高职高考数学模拟试卷
高职高考一模数学试卷

一、选择题(本大题共10小题,每小题5分,共50分)1. 若函数f(x) = 2x + 3,则f(2)的值为()A. 7B. 9C. 11D. 132. 下列各数中,有理数是()A. √2B. πC. 3/4D. 无理数3. 已知等差数列{an}的首项为2,公差为3,则第10项an的值为()A. 27B. 30C. 33D. 364. 下列各函数中,是奇函数的是()A. y = x^2B. y = x^3C. y = |x|D. y = 2x5. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^26. 下列各式中,正确的是()A. a^2 = aB. a^3 = aC. (ab)^2 = a^2b^2D. (a/b)^2 = a^2/b^27. 已知等比数列{an}的首项为2,公比为3,则第5项an的值为()A. 54B. 162C. 486D. 14588. 若函数f(x) = kx + 1,其中k为常数,则f(x)的图像是()A. 直线B. 抛物线C. 双曲线D. 椭圆9. 已知三角形的三边长分别为3、4、5,则这个三角形的面积是()A. 6B. 8C. 10D. 1210. 下列各式中,正确的是()A. log2(8) = 3B. log2(4) = 2C. log2(2) = 1D. log2(1) = 0二、填空题(本大题共10小题,每小题5分,共50分)11. 若sinθ = 1/2,则cosθ的值为________。
12. 已知复数z = 3 + 4i,则|z|的值为________。
13. 若等差数列{an}的首项为a1,公差为d,则第n项an的通项公式为________。
14. 若等比数列{an}的首项为a1,公比为q,则第n项an的通项公式为________。
高职高考数学高考模拟考试题

高职高考数学高考模拟考试题高职班高考模拟试题1 数学试题(A卷)一、选择题:(每小题5分,共75分):,1、数集{0}与空集的关系是( )A. B. C. D. {0},,,,{0},Ø{0}{0},,2、a=b是|a|=|b|的( )A. 充分条件,也是必要条件B. 充分条件,但非必要条件C. 必要条件,但非充分条件D. 非充分条件,也非必要条件4x3、函数的值域是区间( ) yx,,(0)24,xA. B. C. D. (0,],,[0,2][1,),,[0,1]2,14、函数的反函数( ) fxxxx()21 (1),,,,fx()1,x1,x1,xx,1A. B. C. D.x5、如果则=( ) lg()lg(2)lg2lglg,xyxyxy,,,,,,y1,1,12或 A. B. 2 C. 或2 D. 24tan,,,6、已知,且是第二象限的角,则=( ) sin,54343,, A. B. C. D. 3434,647、已知等差数列的和为,且,那么项数=( ) aaa,,,……aa,,,8m12mm,12 A. 10 B. 12 C. 14 D. 16,,,,ab//y,8、已知向量,,且,则( ) a,,(2,6)by,(3,),6,9 A. 1 B. 4 C. D.,,,,9、已知两点,,则向量的坐标为( ) ABA(1,2)B(1,3),51[0,](1,),A. B. C. D. (2,1),(2,1),2210、已知某种细菌在培养过程中,每30分钟分裂一次(1个细菌分裂为2个细菌),则经过4小时候后,这种细菌由1个可繁殖成( )个A. 256B. 128C. 64D. 32sincosaam,,sin2a11、已知,则=( )22221,m1,mm,1,,m1 A. B. C. D.市县/区姓名考生号班级座位号2xx,,,410ll和ll与12、如果直线的斜率恰好是方程的两个根,那么的夹角1212是( ),,,,A. B. C. D. 346813、如果直线经过直线与直线的交点,xby,,,904320xy,,,56170xy,,,b,那么( )A. 2B. 3C. 4D. 52214、已知圆的标准方程为:,则此圆的参数方程为( ) (1)(2)9xy,,,, x,,19cos,x,,,19cos,,, A. B. ,,y,,,29siny,,29sin,,,,x,,,13cos,x,,13cos,,,C. D. ,,y,,23siny,,,23sin,,,,2215、如果方程表示焦点在y轴上的椭圆,那么实数k的取值范围的区间xky,,2是( )A. B. C. D. (0,1)[0,],,(1,),,(0,2)二、填空题:(每小题5分,共25分):726,726,16、与的等比中项是,,,,17、若向量,则的值为 ab,,(4,3),(2,4)cos,,,ab1sinx,18、在上满足的取值范围是 [0,2],22219、经过点且与圆同心的圆的方程为 A(1,1),xyxy,,,,,46301#ABC20、在中,已知abC,,,,10,15,cos,则 S,#ABC3三、解答题:(4小题,共50分)21xx,,82,()3 21、解不等式: (12’) 331,,,,,sin,(,),tan()22、已知:,求:的值。
