第13章习题解答
管理学-习题-第13章
第十三章控制的方法与技术(一)判断题1.预算控制将企业的战略计划落到实处,因而指明了组织活动的方向。
()2.工作质量取决于产品质量,工作质量是企业产品质量的综合反映,产品质量是保证工作质量的前提。
()3.信息技术的应用就是信息化。
()4.管理信息系统是典型的人机结合的辅助管理系统。
()5.六西格玛业务改进最常用的方法包括测量。
()6.决策支持系统的特点是:系统的主体是计算机。
()7.柔性作业系统由若干数控设备、物料运贮装置和计算机控制系统组成的。
()8.全面质量管理的实施原则包括过程方法。
()(二)填空题1.存货周转率是销售成本与平均存货的比率,它是衡量和评价_______的指标。
2._______是团体控制的基础。
3._______是以管理科学和行为科学等为基础,以计算机技术,针对半结构化的决策问题,具有智能作用的人机系统。
4._______是与劳动力、土地、资本、企业家一样重要的生产要素。
5.六西格玛业务改进最常用的方法是________。
6. _______的基本内涵是改善质量,追求零缺陷,最终达到提升组织竞争力的目的7.PDCA循环,又叫_______。
8.柔性作业系统的特点包括:以顾客需求为导向、以信息技术为基础和________。
(三)选择题1.出现在多数中大型企业组织里最基本的控制方式是_______。
A.预算控制B.层级控制C.市场控制D.团体集体控制2.反映企业流动资产中可以立即用于偿付流动负债的能力的是_______。
A.速动比率B.应收账款周转率C.流动比率D.资产负债比率3.市场控制的动因是_______。
A.企业内各部门缺乏发展的动力B.企业对经营管理拥有很小的自主控制权C.企业内部组织管理成本过高D.企业缺乏活力4.全面质量管理的基本要求是“三全一多”,不包括以下选项中的_______。
A.全过程的质量管理B.全组织的质量管理C.多方法的质量管理D.全方面的质量管理5.六西格玛组织人员构成不包括下列选项中的_______。
13 干燥习题解答
pws 1.817 H w = 0.622 = 0.622 × = 0.011kg/kg pt − pws 101.3 − 1.817 α 而 (t 0 − t w ) k H A( H w − H )rw = αA(t − t w ) ⇒ H 0 = H w − k H rw 1.09 故 (20 − 16 ) = 0.00922kg/kg H 0 = 0.011 − 2455.5 ②出口空气的湿含量H2
55 37.40 0.928 0.395 0.047 0.055
60 47.01 1.373 0.479 0.040 0.049
70 72.31 3.956 0.880 020°C t as = 20°C
H , kg/kg H , kg/kg
D 35 = D 25 ( p 1 / p 2 ) × (T 2 / T1 )
1 . 75
= 0 . 143 × 10 − 4 m 2 /s
0.567
,空气的运动粘度为
α υ = 15.53 × 10 − 6 m 2 /s ,故有: / k H = 1.223(υ / D A )
= 1.325 ,又汽化潜热随温
空气 − 乙醇系统的 t - H 数据表
t ,°C ps , kPa
0 1.63 0.026 0.013 0.126 0.124
10 3.15 0.051 0.025 0.111 0.110
20 5.85 0.097 0.047 0.097 0.097
25 7.86 0.133 0.064 0.090 0.091
= (1.01 + 1.88 × 0.048) × 90 + 2492 × 0.048
查90℃时水的饱和蒸汽压值: p s = 525.8mmHg = 70.08kPa
《新编基础物理学》第13章习题解答和分析
第13章电磁场与麦克斯韦方程组13-1如题图13-1所示,两条平行长直导线和一个矩形导线框共面, 且导线框的一个边与长直导线平行,到两长直导线的距离分别为r ,,r 2。
已知两导线中电流都为 I l 0sin t ,其中I o 和 为常数,t 为时间。
导线框长为 a ,宽为b ,求导线框中的感应电动势。
分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随 时间发生变化,用法拉第电磁感应定律 jd ^m计算感应电动势,dt其中磁通量m B dS , B为两导线产生的磁场的叠加。
s解:无限长直电流激发的磁感应强度为B 一必。
取坐标Ox 垂直于直2 r导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右。
取回路的绕行正方向为顺时针。
由场强的叠加原理可得 x 处的磁感应强度大小12 (A x)方向垂直纸面向里。
通过微分面积dS adx 的磁通量为d m通过矩形线圈的磁诵量为v v BdS BdSIadx2 (r 2 x)2 (A x) bmIIadx 0aln$ b , r 2 b ,.丄In I 0S1 n t 02(r 1 x)2(r 2 x)2r 1 r 2 感生电动势d mar-i bbilnInI 0 cos tdt2r 1「2o a | ln(r 1b)(r 2 b)2恥为逆时针。
0时,回路中感应电动势的实际方向为顺时针;i0时,回路中感应电动势的实际方向cos t题图13-1解图13-113-2 如题图13-2所示,有一半径为r=10cm的多匝圆形线圈,匝数vN=100,置于均匀磁场B中(B=)。
圆形线圈可绕通过圆心的轴O1O2转动,转速n 600r min 1。
求圆线圈自图示的初始位置转过/2时,(1)线圈中的瞬时电流值(线圈的电阻为R=100 ,不计自感);(2)圆心处磁感应强度。
分析:应用法拉第电磁感应定律求解感应电动势。
应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度。
大学物理课后习题及答案第13章
第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8o (B)41.2o (C)97.6o (D)82.4o解:选(C)。
利用折射定律,当入射角为1=90i o 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i o ,因此倒立圆锥顶角为22=97.6i o 。
*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。
利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。
13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大(D) 中央明纹向下移动,且条纹间距不变习题13-3图解:选(B)。
光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。
13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个 解:选(B)。
第13章 热力学基础习题及答案
第十三章习题热力学第一定律及其应用1、关于可逆过程和不可逆过程的判断:(1) 可逆热力学过程一定是准静态过程.(2) 准静态过程一定是可逆过程.(3) 不可逆过程就是不能向相反方向进行的过程.(4) 凡有摩擦的过程,一定是不可逆过程.以上四种判断,其中正确的是。
2、如图所示,一定量理想气体从体积V1,膨胀到体积V2分别经历的过程是:A→B等压过程,A→C等温过程;A→D绝热过程,其中吸热量最多的过程。
3、一定量的理想气体,分别经历如图(1) 所示的abc过程,(图中虚线ac为等温线),和图(2) 所示的def过程(图中虚线df为绝热线).判断这两种过程是吸热还是放热.abc过程热,def过程热.4、如图所示,一绝热密闭的容器,用隔板分成相等的两部分,左边盛有一定量的理想气体,压强为p0,右边为真空.今将隔板抽去,气体自由膨胀,当气体达到平衡时,气体的压强是。
(=γC p/C V)5、一定量理想气体,从同一状态开始使其体积由V1膨胀到2V1,分别经历以下三种过程:(1) 等压过程;(2) 等温过程;(3)绝热过程.其中:__________过程气体对外作功最多;____________过程气体内能增加最多;__________过程气体吸收的热量最多.VV答案1、(1)(4)是正确的。
2、是A-B 吸热最多。
3、abc 过程吸热,def 过程放热。
4、P 0/2。
5、等压, 等压, 等压理想气体的功、内能、热量1、有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氨气传递热量是 。
2、 一定量的理想气体经历acb 过程时吸热500 J .则经历acbda 过程时,吸热为 。
3、一气缸内贮有10 mol 的单原子分子理想气体,在压缩过程中外界作功209J ,气体升温1 K ,此过程中气体内能增量为 _____ ,外界传给气体的热量为___________________. (普适气体常量 R = 8.31 J/mol· K)4、一定量的某种理想气体在等压过程中对外作功为 200 J .若此种气体为单 原子分子气体,则该过程中需吸热_____________ J ;若为双原子分子气体,则 需吸热______________ J.p (×105 Pa)3 m 3)5、 1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求:(1) 气体的内能增量. (2) 气体对外界所作的功. (3) 气体吸收的热量. (4) 此过程的摩尔热容.(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)答案1、3J2、-700J3、124.7 J ,-84.3 J4、500J ;700J5、解:)(25)(112212V p V p T T C E V -=-=∆ (2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ).(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT , 故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R .p p p 12循环过程1、 如图表示的两个卡诺循环,第一个沿ABCDA 进行,第二个沿A D C AB ''进行,这两个循环的效率1η和2η的关系及这两个循环所作的净功W 1和W 2的关系是 η1 η2 ,W 1 W 22、 理想气体卡诺循环过程的两条绝热线下的面积大小(图中阴影部分)分别为S 1和S 2,则二者的大小关系是:3、一卡诺热机(可逆的),低温热源的温度为27℃,热机效率为40%,其高温热源温度为_______ K .今欲将该热机效率提高到50%,若低温热源保持不变,则高温热源的温度应增加________ K .4、如图,温度为T 0,2 T 0,3 T 0三条等温线与两条绝热线围成三个卡诺循环:(1) abcda ,(2) dcefd ,(3) abefa ,其效率分别为η1_________,η2__________,η 3 __________.5、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求: (1) 第二个循环的热机效率; (2) 第二个循环的高温热源的温度.6、 1 mol 单原子分子理想气体的循环过程如T -V 图所示,其中c 点的温度为T c =600 K .试求:(1) ab 、bc 、c a 各个过程系统吸收的热量; (2) 经一循环系统所作的净功; (3) 循环的效率. BAC DC 'D 'p p-3m 3)p O 3T 0 2T 0 T 0fad b c e(注:循环效率η=W /Q 1,W 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量ln2=0.693)答案 1、=;<2、S 1 = S 2.3、500 ; 1004、33.3% ; 50%; 66.7%5、解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T W Q -= 且 1212T TQ Q =∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') =''='1/Q W η29.4% (2) ='-='η121T T 425 K6、解:单原子分子的自由度i =3.从图可知,ab 是等压过程,V a /T a = V b /T b ,T a =T c =600 KT b = (V b /V a )T a =300 K (1) )()12()(c b c b p ab T T R i T T C Q -+=-= =-6.23×103 J (放热) )(2)(b c b c V bc T T R iT T C Q -=-= =3.74×103 J (吸热) Q ca =RT c ln(V a /V c ) =3.46×103 J (吸热) (2) W =( Q bc +Q ca )-|Q ab |=0.97×103 J (3) Q 1=Q bc +Q ca , η=W / Q 1=13.4%热力学第二定律1、根据热力学第二定律判断下列说法的正误: (A) 功可以全部转换为热,但热不能全部转换为功. ( ) (B) 热可以从高温物体传到低温物体,但不能从低温物体传到高温物体 ( )(C) 不可逆过程就是不能向相反方向进行的过程.()(D) 一切自发过程都是不可逆的.()2、热力学第二定律的开尔文表述和克劳修斯表述是等价的,表明在自然界中与热现象有关的实际宏观过程都是不可逆的,开尔文表述指出了___________________________的过程是不可逆的,而克劳修斯表述指出了________________的过程是不可逆的.3、所谓第二类永动机是指________________________________________,它不可能制成是因为违背了________________________________________.答案1、⨯,⨯,⨯,√2、功变热;热传导3、从单一热源吸热,在循环中不断对外作功的热机;热力学第二定律。
机械设计基础第13章 齿轮传动习题解答
的接触强度弱?(2)哪个齿轮的弯曲强度弱?为什么?
