人教版九年级数学上学期期中考试1(含答案)
最新人教版九年级数学初三上册期中考试卷第一学期数学期中试卷及答案
九年级数学第一学期期中考试附参考答案一、选择题(本题有10小题,每小题4分,共40分,请选出各题中唯一的正确选项,不选、多选、错选,均不得分) 1.抛物线3212-=x y 的顶点坐标是( ) A .(21,-3) B .(-3,0) C .(0,-3) D .(0,3) 2.在一个不透明的袋子中,有2个白球和2个红球,它们只有颜色上的区别,从袋子中随机地摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为( ) A .116B .18C .14D .123.如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( )A .6B .5C .4D .34.半径为2cm 的⊙O 中有长为的弦AB ,则弦AB 所对的圆周角度数为 ( )A .600B .900C . 600或1200D .450或9005.已知⊙O 的半径为5厘米,A 为线段OP 的中点,当OP=6厘米时,点A 与⊙O 的位置关系是( ) A .点A 在⊙O 内 B .点A 在⊙O 上 C6.如图,已知AB 是△ABC 外接圆的直径,∠A =35°,则∠B 的度数是() A .35°B .45°C .55°D . 65°7.若扇形的半径为6,圆心角为120°,则此扇形的弧长是( ) A .3π B .4π C .5π D .6π8.设A (﹣2,1y ),B (1,2y ),C (2,3y )是抛物线2(1)3y x =-++上的三点, 则123,,y y y 的大小关系为( )A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>9.已知二次函数2y ax bx c =++的图象如图,其对称轴1x =-,给出下列结果①24b ac >;(第6题)(第3题) AB(第10题)NM②0abc >;③20a b +=;④15c a >-,则正确的结论个数是( ) A . 1 B .2 C .3 D .410.如图,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN=30°,点B 为劣弧AN 的中点.点P 是直径MN 上一动点,则PA+PB 的最小值为( ) A . B . 1 C .2 D .2二、填空题(本题有6小题,每小题5分,共30分)11.抛物线2243y x x =-++的开口向_____,顶点坐标是________ .12.有两辆车按1,2编号,舟舟和嘉嘉两人可任意选坐一辆车,则两人同坐2号车的概率为 . 13.将抛物线3)3(22+-=x y 向右平移2个单位后,再向下平移5个单位,所得抛物线的顶点坐标为_________ .14.在半径为5cm 的圆内有两条互相平行的弦,一条弦长为8cm ,另一条弦长为6cm ,则两弦之间的距离为 _________ cm .15.参加一次同学聚会,每两人都握一次手,所有人共握了45次,若设共有x 人参加同学聚会。
人教版九年级上学期期中考试数学试卷及答案解析(共6套)
人教版九年级上学期期中考试数学试卷(一)一.选择题1、下列关于 X 的方程:①ax2+bx+c=0:②x'+ •!二6;③x—0;④x=3x2(5)(x+l )(x・1) =XMX中,一元二次方程的个数是()A、1个B、2个C、3个D、4个2、下列标志既是轴对称图形乂是中心对称图形的是()©c©D⅛⅛3、已知关于X的一元二次方程(a - 1) X2 - 2x÷l=0有两个不相等的实数根,则a的取值范围是()A、a>2B、a<2C、a<2 且D、&V ・ 24、若(2, 5)、(4, 5)是抛物线y=ax2+bx+c上的两个点,则它的对称轴是()B、x=lC、x=2DX x=33、一个等腰三角形的两条边长分别是方程X2 - 7x÷10=0的两根,则该等腰三角形的周长是()A、12B、9C、13D、12 或 96、如图,某小区规划在一个长30m、宽20m的长方形土地ABCD ±修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分钟花草,要使每一块花草的面积都为78cm',那么通道宽应设计成多少m?设通道宽为xm,则由题意列得方程为()B、(30 - 2x) (20 - 2x) =78C、(30∙2x) (20 ・ x) =6X78D、(30∙2x) (20 ・ 2x)二6X787、如图,∆ABC为OO的内接三角形,ZAOB=IOO o ,则ZACB的度数为(C、150°D、160°8、如图,在OO中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是()A、 AB丄CDB、ZAOB=4 ZACDC、AD= BDD、 Po二PD9、已知抛物线y二∙x'+2x∙3,下列判断正确的是()A、开口方向向上,y有最小值是・2B、抛物线与X轴有两个交点C、顶点坐标是(■ 1, -2)D、当x<l时,y随X增大而增大10、有下列四个命题中,其中正确的有()①圆的对称轴是直径;②等弦所对的弧相等;③圆心角相等所对的弦相等;④半径相等的两个半圆是等弧.A、4个B、3个C、2个D、1个11、将抛物线y二3x:向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为()A、y=3 (x+2)2+3B、y二3 (X ・ 2)2+3C、y二3 (x+2)2- 3D、y二3 (x・2)2- 312、下列说法正确的是()A、弦是直径B、平分弦的直径垂直弦C、长度相等的两条弧是等弧D、圆的对称轴有无数条,而对称中心只有一个13、已知抛物线y=a X=+bx+c的开口向下,顶点坐标为(2,・3),那么该抛物线有()A、最小值・3B、最大值・3C、最小值2D、最大值2二、填空题14、钟表的时针匀速旋转一周需要12小时,经过2小时,时针旋转了 _______ 度.15、___________________________________________ 一元二次方程x'・4x+6二O实数根的悄况是_____________________________ .16、如图,在RtΔABC 中,ZBAC二90° , ZB二60° , ΔAB, C,可以由 AABC 绕点A顺时针旋转90°得到(点B'与点B是对应点,点C'与点C是对应点), 连接CC',则ZCC' B'的度数是____________ .17、将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、18、已知二次函数y=aX=+bx+c的图象如图所示,有下列5个结论,Φabc<0;②2a+b=0:③b'∙4dc<0;④d+b+c>O;⑤a - b+c<O.其中正确的结论有20、某商店四月份的利润为6. 3万元,此后两个月进入淡季,利润均以相同的白分比下降,至六月份利润为5. 4万元.设下降的白分比为X,由题意列出方程21、__________________________________________________________ 已知In 是关于X的方程X2 - 2X- 3=0的一个根,则2m: - 4m= _______________ •22、下列图形中,①等腰三角形;②平行四边形;③等腰梯形;④圆;⑤正六边形;⑥菱形;⑦正五边形,是中心对称图形的有_______ (填序号)23、如图所示:点M、G、D在半圆O上,四边形OEDF. HMNo均为矩形,EF二b,NH=c,则b与C之间的大小关系是b ________ C (填<、二、>)三.解下列方程24、解下列方程(1)X2÷6X - 1=0(2)(2x+3) 2 - 25=0.四、解答题25、在方格纸上建立如图所示的平面直角坐标系,将AABO绕点0按顺时针方向旋转90° ,得ZU' B Z 0.(1)画岀旋转后的图形;(2)写出点A' , B,的坐标.26、如图,是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面宽8cm, 水的最大深度为2c∏b求该输水管的半径是多少?27、如图,在RtΔABC中,ZACB二90, AD平分ZBAC,过A, C, D三点的圆与斜边AB交于点E,连接DE.(2)若AC=6, CB=8,求Z∖ACD的外接圆的直径.28、如图,已知抛物线与X交于A ( - 1, 0)、E (3, 0)两点,与y轴交于点B(1)求抛物线的解析式:(2)设抛物线顶点为D,求四边形AEDB的面积.29、某体育用品丿占购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为X(X$60)元,销售量为y套.(1)求出y与X的函数关系式;(2)当销售单件为多少元时,月销售额为14000元?(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?答案解析部分—、<b >选择题〈/b>1、【答案】B【考点】一元二次方程的定义【解析】【解答】解:①当沪O时,ax2+bx+c=0不是一元二次方程;②X2+ ≥=6 是分式方程;③x'=()是一元二次方程;④x=3x'是一元二次方程⑤(x÷l) (x・1) =X Mx,整理后不含X的二次项,不是一元二次方程.故选:B.【分析】依据一元二次方程的定义求解即可.2、【答案】A【考点】轴对称图形【解析】【解答】解:A、是轴对称图形,是中心对称图形.故正确;B、是轴对称图形,不是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选:A.【分析】根据中心对称图形与轴对称图形的概念判断即可.3、【答案】C【考点】根的判别式【解析】【解答】解:△二4 - 4 (a - 1)二8 ・ 4a>0得:a<2.又a・l≠0Λa<2 且 &H1.故选C.【分析】利用一元二次方程根的判别式列不等式,解不等式求出&的取值范围. 4、【答案】D【考点】二次函数的性质【解析】【解答】解:因为点(2, 5)、(4, 5)在抛物线上,根据抛物线上纵坐标相等的两点,其横坐标的平均数就是对称轴,所以,对称轴X=故选D.【分析】由已知,点(2, 5)、(4, 5)是该抛物线上关于对称轴对称的两点, 所以只需求两对称点横坐标的平均数.5、【答案】A【考点】解一元二次方程-因式分解法,三角形三边关系,等腰三角形的性质【解析】【解答】解:X2- 7x÷10=0,(X ・ 2) (x ・ 5) =0,X ・ 2=0, X ・ 5=0,Xι~2, x:=o >①等腰三角形的三边是2, 2, 5V2+2<5,・・・不符合三角形三边关系定理,此时不符合题意;②等腰三角形的三边是2, 5, 5,此时符合三角形三边关系定理,三角形的周长是 2+5+5二12;即等腰三角形的周长是12.故选:A.【分析】求出方程的解,即可得出三角形的边长,再求出即可.6、【答案】C【考点】一元二次方程的应用【解析】【解答】解:设道路的宽为xm,由题意得:(30 ・ 2x) (20 ・ x)二6X78,故选C.【分析】设道路的宽为xm,将6块草地平移为一个长方形,长为(30∙2x) m, 宽为(20・x) m.根据长方形面积公式即可列方程(30・2x) (20・x)二6X78. 7、【答案】B【考点】圆周角定理【解析】【解答】解:在优弧AB上取点D,连接AD, BD,V ZAOB=IOO O ,Λ ZD= 4 ZAOB=50° ,・•・ZACB=I80° ・ ZD二130° .【分析】首先在优弧AB上取点D,连接AD, BD,然后由圆周角定理,求得ZD 的度数,乂山圆的内接四边形的性质,求得ZACB的度数.8、【答案】D【考点】垂径定理,圆心角、弧、弦的关系【解析】【解答】解:TP是弦AB的中点,CD是过点P的直径,・・・AB丄CD,兄沪云方,ZiAOB是等腰三角形,・•・ ZAoB二 2 ZAOP,Y ZAOP二 2 ZACD,・•・ ZAoB二 2 ZAOP二2 × 2 ZACD二4 ZACD.故选D.【分析】根据垂径定理及圆周角定理可直接解答.9、【答案】D【考点】二次函数的性质【解析】【解答】解:y- ■ x'+2x - 3= - (X-I) ^ - 2,a二・1,抛物线开口向下,对称轴为直线X二1,顶点坐标为(1, -2) , △二4・12二・8<0,抛物线与X轴没有交点,当x<l时,y随X的增大而增大. 故选:D. 【分析】根据二次函数解析式化为顶点式,判断抛物线的开口方向,计算出对称轴顶点坐标以及增减性判断得出答案即可.10、【答案】D【考点】命题与定理【解析】【解答】解:①圆的对称轴是圆的直径所在的直线,故本选项错误;②在同圆或等圆中,相等的弦所对的弧相等,故本选项错误;③在同圆或等圆中,相等的圆心角所对的弦相等,故本选项错误;④半径相等的两个半圆是等弧,故本选项正确;其中正确的有1个;故选D.【分析】根据轴对称图形的概念和弧、弦和圆心角之间的关系,分别对每一项进行分析即可得出答案.11、【答案】A【考点】二次函数图象与儿何变换【解析】【解答】解:由“上加下减”的原则可知,将抛物线y二3x'向上平移3 个单位所得抛物线的解析式为:y=3x2+3:IJI “左加右减”的原则可知,将抛物线y=3x2+3向左平移2个单位所得抛物线的解析式为:y=3 (x+2) 2+3.故选A.【分析】直接根据“上加下减,左加右减”的原则进行解答即可.12、【答案】D【考点】垂径定理【解析】【解答】解:A、直径是弦,但弦不一定是直径,选项错误;B、平分弦的直径垂直弦,被平分的弦不是直径,故选项错误;C、能重合的两个弧是等弧,选项错误;D、圆的对称轴有无数条,而对称中心只有一个,正确.故选D.【分析】根据弦的定义以及垂径定理、等弧的定义即可作出判断.13、【答案】B【考点】二次函数的最值【解析】【解答】解:因为抛物线开口向下和其顶点坐标为(2,・3),所以该抛物线有最大值・3.故选B.【分析】根据抛物线开口向下和其顶点坐标为(2,・3),可直接做出判断.二、<b >填空题<∕b>14、【答案】60【考点】生活中的旋转现象【解析】【解答】解:Y钟表上的时针匀速旋转一周的度数为360。
人教版九年级上册数学期中考试试卷及答案解析
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下列四个图形中,既是轴对称图形又是中心对称图形的有()A .1个B .2个C .3个D .4个2.若关于x 的一元二次方程2420x x a -+=有两个相等的实数根,则a 的值为()A .2B .-2C .4D .-43.下列函数:①23y =;②22y x =;③(35)y x x =-;④(12)(12)y x x =+-,是二次函数的有()A .1个B .2个C .3个D .4个4.下列语句中正确的是()A .长度相等的两条弧是等弧B .平分弦的直径垂直于弦C .相等的圆心角所对的弧相等D .经过圆心的每一条直线都是圆的对称轴5.当0ab >时,2y ax =与y ax b =+的图象大致是()A .B .C .D .6.用配方法解下列方程时,配方有错误的是()A .22990x x --=化为()21100x -=B .22740x x --=化为2781416x ⎛⎫-=⎪⎝⎭C .2890x x ++=化为()2+4=25x D .23-420x x -=化为221039x ⎛⎫-=⎪⎝⎭7.如图,将ABC ∆绕着点C 按顺时针方向旋转20︒,B 点落在'B 位置,A 点落在'A 位置,若''AC A B ⊥,则BAC ∠的度数是()A .50︒B .60︒C .70︒D .80︒8.如图,在⊙O 中,半径OC 与弦AB 垂直于点D ,且AB =8,OC =5,则CD 的长是A .3B .2.5C .2D .19.如图,正方形ABCD 的边长为5,点E 是AB 上一点,点F 是AD 延长线上一点,且BE =DF .四边形AEGF 是矩形,则矩形AEGF 的面积y 与BE 的长x 之间的函数关系式为()A .=5−B .=5−2C .=25−D .=25−210.二次函数y=ax 2+bx+c (a≠0)的图象如图所示,下列结论:①ac >0;②当x≥1时,y 随x 的增大而减小;③2a+b=0;④b 2-4ac <0;⑤4a-2b+c >0,其中正确的个数是()A .1B .2C .3D .411.如图,O 是ABC 的外接圆,连结OA 、OB ,且点C 、O 在弦AB 的同侧,若50ABO ∠= ,则ACB ∠的度数为()A .50B .45C .40D .3012.关于x 的一元二次方程9x 2-6x+k=0有两个不相等的实根,则k 的范围是()A .k 1<B .k 1>C .k 1≤D .k 1≥二、填空题13.⊙O 的半径为3cm ,点O 到点P 10cm,则点P_________.14.某工厂第一年的利润是40万元,第三年的利润是y 万元,则y 与平均年增长率x 之间的函数关系式是___________.15.如图,点C 为线段AB 上一点,将线段CB 绕点C 旋转,得到线段CD ,若DA ⊥AB ,AD=1,,则BC 的长为____.16.如图,平面直角坐标系中,□OABC 的顶点A 坐标为(6,0),C 点坐标为(2,2),若经过点P(1,0)的直线平分□OABC 的周长,则该直线的解析式为_______________.三、解答题17.按要求解下列一元二次方程(1)24870x x +-=(用配方法)(2)2+52=0x x -(用公式法)18.如图,AB =AC ,AB 是⊙O 的直径,⊙O 交BC 于点D ,DM ⊥AC 于点M.求证:DM 与⊙O 相切.19.要建一个如图所示的面积为300m2的长方形围栏,围栏总长50m,一边靠墙(墙长25m).(1)求围栏的长和宽;(2)能否围成面积为400m2的长方形围栏?如果能,求出该长方形的长和宽,如果不能请说明理由.20.某汽车租赁公司拥有20辆汽车.据统计,当每辆车的日租金为400元时,可全部租出;当每辆车的日租金每增加50元,未租出的车将增加1辆;公司平均每日的各项支出共4800元.设公司每日租出工辆车时,日收益为y元.(日收益=日租金收入一平均每日各项支出)(1)公司每日租出x辆车时,每辆车的日租金为元(用含x的代数式表示);(2)当每日租出多少辆时,租赁公司日收益最大?最大是多少元?(3)当每日租出多少辆时,租赁公司的日收益不盈也不亏?21.如图,在△ABC中,AB=AC=2,∠BAC=45°,△AEF是由△ABC绕点A按逆时针方向旋转得到的,连接BE、CF相交于点D.(1)求证:BE=CF;(2)请探究旋转角等于多少度时,四边形ABDF为菱形,证明你的结论;(3)在(2)的条件下,求CD的长.22.如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C (0,2).(1)将△ABC 以点C 为旋转中心旋转180°,画出旋转后对应的△C ;平移△ABC ,若A 的对应点的坐标为(0,-4),画出平移后对应的△;(2)若将△C 绕某一点旋转可以得到△,请直接写出旋转中心的坐标;(3)在轴上有一点P ,使得PA+PB 的值最小,请直接写出点P 的坐标.23.如图,四边形ABCD 内接于O ,AD ,BC 的延长线交于点E ,F 是BD 延长线上一点,1602CDE CDF ∠=∠=︒.()1求证:ABC 是等边三角形;()2判断DA ,DC ,DB 之间的数量关系,并证明你的结论.24.二次函数2y x bx c =++的图象经过点(1,-8),(5,0).(1)求b ,c 的值;(2)求出该二次函数图象的顶点坐标和对称轴.25.已知抛物线2y x bx c =++的图象如图所示,它与x 轴的一个交点的坐标为()1,0A -,与y轴的交点坐标为()0,3C -.(1)求抛物线的解析式及与x 轴的另一个交点B 的坐标;(2)根据图象回答:当x 取何值时,0y <?(3)在抛物线的对称轴上有一动点P ,求PA PB +的值最小时的点P 的坐标.参考答案1.C 【解析】试题解析:∵从左往右第二个图形不是中心对称图形,但是轴对称图形;第一、三、四个既是中心对称又是轴对称图形,∴四个图形中既是中心对称图形又是轴对称图形的有三个,故选C .2.A 【分析】根据一元二次方程根的判别式,即可求出a 的值.【详解】解:∵一元二次方程2420x x a -+=有两个相等的实数根,∴2(4)4120a ∆=--⨯⨯=,解得:2a =;故选择:A.【点睛】本题考查了一元二次方程根的判别式,解题的关键是掌握当△=0时,一元二次方程有两个相等的实数根.3.C 【分析】根据二次函数的定义,对每个函数进行判断,即可得到答案.【详解】解:①23y =是二次函数,正确;②22y x =不是二次函数,错误;③(35)y x x =-整理得253y x x =-+,是二次函数,正确;④(12)(12)y x x =+-整理得214y x =-,是二次函数,正确;∴一共有3个二次函数;故选择:C.【点睛】本题考查了二次函数的定义,解题的关键是掌握二次函数的定义.4.D 【详解】分析:根据垂径定理及逆定理以及圆的性质来进行判定分析即可得出答案.详解:A 、在同圆或等圆中,长度相等的两条弧是等弧;B 、平分弦(不是直径)的直径垂直于弦;C 、在同圆或等圆中,相等的圆心角所对的弧相等;D 、经过圆心的每一条直线都是圆的对称轴;故选D .点睛:本题主要考查的是圆的一些基本性质,属于基础题型.理解圆的性质是解决这个问题的关键.5.D 【分析】根据选项中的二次函数图象和一次函数图象,判断a 和b 的正负,选出正确的选项.【详解】A 选项,抛物线开口向上,0a >,一次函数过一、三、四象限,0a >,0b <,不满足0ab >,故错误;B 选项,抛物线开口向上,0a >,一次函数过一、二、四象限,0a <,0b >,不满足ab>0,故错误;C 选项,抛物线开口向下,0a <,一次函数过一、三、四象限,0a >,0b <,不满足ab>0,故错误;D 选项,抛物线开口向下,0a <,一次函数过二、三、四象限,0a <,0b <,满足ab>0,正确故选:D .【点睛】本题考查二次函数图象和一次函数图象与各项系数的关系,解题的关键是掌握根据函数图象判断各项系数正负的方法.6.C 【分析】根据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方分别进行配方,即可求出答案.【详解】A 、由原方程,得22990x x --=,等式的两边同时加上一次项系数2的一半的平方1,得()21100x -=;故本选项正确;B 、由原方程,得22740x x --=,等式的两边同时加上一次项系数−7的一半的平方,得,2781416x ⎛⎫-= ⎪⎝⎭,故本选项正确;C 、由原方程,得2890x x ++=,等式的两边同时加上一次项系数8的一半的平方16,得(x +4)2=7;故本选项错误;D 、由原方程,得3x 2−4x =2,化二次项系数为1,得x 2−43x =23等式的两边同时加上一次项系数−43的一半的平方169,得221039x⎛⎫-=⎪⎝⎭;故本选项正确.故选:C.【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.7.C【分析】由旋转可知∠BAC=∠A’,∠A’CA=20°,据此可进行解答.【详解】解:由旋转可知∠BAC=∠A’,∠A’CA=20°,由AC⊥A’B’可得∠BAC=∠A’=90°-20°=70°,故选择C.【点睛】本题考查了旋转的性质.8.C【解析】解:连接OA,设CD=x,∵OA=OC=5,∴OD=5﹣x,∵OC⊥AB,∴由垂径定理可知:AB=4,由勾股定理可知:52=42+(5﹣x)2,∴x=2,∴CD=2,故选C.点睛:本题考查垂径定理,解题的关键是熟练运用垂径定理以及勾股定理,本题属于基础题型.9.D【解析】∵BE=DF,BE=x(已知);∴DF=x;又∵AD=AB=5(已知),AF=AD+DF,AE=AB=BE(由图可得);∴AF=5+x,AE=5-x;∴S 长方形AEGF =AE ╳AF =(5+x)(5-x)=25-x 2;故选D 。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、单选题1.下列四个图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .2.将方程2410x x --=的左边变成平方的形式是()A .2(2)1x -=B .2(4)1x -=C .2(2)5x -=D .2(1)4x -=3.二次函数y=ax 2+bx+c 的图象如图所示,则该二次函数的顶点坐标为()A .(1,3)B .(0,1)C .(0,—3)D .(2,1)4.关于方程2450x x -+=的根的情况,下列说法正确的是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .无法判断5.在平面直角坐标系中,将点M (0,3-)绕原点顺时针旋转90°后得到的点的坐标为()A .(0,3-)B .(3,0)C .(3-,0)D .(0,3)6.如图,ABCDE 是正五边形,该图形绕它的中心至少旋转()可以跟自身重合。
A .60︒B .120︒C .75︒D .72︒7.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是()A .y =(x +2)2+1B .y =(x -2)2+1C .y =(x +2)2-1D .y =(x -2)2-18.关于x 的一元二次方程x 2+px +q =0的两根同为负数,则()A .p >0且q >0B .p >0且q <0C .p <0且q >0D .p <0且q <09.在同一坐标系内,一次函数y ax b =+与二次函数28y ax x b =++的图象可能是A .B .C .D .10.如图,已知△ABC 的顶点坐标分别为A(0,2),B(1,0),C(2,1).若二次函数y=x 2+bx+1的图像与阴影部分(含边界)一定有公共点,则实数b 的取值范围是()A .b≤-2B .b<-2C .b≥-2D .b>-2二、填空题11.已知点(2,1)在抛物线y=ax 2上,则此函数的开口方向___________12.若关于x 的一元二次方程(m ﹣2)x 2+x+m 2﹣4=0的一个根为0,则m 值是_____.13.在平面直角坐标系中,点P (—10,a )与点Q (b ,b+1)关于原点对称,则a+b=____14.二次函数y=ax 2+bx+c (a≠0)图象上部分点的坐标(x ,y )对应值列表如下:x…-3-2-101…y…-4-3-4-7-12…则该图象的对称轴是___________15.如图,在等腰直角三角形△ABC中,∠C=90°,AC=,将△ABC绕点B顺时针旋转60°得到△DBE,连接DC,则线段DC=_____________cm.三、解答题16.抛物线y=-x2+bx+c的部分图象如图所示,若y≥0,则x的取值范围是___________17.解方程(1)x2+2x—8=0(2)2x2+3x+1=018.在正方形网格中建立平面直角坐标系xOy,△ABC的三个顶点均在格点上,(1)画出△ABC关于点O的中心对称图形△A1B1C1(2)线段AC与线段A1C1的位置关系是______________19.王师傅开了一家商店,七月份盈利2500元,九月份盈利3600元,且每个月盈利的平均增长率都相等,求每月盈利的平均增长率.20.已知关于x的方程x2+5x﹣p2=0.(1)求证:无论p取何值,方程总有两个不相等的实数根;(2)设方程的两个实数根为x1、x2,当x1+x2=x1x2时,求p的值.21.如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.(1)求此抛物线的解析式;(2)求△BCD的面积.22.如图,P是等边三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A 逆时针旋转后,得到△P AB(1)点P与点P’之间的距离;(2)∠APB的度数.23.已知某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售的单价每降低1元,每天就多卖5件,但要求销售单价不得低于成本.(1)设降价x元,求出每天的销售利润y(元)与x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元时,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)24.如图,△ABC是边长为4的等边三角形,点D是线段BC的中点,∠EDF=120°,把∠EDF绕点D旋转,使∠EDF的两边分别与线段AB、AC交于点E、F.(1)当DF⊥AC时,求证:BE=CF;(2)在旋转过程中,BE+CF是否为定值?若是,求出这个定值;若不是,请说明理由;(3)在旋转过程中,连接EF,设BE=x,△DEF的面积为S,求S与x之间的函数解析式,并求S的最小值.25.已知:抛物线l1:y=—x2+bx+3交x轴于点A、B,(点A在点B的左侧),交y轴于点C,其对称轴为直线x=1,抛物线l2经过点A,与x轴的另一个交点为E(5,0),交y轴于点D(0,5—2)(1)求抛物线2l 的函数表达式;(2)P 为直线1x =上一动点,连接PA ,PC ,当PA PC =时,求点P 的坐标;(3)M 为抛物线2l 上一动点,过点M 作直线//MN y 轴,交抛物线1l 于点N ,求点M 自点A 运动至点E 的过程中,线段MN 长度的最大值.参考答案1.C【详解】解:A 、是中心对称图形,不是轴对称图形,故选项错误;B 、是轴对称图形,不是中心对称图形,故选项错误;C 、既是轴对称图形,又是中心对称图形,故选项正确;D 、是中心对称图形,不是轴对称图形,故选项错误.故选C.2.C【详解】2410x x --=2445x x +=-()225x -=故答案为:C .【点睛】本题考查了一元二次方程的转换问题,掌握配方法是解题的关键.3.D【解析】【分析】根据抛物线与x 轴的两个交点坐标确定对称轴后即可确定顶点坐标.【详解】解:观察图象发现图象与x 轴交于点(1,0)和(3,0),∴对称轴为2x =,∴顶点坐标为(2,1),故选:D .【点睛】本题考查了二次函数的性质及二次函数的图象的知识,解题的关键是根据交点坐标确定对称轴,难度不大.4.B【解析】【分析】根据一元二次方程根的判别式直接判断即可.【详解】解:关于方程2450x x -+=,∵1,4,5a b c ==-=,∴224(4)41540b ac -=--⨯⨯=-<,∴方程2450x x -+=没有实数根,故选:B .【点睛】本题主要考查一元二次方程根的判别式,熟知240b ac ->,有两个不相等的实数根;240b ac -=,有两个相等的实数根;24<0b ac -,没有实数根;是解题的关键.5.C【解析】【分析】根据旋转的性质即可确定点坐标.【详解】解:点(0,3)M -绕原点O 顺时针旋转90︒,得到的点的坐标为(3,0)-,故选:C .【点睛】本题考查了坐标与图形变化-旋转,解题的关键是掌握图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45︒,60︒,90︒,180︒.6.D【解析】【分析】根据正五边形的每个中心角相等且其和为360°即可得到结论.【详解】根据正五边形的性质,每个中心角的相等,则每个中心角的度数为360°÷5=72°,故该图形绕它的中心至少旋转72度可以跟自身重合.故选:D .【点睛】本题考查了图形的旋转及正多边形的性质,关键是抓住正多边形的中心角相等这一性质,问题即解决.7.B【解析】【分析】根据抛物线的平移规律“上加下减,左加右减”解答即可.【详解】将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的解析式是y =(x -2)2+1.故选B.本题考查了抛物线的平移规律,熟记抛物线的平移规律“上加下减,左加右减”是解决问题的关键.8.A【解析】【详解】试题解析:设x1,x2是该方程的两个负数根,则有x1+x2<0,x1x2>0,∵x1+x2=-p,x1x2=q∴-p<0,q>0∴p>0,q>0.故选A.9.C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一、三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.【点睛】=+在不同情况下所在本题考查了二次函数图象,一次函数的图象,应该熟记一次函数y kx b的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.10.C【解析】根据y=x 2+bx+1与y 轴交于点(0,1),且与点C 关于x=1对称,则对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,据此可求出b 的取值范围.【详解】当二次函数y=x 2+bx+1的图象经过点B (1,0)时,1+b+1=0.解得b=-2,故排除B 、D ;因为y=x 2+bx+1与y 轴交于点(0,1),所以(0,1)与点C 关于直线x=1对称,当对称轴x≤1时,二次函数y=x 2+bx+1与阴影部分一定有交点,所以-2b ≤1,解得b≥-2,故选C.【点睛】本题考查二次函数图象,解题的关键是利用特殊值法进行求解.11.向上【解析】【分析】根据二次函数图象上点的坐标特征,将点(2,1)代入抛物线方程,然后解关于a 的方程,求得a 的值,从而可以确定抛物线方程的二次项系数,即可以判断这条抛物线的开口方向.【详解】解:∵点(2,1)在抛物线y=ax 2上,∴点(2,1)满足抛物线方程y=ax 2,∴1=4a ,解得a =14;∴抛物线方程y =14x 2的二次项系数a =14>0,∴这条抛物线的开口方向向上.故答案是:向上.【点睛】本题考查了二次函数图象上点的坐标特征.