()(z F z F z Y P z X P Y X =≤≤因为独立. (C)是答案.7. 设X, Y 是相互独立的两个随机变量, 其分布函数分别为)(),(y F x F Y X , 则Z = min(X, Y)的分布函数是(A) )(z F Z = )(z F X (B) )(z F Z = )(z F Y(C) )(z F Z = min{)(),(z F z F Y X } (D) )(z F Z = 1-[1-)(z F X ][1-)(z F Y ] 解. }{1}),{m in(1)(1)()(z Y z X P z Y X P z Z P z Z P z F Z >>-=>-=>-=≤=且 )](1)][(1[1)](1)][(1[1z F z F z Y P z X P Y X ---=≤-≤--因为独立 (D)是答案.8. 设X 的密度函数为)(x ϕ, 而,)1(1)(2x x +=πϕ 则Y = 2X 的概率密度是 (A))41(12y +π (B) )4(22y +π (C) )1(12y +π (D)y arctan 1π解. )2()2(}2{)()(y F y X P y X P y Y P y F X Y =≤=≤=≤= )4(2)2(112121)2()2()]([)(22''y y y y F y F y X X Y Y +=⎪⎭⎫ ⎝⎛+⋅=⋅=⎪⎭⎫ ⎝⎛==ππϕϕ (B)是答案.9. 设随机变量(X, Y)的联合分布函数为⎩⎨⎧=+-0),()(y x e y x ϕ 其它0,0>>y x , 则2YX Z +=的分布密度是(A) ⎪⎩⎪⎨⎧=+-021)()(y x Z e Z ϕ 其它0,0>>y x (B) ⎪⎩⎪⎨⎧=+-0)(2y x Z e z ϕ 其它0,0>>y x(C) ⎩⎨⎧=-04)(2z Z ze Z ϕ 00≤>z z (D) ⎪⎩⎪⎨⎧=-021)(zZ eZ ϕ 00≤>z z解. 2YX Z +=是一维随机变量, 密度函数是一元函数, 排除(A), (B). 21210=⎰∞+-dz e z , 所以(D)不是答案. (C)是答案.注: 排除法做单项选择题是经常使用而且很有效的方法. 该题也可直接计算Z 的密度: 当z < 0时0)(=z F Z当z ≥ 0时⎰⎰≤+=≤+=≤+=≤=zy x Z dxdy y x z Y X P z YX P z Z P z F 2),()2()2()()(ϕ =12222020+--=⎥⎦⎤⎢⎣⎡-----⎰⎰z z z xz y x e ze dx dy e e ==)()('z F z ZZ ϕ⎩⎨⎧-042z ze 00≤>z z , (C)是答案.10. 设两个相互独立的随机变量X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 则下列结论正确的是(A) P{X + Y ≤ 0} = 1/2 (B) P{X + Y ≤ 1} = 1/2 (C) P{X -Y ≤ 0} = 1/2 (D) P{X -Y ≤ 1} = 1/2解. 因为X 和 Y 分别服从正态分布N(0, 1)和N(1, 1), 且X 和 Y 相互独立, 所以 X + Y ~ N(1, 2), X -Y ~ N(-1, 2) 于是P{X + Y ≤ 1} = 1/2, (B)是答案.11. 设随机变量X 服从指数分布, 则Y = min{X, 2}的分布函数是(A) 是连续函数 (B) 至少有两个间断点 (C) 是阶梯函数 (D) 恰好有一个间断点 解. 分布函数:))2,(m in(1))2,(m in()()(y X P y X P y Y P y F Y >-=≤=≤= 当y ≥ 2时101))2,(m in(1)(=-=>-=y X P y F Y 当0 ≤ y < 2时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= ye y X P y X P λ--=≤=>-=1)()(1当y < 0时)2,(1))2,(m in(1)(y y X y X P y F Y >>-=>-= 0)()(1=≤=>-=y X P y X P于是 ⎪⎩⎪⎨⎧-=-011)(yY e y F λ 0202<<≤≥y y y 只有y = 2一个间断点, (D)是答案.三. 计算题1. 某射手有5发子弹, 射击一次的命中率为0.9, 如果他命中目标就停止射击, 不命中就一直到用完5发子弹, 求所用子弹数X 的分布密度. 解. 假设X 表示所用子弹数. X = 1, 2, 3, 4, 5.P(X = i) = P(前i -1次不中, 第i 次命中) = 9.0)1.0(1⋅-i , i = 1, 2, 3, 4.当i = 5时, 只要前四次不中, 无论第五次中与不中, 都要结束射击(因为只有五发子弹). 所以 P(X = 5) = 4)1.0(. 于是分布律为2. 设一批产品中有10件正品, 3件次品, 现一件一件地随机取出, 分别求出在下列各情形中直到取得正品为止所需次数X 的分布密度.i. 每次取出的产品不放回; ii. 每次取出的产品经检验后放回, 再抽取; iii. 每次取出一件产品后总以一件正品放回, 再抽取.解. 假设A i 表示第i 次取出正品(i = 1, 2, 3, …) i.1310)()1(1===A P X P 1331210)()|()()2(11212⋅====A P A A P A A P X P 1331221110)()|()|()()3(11223321⋅⋅====A P A A P A A P A A A P X P 1331221111)()|()|()|()4(1122334⋅⋅⋅===A P A A P A A P A A P X Pii. 每次抽取后将原产品放回1310133)()()()()(11111---⎪⎭⎫⎝⎛====k k k k k A P A P A P A A A p k X P , (k = 1, 2, …)iii.13)()1(1===A P X P 1331311)()|()()2(11212⋅====A P A A P A A P X P1331321312)()|()|()()3(112123321⋅⋅====A P A A P A A A P A A A P X P 1331321311)()|()|()|()4(1121231234⋅⋅⋅===A P A A P A A A P A A A A P X P3. 随机变量X 的密度为⎪⎩⎪⎨⎧-=01)(2x cx ϕ 其它1||<x , 求: i. 常数c; ii. X 落在)21,21(-内的概率. 解. πππϕ1,22|arcsin 21)(110112====-==⎰⎰-∞+∞-c c c x c dx xc dx x3162|arcsin 211))2/1,2/1((2/102/12/12=⋅==-=-∈⎰-ππππx x dx X P 4. 