高中物理选修-4知识点机械振动与机械波解析
高中物理4全部知识点归纳
高中物理选修3-4全部知识点归纳一、简谐运动、简谐运动的表达式和图象1、机械振动:物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。
机械振动产生的条件是:①回复力不为零;②阻力很小。
使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。
2、简谐振动:在机械振动中最简单的一种理想化的振动。
对简谐振动可以从两个方面进行定义或理解:①物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。
②物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,3、描述振动的物理量研究振动除了要用到位移、速度、加速度、动能、势能等物理量以外,为适应振动特点还要引入一些新的物理量。
⑴位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。
位移是矢量,其最大值等于振幅。
⑵振幅A :做机械振动的物体离开平衡位置的 最大距离叫做振幅,振幅是标量,表示振动的强弱。
振幅越大表示振动的机械能越大,做简揩振动物体的振幅大小不影响简揩振动的周期和频率。
⑶周期T :振动物体完成一次余振动所经历的时间叫做周期。
所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。
⑷频率f :振动物体单位时间内完成全振动的次数。
⑸角频率ω:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。
引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。
因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。
周期、频率、角频率的关系是:T f =1,T ωπ2=. ⑹相位ϕ:表示振动步调的物理量。
4、研究简谐振动规律的几个思路:⑴用动力学方法研究,受力特征:回复力F =- kx ;加速度,简谐振动是一种变加速运动。
在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
高中物理知识点之机械振动与机械波
高中物理知识点之机械振动与机械波机械振动与机械波是高中物理中的重要知识点,涉及到物理学中的振动和波动的相关理论及应用。
下面将从机械振动的基本概念、机械振动的特性、机械波的传播和机械波的特性等方面进行详细介绍。
一、机械振动的基本概念机械振动是物体在作用力的驱动下沿其中一轴向或其中一平面上来回往复运动的现象。
常见的机械振动有单摆振动、弹簧振动等。
1.单摆振动:单摆是由一根细线或细杆悬挂的可以在竖直平面内摆动的物体。
摆动过程中,单摆的重心沿圆弧形轨迹在竖直平面内来回运动。
2.弹簧振动:弹簧振动是指将一端固定,另一端悬挂质点的弹簧在作用力的驱动下做往复振动的现象。
弹簧振动有线性振动和简谐振动两种形式。
二、机械振动的特性1.幅度:振动中物体运动的最大偏离平衡位置的距离。
2.周期:振动一次所需要的时间,记为T。
3.频率:振动在单位时间内所完成的周期数,记为f。
频率和周期之间的关系为f=1/T。
4.角频率:单位时间内振动角度的增量,记为ω。
角频率和频率之间的关系为ω=2πf。
5.相位:刻画振动状态的物理量。
任何时刻振动的状态都可由物体与参照物的相对位移和相对速度来描述。
三、机械波的传播机械波是指质点或介质在空间传播的波动现象。
按传播方向的不同,机械波可以分为纵波和横波。
1.纵波:波动传播的方向与波的传播方向一致。
纵波的传播特点是质点沿着波动方向做往复运动,如声波就是一种纵波。
2.横波:波动传播的方向与波的传播方向垂直。
横波的传播特点是质点沿波动方向做往复运动,如水波就是一种横波。
四、机械波的特性1.波长:波的传播方向上,相邻两个相位相同的点之间的距离。
记为λ。
2.波速:波的传播速度。
波速和频率、波长之间的关系为v=λf。
3.频率:波动现象中,单位时间内波的传输周期数。
记为f。
4.能量传递:机械波在传播过程中,能量从一个质点传递到另一个质点,并随着传播的距离逐渐减弱。
5.反射和折射:机械波在传播过程中,遇到不同介质的边界时会发生反射和折射现象。
机械振动和机械波知识点总结分析
机械振动和机械波一、知识构造二、重点知识回忆1机械振动〔一〕机械振动物体〔质点〕在*一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。
回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。
产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。
b、阻力足够小。
〔二〕简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。
简谐振动是最简单,最根本的振动。
研究简谐振动物体的位置,常常建立以中心位置〔平衡位置〕为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。
因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k*,其中“-〞号表示力方向跟位移方向相反。
2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。
3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能〔重力势能和弹性势能〕都随时间做周期性变化。