经过图象上的某点时,该点一定满足该函数的关系式.12.-2【解析】【分析】根据一元二次方程的解的定义把x=0代入方法解得m=±2,然后根据一元二次方程的定义确定m 的值.【详解】把x=0代入方程(m-2)x 2+(2m-1)x+m 2-4=0得m 2-4=0,解得m=2或m=-2,而m-2≠0,所以m=-2.故答案为-2.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.13.1-【解析】【分析】根据两个点关于原点对称时,它们的坐标符号相反可得10b =,11a =-,进而可得a b +的值.【详解】解: 点(10,)P a -与点(,1)Q b b +关于原点对称,10b ∴=,111a b =--=-,11101a b ∴+=-+=-,故答案为:1-.【点睛】本题主要考查了两个点关于原点对称,解题的关键是掌握点的坐标的变化规律:点关于原点对称时,它们的坐标符号相反.14.2x =-【解析】【分析】根据二次函数的图象具有对称性和表格中的数据,可以计算出该函数图象的对称轴.【详解】解:由表格可得,当x 取-3和-1时,y 值相等,该函数图象的对称轴为直线3(1)22-+-==-x ,【点睛】本题考查二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的对称性解答.15.2##2-+【解析】【分析】连接CE,延长DC交AB于H,先证明CH⊥AB,由直角三角形的性质可求解.【详解】如图,连接CE,延长DC交AB于H,∵将△ABC绕点B顺时针旋转60°得到△DBE,∴∠ABD=∠CBE=60°,BC=BE=AC=DE,∠ACB=∠DEB=90°,∴△BCE是等边三角形,∠EDB=45°,∴CE=BC,∠CEB=60°,∴CE=DE,∠DEC=30°,∴∠EDC=∠ECD=75°,∴∠BDH=∠EDC−∠EDB=30°,∵∠BDH+∠DBA=90°,∴CH⊥AB,又∵∠ACB=90°,BC=AC=2cm,∴AB AC=4(cm),CH=AH=BH=2(cm),∵CH⊥AB,BH=2cm,∠BDH=30°,∴BD=2BH=4cm,=(cm),)(cm),∴DC=DH−CH=(【点睛】本题考查了旋转的性质,等边三角形的性质,等腰直角三角形的性质,直角三角形的性质,灵活运用这些性质解决问题是本题的关键.16.−3≤x≤1【解析】【分析】函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),即可求解.【详解】解:函数的对称轴为:x=−1,与x轴的一个交点坐标为(1,0),则另外一个交点坐标为:(−3,0),故:y≥0时,−3≤x≤1,故答案为:−3≤x≤1.【点睛】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点,及这些点代表的意义及函数特征.17.(1)x1=2,x2=-4(2)x1=-1,x2=-1.2【解析】【分析】(1)利用因式分解法即可求解;(2)利用因式分解法即可求解.【详解】(1)x2+2x—8=0(x-2)(x+4)=0∴x-2=0或x+4=0∴x1=2,x2=-4(2)2x2+3x+1=0(2x+1)(x+1)=0∴2x+1=0或x+1=0∴x1=-12,x2=-1.【点睛】此题主要考查一元二次方程的求解,解题的关键是熟知因式分解法的运用.18.(1)见解析;(2)平行【解析】【分析】(1)分别作出三顶点关于原点的对称点,再顺次连接即可得;(2)根据中心对称的性质,即可得出平行且相等的关系.【详解】A B C即为所求.解:(1)如图所示,△111(2)由中心对称的性质可知:线段AC与线段A1C1平行且相等,线段AC与线段A1C1的位置关系是平行,故答案是:平行.【点睛】本题考查了利用旋转变换作图、中心对称图形,解题的关键是熟练掌握网格结构准确找出对应点的位置.19.20%【解析】【分析】设从七月到九月,每月盈利的平均增长率为x,根据该商店七月份及九月份的盈利额,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】解:设从七月到九月,每月盈利的平均增长率为x ,依题意,得:22500(1)3600x +=,解得:10.220%x ==,2 2.2x =-(不合题意,舍去).答:从从七月到九月,每月盈利的平均增长率为20%.【点睛】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.20.(1)证明见解析;(2)p =【解析】【分析】(1)求出根的判别式△=25+p 2,根据判别式的意义即可得出无论p 取何值,方程总有两个不相等的实数根;(2)根据根与系数的关系求出两根和与两根积,再代入x 1+x 2=x 1x 2,得到一个关于p 的一元二次方程,解方程即可.【详解】(1)证明:△=52﹣4(﹣p 2)=25+4p 2,∵无论p 取何值时,总有p 2≥0,∴25+4p 2>0,∴无论p 取何值时,方程总有两个不相等的实数根;(2)解:由题意可得,x 1+x 2=﹣5,x 1x 2=﹣p 2,∵x 1+x 2=x 1x 2,∴﹣5=﹣p 2,∴p =【点睛】本题考查了根的判别式和根与系数的关系,注意熟记以下知识点:(1)一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根.上面的结论反过来也成立.(2)一元二次方程ax 2+bx+c =0(a≠0)的两实数根分别为x 1,x 2,则有x 1+x 2=﹣a b ,x 1•x 2=c a.21.(1)2(1)4y x =--+;(2)6【解析】【分析】(1)设抛物线顶点式解析式2(1)4y a x =-+,然后把点B 的坐标代入求出a 的值,即可得解;(2)令0y =,解方程得出点C ,D 坐标,再用三角形面积公式即可得出结论.【详解】解:(1) 抛物线的顶点为(1,4)A ,∴设抛物线的解析式2(1)4y a x =-+,把点(0,3)B 代入得,43a +=,解得1a =-,∴抛物线的解析式为2(1)4y x =--+;(2)由(1)知,抛物线的解析式为2(1)4y x =--+;令0y =,则20(1)4x =--+,1x ∴=-或3x =,(1,0)C ∴-,(3,0)D ;4CD ∴=,11||43622BCD B S CD y ∆∴=⨯=⨯⨯=.【点睛】本题二次函数综合题,主要考查了待定系数法,坐标轴上点的特点,三角形的面积公式,解本题的关键是求出抛物线解析式,是一道比较简单的中考常考题.22.(1)6;(2)150︒【解析】【分析】(1)由已知PAC ∆绕点A 逆时针旋转后,得到△P AB ',可得PAC ∆≅△P AB ',PA P A =',旋转角60P AP BAC ∠'=∠=︒,所以APP ∆'为等边三角形,即可求得PP ';(2)由APP ∆'为等边三角形,得60APP ∠'=︒,在△PP B '中,已知三边,用勾股定理逆定理证出直角三角形,得出90P PB ∠'=︒,可求APB ∠的度数.【详解】解:(1)连接PP ',由题意可知10BP PC '==,AP AP '=,PAC P AB ∠=∠',而60PAC BAP ∠+∠=︒,所以60PAP ∠'=度.故APP ∆'为等边三角形,所以6PP AP AP '=='=;(2)利用勾股定理的逆定理可知:222PP BP BP '+=',所以∆'BPP 为直角三角形,且90BPP ∠'=︒可求9060150APB ∠=︒+︒=︒.【点睛】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,解题的关键是你掌握旋转的图形的大小、形状都不改变.23.(1)252002500,(050)y x x x =-++≤≤;(2)销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)销售单价应该控制在82元至90元之间【解析】【分析】(1)根据“利润=(售价-成本)⨯销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)每天的销售利润不低于4000元,根据二次函数与不等式的关系求出x 的取值范围,再根据每天的总成本不超过7000元,以及50100100x ≤-≤,列不等式组即可.【详解】解:(1)由题意得:(10050)(505)y x x =--+,(50)(505)x x =-+,252002500,(050)x x x =-++≤≤,所以252002500,(050)y x x x =-++≤≤;(2)22520025005(20)4500y x x x =-++=--+ ,50a =-< ,∴抛物线开口向下.050x ≤≤Q ,对称轴是直线20x =,∴当20x =时,即销售单价是80元,每天的销售利润最大,最大利润是4500y =最大值;即销售单价为80元时,每天的销售利润最大,最大利润是4500元;(3)当4000y =时,2400052002500x x =-++,解得:110x =,230x =,∴当1030x ≤≤时,即销售单价在7010090x ≤-≤,每天的销售利润不低于4000元,由每天的总成本不超过7000元,得50(550)7000x + ,解得:18x ≤,82100x ∴≤-,50100100x ≤-≤Q ,∴销售单价应该控制在82元至90元之间.【点睛】本题主要考查二次函数的实际应用,解题的关键是弄清题意,列出相应等式,借助二次函数解决实际问题.24.(1)见解析;(2)BE+CF =2,是为定值;(3)S x ﹣1)2,当x =1时,S最小值为4.【解析】【分析】(1)根据四边形内角和为360°,可求∠DEA =90°,根据“AAS”可判定△BDE ≌△CDF ,即可证BE =CF ;(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可证到△EMD ≌△FND ,则有EM =FN ,就可得到BE+CF =BM+EM+CF=BM+FN+CF=BM+CN=2BM=2BD×cos60°=BD=12BC=2;(3)过点F作FG⊥AB,由题意可得S△DEF=S△ABC﹣S△AEF﹣S△BDE﹣S△BCF,则可求S与x 之间的函数解析式,根据二次函数最值的求法,可求S的最小值.【详解】(1)∵△ABC是边长为4的等边三角形,点D是线段BC的中点,∴∠B=∠C=60°,BD=CD,∵DF⊥AC,∴∠DFA=90°,∵∠A+∠EDF+∠AFD+∠AED=180°,∴∠AED=90°,∴∠DEB=∠DFC,且∠B=∠C=60°,BD=DC,∴△BDE≌△CDF(AAS)(2)过点D作DM⊥AB于M,作DN⊥AC于N,则有∠AMD=∠BMD=∠AND=∠CND=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,BMD CNDB CBD DC∠=∠⎧⎪∠∠⎨⎪⎩==∴△MBD≌△NCD(AAS)BM=CN,DM=DN.在△EMD 和△FND 中,EMD FND DM DN MDE NDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EMD ≌△FND (ASA )∴EM =FN ,∴BE+CF =BM+EM+CF =BM+FN+CF =BM+CN=2BM =2BD×cos60°=BD =12BC =2(3)过点F 作FG ⊥AB ,垂足为G,∵BE =x∴AE =4﹣x ,CF =2﹣x ,∴AF =2+x ,∵S △DEF =S △ABC ﹣S △AEF ﹣S △BDE ﹣S △BCF ,∴S =12BC×AB×sin60°﹣12AE×AF×sin60°﹣12BE×BD×sin60°﹣12CF×CD×sin60°=12×(4﹣x )×(2+x )1212×(2﹣x )∴Sx ﹣1)2(∴当x =1时,S【点睛】本题主要考查了等边三角形的判定与性质、四边形的内角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM =CN ,DM =DN ,EM =FN 是解决本题的关键.25.(1)215222y x x =--;(2)(1,1);(3)12【解析】【分析】(1)由对称轴可求得b ,可求得1l 的解析式,令0y =可求得A 点坐标,再利用待定系数法可求得2l 的表达式;(2)设P 点坐标为(1,)y ,由勾股定理可表示出2PC 和2PA ,由条件可得到关于y 的方程可求得y ,可求得P 点坐标;(3)可分别设出M 、N 的坐标,可表示出MN ,再根据函数的性质可求得MN 的最大值.【详解】解:(1) 抛物线21:3l y x bx =-++的对称轴为1x =,12b∴-=-,解得2b =,∴抛物线1l 的解析式为2y x 2x 3=-++,令0y =,可得2230x x -++=,解得1x =-或3x =,A ∴点坐标为(1,0)-,抛物线2l 经过点A 、E 两点,∴可设抛物线2l 解析式为(1)(5)y a x x =+-,又 抛物线2l 交y 轴于点(20,5)D -,552a ∴-=-,解得12a =,2115(1)(5)2222y x x x x ∴=+-=--,∴抛物线2l 的函数表达式为215222y x x =--;(2)设P 点坐标为(1,)y ,由(1)可得C 点坐标为(0,3),22221(3)610PC y y y ∴=+-=-+,2222[1(1)]4PA y y =--+=+,PC PA = ,226104y y y ∴-+=+,解得1y =,P ∴点坐标为(1,1);(3)由题意可设215(,2)22M x x x --,//MN y 轴,2(,23)N x x x ∴-++,令221523222x x x x -++=--,可解得1x =-或113x =,①当1113x -< 时,2222153113449(23)(2)4()2222236MN x x x x x x x =-++---=-++=--+,显然411133-< ,∴当43x =时,MN 有最大值496;②当1153x < 时,2222153113449(2)(23)4()2222236MN x x x x x x x =----++=--=--,显然当43x >时,MN 随x 的增大而增大,∴当5x =时,MN 有最大值,23449(512236⨯--=;综上可知在点M 自点A 运动至点E 的过程中,线段MN 长度的最大值为12.【点睛】本题主要考查二次函数的综合应用,涉及待定系数法、二次函数的性质、勾股定理等知识点,在(1)中求得A 点的坐标是解题的关键,在(2)中用P 点的坐标分别表示出PA 、PC 是解题的关键,在(3)中用M 、N 的坐标分别表示出MN 的长是解题的关键,注意分类讨论.。
人教版九年级上册数学期中考试试题含答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.在以下“绿色食品、响应环保、可回收物、节水”四个标志图案中,是中心对称图形的是A .B .C .D .2.将方程23610x x -+=化成一元二次方程的一般形式,其中二次项系数、一次项系数和常数项分别是()A .3,6,1-B .3,6,1C .3,16-D .3,1,63.抛物线()221y x =--的顶点坐标是()A .()2,1-B .()2,1--C .()2,1D .()2,1-4.关于x 的方程2420x x m -++=有一个根为1,-则另一个根为()A .2B .2-C .5D .5-5.将二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,所得图象的解析式为()A .()21133y x =-+B .()21133y x =++C .()21y x 133=--D .()21133y x =+-6.“双十一”即指每年的11月11日,是指由电子商务代表的在全中国范围内兴起的大型购物促销狂欢日.2017年双十一淘宝销售额达到1682亿元.2019年双十一淘宝交易额达2684亿元,设2017年到2019年淘宝双十一销售额年平均增长率为,x 则下列方程正确的是A .()168212684x +=B .()1682122684x +=C .()2168212684x +=D .()()216821168212684x x +++=7.如图,ABC 中,90,40ACB ABC ︒︒∠=∠=.将ABC 绕点B 逆时针旋转得到A BC ''△,使点C 的对应点C '恰好落在边AB 上,则CAA '∠的度数是()A .50︒B .70︒C .110︒D .120︒8.若无论x 取何值,代数式()()13x m x m +--的值恒为非负数,则m 的值为()A .0B .12C .13D .19.已知二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <()A .若120,x x -<则1240x x +-<B .若120,x x -<则1240x x +->C .若120,x x ->则()1240a x x +->D .若120,x x ->则()1240a x x +-<10.关于x 的二次函数22(81)8y mx m x m =+++的图像与x 轴有交点,则m 的范围是()A .116m <-B .116m ≥-且0m ≠C .116m =-D .116m >-且0m ≠二、填空题11.点(1,4)M -关于原点对称的点的坐标是_______________________.12.若关于x 的一元二次方程2320x x m -+=有两个相等的实数根;则m 的值为__________.13.如图,四边形ABCE 是О 的内接四边形,D 是CB 延长线上的一点,40,ABD ∠=︒那么AOC ∠的度数为_______________________o14.如图,把小圆形场地的半径增加6m 得到大圆形场地,场地面积扩大了一倍,则小圆形场地的半径为________________________.m 15.已知二次函数2(,,y ax bx c a b c =++为常数,0,0a c ≠>)上有五点()()1,01,(),p t n -、、()()2,3,0t 、;有下列结论:①0b >;②关于x 的方程20ax bx c ++=的两个根是1-和3;③20p t +<;④()(4m am b a c m +≤--为任意实数).其中正确的结论_______________(填序号即可).16.如图,四边形ABCD 的两条对角线,AC BD 所成的锐角为60,10AC BD += ,则四边形ABCD 的面积最大值为_______________________.三、解答题17.解方程:260x x +-=.18.10月11日,2020中国女超联赛在昆明海堙基地落幕,最终武汉车都江大队夺得冠军.本赛季共有x 支球队参加了第一阶段的比赛,每两队之间进行一场比赛,第一阶段共进行了45场比赛,求x 的值.19.如图,AD=CB ,求证:AB=CD .20.如图,已知,,A B C 均在O 上,请用无刻度的直尺作图.(1)如图1,若点D 是AC 的中点,试画出B Ð的平分线;(2)若42A ∠= ,点D 在弦BC 上,在图2中画出一个含48 角的直角三角形.21.已知二次函数243y x x =-+-(1)若33x -≤≤,则y 的取值范围为_(直接写出结果);(2)若83y -≤≤-,则x 的取值范围为(直接写出结果);(3)若()()12,,1,A m y B m y +两点都在该函数的图象上,试比较1y 与2y 的大小.22.某公司经过市场调查,整理出某种商品在某个月的第天的售价与销量的相关信息如下表:第x 天售价(元件)日销售量(件)130x ≤≤60x +30010x-已知该商品的进价为40元/件.设销售该商品的日销售利润为y 元.(1)求y 与x 的函数关系式;(2)问销售该商品第几天时,日销售利润最大,最大日销售利润为多少元?(3)问在当月有多少天的日销售利润不低于5440元.请直接写出结果.23.如图,已知格点ABC 和点O .(1)A B C '''V 和ABC 关于点O 成中心对称,请在方格纸中画出A B C '''V (2)试探究,以点A ,O ,C ',D 为顶点的四边形为平行四边形的D 点有__________个.24.(问题背景)(1)如图1,Р是正三角形ABC 外一点,30APB ∠= ,则222PA PB PC +=小明为了证明这个结论,将PAB ∆绕点A 逆时针旋转60,请帮助小明完成他的作图;(迁移应用)(2)如图2,在等腰Rt ABC ∆中,,90BA BC ABC =∠= ,点P 在ABC ∆外部,使得45BPC ∠= ,若 4.5PAC S = ,求PC ;(拓展创新)(3)如图3,在四边形ABCD 中,//,AD BC 点E 在四边形ABCD 内部.且,DE EC =90,DEC ∠= 135AEB ∠=︒,3,4,AD BC ==直接写出AB 的长.25.已知抛物线()2:0C y ax bx c a =++>,顶点为()0,0.(1)求,b c 的值;(2)如图1,若1,a P =为y 轴右侧抛物线C 上一动点,过P 作直线PN x ⊥轴交x 轴于点,N 交直线1:22l y x =+于点M ,设点P 的横坐标为m ,当2PM PN =时,求m 的值;(3)如图2,点()00,P x y 为y 轴正半轴上一定点,点,A B 均为y 轴右侧抛物线C 上两动点,若APO BPy ∠=∠,求证:直线AB 经过一个定点.参考答案1.B 【分析】根据中心对称图形的概念解答即可.【详解】解:A 、不是中心对称图形.故错误;B 、是中心对称图形.故正确;C 、不是中心对称图形.故错误;D 、不是中心对称图形.故错误.故选:B .【点睛】本题考查的是中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.A 【分析】根据一元二次方程的定义判断即可;【详解】∵方程23610x x -+=,∴二次项系数为3,一次项系数为-6,常数项为1;故答案选A .【点睛】本题主要考查了一元二次方程的一般形式,准确分析判断是解题的关键.3.D 【分析】根据抛物线的解析式即可得.【详解】抛物线()221y x =--的顶点坐标是()2,1-,故选:D .【点睛】本题考查了求二次函数的顶点坐标,熟练掌握二次函数的顶点坐标的求法是解题关键.4.C 【分析】根据一元二次方程根与系数的关系求解.【详解】解:设原方程的另一根为x ,则:4141x --+=-=,∴x=4+1=5,故选C .【点睛】本题考查一元二次方程的应用,根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题关键.5.A 【分析】根据函数图象的平移方法判断即可;【详解】二次函数213y x =的图象向右平移1个单位,再向上平移3个单位,可得:()21133y x =-+;故答案选A .【点睛】本题主要考查了二次函数图象的平移,准确分析判断是解题的关键.6.C 【分析】根据一元二次方程增长率问题模型()1na xb +=列式即可.【详解】由题意,增长前为1682a =,增长后2684b =,连续增长2年,代入得()2168212684x +=;故选:C .【点睛】本题考查了一元二次方程在增长率问题中的应用,熟练掌握基本模型,理解公式,找准各数量是解决问题的关键.7.D 【分析】由余角的性质,求出∠CAB=50°,由旋转的性质,得到40ABA '∠=︒,AB A B '=,然后求出BAA '∠,即可得到答案.【详解】解:在ABC 中,90,40ACB ABC ︒︒∠=∠=,∴∠CAB=50°,由旋转的性质,则40ABA '∠=︒,AB A B '=,∴1(18040)702BAA '∠=⨯︒-︒=︒,∴''50+70=120CAA CAB BAA ∠=∠+∠=︒︒︒;故选:D .【点睛】本题考查了旋转的性质,三角形的内角和定理,以及余角的性质,解题的关键是掌握所学的性质,正确求出70BAA '∠=︒.8.B 【分析】先利用多项式乘多项式的法则展开,再根据代数式(x +1−3m )(x−m )的值为非负数时△≤0以及平方的非负性即可求解.【详解】解:(x +1−3m )(x−m )=x 2+(1−4m )x +3m 2−m ,∵无论x 取何值,代数式(x +1−3m )(x−m )的值恒为非负数,∴△=(1−4m )2−4(3m 2−m )=(1−2m )2≤0,又∵(1−2m )2≥0,∴1−2m =0,∴m =12.故选:B .【点睛】本题考查了多项式乘多项式,二次函数与一元二次方程的关系,偶次方非负数的性质,根据题意得出(x +1−3m )(x−m )的值为非负数时△≤0是解题的关键.9.D 【分析】根据二次函数的性质和题目中的条件,可以判断选项中的式子是否正确;【详解】∵二次函数2(,,y ax bx c a b c =++是实数,且0a ≠)的图象的对称轴是直线2x =,点()11,A x y 和点2(),z B x y 为其图象上的两点,且12y y <,∴若a >0,1x <2<2x ,则可能出现124+-x x >0,故A 错误;若a <0,122x x <<,则1240x x +-<,故B 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,故C 错误;若0a >,12x x >,则1240x x +-<,则()1240a x x +-<,若0a <,12x x >,则1240x x +->,则()1240a x x +-<,故D 正确;故答案选D .【点睛】本题主要考查了二次函数的性质,二次函数图象上点的坐标特征,准确分析计算是关键.10.B 【详解】试题分析:二次函数图象与x 轴有交点,则△=b 2-4ac≥0,且m≠0,列出不等式则可.由题意得2(81)8800m m m m ⎧+-⨯≥⎨≠⎩,解得116m ≥-且0m ≠,故选B.考点:该题考查函数图象与坐标轴的交点判断点评:当△=b 2-4ac >0时图象与x 轴有两个交点;当△=b 2-4ac=0时图象与x 轴有一个交点;当△=b 2-4ac <0时图象与x 轴没有交点.同时要密切注意11.()1,4-【分析】由关于原点对称的点的坐标特征可以得到解答.【详解】解:∵关于原点对称的点的坐标特征为:x x y y =-⎧⎨=-''⎩,由题意得:x=1,y=-4,∴14x y -''=⎧⎨=⎩,∴点M(1,−4)关于原点对称的点的坐标是(-1,4),故答案为(-1,4).【点睛】本题考查图形变换的坐标表示,熟练掌握关于原点对称的点的坐标特征是解题关键.12.13【分析】根据关于x 的一元二次方程2320x x m -+=有两个相等的实数根,得出关于m 的方程,求解即可.【详解】解:∵关于x 的一元二次方程2320x x m -+=有两个相等的实数根,∴△=b 2-4ac=(-2)2-4×3m=0,解得m=13,故答案为:13.【点睛】本题考查了根的判别式,掌握知识点是解题关键.13.80【分析】先根据补角的性质求出∠ABC 的度数,再由圆内接四边形的性质求出∠AEC 的度数,由圆周角定理即可得出∠AOC 的度数.【详解】解:∵∠ABD =40°,∴∠ABC =180°−∠ABD =180°−40°=140°,∵四边形ABCE 为⊙O 的内接四边形,∴∠AEC =180°−∠ABC =180°−140°=40°,∴∠AOC =2∠AEC =2×40°=80°.故答案为:80.【点睛】本题考查的是圆周角定理及圆内接四边形的性质,掌握圆内接四边形的性质和圆周角定理是解答此题的关键.14.6【分析】根据等量关系“大圆的面积=2×小圆的面积”可列方程求解;【详解】设小圆的半径为xm ,则大圆的半径为()6x m +,根据题意得:()2262x x ππ+=,即2212362x x x ++=,解得:16x =+,26x =-(舍去);故答案是:6.【点睛】本题主要考查了一元二次方程的应用,准确分析计算是解题的关键.15.①②④【分析】由抛物线的对称性可知对称轴为0212x +==,可得0p =,即1x =-,3x =是方程20ax bx c ++=的两个根,再根据题目当中给出的条件,代入解析式判断求解即可;【详解】当0x =和2x =时,y t =,∴对称轴为0212x +==,∴当1x =-,3x =时,y 的值相等,∴0p =,∴1x =-,3x =是方程20ax bx c ++=的两个根,故②正确;∵当0x =时,y t =,且c >0,∴t c =>0,∴202p t t +=+>0,故③错误;∵2x =,y t =>0,3x =,0y =,∴在对称轴的右边,y 随x 的增大而减小,∴a <0,∵12bx a =-=,∴2b a =->0,故①正确;∵当3x =时,0y =,∴930a b c ++=,∴30a c +=,∴3c a =-,∴443a c a a a --=-+=-,∵顶点坐标为()1,n ,a <0,∴2am bm c a b c ++≤++,∴2am bm a b +≤+,∴2am bm a +≤-,∴24am bm a c +≤--,故④正确;综上所述:结论正确的是①②④;故答案是:①②④.【点睛】本题主要考查了二次函数图象性质,熟练掌握二次函数图像上点的特征是解题的关键.16.4【分析】根据四边形面积公式,S =12AC×BD×sin60°,根据sin60°=2得出S =12x (10−x )×2,再利用二次函数最值求出即可.【详解】解:∵AC 与BD 所成的锐角为60°,∴根据四边形面积公式,得四边形ABCD 的面积S =12AC×BD×sin60°,设AC =x ,则BD =10−x ,所以S =12x (10−x )×32=34-(x−5)2+2534,所以当x =5,S 有最大值4.【点睛】此题主要考查了四边形面积公式以及二次函数最值,利用二次函数最值求出四边形的面积最大值是解决问题的关键.17.12x =,23x =-【分析】利用因式分解法解方程.【详解】解:()()230x x -+=∴20x -=或30x +=,∴12x =,23x =-.【点睛】本题考查一元二次方程的解法,选择合适的解法是关键.18.10【分析】因为每两队之间进行一场比赛,所以x 支球队之间共进行()112x x -场比赛,由此建立等式计算即可.【详解】()11452x x -=解得10x =或9-0,x > 10,x ∴=答:x 的值为10.【点睛】本题考查了一元二次方程的应用,解题关键在于读懂题意,得出总场数与球队数之间的关系.19.证明见解析.【详解】试题分析:由在同圆中,弦相等,则所对的弧相等和等量加等量还是等量求解.试题解析:∵AD =BC ,,AD BC= ,AD BDBC BD +=+∴ ,AD CD=∴AB =CD .20.(1)见解析;(2)见解析【分析】(1)根据题意连接OD 并延长交劣弧AC 于E 即可得解;(2)延长AD 交圆于M ,连接BO 并延长交圆于N ,即可得到;【详解】解:()1连接OD 并延长交劣弧AC 于E ,连接EB 即为所求:()2延长AD 交圆于,M 连接BO 并延长交圆于,N 连接;,,MN MB BMN ∆即为所求;.【点睛】本题主要考查了利用圆周角定理、垂径定理作图,准确分析判断是解题的关键.21.(1)241y -≤≤;(2)10x -≤≤或45x ≤≤;(3)32m >时21y y <,32m =时21y y =,32m <时21y y >【分析】(1)根据题意得出二次函数的对称轴,再利用已知的x 的取值范围计算即可;(2)分别令3y =-和8y =-,计算即可;(3)分别表示出1y 和2y ,分别令21y y -的取值计算即可;【详解】解:(1)∵243y x x =-+-,33x -≤≤,∴二次函数的对称轴22bx a =-=,∴最小值:当3x =-时,24y =-,最大值:当2x =时,1y =;故:241y -≤≤.(2)∵243y x x =-+-,83y -≤≤-,令3y =-,得0x =或4;令8y =-,得-1x =或5;∴10x -≤≤或45x ≤≤.()3A B 、两点都在该函数图象上,2143y m m ∴=-+-,()()22214132y m m m m =-+++-=-+,2132y y m -=-,令210y y ->,即21y y >,此时32m <,令210y y -=,即21y y =,此时32m =,令210y y -<,即21y y <,此时32m >,综上32m >时21y y <,32m =时21y y =,32m <时21y y >.【点睛】本题主要考查了二次函数的性质,准确分析计算是解题的关键.22.(1)y=2101006000x x -++;(2)第五天日销售利润最大,最大日销售利润为6250元;(3)14天【分析】(1)根据日销售利润等于单件利润乘以销售量即可得解;(2)化二次函数一般式为顶点式,即可判断求解;(3)根据题意列不等式求解即可;【详解】解:(1)()()604030010=+--y x x ,2101006000x x =-++;(2)当130x ≤≤时,2101006000=-++y x x ()21056250=--+x ,∵10a =-<0,∴二次函数开口向下,由题可知:函数对称轴为5x =,∴当5x =时,最大值为6250;答:第五天日销售利润最大,最大日销售利润为6250元.(3)∵2101006000=-++y x x ()21056250=--+x ,当5400y ≥时,()210562505400--+≥x ,解得:414x -≤≤,∵130x ≤≤,∴共有14天.【点睛】本题主要考查了二次函数的应用,准确分析计算是解题的关键.23.(1)见解析;(2)3【分析】(1)根据中心对称的作法,找出对称点,即可画出图形;(2)根据平行四边形的判定,画出使以点A 、O 、C′、D 为顶点的四边形是平行四边形的点即可.【详解】解:(1)作射线AO,BO,CO,在射线上截取A′O=AO,B′O=BO,C′O=CO,顺次连接'''''',A B B C C A,,'''为所求,如图所示△A B C(2)平行四边形AOC′D1,平行四边形AOD2C′,平行四边形AD3OC′∴以点A,O,C',D为顶点的四边形为平行四边形的D点有3个故答案为:3【点睛】此题考查了作图-旋转变换,用到的知识点是中心对称、平行四边形的判定,关键是掌握中心对称的作法,作平行四边形时注意画出所有符合要求的图形.24.(1)见解析;(2)3;(3)5【分析】(1)根据旋转的定义和性质解答;(2)由题意可以得到PBC MBA ∆≅∆,由此可得90AMP ∠= 和PC=AM ,最后由△PAC 的面积等于4.5可以求得PC 的值;(3)根据三角形的性质解答.【详解】(1)如图,作60PAP AP AP ∠=︒'=',,连结P C ',则P AC '△即为所求作的图形:(2)作线段BM 垂直于BP 交PC 延长线于点.M 连接,AM 45,90BPM PBM ∠=︒∠=BPM △为等腰直角三角形,,BP BM ∴=90ABM MBC ABC PBM PBC MBC∠+∠=∠==∠=∠+∠,PBC ABM ∴∠=∠在PBC ∆与MBA ∆中:PB BMPBC ABM BC BA=⎧⎪∠=∠⎨⎪=⎩()PBC MBA SAS ∴∆≅∆90AMP =∴∠21122PAC S PC AM PC ∆∴=⋅=3PC ∴=(3)5.证明如下:如图,将AED 顺时针旋转90︒至FEC ,则ADE FCE ∠=∠,AD FC =,//,90AD BC DEC ∠=︒ ,90ADE BCE ∴∠+∠=︒,即90FCE BCE FCB ∠+∠=∠=︒FCB ∴△为直角三角形,其中3FC AD ==,4BC =,由勾股定理得5BF =,又 旋转角为90︒,即90AEF ∠=︒,则360135BEF AEB AEF ∠=︒-∠-∠=︒,即AEB FEB ∠=∠,在AEB △与FEB 中,AE AFAEB FEB BE BE=⎧⎪∠=∠⎨⎪=⎩∴()AEB FEB SAS △△≌5AB BF ∴==【点睛】本题考查三角形的应用,熟练掌握三角形全等的判定和性质、旋转的意义和性质、等腰三角形和直角三角形的性质是解题关键.25.(1)0,0b c ==;(2)1712m +=或43;(3)见解析【分析】(1)利用二次函数顶点式,代入顶点即可求解;(2)利用二次函数解析式和一次函数解析式,用m 去表示P 、M 点的纵坐标,再利用2PM PN =列出等量关系式即可求解m ;(3)作A 点关于二次函数对称轴的对称点M ,设()2,A p ap 则()2,M p ap -,由已知和中垂线定理可得MPO OPA BPy ∠=∠=∠,即可得M 、P 、B 再同一条直线上,设:PM y kx b =+,代入P 、M 坐标求PM 解析式,再联立抛物线解析式,可表示B 、M 坐标,同理的求直线AB 解析式,根据一次函数解析式可知AB 恒过()00,y .【详解】()1解:设()2y a x h k=-+0,0h k == 代入上式2y ax ∴=0,0b c ∴==()2P Q 在抛物线上,M 在直线上()21,,,22P m m M m m ⎛⎫∴+ ⎪⎝⎭2,PM PN = 2211222m m m ∴+-=解得12m =或43或1-P 为y 轴右侧抛物线C 上一动点0,m ∴>综上1712m =或43()3取A 点关于y 轴的对称点M ,抛物线关于y 轴对称M ∴点在抛物线上.连,MP 设()2,A p ap ,则()2,M p ap -MPO OPA BPy∠=∠=∠ M P B ∴、、三点共线()00,P y 设:PM y kx b=+20ap pk by b⎧=-+⎨=⎩解得200y ap y x y p -=+联立直线BM 与抛物线C ,得:22000ap y ax x y p -+-=2B M ap yx x ap-∴+=-,M x p =- 0B y x ap∴=代入抛物线002,y y B ap ap ⎛⎫ ⎪⎝⎭同理可求200:y ap BA y x y p+=-恒经过定点()00,y -【点睛】本题主要考查一次函数与二次函数综合、一次函数的图像性质、图形对称、等腰三角形三线合一等.本题综合性较强,对各涉及知识点掌握要求较高.特别注意两函数交点需满足各函数解析式.。