解:(1)接触强度
相互啮合的一对齿轮,起接触应力相等,即σH1=σH2. 由题意可知,[σH]1=600MPa>[σH2]=500MPa, 因此,大齿轮的接触强度弱。
(2)弯曲强度 相互啮合的一对齿轮,其弯曲强度的大小主要取决于的
YFaYSa
的比值。
[σ F ]
可见,
YFa1YSa1 2.81.55 0.024
[σ F ]1
179
因此,大齿轮的弯曲强度弱。
YFa2YSa2 2.4 1.67 0.028
[σ F ]2
144
YFa1YSa1 YFa2YSa2
[σF]1 [σF]2
13.6受力分析题:图示为圆锥-圆柱齿轮传动装置。轮1为主动轮, 转向如图所示,轮3、4为斜齿圆柱齿轮。 (1)轮3、4的螺旋方向应如何选择,才能使轴Ⅱ上两齿轮的轴向力相 反? (2)画出齿轮2、3所受各分力的方向。
, F2 YFa 2YSa 2
}
40 42 20 70.98 245552Nmm
T2
F1 340 78.34 YFa1YSa1 2.8 1.55
F 2 280 70.98 YFa2YSa2 2.28 1.75
T1
n1 n2
245552 3 736657Nmm
2 1.85
2)计算接触强度允许的输出转矩 H
13.1有一对齿轮传动,m=6mm,z1=20,z2=80,b=40mm.为了 缩小中心距,要改用m=4mm的一对齿轮来代替它。设载
荷系数K,齿数z1、z2及材料不变。试问为了保持原有接 触强度,应取多大的齿宽b?
(附接触强度计算公式:)
H ZHZE
大学物理Ⅰ第13章光的干涉与衍射习题答案
第13章 光的干涉与衍射训练题(含答案)一、选择题1. 如图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1< n 2> n 3。
若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束(用①与②示意)的光程差是[ ] (A ) e n 22 (B) 222λ-e n(C) λ-e n 22 (D) 2222n e n λ-2.真空波长为λ的单色光,在折射率为n 的均匀透明介质中从A 点沿某一路径传播到B 点,路径的长度为l 。
若l 等于下列各选项给出的值,A 、B 两点光振动位相差记为ϕ∆,则[ ] (A) 3, 32l λϕπ=∆= (B) πϕλn nl 3,23=∆=(C) πϕλ3,23=∆=nl (D) πϕλn nl 3,23=∆=3. 在双缝干涉实验中,两缝隙间距离为d ,双缝与屏幕之间的距离为)(d D D >>。
波长为λ的平行单色光垂直照射到双缝上。
屏幕上干涉条纹中相邻暗纹之间的距离是 [ ] (A)d D λ2 (B) D dλ (C) λdD (D) dDλ4. 如图所示,用波长为λ的单色光照射双缝干涉实验装置,若将一折射率为n 、劈角为α的透明劈尖b 插入光线2中,则当劈尖b 缓慢向上移动时(只遮住S 2),屏C 上的干涉条纹[ ] (A) 间隔变大,向下移动。
(B) 间隔变小,向上移动。
(C) 间隔不变,向下移动。
(D) 间隔不变,向上移动。
5. 把一平凸透镜放在平玻璃上,构成牛顿环装置。
当平凸透镜慢慢地向上平移时,由反射光形成的牛顿环[ ] (A) 向中心收缩,条纹间隔变小。
Sλ3(B) 向中心收缩,环心呈明暗交替变化。
(C) 向外扩张,环心呈明暗交替变化。
(D) 向外扩张,条纹间隔变大。
6. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的 [ ] (A) 振动振幅之和。
《大学物理学》习题解答(第13章 稳恒磁场)(1)
【13.1】如题图所示的几种载流导线,在 O 点的磁感强度各为多少?
(a)
(b) 习题 13-1 图
(c)
【13.1 解】 (a) B 0
I 1 0 I 0 0 ,方向朝里。 4 2R 8R 0 I 。 2R
(b) B
0 I
2R
(c) B
mv eB
2mE k eB
6.71 m 和 轨 迹 可 得 其 向 东 偏 转 距 离 为
x R R 2 y 2 2.98 10 3 m
【13.17 解】利用霍耳元件可以测量磁感强度,设一霍耳元件用金属材料制成,其厚度为 0.15 mm,载流 - 子数密度为 1024m 3,将霍耳元件放入待测磁场中,测得霍耳电压为 42μV,通过电流为 10 mA。求待测磁 场的磁感强度。 【13.17 解】由霍耳电压的公式可得 B
B 4
2 0 I 0 I 。 (cos 45 cos135) 4a a
习题 13-2 图
习题 13-3 图
【13.3】以同样的导线联接成如图所示的立方形,在相对的两顶点 A 及 C 上接一电源。试求立方形中心的 磁感强度 B 等于多少? 【13.3 解】由对称性可知,相对的两条棱在立方体中心产生的磁感强度相等而方向相反,故中心处的磁感 强度为零。 【13.4】如图所示,半径为 R 的半球上密绕有单层线圈,线圈平面彼此平行。设线圈的总匝数为 N,通过 线圈的电流为 I,求球心处 O 的磁感强度。 【13.4 解】在半球上距球心 y 处取一个宽度为 Rdθ 的园环,其对球心的张角为 θ,半径为 r=Rsinθ,包含 的电流为 dI
2rB 0, 2rB 0 NI , 2rB 0,
物理化学中国石油大学课后习题答案第13章
粘度近似等于水的粘度,为 0.001kg ⋅ m−1 ⋅s−1 (即 Pa ⋅s )。
解:当粒子在重力场中达到沉降平衡时,有沉降力 = 粘滞阻力,即
-2-
物理化学习题解答
( ) 4 π r3
3
ρ粒子 − ρ介质
g ≈ 6πηr Δx Δt
故 Δt =
6ηΔx
1=
6× 0.001× 0.01
1
( ) ( ) 4
解:
胶核
(
Au
) m
优先吸附与其有共同组成的
AuO2−
,因此胶团结构为
⎡⎣(
Au
) m
⋅
nAuO
− 2
,
(
n
−
x
)
Na
+
⎤⎦
x
−
⋅
xNa
+
2 . 某 溶 胶 中 粒 子 的 平 均 直 径 为 4.2nm , 设 其 粘 度 和 纯 水 相 同 ,
η = 1×10−3 kg ⋅ m−1 ⋅ s−1 ,试计算:
−
⎤
960 )× 9.8 ⎥
⎥ ⎥ ⎥
Pα
⎢⎣
1 6 .7
⎥⎦
=1.023P α ⋅ s
5.试计算在 293K 时,地心力场中使粒子半径分别为(1) 1.0×10−5 m ,(2)
100nm ,(3) 1.5nm 的金溶胶下降 0.01m 需时若干。
已知分散介质的密度为1000kg ⋅ m−3 ,金的密度为1.93×104 kg ⋅ m−3 ,溶液的
Δt = ⎢2.51×10−10 × ⎢ ⎣
1 1.0 ×10−7
⎤
2
⎥ ⎥
s
第13章 光的干涉习题答案
思 考 题13-1.单色光从空气射入水中,则( )(A )频率、波长和波速都将变小 (B )频率不变、波长和波速都变大 (C )频率不变,波长波速都变小 (D )频率、波长和波速都不变 答:频率ν不变,nλλ=,vcn =,而水空气n n <,故选(C ) 13-2.如图所示,波长为λ的单色平行光垂直入射到折射率为n 2、厚度为e 的透明介质薄膜上,薄膜上下两边透明介质的折射率分别为n 1和n 3,已 知n 1<n 2, n 2>n 3,则从薄膜上下两表面反射的两光束的光程差是( )(A)2en 2。
(B) 2en 2+2λ。
(C) 2en 2-λ。
(D) 2en 2+22n λ。
答:由n 1<n 2, n 2>n 3可知,光线在薄膜上下两表面反射时有半波损失,故选(B)。
13-3 来自不同光源的两束白光,例如两束手电筒光,照射在同一区域内,是不能产生干涉花样的,这是由于( )(A) 白光是由许多不同波长的光构成的。
(B) 来自不同光源的光,不能具有正好相同的频率。
(C) 两光源发出的光强度不同。
(D) 两个光源是独立的,不是相干光源。
答:普通的独立光源是非相干光源。
选(D )。
13-4在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是( ) (A)使屏靠近双缝。
(B)使两缝的间距变小。
(C)把两个缝的宽度稍微调窄。
(D)改用波长较小的单色光源。
答:由条纹间距公式af x λ2=∆,可知选(B )。
13-5.在杨氏双缝实验中,如以过双缝中点垂直的直线为轴,将缝转过一个角度α,转动方向如图所示,则在屏幕上干涉的中央明纹将( )(A)向上移动 (B)向下移动 (C)不动 (D)消失答:中央明纹出现的位置是光通过双缝后到屏幕上光程差为0的地方,故选(A ) 13-6.在双缝干涉实验中,入射光的波长为λ,用玻璃纸遮住双缝中的一条缝,若玻璃纸中的光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处( )(A) 仍为明条纹思考题13-5图(B) 变为暗条纹(C) 既非明条纹,也非暗条纹(D) 无法确定是明条纹还是暗条纹 答:明条纹和暗条纹光程差2λ,故选(B)。
宏观经济学习题答案第十三章 习题答案
第十三章 简单国民收入决定理论1.在两部门经济中,均衡发生于( )之时。
A.实际储蓄等于实际投资;B.实际消费加实际投资等于产出值;C.计划储蓄等于计划投资;D.总投资等于企业部门的收入。
解答:C2.当消费函数为c =a +by(a>0,0<b<1),这表明,平均消费倾向( )。
A .大于边际消费倾向;B .小于边际消费倾向;C .等于边际消费倾向;D .以上三种情况都可能。
解答:A3.如果边际储蓄倾向为0.3,投资支出增加60亿元,这将导致均衡收入GDP 增加 ( )。
A . 20亿元;B . 60亿元;C . 180亿元;D . 200亿元。
解答:D4.在均衡产出水平上,是否计划存货投资和非计划存货投资都必然为零?解答:当处于均衡产出水平时,计划存货投资一般不为零,而非计划存货投资必然为零。
这是因为计划存货投资是计划投资的一部分,而均衡产出就是等于消费加计划投资的产出,因此计划存货不一定是零。
计划存货增加时,存货投资就大于零;计划存货减少时,存货投资就小于零。
需要指出的是,存货是存量,存货投资是流量,存货投资是指存货的变动。
在均衡产出水平上,计划存货投资是计划投资的一部分,它不一定是零,但是非计划存货投资一定是零,如果非计划存货投资不是零,那就不是均衡产出了。
比方说,企业错误估计了形势,超出市场需要而多生产了产品,就造成了非计划存货投资。
5.能否说边际消费倾向和平均消费倾向总是大于零而小于1?解答:消费倾向就是消费支出和收入的关系,又称消费函数。
消费支出和收入的关系可以从两个方面加以考察,一是考察消费支出变动量和收入变动量的关系,这就是边际消费倾向(可以用公式MPC =Δc Δy或MPC =d c d y表示),二是考察一定收入水平上消费支出量和该收入量的关系,这就是平均消费倾向(可以用公式APC =c y表示)。
边际消费倾向总大于零而小于1,因为一般说来,消费者增加收入后,既不会不增加消费即MPC =Δc Δy=0,也不会把增加的收入全用于增加消费,一般情况是一部分用于增加消费,另一部分用于增加储蓄,即Δy =Δc +Δs ,因此,Δc Δy +Δs Δy =1,所以,Δc Δy =1-Δs Δy 。
第十三章 表面化学习题解答
AHA12GAGGAGAGGAFFFFAFAF第 十 三 章 习 题1、在293K 时,把半径为1mm 的水滴分散成半径为1μm 的小水滴,问比表面增加了多少倍?表面吉布斯自由能增加了多少?完成该变化时,环境至少需做功若干?已知293K 时水的表面张力为0.07288N ·m -1。
解 设半径为1mm 水滴的表面积为A 1,体积为V 1,半径为R 1;半径为1μm 小水滴的表面积为A 2,体积为V 2,半径为R 2。