〔三〕描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。
1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A 〞表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。
2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟振子完成全振动的次数。
振动的周期T 跟频率f 之间是倒数关系,即T=1/f 。
振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。
〔四〕单摆:摆角小于5°的单摆是典型的简谐振动。
高中物理机械振动和机械波知识点
高中物理机械振动和机械波知识点机械振动和机械波是高中物理中一个重要的内容,下面将以1200字以上的篇幅详细介绍这两个知识点。
一、机械振动1.振动的定义及特点振动是指物体在平衡位置附近做往复运动的现象。
振动具有周期性、往复性和简谐性等特点。
2.物理量与振动的关系振动常涉及到的物理量有位移、速度、加速度、力等。
振动的物体在其中一时刻的位移与速度、加速度之间存在着相位差的关系。
3.简谐振动简谐振动是指振动物体的加速度与恢复力成正比,且方向相反。
简谐振动的周期、频率和角频率与振幅无关,只与振动系统的特性有关。
4.阻尼振动阻尼振动是指振动物体受到阻力的影响而逐渐减弱并停止的振动。
阻尼振动可以分为临界阻尼、过阻尼和欠阻尼三种情况。
5.受迫振动受迫振动是指振动物体受到外界周期力的作用而发生的振动。
当外力的频率与振动系统的固有频率相同时,产生共振现象。
6.驱动力与振幅的关系外力作用下,振动物体的振幅由驱动力的频率决定。
当驱动力的频率与振动物体的固有频率接近时,振幅达到最大值。
二、机械波1.波的定义及特点波是指能量或信息在空间中的传递。
波有传播介质,传播介质可以是固体、液体或气体。
波分为机械波和电磁波两种。
2.机械波的分类及特点机械波分为横波和纵波两种,它们的传播方向与介质振动方向有关。
横波的振动方向与波的传播方向垂直,而纵波的振动方向与波的传播方向平行。
3.波的传播速度波的传播速度与介质的性质和波的频率有关。
在同一介质中,传播速度与波长成正比,与频率成反比。
在不同介质中,波长相等时,传播速度与频率成正比。
4.波的反射、折射和干涉波在传播过程中会遇到障碍物或介质边界,导致发生反射和折射现象。
当波的传播路径中存在两个或多个波源时,会发生波的干涉现象。
5.波的衍射波在通过缝隙或物体边缘时会发生波的弯曲现象,这种现象称为波的衍射。
波的衍射现象是波动性质的重要表现之一6.声波的特点及应用声波是一种机械波,的传播媒质是物质的弹性介质。
机械振动机械波
机械振动机械波机械振动和机械波是物理学中重要的概念,涉及到了物体的振动和波动特性。
机械振动是指物体或系统在受到外界力的作用下发生的周期性或非周期性的振动运动,而机械波是指机械振动在介质中传播的能量传递过程。
机械振动有两个重要的参数,即振动周期和振幅。
振动周期是指一个完整的振动循环所需要的时间,通常用秒(s)表示。
振幅则是指振动的最大位移或最大速度,通常用米(m)来表示。
机械振动分为简谐振动和非简谐振动两种。
简谐振动是指当物体受到恢复力的作用后,其振动状态可以通过正弦或余弦函数来描述。
而非简谐振动则是指物体受到的恢复力不满足线性关系,振动状态无法通过简单的正弦或余弦函数来描述。
机械振动的运动可以通过振动方程来描述。
对于简谐振动而言,振动方程可以表示为x(t) = A * sin(ωt + φ),其中x(t)是物体的位移,A是振幅,ω是角频率,t是时间,φ是相位差。
振动方程可以描述物体振动的位移、速度和加速度的关系,从而提供了对振动状态的全面了解。
机械波是机械振动在介质中传播的能量传递过程。
波动是由于介质中某一点的振动引起附近点的振动,从而传递能量。
机械波有两种主要类型,即横波和纵波。
横波是指波动的振动方向垂直于能量传播方向的波动,例如水波。
纵波则是指波动的振动方向与能量传播方向一致的波动,例如声波。
机械波的传播速度可以通过介质的性质和条件来确定。
对于弹性介质而言,传播速度可以表示为v = √(E/ρ),其中v是波速,E是介质的杨氏模量,ρ是介质的密度。
不同介质的波速是不同的,比如在空气中,声速大约为343m/s,而在水中,水波的波速则约为1480m/s。
机械波的特性还包括波长和频率。
波长是指相邻两个振动峰或波谷之间的距离,通常用λ表示,单位是米。
频率是指在单位时间内波动中的相邻振动周期的个数,通常用赫兹(Hz)表示。
波长和频率之间有一个简单的关系,即v = λ * f,其中v是波速,λ是波长,f 是频率。
(完整版)机械振动和机械波知识点总结
机械振动考点一简谐运动的描述与规律1. 机械振动:物体在平衡位置附近所做的往复运动,简称振动。
回复力是指振动物体所受的总是指向平衡位置的合外力。
回复力是产生振动的条件,它使物体总是在平衡位置附近振动。
它属于效果力,其效果是使物体再次回到平衡位置。
回复力可以是某一个力,也可以是几个力的合力或某个力的分力。
平衡位置是指物体所受回复力为零的位置!2. 简谐运动: 物体在跟位移大小成正比并且总是指向平衡位置的回复力作用下的振动。
简谐运动属于最简单、最基本的振动形式,其振动过程关于平衡位置对称,是一种周期性的往复运动。
例如弹簧振子、单摆。