人教版九年级上册数学期中考试试卷含答案解析
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.已知方程2430x x -+=,它的二次项系数、一次项系数、常数项分别是()A .0、4、3B .1、4、3C .1、4-、3D .0、4-、32.已知一元二次方程2230x x b +-=的一个根是1,则b =()A .3B .0C .1D .53.一元二次方程2310x x -+=的两根之和为()A .13B .2C .3-D .34.对于抛物线221y x x =--,下列说法中错误的是()A .顶点坐标为()12,-B .对称轴是直线1x =C .当1x >时,y 随x 的增大减小D .抛物线开口向上5.抛物线2(1)2y x =-+可以由抛物线2x y =平移而得到,下列平移正确的是()A .先向左平移1个单位,再向上平移2个单位B .先向左平移1个单位,再向下平移2个单位C .先向右平移1个单位,再向上平移2个单位D .先向右平移1个单位,再向下平移2个单位6.右图所示,已知二次函数2y ax bx c =++的图象如图所示,则a 、b 、c 满足()A .0a <,0b >,0c >B .0a >,0b <,0c >C .0a <,0b <,0c <D .0a <,0b <,0c >7.如图,已知⊙O 是△ABD 的外接圆,AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD=58°,则∠BCD 等于()A .116°B .32°C .58°D .64°8.如图,AB 是O 的弦,半径OC AB ⊥于点D ,且8cm AB =,5cm OC =,则DC 的长是()A .3cmB .2.5cmC .2cmD .1cm9.如图,四边形ABCD 内接于O ,F 是 CD上一点,且 DF BC =,连接CF 并延长交AD 的延长线于点E ,连接AC ,若105ABC ∠=︒,25BAC ∠=︒,则E ∠的度数为()A .60︒B .45︒C .50︒D .30°10.如图,在平面直角坐标系中,已知抛物线2y ax bx =+的对称轴为34x =,且经过点A (2,1),点P 是抛物线上的动点,P 的横坐标为()02m m <<,过点P 作PB x ⊥轴,垂足为B ,PB 交OA 于点C ,点O 关于直线PB 的对称点为D ,连接CD ,AD ,过点A 作AE ⊥x 轴,垂足为E ,则当m =()时,ACD ∆的周长最小.A .1B .1.5C .2D .2.5二、填空题11.一元二次方程x 2﹣4=0的解是_________.12.二次函数()2214y x =+-,当x =________时,y 的最小值是_______.13.若二次函数228y x x c =++的图像上有()11,A y -,()24,B y ,()31,C y 三点,则1y ,2y ,3y 的大小关系是______.14.如图,二次函数y =ax 2+bx +3的图象经过点A (﹣1,0),B (3,0),那么一元二次方程ax 2+bx+3=0的根是_____.15.如图A ,B ,C 是圆O 上的3点,且四边形OABC 是菱形,若点D 是圆上异于A ,B ,C 的另一点,则ADC ∠的度数是_______.16.如图,在⊙O 中,直径AB =6,BC 是弦,∠ABC =30°,点P 在BC 上,点Q 在⊙O 上,且OP ⊥PQ ,当点P 在BC 上移动时,则PQ 长的最大值为__________.17.二次函数y =ax 2+bx +c(a≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为____________;(2)不等式ax 2+bx +c>0的解集为________;(3)y 随x 的增大而减小的自变量x 的取值范围为________;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为________.三、解答题18.解方程:(1)24x x=(2)23100x x --=19.如图,已知抛物线2122y x =-+与直线222y x =+交于A ,B 两点,(1)求A ,B 两点的坐标。
人教版九年级上册数学期中考试试题及答案
人教版九年级上册数学期中考试试卷一、单选题1.一元二次方程22x x =的根是()A .0x =B .122,2x x ==-C .120,2x x ==D .120,2x x ==-2.用配方法解方程2210x x --=时,配方后所得的方程为()A .210x +=()B .210x -=()C .212x +=()D .212x -=()3.已知抛物线21219y ax x =+-的对称轴是直线3x =,则实数a 的值是()A .2B .2-C .4D .4-4.抛物线222,31,23y x y x y x =-=-+=-共有的性质是()A .开口向上B .都有最高点C .对称轴是y 轴D .y 随x 的增大而减小5.对于二次函数2(3)1y x =--+,下列结论正确的是()A .图象的开口向上B .当3x <时,y 随x 的增大而减小C .函数有最小值1D .图象的顶点坐标是(3,1)6.已知()10y ,,()21,y ,()34,y 都是抛物线223y x x m =-+上的点,则()A .123y y y >>B .132y y y >>C .321y y y >>D .312y y y >>7.等腰△ABC 的一边长为4,另外两边的长是关于x 的方程x 2−10x+m=0的两个实数根,则m 的值是()A .24B .25C .26D .24或258.如图,抛物线2y ax bx c =++与x 轴交于点(1,0)-,对称轴为直线1x =,则下列结论中正确的是()A .0abc >B .当0x >时,y 随x 的增大而增大C .21a b +=D .3x =是一元二次方程ax 2+bx +c =0的一个根9.如图,二次函数22y x x =--的图象与x 轴交于点A O 、,点P 是抛物线上的一个动点,且满足3AOP S = ,则点P 的坐标是()A .()3,3--B .()1,3-C .()3,3--或()1,3-D .()3,3--或()3,1-10.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是()A .B .C .D .二、填空题11.一元二次方程2218x =的根为______________________.12.将抛物线22y x =-先向右平移2个单位,再向下平移3个单位得到新的抛物线____.13.用配方法将抛物线261y x x =++化成顶点式()2y a x h k =-+得_____________.14.若关于x 的一元二次方程220210ax bx --=有一个根为2x =,则代数式842021a b --的值是_________.15.如图,已知抛物线2y ax c =+与直线y kx m =+交于()123,,1,)(A y B y -两点,则关于x 的不等式2ax c kx m +>-+的解集是__________________.16.如图,已知等腰直角三角形ABC 的直角边长与正方形MNPQ 的边长均为10cm ,AC 与MN 在同一直线上.点A 从点N 出发,以2cm/s 的速度向左运动,运动到点M 时停止运动,则重叠部分(阴影)的面积()2cm y 与时间x 之间的函数关系式为___________________.17.如图,抛物线21:0()L y ax bx c a =++≠与x 轴只有一个公共点()1,0A ,与y 轴交于点()0,2B ,虚线为其对称轴,若将抛物线向下平移两个单位长度得抛物线2L ,则图中两个阴影部分的面积和为______________.三、解答题18.用适当的方法解一元二次方程:22410x x --=19.在国家政策的调控下,某市的商品房成交均价由今年5月份的每平方米10000元下降到7月份的每平方米8100元.()1求6、7两月平均每月降价的百分率;()2如果房价继续回落,按此降价的百分率,请你预测到9月份该市的商品房成交均价是否会跌破每平方米6500元?请说明理由.20.设一元二次方程260x x k -+=的两根分别为12,x x .(1)若方程有两个相等的实数根,求k 的值;(2)若5k =,且12,x x 分别是Rt ABC 的两条直角边的长,试求Rt ABC 的面积.21.如图,在一次足球训练中,球员小王从球门前方10m 起脚射门,球的运行路线恰是一条抛物线,当球飞行的水平距离是6m 时,球到达最高点,此时球高约3m .(1)求此抛物线的解析式;(2)已知球门高2.44m ,问此球能否射进球门?22.关于x 的一元二次方程22(21)10x k x k ++++=有两个不相等的实数根1x ,2x .(1)求实数k 的取值范围;(2)若方程两个实数根1x ,2x 满足12120x x x x ++⋅=,求k 值.23.如图,有长为24m 的篱笆,一面利用墙(墙长a 无限制)围成中间隔有一道篱笆的长方形花圃.设花圃宽AB 为()m x ,面积为()2m S .(1)求S 与x 之间的函数关系式;(2)求花圃面积的最大值;(3)请说明能否围成面积是260m 的花圃?24.某景区商店销售一种纪念品,这种商品的成本价10元/件,市场调查发现,该商品每天的销售量y (件)与销售价x (元/件)之间满足一次函数的关系(如图所示).(1)求y 与x 之间的函数关系式;(2)若该商店每天可获利225元,求该商品的售价x ;(3)已知销售价不低于成本价,且物价部门规定这种商品的销售价不高于16元/件,求每天的销售利润W (元)与销售价x (元/件)之间的函数关系式,并求出每件销售价为多少元时,每天的销售利润最大?最大利润是多少?25.如图,二次函数2y x bx c =++的图象与x 轴分别交于点(),4,0A B (点A 在点B 的左侧),且经过点()3,7-,与y 轴交于点C .(1)求,b c 的值.(2)将线段OB 平移,平移后对应点O '和B '都落在拋物线上,求点B '的坐标.参考答案1.C 【分析】根据方程特点,利用因式分解法,即可求出方程的解.【详解】解:移项得220x x -=,因式分解,得()20x x -=,∴020x x =-=,则1202x x ==,.故选:C .【点睛】此题主要考查了因式分解法解一元二次方程,解题的关键是掌握因式分解法解方程的基本步骤及方法.2.D 【解析】【分析】先把常数项移项,然后在等式的两边同时加上一次项系数的一半的平方.【详解】根据配方的正确结果作出判断:()222221021211112x x x x x x x --=⇒-=⇒-+=+⇒-=.故选D .【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方。
2023-2024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)
20232024学年全国初中九年级上数学人教版期中考试试卷(含答案解析)一、选择题(每题2分,共40分)1. 下列选项中,哪个是方程的正确表示形式?A. 2x + 3 = 7B. x + y = 5C. 3x 4yD. 2(x + 1) = 62. 下列哪个选项是二元一次方程组?A. 3x + 4y = 7B. 2x y = 5C. 4x + 3y = 8D. 3x + 2y = 6, 2x y = 43. 下列哪个选项是二次方程?A. x^2 5x + 6 = 0B. 2x + 3 = 7C. x^2 + 3x + 2D. 3x^2 4x4. 下列哪个选项是一次函数的图像?A. y = x^2B. y = 2x + 3C. y = x^3D. y = 1/x5. 下列哪个选项是反比例函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^36. 下列哪个选项是二次函数的图像?A. y = x^2B. y = 2x + 3C. y = 1/xD. y = x^37. 下列哪个选项是等差数列的通项公式?A. a_n = a_1 + (n 1)dB. a_n = a_1 + ndC. a_n = a_1 + (n + 1)dD. a_n = a_1 + (n 2)d8. 下列哪个选项是等比数列的通项公式?A. a_n = a_1 r^(n 1)B. a_n = a_1 r^nC. a_n = a_1 r^(n + 1)D. a_n = a_1 r^(n 2)9. 下列哪个选项是概率的基本性质?A. 0 <= P(A) <= 1B. P(A) > 1C. P(A) < 0D. P(A) = 210. 下列哪个选项是勾股定理的表述?A. a^2 + b^2 = c^2B. a^2 b^2 = c^2C. a^2 + c^2 = b^2D. a^2 c^2 = b^2二、填空题(每题2分,共20分)1. 一元一次方程的解是________。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、单选题1.下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A .B .C .D .2.一元二次方程2250x x ++=的根的情况是()A .没有实数根B .有两个不相等的实数根C .有两个相等的实数根D .只有一个实数根3.抛物线2(3)y x =+的顶点是()A .(0,3)B .(0,3)-C .(3,0)D .(3,0)-4.一元二次方程2810x x -+=配方后可变形为()A .()2415x -=B .()2415x +=C .()2417x -=D .()2417x +=5.已知二次函数21(2)54y x =--+,y 随x 的增大而减小,则x 的取值范围是()A .2x >B .2x <C .2x >-D .2x <-6.如图,AOB ∆绕点O 逆时针旋转65︒得到COD ∆,若30AOB ∠=︒,则BOC ∠的度数是()A .30°B .35︒C .40︒D .65︒7.在一次足球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛21场,设共有x 个队参赛,根据题意,可列方程为()A .(1)21x x +=B .(1)21x x -=C .(1)212x x +=D .(1)212x x -=8.已知二次函数的图象的顶点是(1,2)-,且经过点(0,5)-,则二次函数的解析式是()A .23(1)2y x =-+-B .23(1)2y x =+-C .23(1)2y x =---D .23(1)2=--y x 9.已知2x =关于x 的方程23520x mx m -+-=的一个根,且这个方程的两个根恰好是等腰ABC ∆的两条边长,则ABC ∆的周长为()A .8B .10C .8或10D .6或1010.二次函数2y ax bx c =++的图象如图所示,对称轴是1x =,下列结论正确的是()A .0abc >B .20a b +<C .320b c -<D .30a c +<二、填空题11.方程2250x -=的解是_____.12.将抛物线24y x =向下平移1个单位长度,则平移后的抛物线的解析式是_______.13.如图,已知点A 的坐标是(-2),点B 的坐标是(1-,,菱形ABCD 的对角线交于坐标原点O ,则点D 的坐标是______.14.小王想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.则S 与x 之间的函数关系式是_____.(不用写自变量的取值范围)15.若抛物线2(2)21y m x x =-+-与x 轴有两个公共点,则m 的取值范围是______.16.如图,ABC 中,90ACB ∠=︒,AC BC a ==,点D 为AB 边上一点(不与点A ,B 重合),连接CD ,将线段CD 绕点C 逆时针旋转90︒得到CE ,连接AE .下列结论:①BDC ∆≌AEC ∆;②四边形AECD 的面积是2a ;③若105BDC ∠=︒,则AD =;④2222AD BD CD +=.其中正确的结论是_____.(填写所有正确结论的序号)三、解答题17.解方程:22150x x --=.18.如图,平面直角坐标系xOy 中,画出ABC 关于原点O 对称的111A B C ∆,并.写出1A 、1B 、1C 的坐标.19.已知二次函数243y x x =++.(1)求二次函数的最小值;(2)若点11(,)x y 、22(,)x y 在二次函数243y x x =++的图象上,且122x x -<<,试比较12,y y 的大小.20.随着国内新能源汽车的普及,为了适应社会的需求,全国各地都在加快公共充电桩的建设,广东省2019年公共充电桩的数量约为4万个,2021年公共充电桩的数量多达11.56万个,位居全国首位.(1)求广东省2019年至2021年公共充电桩数量的年平均增长率;(2)按照这样的增长速度,预计广东省2022年公共充电桩数量能否超过20万个?为什么?21.如图,平面直角坐标系xOy 中,直线2y x =+与坐标轴交于A ,B 两点,点A 在x 轴上,点B 在y 轴上,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)根据图象,写出不等式22x bx c x -++>+的解集.22.已知关于x 的方程22(21)10x m x m +++-=有两个实数根.(1)求m 的取值范围;(2)若0x =是方程的一个根,求方程的另一个根.23.如图,边长为6的正方形ABCD 中,E 是CD 的中点,将ADE ∆绕点A 顺时针旋转90︒得到ABF ∆,G 是BC 上一点,且45EAG ∠=︒,连接EG .(1)求证:AEG ∆≌AFG ∆;(2)求点C 到EG 的距离.24.平面直角坐标系xOy 中,抛物线231y ax ax =-+与y 轴交于点A .(1)求点A 的坐标及抛物线的对称轴;(2)当12x -≤≤时,y 的最大值为3,求a 的值;(3)已知点(0,2)P ,(1,1)Q a +.若线段PQ 与抛物线只有一个公共点,结合函数图象,求a 的取值范围.25.在△ABC 中AB=AC ,点P 在平面内,连接AP 并将线段AP 绕点A 顺时针方向旋转与∠BAC 相等的角度,得到线段AQ ,连接BQ ;【发现问题】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究猜想】如图2,如果点P为平面内任意一点,前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);【拓展应用】如图3,在△ABC中,AC=2,∠ACB=90°,∠ABC=30°,P是线段BC上的任意一点连接AP,将线段AP绕点A顺时针方向旋转60°,得到线段AQ,连接CQ,请直接写出线段CQ长度的最小值.参考答案1.C【分析】根据轴对称图形和中心对称图形的概念逐项判断即可.【详解】A.不是轴对称图形,也不是中心对称图形,故此选项不符合题意;B.是轴对称图形,不是中心对称图形,故此选项不符合题意;C.是轴对称图形,也是中心对称图形,故此选项符合题意;D.不是轴对称图形,也不是中心对称图形,故此选项不符合题意,故选:C.【点睛】本题考查轴对称图形、中心对称图形,理解轴对称图形和中心对称图形是解答的关键.2.A 【解析】【分析】根据一元二次方程根的判别式24b ac ∆=-,∆<0时,方程没有实数根;0∆>时,方程有两个不相等的实数根;0∆=时,方程有两个相等的实数根,将相应的系数代入判别式便可判断.【详解】∵224245420160b ac =-=-⨯1⨯=-=-<Δ根据一元二次方程根的判别式24b ac ∆=-,当∆<0时,原方程没有实数根.故选A 【点睛】本题旨在考查一元二次方程根的判别式,熟练掌握该知识点是解此类题目的关键.3.D 【解析】【分析】根据二次函数2()y a x h k =-+的顶点坐标是(h ,k )即可解答.【详解】解:抛物线2(3)y x =+的顶点是(﹣3,0),故选:D .【点睛】本题考查二次函数2()y a x h k =-+的性质,熟知二次函数2()y a x h k =-+的顶点坐标是(h ,k )解答的关键.4.A 【解析】【分析】先把常数项移到方程右边,再把方程两边加上16,然后把方程左边写成完全平方形式即可.【详解】解:∵x 2-8x+1=0,∴x 2-8x=-1,∴x 2-8x+16=15,∴(x-4)2=15.故选A .【点睛】本题考查了解一元二次方程-配方法,当二次项系数为1时,配一次项系数一半的平方是关键.5.A 【解析】【分析】根据y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a <0时,在对称轴右侧y 随x 的增大而减小,可得答案.【详解】解:∵21(2)54y x =--+,∴a 14=-<0,∴当x >2时y 随x 的增大而减小.故选:A .【点睛】本题考查了二次函数的性质,二次函数y =ax 2+bx+c (a ,b ,c 为常数,a≠0),当a >0时,在对称轴左侧y 随x 的增大而减小,在对称轴右侧y 随x 的增大而增大;当a <0时,在对称轴左侧y 随x 的增大而增大,在对称轴右侧y 随x 的增大而减小.6.B 【解析】【分析】根据旋转的性质得出旋转角∠AOC=65°即可.【详解】解:∵AOB ∆绕点O 逆时针旋转65︒得到COD ∆,∴∠AOC=65°,∵∠AOB=30°,∴∠BOC=∠AOC ﹣∠AOB=65°﹣30°=35°,故选:B .【点睛】本题考查旋转的性质,熟练掌握旋转的性质,准确找到旋转角是解答的关键.7.D 【解析】【分析】类似的场次比赛相互问题可看做“握手问题”,由于赛制是单循环(每两队都赛一场),设有x 队参赛,因此比赛总的场次为()112x x -场,剧题意总场次为21场,依此等量关系列出方程.【详解】设共有x 队参赛,此次比赛总场次为()112x x -已知共比赛21场.根据题意列方程为()11212x x -=故答案选D.【点睛】本题考查一元二次方程的实际应用,找到等量关系为解题的关键.8.C 【解析】【分析】利用待定系数法确定函数解析式即可;【详解】解:设该抛物线解析式是:y =a (x-1)2﹣2(a≠0).把点(0,-5)代入,得a (0-1)2﹣2=-5,解得a=-3.故该抛物线解析式是23(1)2y x =---.故答案选:C 【点睛】本题主要考查了待定系数法求抛物线的解析式,难度不大,需要掌握抛物线的顶点式.9.B 【解析】【分析】先求得方程的两个根,再根据等腰三角形的条件判断即可.【详解】∵2x =关于x 的方程23520x mx m -+-=的一个根,∴46520m m -+-=,∴2m =,∴方程23520x mx m -+-=变形为2680x x -+=,解得122,4x x ==,∵方程的两个根恰好是等腰ABC ∆的两条边长,∴其三边可能是2,2,4或4,4,2,∵2+2=4,故三角形不存在,故三角形的周长为10,故选B .【点睛】本题考查了一元二次方程的根,一元二次方程的解法,等腰三角形的分类,熟练解一元二次方程是解题的关键.10.D 【解析】【分析】根据抛物线的性质,对称轴,图形的信息,逐一计算判断即可.【详解】∵102ba-=>,∴0ab <,∵抛物线与y 轴交于正半轴,∴0c >,∴0abc <,故A 不符合题意;∵12ba-=,∴20a b +=,故B 不符合题意;∵1x =-时,y=a-b+c 0<,∴2a-2b+2c 0<,∵12ba-=,∴2a b =-,∴-b-2b+2c 0<,∴3b-2c 0>,故C 不符合题意;∵1x =-时,y=a-b+c 0<,∵12ba-=,∴2a b =-,∴3a+c 0<,故D 符合题意;故选D .【点睛】本题考查了二次函数图像,抛物线的性质,灵活运用图像及其性质是解题的关键.11.x=±5【解析】【分析】移项得x 2=25,然后采用直接开平方法即可得到方程的解.【详解】解:∵x 2-25=0,移项,得x 2=25,∴x=±5.故答案为:x=±5.【点睛】本题考查了利用直接开平方法解一元二次方程.用直接开方法求一元二次方程的解的类型有:x 2=a (a≥0);ax 2=b (a ,b 同号且a≠0);(x+a )2=b (b≥0);a (x+b )2=c (a ,c 同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”.12.241y x =-##214y x =-+【解析】【分析】根据“左加右减、上加下减”的原则进行解答即可.【详解】解:24y x =向下平移1个单位长度所得抛物线解析式为:241y x =-.故答案为:241y x =-.【点睛】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.13.(1【解析】【分析】根据菱形具有的平行四边形基本性质,对角线互相平分,且交点为坐标原点,则B ,D 关于原点对称,因此在直角坐标系中两点的坐标关于原点对称,横坐标与横坐标互为相反数,纵坐标与纵坐标互为相反数便可得.【详解】∵四边形ABCD 是菱形,对角线相交于坐标原点O∴根据平行四边形对角线互相平分的性质,A 和C ;B 和D 均关于原点O 对称根据直角坐标系上一点(),x y 关于原点对称的点为()--x,y 可得已知点B 的坐标是(-1,,则点D 的坐标是(.故答案为:(.【点睛】本题旨在考查菱形的基本性质及直角坐标系中关于原点对称点的坐标的知识点,熟练理解掌握该知识点为解题的关键.14.230S x x=-+【解析】【分析】根据矩形的周长及其一边长表示出另一边为(30-x )米,再根据矩形的面积公式求函数关系式即可.【详解】∵矩形周长为60米,一边长x 米,∴另一边长为(30-x )米,∴矩形的面积()23030S x x x x =-=-+.故答案为:230S x x =-+.【点睛】本题考查了根据实际问题列二次函数关系式,弄清题意,正确找出等量关系是解题的关键.15.1m >且2m ≠【解析】【分析】根据抛物线的定义,得2m ≠;结合题意,根据抛物线和一元二次方程判别式的性质分析,即可得到答案.【详解】∵抛物线2(2)21y m x x =-+-∴20m -≠∴2m ≠∵抛物线2(2)21y m x x =-+-与x 轴有两个公共点,即2(2)210m x x -+-=有两个不同的实数根∴()()22421440m m ---=->∴1m >故答案为:1m >且2m ≠.【点睛】本题考查了二次函数、一元二次方程的知识;解题的关键是熟练掌握二次函数、一元二次方程判别式的性质,从而完成求解.16.①③④【解析】【分析】根据旋转性质可得CD=CE ,∠ECD=90°由90ACB ∠=︒,可得∠ACE=∠DCB ,可证△ACE ≌△BCD (SAS ),可判断①正确;由四边形AECD 面积=三角形ABC 面积,可判断②不正确;由全等三角形性质可得∠AEC=∠BDC=105°,AE=BD ,由90ACB ∠=︒,AC BC =,可得∠CAB=∠EAC=∠B=45°,∠EAB=90°,∠ADE==30°,利用30度直角三角形性质可得ED=2AE=2BD ,再由勾股定理可判断③正确;利用勾股定理可得2222AD BD CD +=,可判断④正确.【详解】解:∵线段CD 绕点C 逆时针旋转90︒得到CE ,∴CD=CE ,∠ECD=90°,∵90ACB ∠=︒∴∠ACE+∠ACD=∠ACD+∠DCB=90°,∴∠ACE=∠DCB ,在△ACE 和△BCD 中,AC BC ACE BCD EC DC =⎧⎪∠=∠⎨⎪=⎩,∴△ACE ≌△BCD (SAS ),故①正确;S 四边形AECD=S △ACE+S △ACD=S △BCD+S △ACD=S △ABC=2111222AC BC a a a ⋅=⋅=,故②不正确;连结ED ,∵△ACE ≌△BCD ,∴∠AEC=∠BDC=105°,AE=BD ,∵90ACB ∠=︒,AC BC =,∴∠CAB=∠B=45°,∴∠EAC=∠B=45°,∴∠EAB=∠EAC+∠CAB=45°+45°=90°,∵CE=CD ,∠ECD=90°,∴∠CED=∠CDE=180452ECD︒-∠=︒,∴∠AED=∠AEC-∠CED=105°-45°=60°,∴∠ADE=90°-∠AED=90°-60°=30°,∴ED=2AE=2BD ,在Rt △AED 中,==,故③正确;在Rt △CED 中,DE 2=2222CF CD CD +=,在Rt △AED 中,∴AE 2+AD 2=BD2+AD 2=ED 2=2CD 2,∴2222AD BD CD +=,故④正确,正确的结论是①③④.故答案为①③④.17.13x =-,25x =.【分析】利用因式分解法解方程.【详解】解:22150x x --= ,(3)(5)0x x ∴+-=,则30x +=或50x -=,解得13x =-,25x =.18.图见解析,1(3,4)A -,1(5,1)B -、1(1,2)C -【分析】根据关于原点对称的点的坐标都是互为相反数计算即可.【详解】解:∵A (-3,4),B (-5,1),C (-1,2)∴它们关于原点O 对称的点分别为1(3,4)A -,1(5,1)B -、1(1,2)C -,画图如下:111A B C ∆为所求作的图形.19.(1)﹣1;(2)12y y <【分析】(1)将二次函数的解析式化为顶点式,进而求得最值即可;(2)求出该二次函数的对称轴,进而根据开口方向和增减性求解即可.【详解】解:(1)二次函数243y x x =++=()221x +-,∵a=1>0,∴该二次函数有最小值,最小值是1-;(2)∵该二次函数图象的对称轴为直线x=﹣2,且开口向上,∴当122x x -<<时,y 随x 的增大而增大,∴12y y <.