2016年春季新版湘教版七年级数学下册第二章《整式的乘法》提升卷含答案

合集下载

湘教版七年级数学下第2章整式的乘法检测题附答案解析

湘教版七年级数学下第2章整式的乘法检测题附答案解析

(4)两个式子: (--2x3 y4 )m 2m x3m y4m ,( 2x3 y4 )n 2n x3n y4n 都不一定成立.
A.1 个 B.2 个 C.3 个 D.4 个
8.现规定一种运算 a※ b ab a b ,其中 a,b 为实数,则 a※※ b (b a) b 等于( )
A. x2 y6 B.- x2 y6 C. x2 y9 D.- x2 y9
5.计算-3 a2 a3 的结果为( )
A.-3 a5 B.3 a6 C.-3 a6 D.3 a5
A. a2 b B. b2 b C. b2 D. b2 a
二、填空题(每小题 3 分,共 24 分)
9.已知 m+n=mn,则(m-1)(n-1)= .
② (x 2 012)(x 2 000) )= .
13.若 m 为奇数,则 (a b)m g(b a)n 与 (b a)mn 的关系为 .
14.一个长方形的长为 (5x 3) m ,宽比长少 (2x 5) m ,则这个长方形的面积为 m2
第 2 章 整式的乘法检测题参考答案
1.B 解析:∵ 2a 和 3b 不是同类项,∴ 2a 和 3b 不能合并,∴ A 项错误;
∵ 5a 和-2a 是同类项,∴ 5a-2a=(5-2)a=3a,∴ B 项正确;
(2)试画一个几何图形,使它的面积表示为 (a b)(a 3b) a2 4ab 3b2 ;
(3)请仿照上述方法另写一个含有 a,b 的代数恒等式,并画出与它对应的几何图形.
19.(6 分)解下列方程:
(1) 3(x2 2x 6)- 3x(x 5) 0 ;
(2) x(2x 4) 3x(x 1)- 5x(x 3) 8 0 .

七年级数学下册《第二章-整式的乘法》练习题及答案(湘教版)

七年级数学下册《第二章-整式的乘法》练习题及答案(湘教版)