大水滴分散成小水滴后,设分散成小水滴后的数目为N ,则V 1=N V 2,所以32313434R N R ππ=, 9363321101010=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=--m m R R N1000101010442639212212=⎪⎪⎭⎫ ⎝⎛==--m m R R N A A ππJ m N R NR m N A G A442122110145.910145.9)(407288.0---⨯=⋅⨯=-⨯⋅=∆=∆πγJ G W A f 410145.9-⨯-=∆-=。
2、已知汞溶胶中粒子(设为球形)的直径为22nm ,每dm 3溶胶中含Hg 为8×10-5kg ,试问每1cm 3的溶胶中粒子数为多少?其总表面积为若干?把8×10-5kg 的汞滴分散成上述溶胶时表面吉布斯自由能增加多少?已知汞的密度为13.6kg ·dm -3,汞-水界面张力为0.375N ·m -1。
解 直径为22nm 的汞的粒子的体积为AHA12GAGGAGAGGAFFFFAFAF32439310576.5102223434m m R V --⨯=⎪⎭⎫ ⎝⎛⨯⨯==ππ每1cm 3的溶胶中粒子数N(为每1cm 3的溶胶中含汞的体积再除以直径为22nm 的汞的粒子的体积)123243333510054.110576.516.13101108⨯=⨯⨯⋅⨯⨯⋅⨯=-----m dm kg dm dm kg N232912210603.110222410054.14m m R N A --⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⋅=ππ总 8×10-5kg 的汞滴的半径R 0,m dm dm kg kg V R 32313531001012.11012.14)]6.13/(108[343----⨯=⨯=⎪⎪⎭⎫ ⎝⎛⋅⨯⨯=⎪⎭⎫ ⎝⎛=ππ J R NR m N A G A 420211095.5)(4375.0--⨯=-⨯⋅=∆=∆πγ。
第十三章电磁场与麦克斯韦方程组习题解答和分析
第十三章习题解答13-1 如题图13-1所示,两条平行长直导线和一个矩形导线框共面,且导线框的一个边与长直导线平行,到两长直导线的距离分别为r 1,r 2;已知两导线中电流都为0sin I I t ω=,其中I 0和ω为常数,t 为时间;导线框长为a 宽为b ,求导线框中的感应电动势;分析:当导线中电流I 随时间变化时,穿过矩形线圈的磁通量也将随时间发生变化,用法拉第电磁感应定律d d i tΦε=-计算感应电动势,其中磁通量s B d S Φ=⎰,B 为两导线产生的磁场的叠加;解:无限长直电流激发的磁感应强度为02IB rμ=π;取坐标Ox 垂直于直导线,坐标原点取在矩形导线框的左边框上,坐标正方向为水平向右;取回路的绕行正方向为顺时针;由场强的叠加原理可得x 处的磁感应强度大小00122()2()IIB r x r x μμ=+π+π+, 垂直纸面向里通过微分面积dS adx =的磁通量为00122()2()I I d B dS B dS adx r x r x μμππ⎡⎤Φ===+⎢⎥++⎣⎦通过矩形线圈的磁通量为000122()2()bI I adx r x r x μμΦ⎡⎤=+⎢⎥π+π+⎣⎦⎰ 012012ln ln sin 2a r b r b I t r r μω⎛⎫++=+ ⎪π⎝⎭感生电动势012012012012d ln ln cos d 2()()ln cos 2i a r b r b I t t r r ar b r b I t r r μωΦεωμωω⎛⎫++=-=-+ ⎪π⎝⎭⎡⎤++=-⎢⎥π⎣⎦0i ε>时,回路中感应电动势的实际方向为顺时针;0i ε<时,回路中感应电动势的实际方向为逆时针;题图13-1 题图13-213-2 如题图13-2所示,有一半径为r =10cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B 中B =;圆形线圈可绕通过圆心的轴O 1O 2转动,转速n =600rev/min;求圆线圈自图示的初始位置转过/2π时,1 线圈中的瞬时电流值线圈的电阻为R =100Ω,不计自感;2 感应电流在圆心处产生的磁感应强度;分析:应用法拉第电磁感应定律求解感应电动势;应用载流圆环在其圆心处产生的磁场公式求出感应电流在圆心处产生的磁感应强度; 解:1 圆形线圈转动的角速度2=2060nπωπ= rad/s 设t =0时圆形线圈处在图示位置,取顺时针方向为回路绕行的正方向;则t 时刻通过该回路的全磁通2cos cos NB S NBS t NB r t ψωπω===电动势 2d sin d i NB r t tψεπωω=-= 感应电流 2sin ii NB r t I R Rεπωω== 将圆线圈自图示的初始位置转过/2π时,2t πω=代入已知数值 得: 0.99i I A =2 感应电流在圆心处产生的磁感应强度的大小为40 6.2210T 2ii I B Nrμ-==⨯i B 的方向与均匀外磁场B 的方向垂直;13-3 均匀磁场B 被限制在半径R =10cm 的无限长圆柱形空间内,方向垂直纸面向里;取一固定的等腰梯形回路abcd ,梯形所在平面的法向与圆柱空间的轴平行,位置如题图13-3所示;设磁场以d 1T/s d B t =的匀速率增加,已知6cm Oa Ob ==,3πθ=,求等腰梯形回路abcd 感生电动势的大小和方向;分析:求整个回路中的电动势,采用法拉第电磁感应定律,本题的关键是确定回路的磁通量;解:设顺时针方向为等腰梯形回路绕行的正方向.则t 时刻通过该回路的磁通量题图13-3 题图13-4B S BS Φ==其中S 为等腰梯形abcd 中存在磁场部分的面积,其值为2211()sin 22S R oa θθ=- 电动势d d d d i B St t Φε=-=-2211d ()sin 22d BR oa tθθ⎡⎤=--⎢⎥⎣⎦ 代入已知数值 33.6810V i ε-=-⨯“–”说明,电动势的实际方向为逆时针,即沿adcba 绕向;用楞次定律也可直接判断电动势的方向为逆时针绕向;13-4 如题图13-4所示,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v 沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:1 在任意时刻t 通过矩形线圈的磁通量m Φ;2 在图示位置时矩形线圈中的电动势i ε;分析:线圈运动,穿过线圈的磁通量改变,线圈中有感应电动势产生,求出t 时刻穿过线圈的磁通量,再由法拉第电磁感应定律求感应电动势;解:1 设线圈回路的绕行方向为顺时针;由于载流长直导线激发磁场为非均匀分布,02IB xμπ=;因此,必须由积分求得t 时刻通过回路的磁通量; 取坐标Ox 垂直于直导线,坐标原点取在直导线的位置,坐标正方向为水平向右,则在任意时刻t 通过矩形线圈的磁通量为00d d ln22b vtSa vtI Il b vtl x x a vtμμΦππ+++===+⎰⎰B S 2在图示位置时矩形圈中的感应电动势00()d d 2i t Ilv b a tabμΦεπ=-=-=电动势的方向沿顺时针绕向;13-5 如题图13-5所示为水平面内的两条平行长直裸导线LM 与L M '',其间距离为l ,其左端与电动势为0ε的电源连接.匀强磁场B 垂直于图面向里,一段直裸导线ab 横嵌在平行导线间并可保持在导线上做无摩擦地滑动,电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;求:1 ab 达到的最大速度;2 ab 到最大速度时通过电源的电流I ;分析:本题是包含电磁感应、磁场对电流的作用和全电路欧姆定律的综合性问题;当接通电源后,ab 中产生电流;该通电导线受安培力的作用而向右加速运动,由于ab 向右运动使穿过回路的磁通量逐渐增加,在回路中产生感应电流,从而使回路中电流减小,当回路中电流为零时,直导线ab 不受安培力作用,此时ab 达到最大速度;解:1电路接通,由于磁场力的作用,ab 从静止开始向右运动起来;设ab 运动的速度为v ,则此时直导线ab 所产生的动生电动势i Blv ε=,方向由b 指向a .由全电路欧姆定理可得此时电路中的电流为0Blv i Rε-=ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时0i =;所以ab 达到的最大速度为max v Blε=2ab 达到的最大速度时,直导线ab 不受到磁场力的作用,此时通过电路的电流i =0;所以通过电源的电流也等于零;13-6 如题图13-6所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转,O 1O 2在离细杆a 端L /5处;若已知均匀磁场B 平行于O 1O 2轴;求ab 两端间的电势差U a -U b . 分析:由动生电动势表达式先求出每段的电动势,再将ab 的电动势看成是oa 和ob 二者电动势的代数和,ab 两端的电势差大小即为ab 间的动生电动势大小;求每段的电动势时,由于各处的运动速度不同,因此要将各段微分成线元dl ,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的动生电动势;解:设金属细杆ab 与竖直轴O 1O 2交于点O ,将ab 两端间的动生电动势看成ao 与ob 两段动生电动势的串联;取ob 方向为导线的正方向,在铜棒上取极小的一段线元dl ,方向为ob 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()i d v B dl vBdl B ldl εω=⨯=-=-ob 的动生电动势为242501416d d 2550L ob i abL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势ob ε的方向由b 指向O ;同理oa 的动生电动势为题图13-5 题图13-6225011d d 2550L oa i baL Bl l B B L εεωωω⎛⎫==-=-=- ⎪⎝⎭⎰⎰动生电动势oa ε的方向由a 指向O ;所以ab 两端间的的动生电动势为2310ab ao ob oa ob B L εεεεεω=+=-+=-动生电动势ab ε的方向由a 指向了b ;a 端带负电,b 端带正电;ab 两端间的电势差2310a b ab U U B L εω-==-b 端电势高于a 端;13-7 如题图13-7所示,导线L 以角速度ω绕其端点O 旋转,导线L 与电流I 在共同的平面内,O 点到长直电流I 的距离为a ,且a >L ,求导线L 在与水平方向成θ角时的动生电动势的大小和方向;分析:载流长直导线产生磁场,导线L 绕O 旋转切割磁力线;由于切割是不均匀的磁场,而且导体各处的运动速度不同,所以要微分运动导线,先由动生电动势公式计算线元dl 的两端的动生电动势i d ε,再积分计算整段的总动生电动势;解:取OP 方向为导线的正方向,在导线OP 上某处取极小的一段线元dl ,方向为OP 方向;线元运动的速度大小为v l ω=;由于,,v B dl 互相垂直;所以dl 两端的动生电动势()d v B dl vBdl B ldl εω=⨯=-=-将载流长直导线在该处激发磁场02(cos )IB a l μπθ=+代入,积分得导线L 在与水平方向线成θ角时的动生电动势为:()00d 2cos