高职高考数学试卷模拟卷

一、选择题(每题5分,共20分)1. 下列各数中,有理数是()。
A. √9B. √-16C. πD. 2√22. 如果 |a| = 3,那么 a 的值为()。
A. ±3B. ±4C. ±2D. ±13. 已知二次函数y = ax² + bx + c(a ≠ 0),如果它的图像开口向上,且顶点坐标为(1,-2),那么 a 的取值范围是()。
A. a > 0B. a < 0C. a ≥ 0D. a ≤ 04. 在等差数列 {an} 中,如果 a1 = 3,d = 2,那么第10项 an 的值为()。
A. 19B. 20C. 21D. 225. 若函数 f(x) = 2x + 1 在区间 [1, 3] 上单调递增,那么函数 g(x) = f(x) - 3 在区间 [1, 3] 上的单调性是()。
A. 单调递减B. 单调递增C. 先增后减D. 先减后增二、填空题(每题5分,共20分)6. 已知等差数列 {an} 的前n项和为 Sn,如果 S5 = 50,a1 = 2,那么 d =________。
7. 函数y = x² - 4x + 4 的图像与x轴的交点坐标为 ________。
8. 在直角坐标系中,点 A(2,3)关于 y 轴的对称点坐标为 ________。
9. 二项式定理 (a + b)ⁿ的展开式中,a³b⁷的系数为 ________。
10. 等比数列 {an} 的公比 q = 1/2,如果 a1 = 16,那么第5项 an 的值为________。
三、解答题(每题10分,共20分)11. 解下列方程组:\[\begin{cases}2x + 3y = 8 \\4x - y = 2\end{cases}\]12. 已知函数 f(x) = -3x² + 12x - 4,求函数 f(x) 的最大值。
四、应用题(15分)13. 一批货物由甲、乙两辆卡车运输,甲车每小时运输20吨,乙车每小时运输30吨。
杭州市高职考试数学模拟卷(最新)

浙江省高等职业技术教育招生考试数 学 模 拟 试 卷一、单项选择题(本大题共18小题,每小题2分,共36分)在每小题列出的四个1.如图,,,M P S 是全U 的子集,则阴影部分所表示的集合是( )A.()MP S B.()M P S C.()U M P C S D.()U M P C S2.不等式组2142x a x a ⎧->⎨-<⎩有解,则实数a 的取值范围是( ) A.(1,3)- B.(,1)(3,)-∞-+∞ C.(3,1)- D.(,3)(1,)-∞-+∞3.条件“tan()0αβ-=”是“tan tan 0αβ-=”的( )A.充分不必要条件B.必要不充分已经C.既不充分又不必要条件D. 充分必要条件4.已知2211(),()f x x f x x x -=+则函数的表达式为( ) A.223x x -+ B.221x x -+ C.22x + D.221(1)(1)x x -+- 5对任意,,,a b c R +∈,则下列等式正确的是( )A.()b c b c a a +=B.bb c c a a a-= C.lg (lg lg )lg b b a a =- D .lg lg lg()a b a b ⋅=+6.若等比数列{}n a 的前n 项和为3,nn S k k =+=则( ) A.0 B.2π C.32π D.65π 7.数列1,2,5,4,9,6,13,8,……,则此数列的第21项为( )A.34B.36C.41D.458.停车场可将12辆车停放在一排,当有8辆车已停放后,恰有4个空位连在一起,这种情况发生的概率为( ) A.8127C B.8128C C.8129C D. 81210C 9.如果从南、北两个方向分别有5条、3条路可以通往上顶,那么某人从一面上山由另一面下山,共有( )种走法.A.53+B.35⨯C.35D.5310.若角β的终边经过点(2,0)P -,则β是( )A .第二象限角 B. 第三象限角 C. 第四象限角 D. 非象限角11.如果4cos(),5πα+=-则下列等式成立的是( ) A.3sin 5α=- B.3tan 4α=C.34sin()25πα-=- D.4cos(2)5πα-= 12.若cos()cos(),244ππθθθ-+==则cos ( )13.9(2)x y -展开式中,第5项的二项式系数为( )A.59CB.59C -C.49CD.49C -14. 若,αβ是两个不重合的平面,在下列条件中可判断两平面平行的条件是( )A.,αβγ都垂直于平面B.αβ内不共线的三点到的距离相等 C.,,l m l m αββ是平面内的直线,且 D. ,,,,l m l m l m ααβα⊥是两条异面直线,且15.