七年级数学下册《第二章整式的乘法》练习题及答案(湘教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列计算错误的是( )A.(-a)·(-a)2=a3B.(-a)2·(-a)2=a4C.(-a)3·(-a)2=-a5D.(-a)3·(-a)3=a62.式子a2m+3不能写成( )A.a2m·a3 B.a m·a m+3 C.a2m+3 D.a m+1·a m+23.计算3a·(-2a)2=( )A.-12a3B.-6a2C.12a3D.6a24.化简a(a+1)-a(1-a)的结果是( )A.2a ;B.2a2;C.0 ;D.2a2-2a.5.若(x+2)(x-1)=x2+mx+n,则m+n=()A.1B.﹣2C.﹣1D.26.若(x+m)(x2-3x+n)的展开式中不含x2和x项,则m,n的值分别为()A.m=3,n=1B.m=3,n=-9C.m=3,n=9D.m=-3,n=97.如图,甲、乙、丙、丁四位同学给出了四种表示该长方形面积的多项式:①(2a+b)(m+n); ②2a(m+n)+b(m+n);③m(2a+b)+n(2a+b); ④2am+2an+bm+bn你认为其中正确的有()A.①②B.③④C.①②③D.①②③④8.若x2﹣kxy+9y2是一个完全平方式,则k的值为( )A.3B.±6C.6D.+39.已知P=8x2-y2+6x-2,N=9x2+4y+13,则P和N的大小关系是( ).A.P>NB.P=NC.P<ND.不能确定10.计算(a-b)(a+b)(a2+b2)(a4-b4)的结果是( )A.a8+2a4b4+b8B.a8-2a4b4+b8C.a8+b8D.a8-b8二、填空题11.计算:(﹣x)3•x2= .12.计算(-xy)2(x+2x2y)= .13.已知单项式M、N满足等式3x(M-5x)=6x2y3+N,则M=______,N=______.14.若4a4﹣ka2b+25b2是一个完全平方式,则k= .15.若(x+2y)(2x﹣ky﹣1)的结果中不含xy项,则k的值为.16.若n满足(n﹣2010)(2024﹣n)=6,则(2n﹣4034)2=__________.三、解答题17.化简:4xy(3x2+2xy-1);18.化简:-5x(-x2+2x+1)-(2x+3)(5-x2)19.化简:(2a+1)2-(2a+1)(2a-1).20.化简:4(a+2)2-7(a+3)(a-3)+3(a-1)2.21.若2×8n×16n=222,求n的值.22.先化简,再求值.x(x2﹣6x﹣9) ﹣x(x2﹣8x﹣15) +2x(3﹣x),其中x=-16 .23.老师在黑板上布置了一道题,小亮和小新展开了下面的讨论:根据上述情景,你认为谁说得对?为什么?24.图①是一个长为2m,宽为2n的长方形纸片,将长方形纸片沿图中虚线剪成四个形状和大小完全相同的小长方形,然后拼成图②所示的一个大正方形.(1)用两种不同的方法表示图②中小正方形(阴影部分)的面积:方法一:S小正方形= ;方法二:S小正方形= ;(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(3)应用(2)中发现的关系式解决问题:若x+y=9,xy=14,求x﹣y的值.24.将6张小长方形纸片(如图1所示)按图2所示的方式不重叠的放在长方形ABCD内,未被覆盖的部分恰好分割为两个长方形,面积分别为S1和S2.已知小长方形纸片的长为a,宽为b,且a>b.当AB长度不变而BC变长时,将6张小长方形纸片还按照同样的方式放在新的长方形ABCD内,S1与S2的差总保持不变,求a,b满足的关系式.(1)为解决上述问题,如图3,小明设EF=x,则可以表示出S1=_______,S2=_______;(2)求a,b满足的关系式,写出推导过程.参考答案1.【答案】A2.【答案】C3.【答案】C4.【答案】B5.【答案】C6.【答案】C7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】﹣x5.12.【答案】x3y2+2x4y3.13.【答案】2xy3;-15x2.14.【答案】±20.15.【答案】4.16.【答案】25.17.【答案】原式=12x3y+8x2y2-4xy.18.【答案】原式=7x3-7x2-15x-15.19.【答案】原式=4a+2.20.【答案】原式=10a+8221.【答案】解:n=322.【答案】解:x(x2-6x-9)-x(x2-8x-15)+2x(3-x)=x3-6x2-9x- x3+8x2+15x+6x-2x2=12x.当x=-16时,原式=-2.23.【答案】解:原式=4x2﹣y2+2xy﹣8x2﹣y2+4xy+2y2﹣6xy=﹣4x2 因为这个式子的化简结果与y值无关所以只要知道了x的值就可以求解故小新说得对.24.【答案】解:(1)方法一:S小正方形=(m+n)2﹣4mn.方法二:S小正方形=(m﹣n)2.(2)(m+n)2,(m﹣n)2,mn这三个代数式之间的等量关系为(m+n)2﹣4mn=(m﹣n)2.(3)∵x+y=9,xy=14∴x﹣y=±=±5.故答案为:(m+n)2﹣4mn,(m﹣n)2;(m+n)2﹣4mn=(m﹣n)2.25.【答案】解:(1)a(x+a),4b(x+2b);(2)解:由(1)知:S1=a(x+a),S2=4b(x+2b)∴S1-S2=a(x+a)-4b(x+2b)=ax+a2-4bx-8b2=(a-4b)x+a2-8b2∵S1与S2的差总保持不变∴a-4b=0.∴a=4b.。