L i OP i I ldla l ωμεεπθ==-+⎰⎰020(cos )(cos )2cos (cos )LI a l ad l a l ωμθθπθθ+-=+⎰题图13-7 题图13-802+cos cos In 2cos I a L L a a ωμθθπθ⎛⎫=--⎪ ⎭⎝ 动生电动势的方向由P 指向O ;13-8 如题图13-8所示半径为r 的长直密绕空心螺线管,单位长度的绕线匝数为n ,所加交变电流为I =I 0sin ωt ;今在管的垂直平面上放置一半径为2r ,电阻为R 的导线环,其圆心恰好在螺线管轴线上;1计算导线环上涡旋电场E 的值且说明其方向; 2计算导线上的感应电流i I ;3计算导线环与螺线管间的互感系数M ;分析:电流变化,螺线管内部磁场也变化,由磁场的柱对称性可知,由变化磁场所激发的感生电场也具有相应的对称性,感生电场线是一系列的同心圆;根据感生电场的环路定理,可求出感生电场强度;由法拉第电磁感应定律及欧姆定律求感应电流,由互感系数定义式求互感系数; 解:1以半径为2r 的导线环为闭合回路L ,取回路L 的绕行正方向与B 呈右旋关系,自上向下看为逆时针方向;由于长直螺线管只在管内产生均匀磁场0B nI μ=,导线环上某点涡旋电场E 的方向沿导线环的切向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22(2)dB E r r dtππ=-导线环上涡旋电场E 的值为00cos 44n r r dBE I t dt μωω=-=- 若cos ωt >0,E 电场线的实际走向与回路L 的绕行正方向相反,自上向下看为顺时针方向;若cos ωt <0,E 电场线的实际走向与回路L 的绕行正方向相同,自上向下看为逆时针方向; 2 导线上的感应电流i I22001cos ii d r dB r I nI t R R dt R dt RεππμωωΦ==-=-=3导线环与螺线管间的互感系数为220B r M n r I IπμπΦ===13-9 电子感应加速器中的磁场在直径为0.50m 的圆柱形区域内是匀强的,若磁场的变化率为×10-2T/S;试计算离开中心距离为0.10m 、0.50m 、1.0m 处各点的感生电场; 分析:由磁场的柱对称性可知,变化磁场所激发的感生电场分布也具有相应的对称性,即感生电场的电场线是一系列以圆柱体中心为轴的同心圆;根据LS BE dl dS t∂=-∂⎰⎰可求出感生电场强度;解:以圆柱形的区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B呈右旋关系,为顺时针方向;由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律LS BE dl dS t∂=-∂⎰⎰可得 22()2()LdB r r R dtE dl E r dB R r R dtπππ⎧-<⎪⎪==⎨⎪->⎪⎩⎰得 2d ()2d d ()2d r Br R tE R B r R r t⎧-<⎪⎪=⎨⎪->⎪⎩式中“-”说明:若d 0d Bt>,E 的实际方向与假定方向相反,否则为一致; r =0.10m 时,r <R , 4d || 5.010V/m 2d r BE t-==⨯r =0.50m 时, r >R , 24d || 6.2510V/m 2d R BE r t -==⨯ r =1.10m 时,r >R , 24d || 3.1310V/m 2d R BE r t-==⨯ 13-10 如题图13-10所示,一个限定在半径为R 的圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小;电子在磁场中A 、O 、C 各点处时,它所获得的瞬时加速度大小、方向各为若干 设r =5.0cm; 分析:根据对称性,由感生电场的环路定理求出感生电场强度,由感生电场力及牛顿第二定律求出瞬时加速度;解:以圆柱形区域的中心到各点的距离为半径,作闭合回路L ;取回路L 的绕行正方向与B 呈右旋关系,由于回路上各点处的感生电场E 沿L 的切线方向;所以由规律题图13-10 题图13-11d d Ll t∂=-∂⎰⎰S BE S 可得 2d d 2d LB E r r t=π=-π⎰E l r <R 得 d 2d r BE t=-由于圆柱体内的均匀磁场B 以10-2T/s 的恒定变化率减小.所以d 0d Bt<,E 的实际方向与假定方向一致,为顺时针方向的切线方向;电子受到的电场力为e F eE =-,其方向为逆时针的切线方向; 瞬时加速度的大小为:d 2d eE e r B a m m t== 由于r A =0.05m,所以A 处的瞬时加速度的大小为:724.410/A a m s =⨯,方向为水平向右; 由于r C =0.05m,所以C 处的瞬时加速度的大小为:724.410/C a m s =⨯,方向为水平向左;由于r O =0,所以O 处的瞬时加速度:0O a =13-11 真空中的矩形截面的螺线环的总匝数为N ,其它尺寸如题图13-11所示,求它的自感系数;分析:自感系数一般可由LI ψ=计算,可见计算自感系数关键是确定穿过自感线圈的磁通量;假设螺线管通有电流,求出磁感应强度,再求出磁通量、磁通链,即可求出自感系数; 解:设螺绕管通有电流I ,由安培环路定理可得管内距轴线r 处的磁场强度为2NI H r =π, 2NI B H rμμ==π 通过某一截面的磁通量210021d d ln22R SR NINIhR B S h r rR μμΦ===ππ⎰⎰⎰螺绕管的磁通链2021ln2N N IhR N R μψΦ==π 自感系数:2021ln 2NN hR L IR ψμ==π13-12 设一同轴电缆由半径分别为1r 1和2r 的两个同轴薄壁长直圆筒组成,电流由内筒流入,由外筒流出,如题图13-12所示;两筒间介质的相对磁导率r 1μ=,求同轴电缆1 单位长度的自感系数;2单位长度内所储存的磁能;分析:先求磁场、磁通量,由自感系数定义式求自感系数,再由自感磁能表达式求磁能; 解:1电流由内筒流入,由外筒流出时,在内外筒之间产生的磁场为B=02Irμπ见11-19;通过内外筒之间单位长度截面的磁通量为212121d 1d lnln r Sr IIr x xr r L r μμΦμΦI 000===2π2π∴==2π⎰⎰S B2单位长度内所储存的磁能220211ln 24m I r W LI r μπ==13-13 一无限长直导线通以电流I =I 0sin ωt ,和直导线在同一平面内有一矩形线框,其短边与直导线平行,线框的尺寸及位置如题图13-13所示,且b /c =3;求: 1 直导线和线框的互感系数; 2 线框中的互感电动势;分析:互感系数由MI =φ计算,计算互感系数关键是确定穿过互感线圈的磁通量; 解:1 无限长直导线产生的磁场02IB r μπ=;取矩形线框的正法线方向为垂直纸面向里,通过矩形线框的磁通量为d d d ln ln 3bcSIIa x a xxxIa Ia b c μμΦμμ0000==-2π2π==2π2π⎰⎰⎰S B∴ 0ln 32aM IμΦ==π2线框中的互感电动势00ln 3d cos d 2i a I IMt t μωεω=-=-πi ε为正时,电动势的方向沿顺时针绕向;i ε为负时,电动势的方向沿逆时针绕向;13-14 一圆环,环管横截面的半径为a ,中心线的半径为R Ra ;有两个彼此绝缘的导线圈题图13-12 题图13-13都均匀地密绕在环上,一个N 1匝,另一个N 2匝,求: 1两线圈的自感L 1和L 2; 2两线圈的互感M ; 3M 与L 1和L 2的关系; 分析:由于Ra ,环中的磁感应强度可视为均匀;设两个线圈通有电流1I 、2I ,求出穿过螺线管线圈的磁通链数,进而求出自感、互感系数;解:1设N 1匝螺绕管线圈中通有电流I 1,由于中心线的半径R 环管横截面的半径a ,所以螺绕管内的磁场01112N I B Rμ=π,通过螺绕管线圈的磁通链数为222011011111122N I N a N B S N a I RRμμψ==π=πN 1匝螺绕管线圈自感系数:22011112N a L I Rμψ==同理,N 2匝螺绕管线圈自感系数:22022222N a L I Rμψ==2N 1匝螺绕管线圈产生的磁场B 1,通过N 2匝螺绕管线圈的磁通链数为2201101221212122N I N N a N B S N a I RRμμψ==π=π两线圈的互感20122112N N a M I Rμψ==3M 与L 1和L 2的关系22220120222N N a N aM RRμμ===13-15 一圆柱体长直导线,均匀地通有电流I ,证明导线内部单位长度储存的磁场能量为2m 0/(16)W I μ=π设导体的相对磁导率r 1μ≈;分析:均匀通有电流的长直导线,其内部和外部均存在磁场,且磁场分布呈轴对称性;据题意,只需求得单位长度导线内所储存的磁能,因此根据磁能密度公式,求得体元内的磁能,然后对圆柱内部的磁能进行积分即可;解:设圆柱形导体的半径为R .由安培环路定律可得长直导线内的磁场02,2rB I R μ=π r<R导线内的磁能密度222200m 2240012228r I r B w I R R μμμμ⎛⎫===⎪ππ⎝⎭在导线内取单位长度的同轴薄圆柱筒体元d 2d V r r =π 其磁能为 230m m 4d d d 4I W w V r r R μ==π单位长度导体柱内储存的磁场能量为22300m m 4d d 416RI I W W r r R μμ===ππ⎰⎰13-16 平行板电容器的电容为C=μF,两板上的电压变化率为dU/dt =×105V/s,则该平行板电容器中的位移电流为多少;分析:根据平行板电容器的性质,平行板间为均匀电场,电位移D 均匀分布,由平行板电容器场强与电压关系式,求出电位移通量ψ与电压U 的关系,并求出位移电流; 解:设平行板电容器的极板面积S 、间距d ,其间电位移通量为00U DS ES S dψεε=== 对平行板电容器,其电容为0SC dε=,代入上式得CU ψ= 位移电流为65d d d 2010 1.5103A d d UI C t tψ--===⨯⨯⨯= 13-17 一平行板电容器,极板是半径为R 的两圆形金属板,极板间为空气,此电容器与交变电源相接,极板上电量随时间变化的关系为q =q 0sin ωt ω为常量,忽略边缘效应,求: 1电容器极板间位移电流及位移电流密度;2极板间离中心轴线距离为rr <R 处的b 点的磁场强度H 的大小;3当/4t ω=π时,b 点的电磁场能量密度即电场能量密度与磁场能量密度之和; 分析:根据电流的连续性,电容器极板间位移电流等于传导电流求解位移电流;忽略边缘效应,极板间位移电流均匀分布求解位移电流密度;根据全电流安培环路定理求出磁场强度极板间的磁场强度;由极板间电场强度、磁场强度可求得电磁场能量密度; 解:1电容器极板间位移电流d 00d cos cos d UI CCU t q t tωωωω=== 或由电流连续性得:0cos d dqI q t dtωω== 位移电流密度02cos d d I q t S R ωωδπ== 2以中心轴线为圆心,过b 点作一半径为rr <R 的圆为回路,由全电流安培环路定理'd LH dl I =⎰,有2202cos 2d q t H r r r R ωωπδπππ==解得02cos 2q r tH Rωωπ=3 t ω=π/4时,0022cos 24q rrH R Rωπωππ/4== 0022000sin /412q E R R πσεεππε=== b 点的电磁场能量密度22222000024012244e mw w w E H q r R εμμωπε=+⎛⎫=+=+ ⎪⎝⎭13-18 由一个电容C =μF 的电容器和一个自感为L =10mH 的线圈组成的LC 电路,当电容器上电荷的最大值Q=×10-5C 时开始作无阻尼自由振荡;试求 1电场能量和磁场能量的最大值;2当电场能量和磁场能量相等时,电容器上的电荷量; 分析:由电容器储能,自感磁能,求电场能量,磁场能量;解:1由初始条件可知,电磁振荡的初相位0ϕ=.