若0,0,0AC BC Ax By C <<++=则直线不经过( )A.第一象限B.第二象限C.第三象限D. 第四象限16.过点(1,),(,6)A m B m -的直线与直线210x y -+=垂直,则m 的值为( ) A.6- B.8-C. 9-D.017.与圆224630x y x y +-+-=的圆心相同,且圆经过点(1,1)-的圆的方程为( )A.22(2)(3)25x y -++=B.22(2)(3)5x y -++=C.22(2)(3)25x y ++-=D.22(2)(3)5x y ++-=18.已知抛物线的顶点为原点,对称轴为 x 轴,焦点在直线34120x y --=上,则抛物线的方程式( )A.216y x =- B. 216y x = C.212y x =- D. 212y x =二、填空题(本大题共8小题,每小题3分,共24分)19.用符号表示结论:“三个数,,x y z 不全为零”20.比较大小:0.10.7 0.20.6.21.函数()21f x x =+的图像具有的对称特征是22.在直角坐标系中,单位圆上两点111222(,),(,),P x y P x y O 为原点,12cos POP ∠则 21cos()POX POX =∠-∠= 23.长方体1111ABCD A BC D -中,棱11113,4,AA AB B C A BCD ==则直线与平面 的距离 .24.已知413,(0,),cos ,tan ,tan()259παβαβαβ∈==-=则 25.焦点在x 轴上的椭圆2211log 892P x y e +==的离心率,则p= 26.数列9,99,999,9999,……的一个通项公式是n a = .三、解答题(本大题共8小题,共60分)解答应写出文字说明及演算步骤.27. (本题满分6分) 由1,2,3,4四个数字组成的没有重复数字的四位数中,求共有多少个比1234大的四位数.28. (本题满分7分)在首项为1a 的等差数列{},,.n n m m n a a m a n S +==中,已知求29. (本题满分7分) 设2212,14x F F y -=是双曲线的两焦点,点P 是双曲线上一点,121290,.F PF PF ︒∠=且F 求面积S30. (本题满分7分)若A ABC ∠是的最大内角,函数sin cos y A A =-的值域.31.(本题满分8分) 已知(1,2),(,1),22a b x a b a b ==+-当与平行时,求:(1)x 的值;(2)a b +.32. (本题满分8分) 求值: (1)79sin()6π- (2)24cos cos cos ;777πππ⋅⋅33. (本题满分8分)求过圆22:82120C x y x y +--+=内一点(3,0)Q 的最长弦和最短弦所在的直线方程.34. (本题满分9分)如图,用一棱长为a 的正方体,制作一以各面中心为顶点的正八面体.求:(1) 此正八面体的表面积S ;(2) 此正八面体的体积V .。
职高数学高三模拟试卷

考试时间:120分钟满分:100分一、选择题(每题5分,共30分)1. 已知函数$f(x) = x^2 - 4x + 4$,则$f(2)$的值为:A. 0B. 2C. 4D. 82. 若$a > b$,则下列不等式中正确的是:A. $a^2 > b^2$B. $\frac{1}{a} > \frac{1}{b}$C. $a - b > 0$D. $a + b > 0$3. 已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 20$,$S_9 = 54$,则该数列的公差为:A. 1B. 2C. 3D. 44. 函数$y = \frac{1}{x}$的图像是:A. 一条直线B. 一条抛物线C. 一条双曲线D. 一条指数曲线5. 在直角坐标系中,点$A(2, 3)$关于直线$y = x$的对称点为:A. $B(-2, -3)$B. $B(-3, -2)$C. $B(3, 2)$D. $B(2, 3)$二、填空题(每题5分,共20分)6. 若$|x - 1| = 3$,则$x$的值为______。
7. 若$a = 3$,$b = 4$,则$(a + b)^2 - 2ab$的值为______。
8. 等差数列$\{a_n\}$的通项公式为$a_n = 2n + 1$,则该数列的第10项为______。
9. 函数$y = -x^2 + 4x - 3$的图像与$x$轴的交点坐标为______。
10. 若$\angle A = 45^\circ$,$\angle B = 90^\circ$,则$\angle C$的度数为______。
三、解答题(共50分)11. (10分)已知函数$f(x) = x^3 - 3x^2 + 4x + 2$,求:(1)$f(2)$的值;(2)函数$f(x)$的零点。