注: (1)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量.②振幅A:振动物体离开平衡位置的最大距离,是标量,它表示振动的强弱.③周期T 和频率f:物体完成一次全振动所需的时间叫做周期,而频率则等于单位时间内完成全振动的次数.它们是表示振动快慢的物理量,二者互为倒数关系:T=1/f.(2) 简谐运动的表达式①动力学表达式:F =-kx,其中“-”表示回复力与位移的方向相反.②运动学表达式:x=Asin (ωt+φ),其中A 代表振幅,ω=2πf 表示简谐运动的快慢,(ωt+φ)代表简谐运动的相位,φ叫做初相.(可借助于做匀速圆周运动质点在水平方向的投影理解)(3) 简谐运动的运动规律回复力、加速度增大速度、动能减小①变化规律:位移增大时机械能守恒势能增大振幅、周期、频率保持不变注意:这里所说的周期、频率为固有周期与固有频率,由振动系统本身构造决定。
振幅是反映振动强弱的物理量,也是反映振动系统所具备能量多少的物理量。
②对称规律:I 、做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系,另外速度的大小、动能具有对称性,速度的方向可能相同或相反.II 、振动物体来回通过相同的两点间的时间相等,如t BC=t CB;振动物体经过关于平衡位置对称的等长的两线段的时间相等,如t BC=t B′C′,③运动的周期性特征:相隔T 或nT 的两个时刻振动物体处于同一位置且振动状态相同. 注意:做简谐运动的物体在一个周期内的路程大小一定为4A,半个周期内路程大小一定为2A ,四分之一个周期内路程大小不一定为 A 。
高考物理知识点之机械振动与机械波
高考物理知识点之机械振动与机械波考试要点基本概念一、简谐运动的基本概念1.定义物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
表达式为:F= -kx(1)简谐运动的位移必须是指偏离平衡位置的位移。
也就是说,在研究简谐运动时所说的位移的起点都必须在平衡位置处。
(2)回复力是一种效果力。
是振动物体在沿振动方向上所受的合力。
(3)“平衡位置”不等于“平衡状态”。
平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。
(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)(4)F=-kx是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
2.几个重要的物理量间的关系要熟练掌握做简谐运动的物体在某一时刻(或某一位置)的位移x、回复力F、加速度a、速度v这四个矢量的相互关系。
(1)由定义知:F∝x,方向相反。
(2)由牛顿第二定律知:F ∝a ,方向相同。
(3)由以上两条可知:a ∝x ,方向相反。
(4)v 和x 、F 、a 之间的关系最复杂:当v 、a 同向(即 v 、 F 同向,也就是v 、x 反向)时v 一定增大;当v 、a 反向(即 v 、 F 反向,也就是v 、x 同向)时,v 一定减小。
3.从总体上描述简谐运动的物理量振动的最大特点是往复性或者说是周期性。
因此振动物体在空间的运动有一定的范围,用振幅A 来描述;在时间上则用周期T 来描述完成一次全振动所须的时间。
(1)振幅A 是描述振动强弱的物理量。
(一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是不变的而位移是时刻在改变的)(2)周期T 是描述振动快慢的物理量。
(频率f =1/T 也是描述振动快慢的物理量)周期由振动系统本身的因素决定,叫固有周期。
高考物理考点分析之机械振动与机械波
高考物理考点分析之机械振动与机械波高考物理考点分析之机械振动与机械波机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。
然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。
2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。
运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。
理解好对称性这一点对解决有关问题很有帮助。
4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起是讨论简谐运动的一种好方法。
6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
○2产生共振的条:驱动力频率等于物体固有频率。
○3共振的应用:转速计、共振筛。
高考物理机械振动和机械波知识点梳理
高考物理机械振动和机械波知识点梳理高考物理机械振动和机械波知识点梳理初中是学物理的开始,打好地基才能盖高楼大厦;高中是盖好这座高楼大厦的重要过程。
小编准备了高考物理机械振动和机械波知识点,希望你喜欢。
1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。
(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
(1)受迫振动:振动系统在周期性驱动力作用下的振动叫受迫振动。
(2)受迫振动的特点:受迫振动稳定时,系统振动的频率等于驱动力的频率,跟系统的固有频率无关。
(3)共振:当驱动力的频率等于振动系统的固有频率时,振动物体的振幅最大,这种现象叫做共振。
共振的条件:驱动力的频率等于振动系统的固有频率。
5.机械波:机械振动在介质中的传播形成机械波。
(1)机械波产生的条件:①波源;②介质(2)机械波的分类①横波:质点振动方向与波的传播方向垂直的波叫横波。
横波有凸部(波峰)和凹部(波谷)。
②纵波:质点振动方向与波的传播方向在同一直线上的波叫纵波。
纵波有密部和疏部。
[注意]气体、液体、固体都能传播纵波,但气体、液体不能传播横波。