所以电容器上的电量振荡表达式为0cos q Q t ω=自感线圈上的电流振荡表达式为0sin dqI Q t dtωω==- 系统固有振动角频率ω=由于电场能量为2220cos 22e Q Q W t C Cω==,所以电场能量的最大值为 240 4.510J 2eMAXQ W C-==⨯ 由于磁场能量为2220sin 22m LI LI W t ω==,所以磁场能量最大值为 22400 4.510J 22mMAXLI Q W C-===⨯电场能量和磁场能量的最大值相同,都与系统总能量相等;2 电场能量和磁场能量相等时,e m W W = 解得2cos 2t ω=±所以电容器上的电荷量为5024.310C 2q Q -=±=±⨯ 13-19 一个沿负z 方向传播的平面电磁波,其电场强度沿x 方向,传播速度为c ;在空间某点的电场强度为300cos 2V /m 3x E vt ππ⎛⎫=+ ⎪⎝⎭试求在同一点的磁场强度表达式,并用图表示电场强度和传播速度之间相互关系;分析:根据电场强度与磁场强度的定量关系可得该点的磁场强度; 解:由于平面电磁波沿负z 方向传播,某点电场强度E 的振动方向沿x 轴正方向,根据电场强度、磁场强度和传播方向三者满足右旋关系,则该点磁场强度的振动方向沿负y 轴方向;由此,根据电场强度与磁场强度的定量关系式可得该点的磁场强度表示式为000.8cos 2A/m 3y x H E vt εππμ⎛⎫=-=-+ ⎪⎝⎭ 用坡印廷矢量S 的方向表示电磁波的传播方向;电场强度、磁场强度和电磁波的传播方向坡印廷矢量三者满足关系S E H =⨯;题13-19解图。
习题答案(第13章)
第13章思考与练习1.连接的主要作用是什么?分为哪几种方法?答:连接是将两个或两个以上的零件连合成一体的结构。
为了便于机器的制造、安装、维修等,常采用不同的连接方法将零、部件合成一整体。
连接分为三大类。
(1)不可拆连接,如焊连接、铆钉连接、胶接等。
(2)可拆连接,如键连接、销连接和螺纹连接等。
(3)过盈配合连接2.键连接的主要作用是什么?答:主要用于轴和轴上零件之间的轴向固定,有的还能实现轴零件的轴向固定或轴向滑动。
3.圆头、方头及单圆头普通平键各有何优、缺点?分别适用于什么场合?轴和轮毂孔上键槽是怎样加工的?答:A型平键键槽由立式键槽铣刀加工,键在槽中轴向固定较好,但键的头部侧面与轮毂上的键槽并不接触,因而键的圆头部分不能充分利用,而且轴上键槽端部的应力集中较大。
B型平键键槽用卧式键槽铣刀加工,避免了上述缺点,但对于尺寸较大的键,宜用紧定螺钉固定在轴上的键槽中,以防松动。
C型平键一般用于轴端。
4.如何选取普通平键的尺寸b×h×L?它的公称长度与工作长度之间有什么关系?答:根据轴的直径d从标准(见表17.1)中选择平键宽度b(高度h),键的长度L应略小于轮毂长度,并与标准中规定的长度系列相符。
公称长度L,工作长度l,其之间的关系为:A型键l=L-b,B型键l=L,C型键l=L-b/2。
5.普通平键连接有哪些失效形式?主要失效形式是什么?怎样进行强度校核?如强度不够,可采取哪些措施?答:普通平键连接属于静连接,其主要失效形式是连接中强度较弱零件的工作面被压溃。
导向平键和滑键连接属于动连接,其主要失效形式是工作面过度磨损。
故强度计算时,静连接校核挤压强度,动连接校核压力强度。
如果校核后键连接的强度不够,在不超过轮毂宽度的条件下,可适当增加键的长度,但键的长度一般不应超过2.25d,否则载荷沿键长方向的分布将很不均匀;或者相隔180°布置两个平键,因考虑制造误差引起的载荷分布不均,只能按1.5个键做强度校核。
机械设计基础习题解答第13章
13.1 为保证滑动轴承工作时润滑良好,油孔和油沟应设什么区域?
答:对开式轴瓦有承载区和非承载区,一般载荷向下,上瓦为非承载区,下瓦为承载区,润滑油应由非承载区进入,故上瓦顶部开有进油孔。
在轴瓦内表面,以进油口为对称位置,沿轴向、周向或斜向开有油沟,油经油沟分布到各个轴颈,以保证润滑油能流到轴瓦的整个工作表面。
油沟离轴瓦两端面应有段距离,不能开通,以减少端部泄油。
13.2 说明下列代号的含义:6209、3411、72315、81205。
答:6209:深沟球轴承,内径为45 mm,外径尺寸是02系列。
3411:圆锥滚子轴承,内径为55 mm,外径尺寸是04系列.
72315AC:角接触轴承,接触角25度,内径75 mm,外径尺寸是23系列。
81205:推力圆柱滚子轴承内径25mm,外径尺寸是12系列。
13.3 观察本书附图二、附图三的减速器,它们用到了那种轴承?轴承如何润滑与密封?
答:用到了圆锥滚子轴承。
润滑:。
采用了润滑油润滑。
润滑方式有油浴润滑(大齿轮)或飞溅润滑(其他齿轮,通过油沟收集油,经过轴承盖导入轴承)。
密封:毛毡圈式密封。
252。
第十三章表面化学习题解答解析
第 十 三 章 习 题1、在293K 时,把半径为1mm 的水滴分散成半径为1μm 的小水滴,问比表面增加了多少倍?表面吉布斯自由能增加了多少?完成该变化时,环境至少需做功若干?已知293K 时水的表面张力为0.07288N ·m -1。
解 设半径为1mm 水滴的表面积为A 1,体积为V 1,半径为R 1;半径为1μm 小水滴的表面积为A 2,体积为V 2,半径为R 2。
大水滴分散成小水滴后,设分散成小水滴后的数目为N ,则V 1=N V 2,所以32313434R N R ππ=, 9363321101010=⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=--m m R R N1000101010442639212212=⎪⎪⎭⎫ ⎝⎛==--m m R R N A A ππJ m N R NR m N A G A 442122110145.910145.9)(407288.0---⨯=⋅⨯=-⨯⋅=∆=∆πγJ G W A f 410145.9-⨯-=∆-=。
2、已知汞溶胶中粒子(设为球形)的直径为22nm ,每dm 3溶胶中含Hg 为8×10-5kg ,试问每1cm 3的溶胶中粒子数为多少?其总表面积为若干?把8×10-5kg 的汞滴分散成上述溶胶时表面吉布斯自由能增加多少?已知汞的密度为13.6kg ·dm -3,汞-水界面张力为0.375N ·m -1。
解 直径为22nm 的汞的粒子的体积为32439310576.5102223434m m R V --⨯=⎪⎭⎫ ⎝⎛⨯⨯==ππ每1cm 3的溶胶中粒子数N(为每1cm 3的溶胶中含汞的体积再除以直径为22nm 的汞的粒子的体积)123243333510054.110576.516.13101108⨯=⨯⨯⋅⨯⨯⋅⨯=-----m dm kg dm dm kg N232912210603.110222410054.14m m R N A --⨯=⎪⎭⎫ ⎝⎛⨯⨯⨯⨯=⋅=ππ总8×10-5kg 的汞滴的半径R 0,m dm dm kg kg V R 32313531001012.11012.14)]6.13/(108[343----⨯=⨯=⎪⎪⎭⎫ ⎝⎛⋅⨯⨯=⎪⎭⎫ ⎝⎛=ππJR NR m N A G A 420211095.5)(4375.0--⨯=-⨯⋅=∆=∆πγ。
第13章 简单国民收入决定理论习题
第十三章简单国民收入决定理论一、名词解释1、储蓄2、储蓄-投资恒等式3、边际消费倾向4、边际消费倾向递减5、平均消费倾向6、消费函数7、投资乘数8、政府支出乘数9、税收乘数10、平衡预算乘数11、对外贸易乘数12、节俭的悖论二、判断题1、自主消费是总需求的组成部分。
2、边际消费倾向和边际储蓄倾向之和等于1。
3、边际消费倾向越大,投资乘数越小。
4、投资增加导致总支出曲线向上移动,总需求曲线向右移动。
5、由于存在进口,将导致投资乘数和政府开支乘数降低。
6、凯恩斯宏观经济学认为,在短期,实际产出是由总需求决定的。
7、在价格固定不变的条件下,总需求曲线就是总支出曲线。
8、在简单国民收入决定模型中,总支出水平决定了均衡的国民收入。
该均衡国民收入正式社会满意的产出水平。
9、简单国民收入决定模型表明,只要增加总支出计划的水平,就能增加均衡国民收入水平。
10、总支出曲线表示总支出与国民收入之间的关系。
三、选择题(一)单项选择1、根据消费函数,引起消费增加的因素是()。
A.价格水平下降B.国民收入增加C.储蓄增加D.利率提高2、总支出曲线的斜率取决于()。
A.边际消费倾向B.平均消费倾向C.自主消费水平D.自主投资水平3、在下列选项中,投资乘数最大的是()。
A.边际消费倾向为0.6B.边际储蓄倾向为0.1C.边际消费倾向为0.4D.边际储蓄倾向为0.34、假定某国经济目前的均衡收入是5500亿元,如果政府需要将均衡收入提高到6000亿元,在边际消费倾向为0.9的情况下,政府购买支出应增加()。
A. 10亿元B. 20亿元C. 50亿元D. 100亿元5、自主消费增加对总支出曲线的影响是()。
A.向下移动,曲线变缓B.向下移动,斜率不变C.向上移动,曲线变陡D.向上移动,斜率不变6、当以下()发生时,经济将衰退。
A.乘数因边际消费倾向降低而变小B.自主支出增加C.乘数因边际消费倾向增加而变大D.自主支出减少7、乘数发挥作用的前提条件是()。
第十三章课后习题答案
第十三章 热力学基础13 -1 如图所示,bca 为理想气体绝热过程,b1a 和b2a 是任意过程,则上述两过程中气体作功与吸收热量的情况是( )(A) b1a 过程放热,作负功;b2a 过程放热,作负功(B) b1a 过程吸热,作负功;b2a 过程放热,作负功(C) b1a 过程吸热,作正功;b2a 过程吸热,作负功(D) b1a 过程放热,作正功;b2a 过程吸热,作正功分析与解 bca ,b1a 和b2a 均是外界压缩系统,由⎰=V p W d 知系统经这三个过程均作负功,因而(C)、(D)不对.理想气体的内能是温度的单值函数,因此三个过程初末态内能变化相等,设为ΔE .对绝热过程bca ,由热力学第一定律知ΔE =-W bca .另外,由图可知:|W b2a |>|W bca |>|W b1a |,则W b2a <W bca <W b1a .对b1a 过程:Q =ΔE +W b1a >ΔE +W bca =0 是吸热过程.而对b2a 过程:Q =ΔE +W b2a <ΔE +W bca =0 是放热过程.可见(A)不对,正确的是(B).13 -2 如图,一定量的理想气体,由平衡态A 变到平衡态B ,且它们的压强相等,即p A =p B ,请问在状态A 和状态B 之间,气体无论经过的是什么过程,气体必然( )(A) 对外作正功 (B) 内能增加(C) 从外界吸热 (D) 向外界放热分析与解 由p -V 图可知,p A V A <p B V B ,即知T A <T B ,则对一定量理想气体必有E B >E A .即气体由状态A 变化到状态B,内能必增加.而作功、热传递是过程量,将与具体过程有关.所以(A)、(C)、(D)不是必然结果,只有(B)正确.13 -3 两个相同的刚性容器,一个盛有氢气,一个盛氦气(均视为刚性分子理想气体).开始时它们的压强和温度都相同,现将3J 热量传给氦气,使之升高到一定的温度.