【点睛】本题考查二次函数的图象与性质、求二次函数的最值,熟练掌握二次函数的图象与性质是解答的关键.20.(1)70%;(2)预计广东省2022年公共充电桩数量不能超过20万个,理由见解析.【解析】【分析】(1)设2019年至2021年广东省公共充电桩数量的年平均增长率为x ,根据广东省2019年及2021年公共充电桩,即可得出关于x 的一元二次方程,解之取其正值即可得出结论;(2)根据广东省2022年公共充电桩数量=广东省2021年公共充电桩数量×(1+增长率),即可求出结论.【详解】解:(1)设广东省2019年至2021年公共充电桩数量的年平均增长率为x24(1)11.56x +=解得:10.7x =,2 2.7x =-(不合题意,舍去)答:年平均增长率为70%.(2)该省2022年公共充电桩数量11.56(10.7)19.65220=⨯+=<答:预计广东省2022年公共充电桩数量不能超过20万个.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.21.(1)22y x x =--+;(2)20x -<<【解析】【分析】(1)求出A ,B 点代入进而求出函数解析式;(2)直接利用A ,B 点坐标进而利用函数图象得出答案;【详解】解:(1)∵直线2y x =+与坐标轴交于A ,B 两点∴点A 的坐标是(2-,0),点B 的坐标是(0,2).把(2-,0),(0,2)代入2y x bx c =-++得:2420c b c =⎧⎨--+=⎩解得12b c =-⎧⎨=⎩∴抛物线的解析式是22y x x =--+.(2)∵点A 的坐标是(2-,0),点B 的坐标是(0,2).∴根据图像可得:不等式22x bx c x -++>+的解集是:20x -<<;【点睛】此题主要考查了利用待定系数法求函数解析式以及二次函数与不等式的关系,解题的关键是利用待定系数法得到关于b 、c 的方程,解方程即可解决问题.22.(1)54m ≥-;(2)3x =-或1x =【解析】【分析】(1)根据有两个实数根,得到不等式△≥0,计算即可;(2)确定m 的值,得到符合题意的一元二次方程,解得即可.【详解】解:(1)∵关于x 的方程22(21)10x m x m +++-=有两个实数根,∴△22(21)41(1)450m m m =+-⨯⨯-=+≥,解得:54m ≥-.(2) 0x =是方程的一个根,∴210m -=,∴1m =±,此时原方程为230x x +=或20x x -=.解得:10x =,23x =-或10x =,21x =.∴方程的另一个根为3x =-或1x =.23.(1)见解析;(2)125【解析】(1)根据正方形和旋转的性质得到AF AE =,EAG FAG ∠=∠,即可求解;(2)设CG x =,则6BG x =-,9EG FG BG BF x ==+=-,由勾股定理求得CG ,等面积法求解即可.【详解】(1)证明:正方形ABCD 中,90BAD ∠=︒由旋转的性质得,AE AF =,90D ABF ∠=∠=︒∴180ABC ABF ∠+∠=︒,∴点F ,点B ,点C 三点共线.∵90DAB ∠=︒,45EAG ∠=︒∴45DAE GAB ∠+∠=︒,∴45BAF GAB ∠+∠=︒,即45FAG ∠=︒∴EAG FAG∠=∠在AEG △和AFG 中AE AFEAG FAG AG AG=⎧⎪∠=∠⎨⎪=⎩∴()AF AEG G SAS △≌△(2)解:由(1)得:EG FG=∵正方形ABCD 的边长为6,E 是CD 的中点∴3DE CE BF ===设CG x =,则6BG x =-,9EG FG BG BF x==+=-在Rt ECG 中,2223(9)x x +=-解得4x =,即CG 4=由勾股定理得:5EG ==设点C 到EG 的距离为h 则1122ECG S CE CG GE h =⨯=⨯△,即125CE CG h GE ⨯==∴点C 到EG 的距离是125.24.(1)(0,1)A ,32x =;(2)12a =或89a =-;(3)10a -< 或2a .【分析】(1)把0x =代入抛物线的解析式求解抛物线与y 轴的交点坐标即可,再利用抛物线的对称轴方程2b x a=-求解抛物线的对称轴即可;(2)分两种情况讨论,①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值;②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=此时32x =,y 取最大值,再分别列方程求解a 即可;(3)分两种情况分别画出符合题意的图形,①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点;②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点,再根据点的位置列不等式即可得到答案.【详解】解:(1)令0x =,则1y =.(0,1)A .抛物线的对称轴为3322a x a -=-=.(2)2234931(24a y ax ax a x -=-+=-+,抛物线的对称轴为32x =.①当0a >时,抛物线的开口向上,12x -≤≤且()353112,2222--=>-=此时1x =-,y 取最大值.∴()213(1)13a a --⨯-+=∴12a =.②当0a <时,抛物线的开口向下,12x -≤≤且()353112,2222--=>-=∴此时32x =,y 取最大值.∴233()31322a a -⨯+=∴89a =-.综上所述,12a =或89a =-.(3)∵抛物线231y ax ax =-+的对称轴为32x =.设点A 关于对称轴的对称点为点B ,(3,1)B ∴.(1,1)Q a + ,∴点,,Q A B 都在直线1y =上.①当0a >时,如图,当点Q 在点A 的左侧(包括点)A 或点Q 在点B 的右侧(包括点)B 时,线段PQ 与抛物线只有一个公共点.10a ∴+ 或13a +.1a ∴- (不合题意,舍去)或2a ∴2a.②当0a <时,如图,当Q 在点A 与点B 之间(包括点A ,不包括点)B 时,线段PQ 与抛物线只有一个公共点.013a ∴+< .12a ∴-< .又0a < ,10a ∴-<综上所述,a 的取值范围为10a -<或2a .【点睛】本题考查的是抛物线与坐标轴的交点问题,求解抛物线的对称轴方程,抛物线的最值问题,抛物线与线段的交点问题,掌握数形结合的方法,清晰的分类讨论是解题的关键.25.[发现问题]:BQ=PC ;[探究猜想]:BQ=PC 仍然成立,理由见解析;[拓展应用]:线段CQ 长度最小值是1【解析】【分析】[发现问题]:由旋转知,AQ=AP ,∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),BQ=CP 即可;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,由∠PAQ=∠BAC ,可得∠BAQ=∠CAP ,可知△BAQ ≌△CAP (SAS ),可得BQ=CP ;[拓展应用]:在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,可求∠CAQ=∠EAP ,可证△CAQ ≌△EAP (SAS ),CQ=EP ,当EF ⊥BC (点P 和点F 重合)时,EP 最小,在Rt △ACB 中,∠ACB=30°,AC=2可求AB=4,由AE=AC=2,可求BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,可得EF=12BE=1即可【详解】[发现问题]:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ AP BAQ CAP AB AC =⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ,故答案为:BQ=PC ;[探究猜想]:结论:BQ=PC 仍然成立,理由:由旋转知,AQ=AP ,∵∠PAQ=∠BAC ,∴∠PAQ-∠BAP=∠BAC-∠BAP ,∴∠BAQ=∠CAP ,在△BAQ 和△CAP 中,AQ APBAQ CAP AB AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAQ ≌△CAP (SAS ),∴BQ=CP ;[拓展应用]:如图,在AB 上取一点E ,使AE=AC=2,连接PE ,过点E 作EF ⊥BC 于F ,由旋转知,AQ=AP ,∠PAQ=60°,∵∠ABC=30°,∴∠EAC=60°,∴∠PAQ=∠EAC ,∴∠CAQ=∠EAP ,在△CAQ 和△EAP 中,AQ APCAQ EAP AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAQ ≌△EAP (SAS ),∴CQ=EP ,要使CQ 最小,则有EP 最小,而点E 是定点,点P 是AB 上的动点,∴当EF ⊥BC (点P 和点F 重合)时,EP 最小,即:点P 与点F 重合,CQ 最小,最小值为EP ,在Rt △ACB 中,∠ACB=30°,AC=2,∴AB=4,∵AE=AC=2,∴BE=AB-AE=2,在Rt △BFE 中,∠EBF=30°,BE=2,∴EF=12BE=1.故线段CQ 长度最小值是1.。
最新人教版九年级数学上册期中考试试题(含答案)
最新人教版九年级数学上册期中考试试题(含答案)一、选择题(每小题4分,共80分)1. 题目1a. A选项b. B选项c. C选项d. D选项答案:B2. 题目2a. A选项b. B选项c. C选项d. D选项答案:C...二、填空题(每小题4分,共40分)1. 题目1:_______是一个素数。
答案:132. 题目2:32的约数有_______个。
答案:6...三、计算题(每小题10分,共50分)1. 题目1:已知两个角的度数为45°和120°,这两个角的补角之和为多少度?答案:60°2. 题目2:某商店原价100元的商品打8折出售,实际售价为多少元?答案:80元...四、应用题(每小题12分,共60分)1. 题目1:甲、乙两个人同时从相距800千米的地点出发,甲每小时行40千米,乙每小时行50千米。
请问他们多长时间后会相遇?答案:8小时2. 题目2:一个矩形的长是宽的3倍,如果宽为6米,求该矩形的面积。
答案:108平方米...五、解答题(每小题15分,共75分)1. 题目1:如图所示,已知AB是⊙O的直径,CD是弧AB的弦,∠ACD=90°,AB=8,AD=6,请计算弧CD的长度。
![题目1图片](image1.jpg)答案:42. 题目2:根据下列计算过程,填写下表中的数据:计算过程:2*(-5) - 3*(-4) + 6*(-10) = ?...以上是最新人教版九年级数学上册期中考试试题及答案,希望对你有帮助!。
人教版九年级数学上册期中试卷(含答案)
人教版九年级数学上册期中试卷九年级数学满分:120分时间:120分钟注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.测试范围:人教版九年级上21~24章。
5.考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、选择题:本题共10小题,每小题3分,共30分。
1.如图,△ABC的顶点坐标分别为A(4,6)、B(5,2)、C(2,1),如果将△ABC绕点B按顺时针方向旋转90°,得到△A′BC′,将△A′BC′向下平移2个单位,得△A″B′C″,那么点C的对应点C″的坐标是()。
A.(3, 2) B.(3, 3) C.(4, 3) D.(4, 2)2.已知关于x的一元二次方程(k-1)x2+2kx+1=0根的情况是()。
A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根3.下面是小明同学用配方法解方程2x2-12x-1=0的过程:解:2x2-12x-1=0 (1)x2-6x=1 (2)x2-6x+9=1+9 (3)(x-3)2=10,x-3=±10 (4)∴x1=3+10,x2=3-10最开始出现错误的是()。
A.第1步B.第2步C.第3步D.第4步4.如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为10厘米,AB=16厘米。
若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8厘米/分C.1.2厘米/分D.1.4厘米/分5.已知抛物线y=ax2+bx+m(a≠0)是由抛物线y=x2-2x+m向左平移2个单位得到,若点A(-2, y1),B(-1, y2),C(1, y3)都在抛物线y=ax2+bx+m(a≠0)上,则y1, y2, y3之间的大小关系是()。
人教版九年级上册数学期中考试试卷含答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.若关于x 的方程(m ﹣1)x 2=﹣m 是一元二次方程,则m 不可能取的数为()A .0B .1C .±1D .0和12.下列抛物线中,开口最大的是()A .y 2B .y =2112x -+C .y =2(1)x -D .y =﹣2(1)x +3.下列一元二次方程中,有实数根的是()A .2x=﹣2B .2x -x C .2x x+1=0D .(x+1)(x+2)=﹣14.已知A (1,y1)、B (﹣2,y 2)、C ,y 3)在函数y =x 2的图象上,则y 1、y 2、y 3的大小关系是()A .1y <3y <2yB .1y <2y <3yC .2y <1y <3y D .2y <3y <1y 5.下列说法中,正确的是()A .弦是直径B .相等的弦所对的弧相等C .圆内接四边形的对角互补D .三个点确定一个圆6.抛物线y =ax 2+bx+c (a≠0)的部分图象如图所示,则下面结论中不正确的是()A .ac <0B .2a+b =0C .b 2<4acD .方程ax 2+bx+c =0的根是﹣1,37.如图,在⊙O 中,AB 是直径,OD ⊥AC 于点E ,交⊙O 于点D ,则下列结论错误的是()A.AD=CD B.C.BC=2EO D.EO=DEAD DC8.如图,在△ABC中,∠C=90°,AC=BC2,将△ABC绕点A逆时针方向旋转60°到△AB'C'的位置,则图中阴影部分的面积是()A2B3C.32D.239.如图,一段抛物线:y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此变换进行下去,若点P(17,m)在这种连续变换的图象上,则m的值为()A.2B.﹣2C.﹣3D.310.如图,将△ABC绕点B顺时针旋转50°得△DBE,点C的对应点恰好落在AB的延长线上,连接AD,下列结论不一定成立的是()A.AB=DB B.∠CBD=80°C.∠ABD=∠E D.△ABC≌△DBE二、填空题11.若关于x的方程x2=P的两根分别为m+1和m﹣1,则P的值为_____.12.已知抛物线y=(x﹣m)2+3,当x>1时,y随x的增大而增大,则m的取值范围是_____.13.如图,△ABC是⊙O的内接三角形,BC是直径,∠B=54°,∠BAC的平分线交⊙O 于D,则∠ACD的度数是_____.14.如图,PA,PB分别切半径为2的⊙O于A,B两点,BC为直径,若∠P=60°,则PB 的长为_____.15.如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D为AC中点,E为AB上的动点,将ED绕点D逆时针旋转90°得到FD,连CF,则线段CF的最小值为_____.三、解答题16.用适当的方法解下列方程(1)(x﹣1)2=2(1﹣x)(2)()(y)=17.如图所示,在正方形网格中,△ABC 的顶点坐标分别为(﹣1,0),(﹣2,﹣2),(﹣4,﹣1).请在所给直角坐标系中按要求画图和解答下列问题:(1)将△ABC 绕着某点按顺时针方向旋转得到△A′B'C',请直接写出旋转中心的坐标和旋转角度.(2)画出△ABC 关于点A 成中心对称的△AED ,若△ABC 内有一点P (a ,b ),请直接写出经过这次变换后点P 的对称点坐标.18.已知▱ABCD 边AB ,AD 的长是关于x 的方程x 2﹣mx+4=0的两个实数根.(1)当m 为何值时,四边形ABCD 是菱形?(2)若AB ,那么▱ABCD 的周长是多少?19.已知二次函数y =21322x x +-,解答下列问题:(1)用配方法求其图象的顶点坐标;(2)填空:①点A (m ,52),B (n ,52)在其图象上,则线段AB 的长为____;②要使直线y =b 与该抛物线有两个交点,则b 的取值范围是______.20.如图,在△ABC 中,AB =AC ,∠BAC =120°,点O 在BC 上,⊙O 经过点A ,点C ,且交BC 于点D ,直径EF ⊥AC 于点G .(1)求证:AB 是⊙O 的切线;(2)若AC =8,求BD 的长.21.某商场销售一种商品,进价为每件15元,规定每件商品售价不低于进价,且每天销售量不低于90件经调查发现,每天的销售量y(件)与每个商品的售价x(元)满足一次函数关系,其部分数据如下表所示:每个商品的售价x(元)…304050…每天的销售量y(件)…1008060…(1)填空:y与x之间的函数关系式是______.(2)设商场每天获得的总利润为w(元),求w与x之间的函数关系式;(3)不考虑其他因素,当商品的售价为多少元时,商场每天获得的总利润最大,最大利润是多少?22.如图1,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转a角(0°<a<180°),得到△AB′C′(如图2),连接DB',EC'.(1)探究DB'与EC'的数量关系,并结合图2给予证明;(2)填空:①当旋转角α的度数为_____时,则DB'∥AE;②在旋转过程中,当点B',D,E在一条直线上,且AD2时,此时EC′的长为_____.23.如图,已知直线y=x+4交x轴于点A,交y轴于点B,抛物线y=﹣x2+bx+c经过点A、B.(1)求抛物线解析式;(2)点C(m,0)是x轴上异于A、O点的一点,过点C作x轴的垂线交AB于点D,交抛物线于点E.的最大值;①当点E在直线AB上方的抛物线上时,连接AE、BE,求S△ABE②当DE=AD时,求m的值.参考答案1.B【解析】根据一元二次方程定义可得:m﹣1≠0,求出m的取值范围即可.【详解】由题意得:m﹣1≠0,解得:m≠1,故选B.【点睛】本题考查一元二次方程的定义,一元二次方程的一般形式是:ax 2+bx+c=0(a ,b ,c 是常数且a≠0)特别要注意a≠0的条件.2.B 【分析】根据二次函数中|a|的绝对值越大,开口越小,|a|的绝对值越小,开口越大,即可得答案.【详解】∵|﹣12|<|﹣1|=|1|,∴函数y =212x +1的开口最大,故选B .【点睛】本题主要考查的是二次函数的图象和性质,掌握抛物线的开口方向和开口大小与a 的关系是解题的关键.3.B 【分析】根据根的判别式逐一判断即可得答案.【详解】A.∵x 2+2=0,∴△=0﹣4×2=﹣8<0,故该选项无实数根,B.∵x 2﹣x ,∴x 2﹣x =0,∴△=>0,故该选项有实数根,C.∵x 2x+1=0,∴△=2﹣4=﹣2<0,故该选项没有实数根,D.∵(x+1)(x+2)=﹣1,∴x 2+3x+3=0,∴△=9﹣12=﹣3<0,故该选项没有实数根.故选B .【点睛】本题考查一元二次方程根的判别式,对于一元二次方程y=ax2+bx+c(a≠0),判别式△=b2-4ac,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;熟练掌握根的判别式与根的个数的关系是解题关键.4.A【分析】先判断函数的对称轴及开口方向,然后根据开口向上时,横坐标离对称轴越远,函数值越大,据此可解.【详解】∵函数y=x2,1>0,∴对称轴是y轴,开口向上,∴横坐标离y轴越远,函数值越大,∵|1|<|<|﹣2|∴1y<3y<2y故选A.【点睛】本题考查二次函数的性质,抛物线开口向上时,横坐标离对称轴越远,函数值越大;抛物线开口向下时,横坐标离对称轴越近,函数值越大;熟练掌握二次函数的性质是解题关键. 5.C【分析】利用圆的有关性质及定义逐一判断后即可确定正确的选项.【详解】A.直径是弦,但弦不一定是直径,故错误,不符合题意,B.相等的弦对的弧不一定相等,故错误,不符合题意,C.圆内接四边形的对角互补,正确,符合题意,D.不在同一直线上的三点确定一个圆,故错误,不符合题意,故选C.【点睛】本题考查圆的有关性质及定义,熟练掌握相关性质及定义是解题关键.6.C 【分析】根据图象的开口方向及与y 轴的交点可得a 、c 的符号,根据对称轴可确定b 的符号,可对A 、B 进行判断,根据图象与x 轴的交点可C 、D 进行判断,即可得答案.【详解】∵图象开口向下,与y 轴交于y 轴正半轴,∴a <0,c>0,∴ac<0,故A 正确,∵对称轴x =1=﹣2ba,∴b =﹣2a ,∴2a+b =0,故B 正确,∵图象与x 轴的一个交点坐标为(3,0),对称轴为x=1,∴b 2﹣4ac >0,即b 2>4ac ,另一个交点为(﹣1,0),∴方程ax 2+bx+c =0的根是﹣1,3,故C 错误,D 正确,故选C .【点睛】本题考查了二次函数图象与系数的关系.二次函数y=ax 2+bx+c (a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y 轴的交点抛物线与x 轴交点的个数确定.7.D 【分析】由垂径定理得出 ADDC =,AE =CE ,得出AD =CD ,可得出OE 是△ABC 的中位线,根据中位线的性质可得BC =2OE ;只有当AD =AO 时,EO =DE ,即可得出答案.【详解】∵AB 是直径,OD ⊥AC ,∴ ADDC =,AE =CE ,故选项B 正确,不符合题意,∴AD =CD ,故选项A 正确,不符合题意,∵OA =OB ,∴OE 是△ABC 的中位线,∴BC =2OE ,故选项C 正确,不符合题意,∵只有当AD =AO 时,EO =DE ,∴选项D 错误,符合题意,故选D .【点睛】本题考查垂径定理及三角形中位线的性质,垂直于弦的直径,平分弦并且平分这条弦所对的两条弧;三角形的中位线平行于第三边,且等于第三边的一半;熟练掌握垂径定理是解题关键.8.B 【分析】由等腰直角三角形的性质可求AB =2,由旋转的性质可得AB =AB',∠BAB'=60°,可得△ABB'是等边三角形,由图中阴影部分的面积=S △AB'B 即可得答案.【详解】过A 作AD ⊥B′B ,∵∠C =90°,AC =BC ,∴AB =AC =2,∵将△ABC 绕点A 逆时针方向旋转60°到△AB'C'的位置,∴AB =AB',∠BAB'=60°,∴△ABB'是等边三角形,∴B′B=AB=2,∵AD ⊥B′B ,∴BD=12B′B=1,∴AD=,∴图中阴影部分的面积=S △AB'B =12B′B·AD ,故选B.【点睛】本题考查旋转的性质及等边三角形的判定与性质,正确得出对应边、对应角与旋转角是解题关键.9.D【分析】根据题意和题目中的函数解析式,可以得到点A1的坐标,从而可以求得OA1的长度,然后根据题意,即可得到点P(17,m)中m的值和x=1时对应的函数值相等,即可得答案.【详解】∵y=﹣x(x﹣4)(0≤x≤4)记为C1,它与x轴交于两点O,A1,∴点A1(4,0),∴OA1=4,∵OA1=A1A2=A2A3=A3A4……,∴OA1=A1A2=A2A3=A3A4 (4)∵点P(17,m)在这种连续变换的图象上,17÷4=4……1,∴点P(17,m)在C5上,∴x=17和x=1时的函数值相等,∴m=﹣1×(1﹣4)=﹣1×(﹣3)=3,故选D.【点睛】本题考查二次函数的性质及旋转的性质,得出x=17和x=1时的函数值相等是解题关键. 10.C【分析】利用旋转的性质得△ABC≌△DBE,BA=BD,BC=BE,∠ABD=∠CBE=50°,∠C=∠E,再由A、B、E三点共线,由平角定义求出∠CBD=80°,由三角形外角性质判断出∠ABD>∠E.【详解】解:∵△ABC绕点B顺时针旋转50°得△DBE,∴AB=DB,BC=BE,∠ABD=∠CBE=50°,△ABC≌△DBE,故选项A、D一定成立;∵点C的对应点E恰好落在AB的延长线上,∴∠ABD+∠CBE+∠CBD=180°,.∴∠CBD=180°-50°-50°=80°,故选项B一定成立;又∵∠ABD=∠E+∠BDE,∴∠ABD>∠E,故选项C错误,故选C.【点睛】本题主要考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.11.1【分析】根据一元二次方程根与系数的关系可得m+1+m﹣1=0,即可求出m的值,进而可求出P值.【详解】∵关于x的方程x2=P的两根分别为m+1和m﹣1,∴m+1+m﹣1=0,解得:m=0,即m﹣1=﹣1,所以:P=(﹣1)2=1,故答案为1【点睛】本题考查一元二次方程根与系数的关系,若一元二次方程ax2+bx+c=0(a,b,c是常数且a≠0)的两个根为x1、x2,则x1+x2=ba ,x1·x2=ca;熟练掌握韦达定理是解题关键.12.m≤1【分析】先求得抛物线的对称轴,再由条件可求得关于m的不等式,即可得答案.【详解】∵y=(x﹣m)2+3,∴对称轴为x=m,∵a=1>0,∴抛物线开口向上,∴在对称轴右侧y随x的增大而增大,∵当x>1时,y随x的增大而增大,∴m≤1,故答案为:m≤1.【点睛】此题主要考查了利用二次函数增减性以及利用数形结合确定对称轴大体位置,根据二次函数解析式得出对称轴为x=m是解题关键.13.81°【分析】根据圆周角定理得到∠BAC=90°,∠D=∠B=54°,根据角平分线的定义、三角形内角和定理计算即可.【详解】∵BC是⊙O的直径,∴∠BAC=90°,∵AD平分∠BAC,∴∠DAC=45°,∵∠D和∠B都是 AC所对的圆周角,∠B=54°,∴∠D=∠B=54°,∴∠ACD=180°﹣∠DAC﹣∠D=180°﹣45°﹣54°=81°,故答案为:81°【点睛】本题主要考查圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都定义这条弧所对的圆心角的一半;熟练掌握圆周角定理是解题关键.14.【解析】【分析】连接AC,根据PA,PB是切线,∠P=60°,判断出△ABP是正三角形,根据切线的性质可得∠CBP为90°,进而得出∠ABC=30°,由BC是直径可得∠BAC-90°,根据含30°角的直角三角形的性质可得AC的长,利用勾股定理求出AB的长即可.【详解】如图所示:连接AC,∵PA,PB是切线,∴PA=PB.又∵∠P=60°,∴AB=PB,∠ABP=60°,又CB⊥PB,∴∠ABC=30°,∵BC是直径,BC=4,∴∠BAC=90°,∴AC=12BC=2,∴PB=.故答案为【点睛】本题考查切线长定理、切线的性质及含30°角的直角三角形的性质,从圆外一点可引圆的两条切线,它们的切线长相等,这一点与圆心的连线平分两条切线的夹角;圆的切线垂直于过切点的半径;30°角所对的直角边等于斜边的一半;熟练掌握相关性质及定理是解题关键. 15.4【分析】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,由“AAS”可证△ADE≌△HFD,可得HF=AD=4,当点H与点C重合,线段CF的最小值为4.【详解】如图所示,过F作FH⊥AC于H,则∠A=∠DHF=90°,∵AC=8,D为AC中点,∴AD=4,由旋转可得,DE=DF,∠EDF=90°,∴∠ADE+∠FDH=90°,∠FDH+∠DFH=90°,∴∠ADE=∠DFH,且DE=DF,∠A=∠DHF=90°,∴△ADE≌△HFD(AAS),∴HF=AD=4,∴当点H与点C重合,此时CF=HF=4,∴线段CF的最小值为4,故答案为:4【点睛】本题考查旋转的性质及全等三角形的判定与性质,根据全等三角形的判定与性质得出HF的长是解题关键.16.(1)x1=1,x2=﹣1;(2)y1﹣2,y2+2.【分析】(1)利用因式分解法求解可得;(2)整理成一般形式后,利用公式法法求解可得.【详解】(1)(x﹣1)2=2(1﹣x)(x﹣1)2=﹣2(x﹣1),(x﹣1)2+2(x﹣1)=0,(x﹣1)(x+1)=0,x﹣1=0或x+1=0,解得:x1=1,x2=﹣1.(2)()(y)=y2﹣y﹣2=0∴±2,∴y 1﹣2,y 2+2.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、公式法、配方法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.17.(1)旋转中心坐标为(2,﹣3),旋转角为90°;(2)作图见解析,(﹣a ﹣2,﹣b ).【分析】(1)作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.连接AK 、A′K ,可得∠AKA′=90°,即可得旋转角度数;(2)分别作出C ,B 的对应点E ,D 即可,利用中点坐标公式求出对称点的坐标即可.【详解】(1)如图,作线段BB′,线段AA′的垂直平分线交于点K ,点K 即为所求.∴旋转中心坐标为K (2,﹣3),连接AK 、A′K ,由网格的特点可知:∠AKA′=90°,∴旋转角为90°.(2)如图,△ADE 即为所求,设点P 关于点A 的对称点为P′(x ,y ),∵A (-1,0),P (a ,b ),点A 为PP′的中点,∴12x a +=-,02y b +=,解得:x=-2-a ,y=-b ,∴点P (a ,b )经过这次变换后点P 的对称点坐标为(﹣a ﹣2,﹣b ).【点睛】本题考查旋转的性质及坐标变换,正确得出对应点、对应边并熟记中点坐标公式是解题关键. 18.(1)m=﹣4;(2)2.【分析】(1)根据菱形的性质得出AB=AD,根据根的判别式得出关于m的方程,求出m即可;(2)根据根与系数的关系求出AD,再根据平行四边形的性质得出另外两边的长度,求出周长即可.【详解】(1)∵四边形ABCD是菱形,∴AB=AD,∴方程x2﹣mx+4=0有两个相的等实数根,∴△=(﹣m)2﹣4×1×4=0,解得:m=±4,即方程为x2﹣4x+4=0或x2+4x+4=0,解得:x=2或x=﹣2,∵边长不能为负数,∴x=2,即AB=AD=2,∴m=﹣4;(2)∵▱ABCD边AB,AD的长是关于x的方程x2﹣mx+4=0的两个实数根,AB=2,2AD=4,解得:AD =,∵四边形ABCD 是平行四边形,∴AB =CD ,AD =BC =,∴▱ABCD +2+2=.【点睛】本题考查了菱形的性质、一元二次方程根的判别式及根与系数的关系,对于一元二次方程y=ax 2+bx+c(a≠0),判别式△=b 2-4ac ,当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根;若一元二次方程ax 2+bx+c=0(a ,b ,c 是常数且a≠0)的两个根为x 1、x 2,则x 1+x 2=b a -,x 1·x 2=c a ;熟练掌握韦达定理是解题关键.19.(1)(﹣1,﹣2);(2)①6;②b >﹣2.【分析】(1)根据配方法可以求得该函数图象的顶点坐标;(2)①把y=52代入二次函数解析式,可求得m 、n 的值,从而可以求得线段AB 的长;②根据二次函数的顶点坐标及直线y =b 与该抛物线有两个交点,即可求得b 的取值范围.【详解】(1)∵二次函数y =22131(1)2222x x x +-=+-,∴该函数图象的顶点坐标为(﹣1,﹣2);(2)①∵点A (m ,52),B (n ,52)在其图象上,∴52=21322x x +-,解得,x 1=﹣4,x 2=2,∴m =﹣4,n =2或m =2,n =﹣4,∵|﹣4﹣2|=|2﹣(﹣4)|=6,∴线段AB 的长为6,故答案为:6②∵该函数图象的顶点坐标为(﹣1,﹣2),直线y =b 与该抛物线有两个交点,∴b 的取值范围为b >﹣2,故答案为:b >﹣2.【点睛】此题主要考查了二次函数的性质及二次函数图象上点的坐标特征、配方法求其顶点坐标,熟练掌握二次函数的性质是解题关键.20.(1)详见解析;(2)BD =833.【分析】(1)连接OA ,由等腰三角形的性质得出∠B =∠C =30°,∠OAC =∠C =30°,求出∠OAB =120°﹣30°=90°,得出AB ⊥OA ,即可得出AB 是⊙O 的切线;(2)由垂径定理得出AG =CG =12AC =4,由直角三角形的性质得出OG =3AG =3,得出OA =2OG =833,BO =2OA =2OD ,即可得出BD =OA =833.【详解】(1)如图,连接OA ,∵AB =AC ,∠BAC =120°,∴∠B =∠C =30°,∵OA =OC ,∴∠OAC =∠C =30°,∴∠OAB =∠BAC-∠OAC=120°﹣30°=90°,∴AB ⊥OA ,∴AB 是⊙O 的切线.(2)解:∵直径EF ⊥AC ,∴AG=CG=12AC=4,∵∠OAC=30°,∴OG=3AG=433,∴OA=2OG=3,∵∠OAB=90°,∠B=30°,∴BO=2OA=2OD,∴BD=OA=83 3.【点睛】本题考查切线的判定、垂径定理及含30°角的直角三角形的性质,过半径的外端并且垂直于这条半径的直线是圆的切线;垂直于弦的直径平分弦,并且平分这条弦所对的两条弧;熟练掌握相关定理及性质是解题关键.21.(1)y=﹣2x+160;(2)w=﹣2x2+190x﹣2400;(3)当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【分析】(1)根据表格所给数据即可求得一次函数解析式;(2)根据总利润等于销售量乘以单件利润即可求解;(3)根据二次函数的性质即可求解.【详解】(1)设每天的销售量y(件)与每个商品的售价x(元)满足的一次函数关系为:y=kx+b,把(30,100)、(40,80)代入得:30100 4080k bk b+=⎧⎨+=⎩解得:2160 kb=-⎧⎨=⎩,∴y与x之间的函数关系式是y=﹣2x+160.故答案为y=﹣20x+160(2)∵每天销售量不低于90件,∴-20x+160≤90,解得:x≤35,∵售价不低于进价,∴x≥15,∴15≤x≤35,w=(x﹣15)(﹣2x+160)=﹣2x2+190x﹣2400(15≤x≤35).答:w与x之间的函数关系式为w=﹣2x2+190x﹣2400(15≤x≤35).(3)w=﹣2x2+190x﹣2400=﹣2(x﹣47.5)2+2112.5∵15≤x≤35,﹣2<0,∴图象在对称轴左侧,w随x的增大而增大,∴当x=35时,w最大为1800.答:当商品的售价为35元时,商场每天获得的总利润最大,最大利润是1800元.【点睛】本题考查一次函数的应用,待定系数法求一次函数解析式及求二次函数的最值,熟练掌握二次函数的性质是解题关键.22.(1)DB'=EC',证明详见解析;(2)①60°-1.【分析】(1)由旋转的性质可得∠DAE=∠B'AC'=90°,AB'=AC',利用“SAS”可证明△ADB'≌△AEC',可得DB'=EC';(2)由平行线的性质和直角三角形的性质可求解;(3)由全等三角形的性质可得∠ADB'=∠AEC',B'D=C'E,由等腰直角三角形的性质可得B'C'AB'=4,DE AD=2,由勾股定理可求EC'的长.【详解】(1)DB'=EC',理由如下:∵AB=AC,D、E分别是AB、AC边的中点,∴AD=AE,由旋转可得,∠DAE=∠B'AC'=90°,AB'=AC',∴∠DAB'=∠EAC',且AB'=AC',AD=AE∴△ADB'≌△AEC'(SAS),∴DB′=EC′,(2)①∵DB′∥AE,∴∠B'DA=∠DAE=90°,∵AD=12AB,AB=AB',∴AD=12AB',∴∠AB'D=30°,∴∠DAB'=60°,∴旋转角α=60°,故答案为60°,②如图,当点B',D,E在一条直线上,∵AD=,∴AB'=,∵△ADE,△AB'C'是等腰直角三角形,∴B'C'=AB'=4,DE=AD=2,由(1)可知:△ADB'≌△AEC',∴∠ADB'=∠AEC',B'D=C'E,∵∠ADB'=∠DAE+∠AED,∠AEC'=∠AED+∠DEC',∴∠DEC'=∠DAE=90°,∴B'C'2=B'E2+C'E2,∴16=(2+EC')2+C'E2,∴CE﹣1,7﹣1.【点睛】本题考查旋转的性质、等腰直角三角形的性质及全等三角形的判定与性质,正确得出旋转后的对应边、旋转角并熟练掌握全等三角形的判定定理是解题关键.23.(1)y=﹣x2﹣3x+4;(2)①S△ABE最大值为8;②m=2.【分析】(1)直线y=x+4交x轴于点A,交y轴于点B,则点A、B的坐标分别为:(﹣4,0)、(0,4),可得c值,把A点坐标代入y=﹣x2+bx+c求出b的值,即可得答案;(2)①S△ABE=12×ED×OA=2ED=﹣2m2﹣8m,即可求解;②根据A、B坐标可得∠BAO=45°,即可得出AD2AC2|(m+4)|,根据AD=DE列方程求出m的值即可.【详解】(1)∵直线y=x+4交x轴于点A,交y轴于点B,∴当x=0时,y=4,当y=0时,x=-4,∴点A(-4,0)、点B(0,4),∴c=4,将点A的坐标代入抛物线表达式并解得:-(-4)2-4x+4=0,解得:b=﹣3,故抛物线的表达式为:y=﹣x2﹣3x+4;(2)如图,连接EA、EB,①∵C(m,0),CE⊥x轴,D、E分别在AB和抛物线上,∴点E、D的坐标分别为:(m,﹣m2﹣3m+4)、(m,m+4),∵点E在直线AB上方的抛物线上,∴DE=(﹣m2﹣3m+4)﹣(m+4)=﹣m2﹣4m,∴S △ABE =12×ED×OA =2ED =﹣2m 2﹣8m=-2(m+2)2+8,∵﹣2<0,∴当m=-2时,S △ABE 有最大值8.②∵OA=OB=4,∠AOB=90°,∴∠BAO=45°,∵∠ACE=90°,∴AD =AC =|m+4|,∵AD=DE ,∴2244m m --=+解得:m=或m=-4,∵m=-4时,点C 与点A 重合,不符合题意,∴m=.【点睛】本题考查待定系数法求二次函数解析式、二次函数图象上点的坐标特征、求二次函数的最值及等腰直角三角形的性质,熟练掌握二次函数的性质是解题关键.。