(3)机械波的特点①机械波传播的是振动形式和能量。
质点只在各自的平衡位置附近振动,并不随波迁移。
②介质中各质点的振动周期和频率都与波源的振动周期和频率相同。
高考物理专题——机械振动和机械波 光学
一、机械振动和机械波1.简谐运动的图象信息(1)由图象可以得出质点做简谐运动的振幅、周期。
(2)可以确定某时刻质点离开平衡位置的位移。
(3)可以根据图象确定某时刻质点回复力、加速度和速度的方向。
2.机械波的传播特点(1)波传到任意一点,该点的起振方向都和波源的起振方向相同。
(2)介质中每个质点都做受迫振动,因此,任一质点振动频率和周期都和波源的振动频率和周期相同。
(3)波从一种介质进入另一种介质,由于介质的情况不同,它的波长和波速可能改变,但频率和周期都不会改变。
(4)波经过一个周期T完成一次全振动,波恰好向前传播一个波长的距离,所以v=λT=λf。
二、光的折射和全反射对折射率的理解(1)公式:n=sin θ1 sin θ2(2)折射率由介质本身的性质决定,与入射角的大小无关。
(3)折射率与介质的密度没有关系,光密介质不是指密度大的介质,光疏介质不是指密度小的介质。
(4)折射率的大小不仅与介质本身有关,还与光的频率有关。
同一种介质中,频率越大的色光折射率越大,传播速度越小。
(5)同一种色光,在不同介质中虽然波速、波长不同,但频率相同。
(6)折射率大小不仅反映了介质对光的折射本领,也反映了光在介质中传播速度的大小v=c n。
三、光的波动性1.三种现象:光的干涉现象、光的衍射现象和光的偏振现象。
2.光的干涉(1)现象:光在重叠区域出现加强或减弱的现象。
(2)产生条件:两束光频率相同、相位差恒定。
(3)典型实验:杨氏双缝实验。
3.光的衍射(1)现象:光绕过障碍物偏离直线传播的现象。
(2)产生条件:障碍物或孔的尺寸与波长相差不多或更小。
(3)典型实验:单缝衍射、圆孔衍射和不透明圆盘衍射。
四、电磁波1.电磁波是横波:在传播方向上的任一点,E和B随时间做正弦规律变化,E与B彼此垂直且与传播方向垂直。
2.电磁波的传播不需要介质:电磁波在真空中的传播速度与光速相同,即c=3×108 m/s。
3.电磁波具有波的共性:能产生干涉、衍射等现象。
机械振动及机械波知识点(全)讲解
简谐运动及其图象知识点一:弹簧振子(一)弹簧振子如图,把连在一起的弹簧和小球穿在水平杆上,弹簧左端固定在支架上,小球可以在杆上滑动。
小球滑动时的摩擦力可以,弹簧的质量比小球的质量得多,也可忽略。
这样就成了一个弹簧振子。
注意:(1)小球原来的位置就是平衡位置。
小球在平衡位置附近所做的往复运动,是一种机械振动。
(2)小球的运动是平动,可以看作质点。
(3)弹簧振子是一个不考虑阻力,不考虑弹簧的,不考虑振子(金属小球)的的化的物理模型。
(二)弹簧振子的位移——时间图象(1)振动物体的位移是指由位置指向_的有向线段,可以说某时刻的位移。
说明:振动物体的位移与运动学中位移的含义不同,振子的位移总是相对于位置而言的,即初位置是位置,末位置是振子所在的位置。
(2)振子位移的变化规律曲线。
知识点二:简谐运动(一)简谐运动如果质点的位移与时间的关系遵从函数的规律,即它的振动图象(x-t图象)是一条正弦曲线,这样的振动,叫做简谐运动。
简谐运动是机械振动中最简单、最基本的振动。
弹簧振子的运动就是简谐运动。
(二)描述简谐运动的物理量(1)振幅(A)振幅是指振动物体离开位置的距离,是表征振动强弱的物理量。
一定要将振幅跟位移相区别,在简谐运动的振动过程中,振幅是变的,而位移是时刻在变的。
(2)周期(T)和频率(f)振动物体完成一次所需的时间称为周期,单位是秒(s);单位时间内完成的次数称为频率,单位是赫兹(H Z)。
周期和频率都是描述振动快慢的物理量。
周期越小,频率越大,表示振动得越快。
周期和频率的关系是:(3)相位(φ)相位是表示物体振动步调的物理量,用相位来描述简谐运动在一个全振动中所处的阶段。
(三)固有周期、固有频率任何简谐运动都有共同的周期公式:2T=m是振动物体的,k是回复力系数,对弹簧振子来说k为弹簧的系数。
对一个确定的简谐运动系统来说,m和k都是恒量,所以T和f也是恒量,也就是说简谐运动的周期只由本身的特性决定,与振幅关,只由振子质量和回复力系数决定。
高中物理机械振动、机械波知识要点
高中物理机械振动、机械波知识要点1、简谐运动、振幅、周期和频率的概念(1)简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。
特征是:,。
(2)简谐运动的规律:①在平衡位置:速度最大、动能最大、动量最大;位移最小、回复力最小、加速度最小。
②在离开平衡位置最远时:速度最小、动能最小、动量最小;位移最大、回复力最大、加速度最大。
③振动中的位移x都是以平衡位置为起点的,方向从平衡位置指向末位置,大小为这两位置间的直线距离。
加速度与回复力、位移的变化一致,在两个“端点”最大,在平衡位置为零,方向总是指向平衡位置。
(3)振幅A:振动物体离开平衡位置的最大距离称为振幅。
它是描述振动强弱的物理量。
它是标量。
(4)周期T和频率f:振动物体完成一次全振动所需的时间称为周期T,它是标量,单位是秒;单位时间内完成的全振动的次数称为振动频率,单位是赫兹(Hz)。
周期和频率都是描述振动快慢的物理量,它们的关系是:T=1/f。
2、单摆的概念(1)单摆的概念:在细线的一端拴一个小球,另一端固定在悬点上,线的伸缩和质量可忽略,线长远大于球的直径,这样的装置叫单摆。
(2)单摆的特点:①单摆是实际摆的理想化,是一个理想模型;②单摆的等时性,在振幅很小的情况下,单摆的振动周期与振幅、摆球的质量等无关;③单摆的回复力由重力沿圆弧方向的分力提供,当最大摆角时,单摆的振动是简谐运动,其振动周期T=。
(3)单摆的应用:①计时器;②测定重力加速度g,g=。