12. (15分)已知等差数列$\{a_n\}$的前$n$项和为$S_n$,若$S_5 = 20$,$S_9 = 54$,求:(1)该数列的首项和公差;(2)求该数列的前10项和。
职高数学高三模拟试卷答案

一、选择题(每题5分,共50分)1. 下列各数中,无理数是()A. √2B. 0.1010010001...C. 3.14159D. -1/3答案:A2. 函数 y = -2x + 1 的图像是()A. 一次函数图像B. 二次函数图像C. 反比例函数图像D. 指数函数图像答案:A3. 已知 a、b 是实数,且 a + b = 0,则 a^2 + b^2 的值是()A. 1B. 0C. -1D. 无法确定答案:B4. 下列各对数式中,相等的是()A. log2(8) = 3B. log3(27) = 2C. log4(16) = 2D. log5(25) = 1答案:D5. 已知函数 y = 2x - 3,当 x = 2 时,y 的值为()A. 1B. 3C. 5D. 7答案:C6. 下列各数中,属于等差数列的是()A. 1, 3, 5, 7, 9B. 2, 4, 8, 16, 32C. 1, 2, 4, 8, 16D. 3, 6, 9, 12, 15答案:A7. 已知等比数列的前三项分别为 2, 6, 18,则该数列的公比是()A. 1B. 2C. 3D. 6答案:B8. 在直角坐标系中,点 P(2, 3) 关于直线 y = x 的对称点坐标是()A. (3, 2)B. (2, 3)C. (-3, -2)D. (-2, -3)答案:A9. 下列各函数中,奇函数是()A. y = x^2B. y = |x|C. y = x^3D. y = x^4答案:C10. 已知等差数列的前三项分别为 3, 7, 11,则该数列的通项公式是()A. an = 4n - 1B. an = 2n + 1C. an = 4n + 1D. an = 2n - 1答案:A二、填空题(每题5分,共25分)11. 函数 y = x^2 - 4x + 4 的最小值是 ________。
答案:012. 已知 a、b 是实数,且 |a| = |b|,则 a + b 的值是 ________。
高职高考数学模拟试题

高职高考数学模拟试题一、选择题1. 若函数$f(x)=\sqrt{a-x}+2$, $a>0$,则$f(x)$的定义域是()A. $(-\infty,a]$B. $[0,a]$C. $[0,a)$D. $(-\infty,a)$2. 已知向量$\overrightarrow{a}=3\overrightarrow{i}+2\overrightarrow{j}$,$\overrightarrow{b}=-\overrightarrow{i}+3\overrightarrow{j}$,则$\overrightarrow{a}\cdot\overrightarrow{b}$等于()A. -3B. 1C. 9D. 03. 设$a>0$,则下列不等式中成立的是()A. $a^{\frac{1}{2}}>a^{\frac{1}{3}}$B. $a^{-1}>a^{-2}$C. $a^2>a$D. $a^{-3}>a^{-1}$4. 某班有12名男生,8名女生,今从中任选2人组成一个代表队,则这个代表队至少有1名女生的概率是()A. $\frac{11}{19}$B. $\frac{8}{19}$C. $\frac{72}{152}$D. $\frac{8\cdot12}{19\cdot20}$5. 序列$\{a_n\}$满足$a_1=1$,$a_{n+1}=3a_n+1(n=1,2,\cdots)$,则$a_9$的值是()A. 6560B. 3281C. 6561D. 32796. 函数$y=a\cos{3x}+b\sin{3x}$的最大值为2,最小值为-4,且恰有一个极值点,则$a$与$b$的值分别为()A. 2和-4B. -4和2C. 4和-2D. -2和47. 若三角形$ABC$中,$\sin{A}\cdot\sin{B}=3\sin{C}\cdot\cos{C}$,且$AB=2AC$,则$\angle C$的大小为()A. $45^{\circ}$B. $30^{\circ}$C. $60^{\circ}$D. $90^{\circ}$8. 在一个五边形中,五个内角之和为270度,则这个五边形的形状是()A. 正五边形B. 正四边形C. 三角形D. 不规则五边形9. 设集合$A=\{x|x+\frac{1}{x}<2, x>0\}$,则$A$的取值范围是()A. $(0,1)$B. $(1,2)$C. $(0,1)\cup(1,2)$D. $(0,2)$10. 若直线$y=kx+5$与曲线$y=8-x^2$相切,则$k$的值为()A. 8B. $-\frac{7}{2}$C. $\frac{7}{2}$D. -811. 