人教版九年级数学(上册)期中测试卷(附参考答案)
九年级数学(上册) 期中测试卷( 测试时间:120分钟 满分12分)一、选择题(本题共7个小题,每个小题只有一个正确选项,每小题3分,满分21分)1.a 的取值范围是 ( )A.0a ≥B.0a ≤C.3a ≥D. 3a ≤2.如图1所示,将正方形图案绕中心O 旋转180°后,得到的图案是 ( )图13.下列计算正确的是 ( )A .224=-B =3=- 4.一元二次方程0452=-+x x 根的情况是 ( ) A. 两个不相等的实数根 B. 两个相等的实数根C. 没有实数根D. 不能确定5.方程0562=-+x x 的左边配成完全平方后所得方程为 ( )A.14)3(2=+xB.14)3(2=-xC.4)3(2=+xD.4)3(2=-x 6.如图2所示,平面直角坐标系内Rt △AB O 的顶点A 坐标为(3,1),将△AB O 绕O 点逆时针旋转90°后,顶点A 的坐标为 ( ) A. (-1,3) B. (1,-3)C. (3,1)D. (-3, 1)ODCBA图27.三角形两边长分别是8和6,第三边长是一元二次方程x 2-16x+60=0一个实数根,则该三角形的面积是 ( ) A .24 B .48 C .24或. 二、填空题(本大题共8小题,每小题3分,满分24分)8.最简二次根式12+b 与17--a b 是同类二次根式,则a= b= .9.=2,且ab<0,则a-b= .10.关于x 的方程032=--a ax x 的一个根是2-,则a 的值为_______.11.已知a 、b 是方程的两个实数根,则的值为_____. 12.已知a ,b ,则ab=_______.13.已知关于x 的一元二次方程22)210m x x -++=(有实数根,则m 的取值范围是 .14.点P (—1,3)关于原点对称的点的坐标是 。
15.将两块直角三角尺的直角顶点重合为如图3所示的位置, 若∠AOD=110°,则∠BOC= .图32250x x +-=22a ab a ++2690b b -+=三、解答题:(本大题共8个小题,满分75分)16、(本小题8分)化简。
【人教版】九年级上册期中数学试卷1含答案(1)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!九年级(上)期中数学试卷一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是( )A.ax2+bx+c=0B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣22.用配方法解方程x2+8x+9=0,变形后的结果正确的是( )A.(x+4)2=﹣7B.(x+4)2=﹣9C.(x+4)2=7D.(x+4)2=253.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是( )A.m<1B.m<﹣1C.m>1D.m>﹣14.一元二次方程x2﹣x﹣2=0的解是( )A.x1=1,x2=2B.x1=1,x2=﹣2C.x1=﹣1,x2=﹣2D.x1=﹣1,x2=25.下列标志中,可以看作是轴对称图形的是( )A.B.C.D.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为( )A.1个B.2个C.3个D.4个8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.39.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是( )A.35°B.45°C.55°D.65°10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是( )A.B.C.D.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是 .12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b= .13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为 .14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为 .15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 .16.观察下列图形规律:当n= 时,图形“●”的个数和“△”的个数相等.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.18.解方程:2x2﹣7x+6=0.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D ,连接CD,求a的值及△PCD的面积.九年级(上)期中数学试卷参考答案与试题解析一、选择题:每小题4分,共40分.1.下列方程中,是关于x的一元二次方程的是( )A.ax2+bx+c=0B.C.3(x+1)2=2(x+1)D.2x2+3x=2x2﹣2【考点】一元二次方程的定义.【分析】根据一元二次方程的定义:未知数的最高次数是2;二次项系数不为0;是整式方程;含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、a=0,ax2+bx+c=0是一元一次方程,故A错误;B、()2+﹣2=0是分式方程,故B错误;C、3(x+1)2=2(x+1)是一元二次方程,故C正确;D、2x2+3x=2x2﹣2是一元一次方程,故D错误;故选:C.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.用配方法解方程x2+8x+9=0,变形后的结果正确的是( )A.(x+4)2=﹣7B.(x+4)2=﹣9C.(x+4)2=7D.(x+4)2=25【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x2+8x+9=0,整理得:x2+8x=﹣9,配方得:x2+8x+16=7,即(x+4)2=7,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.3.若关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,则m的取值范围是( )A.m<1B.m<﹣1C.m>1D.m>﹣1【考点】根的判别式.【专题】计算题.【分析】根据根的判别式,令△>0即可求出根的判别式.【解答】解:∵关于x的一元二次方程x2﹣2x+m=0有两个不相等的实数根,∴△=(﹣2)2﹣4×m>0,∴4﹣4m>0,解得m<1.故选A.【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4.一元二次方程x2﹣x﹣2=0的解是( )A.x1=1,x2=2B.x1=1,x2=﹣2C.x1=﹣1,x2=﹣2D.x1=﹣1,x2=2【考点】解一元二次方程-因式分解法.【专题】因式分解.【分析】直接利用十字相乘法分解因式,进而得出方程的根【解答】解:x2﹣x﹣2=0(x﹣2)(x+1)=0,解得:x1=﹣1,x2=2.故选:D.【点评】此题主要考查了十字相乘法分解因式解方程,正确分解因式是解题关键.5.下列标志中,可以看作是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.【点评】此题主要考查了中心对称图形和轴对称图形的定义,掌握中心对称图形与轴对称图形的概念,解答时要注意:判断轴对称图形的关键是寻找对称轴,图形两部沿对称轴叠后可重合;判断中心对称图形是要寻找对称中心,图形旋转180度后与原图重合.6.如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到的△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )A.32°B.64°C.77°D.87°【考点】旋转的性质.【分析】旋转中心为点A,C、C′为对应点,可知AC=AC′,又因为∠CAC′=90°,根据三角形外角的性质求出∠C′B′A的度数,进而求出∠B的度数.【解答】解:由旋转的性质可知,AC=AC′,∵∠CAC′=90°,可知△CAC′为等腰直角三角形,则∠CC′A=45°.∵∠CC′B′=32°,∴∠C′B′A=∠C′CA+∠CC′B′=45°+32°=77°,∵∠B=∠C′B′A,∴∠B=77°,故选C.【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等.也考查了等腰直角三角形的性质.7.抛物线y=ax2+bx+c的顶点为D(﹣1,2),与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b2﹣4ac<0;②a+b+c<0;③c﹣a=2;④方程ax2+bx+c﹣2=0有两个相等的实数根.其中正确结论的个数为( )A.1个B.2个C.3个D.4个【考点】二次函数图象与系数的关系;抛物线与x轴的交点.【专题】数形结合.【分析】由抛物线与x轴有两个交点得到b2﹣4ac>0;有抛物线顶点坐标得到抛物线的对称轴为直线x=﹣1,则根据抛物线的对称性得抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,所以当x=1时,y<0,则a+b+c<0;由抛物线的顶点为D(﹣1,2)得a﹣b+c=2,由抛物线的对称轴为直线x=﹣=﹣1得b=2a,所以c﹣a=2;根据二次函数的最大值问题,当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,所以说方程ax2+bx+c﹣2=0有两个相等的实数根.【解答】解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,所以①错误;∵顶点为D(﹣1,2),∴抛物线的对称轴为直线x=﹣1,∵抛物线与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在点(0,0)和(1,0)之间,∴当x=1时,y<0,∴a+b+c<0,所以②正确;∵抛物线的顶点为D(﹣1,2),∴a﹣b+c=2,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a,∴a﹣2a+c=2,即c﹣a=2,所以③正确;∵当x=﹣1时,二次函数有最大值为2,即只有x=﹣1时,ax2+bx+c=2,∴方程ax2+bx+c﹣2=0有两个相等的实数根,所以④正确.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c);当b2﹣4ac>0,抛物线与x轴有两个交点;当b2﹣4ac=0,抛物线与x轴有一个交点;当b2﹣4ac<0,抛物线与x轴没有交点.8.如图,已知⊙O的半径为13,弦AB长为24,则点O到AB的距离是( )A.6B.5C.4D.3【考点】垂径定理;勾股定理.【分析】过O作OC⊥AB于C,根据垂径定理求出AC,根据勾股定理求出OC即可.【解答】解:过O作OC⊥AB于C,∵OC过O,∴AC=BC=AB=12,在Rt△AOC中,由勾股定理得:OC==5.故选:B.【点评】本题考查了垂径定理和勾股定理的应用,关键是求出OC的长.9.如图,已知AB是△ABC外接圆的直径,∠A=35°,则∠B的度数是( )A.35°B.45°C.55°D.65°【考点】圆周角定理.【专题】几何图形问题.【分析】由AB是△ABC外接圆的直径,根据直径所对的圆周角是直角,可求得∠ACB=90°,又由∠A =35°,即可求得∠B的度数.【解答】解:∵AB是△ABC外接圆的直径,∴∠C=90°,∵∠A=35°,∴∠B=90°﹣∠A=55°.故选:C.【点评】此题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.在同一坐标系中,一次函数y=﹣mx+n2与二次函数y=x2+m的图象可能是( )A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题可先由一次函数y=﹣mx+n2图象得到字母系数的正负,再与二次函数y=x2+m的图象相比较看是否一致.【解答】解:A、由直线与y轴的交点在y轴的负半轴上可知,n2<0,错误;B、由抛物线与y轴的交点在y轴的正半轴上可知,m>0,由直线可知,﹣m<0,错误;C、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m<0,错误;D、由抛物线y轴的交点在y轴的负半轴上可知,m<0,由直线可知,﹣m>0,正确,故选D.【点评】本题考查抛物线和直线的性质,用假设法来搞定这种数形结合题是一种很好的方法,难度适中.二、填空题:每小题3分,共18分.11.已知方程x2+mx+3=0的一个根是1,则它的另一个根是 3 .【考点】根与系数的关系.【分析】利用一元二次方程的根与系数的关系,两个根的积是3,即可求解.【解答】解:设方程的另一个解是a,则1×a=3,解得:a=3.故答案是:3.【点评】本题考查了一元二次方程的根与系数的关系,正确理解根与系数的关系是关键.12.若实数a、b满足(4a+4b)(4a+4b﹣2)﹣8=0,则a+b= ﹣或1 .【考点】换元法解一元二次方程.【分析】设a+b=x,则原方程转化为关于x的一元二次方程,通过解该一元二次方程来求x即(a+b)的值.【解答】解:设a+b=x,则由原方程,得4x(4x﹣2)﹣8=0,整理,得16x2﹣8x﹣8=0,即2x2﹣x﹣1=0,分解得:(2x+1)(x﹣1)=0,解得:x1=﹣,x2=1.则a+b的值是﹣或1.故答案是:﹣或1.【点评】本题主要考查了换元法,即把某个式子看作一个整体,用一个字母去代替它,实行等量替换.13.把二次函数y=2x2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为 y=2(x+1)2﹣2 .【考点】二次函数图象与几何变换.【分析】直接根据“上加下减,左加右减”的原则进行解答.【解答】解:由“左加右减”的原则可知,将二次函数y=2x2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为:y=2(x+1)2﹣2.【点评】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为 (4,2) .【考点】坐标与图形变化-旋转.【专题】几何变换.【分析】画出旋转后的图形位置,根据图形求解.【解答】解:AB旋转后位置如图所示.B′(4,2).【点评】本题涉及图形旋转,体现了新课标的精神,抓住旋转的三要素:旋转中心A,旋转方向逆时针,旋转角度90°,通过画图得B′坐标.15.如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为 6 .【考点】轴对称-最短路线问题;正方形的性质.【专题】计算题.【分析】连接BD,DE,根据正方形的性质可知点B与点D关于直线AC对称,故DE的长即为BQ+QE 的最小值,进而可得出结论.【解答】解:连接BD,DE,∵四边形ABCD是正方形,∴点B与点D关于直线AC对称,∴DE的长即为BQ+QE的最小值,∵DE=BQ+QE===5,∴△BEQ周长的最小值=DE+BE=5+1=6.故答案为:6.【点评】本题考查的是轴对称﹣最短路线问题,熟知轴对称的性质是解答此题的关键.16.观察下列图形规律:当n= 5 时,图形“●”的个数和“△”的个数相等.【考点】规律型:图形的变化类.【专题】规律型.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.三、解答题:8题,共92分.17.计算:﹣(2015+π)0.【考点】实数的运算;零指数幂;负整数指数幂.【分析】本题涉及零指数幂、绝对值、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:﹣(2015+π)0=2+3﹣2﹣3﹣1=﹣1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.18.解方程:2x2﹣7x+6=0.【考点】解一元二次方程-因式分解法.【分析】利用十字相乘法因式分解得到(2x﹣3)(x﹣2)=0,推出2x﹣3=0,x﹣2=0,求出方程的解即可.【解答】解:2x2﹣7x+6=0,(2x﹣3)(x﹣2)=0,∴2x﹣3=0,x﹣2=0,x1=,x2=2,【点评】此题主要考查了解一元二次方程,因式分解等知识点的理解和掌握,能把一元二次方程转换成一元一次方程是解此题的关键.19.已知方程x2+3x﹣1=0的两个实数根为α、β,不解方程求下列程式的值.(1)α2+β2(2).【考点】根与系数的关系.【分析】(1)根据根与系数的关系得出α+β和αβ,再把α2+β2变形(α+β)2﹣2αβ,代入计算即可;(2)把化为,再代入计算即可.【解答】解:(1)∵方程x2+3x﹣1=0的两个实数根为α、β,∴α+β=﹣3,αβ=﹣1,∴α2+β2=(α+β)2﹣2αβ=9+2=11;(2)∵α+β=﹣3,αβ=﹣1,∴===﹣11.【点评】本题考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.20.在平面直角坐标系xOy中,A点的坐标为(3,4),将OA绕原点O顺时针旋转90°得到OA′,求点A′的坐标.【考点】坐标与图形变化-旋转.【专题】数形结合.【分析】根据A点坐标得到OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB绕原点O顺时针旋转90°得到RtOA′C,根据旋转的性质得到A′C=AB=3,OC=OB=4,再写出A′点的坐标.【解答】解:AB⊥y轴于B,A′C⊥x轴于C,如图,OB=4,AB=3,OA绕原点O顺时针旋转90°得到OA′可看作是Rt△OAB绕原点O顺时针旋转90°得到RtOA′C,则A′C=AB=3,OC=OB=4,所以点A′的坐标为(4,﹣3).【点评】本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.21.如图,AB,DE是⊙O的直径,C是⊙O上的一点,且=.(1)求证:BE=CE;(2)若∠B=50°,求∠AOC的度数.【考点】圆心角、弧、弦的关系;圆周角定理.【分析】(1)根据∠AOD=∠BOE可知=,再由=即可得出结论;(2)先根据等腰三角形的性质求出∠BOE的度数,再由BE=CE可得出∠BOE=∠COE,根据补角的定义即可得出结论.【解答】(1)证明:∵∠AOD=∠BOE,∴=.∵=,∴=,∴BE=CE;(2)解:∵∠B=50°,OB=OE,∴∠BOE=180°﹣50°﹣50°=80°.∵由(1)知,BE=CE,∴∠COE=∠BOE=80°,∴∠AOC=180°﹣80°﹣80°=20°.【点评】本题考查的是圆心角、弧、弦的关系,熟知在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等是解答此题的关键.22.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【专题】证明题.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.23.为落实国务院房地产调控政策,使“居者有其屋”,某市加快了廉租房的建设力度.2013年市政府共投资3亿元人民币建设了廉租房12万平方米,2015年投资6.75亿元人民币建设廉租房,若在这两年内每年投资的增长率相同.(1)求每年市政府投资的增长率;(2)若这两年内的建设成本不变,问2015年建设了多少万平方米廉租房?【考点】一元二次方程的应用.【专题】增长率问题.【分析】(1)设每年市政府投资的增长率为x,由3(1+x)2=2015年的投资,列出方程,解方程即可;(2)2015年的廉租房=12(1+50%)2,即可得出结果.【解答】解:(1)设每年市政府投资的增长率为x,根据题意得:3(1+x)2=6.75,解得:x=0.5,或x=﹣2.5(不合题意,舍去),∴x=0.5=50%,即每年市政府投资的增长率为50%;(2)∵12(1+50%)2=27,∴2015年建设了27万平方米廉租房.【点评】本题考查了一元一次方程的应用;熟练掌握列一元一次方程解应用题的方法,根据题意找出等量关系列出方程是解决问题的关键.24.已知关于x的一元二次方程:x2﹣(m﹣3)x﹣m=0.(1)试判断原方程根的情况;(2)若抛物线y=x2﹣(m﹣3)x﹣m与x轴交于A(x1,0),B(x2,0)两点,则A,B两点间的距离是否存在最大或最小值?若存在,求出这个值;若不存在,请说明理由.(友情提示:AB=|x2﹣x1|)【考点】抛物线与x轴的交点;根的判别式.【分析】(1)根据根的判别式,可得答案;(2)根据根与系数的关系,可得A、B间的距离,根据二次函数的性质,可得答案.【解答】解:(1)△=[﹣(m﹣3)]2﹣4(﹣m)=m2﹣2m+9=(m﹣1)2+8,∵(m﹣1)2≥0,∴△=(m﹣1)2+8>0,∴原方程有两个不等实数根;(2)存在,由题意知x1,x2是原方程的两根,∴x1+x2=m﹣3,x1•x2=﹣m.∵AB=|x1﹣x2|,∴A B2=(x1﹣x2)2=(x1+x2)2﹣4x1x2=(m﹣3)2﹣4(﹣m)=(m﹣1)2+8,∴当m=1时,AB2有最小值8,∴AB有最小值,即AB==2【点评】本题考查了抛物线与x轴的交点,利用了根的判别式,根据根与系数的关系,利用完全平方公式得出二次函数是解题关键,又利用了二次函数的性质.25.已知抛物线y=﹣x2﹣2x+a(a≠0)与y轴相交于A点,顶点为M,直线y=分别与x轴、y轴相交于B、C两点,并且与直线MA相交于N点.(1)若直线BC和抛物线有两个不同交点,求a的取值范围,并用a表示交点M、A的坐标.(2)将△NAC沿着y轴翻转,若点N的对称点P恰好落在抛物线上,AP与抛物线的对称轴相交于点D ,连接CD,求a的值及△PCD的面积.【考点】二次函数综合题.【分析】(1)根据题意联立抛物线和直线的解析式,化为一元二次方程,运用△>0即可求出a的取值范围和交点的坐标;(2)根据轴对称性质表示出点P的坐标并代入抛物线,求出a的值,用△ACP的面积减去△ADC的面积即可求出△PCD的面积.【解答】解:(1)由题意联立,整理得:2x2+5x﹣4a=0,由△=25+32a>0,解得:,∵a≠0,∴且a≠0,当x=0时,y=a,∴A(0,a),∵y=﹣x2﹣2x+a=﹣(x+1)2+a+1,∴M(﹣1,a+1).(2)设直线MA为:y=kx+b,代入A(0,a),M(﹣1,a+1)得,,解得:,所以直线MA为y=﹣x+a,联立,解得,所以:N(,),∵点P是N关于y轴的对称点,∴P(﹣,),代入y=﹣x2﹣2x+a,得,解得:a=,或a=0(舍去),∴抛物线为y=﹣x2﹣2x+,直线BC为y=﹣,当x=0时,y=﹣,∴C(0,﹣),A(0,),M(﹣1,),∴|AC|=,∴S△PCD=S△PAC﹣S△DAC=|AC|×|x p|﹣|AC|×|x D|=××3﹣××1=.【点评】此题主要考查二次函数的综合问题,会运用待定系数法求函数解析式,会求函数图象的交点和三角形的面积是解题的关键.。
人教版九年级上学期期中考试数学试卷及答案(共6套)
人教版九年级上学期期中考试数学试卷(一)满分 120 分,考试时间 120 分钟。
一、精心选一选(每小题 3 分,共 30 分,将答案填在相应的括号内) 1. 下列方程中不一定是一元二次方程的是 ()A.(a-3)x =8 (a≠3)B.ax +bx+c=02 2 3C.(x+3)(x-2)=x+5D. 32 2 0 x x 572.关于 的一元二次方程 1 1 0的一个根是 0,则 值为( )x a x x a 2a 2 12 A. 1 B. 1 C.1 或1D.y x 3.在抛物线 =- +1 上的一个点是 ( )2A .(1,0)B .(0,0)C .(0,-1)D .(1,1)y x x4.抛物线 = -2 +1 的顶点坐标是 ( ) 2 A .(1,0) B .(-1,0) C .(-2,1)D .(2,-1) 5.已知方程2 2,则下列说中,正确的是 ()x x A. 方程两根和是 1 B. 方程两根积是 2 C. 方程两根和是1D.方程两根积比两根和大 26.某超市一月份的营业额为 200 万元,已知第一季度的总营业额共 1000 万元, 如 果平均每月增长率为 x,则由题意列方程应为( )A.200(1+x) =10002B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x) ]=100027. 若点(2,5),(4,5)在抛物线 y =ax +bx +c 上,则它的对称轴是 ()2b A . B .x =1 C .x =2 D .x =3xa8.用 10 米长的铝材制成一个矩形窗框,使它的面积为 6 平方米.若设它的一条 边长为 x 米,则根据题意可列出关于 x 的方程为( )A.x(5+x)=6B. x(5-x)=6C. x(10-x)=6D. x(10-2x)=6ht9.一小球被抛出后,距离地面的高度 (米)和飞行时间 (秒)满足下面函数关系 ht式: =-5( -1)2+6,则小球距离地面的最大高度是 ( )A .1 米B .5 米C .6 米D .7 米10.二次函数 y=x +bx+c ,若 b+c=0,则它的图象一定过点( )2A. (-1,-1)B. (1,-1)C. (-1,1)D. (1,1)二、细心填一填(每小题 4 分,共 32 分) 11. 方程 x +x=0 的根是2.12.请你写出以 2 和-2 为根的一元二次方程 个即可).(只写一.13. 抛物线 y =-x +3 的对称轴是2,顶点坐标是14.函数 y=x +x-2 的图象与 y 轴的交点坐标是2.x x bx b15.已知 =-1 是方程 + -5=0 的一个根,则 =________,方程的另一根 2 为________.16.若 x 、x 是方程 x +4x-6=0 的两根,则 x +x =2.2 2 1212 x 2x m,若其顶点在 x 轴上,则 m=_________.2 x x k三、解答题(要求:写出必要的解题步骤和说理过程). x -2x-3 2 19.(满分 9 分)请画出二次函数y的图象,并结合所画图象回答问题:(1) 当 x 取何值时,y=0; (2) 当 x 取何值时,y <0.a ba b a a b20.(满分 6 分)现定义运算“★”,对于任意实数 、 ,都有 ★ = ﹣3 + .2 x x如:3★5=3 ﹣3×3+5,若 ★2=6,试求实数 的值.221. (满分 8 分)已知△ABC 的一条边 BC 的长为 5,另两边 AB 、AC 的长是关于 x 的一元二次方程 2 3 3 2 0 的两个实数根.x 2 k x k 2 k k(1)求证:无论 为何值时,方程总有两个不相等的实数根.k(2) 当 为何值时,△ABC 是以 BC 为斜边的直角三角形.y ax bx c a22. (满分 9 分)已知二次函数 =+ + ( ≠0)的图象如图所示,请结合图2 象,abc; a b c a b c判断下列各式的符号. ①;②b -4ac. ③ + + ;④ ﹣ + .2y ax bx c23.(满分 6 分)已知二次函数 = + + 的图象如图所示. 2 ①求这个二次函数的表达式; ②当 x 为何值时,y=3.24.(满分 7 分)如图所示,在宽为 20m ,长为 32m 的矩形耕地上,修筑同样宽 的三条道路,(互相垂直),把耕地分成大小不等的六块试验田,要使试验田的 面积为 570m ,道路应为多宽?225.(满分 13 分)在平面直角坐标系 xOy 中,顶点为 M 的抛物线是由抛物线 y=x 2﹣3 向右平移 1 个单位后得到的,它与 y 轴负半轴交于点 A ,点 B 在该抛物线上, 且横坐标为 3.(1)求点 M 、A 、B 坐标;(2)若顶点为 M 的抛物线与 x 轴的两个交点为 B 、C ,试求线段 BC 的长.参考答案及评分标准一、选择题(每小题 3 分,共 3 0 分) 1-5 小题 BBAAC6-10 小题 DDBCD二、填空题(每小题 4 分,共 32 分) 11. 0 或-112.答案不唯一,如 x -4=0 等.213. 直线 x=0(或 y 轴) (0,3) 14. (0,-2) 15. -4, 5 16. 2817. -118. 1 19.用描点法正确画出函数图象 得3分;(1)因为抛物线与 x 轴交于(-1,0)、(3,0),所以当 x=-1 或 3 时,y=0;…………(3 分) (2) 由图象知,当-1<x <3 时,y <0; …………(6 分) …………(4 分) ………… (6 分)20. x -3x+2=62解得:x=﹣1 或 421. (1)证明:∵ △= (2 3) 4( 3 2) 1 0k 2 k 2 k k∴ 无论 为何值方程总有两个不相等的实数根。
人教版九年级上册数学期中考试试卷及答案详解