随机变量X 分布密度为i. 2102)(x x -⎪⎩⎪⎨⎧=πϕ 其它1||<x , ii. ⎪⎩⎪⎨⎧-=02)(x x x ϕ 其它2110≤≤<≤x x求i., ii 的分布函数F(x).解. i. 当x ≤ 1时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当-1< x < 1时 ⎰⎰∞--++-=-==x x x x xdt t dt t x F 21arcsin 1112)()(212πππϕ 当x ≥ 1时 ⎰⎰∞--=-==x dt t dt t x F 112)()(112πϕ所以 ⎪⎪⎩⎪⎪⎨⎧++-=121arcsin 110)(2x x xx F ππ 1111≥<<--≤x x xii. 当x < 0时 ⎰⎰∞-∞-===x xdt dt t x F 00)()(ϕ当0 ≤ x < 1时 ⎰⎰∞-===x x x tdt dt t x F 2)()(2ϕ当1 ≤ x < 2时 122)2()()(2110-+-=-+==⎰⎰⎰∞-x x dt t tdt dt t x F x x ϕ当2 ≤ x 时 1)2()()(2110⎰⎰⎰∞-=-+==x dt t tdt dt t x F ϕ所以 ⎪⎪⎪⎩⎪⎪⎪⎨⎧-+-=112220)(22x x x x F 221100≥<≤<≤<x x x x5. 设测量从某地到某一目标的距离时带有的随机误差X 具有分布密度函数⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞试求: i. 测量误差的绝对值不超过30的概率;ii. 接连独立测量三次, 至少有一次误差的绝对值不超过30的概率.解. 因为⎪⎪⎭⎫ ⎝⎛--=3200)20(exp 2401)(2x x πϕ, -∞ < x < +∞, 所以X ~N(20, 402). i. {}⎭⎬⎫⎩⎨⎧<-<-=<<-=<25.0402025.13030)30|(|X P X P X P )25.1()25.0(-Φ-Φ=1)25.1()25.0()25.1(1()25.0(-Φ+Φ=Φ--Φ= 18944.05987.0-+== 0.4931.(其中Φ(x)为N(0, 1)的分布函数)ii. P(至少有一次误差的绝对值不超过30) = 1-P(三次误差的绝对值都超过30) =88.012.01)4931.0(13=-=- 6. 设电子元件的寿命X 具有密度为⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x问在150小时内, i. 三只元件中没有一只损坏的概率是多少? ii. 三只电子元件全损坏的概率是多少? iii. 只有一个电子元件损坏的概率是多少?解. X 的密度⎪⎩⎪⎨⎧=0100)(2x x ϕ 100100≤<x x . 所以31100)150(1501002==<⎰dx x X P . 令p = P(X ≥ 150) = 1-31= 32.i. P(150小时内三只元件没有一只损坏) =2783=p ii. P(150小时内三只元件全部损坏) =271)1(3=-piii. P(150小时内三只元件只有一只损坏) =943231213=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛c 7. 对圆片直径进行测量, 其值在[5, 6]上服从均匀分布, 求圆片面积的概率分布.解. 直径D 的分布密度为⎩⎨⎧=01)(d ϕ 其它65≤≤d假设42D X π=, X 的分布函数为F(x).)()()(2x D P x X P x F ≤=≤=π当x ≤ 0时, F(x) = 0 当x > 0时⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 当时即425,54ππ<<x xF(x) = 0 当时即πππ925,645≤≤≤≤x x⎭⎬⎫⎩⎨⎧≤≤-=≤=≤=πππx D xP x D P x X P x F 44)()()(2 =54145-=⎰ππxdt x当 x > 9π时 1)()(65===⎰⎰∞-dt dt t x F x ϕ所以 ⎪⎪⎩⎪⎪⎨⎧-=1540)(πxx F ππππ99425425>≤≤<x x x 密度⎪⎩⎪⎨⎧==01)(')(x x F x πϕ 其它ππ9425≤≤x8. 已知X 服从参数 p = 0.6的0-1分布在X = 0, X = 1下, 关于Y 的条件分布分别为表1、表2所示表1 表2Y 1 2 3 Y 1 2 3 P(Y|X = 0)41 21 41 P(Y|X = 1) 21 61 31 求(X, Y)的联合概率分布, 以及在Y ≠ 1时, 关于X 的条件分布.解. X 的分布律为(X, Y)3.05321)1()1|1()1,1(=⋅=======X P X Y P Y X P 1.05361)1()1|2()2,1(=⋅=======X P X Y P Y X P2.05331)1()1|3()3,1(=⋅=======X P X Y P Y X P1.05241)0()0|1()1,0(=⋅=======X P X Y P Y X P2.05221)0()0|2()2,0(=⋅=======X P X Y P Y X P1.05241)0()0|3()3,0(=⋅=======X P X Y P Y X P所以Y 的分布律为5.06.03.0)1()1,0()1|0(==≠≠==≠=Y P Y X P Y X P5.06.03.0)1()1,1()1|1(==≠≠==≠=Y P Y X P Y X P所以9. 设随机变量X 与Y 相互独立, 并在区间[0, 9]上服从均匀分布, 求随机变量YXZ =的分布密度.解. X ~⎪⎩⎪⎨⎧=091)(x X ϕ 其它90≤≤x , Y ~⎪⎩⎪⎨⎧=091)(x Y ϕ 其它90≤≤y因为X, Y 相互独立, 所以(X, Y)联合密度为(X, Y)~⎪⎩⎪⎨⎧=0811),(y x ϕ 其它9,0≤≤y x , )()()(z X Y P z Z P z F Z ≤=≤=当 z ≤ 0时0)(=z F Z 当 0 < z < 1时D 1z z dxdy Xz Y P z X Y P z Z P z F D Z 219921811811)()()()(1=⋅⋅==≤=≤=≤=⎰⎰ 当z ≥ 1时⎰⎰=≤=≤=≤=2811)()()()(D Z dxdy Xz Y P z X Y P z Z P z F zz 211)992181(811-=⋅-⋅=所以 ⎪⎪⎩⎪⎪⎨⎧==2'21210)()(zz F z Z Z ϕ 1100≥<<≤z z z 10. 