3、受迫振动和共振(1)受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。
(2)共振:①共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。
②产生共振的条件:驱动力频率等于物体固有频率。
高中物理机械振动和机械波知识点详解
高中物理机械振动和机械波知识点详解5.1简谐振动5.1.1、简谐振动的动力学特点如果一个物体受到的回复力与它偏离平衡位置的位移大小成正比,方向相反。
即满足:的关系,那么这个物体的运动就定义为简谐振动根据牛顿第二是律,物体的加速度,因此作简谐振动的物体,其加速度也和它偏离平衡位置的位移大小成正比,方何相反。
现有一劲度系数为k的轻质弹簧,上端固定在P点,下端固定一个质量为m的物体,物体平衡时的位置记作O点。
现把物体拉离O点后松手,使其上下振动,如图5-1-1所示。
当物体运动到离O点距离为x处时,有式中为物体处于平衡位置时,弹簧伸长的长度,且有,因此说明物体所受回复力的大小与离开平衡位置的位移x成正比。
因回复力指向平衡位置O,而位移x总是背离平衡位置,所以回复力的方向与离开平衡位置的位移方向相反,竖直方向的弹簧振子也是简谐振动。
注意:物体离开平衡位置的位移,并不就是弹簧伸长的长度。
5.1.2、简谐振动的方程由于简谐振动是变加速运动,讨论起来极不方便,为此。
可引入一个连续的匀速圆周运动,因为它在任一直径上的分运动为简谐振动,以平衡位置O为圆心,以振幅A为半径作圆,这圆就称为参考圆,如图5-1-2,设有一质点在参考圆上以角速度作匀速圆周运动,它在开始时与O的连线跟轴夹角为,那么在时刻t,参考圆上的质点与O 的连线跟的夹角就成为,它在轴上的投影点的坐标(2)这就是简谐振动方程,式中是t=0时的相位,称为初相:是t时刻的相位。
参考圆上的质点的线速度为,其方向与参考圆相切,这个线速度在轴上的投影是)(3)这也就是简谐振动的速度参考圆上的质点的加速度为,其方向指向圆心,它在轴上的投影是)(4)这也就是简谐振动的加速度由公式(2)、(4)可得由牛顿第二定律简谐振动的加速度为因此有(5)简谐振动的周期T也就是参考圆上质点的运动周期,所以5.1.3、简谐振动的判据物体的受力或运动,满足下列三条件之一者,其运动即为简谐运动:①物体运动中所受回复力应满足;②物体的运动加速度满足;③物体的运动方程可以表示为。
高中物理选修知识点机械振动与机械波解析
机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。
二、知识点说明1.弹簧振子(简谐振子):(1)平衡位置:小球偏离原来静止的位置;(2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械运动,这样的系统叫做弹簧振子。
(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
2.弹簧振子的位移—时间图像弹簧振子的s—t图像是一条正弦曲线,如图所示。
3.简谐运动及其图像。
(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。
(2)应用:心电图仪、地震仪中绘制地震曲线装置等。
三、典型例题例1:简谐运动属于下列哪种运动()A.匀速运动? ?B.匀变速运动C.非匀变速运动? ?D.机械振动解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。
故A、B错,C正确。
简谐运动是最简单的、最基本的机械振动,D正确。
答案:CD简谐运动的描述一、学习目标1.知道简谐运动的振幅、周期和频率的含义。
2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。
二、知识点说明1.描述简谐振动的物理量,如图所示:(1)振幅:振动物体离开平衡位置的最大距离,。
(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。
(3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。
(4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。
(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。
机械振动和机械波知识点
机械振动和机械波一、什么是机械振动机械振动是指机械系统的动力学行为,是指机械系统内部的物理变化,其中包括机械系统的位移、速度和加速度的变化。
机械振动是机械系统的一种动态特性,它可以反映机械系统的动力学状态。
二、机械振动的类型机械振动可以分为简谐振动、非简谐振动、混沌振动等。
1. 简谐振动简谐振动是指振动的频率和振幅是定值,振动的方向和位置是定值,振动的周期是定值,振动的形状是定值的振动。
简谐振动的特点是振动的频率、振幅、方向和位置都是定值,振动的周期和形状也是定值,振动的运动轨迹是定值的曲线。
2. 非简谐振动非简谐振动是指振动的频率、振幅、方向和位置都不是定值,振动的周期和形状也不是定值,振动的运动轨迹不是定值的曲线。
非简谐振动的特点是振动的频率、振幅、方向和位置都是变化的,振动的周期和形状也是变化的,振动的运动轨迹也是变化的曲线。
3. 混沌振动混沌振动是指振动的频率、振幅、方向和位置都是变化的,振动的周期和形状也是变化的,振动的运动轨迹也是变化的曲线,但是振动的运动轨迹是一种不可预测的混沌运动轨迹。
三、什么是机械波机械波是指机械系统内部的物理变化,是一种振动的波形,它可以反映机械系统的动力学行为。
机械波可以分为空气波、液体波、地壳波等。
1. 空气波空气波是指由空气中的振动产生的波,它的特点是波的传播速度比较快,波的频率也比较高,波的振幅也比较大。