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.下面的图形是用数学家名字命名的,其中既是轴对称图形又是中心对称图形的是()A .B .C .D .2.一元二次方程x 2﹣5x +6=0的解为()A .x 1=2,x 2=﹣3B .x 1=﹣2,x 2=3C .x 1=﹣2,x 2=﹣3D .x 1=2,x 2=33.二次函数2(1)(0)y a x b a =-+≠的图像经过点(0,2),则a+b 的值是()A .-3B .-1C .2D .34.如图所示,△ABC 内接于⊙O ,∠C =45°.AB =4,则⊙O 的半径为()A .B .4C .D .55.如图,ABC 和111A B C 关于点E 成中心对称,则点E 坐标是()A .() 3,1--B .() 3,3--C .()3,0-D .()4,1--6.已知一次函数()10y kx m k =+≠和二次函数()220y ax bx c a =++≠部分自变量和对应的函数值如表:x …-10245…y 1…01356…y 2…-159…当y 2>y 1时,自变量x 的取值范围是A .-1<x <2B .4<x <5C .x <-1或x >5D .x <-1或x >47.已知如图,PA 、PB 切O 于A 、B ,MN 切O 于C ,交PB 于N ;若7.5PA cm =,则PMN 的周长是()A .7.5cmB .10cmC .15cmD .12.5cm8.如图,Rt △ABC 中,∠BAC=90°,AB=AC ,将△ABC 绕点C 顺时针旋转40°得到△A'B'C ,CB'与AB 相交于点D ,连接AA',则∠B'A'A 的度数为()A .10°B .15°C .20°D .30°9.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E .F 分别在BC 和CD上,下列结论:①CE=CF ;②∠AEB=75︒;③BE+DF=EF ;④正方形对角线AC=1+,其中正确的序号是()A .①②④B .①②C .②③④D .①③④10.已知二次函数2y x bx 1=-+,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是()A .先往左上方移动,再往左下方移动B .先往左下方移动,再往左上方移动C .先往右上方移动,再往右下方移动D .先往右下方移动,再往右上方移动二、填空题11.若关于x 的方程220x ax +-=有一个根是1,则a =_________.12.将抛物线y =x 2+1向下平移3个单位长度得到的抛物线的解析式为__________.13.由于受“一带一路”国家战略策略的影响,某种商品的进口关税连续两次下调,由4000美元下调至2560美元,则平均每次下调的百分率为_____.14.如图,直线AB ,CD 相交于点O ,∠AOC=30°,半径为1cm 的的圆心P 在射线OA 上,且与点O 的距离为6cm ,以1cm/s 的速度沿由A 向B 的方向移动,那么与直线CD 相切时,圆心P 的运动时间为_____.15.如图,在△ABC 中,AB=10,AC=8,BC=6,经过点C 且与边AB 相切的动圆与CB ,CA 分别相交于点E ,F ,则线段EF 长度的最小值是_____.16.如图,在矩形ABCD 中,4AB =,2AD =,点E 在CD 上,1DE =,点F 在边AB 上一动点,以EF 为斜边作Rt EFP ∆.若点P 在矩形ABCD 的边上,且这样的直角三角形恰好有两个,则AF 的值是__________.三、解答题17.解下列方程(1)2450x x --=(2)()22(3)33x x -=-18.图①,图②,图③均为4×4的正方形网格,每个小正方形的顶点称为格点,小正方形的边长都为1.线段AB 的端点均在格点上.按要求在图①,图②,图③中画图.(1)在图①中,以线段AB 为斜边画一个等腰直角三角形,且直角的顶点为格点;(2)在图②中,以线段AB 为斜边画一个直角三角形,使其面积为2,且直角的顶点为格点;(3)在图③中,画一个四边形,使所画四边形是中心对称图形,不是轴对称图形,且其余两个顶点均为格点.19.为响应“美丽台州,美化环境”的号召,某校开展“美丽台州,清洁校园”的活动,该校经过精心设计,在绿化工作中设计一块170m2的矩形场地,矩形的长比宽的2倍长3m ,则这块矩形场地的长和宽各是多少米?20.如图,已知AB 是⊙O 中一条固定的弦,点C 是优弧AB 上一个动点(点C 不与A ,B 重合).(1)设∠ACB 的角平分线与劣弧AB 交于点P ,试猜想点P 在弧AB 上的位置是否会随点C 的运动而发生变化?请说明理由;(2)如图②,设A′B′=8,⊙O 的半径为5,在(1)的条件下,四边形ACBP 的面积是否为定值?若是定值,请求出这个定值;若不是定值,试确定四边形A′C′B′P′的面积的取值范围.21.一座拱桥的轮廓是抛物线型(如图所示),拱高6m ,跨度20m ,相邻两支柱间的距离均为5m.(1)将抛物线放在所给的直角坐标系中(如图所示),其表达式是2y ax c =+的形式.请根据所给的数据求出a ,c 的值.(2)求支柱MN 的长度.(3)拱桥下地平面是双向行车道(正中间是一条宽2m 的隔离带),其中的一条行车道能否并排行驶宽2m 、高3m 的三辆汽车(汽车间的间隔忽略不计)?请说说你的理由.22.如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF .(1)请直接写出线段AF ,AE 的数量关系;(2)将△CED 绕点C 逆时针旋转,当点E 在线段BC 上时,如图②,连接AE ,请判断线段AF ,AE 的数量关系,并证明你的结论.23.如图,已知AB是⊙O的直径,C是圆周上的动点,P是优弧ABC的中点.(1)如图①,求证:OP∥BC;(2)如图②,PC交AB于点D,当△ODC是等腰三角形时,求∠PAO的度数.24.定义:对于给定的两个函数,任取自变量x的一个值,当x<0时,它们对应的函数值互为相反数;当x≥0时,它们对应的函数值相等,我们称这样的两个函数互为相关函数.例如:一次函数y=x﹣1,它的相关函数为()()1010x xyx x⎧-+<⎪=⎨-≥⎪⎩.(1)已知点A(﹣5,8)在一次函数y=ax﹣3的相关函数的图象上,求a的值;(2)已知二次函数21 42y x x=-+-.①当点B(m,32)在这个函数的相关函数的图象上时,求m的值;②当﹣3≤x≤3时,求函数21 42y x x=-+-的相关函数的最大值和最小值;(3)在平面直角坐标系中,点M ,N 的坐标分别为(﹣12,1),(92,1),连结MN .直接写出线段MN 与二次函数24y x x m =-++的相关函数的图象有两个公共点时m 的取值范围.答案与详解1.C 【分析】根据把一个图形绕某一点旋转180 ,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】A 、不是轴对称图形,是中心对称图形,故此选项错误;B 、是轴对称图形,不是中心对称图形,故此选项错误;C 、是轴对称图形,是中心对称图形,故此选项正确;D 、不是轴对称图形,不是中心对称图形,故此选项错误;故选C .【点睛】此题主要考查了轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2.D 【分析】利用因式分解法解方程.解:(x ﹣2)(x ﹣3)=0,x ﹣2=0或x ﹣3=0,∴x 1=2,x 2=3.故选:D .【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.3.C 【分析】根据二次函数图象上点的坐标特征,把点(0,2)直接代入解析式即可得到答案.【详解】∵二次函数2(1)(0)y a x b a =-+≠的图象经过点(0,2),∴22(01)a b =⋅-+,∴2a b +=.故选:C .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.4.A 【详解】试题解析:连接OA ,OB .45,C ∠=︒ 90AOB ∴∠=︒,∴在Rt AOB △中,OA OB ==点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.5.A【分析】先求出△ABC和△A1B1C1中对应的两点坐标,连接此两点坐标则E点必在其中点上,求出其中点坐标即可.【详解】由图可知:因为B、B1点的坐标分别是:B(-5,1)、B1(-1,-3),所以BB1的中点坐标为(512--,132-),即(-3,-1),则点E坐标是(-3,-1),故选A.【点睛】本题考查了坐标与图象变化-旋转,用到的知识点是图形旋转对称的性质等,图形旋转后时,其旋转中心必是其对应点连线的中点坐标.6.D【分析】利用表中数据得到直线与抛物线的交点为(-1,0)和(4,5),-1<x<4时,y1>y2,从而得到当y2>y1时,自变量x的取值范围.【详解】∵当x=0时,y1=y2=0;当x=4时,y1=y2=5;∴直线与抛物线的交点为(-1,0)和(4,5),而-1<x<4时,y1>y2,∴当y2>y1时,自变量x的取值范围是x<-1或x>4.故选D.【点睛】本题考查了二次函数与不等式:对于二次函数y=ax2+bx+c(a、b、c是常数,a≠0)与不等式的关系,利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7.C【分析】已知MN、PA、PB是⊙O的三条切线,于是可得MA=MC、NC=NB、PA=PB;从而可得△PMN的周长用AP、BP来表示,代入数值即可求解.【详解】∵直线PA、PA、MN分别于圆相切于点A、B、C,∴MA=MC,NC=NB,PA=PB,∴△PMN的周长=PM+PN+MN=PM+AM+PN+BN=PA+PB=7.5+7.5=15.故选C.【点睛】考查圆的切线的性质定理,关键是掌握切线长定理;8.C【分析】先确定旋转角∠A′CA,根据旋转的性质A′C=AC,可求∠AA′C,∠B′A′C要求的∠B′A′A=∠B′A′C-∠AA′C即可.【详解】∵将△ABC绕点C顺时针旋转40°得到△A'B'C,∴∠A′CA=40º,∵A′C=AC,∴∠AA′C=180-40=702︒︒︒,∵∠BAC=∠B′A′C==90°,∴∠B′A′A=∠B′A′C-∠AA′C=90º-70º=20º.故选择:C .【点睛】本题考查图形旋转的性质和等腰三角形的性质等问题,掌握旋转的性质和等腰三角形的性质,会找旋转角,会利用等腰三角形求∠AA′C ,找到∠B′A′A 与∠AA′C 的关系是解题关键.9.A【分析】根据三角形的全等的判定和性质可以判断①的正误;根据角角之间的数量关系,以及三角形内角和为180°判断②的正误;根据线段垂直平分线的知识可以判断③的正误,根据三线合一的性质,可判定AC ⊥EF ,然后分别求得AG 与CG 的长,继而求得答案.【详解】∵四边形ABCD 是正方形,∴AB=AD=BC=DC ,∵△AEF 是等边三角形,∴AE=AF ,在Rt △ABE 和Rt △ADF 中,AB AD AE AF =⎧⎨=⎩,∴Rt △ABE ≌Rt △ADF (HL ),∴BE=DF ,AE=AF ,∵BC=DC ,∴BC-BE=CD-DF ,∴CE=CF ,故①正确;∵CE=CF ,∴△ECF 是等腰直角三角形,∴∠CEF=45°,∵∠AEF=60°,∴∠AEB=180°-60°-45°=75°,故②正确;如图,连接AC ,交EF 于G 点,∵AE=AF,CE=CF,∴AC⊥EF,且AC平分EF,∵∠CAF≠∠DAF,∴DF≠FG,∴BE+DF≠EF,故③错误;∵△AEF是边长为2的等边三角形,∠ACB=∠ACD=45°,AC⊥EF,∴EG=FG=1,∴AG=AE•sin60°3232=⨯=CG=112EF=,∴31;故④正确.综上,①②④正确故选:A.【点睛】本题考查了正方形的性质,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,线段垂直平分线的判定和性质以及解直角三角形.注意准确作出辅助线是解此题的关键.10.C【分析】先分别求出当b=-1、0、1时函数图象的顶点坐标即可得出答案.【详解】当b=-1时,此函数解析式为:y=x2+x+1,顶点坐标为:13 24⎛⎫- ⎪⎝⎭,;当b=0时,此函数解析式为:y=x2+1,顶点坐标为:(0,1);当b=1时,此函数解析式为:y=x2-x+1,顶点坐标为:13 24⎛⎫ ⎪⎝⎭,.故函数图象应先往右上方移动,再往右下方移动.故选C .【点睛】本题考查的是二次函数的图象与几何变换,解答此题的关键是熟练掌握二次函数的顶点坐标为24,24b ac b a a ⎛⎫-- ⎪⎝⎭.11.1【分析】根据一元二次方程的解的定义,把x=1代入方程得到关于a 的一次方程,然后解此一次方程即可.【详解】解:把x=1代入方程220x ax +-=得1+a-2=0,解得a=1.故答案是:1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.12.y =x 2﹣2【分析】根据抛物线平移的规律(左加右减,上加下减)求解.【详解】抛物线y =x 2+1向下平移3个单位得到的解析式为y =x 2+1﹣3,即y =x 2﹣2.故答案为y =x 2﹣2.【点睛】本题考查了二次函数图象与几何变换,掌握“左加右减,上加下减”的平移规律是解题的关键.13.20%.【分析】设平均每次下调的百分率为x,则第一次下调后的关税为4000(1-x),第二次下调的关税为40002(1)x -,根据题意可列方程为40002(1)x -=2560求解即可.【详解】解:设平均每次下调的百分率为x,根据题意得:(1)x =2560,40002解得:1x=0.2=20%,2x=1.8=180%(舍去),即:平均每次下调的百分率为20%.故答案是:20%.【点睛】本题主要考查一元二次方程的实际应用,根据已知条件列出方程是解题的关键.14.4秒或8秒【分析】⊙P与CD相切应有两种情况,一种是在射线OA上,另一种在射线OB上,设对应的圆的圆心分别在M,N两点.当P在M点时,根据切线的性质,在直角△OME中,根据30度的角所对的直角边等于斜边的一半,即可求得OM的长,进而求得PM的长,从而求得由P 到M移动的时间;根据ON=OM,即可求得PN,也可以求得求得由P到M移动的时间.【详解】①当⊙P在射线OA上,设⊙P于CD相切于点E,P移动到M时,连接ME.∵⊙P与直线CD相切,∴∠OEM=90°,∵在直角△OPM中,ME=1cm,∠AOC=30°,∴OM=2ME=2cm,则PM=OP-OM=6-2=4cm,∵⊙P以1cm/s的速度沿由A向B的方向移动,∴⊙P移动4秒时与直线CD相切;②当⊙P的圆移动到直线CD的右侧,同理可求ON=2则PN=6+2=8cm.∴⊙P移动8秒时与直线CD相切.故答案为:4秒或8秒.【点睛】本题主要考查了切线的性质和直角三角形的性质,注意已知圆的切线时,常用的辅助线是连接圆心与切点,本题中注意到分两种情况讨论是解题的关键.15.4.8【详解】设EF的中点为P,⊙P与AB的切点为D,连接PD,连接CP,CD,则有PD⊥AB;由勾股定理的逆定理知,△ABC是直角三角形PC+PD=EF,由三角形的三边关系知,PC+PD>CD;只有当点P在CD上时,PC+PD=EF有最小值为CD的长,即当点P在直角三角形ABC的斜边AB的高CD上时,EF=CD有最小值,由直角三角形的面积公式知,此时CD=BC·AC÷AB=4.8.故答案为:4.8.考点:切线的性质;垂线段最短;勾股定理的逆定理16.0或1113AF <<或4【详解】【分析】在点F 的运动过程中分别以EF 为直径作圆,观察圆和矩形矩形ABCD 边的交点个数即可得到结论.【解答】当点F 与点A 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.当点F 从点A 向点B 运动时,当01AF <<时,共有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1AF =时,有1个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1113AF <<时,有2个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当113AF =时,有3个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当1143AF <<时,有4个点P 使EFP ∆是以EF 为斜边Rt EFP ∆.当点F 与点B 重合时,以EF 为斜边Rt EFP ∆恰好有两个,符合题意.故答案为0或1113AF <<或4【点评】考查圆周角定理,熟记直径所对的圆周角是直角是解题的关键.注意分类讨论思想在数学中的应用.17.(1)1251x x ,==-;(2)12932x x ==,【分析】(1)利用因式分解法解方程得出答案;(2)移项变形,利用因式分解法解方程得出答案.【详解】(1)2450x x --=,因式分解得:()()510x x -+=,解得:1251x x ,==-;(2)()22(3)33x x -=-,移项得:()22(3)330x x ---=,因式分解得:()()3290x x --=,∴30x -=或290x -=,解得:12932x x ==,.【点睛】本题主要考查了因式分解法解方程,正确掌握一元二次方程的解法是解题关键.18.(1)见解析;(2)见解析;(3)见解析【分析】(1)作AB 的垂直平分线,垂直平分线在端点处的点即为顶点;(2)如下图所示,满足面积条件和直角条件;(3)以AB 为对角线,绘制平行四边形即可【详解】(1)如下图,过线段AB 作垂直平分线,与网络交于格点C ,则点C 为等腰直角三角形顶点根据勾股定理,可求得,根据勾股定理逆定理,可得△ABC 是直角三角形,满足条件(2)图形如下:根据勾股定理,可求得:10,2,BC=22根据勾股定理逆定理,可判断△ACB是直角三角形面积=122×22=2,成立(3)平行四边形满足是中心对称图形,不是轴对称图形,图形如下:(答案不唯一)【点睛】本题考查格点问题,解题过程中,一方面需要结合几何特征,另一方面,还要敢于尝试19.这块矩形场地的长是23米、宽是10米.【分析】阅读试题,理解含义,分清题意,找出等量关系设矩形场地的宽为x米,则矩形场地的长为(2x+3)米,利用面积得:x(2x+3)=170,解方程要检验,负根舍去,最后作答即可.【详解】设这块矩形场地的宽为x米,则矩形场地的长为(2x+3)米,由面积得:x(2x+3)=170,因式分解得:(2x+17)(x-10)=0,∴x=10,x=-172(舍),∴2x+3=23,答:这块矩形场地的长是23米、宽是10米.【点睛】本题考查面积问题应用题,抓住矩形的长比宽的2倍长3m 来设元,抓住一块170m 2的矩形场地列方程是解题关键,掌握列方程解应用题的步骤与要求,分析题意,恰当设元,列出方程,解方程,检验,作答.20.(1)不变化,理由见详解;(2)8<S 四边形A′C′B′P′≤40【分析】(1)由∠ACP=∠BCP 得 AP BP=,P 为 AB 的中点,P 在弧AB 上的位置不动,p 点不变化,(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP =,OP 为半径,由垂经定理知OP ⊥AB ,AB=BD ,由勾股定理得OD=,进而S △APB =12AB DP ,当PC 为直径时,S △ABC 最大=12AB DC 则0<S △ABC ≤32即可求出S 四边形ACBP =S △ABC +S △PAB =S △ABC +8的范围,即S 四边形A′C′B′P′的范围.【详解】(1)∵∠ACB 的角平分线与劣弧AB 交于点P ,∴∠ACP=∠BCP ,∴ AP BP=,∴P 为 AB 的中点,∴P 在弧AB 上的位置不动,为此不随点C 的运动而发生变化,P 点不变化.(2)四边形ACBP 的面积不是定值,连接OA ,OB ,OP ,OP 交AB 于D ,由 AP BP=,OP 为半径,∴OP ⊥AB ,AB=BD=4,OA=5,∴由勾股定理得3==,∴DP=OP-OD=5-3=2,∴S △APB =1182822AB DP =⨯⨯= ,当PC 为直径时,交AB 于点D ,则CD=PC-PD=10-2=8,S △ABC 最大=11883222AB DC =⨯⨯= ,0<S △ABC ≤32,S 四边形ACBP =S △ABC +S △PAB =S △ABC +8,8<S 四边形ACBP ≤40,即8<S 四边形A′C′B′P′≤40.【点睛】本题考查了圆周角定理,垂径定理,三角形面积,勾股定理等内容,熟练掌握圆周角定理是解题关键.21.(1)y=-350x 2+6;(2)5.5米;(3)一条行车道能并排行驶这样的三辆汽车.【解析】试题分析:(1)根据题目可知A .B ,C 的坐标,设出抛物线的解析式代入可求解.(2)设N 点的坐标为(5,y N )可求出支柱MN 的长度.(3)设DN 是隔离带的宽,NG 是三辆车的宽度和.做GH 垂直AB 交抛物线于H 则可求解.试题解析:(1)根据题目条件,A 、B 、C 的坐标分别是(-10,0)、(0,6)、(10,0).将B 、C 的坐标代入2y ax c =+,得6,0100.c a c =⎧⎨=+⎩解得3650a c =-=.∴抛物线的表达式是23650y x =-+.(2)可设N (5,N y ),于是2356 4.550N y =-⨯+=.从而支柱MN 的长度是10-4.5=5.5米.(3)设DE 是隔离带的宽,EG 是三辆车的宽度和,则G 点坐标是(7,0)(7=2÷2+2×3).过G 点作GH 垂直AB 交抛物线于H ,则23176335050H y =-⨯+=+>.根据抛物线的特点,可知一条行车道能并排行驶这样的三辆汽车.22.(1)AE ;(2)AE ,证明见解析.【详解】解:(1)如图①中,∵四边形ABFD 是平行四边形,∴AB=DF ,∵AB=AC ,∴AC=DF ,∵DE=EC ,∴AE=EF ,∵∠DEC=∠AEF=90°,∴△AEF 是等腰直角三角形,∴AE .(2)如图②中,连接EF ,DF 交BC 于K .∵四边形ABFD 是平行四边形,∴AB ∥DF ,∴∠DKE=∠ABC=45°,∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°,∴∠EKF=∠ADE ,∵∠DKC=∠C ,∴DK=DC ,∵DF=AB=AC ,∴KF=AD ,在△EKF 和△EDA 中,{EK DKEKF ADE KF AD=∠=∠=,∴△EKF ≌△EDA ,∴EF=EA ,∠KEF=∠AED ,∴∠FEA=∠BED=90°,∴△AEF 是等腰直角三角形,∴AE.23.(1)证明见详解;(2)36º或1807︒.【分析】(1)连接PC ,由 AP PC=得AOP COP ∠=∠,利用△AOP ≌△COP ,得出∠APO=∠CPO ,由OA=OP 得∠APO=∠OAP ,由∠PCB=∠OAP 得∠PCO=∠PCB 即可;(2)如图,△OCD 是等腰三角形①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∠POD=∠OBC ,易证△POD ≌ΔOBC ,BC=OD=CD ,∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º即x+2x+2x=180;②当OC=CD 时由OP ∥BC ,∠OPC=∠DCB ,由OP=OC ,∠OCP=∠OPC=∠DCB ,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC 是ΔCDB 的外角,得∠COD=∠ODC=3xº,由∠OCD+∠COD+∠ODC=180º即x+3x+3x=180.【详解】(1)连接PC ,∵ AP PC =,∴AOP COP ∠=∠,在△AOP 和△COP 中,,,,OP OP AOP COP OA OC =⎧⎪∠=∠⎨⎪=⎩∴△AOP ≌△COP ,∴∠APO=∠CPO ,∵OA=OP ,∴∠APO=∠OAP ,又∵∠PCB=∠OAP ,∴∠PCO=∠PCB ,∴OP ∥BC,(2)如图,△OCD 是等腰三角形,①当OD=CD 时,连接BC ,OP ,设∠BOC=∠DCO=xº,∠BDC=∠BOC+∠DCO=2xº,由(1)知OP ∥BC ,∴∠POD=∠OBC,∵OP=OC,∴∠OPD=∠OCD=BOC=xº,∴△POD≌ΔOBC,∴BC=OD=CD,∴∠OBC=∠OCB=∠CDB=2xº,∠BAC+∠OBC+∠OCB=180º,x+2x+2x=180,x=36,∠PAB=∠PCB=36º,②当OC=CD时由OP∥BC,∠OPC=∠DCB,OP=OC,∠OCP=∠OPC=DCB,设∠OCP=∠OPC=DCB=yº,∠OCB=∠OCD+∠DCB=2xº,∠OBC=∠OCB=2xº,∠ODC是ΔCDB的外角,∠ODC=∠DCB+∠DBC=3xº,∠COD=∠ODC=3xº,在ΔOCD中,∠OCD+∠COD+∠ODC=180º,x+3x+3x=180,x=1807,∴∠PAB=∠PCB=1807︒,综合∠PAO=36º或1807︒.【点睛】不本题考查园中平行与等腰三角形中角度问题,掌握圆心角、圆周角、弧的关系,会利用全等三角形证相关的结论,会证等腰三角形,利用内角与外角关系,求角的度数,本题是一道有关圆的综合应用题,作出恰当的辅助线是解答本题的关键.24.(1)1;(2)①m =2m或m =2﹣;②最大值为432,最小值为﹣12;(3)﹣3<n ≤﹣1或1<n ≤54.【分析】(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将然后将点A (﹣5,8)代入y =﹣ax +3求解即可;(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当﹣3≤x <0时,2142y x x =-+-,然后可此时的最大值和最小值,当0≤x ≤3时,函数2142y x x =-+-,求得此时的最大值和最小值,从而可得到当﹣3≤x ≤3时的最大值和最小值;(3)首先确定出二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)函数y =ax ﹣3的相关函数为3(0)3(0)ax x y ax x -+<⎧=⎨-≥⎩,将点A (﹣5,8)代入y =﹣ax +3得:5a +3=8,解得:a =1.(2)二次函数2142y x x =-+-的相关函数为2214(0)214(0)2x x x y x x x ⎧-+<⎪⎪=⎨⎪-+-≥⎪⎩;①当m <0时,将B (m ,32)代入2142y x x =-+得213422m m -+=,解得:m=2+(舍去)或m =2当m ≥0时,将B (m ,32)代入2142y x x =-+-得:213422m m -+-=,解得:m=2+或m =2.综上所述:m =2m或m =2.②当﹣3≤x <0时,2142y x x =-+,抛物线的对称轴为x =2,此时y 随x 的增大而减小,∴此时y 的最大值为432.当0≤x ≤3时,函数2142y x x =-+-,抛物线的对称轴为x =2,当x =0有最小值,最小值为﹣12,当x =2时,有最大值,最大值y =72.综上所述,当﹣3≤x ≤3时,函数2142y x x =-+-的相关函数的最大值为432,最小值为﹣12;(3)如图1所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有1个公共点.所以当x =2时,y =1,即﹣4+8+n =1,解得n =﹣3.如图2所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点∵抛物线24y x x n =-++与y 轴交点纵坐标为1,∴﹣n =1,解得:n =﹣1,∴当﹣3<n ≤﹣1时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.如图3所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有3个公共点.∵抛物线24y x x n =-++经过点(0,1),∴n =1.如图4所示:线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.∵抛物线24y x x n =--经过点M (﹣12,1),∴14+2﹣n =1,解得:n =54,∴1<n ≤54时,线段MN 与二次函数24y x x n =-++的相关函数的图象恰有2个公共点.综上所述,n 的取值范围是﹣3<n ≤﹣1或1<n ≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数24y x x n =-++的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.。
新人教版九年级数学上册期中考试试题及答案