若使氢气也升高同样的温度,则应向氢气传递热量为( )(A) 6J (B) 3 J (C) 5 J (D) 10 J分析与解 当容器体积不变,即为等体过程时系统不作功,根据热力学第一定律Q =ΔE +W ,有Q =ΔE .而由理想气体内能公式T R i M m E Δ2Δ=,可知欲使氢气和氦气升高相同温度,须传递的热量 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=e e e 222e 2H H H H H H H H /:i M m i M m Q Q .再由理想气体物态方程pV =mM RT ,初始时,氢气和氦气是具有相同的温度、压强和体积,因而物质的量相同,则3/5/:e 2e 2H H H H ==i i Q Q .因此正确答案为(C).13 -4 有人想像了四个理想气体的循环过程,则在理论上可以实现的为( )分析与解由绝热过程方程pVγ=常量,以及等温过程方程pV=常量,可知绝热线比等温线要陡,所以(A)过程不对,(B)、(C)过程中都有两条绝热线相交于一点,这是不可能的.而且(B)过程的循环表明系统从单一热源吸热且不引起外界变化,使之全部变成有用功,违反了热力学第二定律.因此只有(D)正确.13 -5一台工作于温度分别为327 ℃和27 ℃的高温热源与低温源之间的卡诺热机,每经历一个循环吸热2 000 J,则对外作功()(A) 2 000J(B) 1 000J(C) 4 000J(D) 500J分析与解热机循环效率η=W/Q吸,对卡诺机,其循环效率又可表为:η=1-T2 /T1,则由W /Q吸=1 -T2 /T1可求答案.正确答案为(B).13 -6根据热力学第二定律()(A) 自然界中的一切自发过程都是不可逆的(B) 不可逆过程就是不能向相反方向进行的过程(C) 热量可以从高温物体传到低温物体,但不能从低温物体传到高温物体(D) 任何过程总是沿着熵增加的方向进行分析与解 对选项(B):不可逆过程应是指在不引起其他变化的条件下,不能使逆过程重复正过程的每一状态,或者虽然重复但必然会引起其他变化的过程.对选项(C):应是热量不可能从低温物体自动传到高温物体而不引起外界的变化.对选项(D):缺少了在孤立系统中这一前提条件.只有选项(A)正确. 13 -7 位于委内瑞拉的安赫尔瀑布是世界上落差最大的瀑布,它高979m.如果在水下落的过程中,重力对它所作的功中有50%转换为热量使水温升高,求水由瀑布顶部落到底部而产生的温差.( 水的比热容c 为4.18×103 J·kg -1·K -1 ) 分析 取质量为m 的水作为研究对象,水从瀑布顶部下落到底部过程中重力作功W =mgh ,按题意,被水吸收的热量Q =0.5W ,则水吸收热量后升高的温度可由Q =mc ΔT 求得.解 由上述分析得mc ΔT =0.5mgh水下落后升高的温度ΔT =0.5gh /c =1.15K13 -8 如图所示,一定量的空气,开始在状态A ,其压强为2.0×105Pa ,体积为2.0 ×10-3m 3 ,沿直线AB 变化到状态B 后,压强变为1.0 ×105Pa ,体积变为3.0 ×10-3m 3 ,求此过程中气体所作的功.分析 理想气体作功的表达式为()⎰=V V p W d .功的数值就等于p -V 图中过程曲线下所对应的面积.解 S ABCD =1/2(BC +AD)×CD故 W =150 J13 -9 汽缸内储有2.0mol 的空气,温度为27 ℃,若维持压强不变,而使空气的体积膨胀到原体积的3s 倍,求空气膨胀时所作的功.分析 本题是等压膨胀过程,气体作功()1221d V V p V p W V V -==⎰,其中压强p 可通过物态方程求得.解 根据物态方程11RT pV v =,汽缸内气体的压强11/V RT p v = ,则作功为 ()()J 1097.92/31112112⨯==-=-=RT V V V RT V V p W v v 13 -10 一定量的空气,吸收了1.71×103J 的热量,并保持在1.0 ×105Pa 下膨胀,体积从1.0×10-2m 3 增加到1.5×10-2m 3 ,问空气对外作了多少功? 它的内能改变了多少?分析 由于气体作等压膨胀,气体作功可直接由W =p (V 2 -V 1 )求得.取该空气为系统,根据热力学第一定律Q =ΔE +W 可确定它的内能变化.在计算过程中要注意热量、功、内能的正负取值.解 该空气等压膨胀,对外作功为W =p (V 2-V 1 )=5.0 ×102J其内能的改变为Q =ΔE +W =1.21 ×103J13 -11 0.1kg 的水蒸气自120 ℃加热升温到140℃,问(1) 在等体过程中;(2) 在等压过程中,各吸收了多少热量? 根据实验测定,已知水蒸气的摩尔定压热容C p,m =36.21J·mol -1·K -1,摩尔定容热容C V,m =27.82J·mol -1·K -1. 分析 由量热学知热量的计算公式为T C Q m Δv =.按热力学第一定律,在等体过程中,T C E Q ΔΔm V ,V v ==;在等压过程中, T C E V p Q ΔΔd m p,p v =+=⎰.解 (1) 在等体过程中吸收的热量为J 101.3ΔΔ3m V,V ⨯===T C Mm E Q (2) 在等压过程中吸收的热量为 ()J 100.4Δd 312m p,p ⨯=-=+=⎰T T C M m E V p Q 13 -12 如图所示,在绝热壁的汽缸内盛有1mol 的氮气,活塞外为大气,氮气的压强为1.51 ×105 Pa ,活塞面积为0.02m 2 .从汽缸底部加热,使活塞缓慢上升了0.5m.问(1) 气体经历了什么过程? (2) 汽缸中的气体吸收了多少热量? (根据实验测定,已知氮气的摩尔定压热容C p ,m =29.12J·mol -1·K -1,摩尔定容热容C V,m =20.80J·mol -1·K -1 )分析 因活塞可以自由移动,活塞对气体的作用力始终为大气压力和活塞重力之和.容器内气体压强将保持不变.对等压过程,吸热T C Q Δm p,p v =.ΔT 可由理想气体物态方程求出.解 (1) 由分析可知气体经历了等压膨胀过程.(2) 吸热T C Q Δm p,p v =.其中ν =1 mol ,C p,m =29.12J·mol -1·K-1.由理想气体物态方程pV =νRT ,得ΔT =(p 2V 2 -p 1 V 1 )/R =p(V 2 -V 1 )/R =p· S· Δl /R则 J 105.293m p,p ⨯==pS ΔSΔl C Q13 -13 一压强为1.0 ×105Pa,体积为1.0×10-3m 3的氧气自0℃加热到100 ℃.问:(1) 当压强不变时,需要多少热量?当体积不变时,需要多少热量?(2) 在等压或等体过程中各作了多少功?分析 (1) 求Q p 和Q V 的方法与题13-11相同.(2) 求过程的作功通常有两个途径.① 利用公式()V V p W d ⎰=;② 利用热力学第一定律去求解.在本题中,热量Q 已求出,而内能变化可由()12m V ,V ΔT T C E Q -==v 得到.从而可求得功W .解 根据题给初态条件得氧气的物质的量为mol 1041.4/2111-⨯===RT V p Mm v 氧气的摩尔定压热容R C 27m p,=,摩尔定容热容R C 25m V,=. (1) 求Q p 、Q V等压过程氧气(系统)吸热()J 1.128Δd 12m p,p =-=+=⎰T T C E V p Q v等体过程氧气(系统)吸热()J 5.91Δ12m V ,V =-==T T C E Q v(2) 按分析中的两种方法求作功值解1 ① 利用公式()V V p W d ⎰=求解.在等压过程中,T R Mm V p W d d d ==,则得 J 6.36d d 21p ===⎰⎰T T T R Mm W W 而在等体过程中,因气体的体积不变,故作功为()0d V ==⎰V V p W② 利用热力学第一定律Q =ΔE +W 求解.氧气的内能变化为()J 5.91Δ12m V,V =-==T T C Mm E Q 由于在(1) 中已求出Q p 与Q V ,则由热力学第一定律可得在等压过程、等体过程中所作的功分别为J 6.36Δp p =-=E Q W0ΔV V =-=E Q W13 -14 如图所示,系统从状态A 沿ABC 变化到状态C 的过程中,外界有326J 的热量传递给系统,同时系统对外作功126J.当系统从状态C 沿另一曲线CA 返回到状态A 时,外界对系统作功为52J ,则此过程中系统是吸热还是放热?传递热量是多少?分析 已知系统从状态C 到状态A ,外界对系统作功为W CA ,如果再能知道此过程中内能的变化ΔE AC ,则由热力学第一定律即可求得该过程中系统传递的热量Q CA .由于理想气体的内能是状态(温度)的函数,利用题中给出的ABC 过程吸热、作功的情况,由热力学第一定律即可求得由A 至C 过程中系统内能的变化ΔE AC ,而ΔE AC =-ΔE AC ,故可求得Q CA .解 系统经ABC 过程所吸收的热量及对外所作的功分别为Q ABC =326J , W ABC =126J则由热力学第一定律可得由A 到C 过程中系统内能的增量ΔE AC =Q ABC -W ABC =200J由此可得从C 到A ,系统内能的增量为ΔE CA =-200J从C 到A ,系统所吸收的热量为Q CA =ΔE CA +W CA =-252J式中负号表示系统向外界放热252 J.这里要说明的是由于CA 是一未知过程,上述求出的放热是过程的总效果,而对其中每一微小过程来讲并不一定都是放热.13 -15 如图所示,一定量的理想气体经历ACB 过程时吸热700J ,则经历ACBDA 过程时吸热又为多少?分析 从图中可见ACBDA 过程是一个循环过程.由于理想气体系统经历一个循环的内能变化为零,故根据热力学第一定律,循环系统净吸热即为外界对系统所作的净功.为了求得该循环过程中所作的功,可将ACBDA 循环过程分成ACB 、BD 及DA 三个过程讨论.其中BD 及DA 分别为等体和等压过程,过程中所作的功按定义很容易求得;而ACB 过程中所作的功可根据上题同样的方法利用热力学第一定律去求.解 由图中数据有p A V A =p B V B ,则A 、B 两状态温度相同,故ACB 过程内能的变化ΔE CAB =0,由热力学第一定律可得系统对外界作功W CAB =Q CAB -ΔE CAB =Q CAB =700J在等体过程BD 及等压过程DA 中气体作功分别为()⎰==0d BD V V p W()⎰-=-==J 1200d 12A DA V V P V p W则在循环过程ACBDA 中系统所作的总功为J 500D A BD A CB -=++=W W W W负号表示外界对系统作功.由热力学第一定律可得,系统在循环中吸收的总热量为J 500-==W Q负号表示在此过程中,热量传递的总效果为放热.13 -16 在温度不是很低的情况下,许多物质的摩尔定压热容都可以用下式表示2m p,2--+=cT bT a C式中a 、b 和c 是常量,T 是热力学温度.求:(1) 在恒定压强下,1 mol 物质的温度从T 1升高到T 2时需要的热量;(2) 在温度T 1 和T 2 之间的平均摩尔热容;(3) 对镁这种物质来说,若C p ,m 的单位为J·mol -1·K -1,则a =25.7J·mol -1·K-1 ,b =3.13 ×10-3J·mol -1·K-2,c =3.27 ×105J·mol -1·K.计算镁在300K时的摩尔定压热容C p,m ,以及在200K和400K之间C p,m 的平均值. 分析 由题目知摩尔定压热容C p,m 随温度变化的函数关系,则根据积分式⎰=21d m p,p T T T C Q 即可求得在恒定压强下,1mol 物质从T 1 升高到T 2所吸收的热量Qp .