设$a_n=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\cdots+\frac {1}{n(n+1)}$,则$\lim_{n \to \infty}a_n$的值为()A. $\frac{1}{2}$B. 1C. 0D. 212. 函数$f(x)=x^3-x^2-6x$在区间$[-1,3]$上的最大值为()A. 3B. $\frac{27}{4}$C. 0D. $\frac{9}{4}$13. 若$x$与$y$满足$x+y=4$,$x^2+y^2=10$,则$x^3+y^3$的值为()A. 36B. 40D. 5214. 某人6月25日到从事清洁工作,约定每天增加2元,到31日(包括31日)每天可拿到5元,则这人7月1日可以拿到多少元?()A. 5B. 10C. 20D. 2515. 已知一个等腰三角形的面积是24平方厘米,底边长6厘米,则这个等腰三角形的高为()A. 4厘米B. 8厘米C. 12厘米D. 16厘米16. 若直线$l_1$的方程为$y=k_1x+1$,直线$l_2$的方程为$x+y=0$,则$k_1$为()A. -1B. 1C. 017. 函数$f(x)=x^2-3x+4$在区间$[0,3]$上的最小值为()A. 1B. 2C. 3D. 418. 已知集合$A=\{x|x=\frac{2m-n}{m+n},m \in N^{*},n \in N^{*}\}$,则$A$中元素的最小值为()A. 0B. 1C. 2D. 319. 若三角形$ABC$中,$AB=BC=3$,$\angle A=90^{\circ}$,则$\sin{C}$的值为()A. $\frac{\sqrt{3}}{2}$B. $\frac{\sqrt{2}}{3}$C. $\frac{1}{3}$D. $\frac{\sqrt{3}}{3}$20. 已知函数$f(x)=x^2+a(x+1)+a$是奇函数,求$a$的值。
高职高考数学模拟试卷(一)课件

(2)当x∈N*时,f(1),f(2),f(3),f(4),…构成一数列,求其通项公式.
【解】 (2)f(1)=5,f(x)-f(x-1)=3, f(x)构成的数列为首项为5,公差为3的等差数列. 则f(x)=5+3(x-1)=3x+2(x∈N*).
24.(本小题满分14分) 两边靠墙的角落有一个区域,边界线正好是椭圆轨迹的部分,
【答案】A 【解析】由lg(x-2)≥0得x≥3,答案选A.
8.在等比数列{an}中,若a2=3,a4=27,则a5= ( )
A.-81
B.81
C.81或-81 D.3或-3
9.抛掷一颗骰子,落地后,面朝上的点数为偶数的概率等于( )
A.0.5
B.0.6
C.0.7
D.0.8
11.函数y=sin2x+cos 2x的最小值和最小正周期分别为 ( )
2.已知函数f(x+1)=2x-1,则f(2)= ( )
A.-1
B.1
C.2
D.3
【答案】B 【解析】 f(2)=f(1+1)=21-1=1.
3.“a+b=0”是“a·b=0”的 ( )
A.充分条件
B.必要条件
C.充要条件
D.既非充分又非必要条件
【答案】D 【解析】 a+b=0⇒a·b=0,a·b=0⇒a+b=0,故选D.
于(a,b),给出的下列四个结论:
①a=ln b ②b=ln a ③f(a)=b ④当x>a时,f(x)<ex
其中正确的结论共有
()
A.1个
B. 【解析】因为两个函数图像都经过点(a,b),所以f(a)=b,ea=b,
又y=ex在(a,+∞)上增函数,y=f(x)为减函数,所以f(x)<ex.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
---精品文档欢迎来主页下载 2018高职高考数学模拟试卷120分钟。
小题,满分150分。
考试时间本试题卷共24注意事项:、答卷前,考生务必用黑色字迹的钢笔或签字笔将自己的姓名和考生号、1铅笔将试卷类型填涂在答题卡试室号、座位号填定在答题卡上。
用2B 相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴除”铅笔把答题纸上对应题目的答案标号用2B2、选择题每小题选出答案后,涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、非选择题用黑色字迹的签字笔或钢笔将答案写在答题纸上。
4、考生必须保持答题卡的整洁。
不能使用涂改液。
A
试卷类型:75分)小题,每小题5分,共一、单项选择题(本大题共15在
每小题列出的四个备选答案中,只有一个是符合题目要求的。
错涂、多
涂或未涂均无分。
????5,44N?,3M?,0,1,23,)1.已知集合,,则下列结论正确的是( ????MM?NN?52,0,1?N?,3,4?MN?M D. C. A. B.