设(X, Y)的密度为⎩⎨⎧--=0)1(24),(y x y y x ϕ 其它1,0,0<+>>y x y x 求: i.)21|(),|(),(=x y x y x X ϕϕϕ, ii. )21|(),|(),(=y x y x y Y ϕϕϕ 解. i.⎰∞+∞-=dy y x x X ),()(ϕϕ当x ≤ 0 或 x ≥ 1时0),()(==⎰∞+∞-dy y x x X ϕϕ当0 < x < 1时310)1(4)1(24),()(x dy y x y dy y x x x X -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(4)(3x x X ϕ 其它10<<x所以 ⎪⎩⎪⎨⎧---==0)1()1(6)(),()|(3x y x y x y x x y X ϕϕϕ 其它1,0,0<+>>y x y x 所以 ⎩⎨⎧-==0)21(24)21|(y y x y ϕ 其它210<<yii.⎰∞+∞-=dx y x y Y ),()(ϕϕ当y ≤ 0 或 y ≥ 1时0),()(==⎰∞+∞-dx y x y Y ϕϕ当0 < y < 1时210)1(12)1(24),()(y y dx y x y dx y x y y Y -=--==⎰⎰-∞+∞-ϕϕ所以 ⎩⎨⎧-=0)1(12)(2y y y Y ϕ 其它10<<y所以 ⎪⎩⎪⎨⎧---==0)1()1(2)(),()|(2y y x y y x y x Y ϕϕϕ其它1,0,0<+>>y x y x所以 ⎩⎨⎧-==0)21(4)21|(x y x ϕ 其它210<<x第三章 随机变量的数字特征一. 填空题1. 设随机变量X 与Y 相互独立, D(X) = 2, D(Y) = 4, D(2X -Y) = _______. 解. D(2X -Y) = 4D(X) + D(Y) = 122. 已知随机变量X ~N(-3, 1), Y ~N(2, 1 ), 且X 与Y 相互独立, Z = X -2Y + 7, 则Z ~____. 解. 因为Z = X -2Y + 7, 所以Z 服从正态分布. E(Z) = E(X)-2E(Y) + 7 = 0. D(Z) = D(X -2Y + 7) = D(X) + 4D(Y) = 1+4 = 5. 所以Z ~N(0, 5)3. 投掷n 枚骰子, 则出现点数之和的数学期望______. 解. 假设X i 表示第i 颗骰子的点数(i = 1, 2, …, n). 则 E(X i ) = 27616612611=⋅++⋅+⋅(i = 1, 2, …, n) 又设∑==ni i X X 1, 则27)()()(11nX E X E X E ni i ni i ===∑∑== 4. 设离散型随机变量X 的取值是在两次独立试验中事件A 发生的次数, 如果在这些试验中事件发生的概率相同, 并且已知E(X) = 0.9, 则D(X) = ______. 解. ),2(~p B X , 所以E(X) = 0.9 = 2p. p = 0.45, q = 0.55 D(X) = 2pq = 2×0.45×0.55 = 0.495.5. 设随机变量X 在区间[-1, 2]上服从均匀分布, 随机变量⎪⎩⎪⎨⎧-=101Y 000<=>X X X , 则方差D(Y) = _______.解. X ~⎪⎩⎪⎨⎧=031)(x ϕ 其它21≤≤-xY因为 33)0()1(20==>==⎰dx X P Y P 0)0()0(====X P Y P3131)0()1(01==<=-=⎰-dx X P Y P于是 313132)(=-=Y E , 13132)(2=+=Y E , 98)]([)()(22=-=Y E Y E Y D6. 若随机变量X 1, X 2, X 3相互独立, 且服从相同的两点分布⎪⎪⎭⎫ ⎝⎛2.08.010, 则∑==31i i X X 服从_______分布, E(X) = _______, D(X) = ________.解. X 服从B(3, 0.2). 所以E(X) = 3p = 3×0.2= 0.6, D(X) = 3pq = 3×0.2×0.8 = 0.487. 设X 和Y 是两个相互独立的随机变量, 且X ~N(0, 1), Y 在[-1, 1]上服从均匀分布, 则),cov(Y X = _______.解. 因为X 和Y 是两个相互独立的随机变量, 所以),cov(Y X = 0.8. 设X 和Y 是两个相互独立的随机变量, 其概率密度分别为:⎩⎨⎧=02)(x x ϕ 其它10≤≤x , ⎩⎨⎧=--0)()5(y e y ϕ 其它5>y , 则E(XY) = ________. 解. 322)()(1=⋅==⎰⎰∞+∞-xdx x dx x x X E ϕ 6)()(5)5(=⋅==⎰⎰∞+--∞+∞-dy e y dy y y Y E y ϕ因为X 和Y 是两个相互独立的随机变量, 所以E(XY) = E(X)E(Y) = 49. 若随机变量X 1, X 2, X 3相互独立, 其中X 1在[0, 6]服从均匀分布, X 2服从正态分布N(0, 22), X 3服从参数λ = 3的泊松分布, 记Y = X 1-2X 2 + 3X 3, 则D(Y) = ______. 解. )(9)(4)()32()(321321X D X D X D X X X D Y D ++=+-==4639441262=⨯+⨯+二. 单项选择题1. 设随机变量X 和Y 独立同分布, 记U = X -Y , V = X + Y , 则U 和V 必然 (A) 不独立 (B) 独立 (C) 相关系数不为零 (D) 相关系数为零 解. 因为X 和Y 同分布, 所以E(U) = E(X)-E(Y) = 0, E(U)E(V) = 0. 0)()()(22=-=Y E X E UV E .所以 cov(X,Y) = E(UV)-E(U)E(V) = 0. (D)是答案. 2. 已知X 和Y 的联合分布如下表所示, 则有(A) X 与Y 不独立 (B) X 与Y 独立 (C) X 与Y 不相关 (D) X 与Y 彼此独立且相关 解. P(X = 0) = 0.4, P(Y = 0) = 0.3.0.1 = P(X = 0, Y= 0) ≠ P(X = 0)×P(Y = 0). (A)是答案.3. 设离散型随机变量X 可能取值为: x 1 = 1, x 2 = 2, x 3 = 3, 且E(X) = 2.3, E(X 2) = 5.9, 则x 1, x 2, x 3所对应的概率为(A) p 1 = 0.1, p 2 = 0.2, p 3 = 0.7 (B) p 1 = 0.2, p 2 = 0.3, p 3 = 0.5 (C) p 1 = 0.3, p 2 = 0.5, p 3 = 0.2 (D) p 1 = 0.2, p 2 = 0.5, p 3 = 0.3解. 3.223)1(32)(212121332211=--=--++=++=p p p p p p p x p x p x X E 7.0221=+p p9.5)1(94)(21213232221212=--++=++=p p p p p x p x p x X E 1.35821=+p p解得 p 1 = 0.2, p 2 = 0.3, p 3 = 0.5. (B)是答案.4. 