故温度在T 1 至T 2之间的平均摩尔热容()12p m p,/T T Q C -=. 解 (1) 11 mol 物质从T 1 升高到T 2时吸热为()()()()11122122122m p,p d 2d 21----+-+-=-+==⎰⎰T T c T T b T T a T cT bT a T C Q T T (2) 在T 1 和T 2 间的平均摩尔热容为()()21212p m p,//T T c T T a T T Q C -+=-=(3) 镁在T =300 K 时的摩尔定压热容为-1-12m p,K mol J 9.232⋅⋅=-+=-cT bT a C镁在200 K 和400 K 之间C p ,m 的平均值为()-1-12112m p,K mol J 5.23/⋅⋅=-+=T T c T T a C13 -17 空气由压强为1.52×105 Pa ,体积为5.0×10-3m 3 ,等温膨胀到压强为1.01×105 Pa ,然后再经等压压缩到原来的体积.试计算空气所作的功. 解 空气在等温膨胀过程中所作的功为()()2111121T /ln /ln p p V p V V RT Mm W == 空气在等压压缩过程中所作的功为()⎰-==12d V V p V p W 利用等温过程关系p 1 V 1 =p 2 V 2 ,则空气在整个过程中所作的功为()J 7.55/ln 11122111=-+=+=V p V p p p V p W W W T p13 -18 如图所示,使1mol 氧气(1) 由A 等温地变到B ;(2) 由A 等体地变到C ,再由C 等压地变到B.试分别计算氧气所作的功和吸收的热量.分析 从p -V 图(也称示功图)上可以看出,氧气在AB 与ACB 两个过程中所作的功是不同的,其大小可通过()V V p W d ⎰=求出.考虑到内能是状态的函数,其变化值与过程无关,所以这两个不同过程的内能变化是相同的,而且因初、末状态温度相同T A =T B ,故ΔE =0,利用热力学第一定律Q =W +ΔE ,可求出每一过程所吸收的热量.解 (1) 沿AB 作等温膨胀的过程中,系统作功()()J 1077.2/ln /ln 31⨯===A B B A A B AB V V V p V V RT Mm W 由分析可知在等温过程中,氧气吸收的热量为Q AB =W AB =2.77 ×103J (2) 沿A 到C 再到B 的过程中系统作功和吸热分别为W ACB =W AC +W CB =W CB =p C (V B -V C )=2.0×103JQ ACB =W A CB =2.0×103 J13 -19 将体积为1.0 ×10-4m 3 、压强为1.01×105Pa 的氢气绝热压缩,使其体积变为2.0 ×10-5 m 3 ,求压缩过程中气体所作的功.(氢气的摩尔定压热容与摩尔定容热容比值γ=1.41)分析 可采用题13-13 中气体作功的两种计算方法.(1) 气体作功可由积分V p W d ⎰=求解,其中函数p (V )可通过绝热过程方程pV C γ= 得出.(2)因为过程是绝热的,故Q =0,因此,有W =-ΔE ;而系统内能的变化可由系统的始末状态求出.解 根据上述分析,这里采用方法(1)求解,方法(2)留给读者试解.设p 、V 分别为绝热过程中任一状态的压强和体积,则由γγpV V p =11得 γγV V p p -=11氢气绝热压缩作功为J 0.231d d 121211121-=⎥⎦⎤⎢⎣⎡-⎥⎦⎤⎢⎣⎡-===⎰⎰-V V V V γp V V V p V p W V V γγ 13 -20 试验用的火炮炮筒长为3.66 m ,内膛直径为0.152 m ,炮弹质量为45.4kg ,击发后火药爆燃完全时炮弹已被推行0.98 m ,速度为311 m·s -1 ,这时膛内气体压强为2.43×108Pa.设此后膛内气体做绝热膨胀,直到炮弹出口.求(1) 在这一绝热膨胀过程中气体对炮弹作功多少?设摩尔定压热容与摩尔定容热容比值为 1.2γ=.(2) 炮弹的出口速度(忽略摩擦).分析 (1) 气体绝热膨胀作功可由公式1d 2211--==⎰γV p V p V p W 计算.由题中条件可知绝热膨胀前后气体的体积V 1和V 2,因此只要通过绝热过程方程γγV p V p 2211=求出绝热膨胀后气体的压强就可求出作功值.(2) 在忽略摩擦的情况下,可认为气体所作的功全部用来增加炮弹的动能.由此可得到炮弹速度.解 由题设l =3.66 m,D =0.152 m ,m =45.4 kg ,l 1=0.98 m ,v 1=311 m·s -1 ,p 1 =2.43×108Pa ,γ=1.2.(1) 炮弹出口时气体压强为()()Pa 1000.5//7112112⨯===γγl l p V V p p 气体作功J 1000.54π11d 6222112211⨯=--=--==⎰D γl p l p γV p V p V p W (2) 根据分析2122121v v m m W -=,则 -121s m 563⋅=+=v 2W/m v13 -21 1mol 氢气在温度为300K,体积为0.025m 3 的状态下,经过(1)等压膨胀,(2)等温膨胀,(3)绝热膨胀.气体的体积都变为原来的两倍.试分别计算这三种过程中氢气对外作的功以及吸收的热量.分析 这三个过程是教材中重点讨论的过程.在p -V 图上,它们的过程曲线如图所示.由图可知过程(1 ) 作功最多, 过程( 3 ) 作功最少.温度T B >T C >T D ,而过程(3) 是绝热过程,因此过程(1)和(2)均吸热,且过程(1)吸热多.具体计算时只需直接代有关公式即可.解 (1) 等压膨胀()()J 1049.23⨯==-=-=A A B AA AB A p RT V V V RT V V p W v()J 1073.8273,,⨯===-=+=A A m p A B m p p p T R T C T T C E ΔW Q v v (2) 等温膨胀 J 1073.12ln /3⨯===A A RT V W C T vRTlnV对等温过程ΔE =0,所以J 1073.13⨯==T T W Q(3) 绝热膨胀T D =T A (V A /V D )γ-1=300 ×(0.5)0.4=227.4K对绝热过程a 0Q =,则有 ()()J 1051.125Δ3,⨯=-=-=-=D A D A m V a T T R T T C E W v 13 -22 绝热汽缸被一不导热的隔板均分成体积相等的A 、B 两室,隔板可无摩擦地平移,如图所示.A 、B 中各有1mol 氮气,它们的温度都是T0 ,体积都是V0 .现用A 室中的电热丝对气体加热,平衡后A 室体积为B 室的两倍,试求(1) 此时A 、B 两室气体的温度;(2) A 中气体吸收的热量.分析 (1) B 室中气体经历的是一个绝热压缩过程,遵循绝热方程TVγ-1 =常数,由此可求出B 中气体的末态温度TB .又由于A 、B 两室中隔板可无摩擦平移,故A 、B 两室等压.则由物态方程pV A =νRT A 和pV B =νRT B 可知T A =2T B .(2) 欲求A 室中气体吸收的热量,我们可以有两种方法.方法一:视A 、B 为整体,那么系统(汽缸)对外不作功,吸收的热量等于系统内能的增量.即QA =ΔE A +ΔE B .方法二:A 室吸热一方面提高其内能ΔE A ,另外对“外界”B 室作功WA.而对B 室而言,由于是绝热的,“外界” 对它作的功就全部用于提高系统的内能ΔEB .因而在数值上W A =ΔE B .同样得到Q A =ΔE A +ΔE B . 解 设平衡后A 、B 中气体的温度、体积分别为T A ,T B 和V A ,V B .而由分析知压强p A =p B =p .由题已知⎩⎨⎧=+=022V V V V V B A B A ,得⎩⎨⎧==3/23/400V V V V BA (1) 根据分析,对B 室有B γB γT V T V 1010--=得 ()0010176.1/T T V V T γB B ==-;0353.2T T T B A == (2) ()()0007.312525ΔΔT T T R T T R E E Q B A A A A =-+-=+= 13-23 0.32 kg 的氧气作如图所示的ABCDA 循环,V 2 =2V 1 ,T 1=300K,T 2=200K,求循环效率.分析 该循环是正循环.循环效率可根据定义式η=W /Q 来求出,其中W 表示一个循环过程系统作的净功,Q 为循环过程系统吸收的总热量. 解 根据分析,因AB 、CD 为等温过程,循环过程中系统作的净功为()()()J 1076.5/ln /ln 32121211⨯=-==+=V V T T R M m V V RT Mm W W W CD AB由于吸热过程仅在等温膨胀(对应于AB 段)和等体升压(对应于DA 段)中发生,而等温过程中ΔE =0,则AB AB W Q =.等体升压过程中W =0,则DA DA E Q Δ=,所以,循环过程中系统吸热的总量为()()()()J 1081.325/ln /ln Δ42112121,121⨯=-+=-+=+=+=T T R M m V V RT Mm T T C M m V V RT Mm E W Q Q Q m V DAAB DA AB 由此得到该循环的效率为 %15/==Q W η13 -24 图(a)是某单原子理想气体循环过程的V -T 图,图中V C =2V A .试问:(1) 图中所示循环是代表制冷机还是热机? (2) 如是正循环(热机循环),求出其循环效率.分析 以正、逆循环来区分热机和制冷机是针对p -V 图中循环曲线行进方向而言的.因此,对图(a)中的循环进行分析时,一般要先将其转换为p -V 图.转换方法主要是通过找每一过程的特殊点,并利用理想气体物态方程来完成.由图(a)可以看出,BC 为等体降温过程,CA 为等温压缩过程;而对AB 过程的分析,可以依据图中直线过原点来判别.其直线方程为V =CT ,C 为常数.将其与理想气体物态方程pV =m/MRT 比较可知该过程为等压膨胀过程(注意:如果直线不过原点,就不是等压过程).这样,就可得出p -V 图中的过程曲线,并可判别是正循环(热机循环)还是逆循环(制冷机循环),再参考题13-23的方法求出循环效率.解 (1) 根据分析,将V -T 图转换为相应的p -V 图,如图(b)所示.图中曲线行进方向是正循环,即为热机循环.(2) 根据得到的p -V 图可知,AB 为等压膨胀过程,为吸热过程.BC 为等体降压过程,CA 为等温压缩过程,均为放热过程.故系统在循环过程中吸收和放出的热量分别为()A B m p T T C M m Q -=,1 ()()A C A A B m V V V RT Mm T T C M m Q /ln ,2+-= CA 为等温线,有T A =T C ;AB 为等压线,且因V C =2V A ,则有T A =T B /2.对单原子理想气体,其摩尔定压热容C p ,m =5R/2,摩尔定容热容C V ,m =3R/2.故循环效率为()()3/125/2ln 2312/5/2ln 321/112=+-=⎥⎦⎤⎢⎣⎡+-=-=A A A T T T Q Q η 13 -25 一卡诺热机的低温热源温度为7℃,效率为40%,若要将其效率提高到50%,问高温热源的温度需提高多少?解 设高温热源的温度分别为1T '、1T '',则有12/1T T η'-=', 12/1T T η''-=''其中T 2 为低温热源温度.