新人教版九年级数学上册期中考试试题及答案一.选择题(满分36分,每小题3分)1.下列方程是一元二次方程的是()A.x2﹣y=1 B.x2+2x﹣3=0 C.x2+=3 D.x﹣5y=6 2.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6 B.m<6 C.m≤6且m≠2 D.m<6且m≠2 3.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4 4.下列解方程中,解法正确的是()A.x2=4x,两边都除以2x,可得x=2B.(x﹣2)(x+5)=2×6,∴x﹣2=2,x+5=6,x1=4,x2=1C.(x﹣2)2=4,解得x﹣2=2,x﹣2=﹣2,∴x1=4,x2=0D.x(x﹣a+1)=a,得x=a5.把抛物线y=﹣2x2+4x+1的图象向左平移2个单位,再向上平移3个单位,所得的抛物线的函数关系式是()A.y=﹣2(x﹣1)2+6 B.y=﹣2(x﹣1)2﹣6C.y=﹣2(x+1)2+6 D.y=﹣2(x+1)2﹣66.抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)7.下列关于函数的图象说法:①图象是一条抛物线;②开口向下;③对称轴是y 轴;④顶点(0,0),其中正确的有()A.1个B.2个C.3个D.4个8.由二次函数y=2(x﹣3)2+1可知()A.其图象的开口向下B.其图象的对称轴为x=﹣3C.其最大值为1D.当x<3时,y随x的增大而减小9.已知关于x的一元二次方程x2﹣4x+c=0的一个根为1,则另一个根是()A.5 B.4 C.3 D.210.二次函数y=﹣2x2+bx+c的图象如图所示,则下列结论正确的是()A.b<0,c>0 B.b<0,c<0 C.b>0,c<0 D.b>0,c>0 11.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0 D.k≥﹣1且k≠0 12.为满足消费者需要,红星厂一月份生产手提电脑200台,计划二、三月份共生产2500台.设二、三月份每月的平均增长率为x,根据题意列出的方程是()A.200(1+x)2=2500B.200(1+x)+200(1+x)2=2500C.200(1﹣x)2=2500D.200+200(1+x)+2000(1+x)2=250二.填空题(共6小题,满分18分,每小题3分)13.关于x的一元二次方程x2+2x+m=0有两个相等的实数根,则m的值是.14.方程x2﹣5x=4的根是.15.如图,⊙O的半径为2,C1是函数的图象,C2是函数的图象,C3是函数的图象,则阴影部分的面积是平方单位(结果保留π).16.若二次函数y=x2﹣3x+2m的最小值是2,则m=.17.某厂去年的产值为a元,今年比去年增长x%,则今年的产值为.18.设A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,则y1,y2,y3的大小关系为.三.解答题(共8小题,满分66分)19.(6分)解方程:x2+6x﹣2=0.20.(6分)在平面直角坐标系中,抛物线y=ax2+bx+2经过点(﹣2,6),(2,2).(1)求这条抛物线所对应的函数表达式.(2)求y随x的增大而减小时x的取值范围.21.(8分)已知关于x的一元二次方程x2+3x﹣m=0有实数根.(1)求m的取值范围(2)若两实数根分别为x1和x2,且x12+x22=11,求m的值.22.(8分)已知抛物线y=3(x+1)2﹣12如图所示(1)求出该抛物线与y轴的交点C的坐标;(2)求出该抛物线与x轴的交点A,B的坐标;(3)如果抛物线的顶点为D,试求四边形ABCD的面积.23.(9分)我县古田镇某纪念品商店在销售中发现:“成功从这里开始”的纪念品平均每天可售出20件,每件盈利40元.为了扩大销售量,增加盈利,尽快减少库存,该商店在今年国庆黄金周期间,采取了适当的降价措施,改变营销策略后发现:如果每件降价4元,那么平均每天就可多售出8件.商店要想平均每天在销售这种纪念品上盈利1200元,那么每件纪念品应降价多少元?24.(9分)出租车给市民出行带来了极大便利,某市某县现有出租车约400辆,为了提高每辆出租车的运营效益,一般每辆车是24小时运营,司机“三班倒”轮换,经过调查,每个司机有两种运营方案.方案一:部分出租车司机愿意在火车站、汽车站、码头、宾馆等固定的出租点接客,他们认为这样比在路上跑车接客相对轻松并且效益好些,这些司机平均每天可接4趟长途客,每次120元,总共花时约4小时,长途每次往返平均60千米.在剩余的20小时,在市内固定出租点营业,平均每次等客5分钟,送客20分钟,返回15分钟,一次市内生意为12元,市内每次往返平均8千米.方案二:部分司机愿意全部在市内跑车接客,调查结果为平均每次空载跑车(或等客)5分钟,接送客15分钟,一次市内生意为10元,市内每次往返平均5千米.(1)每辆出租车按方案一在固定站接客一天的营业额是元,每辆出租车按方案二在市内接客一天的营业额是元.(2)已知出租车每千米平均耗油0.32元,出租车在固定站接客需交停车费8元/天,跑长途平均每次(含往返)过境费10元,请比较出租车一天在固定站接客和在市内短途接客的纯收入大小(市内空载跑车行程忽略不计).25.(10分)如图,已知抛物线C:y=ax2+bx(a≠0)与x轴交于A、B两点(点A与点O 重合),点M(1,2)是抛物线上的点,且满足∠AMB=90°(1)求出抛物线C的解析式;(2)点N在抛物线C上,求满足条件S△ABM=S△ABN的N点(异于点M)的坐标.26.(10分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y(件)与销售单价x(元)之间的关系可近似的看作一次函数:y=﹣10x+500.(1)设李明每月获得利润为W(元),当销售单价定为多少元时,每月获得利润最大?(2)根据物价不门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元?参考答案一.选择题1.解:A、x2﹣y=1是二元二次方程,不合题意;B、x2+2x﹣3=0是一元二次方程,符合题意;C、x2+=3不是整式方程,不合题意;D、x﹣5y=6是二元一次方程,不合题意,故选:B.2.解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣4)2﹣4(m﹣2)•1≥0,解得:m≤6,∴m的取值范围是m≤6且m≠2,故选:A.3.解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.4.解:A、根据等式的性质,两边同除以一个不为0的数,等式仍然成立,在x未知的情况下,不能同除以2x,因为2x可能等于0,所以不对;B、两个式子的积是2×6=12,这两个式子不一定是2和6,还可能是其它值,故计算方法不对;C、利用直接开平方法求解,正确;D、两个数的积是a,这两个数不一定是a,故错误.故选:C.5.解:原抛物线的顶点坐标为(1,3),向左平移2个单位,再向上平移3个单位得到新抛物线的顶点坐标为(﹣1,6).可设新抛物线的解析式为:y=﹣2(x﹣h)2+k,代入得:y=﹣2(x+1)2+6.故选C.6.解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.7.解:①二次函数的图象是抛物线,正确;②因为a=﹣<0,抛物线开口向下,正确;③因为b=0,对称轴是y轴,正确;④顶点(0,0)也正确.故选:D.8.解:∵y=2(x﹣3)2+1,∴抛物线开口向上,对称轴为x=3,顶点坐标为(3,1),∴函数有最小值1,当x<3时,y随x的增大而减小,故选:D.9.解:设方程的另一个根为m,则1+m=4,∴m=3,故选:C.10.解:如图,抛物线的开口方向向下,则a<0.如图,抛物线的对称轴x=﹣<0,则a、b同号,即b<0.如图,抛物线与y轴交于正半轴,则c>0.综上所述,b<0,c>0.故选:A.11.解:∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0∴k>﹣1∵抛物线y=kx2﹣2x﹣1为二次函数∴k≠0则k的取值范围为k>﹣1且k≠0.12.解:由题意可得,200(1+x)+200(1+x)2=2500,故选:B.二.填空题(共6小题,满分18分,每小题3分)13.解:∵关于x的一元二次方程x2+2x+m=0有两个相等的实数根,∴△=0,∴22﹣4m=0,∴m=1,故答案为:1.14.解:∵x2﹣5x=4,∴x2﹣5x﹣4=0,∵a=1,b=﹣5,c=﹣4,∴x===,∴x1=,x2=.故答案为:x1=,x2=.15.解:抛物线y=x2与抛物线y=﹣x2的图形关于x轴对称,直线y=x与x轴的正半轴的夹角为60°,根据图形的对称性,把左边阴影部分的面积对折到右边,可以得到阴影部分就是一个扇形,并且扇形的圆心角为150°,半径为2,所以:S阴影==.故答案为:.16.解:由y=x2﹣3x+2m,得y=(x﹣)2+2m﹣,∴y最小=2m﹣=2,解得,m=;故答案是:.17.解:∵今年比去年增长x%,∴今年相对于去年的增长率为1+x%,∴今年的产值为a×(1+x%).故答案为a×(1+x%).18.解:∵A(﹣1,y1),B(0,y2),A(2,y3)是抛物线y=﹣x2+2上的三点,∴y1=1,y2=2,y3=﹣2.∵﹣2<1<2,∴y3<y1<y2.故答案为:y3<y1<y2.三.解答题(共8小题,满分66分)19.解:∵x2+6x﹣2=0,∴x2+6x=2,则x2+6x+9=2+9,即(x+3)2=11,∴x+3=±,∴x=﹣3±.20.解:(1)将点(﹣2,6),(2,2)代入y=ax2+bx+2中,得,∴a=,b=﹣1,∴y=x2﹣x+2;(2)∵抛物线y=x2﹣x+2对称轴为直线x=﹣=1,∵a=>0,则抛物线开口向上,∴y随x的增大而减小时x<1.21.解:(1)∵关于x的一元二次方程x2+3x﹣m=0有实数根,∴△=b2﹣4ac=32+4m≥0,解得:m≥﹣;(2)∵x1+x2=﹣3、x1x2=﹣m,∴x12+x22=(x1+x2)2﹣2x1•x2=11,∴(﹣3)2+2m=11,解得:m=1.22.解:(1)当x=0时,y=3(x+1)2﹣12=﹣9,则C点坐标为(0,﹣9);(2)当x=0时,3(x+1)2﹣12=0,解得x1=﹣3,x2=1,则A(﹣3,0),B(1,0);(3)D点坐标为(﹣1,﹣12),所以四边形ABCD的面积=×2×12+×(9+12)×1+×1×9=27.23.解:设每件纪念品应降价x元,则:化简得:x2﹣30x+200=0解得:x1=20,x2=10∵商店要尽快减少库存,扩大销量而降价越多,销量就越大∴x=20答:每件纪念品应降价20元.24.解:(1)方案一在固定站接客一天的营业额是:4×120+20×60÷(5+20+15)×12=840(元),案二在市内接客一天的营业额是:24×60÷(5+15)×10=720(元);(2)方案一的综合费用为:0.32×[60×4+20×60÷(5+20+15)×8×2]+8+10×4=278.4(元),其纯收入为840﹣278.4=561.6(元);方案二的综合费用为:0.32×[24×60÷(5+15)×5×2]=230.4(元),其纯收入为720﹣230.4=489.6(元);561.6>489.6,所以一辆出租车一天在固定站接客比在市内短途接客的纯收入大.25.解:(1)过点M作MH⊥AB于H,∵∠OMB=90°,MH⊥OB,∴△OMH∽△MBH,∴MH2=OH•HB,∴BH=4,∴B(5,0)设抛物线的解析式为y=ax2+bx,把M(1,2),B(5,0)代入得到,交点,∴抛物线的解析式为y=﹣x2+x.(2)由题意可知点N的纵坐标为±2时,当y=2时,2=﹣x2+,解得x=1或4,可得N(4,2),当y=﹣2时,﹣2=﹣x2+,解得x=,可得N(,﹣2)或(,﹣2);26.解:(1)由题意,得:w=(x﹣20)×y=(x﹣20)•(﹣10x+500)=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.答:当销售单价定为35元时,每月可获得最大利润为2250元;(2)由题意,得:﹣10x2+700x﹣10000=2000,解得:x1=30,x2=40,又∵单价不得高于32元,∴销售单价应定为30元.答:李明想要每月获得2000元的利润,销售单价应定为30元.新九年级(上)数学期中考试题(答案)(1)一、选择题1.已知∠A=40°,则它的余角为( )A.40°B.50°C.130°D.140°答案 B2.如图,四个立体图形中,从左面看,所看到的图形为长方形的( )A.①③B.①④C.②③D.③④答案 B3.下面说法:①线段AC=BC,则C是线段AB的中点;②两点之间直线最短;③延长直线AB;④一个角既有余角又有补角,它的补角一定比它的余角大.其中正确的有( )A.0个B.1个C.2个D.3个答案 B4.如图,小于平角的角有( )A.9个B.8个C.7个D.6个答案 C5.如图,C,D是线段AB上两点,若CB=4cm,DB=7cm,且D是AC的中点,则AC的长等于( )A.3cmB.6cmC.11cmD.14cm答案 B6.小明由点A出发向正东方向走10m到达点B,再由点B向东南方向走10m到达点C,则下列结论正确的是( )A.∠ABC=22.5°B.∠ABC=45°C.∠ABC=67.5°D.∠ABC=135°答案 D7.如图,OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式正确的是( )A.∠COD=∠AOBB.∠AOD=∠AOBC.∠BOD=∠AOBD.∠BOC=∠AOD答案 D8.在市委、市政府的领导下,全市人民齐心协力,将广安成功地创建为“全国文明城市”,为此小红特制作了一个正方体玩具,其展开图,原正方体中与“文”字所在的面相对的面上标的字应是( )A.全B.明C.城D.国答案 C9.若∠α与∠β互为补角,∠β的一半比∠α小30°,则∠α为( )A.30°B.80°C.100°D.140°答案 B10.射线OA上有B、C两点,若OB=8,BC=2,线段OB、BC的中点分别为D、E,则线段DE的长为( )A.5B.3C.1D.5或3答案 D11.用一副三角板不能画出的角为A.75°B.95°C.105°D.165°答案B12.如图所示,∠AOB=90°,∠AOC=40°,∠COD∶∠COB=1∶2,则∠BOD=A.40°B.50°C.25°D.60°答案C13.如图,C、D是线段AB上的点,若AB=8,CD=2,则图中以A、C、D、B为端点的所有线段的长度之和为A.24 B.22C.20 D.26答案D14.角α和β互补,α>β,则β的余角为A.α–βB.180°–α–βC.1()2αβ-D.90αβ︒-答案C二、填空题15.如图,从A到B的最短的路线是.答案A→F→E→B16.如图所示,延长线段AB到C,使BC=4,若AB=8,则线段AC的长是BC的倍.答案317.如图,已知M、N分别是AC、CB的中点,MN=6cm,则AB= cm.答案1218.如图所示,水平放置的长方体的底面是长为4和宽为2的长方形,从正面看到的形状图的面积为12,则长方体的体积等于.答案2419.如图所示,O是直线AB上一点,OC是∠AOB的平分线.(1)图中互余的角是;(2)图中互补的角是.答案(1)∠AOD与∠DOC(2)∠AOD与∠BOD,∠AOC与∠BOC20.如图,OM、ON分别是∠BOC和∠AOC的平分线,∠AOB=84°.(1)∠MON= ;(2)当OC在∠AOB内绕点O转动时,∠MON的值改变.(填“会”或“不会”)答案(1)42°(2)不会三、解答题21.计算:(1)48°39'40″+67°41'35″;(2)49°28'52″÷4.答案(1)116°21'15″.(2)12°22'13″.22.如果一个角的余角是它的补角的,求这个角的度数.答案设这个角的度数为x°,则它的余角为(90-x)°,它的补角为(180-x)°,根据题意得90-x=×(180-x),解得x=30.答:这个角的度数是30°.23.画图并计算:已知线段AB=2cm,延长线段AB至点C,使得BC=AB,再反向延长AC至点D,使得AD=AC.(1)准确地画出图形,并标出相应的字母;(2)哪个点是线段DC的中点?线段AB的长是线段DC长的几分之几?(3)求出线段BD的长度.答案(1)如图.(2)点A是线段DC的中点,AB=CD.(3)BC=AB=×2=1(cm),因而AC=AB+BC=2+1=3(cm).而AD=AC=3cm,故BD=DA+AB=3+2=5(cm).24.如图,七年级小林同学在一张透明纸上画了一条长8cm的线段MN,并在线段MN上任意找了一个不同于M、N的点C,然后用折纸的方法找出了线段MC、NC的中点A和B,并求出了线段AB的长为4cm.回答:(1)小林是如何找到线段MC、NC的中点的?又是如何求出线段AB的长为4cm的?(2)在反思解题过程时,小林想到:如果点C在线段MN的延长线上,“AB=4cm”这一结论还成立吗?请你帮小林画出图形,并解决这一问题.答案(1)纸是透明的,小林将纸对折,依次使点M、C重合,点N、C重合,两个折痕与线段MN 的交点就分别是中点A和B,AB=AC+BC=MC+NC=MN=×8=4(cm).(2)成立.理由:如图,若点C在线段MN的延长线上,AB=AC-BC=MC-NC=(MC-NC)=MN=×8=4(cm).25.如图所示,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠AOC和∠BOC 的度数.答案因为OE平分∠AOB,∠AOB=90°,所以∠BOE=45°.又∠EOF=60°,所以∠BOF=∠EOF-∠BOE=60°-45°=15°.又因为OF平分∠BOC,所以∠BOC=2∠BOF=30°,所以∠AOC=∠AOB+∠BOC=90°+30°=120°.26.该图是一个正方体盒子的表面展开图,该正方体六个面上分别标有不同的数字,且相对两个面上的数字互为相反数.(1)把-10,8,10,-3,-8,3分别填入图中的六个小正方形中;(2)若某相对两个面上的数字分别为和-5,求x的值.答案(1)答案不唯一,其中的一种情况如图.(2)依题意得=-,解得x=2.新人教版九年级(上)期中模拟数学试卷(答案)一、选择题(本大题共12小题,共36.0分)1.下列方程中是关于x的一元二次方程的是()A. B. C. D.2.观察下列汽车标志,其中是中心对称图形的是()A. B.C. D.3.x=2不是下列哪一个方程的解()A. B. C. D.4.已知一元二次方程3x2-2x+a=0有实数根,则a的取值范围是()A. B. C. D.5.若一元二次方程x2=m有解,则m的取值为()A. 正数B. 非负数C. 一切实数D. 零6.函数y=(m+2)x+2x+1是二次函数,则m的值为()A. B. 0 C. 或1 D. 17.函数y=ax2与函数y=ax+a,在同一直角坐标系中的图象大致是图中的()A. B.C. D.8.若抛物线y=x2-2x+c与y轴的交点为(0,-3),则下列说法不正确的是()A. 抛物线开口向上B. 抛物线的对称轴是C. 当时,y的最大值为4D. 抛物线与x轴的交点为,9.若三角形的两边长分别是4和6,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是()A. 13B. 16C. 12或13D. 11或1610.如图,△ABC绕点O旋转180°得到△DEF,下列说法错误的是()A. 点B和点E关于点O对称B.C. ≌D. 与关于点B中心对称11.如图所示,△ABC绕着点A旋转能够与△ADE完全重合,则下列结论成立的有()①AE=AC;②∠EAC=∠BAD;⑧BC∥AD;④若连接BD,则△ABD为等腰三角形A. 1个B. 2个C. 3个D. 4个12.二次函数y=ax2+bx+c中,b=4a,它的图象如图所示,有以下结论:①c>0;②a+b+c>0;③b2-4ac<0;④abc<0;⑤4a>c.其中正确的是()A.B.C.D.二、填空题(本大题共6小题,共18.0分)13.已知一元二次方程2x2+x+m=0的一个根是1,则m的值是______.14.在直角坐标系中,点(-3,6)关于原点的对称点是______.15.经过两次连续降价,某药品销售单价由原来的50元降到32元,设该药品平均每次降价的百分率为x,根据题意可列方程是______.16.若抛物线y=-x2-8x+c的顶点在x轴上,则c的取值是______.17.把二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位,得到的函数图象对应的解析式为______.18.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连结AA′,若∠1=20°,则∠B=______度.三、计算题(本大题共2小题,共20.0分)19.已知抛物线y=ax2+bx-1的图象经过点(-1,2),其对称轴为x=-1.求抛物线的解析式.20.如图,A(-1,0)、B(2,-3)两点在一次函数y2=-x+m与二次函数y1=ax2+bx-3的图象上(1)求一次函数和二次函数的解析式;(2)请直接写出y2>y1时,自变量x的取值范围.四、解答题(本大题共5小题,共46.0分)21.用适当的方法解下列方程(1)(y+3)2-81=0(2)2x(3-x)=4(x-3)(3)x2+10x+16=0(4)x2-x-=022.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,问应邀请多少个球队参加比赛?23.已知:关于x的一元二次方程x2-3x-k=0有两个不相等的实数根.(1)求k的取值范围;(2)请选择一个k的负整数值,并求出方程的根.24.将进货单价为40元的商品按50元售出时,就能卖出500个.已知这种商品每个涨价1元,其销售量就减少10个.为了赚得8000元的利润,每个商品售价应定为多少元?这时应进货多少个?25.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.答案和解析1.【答案】C【解析】解:A、2x-y=1,是二元一次方程,故此选项错误;B、x+3xy+y2=2,是二元二次方程,故此选项错误;C、=,是一元二次方程,正确;D、x2+=3,含有分式,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握方程定义是解题关键.2.【答案】C【解析】解:A、不是中心对称图形,本选项错误;B、不是中心对称图形,本选项错误;C、是中心对称图形,本选项正确;D、不是中心对称图形,本选项错误.故选:C.结合中心对称图形的概念求解即可.本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】D【解析】解:A,当x=2时,方程的左边=3×(2-2)=0,右边=0,则左边=右边,故x=2是A中方程的解;B,当x=2时,方程的左边=2×22-3×2=2,右边=2,则左边=右边,故x=2是B中方程的解;C,当x=2时,方程的左边=0,右边=0,则左边=右边,故x=2是C中方程的解;D,当x=2时,方程的左边=22-2+2=4,右边=0,则左边≠右边,故x=2不是D中方程的解;故选:D.把x=2分别代入各个方程的两边,根据方程的解的定义判断即可.本题考查的是一元二次方程的解的定义,掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解是解题的关键.4.【答案】A【解析】解:∵一元二次方程3x2-2x+a=0有实数根,∴△≥0,即22-4×3×a≥0,解得a≤.故选:A.根据△的意义得到△≥0,即22-4×3×a≥0,解不等式即可得a的取值范围.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.5.【答案】B【解析】解:当m≥0时,一元二次方程x2=m有解.故选:B.利用平方根的定义可确定m的范围.本题考查了解一元二次方程-直接开平方法:形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.6.【答案】D【解析】解:∵函数y=(m+2)x+2x+1是二次函数,∴m2+m=2,m+2≠0,解得:m=1.故选:D.直接利用二次函数的定义分析得出答案.此题主要考查了二次函数的定义,正确把握定义是解题关键.7.【答案】B【解析】解:当a>0时,y=ax2的图象是抛物线,顶点在原点,开口向上,函数y=ax+a的图象是一条直线,在第一、二、三象限,故选项A、D错误,选项B正确,当a<0时,y=ax2的图象是抛物线,顶点在原点,开口向下,函数y=ax+a的图象是一条直线,在第二、三、四象限,故选项C错误,故选:B.根据题目中的函数解析式,讨论a>0 和a<0时,两个函数的函数图象,从而可以解答本题.本题考查二次函数的图象、一次函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.8.【答案】C【解析】解:把(0,-3)代入y=x2-2x+c中得c=-3,抛物线为y=x2-2x-3=(x-1)2-4=(x+1)(x-3),所以:抛物线开口向上,对称轴是x=1,当x=1时,y的最小值为-4,与x轴的交点为(-1,0),(3,0);C错误.故选:C.把(0,-3)代入抛物线解析式求c的值,然后再求出顶点坐标、与x轴的交点坐标.要求掌握抛物线的性质并对其中的a,b,c熟悉其相关运用.9.【答案】A【解析】解:∵x2-5x+6=0,∴(x-3)(x-2)=0,解得:x1=3,x2=2,∵三角形的两边长分别是4和6,当x=3时,3+4>6,能组成三角形;当x=2时,2+4=6,不能组成三角形.∴这个三角形的第三边长是3,∴这个三角形的周长为:4+6+3=13故选:A.首先利用因式分解法求得一元二次方程x2-5x+6=0的两个根,又由三角形的两边长分别是4和6,利用三角形的三边关系,即可确定这个三角形的第三边长,然后求得周长即可.此题考查了因式分解法解一元二次方程与三角形三边关系的知识.此题难度不大,解题的关键是注意准确应用因式分解法解一元二次方程,注意分类讨论思想的应用.10.【答案】D【解析】解:A、点B和点E关于点O对称,说法正确;B、CE=BF,说法正确;C、△ABC≌△DEF,说法正确;D、△ABC与△DEF关于点B中心对称,说法错误;故选:D.根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可知△ABC≌△DEF,再根据全等的性质可得EC=BF,进而可得答案.此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.11.【答案】C【解析】解:∵△ABC绕着点A旋转能够与△ADE完全重合,∴△ABC≌△ADE,∴AE=AC,故①正确;∠CAB=∠EAD,AB=AD,∴∠CAB-∠EAB=∠EAD-∠EAB,∴∠EAC=∠BAD,故②正确;连接BD,则△ABD为等腰三角形,故④正确,故选:C.根据旋转的性质得到△ABC≌△ADE,根据全等三角形的性质即可得到结论.本题考查了旋转的性质,等腰三角形的判定,正确的识别图形是解题的关键.12.【答案】C【解析】解:由图象可得,c>0,a>0,b>0,故①正确,当x=1,y=a+b+c>0,故②正确,函数图象与x轴两个不同的交点,故b2-4ac>0,故③错误,∵b=4a,<0,a>0,解得,4a>c,故⑤正确,∵c>0,a>0,b>0,∴abc>0,故④错误,故选:C.根据函数图象可以判断a、b、c的正负,根据b=4a可以得到该函数的对称轴,从而可以判断各个小题是否正确,本题得以解决.本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.13.【答案】-3【解析】解:∵一元二次方程2x2+x+m=0的一个根为1,∴2×12+1+m=0,解得m=-3.故答案是:-3.把x=1代入已知方程列出关于m的一元一次方程,通过解该一元一次方程来求m 的值.本题考查了一元二次方程的解的定义.一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.14.【答案】(3,-6)【解析】解:点(-3,6)关于原点的对称点为(3,-6).故答案为:(3,-6).根据“两点关于原点对称,则两点的横、纵坐标都是互为相反数”解答.本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.15.【答案】50(1-x)2=32【解析】解:由题意可得,50(1-x)2=32,故答案为:50(1-x)2=32.根据某药品经过连续两次降价,销售单价由原来50元降到32元,平均每次降价的百分率为x,可以列出相应的方程即可.本题考查由实际问题抽象出一元二次方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.16.【答案】-16【解析】解:∵抛物线y=-x2-8x+c的顶点在x轴上,∴=0,解得,c=-16,故答案为:-16.根据题意,可知抛物线顶点的纵坐标等于0,从而可以求得c的值.本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.17.【答案】y=(x-2)2-3【解析】解;将二次函数y=x2+2的图象向右平移2个单位,再向下平移5个单位后,所得图象的函数表达式是y=(x-2)2+2-5,即y=(x-2)2-3,故答案为:y=(x-2)2-3.根据函数图象向右平移减,向下平移减,可得答案.本题考查了二次函数图象与几何变换,函数图象平移的规律是左加右减,上加下减.18.【答案】65【解析】解:∵Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,∴∠ACA′=90°,CA=CA′,∠B=∠CB′A′,∴△CAA′为等腰直角三角形,∴∠CAA′=45°,∵∠CB′A′=∠B′AC+∠1=45°+20°=65°,∴∠B=65°.故答案为65.先根据旋转的性质得到∠ACA′=90°,CA=CA′,∠B=∠CB′A′,则可判断△CAA′为等腰直角三角形,所以∠CAA′=45°,然后利用三角形外角性质计算出∠CB′A′,从而得到∠B的度数.本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.19.【答案】解:由题意得,,解得,,则抛物线的解析式为y=-3x2-6x-1.【解析】利用待定系数法求出抛物线的解析式.本题考查的是待定系数法求二次函数解析式,掌握二次函数的性质,待定系数法求解析式的一般步骤是解题的关键.20.【答案】解:(1)把A(-1,0)代入y=-x+m得1+m=0,解得m=-1,∴一次函数解析式为y=-x-1;把A(-1,0)、B(2,-3)代入y=ax2+bx-3得,解得,∴抛物线解析式为y=x2-2x-3;(2)当-1<x<2时,y2>y1.【解析】(1)利用待定系数法求一次函数和抛物线解析式;(2)利用函数图象,写出一次函数图象在二次函数图象上方所对应的自变量的范围即可.本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围或利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.21.【答案】解:(1)(y+3)2-81=0y+3=±9,解得:y1=-12,y2=6;(2)2x(3-x)=4(x-3)2x(3-x)-4(x-3)=0,2(3-x)(x+2)=0,解得:x1=3,x2=-2;(3)x2+10x+16=0(x+2)(x+8)=0,解得:x1=-2,x2=-8;(4)x2-x-=0∵△=b2-4ac=3+1=4,∴x=,解得:x1=,x2=.【解析】(1)利用直接开平方法解方程得出答案;(2)直接利用提取公因式法分解因式进而得出答案;(3)直接利用十字相乘法分解因式解方程即可;(4)利用公因式法解方程得出答案.此题主要考查了一元二次方程的解法,正确掌握相关解方程的方法是解题关键.22.【答案】解:设邀请x个球队参加比赛,依题意得1+2+3+…+x-1=21,即=21,∴x2-x-42=0,∴x=7或x=-6(不合题意,舍去).答:应邀请7个球队参加比赛.【解析】设邀请x个球队参加比赛,那么第一个球队和其他球队打(x-1)场球,第二个球队和其他球队打(x-2)场,以此类推可以知道共打(1+2+3+…+x-1)场球,然后根据计划安排21场比赛即可列出方程求解.此题和实际生活结合比较紧密,准确找到关键描述语,从而根据等量关系准确的列出方程是解决问题的关键.此题还要判断所求的解是否符合题意,舍去不合题意的解.23.【答案】解:(1)∵一元二次方程x2-3x-k=0有两个不相等的实数根,∴△=(-3)2-4×1×(-k)>0,解得k>-;(2)当k=-2时,方程为x2-3x+2=0,因式分解得(x-1)(x-2)=0,解得x1=1,x2=2.【解析】(1)根据方程有两个不相等的实数根根,则根的判别式△=b2-4ac>0,建立关于k 的不等式,求出k的取值范围;(2)k取负整数,再解一元二次方程即可.本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)中,当△>0时,方程有两个不相等的两个实数根是解答此题的关键.。
人教版九年级上册数学期中考试试卷及答案
人教版九年级上册数学期中考试试题一、选择题。
(每小题只有一个正确答案)1.方程24581x x +=化成一般形式后,它的二次项系数和常数项分别是()A .4,5B .4,5-C .4,81D .4,81-2.下列汉字或字母中,不是中心对称图形的是()A .B .C .D .3.抛物线2288y x x =-+-的对称轴是()A .2x =B .2x =-C .4x =D .4x =-4.不解方程,判断方程23620x x --=的根的情况是()A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确5.抛物线()2526y x =-+-可由25y x =-如何平移得到()A .先向右平移2个单位,再向下平移6个单位B .先向右平移2个单位,再向上平移6个单位C .先向左平移2个单位,再向下平移6个单位D .先向左平移2个单位,再向上平移6个单位6.已知点(),1A a 与()5,B b 关于原点对称,则,a b 的值分别为()A .5a =,1b =B .5a =,1b =-C .5a =-,1b =D .5a =-,1b =-7.某校九年级(1)班学生毕业时,每个同学都将自己的相片向全班其他同学各送一张留作纪念,全班共送了1980张相片,如果全班有x 名学生,根据题意,列出方程为A .(1)19802x x -=B .x (x +1)=1980C .2x (x +1)=1980D .x (x -1)=19808.已第二次函数()2240y ax ax a =-+->图象上三点()11,A y -、()21,B y 、()32,C y ,则1y ,2y ,3y 的大小关系为()A .132y y y <<B .312y y y <<C .123y y y <<D .213y y y <<9.如图,AD 是圆O 的直径,BC 是弦,四边形OBCD 是平行四边形,AC 与OB 相交于点P ,下列结论错误的是()A .2AP OP =B .2CD OP =C .OB AC ⊥D .AC 平分OB10.已知抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).若关于x 的一元二次方程ax 2+bx +c =p (p >0)有整数根,则p 的值有()A .2个B .3个C .4个D .5个二、填空题11.已知4是方程x 2﹣c =0的一个根,则方程的另一个根是________.12.抛物线()2322y x =---的顶点坐标为_______.13.要为一幅长29cm ,宽22cm 的照片配一个相框,要求相框的四条边宽度相等,且相框所占面积为照片面积的四分之一,设相框边的宽度为x ,则可列出关于x 的一元二次方程_______.14.二次函数2y ax bx c =++(a 、b 、c 为常数,0a ≠)中的x 与y 的部分对应值如下表:x 1-03yn33当0n <时,下列结论中一定正确的是_______.(填序号即可)①0abc <;②若点()12,C y -,()2,D y π在该拋物线上,则12y y <;③4n a <;④对于任意实数t ,总有()2496at bt a b +≤+.15.定义:有一组对角互余的四边形叫做对余四边形,如图,在对余四边形ABCD 中,AB BC =,AD =,5CD =,60ABC ∠=︒,则线段BD =______.16.如图,在正方形ABCD 中,E 是BC 上一点,将EA 绕点E 顺时针旋转60°,点A 的对应点F 恰好落在CD 上,则DAE =∠_______°.三、解答题17.解方程2470x x --=18.,a b 是关于x 的一元二次方程26150x x --=的两个实数根,求代数式11a b+,22a b ab +的值.19.如图,△ABD 、△ACE 都是等边三角形.求证:BE=DC .20.如图,在97⨯网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,,,,,A B C E F 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将ABC ∆绕点O 旋转180︒得到BAD ∆,请画出点O 和BAD ∆;(2)将格点线段EF 平移至格点线段MN (点,E F 的对应点分别为,M N ),使得MN 平分四边形ABCD 的面积,请画出线段MN ;(3)在线段AD 上找一点P ,使得AOP BOD ∠=∠,请画出点P .21.如图,O 的直径AB 为10,弦BC 为6,D 是 AC 的中点,弦BD 和CE 交于点F ,且DF DC =.(1)求证:EB EF =;(2)求CE 的长.22.网络销售已经成为一种热门的销售方式,某公司在某网络平台上进行直播销售板栗.已知板栗的成本价格为6元/kg ,每日销售量()y kg 与销售单价x (元/kg )满足一次函数关系,下表记录的是有关数据.经销售发现,销售单价不低于成本价且不高于30元/kg .设公司销售板栗的日获利为w (元).x (元/kg )789()y kg 430042004100(1)请求出日销售量y 与销售单价x 之间的函数关系式;(2)当销售单价定为多少时,销售这种板栗日获利w 最大?最大利润为多少元?(3)当销售单价在什么范围内时,日获利w 不低于42000元?23.