现有10张奖券, 其中8张为2元, 2张为5元, 今每人从中随机地无放回地抽取3张, 则此人抽得奖券的金额的数学期望(A) 6 (B) 12 (C) 7.8 (D) 9解. 假设X 表示随机地无放回地抽取3张, 抽得奖券的金额. X 的分布律为157)()6(31038====c c P X P 三张都是二元157),()9(3101228====c c c P X P 一张五元二张二元151),()9(3102218====c c c P X P 二张五元一张二元8.71511215791576)(=⋅+⋅+⋅=X E . (C)是答案. 5. 设随机变量X 和Y 服从正态分布, X ~N(μ, 42), Y ~N(μ, 52), 记P 1 =P{X ≤ μ-4}, P 2 = P{Y≥ μ + 5}, 则(A) 对任何μ, 都有P 1 = P 2 (B) 对任何实数μ, 都有P 1 < P 2 (C) 只有μ的个别值, 才有P 1 = P 2 (D) 对任何实数μ, 都有P 1 > P 2 解. P 1 = {X ≤ μ-4} =)1(1)1(14Φ-=-Φ=⎭⎬⎫⎩⎨⎧-≤-μX PP 2 = {Y ≥ μ + 5} =)1(115115Φ-=⎭⎬⎫⎩⎨⎧≤--=⎭⎬⎫⎩⎨⎧≥-μμY P Y P(其中Φ(x)为N(0, 1)的分布函数). 所以(A)是答案.6. 随机变量ξ = X + Y 与η = X -Y 不相关的充分必要条件为(A) E(X) = E(Y) (B) E(X 2)-E 2(X) = E(Y 2)-E 2(Y) (C) E(X 2) = E(Y 2) (D) E(X 2) + E 2(X) = E(Y 2) + E 2(Y) 解. cov(ξ, η) = E(ξη)-E(ξ)E(η)E(ξη) =)()()])([(22Y E X E Y X Y X E -=-+ E(ξ)E(η) = [E(X)+E(Y)][E(X)-E(Y)] = )()(22Y E X E - 所以(B)是答案.三. 计算题1. 设X 的分布律为1)1()(++==k ka a k X P , k = 0, 1, 2, …, a > 0, 试求E(X), D(X).解. ∑∑∑∞=+∞=+∞=⎪⎭⎫⎝⎛+=+===1111011)1()()(k k k k k k a a k a a ka k X kP X E令 22'2'1211201)1(1)(x x x x x x x kx x kxx f k k k k k k -=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛===∑∑∑∞=∞=-∞=+ 2222)11()1()1(a aa a a a a f =+-+=+, 所以a a a X E =⋅=21)(.∑∑∑∞=+∞=+∞=+-+=+===11112022)1()11()1()()(k k kk k k k a a k k a a k k X P k X E∑∑∑∞=∞=+∞=+-+++=+-++=11111)1()1(11)1()1()1(k kkk k k k k k a a a k k a a a k a a k k 令 3''2''1111)1(21)1()1()(x x x x x x x kx k x kxk x f k k k k k k-=⎪⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=+=+=∑∑∑∞=+∞=-∞= 23)1(2)11(12)1(a a a a a aa a f +=+-+=+,所以2222)1(211)(a a a a a aX E +=-+⋅+=.222222)]([)()(a a a a a X E X E X D +=-+=-=.2. 设随机变量X 具有概率密度为⎪⎩⎪⎨⎧=0cos 2)(2xx πϕ 其它2||π≤x , 求E(X), D(X).解. 0cos 2)()(222===⎰⎰-∞+∞-πππϕxdx xdx x x X E⎰-=-=222222cos 2)]([)()(πππxdx x X E X E X D211222cos 122222-=+=⎰πππdx x x 3.求⎥⎦⎤⎢⎣⎡+2)(sin Y X E π. 解. 2)(sinY X +π的分布律为 25.015.0)1(40.0145.002)(sin =⨯-+⨯+⨯=⎥⎦⎤⎢⎣⎡+Y X E π 4. 一汽车沿一街道行驶需要通过三个设有红绿信号灯路口, 每个信号灯为红或绿与其它信号灯为红或绿相互独立, 且红绿两种信号显示的时间相等, 以X 表示该汽车首次遇到红灯前已通过的路口的个数, 求: i. X 的概率分布, ii. ⎪⎭⎫⎝⎛+XE 11 解. 假设X 为该汽车首次遇到红灯已通过的路口数P(X = 0) = P{第一个路口为红灯} =2P(X = 1) = P{第一个路口为绿灯, 第二个路口为红灯} =2212121=⋅ P(X = 0) = P{第一,二路口为绿灯, 第三个路口为红灯} =321P(X = 0) = P{第一, 二, 三路口为绿灯} =3219667214121312121211111332=⋅+⋅+⋅+⋅=⎪⎭⎫⎝⎛+X E 5. 设(X, Y)的分布密度⎩⎨⎧=+-04),()(22y xxye y x ϕ其它0,0>>y x求)(22Y X E +. 解. ⎰⎰⎰⎰>>+-∞+∞-∞+∞-+=+=+00)(222222224),()(y x y xdxdy xye y x dxdy y x y x Y X E ϕ434sin cos 02202πθθθπ=⋅⋅⋅⋅=⎰⎰∞+-rdr e r r d r 6. 在长为l 的线段上任选两点, 求两点间距离的数学期望与方差.解. 假设X, Y 为线段上的两点. 则它们都服从[0, l ]上的均匀分布, 且它们相互独立.X ~⎪⎩⎪⎨⎧=01)(l x ϕ 其它l x ≤≤0, Y ~⎪⎩⎪⎨⎧=01)(l y ϕ 其它l y ≤≤0(X, Y)的联合分布为⎪⎩⎪⎨⎧=01)(2l x ϕ 其它l y x ≤≤,0.又设Z = |X -Y|, D 1={(x, y): x > y, 0 ≤ x, y ≤ l }, D 2={(x, y): x ≤ y, 0 ≤ x, y ≤ l }⎰⎰⎰⎰⎰⎰-+-=-=∞+∞-∞+∞-21221)(1)(),(||)(D D dxdy l x y dxdy l y x dxdy y x y x Z E ϕ⎰⎰⎰⎰-+-=l y lxdy dx x y l dx dy y x l2002])([1])([13212122022ldy y l dx x ll l=+=⎰⎰ 6)(1),()()(2002222l dxdy y x ldxdy y x y x Z E ly lx =-=-=⎰⎰⎰⎰∞+∞-∞+∞-≤≤≤≤ϕ 1896)]([)()(22222l l l Z E Z E Z D =-=-=7. 