由上述两式可得高温热源需提高的温度为K 3.931111Δ211=⎪⎪⎭⎫ ⎝⎛'--''-='-''=T ηηT T T 13 -26 一定量的理想气体,经历如图所示的循环过程.其中AB 和CD 是等压过程,BC 和DA 是绝热过程.已知B 点温度T B =T 1,C 点温度T C =T 2.(1) 证明该热机的效率η=1-T 2/T 1 ,(2) 这个循环是卡诺循环吗?分析 首先分析判断循环中各过程的吸热、放热情况.BC 和DA 是绝热过程,故Q BC 、Q DA 均为零;而AB 为等压膨胀过程(吸热)、CD 为等压压缩过程(放热),这两个过程所吸收和放出的热量均可由相关的温度表示.再利用绝热和等压的过程方程,建立四点温度之间的联系,最终可得到求证的形式. 证 (1) 根据分析可知 ()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=---=---=-=B A C D B C A B D CA B m p C D m p AB CD T T T T T T T T T T T T C MT T C M m Q Q η1/11111,, (1) 与求证的结果比较,只需证得BA C D T T T T = .为此,对AB 、CD 、BC 、DA 分别列出过程方程如下V A /T A =V B /T B (2)V C /T C =V D /T D (3) C γC B γB T V T V 11--= (4)A γA D γD T V T V 11--= (5)联立求解上述各式,可证得η=1-T C /T B =1-T 2/T 1(2) 虽然该循环效率的表达式与卡诺循环相似,但并不是卡诺循环.其原因是:① 卡诺循环是由两条绝热线和两条等温线构成,而这个循环则与卡诺循环不同;② 式中T 1、T 2的含意不同,本题中T 1、T 2只是温度变化中两特定点的温度,不是两等温热源的恒定温度.13 -27 一小型热电厂内,一台利用地热发电的热机工作于温度为227℃的地下热源和温度为27℃的地表之间.假定该热机每小时能从地下热源获取1.8 ×1011J的热量.试从理论上计算其最大功率为多少?分析 热机必须工作在最高的循环效率时,才能获取最大的功率.由卡诺定理可知,在高温热源T 1和低温热源T 2之间工作的可逆卡诺热机的效率最高,其效率为η=1-T 2/T 1 .由于已知热机在确定的时间内吸取的热量,故由效率与功率的关系式Q pt Q W η//==,可得此条件下的最大功率.解 根据分析,热机获得的最大功率为()-1712s J 100.2//1/⋅⨯=-==t Q T T t Q ηp13 -28 有一以理想气体为工作物质的热机,其循环如图所示,试证明热()()1/1/12121---=p p V V γη 分析 该热机由三个过程组成,图中AB 是绝热过程,BC 是等压压缩过程,CA 是等体升压过程.其中CA 过程系统吸热,BC 过程系统放热.本题可从效率定义CA BC Q Q Q Q η/1/112-=-=出发,利用热力学第一定律和等体、等压方程以及γ=C p,m 桙C V,m 的关系来证明.证 该热机循环的效率为CA BC Q Q Q Q η/1/112-=-=其中Q BC =m /M C p,m (T C -T B ),Q CA =m/M C V,m (T A -T C ),则上式可写为1/1/11---=---=C A CB C A B C T T T T γT T T T γη 在等压过程BC 和等体过程CA 中分别有T B /V 1 =T C /V 2,T A /P 1 =T C /P 2,代入上式得()()1/1/12121---=p p V V γη 13 -29 如图所示为理想的狄赛尔(Diesel)内燃机循环过程,它由两绝热线AB 、CD 和等压线BC 及等体线DA 组成.试证此内燃机的效率为()()()1//1/12312123---=-V V V V γV V ηγγ证 求证方法与题13-28相似.由于该循环仅在DA 过程中放热、BC 过程中吸热,则热机效率为 ()()B C AD B C m p A D m V BCDA T T T T γT T C M T T C M m Q Q η---=---=-=111/1,, (1) 在绝热过程AB 中,有1211--=γB γA V T V T ,即()121//-=γA B V V T T (2)在等压过程BC 中,有23//V T V T B C =,即23//V V T T B C = (3)再利用绝热过程CD,得1311--=γC γD V T V T (4)解上述各式,可证得()()()1//1/12312123---=-V V V V γV V ηγγ 13 -30 如图所示,将两部卡诺热机连接起来,使从一个热机输出的热量,输入到另一个热机中去.设第一个热机工作在温度为T 1和T 2的两热源之间,其效率为η1 ,而第二个热机工作在温度为T 2 和T 3 的两热源之间,其效率为η2.如组合热机的总效率以η=(W 1 +W 2 )/Q 1 表示.试证总效率表达式为η=(1 -η1 )η2 +η1 或 η=1 -T 3/T 1分析 按效率定义,两热机单独的效率分别为η1=W 1 /Q 1和η2=W 2 /Q 2,其中W 1 =Q 1-Q 2 ,W 2 =Q 2-Q 3 .第一个等式的证明可采用两种方法:(1) 从等式右侧出发,将η1 、η2 的上述表达式代入,即可得证.读者可以一试.(2) 从等式左侧的组合热机效率η=(W 1 +W 2 )/Q 1出发,利用η1、η2的表达式,即可证明.由于卡诺热机的效率只取决于两热源的温度,故只需分别将两个卡诺热机的效率表达式η1=1-T 2 /T 1 和η2=1-T 3 /T 2 代入第一个等式,即可得到第二个等式.证 按分析中所述方法(2) 求证.因η1=W 1 /Q 1 、η2=W 2 /Q 2 ,则组合热机效率12211211121Q Q ηηQ W Q W Q W W η+=+=+= (1) 以Q 2 =Q 1-W 1 代入式(1) ,可证得η=η1 +η2 (1-η1 ) (2) 将η1=1-T 2 /T 1 和η2=1-T 3 /T 2代入式(2),亦可证得η=1-T 2 /T 1 +(1-T 3 /T 2 )T 2 /T 1 =1-T 3 /T 113 -31 在夏季,假定室外温度恒定为37℃,启动空调使室内温度始终保持在17 ℃.如果每天有2.51 ×108 J 的热量通过热传导等方式自室外流入室内,则空调一天耗电多少? (设该空调制冷机的制冷系数为同条件下的卡诺制冷机制冷系数的60%)分析 耗电量的单位为kW·h ,1kW·h =3.6 ×106J.图示是空调的工作过程示意图.因为卡诺制冷机的制冷系数为212T T T e k -=,其中T 1为高温热源温度(室外环境温度),T 2为低温热源温度(室内温度).所以,空调的制冷系数为e =e k · 60% =0.6 T 2/( T 1 -T 2 )另一方面,由制冷系数的定义,有e =Q 2 /(Q 1 -Q 2 )其中Q 1为空调传递给高温热源的热量,即空调向室外排放的总热量;Q 2是空调从房间内吸取的总热量.若Q ′为室外传进室内的热量,则在热平衡时Q 2=Q ′.由此,就可以求出空调的耗电作功总值W =Q 1-Q 2 .解 根据上述分析,空调的制冷系数为7.8%60212=-=T T T e在室内温度恒定时,有Q 2=Q ′.由e =Q 2 /(Q 1-Q 2 )可得空调运行一天所耗电功W =Q 1-Q 2=Q 2/e =Q ′/e =2.89×107=8.0 kW·h13 -32 一定量的理想气体进行如图所示的逆向斯特林循环(回热式制冷机中的工作循环),其中1→2为等温(T 1 )压缩过程,3→4为等温(T 2 )膨胀过程,其他两过程为等体过程.求证此循环的制冷系数和逆向卡诺循环制冷系数相等.(这一循环是回热式制冷机中的工作循环,具有较好的制冷效果.4→1过程从热库吸收的热量在2→3过程中又放回给了热库,故均不计入循环系数计算.)证明 1→2 过程气体放热2111lnV V RT Q v = 3→4 过程气体吸热 2122lnV V RT Q v = 则制冷系数 e =Q 2 /(Q 1-Q 2 )= T 2/( T 1-T 2 ).与逆向卡诺循环的制冷系数相同.13 -33 物质的量为ν的理想气体,其摩尔定容热容C V,m =3R/2,从状态A(p A ,V A ,T A )分别经如图所示的ADB 过程和ACB 过程,到达状态B(p B ,V B ,T B ).试问在这两个过程中气体的熵变各为多少? 图中AD 为等温线.分析 熵是热力学的状态函数,状态A 与B 之间的熵变ΔSAB 不会因路径的不同而改变.此外,ADB 与ACB 过程均由两个子过程组成.总的熵变应等于各子过程熵变之和,即DB AD AB S S S ΔΔΔ+=或CB AC AB S S S ΔΔΔ+=. 解 (1) ADB 过程的熵变为()()D B p,m A D B D D A T BD P D A T DBAD AB T T C V V T T C T W T Q T Q S S S /ln /ln /d /d /d /d ΔΔΔm p,v vR v +=+=+=+=⎰⎰⎰⎰ (1)在等温过程AD 中,有T D =T A ;等压过程DB 中,有V B /T B =V D /T D ;而C p ,m =C V ,m +R ,故式(1)可改写为()()()()A B A B A B p,m A B B D ADB V T V V V T C V T V T S /ln 23/ln /ln /ln ΔvR vR v vR +=+=(2) ACB 过程的熵变为()()C B V,m A C p,m CB AC BA ACB T TC V T C S S Q/T S /ln /ln ΔΔd Δv v +=+==⎰ (2)利用V C =V B 、p C =p A 、T C /V C =T A /V A 及T B /p B =T C /p C ,则式(2)可写为()()()()()()()A B A B A A B B V,m A B A B A B V,m ACB V T V V V p V p C V V p p V V R C S /ln 23/ln /ln /ln /ln /ln ΔvR vR v vR v v +=+=++=通过上述计算可看出,虽然ADB 及ACB 两过程不同,但熵变相同.因此,在计算熵变时,可选取比较容易计算的途径进行.13 -34 有一体积为2.0 ×10-2m 3的绝热容器,用一隔板将其分为两部分,如图所示.开始时在左边(体积V 1 =5.0 ×10-3m 3)一侧充有1mol 理想气体,右边一侧为真空.现打开隔板让气体自由膨胀而充满整个容器,求熵变.分析 在求解本题时,要注意⎰=BA T Q S d Δ 的适用条件.在绝热自由膨胀过程中,d Q =0,若仍运用上式计算熵变,必然有ΔS =0.显然,这是错误的结果.由于熵是状态的单值函数,当初态与末态不同时,熵变不应为零.出现上述错误的原因就是忽视了公式的适用条件. ⎰=BA T Q S d Δ 只适用于可逆过程,而自由膨胀过程是不可逆的.因此,在求解不可逆过程的熵变时,通常需要在初态与末态之间设计一个可逆过程,然后再按可逆过程熵变的积分式进行计算.在选取可逆过程时,尽量使其积分便于计算.解 根据上述分析,在本题中因初末态时气体的体积V 1 、V 2 均已知,且温度相同,故可选一可逆等温过程.在等温过程中,d Q =d W =p d V ,而VRT M m p =,则熵变为 ()1-12K J 52.11/ln d 1d d Δ12⋅=====⎰⎰⎰V V R M m V V R M m T V p T Q S V V。