空气波的运动轨迹是一个椭圆形的曲线,它们可以用来传播声音、光、热、电等信号。
2. 液体波液体波是指由液体中的振动产生的波,它的特点是波的传播速度比较慢,波的频率也比较低,波的振幅也比较小。
液体波的运动轨迹是一个圆形的曲线,它们可以用来传播液体中的物质。
3. 地壳波地壳波是指由地壳中的振动产生的波,它的特点是波的传播速度比较慢,波的频率也比较低,波的振幅也比较小。
地壳波的运动轨迹是一个圆形的曲线,它们可以用来传播地壳中的物质。
四、机械振动和机械波的应用机械振动和机械波在工程中有着广泛的应用,它们可以用来检测机械系统的动力学状态,以及检测机械系统的可靠性和可靠性。
高中物理选修3-4机械振动_机械波_光学知识点(好全)
机械振动一、基本概念1.机械振动:物体(或物体一部分)在某一中心位置附近所做的往复运动2.回复力F:使物体返回平衡位置的力,回复力是根据效果(产生振动加速度,改变速度的大小,使物体回到平衡位置)命名的,回复力总指向平衡位置,回复力是某几个性质力沿振动方向的合力或是某一个性质力沿振动方向的分力。
(如①水平弹簧振子的回复力即为弹簧的弹力;②竖直悬挂的弹簧振子的回复力是弹簧弹力和重力的合力;③单摆的回复力是摆球所受重力在圆周切线方向的分力,不能说成是重力和拉力的合力)3.平衡位置:回复力为零的位置(物体原来静止的位置)。
物体振动经过平衡位置时不一定处于平衡状态即合外力不一定为零(例如单摆中平衡位置需要向心力)。
4.位移x:相对平衡位置的位移。
它总是以平衡位置为始点,方向由平衡位置指向物体所在的位置,物体经平衡位置时位移方向改变。
5.简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫简谐运动。
(1)动力学表达式为:F= -kxF=-kx是判断一个振动是不是简谐运动的充分必要条件。
凡是简谐运动沿振动方向的合力必须满足该条件;反之,只要沿振动方向的合力满足该条件,那么该振动一定是简谐运动。
(2)运动学表达式:x=A sin(ωt+φ)(3)简谐运动是变加速运动.物体经平衡位置时速度最大,物体在最大位移处时速度为零,且物体的速度在最大位移处改变方向。
(4)简谐运动的加速度:根据牛顿第二定律,做简谐运动的物体指向平衡位置的(或沿振动方向的)加速度mkxa -=.由此可知,加速度的大小跟位移大小成正比,其方向与位移方向总是相反。
故平衡位置F 、x 、a 均为零,最大位移处F 、x 、a 均为最大。
(5)简谐运动的振动物体经过同一位置时,其位移大小、方向是一定的,而速度方向不一定。
(6)简谐运动的对称性①瞬时量的对称性:做简谐运动的物体,在关于平衡位置对称的两点,回复力、位移、加速度具有等大反向的关系.速度的大小、动能也具有对称性,速度的方向可能相同或相反。
高考物理知识点:机械振动和机械波
1.简谐运动(1)定义:物体在跟偏离平衡位置的位移大小成正比,并且总是指向平衡位置的回复力的作用下的振动,叫做简谐运动。
(2)简谐运动的特征:回复力F=-kx,加速度a=-kx/m,方向与位移方向相反,总指向平衡位置。
简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。
(3)描述简谐运动的物理量①位移x:由平衡位置指向振动质点所在位置的有向线段,是矢量,其最大值等于振幅。
②振幅A:振动物体离开平衡位置的最大距离,是标量,表示振动的强弱。
③周期T和频率f:表示振动快慢的物理量,二者互为倒数关系,即T=1/f。
(4)简谐运动的图像①意义:表示振动物体位移随时间变化的规律,注意振动图像不是质点的运动轨迹。
②特点:简谐运动的图像是正弦(或余弦)曲线。
③应用:可直观地读取振幅A、周期T以及各时刻的位移x,判定回复力、加速度方向,判定某段时间内位移、回复力、加速度、速度、动能、势能的变化情况。
2.弹簧振子:周期和频率只取决于弹簧的劲度系数和振子的质量,与其放置的环境和放置的方式无任何关系。
如某一弹簧振子做简谐运动时的周期为T,不管把它放在地球上、月球上还是卫星中;是水平放置、倾斜放置还是竖直放置;振幅是大还是小,它的周期就都是T。
3.单摆:摆线的质量不计且不可伸长,摆球的直径比摆线的长度小得多,摆球可视为质点。
单摆是一种理想化模型。
(1)单摆的振动可看作简谐运动的条件是:最大摆角α<5°。
(2)单摆的回复力是重力沿圆弧切线方向并且指向平衡位置的分力。
①在振幅很小的条件下,单摆的振动周期跟振幅无关。
②单摆的振动周期跟摆球的质量无关,只与摆长L和当地的重力加速度g有关。
③摆长L是指悬点到摆球重心间的距离,在某些变形单摆中,摆长L应理解为等效摆长,重力加速度应理解为等效重力加速度(一般情况下,等效重力加速度g‘等于摆球静止在平衡位置时摆线的张力与摆球质量的比值)。
教科版 高中物理选修3-4 机械振动+机械波
(1)振幅:振动物体离开平衡位置的最大距离叫做振动的振幅。
①振幅是标量。
②振幅是反映振动强弱的物理量。
(2)周期和频率:①振动物体完成一次全振动所用的时间叫做振动的周期。
②单位时间内完成全振动的次数叫做全振动的频率。
它们的关系是T=1/f 。
在一个周期内振动物体通过的路程为振幅的4倍;在半个周期内振动物体通过的路程为振幅2倍;在1/4个周期内物体通过的路程不一定等于振幅 3)简谐运动的表达式:)sin(ϕω+=t A x 4)简谐运动的图像:振动图像表示了振动物体的位移随时间变化的规律。
反映了振动质点在所有时刻的位移。
从图像中可得到的信息: ①某时刻的位置、振幅、周期②速度:方向→顺时而去;大小比较→看位移大小 ③加速度:方向→与位移方向相反;大小→与位移成正比 3、简谐运动的能量转化过程:1)简谐运动的能量:简谐运动的能量就是振动系统的总机械能。
①振动系统的机械能与振幅有关,振幅越大,则系统机械能越大。