设随机变量X 的分布密度为)(,21)(||+∞<<-∞=--x e x x μϕ, 求E(X), D(X). 解. ⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||||)(2121)()(μμϕμ=⎰∞+∞--dt te t ||21+μμμ==⎰⎰∞+-∞+∞--0||21dt e dt e tt⎰⎰⎰∞+∞--∞+∞---∞+∞-+-===dt e t x t dx e x dx x x X E t x ||2||222)(2121)()(μμϕμ=⎰∞+-02dt e t t+20022μμμ+==⎰⎰∞+-∞+-dt e dt e t t所以 22)]([)()(2222=-+=-=μμX E X E X D8. 设(X, Y)的联合密度为⎪⎩⎪⎨⎧=01),(πϕy x 其它122≤+y x , 求E(X), D(Y), ρ(X, Y).解. 01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x xdxdy dxdy y x x X E πϕ01),()(122===⎰⎰⎰⎰+∞∞-+∞∞-≤+y x ydxdy dxdy y x y Y E πϕ41cos 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy x dxdy y x x X E y x 41sin 11),()(20132122222====⎰⎰⎰⎰⎰⎰∞+∞-∞+∞-≤+πθθππϕdr r d dxdy y dxdy y x y Y E y x 01),()(122===⎰⎰⎰⎰∞+∞-∞+∞-≤+y x xydxdy dxdy y x xy XY E πϕ41)]([)()(22=-=X E X E X D , 41)]([)()(22=-=Y E Y E Y D0)()()()()(=-=Y D X D Y E X E XY E XY ρ.9. 假设一部机器在一天内发生故障的概率为0.2, 机器发生故障时全天停止工作. 若一周5个工作日里无故障, 可获利润10万元, 发生一次故障仍可获利润5万元; 发生二次故障所获利润0元; 发生三次或三次以上故障就要亏损2万元. 求一周内期望利润是多少? 解. 假设X 表示一周内发生故障的天数. 则X ~B(5, 0.8)33.0)8.0()0(5===X P , 41.0)8.0(2.05)1(4=⨯⨯==X P20.0)8.0(2.0)2(3225=⨯⨯==c X P , 06.020.041.033.01)3(=---=≥X P又设YE(Y) = 10×0.33 + 5×0.41 + 0×0.20 + (-2)×0.06 = 5.23(万元)10. 两台相互独立的自动记录仪, 每台无故障工作的时间服从参数为5的指数分布; 若先开动其中的一台, 当其发生故障时停用而另一台自行开动. 试求两台记录仪无故障工作的总时间T 的概率密度)(t f 、数学期望和方差.解. 假设X 、Y 分别表示第一、二台记录仪的无故障工作时间, 则X 、Y 的密度函数如下:⎩⎨⎧<≥=-05)(~,5x x e x f Y X xX 、Y 相互独立, 且 T = X + Y .X 、Y 的联合密度: ⎩⎨⎧≥≥=+-,00,0,25),()(5y x e y x f y x关于T 的分布函数: ⎰⎰≤+=≤+=≤=ty x T dxdy y x f t Y X P t T P t F ),(}{}{)(当 0<t 时⎰⎰⎰⎰≤+≤+===≤+=≤=ty x ty x T dxdy dxdy y x f t Y X P t T P t F 00),(}{}{)(当 0≥t 时⎰⎰⎰⎰≥≥≤++-≤+==≤+=≤=0,0)(525),(}{}{)(y x t y x y x ty x T dxdy edxdy y x f t Y X P t T P t Ft t tx t y x x t y t x te e dx e e dy e dx e 550055050551|)(525----------=-==⎰⎰⎰所以 ⎩⎨⎧<≥--=--0,00,51)(55t t te e t F t t T所以T 的概率密度: ⎩⎨⎧<≥==-0,00,25)]'([)(5t t e t t F t f t T T 所以 ⎰⎰∞+∞-∞+-===5225)()(052dt e t dt t f t T E t T 所以⎰⎰∞+∞-∞+-=-=-=-=25225425)52()()]([)()(0532222dt e t dt t f t T E T E T D tT第四章 大数定律和中心极限定理一. 填空题1. 设Y n 是n 次伯努利试验中事件A 出现的次数, p 为A 在每次试验中出现的概率, 则对任意 ε > 0, 有=⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n __________. 解. =⎪⎭⎫⎝⎛≥-∞→ε||lim p n Y P n n 1-011||lim =-=⎪⎭⎫ ⎝⎛<-∞→εp n Y P n n2. 设随机变量X 和Y 的数学期望是2, 方差分别为1和4, 而相关系数为0.5, 则根据切比雪夫不等式P(|X -Y| ≥ 6) ≤ _______. 解. E(X -Y) = E(X)-E(Y) = 2-2 = 0 D(X -Y) = D(X) + D(Y)-)()(2Y D X D XY ρ= 1 + 4-2×0.5×1×2 = 3所以 1213636)()6|(|2==-≤≥-Y X D Y X P二. 选择题1. 设随机变量n X X X ,,,21 相互独立, n n X X X S +++= 21, 则根据列维-林德伯格(Levy-Lindberg)中心极限定理, n S 近似服从正态分布, 只要n X X X ,,,21 ( A ) 有相同的数学期望 ( B ) 有相同的方差( C ) 服从同一指数分布 ( D ) 服从同一离散型分布解. 列维-林德伯格(Levy-Lindberg)中心极限定理要求n X X X ,,,21 既有相同的数学期望, 又有相同的方差, 因此( A ) 、( B )、 ( D )都不是答案, ( C )为答案.三. 计算题1. 某厂有400台同型机器, 各台机器发生故障的概率均为0,02, 假如各台机器相互独立工作, 试求机器出现故障的台数不少于2台的概率.解. 假设X 表示400台机器中发生故障的台数, 所以X ~B(400, 0.02) 由棣莫佛-拉普拉斯定理:。