如图1,ABC ∆中,CA CB =,ACB α∠=,D 为ABC ∆内一点,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE ∆,点,A D 的对应点分别为点,B E ,且,,A D E 三点在同一直线上.(1)填空:CDE ∠=______(用含α的代数式表示);(2)如图2,若60α=︒,请补全图形,再过点C 作CF AE ⊥于点F ,然后探究线段CF ,AE ,BE 之间的数量关系,并证明你的结论;(3)如图3,若90α=︒,AC =ABEC 面积的最大值______.24.如图,AB 为O 的直径,C 为O 上一点,弦AE 的延长线与过点C 的切线互相垂直,垂足为D ,35CAD ∠=︒,连接BC .(1)求∠B 的度数;(2)若2AB =,求 EC的长.25.如图1,抛物线G :214y x bx c =-++经过点()6,0B ,顶点为A ,对称轴为直线2x =.(1)求抛物线G 的解析式;(2)若点C 为直线AB 上方的抛物线上的动点,当ABC ∆面积最大时,求C 点的坐标;(3)如图2,将抛物线G 向左平移至顶点在y 轴上,平移后的抛物线G '与x 轴交于点E 、F ,平行于x 轴的直线l 经过点()0,8,若点P 为x 轴上方的抛物线G '上的动点,分别连接EP 、FP ,并延长交直线l 于M 、N 两点,若M 、N 两点的横坐标分别为m 、n ,试探究m 、n 之间的数量关系.参考答案1.D 【分析】一元二次方程的一般形式是:20(ax bx c a ++=,b ,c 是常数且0)a ≠,其中a ,b ,c 分别叫二次项系数,一次项系数,常数项.【详解】解:24581x x +=化成一元二次方程一般形式是245810x x +-=,它的二次项系数是4,常数项是-81.故选:D .【点睛】本题主要考查了一元二次方程的一般形式,要确定一次项系数和常数项,首先要把方程化成一般形式.2.A 【分析】根据中心对称图形的概念求解即可.【详解】解:A 、不是中心对称图形,故符合题意;B 、是中心对称图形,故不符合题意;C 、是中心对称图形,故不符合题意;D 、是中心对称图形,故不符合题意;故选:A 【点睛】本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.A 【分析】利用抛物线对称轴公式求解即可.【详解】解:∵2288y x x =-+-,∴对称轴为直线x=-822(2)=⨯-,故选:A .【点睛】本题主要考查二次函数的性质,掌握二次函数的对称轴公式是解题的关键.4.C 【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选:C 【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.5.C 【分析】按照“左加右减,上加下减”的规律求则可.【详解】解:因为()2526y x =-+-.所以将抛物线25y x =-先向左平移2个单位,再向下平移6个单位即可得到抛物线()2526y x =-+-.故选:C .【点睛】考查了抛物线的平移以及抛物线解析式的变化规律:左加右减,上加下减.6.D 【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数进行解答即可.【详解】解:∵点(),1A a 与()5,B b 关于原点对称,∴a =−5,b =−1.故选:D .【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.7.D 【分析】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,然后根据题意可列出方程.【详解】根据题意得:每人要赠送(x ﹣1)张相片,有x 个人,∴全班共送:(x ﹣1)x=1980,故选D .【点睛】此题主要考查了一元二次方程的应用,本题要注意读清题意,弄清楚每人要赠送(x ﹣1)张相片,有x 个人是解决问题的关键.8.B 【分析】把三点横坐标代入函数解析式,求出函数值,再进行比较大小即可.【详解】解:当x=-1时,y=-2a-a-4=-3a-4;当x=1时,y=-2a+a-4=-a-4;当x=2时,y=-8a+2a-4=-6a-4;∵a >0∴-6a-4<-3a-4<-a-4∴312y y y <<故选B 【点睛】本题考查抛物线上点的坐标特征,解答本题的关键是明确题意,可以判断y 1,y 2,y 3的大小.9.A 【分析】利用圆周角定理得到∠ACD =90°,再根据平行四边形的性质得到CD ∥OB ,CD =0B ,则可求出∠A =30°,在Rt △AOP 中利用含30度的直角三角形三边的关系,可对A 选项进行判断;利用OP ∥CD ,CD ⊥AC 可对C 选项进行判断;利用垂径可判断OP 为△ACD 的中位线,则CD =20P ,原式可対B 选项进行判断;同时得到OB =2OP ,则可对D 选项进行判断.【详解】解:∵AD 为直径,∴90ACD ∠= ,∵四边形OBCD 为平行四边形,∴//CD OB ,CD OB =,在Rt ACD ∆中,1sin 2CD A AD ==,∴30A ∠= ,在Rt AOP ∆中,AP =,所以A 选项的结论错误;∵//OP CD ,CD AC ⊥,∴OP AC ⊥,所以C 选项的结论正确;∴AP CP =,∴OP 为ACD ∆的中位线,∴2CD OP =,所以B 选项的结论正确;∴2OB OP =,∴AC 平分OB ,所以D 选项的结论正确.故选A .【点睛】此题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和平行四边形的性质.10.B 【分析】根据题意可知一元二次方程ax 2+bx +c =p (p >0)的根应为整数,通过抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,与x 轴的一个交点为(2,0).可以画出大致图象判断出直线y =p (0<p ≤-9a ),观察图象当0<y ≤-9a 时,抛物线始终与x 轴相交于(-4,0)于(2,0).故自变量x 的取值范围为-4<x <2.所以x 可以取得整数-3,-2,-1,0,1,共5个.由于x =-3与x =1,x =-2与x =0关于对称轴直线x =-1对称,所以x =-3与x =1时对应一条平行于x 轴的直线,x =-2与x =0时对应一条平行于x 轴的直线,x =-1时对应一条平行于x 轴且过抛物线顶点的直线,从而确定y =p 时,p 的值应有3个.【详解】解:∵抛物线y =ax 2+bx +c (a <0)的对称轴为x =-1,∴2ba -=-1,解得b =2a .又∵抛物线y =ax 2+bx +c (a <0)与x 轴的一个交点为(2,0).把(2,0)代入y =ax 2+bx +c 得,0=4a +4a +c ,解得,c =-8a .∴y =ax 2+2ax -8a (a <0),对称轴h =-1,最大值k =24(8)44a a a a ⋅--=-9a .如图所示,顶点坐标为(-1,-9a ),令ax 2+2ax -8a =0,即x +2x -8=0,解得x =-4或x =2,∴当a <0时,抛物线始终与x 轴交于(-4,0)与(2,0).∴ax 2+bx +c =p即常函数直线y =p ,由p >0,∴0<y ≤-9a ,由图象得当0<y ≤-9a 时,-4<x <2,其中x 为整数时,x =-3,-2,-1,0,1,∴一元二次方程ax 2+bx +c =p (p >0)的整数解有5个.又∵x =-3与x =1,x =-2与x =0关于直线x =-1轴对称,当x =-1时,直线y =p 恰好过抛物线顶点.所以p 值可以有3个.故选B .【点睛】本题考查了二次函数图象与x 轴及常函数y =p (p >0)的交点横坐标与一元二次方程根的关系,根据题意画出图象,求出y 的最大值是解决此题的关键.11.-4【分析】可将该方程的已知根4代入两根之和公式列出方程,解方程即可求出方程的另一根.【详解】设方程的也另一根为x 1,又∵x=4,∴x 1+4=0,x 1=−4.故答案为:-4.【点睛】本题考查的知识点是根与系数的关系,解题的关键是熟练的掌握根与系数的关系.12.()2,2-【分析】因抛物线()2322y x =---的解析式为顶点式,则直接运用顶点式的性质可求得答案.【详解】解:∵()2322y x =---,∴抛物线顶点坐标为()2,2-.故答案为:()2,2-.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,顶点坐标为(h ,k ).13.(29-2x )(22-2x )=34×29×22.【分析】根据题意表示出去掉相框的面积进而得出等式即可.【详解】解:设相框边的宽度为xcm ,则可列方程为:(29-2x )(22-2x )=34×29×22.故选:B .【点睛】此题主要考查了由实际问题抽象出一元二次方程,正确表示出去掉相框的面积是解题关键.14.①②④【分析】根据表格数据求出二次函数的对称轴为直线x=32,然后根据二次函数的性质对各小题分析判断即可得解.【详解】解:由图表知,当x=0时,y=3,当x=3时,y=3∴对称轴为0+33=222b x a =-=,且3c =,3b a =-∴23y ax bx =++①∵3b a =-,3c =∴a b ,异号,0abc <,故①正确;②对称轴为32x =,且当1x =-时,.y n =将(1)n -,代入23y ax bx =++中得3a b n -+=,∴3a b n -=-又∵0n <∴-0a b <又∵a b ,异号,∴0a <,0.b >∴23y ax bx =++的图象开口向下,∵33|2|||22π-->-∴12y y <,故②正确;③∵3b a =-, 3.a b n -=-∴(3)3a a n --=-∴4 3.a n =-∴4.a n <,故③错误;④当32x =时,y 有最大值,∴最大值为3492a b c ++∴对任意实数t ,总有29342at bt c a b c ++≤++,∴24()96at bt a b +≤+,故④正确,故答案为:①②④.【点睛】本题考查了二次函数的性质,二次函数图象与系数的关系,抛物线与x 轴的交点,二次函数与不等式,有一定难度.熟练掌握二次函数图象的性质是解题的关键.15.【分析】对余四边形的定义得出30ADC ∠=︒,将BCD ∆绕点B 逆时针旋转60︒,得到BAF ∆,连接FD ,则BCD BAF D @D ,60FBD ∠=︒,得出BF BD =,AF CD =,BDC BFA ∠=∠,则BFD ∆是等边三角形,得出BF BD DF ==,易证30BFA ADB ∠+∠=︒,由180FBD BFA ADB AFD ADF ∠+∠+∠+∠+∠=︒,得出90AFD ADF ∠+∠=︒,则90FAD ∠=︒,由勾股定理即可得出结果.【详解】∵对余四边形ABCD 中,60ABC ∠=︒,∴30ADC ∠=︒,∵AB BC =,∴将BCD ∆绕点B 逆时针旋转60︒,得到BAF ∆,连接FD ,如图所示:∴BCD BAF ∆∆≌,60FBD ∠=︒∴BF BD =,AF CD =,BDC BFA ∠=∠,∴BFD ∆是等边三角形,∴BF BD DF ==,∵30ADC ∠=︒,∴30ADB BDC ∠+∠=︒,∴30BFA ADB ∠+∠=︒,∵180FBD BFA ADB AFD ADF ∠+∠+∠+∠+∠=︒,∴6030180AFD ADF ︒+︒+∠+∠=︒,∴90AFD ADF ∠+∠=︒,∴90FAD ∠=︒,∴222AD AF DF +=,∴222AD CD BD +=.∴22(25)(5)35BD =+=.故答案为:35【点睛】本题主要考查了对余四边形的定义、旋转的性质、等边三角形的判定与性质、三角形内角和定理、勾股定理等知识;熟练掌握对余四边形的定义和旋转的性质是解题的关键.16.75【分析】根据旋转的性质得出△AEF 是等边三角形,进而可证明Rt △ABE ≌Rt △ADF 得∠BAE =∠ADF ,再根据角的和差可得结论.【详解】解:由旋转得,AE =AF ,60EAF ∠=︒∴△AEF 是等边三角形,∴EF =AE =AF ,∠EAF =∠AEF =∠AFE =60°∵四边形ABCD 是正方形,∴∠BAD =∠B =∠D =90°,AB =AD在Rt △ABE 和Rt △ADF 中AB ADAE AF=⎧⎨=⎩∴Rt △ABE ≌Rt △ADF∴∠BAE =∠ADF又∠BAD =∠BAE +∠EAF +∠DAF =90°∴∠DAF =1(9060)152⨯︒-︒=︒∴∠DAE =∠DAF +∠EAF =15°+60°=75°故答案为75【点睛】本题主要考查了旋转的性质,直角三角形全等的判定与性质,正方形的性质等知识,求出∠DAF =15︒是解答此题的关键.17.12x =+,22x =-【分析】用配方法解一元二次方程.【详解】解:247=0x x --247x x -=24411x x -+=()2211x -=2x -=∴12x =+,22x =-【点睛】本题考查解一元二次方程,熟练掌握一元二次方程的解法是关键.18.25-;90-【分析】先由根与系数的关系得出a+b=6,ab=-15,再将所求式子变形后整体代入计算可得.【详解】解∵,a b 是关于x 的一元二次方程26150x x --=的两个实数根∴6a b +=,15ab =-∴1162155a b a b ab ++===--22()15690a b ab ab a b +=+=-⨯=-【点睛】本题主要考查根与系数的关系,解题的关键是掌握x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a -,x 1x 2=c a.19.证明见解析.【分析】将BE 、DC 放入△BAE 和△DAC ,利用等边三角形的性质证明△BAE 和△DAC 全等.【详解】证明:∵△ABD 、△AEC 都是等边三角形,∴AD =AB ,AE =AC ,∠DAB =∠CAE =60°,∴∠DAC =∠BAC +60°,∠BAE =∠BAC +60°,∴∠DAC =∠BAE ,在△DAC 和△BAE 中,AD AB DAC BAE AE AC ⎧⎪∠∠⎨⎪⎩===,∴△DAC ≌△BAE (SAS ),∴BE =DC .20.(1)如图所示,见解析;(2)如图所示,见解析;(3)如图所示,见解析.【分析】(1)依据旋转方向,旋转角度以及旋转中心,即可得到△BAD .(2)依据平移的方向和距离,即可得到MN ;(3)延长QO 与AD 的交点即为点P .【详解】解:(1)如图所示.(2)如图所示;(3)如图所示.【点睛】本题主要考查了利用平移变换以及旋转变换作图,作图时要先找到图形的关键点,分别把这几个关键点按照几何变换确定对应点后,再顺次连接对应点即可得到几何变换后的图形.21.(1)见解析;(2)CE =【分析】(1)运用圆周角定理证明DBE EFB ∠=∠即可得到结论;(2)连接OE ,AE ,AC ,在CB 延长线上截取BG AC =,连EG ,可得A 、E 、B 、C 四点为共圆,可证明CAE GBE ∆∆≌,△CEG 为等腰直角三角形,运用勾股定理即可求得结论.【详解】(1)证明:∵DF DC =∴DCF DFC∠=∠又∵DCF DBE ∠=∠,DFC EFB ∠=∠∴DBE EFB∠=∠∴EB EF=(2)连接OE ,AE ,AC ,∵AB 为O 的直径∴90ACB ∠=︒,90AEB =︒∠在Rt ACB ∆中,AC 8===∵D 是弧AC 的中点∴ AD CD=∴DBA DBC∠=∠又∵DBE EFB∠=∠∴DBE DBA EFB DBC ∠-∠=∠-∠,即ABE ECB∠=∠∴AOE BOE∠=∠∴ AE BE=,AE BE =∴45ACE BCE ∠=∠=︒在CB 延长线上截取BG AC =,连EG在圆内接四边形ACBE 中,180CAE CBE ∠+∠=︒又∵180GBE CBE ∠+∠=︒∴CAE GBE∠=∠∴()CAE GBE SAS ∆∆≌∴EC EG=∴45BCE BGE ∠=∠=︒∴在等腰Rt CEG ∆中,222()()222CE CG CB BG CB AC ==+=+=【点睛】本题考查了圆周角定理,圆内接四边形的性质.解答此题的关键是作出辅助线,构造全等三角形.22.(1)1005000y x =-+;(2)当销售单价定为28时,销售这种板栗日获利最大,最大利润为48400元;(3)当2030x ≤≤时,日获利w 不低于42000元.【分析】(1)观察可得该函数图象是一次函数,设出一次函数解析式,把其中两点代入即可求得该函数解析式,代入x=16求得m 的值即可;(2)根据销售利润=每个商品的利润×销售量,结合二次函数的关系式即可求得相应的最大利润.(3)根据题意列出方程()2420001002848400x =--+,求出方程的解,根据日获利w 不低于42000元即可确定销售单价的定价范围.【详解】(1)设y 与x 的函数关系式为:()0y kx b k =+≠,把7x =,4300y =和8x =,4200y =代入得,7430084200k b k b +=⎧⎨+=⎩,解得,1005000k b =-⎧⎨=⎩,∴1005000y x =-+(2)()()61005000w x x =--+2100560030000x x =-+-()21002848400x =--+∵1000a =-<,对称轴为28x =,∴当28x =时,w 有最大值为48400元,∴当销售单价定为28时,销售这种板栗日获利最大,最大利润为48400元;(3)当42000w =元时,()2420001002848400x =--+,∴120x =,236x =,∴当2036x ≤≤时,40000w ≥,又∵630x ≤≤∴当2030x ≤≤时,日获利w 不低于42000元【点睛】题考查了二次函数的应用,二次函数的性质,利用函数思想解决问题是本题的关键.23.(1)1802α-;(2)3AE BE =+;证明见解析;(3)1)2+.【分析】(1)由旋转的性质可得CD CE =,DCE α∠=,即可求解;(2)由旋转的性质可得AD BE =,CD CE =,60DCE ∠=︒,可证CDE ∆是等边三角形,由等边三角形的性质可得33DF EF CF ==,即可求解;(3)如图3中,过点C 作CF BE ⊥交BE 的延长线于F ,设AE 交BC 于J .证明90ACJ BEJ Ð=Ð=°,推出点E 在以AB 为直径的圆上运动,即图中 BC 上运动,当¶¶CEEB =时,四边形ABEC 的面积最大,此时EC EB =,分别求出ABC ∆,BCE ∆的面积即可解决问题.【详解】解:(1)如图1中,将CAD ∆绕点C 按逆时针方向旋转角α得到CBE∆ACD BCE ∴∆≅∆,DCE α∠=CD CE∴=1802CDE α︒-∴∠=.故答案为:1802α︒-.(2)3AE BE CF =+理由如下:如图2中,将CAD ∆绕点C 按逆时针方向旋转角60︒得到CBE∆ACD BCE∴∆≅∆AD BE ∴=,CD CE =,60DCE ∠=︒CDE ∴∆是等边三角形,且CF DE ⊥33DF EF CF ∴==AE AD DF EF=++ 233AE BE CF ∴=+.(3)如图3中,过点C 作CW BE ^交BE 的延长线于W ,设AE 交BC 于J .CAD ∆ 绕点C 按逆时针方向旋转90︒得到CBE ∆,CAD CBE \D @D ,CAD CBE ∴∠=∠,AJC BJE Ð=ÐQ ,90ACJ BEJ \Ð=Ð=°,∴点E 在以AB 为直径的圆上运动,即图中 BC上运动,当»»CE EB =时,四边形ABEC 的面积最大,此时EC EB =,CD CE = ,90DCE ∠=︒,45CED ∴∠=︒,90AEW AEB Ð=Ð=°Q ,45CEW \Ð=°,CF EW ^Q ,45WCE CEW \Ð=Ð=°,CW EW \=,设CW EW x ==,则EC EB ==,在Rt BCW D 中,222BC CW BW =+,222()x x \++=,2x \=21225(21)222BCE S BE CW x D \===g ,))2512511222ABC BCE ABEC S S S D D \=+=创=四边形.【点睛】本题考查了圆的性质,等腰三角形的性质,全等三角形的判定和性质,解直角三角形等知识,熟悉相关性质,灵活运用所学知识解决问题是解题的关键.24.(1)55°;(2)718π.【分析】(1)连接OC ,如图,利用切线的性质得到OC ⊥CD ,则判断OC ∥AE ,所以∠DAC =∠OCA ,然后利用∠OCA =∠OAC 得到∠OAB 的度数,即可求解;(2)利用(1)的结论先求得∠AEO =∠EAO =70°,再平行线的性质求得∠COE =70°,然后利用弧长公式求解即可.【详解】解:(1)连接OC ,如图,∵CD是⊙O的切线,∴OC⊥CD,∵AE⊥CD,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∠CAD=35°,∴∠OAC=∠OCA=∠CAD=35°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠B=90°-∠OAC=55°;(2)连接OE,OC,如图,由(1)得∠EAO=∠OAC+∠CAD=70°,∵OA=OE,∴∠AEO=∠EAO=70°,∵OC∥AE,∴∠COE=∠AEO=70°,∴AB=2,则OC=OE=1,∴ EC 的长为70718018018n r πππ==.【点睛】本题考查了切线的性质,圆周角定理,弧长公式等知识,解题的关键是学会添加常用辅助线.25.(1)2134y x x =-++;(2)当4t =时,当ABC ∆面积最大,此时()4,3C ;(3)16mn =-.【分析】(1)根据点C 坐标和对称轴2x =求解即可;(2)过C 作//CD y 轴交AB 于D ,连AC ,BC ,将2134y x x =-++化成顶点式,得21(2)44y t =--+,得到顶点()2,4A ,设直线AB 的解析式为:y kx b =+,将A ,B 两点代入求得直线AB 的解析式为6y x =-+,设21,34C t t t 骣÷ç÷ç÷ç桫-++,26t <<,则(),6D t t -+,根据()ΔABC 1S 2B A x x CD =-化简求得2ΔABC 1(4)22S t =--+,当4t =时,当ABC ∆面积最大,此时()4,3C ;(3)由题意得,抛物线G ':2144y x =-+,()4,0E -,()4,0F ,直线l :8y =,设()2,1P p p -,已知PE l 过点()4,0E -、21,44P p p 骣÷ç-+÷ç÷ç桫,由待定系数法得E 1:(4)(4)4P l y p x =--+,令8y =,可得:()444p m p -+=-;同理1:(4)(4)4PF l y p x =-+-,令8y =,可得:()444p n p -=+,可以求得16mn =-.【详解】(1)∵点()6,0C 在抛物线上,∴103664b c =-⨯++,得到69b c +=,又∵对称轴2x =,∴22124b bx a =-=-=⎛⎫⨯- ⎪⎝⎭,解得1b =,∴3c =,∴二次函数的解析式为2134y x x =-++(2)过C 作//CD y 轴交AB 于D ,连AC ,BC∵22113(2)444y x x t =-++=--+∴顶点()2,4A 设直线AB 的解析式为:y kx b=+则2460k b k b ì+=ïïíï+=ïî,解得16k b =-⎧⎨=⎩∴直线AB 的解析式为:6y x =-+设21,34C t t t 骣÷ç÷ç÷ç桫-++,26t <<,则(),6D t t -+()ΔABC 12B A DS x x C =-21143(6)24t t t 轾犏=创-++--+犏臌212234t t 骣÷ç=-+-÷ç÷ç桫21(4)22t =--+∴当4t =时,当ABC ∆面积最大,此时()4,3C (3)由题意得,抛物线G ':2144y x =-+,()4,0E -,()4,0F ,直线l :8y =设()2,1P p p -已知PE l 过点()4,0E -、21,44P p p 骣÷ç-+÷ç÷ç桫,由待定系数法得E 1:(4)(4)4P l y p x =--+,令8y =,可得:()444p m p -+=-.同理1:(4)(4)4PF l y p x =-+-,令8y =,可得:()444p n p -=+∴16mn =-.【点睛】本题主要考查了二次函数的性质和一次函数的性质在综合,待定系数法求函数解析式,一次函数交点等知识点,熟悉相关性质是解题的关键.。
九年级数学第一学期期中考试(人教版)1答案
九年级期中数学试卷(人教版)第1页(共1页) 2019—2020学年九年级第一学期期中考试数学试卷(人教版)参考答案评分说明:1.本答案仅供参考,若考生答案与本答案不一致,只要正确,同样得分.2.若答案不正确,但解题过程正确,可酌情给分.一、(1-10小题各3分,11-16小题各2分,共42分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16答案 B C B B C D C B C CA A DB D B 二、(17小题3分,18-19题每空2分,共11分)17.减小 18.0.6;20 19.7;21 三、20.解:(1)x 1=x 2=5;(4分) (2)x 1=2,x 2=37. (4分) 21. 解:(1)如图;点B 1的坐标是(4,-2);(4分)(2)如图;点B 2的坐标是(-4,2). (5分)22.解:(1)点A 的坐标为(1,0),点B 的坐标为(3,0);(4分)(2)抛物线的函数解析式为y=-x 2+4x-3,顶点坐标为(2,1).(5分)23.解:(1)一次传球后,球在小洁手中的概率为31;(3分) (2)经过两次传球后,球又回到小明手中的概率为31.(6分) 24.解:(1)y 关于x 的解析式为y=-3x 2+48x (7≤x ≤15);(6分)(2)若饲养场的面积为180平方米,x 的值为10.(4分)25.解:(1)证明略;【精思博考:解法一:连接AO ,可得AO ∥PE.∵A 为的中点,∴∠AOB=90°, ∴∠PEB=90°;解法二:连接EA ,根据圆周角定理得到∠BAE=90°,而A 为的中点,则∠ABE=45°.由EA 垂直平分BP 得PE=BE ,∴∠P=∠ABE=45°,∴∠PEB=90°】 (5分)(2)线段BD 的长是3.【精思博考:连接DE ,可得∠BED=60°】 (5分)26.解:(1)抛物线对应的函数解析式为y=-x 2+2x+3;(3分)(2)(3,2),不在; (4分)(3)△ADE 面积的最大值为827,此时点D 的坐标为(21,415).【精思博考:过点D 作y 轴的平行线交AE 于点P.求出直线AE 的解析式,设点D 的坐标和点P 的坐标,表示出DP 的长度,再将△ADE 的面积转化成△ADP 和△EDP 的面积和】(5分)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学(人教版)上学期期中考试试卷(五)
内容:第21—23章 时间:120分钟 满分:150分
一、选择题(本大题共10小题,每小题4分,共40分)
1.将一元二次方程x 2-2x -2 = 0通过配方后所得的方程是( C )
A .(x -2)2 = 2
B .(x -1)2 = 2
C .(x -1)2 = 3
D .(x -2)2 = 3 2.若13-m 有意义,则m 能取的最小整数值是( B )
A .m=0
B .m=1
C .m=2
D .m=3 3.若x <0,则
x x
x 2
-
的结果是( D )
A .0
B .—2
C .0或—2
D .2
4是同类二次根式的是( B )
A .
B .
C .
D 5.方程2(2)9x -=的解是( A ) A .1251x x ==-,
B .1251x x =-=,
C .12117x x ==-,
D .12117x x =-=,
6.下列计算正确的是( C ) A .257=
-
B .428=÷
C .2318=
D .1)21)(21(=-
+
7.已知关于x 的一元二次方程2
2
(1)10a x x a -++-=一个根为0,则a 的值为( B )
A .1
B .-1
C .1或-1
D .
12
8.关于x 的一元二次方程2
2
2310x x a --+=的一个根为2,则a 的值是 ( D )
A .1
B .D .
9.若b
a 是二次根式,则a 、
b 应满足的条件是( D )
A .a 、b 均为非负数
B .a 、b 同号
C .a ≥0,b >0
D .b
a ≥0
10.已知a <b ,化简二次根式b a 3
-的正确结果是( A )
A .ab a --
B .ab a -
C .ab a
D .ab a -
二、填空题(本题共4小题,每小题5分,满分20分) 11.方程24x x =的解是 0或4 。
12.方程2310x x -+=
的解是2x =。
13.已知3=xy ,则=x
y x
3± 。
14.若35-=x ,则562
++x x 的值为 1 。
三、(本题共2小题,每小题8分,满分16分)
15.如果1-是一元二次方程230x bx +-=的一个根,求它的另一根。
15.解:1- 是230x bx +-=的一个根,
2
(1)(1)30b ∴-+--=。
解方程得2b =-。
∴原方程为2
230x x --=。
分解因式,得(1)(3)0x x +-=,
11x ∴=-,23x =。
∴它的另一根是3。
16.已知a 、b 、c 均为实数且0)3(1122
2=+++++-c b a a ,求方程0
2
=++c bx ax 的根。
16.1=a ,1-=b ,3-=c ,213
1±
=
x 。
四、(本题共2小题,每小题8分,满分16分)
17. 观察以下各式:
利用以上规律计算: )12010)(2009
201013412311
21(
++
+
⋯++
+
+
+
+
17.2009。
3
43
41232
31121
21-=+
-=+
-=+,
,
18.用配方法解方程:26120x x --=。
18.解:方程两边都除以6,移项得2126
x x -
=
配方,得2
2
21
11261212x x ⎛⎫⎛⎫
-+-=+- ⎪ ⎪⎝⎭⎝⎭
,
2
2
1289171214412x ⎛
⎫⎛⎫-== ⎪ ⎪⎝
⎭⎝⎭,
即11712
12
x -
=或1171212
x -
=-
所以132
x =,243
x =-。
五、(本题共2小题,每小题10分,满分20分) 19.如图,正方形ABCD 内一点P ,PA=1,PD=2,PC=3,如果将△PCD 绕点D 顺时针旋转90°,能求出∠APD 的度数吗?试试看。
19.解:先作出△PCD 绕点D 顺时针旋转90°后的△P /AD ,
则DP′=DP=2,∠P′DP=90°,AP′=CP=3,连接 PP′,PP′=22,∠P′PD=45°, ∵AP /2=AP 2+PP /2,
∴△APP′是直角三角形,∠APP′=90°。
∴∠APD=∠APP′+∠P /PD=90°+45°=135°。
20.阅读下面的材料:
)0(02
≠=++a c bx ax
的根为:.242
1a
ac b b x -+
-=
.242
2a
ac b b x ---=
∴,2221a
b a
b x x -
=-=+ .4)
4(2
2
2
21a
c a
ac b b x x =
--=
∙
综上得,设)0(02
≠=++a c bx ax 的两根为1x 、2x ,则有:,21a b x x -
=+.21a c x x =
请利用这一结论解决问题:
(1)若02
=++c bx x 的两根为1和3,求b 和c 的值。
(2)设方程01322
=++x x 的根为1x 、2x ,求2
21)(x x +的值。
20.解:(1) b =-4,c =3 ;(2)4
9。
21.阅读理解:我们把
d
c
b a 称作二阶行列式,规定它的运算法则为b
c a
d d
c
b a -=。
如
243525
4
32-=⨯-⨯=。
(1)计算:
242
16
22;
(2)如果
1111
x x x
x +--+ =6,求x 的值。
21.解:(1) 32
(2) 根据题意,得:6)1)(1()1(2=---+x x x ,
6)12()12(2
2
=+-+++x x x x
422
=x
∴2±=x 。
七、(本题满分12分)
22.如图, 某小区在宽20m ,长32m 的矩形地面上修筑同样宽的人行道(图中阴影部分),
余下的部分种上草坪.要使草坪的面积为540m 2,求道路的宽。
22.解法一:原图经过平移转化为图1.
设道路宽为x 米, 根据题意, 得 (20-x)(32-x)=540. 整理得x 2-52x+100=0.
解得x 1=50(不合题意, 舍去), x 2=2。
答:道路宽为2米。
图1 解法二: 原图经过平移转化为图2.
设道路宽为x 米,根据题意, 得
.540)3220(32202
=++-⨯x x
整理得x 2
-52x+100=0。
解得x 1=50(不合题意, 舍去),
答:道路宽为2米。
图2 说明: 没画出图形不扣分。
20
2032
20
32
23.白云商厦服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元,为了迎接“六·一”国际儿童节,商场决定采取适当的降价措施,扩大销售量,增加盈利,减少库存。
经市场调查发现:如果每件童装每降价4元,那么平均每天就可多售出8件,要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少元?
23.解:设每件童装应降价x元,依题意得
(40-x)(20+2x)=1200
整理,得x2-30x+200=0,解得x
1=10 x
2
=20
因要尽量减少库存,故x应取20。
答:每件童装应降价20元。