②阻尼振动的振幅越来越小。
2)简谐运动过程中能量的转化:系统的动能和势能相互转化,转化过程中机械能的总量保持不变。
在平衡位置处,动能最大势能最小,在最大位移处,势能最大,动能为零。
(二)简谐运动的一个典型例子→单摆: 1、单摆振动的回复力:摆球重力的切向分力。
①简谐振动物体的周期和频率是由振动系统本身的条件决定的。
②单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。
4、利用单摆测重力加速度:(三)受迫振动:1、受迫振动的含义:物体在外界驱动力的作用下的运动叫做受迫振动。
2、受迫振动的规律:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。
1)受迫振动的频率:物体做稳定的受迫振动时振动频率等于驱动力的频率,与物体的固有频率无关。
2)受迫振动的振幅:与振动物体的固有频率和驱动力频率差有关3、共振:当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械振动与机械波简谐振动一、学习目标1.了解什么是机械振动、简谐运动2.正确理解简谐运动图象的物理含义,知道简谐运动的图象是一条正弦或余弦曲线。
二、知识点说明1.弹簧振子(简谐振子):(1)平衡位置:小球偏离原来静止的位置;(2)弹簧振子:小球在平衡位置附近的往复运动,是一种机械运动,这样的系统叫做弹簧振子。
(3)特点:一个不考虑摩擦阻力,不考虑弹簧的质量,不考虑振子的大小和形状的理想化的物理模型。
2.弹簧振子的位移—时间图像弹簧振子的s—t图像是一条正弦曲线,如图所示。
3.简谐运动及其图像。
(1)简谐运动:如果质点的位移与时间的关系遵从正弦函数的规律,即它的振动图像(x-t图像)是一条正弦曲线,这样的振动叫做简谐运动。
(2)应用:心电图仪、地震仪中绘制地震曲线装置等。
三、典型例题例1:简谐运动属于下列哪种运动( )A.匀速运动 B.匀变速运动C.非匀变速运动 D.机械振动解析:以弹簧振子为例,振子是在平衡位置附近做往复运动,并且平衡位置处合力为零,加速度为零,速度最大.从平衡位置向最大位移处运动的过程中,由F=-kx可知,振子的受力是变化的,因此加速度也是变化的。
故A、B错,C正确。
简谐运动是最简单的、最基本的机械振动,D正确。
答案:CD简谐运动的描述一、学习目标1.知道简谐运动的振幅、周期和频率的含义。
2.知道振动物体的固有周期和固有频率,并正确理解与振幅无关。
二、知识点说明1.描述简谐振动的物理量,如图所示:(1)振幅:振动物体离开平衡位置的最大距离,。
(2)全振动:振子向右通过O点时开始计时,运动到A,然后向左回到O,又继续向左达到,之后又回到O,这样一个完整的振动过程称为一次全振动。
(3)周期:做简谐运动的物体完成一次全振动所需要的时间,符号T表示,单位是秒(s)。
(4)频率:单位时间内完成全振动的次数,符号用f表示,且有,单位是赫兹(Hz),。
(5)周期和频率都是表示物体振动快慢的物理量,周期越小,频率越大,振动越快。
(6)相位:用来描述周期性运动在各个时刻所处的不同状态。
2.简谐运动的表达式:。
(1)理解:A代表简谐运动的振幅;叫做简谐运动的圆频率,表示简谐运动的快慢,且;(代表简谐运动的相位,是t=0时的相位,称作初相位或初相;两个具有相同频率的简谐运动存在相位差,我们说2的相位比1超前。
(2)变形:三、典型例题例1:某振子做简谐运动的表达式为x=2sin(2πt+6π)cm则该振子振动的振幅和周期为( ) A.2cm 1s B.2cm 2πsC.1cm π6s D.以上全错解析:由x=Asin(ωt+φ)与x=2sin(2πt+6π)对照可得:A=2cm,ω=2π=2πT,∴T=1s,A 选项正确。
答案:A例2:周期为2s的简谐运动,在半分钟内通过的路程是60cm,则在此时间内振子经过平衡位置的次数和振子的振幅分别为( )A.15次,2cmB.30次,1cmC.15次,1cmD.60次,2cm解析:振子完成一次全振动经过轨迹上每点的位置两次(除最大位移处),而每次全振动振子通过的路程为4个振幅。
答案:B例3:一简谐振子沿x轴振动,平衡位置在坐标原点。
t=0时刻振子的位移x=-0.1m;t=s 时刻x=0.1m;t=4s时刻x=0.1m。
该振子的振幅和周期可能为( )A.0. 1 m,B.0.1 m,8s C.0.2 m,D.0.2 m,8s解析:t=s 和t=4s 两时刻振子的位移相同,第一种情况是此时间差是周期的整数倍,当n=1时T=s 。
在s 的半个周期内振子的位移由负的最大变为正的最大,所以振幅是0.1m 。
A 正确。
第二种情况是此时间差不是周期的整数倍,则,当n=0时T=8s ,且由于是的二倍说明振幅是该位移的二倍为0.2m 。
如图答案D 。
答案:AD简谐运动的回复力和能量一、学习目标1.掌握简谐运动的定义。
2.了解简谐运动的运动特征。
3.掌握简谐运动的动力学公式。
4.了解简谐运动的能量变化规律。
二、知识点说明 1.简谐运动的回复力:(1)如果质点所受的力与它偏离平衡位置位移的大小成正比,并且总是指向平衡位置,质点的运动就是简谐运动,力的方向总是指向平衡位置,所以称这个力为回复力。
(2)大小:,k 是弹簧的劲度系数,x 是小球的位移大小。
2.简谐运动的能量:(1)振子速度在变,因而动能在变;弹簧的伸长量在变,弹性势能在变。
△t 1△t 2(2)变化规律:总结:A总机械能=任意位置的动能+势能=平衡位置的动能=振幅位置的势能;B弹簧振子在平衡位置的动能越大,振动的能量就越大;振幅越大,振幅位置的势能就越大,振动的能量就越大。