习题课4

习题课4

第二步: 第二步 对似然函数取对数 ln L(θ ); 第三步:对 求导并令其等于0, 得似然方程(组 第三步 对ln L(θ )求导并令其等于 得似然方程 组) 第四步: 求解似然方程. 第四步 求解似然方程 注:当似然方程无解的时候, 应直接寻求 当似然方程无解的时候 使似然函数达到最大的解求得极大似然估计。 使似然函数达到最大的解求得极大似然估计。
2
n
n
2 i
− nX .
2
点评:以上公式极其简单 点评:以上公式极其简单, 却是统计学中常 用公式, 务必熟记. 用公式 务必熟记
9
是取自正态总体N(0, 22)的 例2 设X1, X2, X3, X4是取自正态总体 的 一个样本, 一个样本 令
Y = a ( X 1 − 2 X 2 )2 + b( 3 X 3 − 4 X 4 )2 ,
1 . F −α (n1, n2 ) = 1 F (n2 , n1 ) α
2
4. 两个抽样分布定理的重要结论 两个抽样分布定理的重要结论: 单个正态总体): 单个正态总体 Th6.2.4 (单个正态总体 2 X −µ (n − 1)S2 σ ~ t(n − 1); ~ χ 2 (n − 1). X ~ N(µ , ); σ2 n S n 两个独立正态总体): 两个独立正态总体 Th6.2.5 (两个独立正态总体
1 1 Y1 = ( X 1 + X 2 + ⋯ + X 6 ), Y2 = ( X 7 + X 8 + X 9 ), 6 3 1 9 2 2 2(Y1 − Y2 ) S = ∑ ( X i − Y2 ) , Z= . 2 i =7 S
证明: 证明:Z ~ t (2) . 点评: 点评: 历史上研究生入学试题. 历史上研究生入学试题

概率统计习题课一

概率统计习题课一

生产的概率? 解:(2)设Ai表示取到第i 个工厂产品,i=1,2,3,B表示取到次品,
由题意得: P(A1)=0.5,P(A2)=P(A3)=0.25
P(B|A1)=0.02,P(B|A2)=0.02,P(B|A3)=0.04 由Bayes公式得:
P( A1 | B)
P( A1 )P(B | A1 )
5
• P(A)=0.4,P(B)=0.3,P(A+B)=0.6, 求P(A-B).
• P(A)=0.7,P(A-B)=0.3,求P(s -AB)
• P(A) =P(B) = P(C) =1/4, P(AB)=0, P(AC)=P(BC)=1/6,求A、B、C都不出现的概率。
• A、B都出现的概率与 A、B 都不出现的概率相等, P(A)=p,求P(B).
(3)有利于事件C的基本事件数为62-2×2=32,P(C)=32/36=8/9
注意①若改为无放回地抽取两次呢? ②若改为一次抽取两个呢?
3
• AB=φ,P(A)=0.6,P(A+B)=0.8,求 B的逆事件 的概率。
解:由P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B) 得:P(B)=P(A+B)-P(A)=0.8-0.6=0.2,
P(B) P( A)P(B | A) P( A)P(B | A)
=(4/10)×(3/9)+(6/10)×(4/9)
= 6/15
12 市场上某种商品由三个厂家同时供获,其供应量为:甲
厂家是乙厂家的2倍,乙.丙两个厂家相等,且各厂产品的次品 率为2%,2%,4%, (1)求市场上该种商品的次品率.
=0.8×0.7×0.4=0.224

概率统计 第一章习题课

概率统计 第一章习题课

14
1.39、某人有两盒火柴,吸烟时 从任一盒中取一根火柴,经过 若干时间以后,发现一盒火柴 已经用完。如果最初两盒中各 有n根火柴,求这时另一盒中还 有r根火柴的概率.
15
第七讲 第一章习题课
1
1.4、电话号码由7个数字组成,每个数字可 以是0,1,2,…,9中的任一个数字(但 第一个数字不能为0),求电话号码是由完 0 全不相同的数字组成的概率。 1.5、把10本书任意地放在书架上,求其中指 定的3本书放在一起的概率。
2
1.6、为了减少比赛场次,把20个球队任意分成两组 (每组10队)进行比赛,求最强的两队被分在不 同组内的概率。 1.8、将3个球随机地投入4个盒子中,求下列事件的 概率: ⑴A——任意3个盒子中各有1个球; ⑵B——任意1个盒子中有3个球; ⑶C——任意1个盒子中有2个球,其它任意1个盒子 中有1个球。
11
1.38、射击运动中,一次射击最 多能得10环。设某运动员在一 次射击中得10环的概率为0.4, 得9环的概率为0.3,得8环的概 率为0.2,求该运动员在五次独 立射击中得到不少于48的概率。
12
1.20、在习题1.7中,求北家分到 的13张牌中: ⑴至少缺一种花色的概率; ⑵四种花色都有的概率。
5
பைடு நூலகம்
1.17、设P(A)>0,P(B)>0,将下列四 个数:P(A),P(AB),P(A∪B),P (A)+P(B),按由小到大的顺序排列, 用符号≤联系它们,并指出在什么情况下可 能有等式成立。 1.21、袋中有a个白球与b个黑球。每次从袋 中任取一个球,取出的球不放回,求第二次 取出的球与第一次取出的球颜色相同的概率。
1.34 1.34、甲乙丙三人向同一飞机射击,设击中 的概率分别是0.4,0.5,0.7。如果只有一 人击中,则飞机击落的概率是0.2;如果有 二人击中,则飞机击落的概率是0.6;如果 有三人都击中,则飞机一定被击落。求飞 机被击落的概率。

概率统计习题课

概率统计习题课

概率统计习题课⼀随机事件及其概率1. ,,A B C 为三个随机事件,事件“,,A B C 不同时发⽣”可表⽰为,事件“,,A B C 都不发⽣”可表⽰为,事件“,,A B C ⾄少发⽣两件”可表⽰为。