log(x?1)2?x)f(的定义域是(2 、函数)x?2A B C
D ),??(((??,0)1,2]2)21(,log2?log31a?0?”的(”是“)3.“aa A.必要非充分条件 B.充分非必要条件
C.充分必要条件
D.非充分非必要条件
4. 下列等式正确的是( ) .
7lg7?lg B. A. 1lg3?lg7?3lg3lg37?7lg D.
C. 37lg3lg?3lg7?????????xcb??1,02,a?4,5x? ( ,).
5. 设向量,,且满足与,垂直则cba?11? C. D. A.
B. 2?222
3x?1?2的解集是()6.不等式
精品文档.
欢迎来主页下载---精品文档
11???? B. C.(-1,3) D.(1,3) A.?1,,1????33????.
)x+y-5=0的直线方程是(7、过点A(2,3),且垂直于直线2 2x+y-7=0 x-y-1=0 D、x-2y+4=0 B、y -2 x +4=0 C、2A、). 函数的最大
值是( 8. )?4sinxcosx(x?Rf(x) D. C. B.
A. 8412k??),则9.已知角的值是(终边上的一点?cos,?4),P(3k41216 D.A.C.. B ?3?4?55?.
)平移后的图象对应的函数为(的图象按向量10、函数,1)?a=(x2y?sin6??B、A、1)?y?sin(2y?sin(2x?)?1x?
63??D、、
C1y?sin(2x??x?)y)?1?sin(236n???a).
已知数列a 的前项和,则( 11. ?Sn5nn1n?5141 D. C. A. B. 654230
x,,xx,x,xxxxxx,则的均值为,均值为,,,12. 在样本若90805314254213xxxxx ). 均值( ,,,,54231 D. C. A. B. 90848085 22yx1??. )、双曲线则它到右焦点的距离(13上的一点到左焦点的距离是6,
925
??D、4或16 16 C、4 4 、A16 B、或
3?a?aa?10,a?}{a)且中,,则有(.等差数列14 3125n
2??3a???a???a2,?a?2d?3,d33,d2,d..B .C.DA 1111的样本数据,分组后组距与频数如下表:一个容量为15.40精品文档.
的频率为()则样本在区间[60,100]A.0.6 B.0.7 C.0.8 D.0.9
分,共25分)二、填空题(本大题共5小题,每小题5????*a.
16. 已知等比数列且,则,满足9a?a?aa?0Nn?756nn?3
3|?|?2,|b|a??ba. ,且b和的夹角为,则17. 已知向量a4率概
是偶数的个数,则这个数五从1,2,3,4,5个数中任取一18. 。
是
22。
的圆心到直线19.圆的距离是0?3y?4?x0y?x??4x
0,+∞)上的增函数,则不等式的解集20.是定义在
(3)?x)?f(x)f(2xf(是。
分。
解答应写出文字说明、证明过程和4小题,满分50三、解答题:(本大题共演算步骤。
)3?60A?c?2,?S?,中,12分)已知三角形,、21(本小题满分ABC ABC?2 a的值b的值. (2)求(1)求
两船同时出发,、B26公里处,现A船位于、(本小题满分12分)BA船正东22
公里的速度朝正西5船以每小时12公里的速度朝正北方向行驶,BA船以每小时方向行驶,那么何时两船相距最近,最近距离是多少22yx1??F,F为双曲线12分)已知椭圆的左、右两个焦点23、(本题满分2122ba22yx71??倍。
的顶点,且双曲线的离心率是椭圆的离心率的34 1)求椭圆的方程;(
3?y?y),By(Ax,)(xyF,若圆和且与椭圆的两个交点的直线2 ()过l2121121ABF?ABF?的面积及的周长与C的周长相等,求圆C的面积。
22精品文档.
欢迎来主页下载---精品文档
??a a?9,a?a?28. 分)在等差数列(本小题满分14中,已知24. 764n??a的通项公式;(1)求数
?????N nb??T b?T. n)若3(项和为,证明:的前,列n??a S;的前(2)求数列n项和nn11
数列nnnn2a?14n
精品文档.。