三、典型例题例1:关于回复力,下列说法正确的是( )A.回复力是指物体离开平衡位置时受到的指向平衡位置的力B.回复力是按力的作用效果命名的,它可能由弹力提供,也可能由摩擦力提供C.回复力可能是某几个力的合力,也可能是某一个力的分力D.振动物体在平衡位置时,其所受合力为零解析:选ABC.由回复力定义可知选项A正确;回复力是物体在振动方向上受到的合力,并不一定是物体所受合力,所以平衡位置是回复力为零的位置,并不一定是合力为零的位置,D选项错误;回复力是效果力,它可以由一个力来提供,也可以由几个力的合力来提供,B、C选项正确例2:弹簧振子做简谐运动时,下列说法中正确的是( )A.加速度最大时,速度也最大B.位移相同时速度一定相同C.加速度减小时,速度一定增大D.速度相同时位移也一定相同解析:选C.加速度最大时,速度为零,A错误.位移相同时,速度方向可能不同,B错误,加速度减小时,振子向平衡位置运动,速度增大,C正确.速度相同时,振子的位移也可能方向相反,D错误。
例3:一简谐横波以4m/s的波速沿x轴正方向传播。
已知t=0时的波形如图所示,则A.波的周期为1sB.x=0处的质点在t=0时向y轴负向运动C.x=0处的质点在t= s时速度为0D.x=0处的质点在t= s时速度值最大解析:由波的图像可知,半个波长是2m,波长是4m,周期是,A正确。
波在沿x轴正方向传播,则x=0的支点在沿y轴的负方向运动,B正确。
x=0的质点的位移是振幅的一半,则要运动到平衡位置的时间是,则时刻x=0的质点越过了平衡位置速度不是最大,CD错误。
答案:AB单摆一、学习目标1.知道什么是单摆;2.理解单摆振动的回复力来源及做简谐运动的条件;3.知道单摆的周期和什么有关,掌握单摆振动的周期公式,并能用公式解题。
二、知识点说明1.定义:用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。
2.回复力:,其中x 为摆球偏离平衡位置的位移。
3.周期:简谐运动的周期T 与摆长l 的二次方根成正比,与重力加速度g 的二次方根成反比,而与振幅、摆球的质量无关,表达式。
4.应用:利用单摆测量重力加速度。
由单摆的周期公式得到,测出单摆的摆长l 、周期T ,就可以求出当地的重力加速度。
5.实验探求单摆周期与摆长的关系注意事项:(1)摆的振幅不要太大,即偏角较小,不超过5°(现在一般认为是小于10°),这时才能看做是简谐振动。
(2)摆线要尽量选择细的、伸缩性小的,并且尽可能长点; (3)摆球要尽量选择质量大的、体积小的; (4)悬挂时尽量使悬挂点和小球都在竖直方向; (5)细线的长度和小球的半径作为摆长的测量值; (6)小球在平衡位置时作为计时的开始与终止更好一些。
三、典型例题例1:如图所示的单摆,摆球a 向右摆动到最低点时,恰好与一沿水平方向向左运动的粘性小球b 发生碰撞,并粘接在一起,且摆动平面不变.已知碰撞前a 球摆动的最高点与最低点的高度差为h ,摆动的周期为T ,a 球质量是b 球质量的5倍,碰撞前a 球在最低点的速度是b 球速度的一半.则碰撞后( )A.摆动的周期为65TB.摆动的周期为56TC.摆球的最高点与最低点的高度差为0.3hD.摆球的最高点与最低点的高度差为0.25h解析:碰撞前后摆长不变,由T=2πg L知,摆动的周期不变.若a 球质量为M ,速度为v ,则B 球质量为M b =5M,v b =2v ,由碰撞过程动量守恒得:Mv-M b v b =(M+M b )v ′代入数值解得:v ′=21v因为h=g 22v所以h ′=g 22v =41h.答案:D例2:一单摆做小角度摆动,其振动图象如图所示,以下说法正确的是 ( )A.t 1时刻摆球速度最大,悬线对它的拉力最小B.t 2时刻摆球速度为零,悬线对它的拉力最小C.t 3时刻摆球速度为零,悬线对它的拉力最大D.t 4时刻摆球速度解析:由振动图线可看出,t 1时刻和t0时刻,小球偏离平衡位置的位移最大,此时其速度为零,悬线对它的拉力最小,故A 、C 错;t 2和t 4时刻,小球位于平衡位置,其速度最大,悬线的拉力最大,故B 错,D 对。
例3:如图所示,A、B分别为单摆做简谐振动时摆球的不同位置,其中,位置A为摆球摆动的最高位置,虚线为过悬点的竖直线.以摆球最低位置为重力势能零点,则摆球在摆动过程中( )A.位于B处时动能最大B.位于A处时势能最大C.在位置A的势能大于在位置B的动能D.在位置B的机械能大于在位置A的机械能解析:小球在摆动过程中,只有重力做功,机械能守恒,即A点的重力势能等于B点动能和势能的和。
答案:BC外力作用下的振动一、学习目标1.知道阻尼振动和无阻尼振动,并能从能量的观点给予说明。
2.知道受迫振动的概念。
知道受迫振动的频率等于驱动力的频率,而跟振动物体的固有频率无关。
二、知识点说明1.固有频率:如果振动系统不受外力的作用,此时的振动叫做固有振动,其振动频率称为固有频率。
2.阻尼振动:(1)定义:振幅逐渐减小的振动;(2)原因:系统克服阻尼的作用要做功,消耗机械能,因而振幅减小,最后停下来。
(3)特点:阻尼越大,振幅减小得越快,阻尼越小,振幅减小得越慢。
3.受迫振动:(1)自由振动:物体在系统内部回复力作用下产生的振动;(2)驱动力:系统受到的周期性的外力;(3)受迫振动:系统在驱动力作用下的振动叫做受迫振动。
(4)不管系统的固有频率如何,它做受迫振动的频率总等于周期性驱动力的频率,与系统的固有频率无关。
4.共振:驱动力频率f等于系统的固有频率时,受迫振动的振幅最大,这种现象叫做共振。
三、典型例题例1:在接近收费口的道路上安装了若干条突起于路面且与行驶方向垂直的减速带,减速带间距为10m,当车辆经过减速带时会产生振动。
若某汽车的固有频率为1.25Hz,则当该车以_________m/s的速度行驶在此减速区时颠簸得最厉害,我们把这种现象称为_________。
解析:汽车每经过一个减速带时,减速带都给汽车一个向上的力,这个力使汽车上下颠簸,当这个力的频率等于汽车的固有频率时,汽车发生共振,振动最厉害。