2.从1,2,3,4中随机取出两个数,则组成的两位数是奇数的概率是,事件“其中⼀个数是另⼀个数的两倍”的概率是。

3. 有r 个球,随机地放在n 个盒⼦中(r n ≤),则某指定的r 个盒⼦中各有⼀球的概率为_ __ __。

4.把3个球随机放⼊编号为1,2,3的三个盒⼦(每个盒⼦能容纳多个球),则三个盒⼦各放⼊⼀球的概率是___________。

5. 设,A B 为随机事件,()0.7P A =, ()0.3P A B -=,则()P A B =__ ___。

6.事件A 发⽣必然导致事件B 发⽣,且()0.1,()0.2,P A P B ==,则()P A B =____。

7. 盒中有6个⼤⼩相同的球,4个⿊球2个⽩球,甲⼄丙三⼈先后从盒中各任取⼀球,取后不放回,则⾄少有⼀⼈取到⽩球的概率为___________。

8. 甲⼄两个盒⼦,甲盒中有2个⽩球1个⿊球,⼄盒中有1个⽩球2个⿊球,从甲盒中任取⼀球放⼊⼄盒,再从⼄盒中任取⼀球,取出⽩球的概率是。

9.某球员进⾏投篮练习,设各次进球与否相互独⽴,且每次进球的概率相同,已知他三次投篮⾄少投中⼀次的概率是,则他的投篮命中率是。

10. 将⼀枚硬币抛掷3次,观察出现正⾯(记为H )还是反⾯(记为T ),事件A ={恰有⼀次出现正⾯},B ={⾄少有⼀次出现正⾯},以集合的形式写出试验的样本空间Ω和事件,A B ,并求(),(),()P A P B P A B11. 已知()0.1,()0.2P A P B ==,在下列两种情况下分别计算()P A B 和()P A B :(1) 如果事件,A B 互不相容; (2) 如果事件,A B 相互独⽴。

12. 盒中有3个⿊球7个⽩球,从中任取⼀球,不放回,再任取⼀球,(1)若第⼀次取出的是⽩球,求第⼆次取出⽩球的概率 (2)两次都取出⽩球的概率 (3) 第⼆次取出⽩球的概率 (4) 若第⼆次取出的是⽩球,求第⼀次取出⽩球的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一 随机事件及其概率1. ,,A B C 为三个随机事件,事件“,,A B C 不同时发生”可表示为 ,事件“,,A B C 都不发生”可表示为 ,事件“,,A B C 至少发生两件”可表示为 。

2.从1,2,3,4中随机取出两个数,则组成的两位数是奇数的概率是 , 事件“其中一个数是另一个数的两倍”的概率是 。

3. 有r 个球,随机地放在n 个盒子中(r n ≤),则某指定的r 个盒子中各有一球的概率为_ __ __。

4.把3个球随机放入编号为1,2,3的三个盒子(每个盒子能容纳多个球),则三个盒子各放入一球的概率是___________。

5. 设,A B 为随机事件,()0.7P A =, ()0.3P A B -=,则()P A B =__ ___。

6.事件A 发生必然导致事件B 发生,且()0.1,()0.2,P A P B ==,则()P A B =____。

7. 盒中有6个大小相同的球,4个黑球2个白球,甲乙丙三人先后从盒中各任取一球,取后不放回,则至少有一人取到白球的概率为___________。

8. 甲乙两个盒子,甲盒中有2个白球1个黑球,乙盒中有1个白球2个黑球,从甲盒中任取一球放入乙盒,再从乙盒中任取一球,取出白球的概率是 。

9.某球员进行投篮练习,设各次进球与否相互独立,且每次进球的概率相同,已知他三次投篮至少投中一次的概率是,则他的投篮命中率是 。

10. 将一枚硬币抛掷3次,观察出现正面(记为H )还是反面(记为T ),事件A ={恰有一次出现正面},B ={至少有一次出现正面},以集合的形式写出试验的样本空间Ω和事件,A B ,并求(),(),()P A P B P A B11. 已知()0.1,()0.2P A P B ==,在下列两种情况下分别计算()P A B 和()P A B :(1) 如果事件,A B 互不相容; (2) 如果事件,A B 相互独立。

12. 盒中有3个黑球7个白球,从中任取一球,不放回,再任取一球,(1)若第一次取出的是白球,求第二次取出白球的概率 (2) 两次都取出白球的概率 (3) 第二次取出白球的概率 (4) 若第二次取出的是白球,求第一次取出白球的概率。

二 一维随机变量 1.向平面区域{(,):1}x y x y +≤内随机投3个点,则3个点中恰有2个点落在第一象限内的概率是 。

2.设随机变量X 服从二项分布(3,0.3)B ,且2Y X =,{4}P Y == 。

3.设圆形区域的半径X 服从区间[0,2]上的均匀分布,则圆形区域的面积2Y X π=的数学期望()E Y =________。

4.设随机变量X 的密度函数()f x 对x R ∀∈,有()()f c x f c x +=- , c 是常数,则{}P X c >= ,()E X = 。

5.设随机变量X 的密度函数221(),()x x f x x R-+-=∈,则2()E X = 。

6.抽样调查结果表明:某地区考生的外语成绩X 服从正态分布2(,)N μσ, 平均成绩72μ=,已知80分以上者占总人数的20%,则考生的外语成绩在64分至80分之间的概率是 。

7.一袋中装有六只球,编号是1,2,3,4,5,6,从中随机取出三个球,X 表示取出的球的最小号码,求X 的分布律,数学期望和方差。

8. 试验E 只有两种结果:A 和A ,且(),01P A p p =<<,试验E 独立重复地进行,(1) X 表示事件A 首次发生时的试验次数,求X 的分布律和数学期望; (2) Y 表示事件A 第r 次发生时的试验次数(r 是任一正整数), 求Y 的分布律和数学期望。

9. 盒中有3个黑球2个白球,每次从中任取一球,直到取到白球为止,X 表示抽取次数,(1) 如果每次取出的球不放回,求X 的分布律和数学期望;(2) 如果每次取出的球放回盒中,求X 的分布律和数学期望。

10. 设连续型随机变量X 的密度函数,01()0,ax b x f x +≤≤⎧=⎨⎩其他,{0.5}0.625P X >=,(1) 确定常数,a b (2) 计算{10.5}P X -<< (3) 求()E X11. 设随机变量X 的分布函数是()arctan F x A B x =+,求(1) 常数,A B (2)X 的概率密度()f x (3)(1P X -≤≤12. 乘客在某公交车站等车的时间X 服从正态分布2(7,2)N ,(单位:分钟)(1) 求乘客的等车时间超过11分钟的概率((1)0.84Φ=,(2)0.98Φ=)(2) 若一小时内有100位乘客在此车站等车,其中等车时间超过11分钟的人数是Y ,写出Y 的分布律,并求一小时内至少有两人等车时间超过11分钟的概率。

13. 在某次200米游泳比赛中,运动员的成绩2(180,20)X N (单位:秒),(1)成绩位于前40%的运动员直接晋级,则用时低于多少秒(设为a )的运动员得以晋级 (2)成绩位于后20%的运动员直接淘汰,则用时超过多少秒(设为b )的运动员被淘汰((0.25)0.6,(0.84)0.8Φ=Φ=)14. 某人家住市区东郊,工作单位在西郊,上班有两条路线可选择:一条直穿市区,但可能塞车,所需时间(单位:分钟)服从正态分布2(30,10)N ;另一条环城高架,路程远但很少塞车,所需时间服从正态分布2(40,4)N ,为保证以较大概率上班不迟到,问:(1) 如果上班前50分钟出发,应选哪条路线(2) 如果上班前45分钟出发,应选哪条路线((1.25)0.8944,(1.5)0.9332,(2)0.9772,(2.5)0.9938)Φ=Φ=Φ=Φ=15. 设随机变量X 服从[0,1]上的均匀分布,证明:(1) ()Y a b a X =+-服从[,]a b 上的均匀分布;(2) ln Y X =-服从参数为1的指数分布。

16. 射箭比赛中的圆靶半径为米, 设击中靶上任一同心圆内的概率与该圆的面积成正比,并设箭支都能中靶, (1) 以X 表示箭支落点与圆心的距离,证明:X的分布函数200()400.510.5x F x x x x <⎧⎪=≤≤⎨⎪>⎩; (2) 如图,从圆心起每米为一环,Y 表示射箭得到的环数,求Y 的分布律和数学期望。

17. (1) 设随机变量12,X X 相互独立,都服从参数为λ的泊松分布, 证明:12X X +服从参数为2λ的泊松分布;(2) 假设在一分钟内进入商场的顾客数X 服从参数为λ的泊松分布,相邻两位顾客进入商场的间隔时间是T ,求T 的分布函数(){}F t P T t =≤和密度函数()f t 。

(提示:由(1)可知,在t 分钟内进入商场的顾客数服从参数为t λ的泊松分布)三 二维随机变量1.设二维随机变量(,)X Y 的联合分布函数(,)(1)(1),0,0ax by F x y e e x y --=-->>,则其联合密度函数(,)f x y = 。

5 4 3 2 12.设二维随机变量),(Y X 的联合密度,01(,)0,A y x f x y ≤≤≤⎧=⎨⎩其他, 则=A ,11{,}22P X Y ><= 。

3. 设二维随机变量),(Y X 的联合密度2,(,)0,c x y x f x y else ⎧≤≤=⎨⎩,则常数c =4. 已知随机变量X 和Y 的分布律分别为0101~~0.750.250.50.5X Y ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭且{0}1P XY ==,则{0,0}P X Y === 。

5. 设随机变量X 和Y 相互独立,具有相同的分布律:11~1/21/2X -⎛⎫ ⎪⎝⎭则{}P X Y == ,{0}P X Y +== 。

6. 设随机变量(1,4)X N ,(0,16)Y N ,,X Y 相互独立,则21Z X Y =--服从的分布是 。

(需注明参数)7.甲乙两人约在7点到8点之间在车站碰头,设两人的到达时刻是随机的,记为),(Y X ,0,60X Y ≤≤,(1) 写出),(Y X 的联合密度函数(,)f x y ; (2) 在7:15,7:30,7:45,8:00各有一班车到站,如果两人见车就乘,求他们能乘坐同一班车的概率1p ,如果先到者最多等一班车,求他们能乘坐同一班车的概率2p 。

8.设二维随机变量),(Y X 的联合密度函数为,02,0(,)0,y Ae x y f x y -⎧≤≤>=⎨⎩其他 求 (1) 常数A ;(2) 关于X 和Y 的边缘密度函数)(),(y f x f Y X ,并判断X 和Y 是否相互独立(3) 求()E XY9. 在区间(0,1)上随机取两个数X 和Y ,(1)写出(,)X Y 的联合密度函数(,)f x y ;(2) 求两数之和小于6/5的概率。

10. 盒中有5个大小相同的球,其中1个黑球2个白球2个红球,从中任取两个球,X 和Y 分别表示取出的白球数和红球数,(1) 求(,)X Y 的联合分布律与边缘分布律; (2) 求取出的白球数和红球数的数学期望。

四 大数定律与中心极限定理1. 设A n 是n 次独立重复试验中事件A 发生的次数,p 是事件A 发生的概率,则对任意正数ε,有lim A n n P p n ε→∞⎧⎫-≥=⎨⎬⎩⎭。

2. 测量一个零件的长度,测量n 次,得到一组测量值12,,,n X X X ⋯⋯,设零件的实际长度是a ,则对任意正数ε,有11lim n i n i P X a n ε→∞=⎧⎫-<=⎨⎬⎩⎭∑ 。

3. 设12,,,n X X X ⋯是来自于正态总体2(0,)N σ的样本,则对任意正数ε,2211lim n i n i P x n σε→∞=⎧⎫-≥=⎨⎬⎩⎭∑ 。

4. 设12,,,,n X X X ⋯⋯是相互独立的随机变量序列,(),()i i E X D X 存在,且(),1,2,i D X C i ≤=,则对任意正数ε,1111lim ()n ni i n i i P X E X n n ε→∞==⎧⎫-≥=⎨⎬⎩⎭∑∑ 5. 计算器在进行加法时,将每个加数舍入最近的整数,设所有的舍入误差X 都服从[,]上的均匀分布且相互独立。

(1) 写出X 的密度函数,数学期望和方差;(2) 计算器将1200个数相加,用中心极限定理计算误差总和的绝对值小于10的概率。

((1)0.84Φ=)6. 抛掷一枚均匀硬币100次,其中正面向上的次数是X ,(1)写出X 的分布律,数学期望和方差 (2) 用中心极限定理计算正面向上的频率在到之间的概率((1)0.84Φ=)7. 从区间(0,1)中任取一个实数X ,称为随机数,(1) 证明:两个独立随机数的和12X X +的密度函数是,01()2,120x x f x x x else ≤<⎧⎪=-≤<⎨⎪⎩, (2) 将1200个独立随机数相加,用中心极限定理计算总和在590到610之间的概率((1)0.84Φ=)五 数理统计1. 某商店100天销售电视机的情况有如下统计资料,则样本均值X = 。

相关文档
最新文档