湘教版七年级下册(新)第2章《整式的乘法》同步数学试卷及答案

湘教版七年级下册(新)第2章《整式的乘法》同步数学试卷及答案

湘教版七年级下册(新)第2章《整式的乘法》同步数学试卷及答案整式的乘法一、选择题1.(x4)2等于( )A.x6B.x8C.x16D.2x42.计算2101×0.5100的结果是( )A.1B.2C.0.5D.103.计算(-2a)2-3a2的结果是( )A.-a2B.a2C.-5a2D.5a24.计算2x(3x2+1),正确的结果是( )A.5x3+2xB.6x3+1C.6x3+2xD.6x2+2x5.已知m+n=2,mn=1,化简(m-1)(n-1)的结果为( )A.-2B.-1C.0D.121·cn·jy·com6.下列各式中,不能用平方差公式计算的是( )A.(-4x+3y)(4x+3y)B.(4x-3y)(3y-4x)C.(-4x+3y)(-4x-3y)D.(4x+3y)(4x-3y)7.下列运算正确的是( )A.a3·a2=a6B.(a3)2=/doc/545742243.html,C.(a-b)(a+b)=a2-b2D.(a+b)2=a2+b28.某青少年活动中心的场地为长方形,原来长a米,宽b米.现在要把四周都向外扩展,长增加3米,宽增加2米,那么这个场地的面积增加了( )A.6平方米B.(3a-2b)平方米C.(2a+3b+6)平方米D.(3a+2b+6)平方米二、填空题(每小题4分,共16分)9.计算a·(-a6)的结果等于________.10.化简:(x+1)(x-1)+1=________.11.若(x-1)(x+3)=x2+px+q,则p=________,q=________.12.定义为二阶行列式,规定它的运算法则为=ad-bc,那么当x=1时,二阶行列式的值为________.2-1-c-n-j-y三、解答题13.计算:(1)(-2x2y)3·(3xy2)2;(2)a(2a-b)+(2b-1)(a+1)-2a2;(3)(a+2b)(a-2b)-12b(a-8b).14.解方程:x(2x+3)-(x-7)(x+6)=x2-10.15.先化简,再求值:a(a-3b)+(a+b)2-a(a-b),其中a=1,b=-12.16.已知有理数m,n满足(m+n)2=9,(m-n)2=1.求下列各式的值.(1)mn;(2)m2+n2-mn.17.若|a-b+3|+(2a+b)2=0,化简2a3b(2ab+1)-a2(-2ab)2,并求它的值.21世纪教育网版权所有18.通过学习同学们已经体会到灵活运用整式乘法公式给计算和化简带来的方便、快捷.相信通过下面材料的学习、探究,会使你大开眼界,并获得成功的喜悦./doc/545742243.html, 例:用简便方法计算195×205.解:195×205=(200-5)(200+5)①=2002-52②=39 975.(1)例题求解过程中,第②步变形是利用(填乘法公式的名称);(2)用简便方法计算:①9×11×101×10 001; ②(2+1)(22+1)(24+1)…(232+1)+1.【来源:21·世纪·教育·网】参考答案1.B2.B3.B4.C5.C6.B7.C8.C9.-a710.x211.2 -3 12.013.(1)原式=-8x6y3·9x2y4=-72x8y7.(2)原式=2a2-ab+2ab+2b-a-1-2a2=ab-a+2b-1.(3)原式=a2-4b2-12ab+4b2=a2-12ab.14.2x2+3x-x2+x+42=x2-10,4x=-52,x=-13.15.原式=a2-3ab+a2+2ab+b2-a2+ab=a2+b2.当a=1,b=-12时,原式=12+(-12)2=54.16.由题意,得(m+n)2=m2+2mn+n2=9,①(m-n)2=m2-2mn+n2=1.②(1)(①-②)÷4,得mn=2.(2)(①+②)÷2,得m2+n2=5.所以m2+n2-mn=5-2=3.17.因为|a-b+3|+(2a+b)2=0,所以30,20.a ba b-+=+=解得1,2.ab=-=2a3b(2ab+1)-a2(-2ab)2=4a4b2+2a3b-a2·4a2b2=4a4b2+2a3b-4a4b2=2a3b.21·世纪*教育网把a=-1,b=2代入,得原式=2×(-1)3×2=-4.18.(1)平方差公式.(2)①9×11×101×10 001=(10-1)(10+1)(100+1)(10 000+1)=(100-1)(100+1)(10 000+1)=(10 000-1)(10 000+1)=108-1.②原式=(2-1)(2+1)(22+1)(24+1)…(232+1)+1=(22-1) (22+1)(24+1)…(232+1)+1=(24-1)(24+1)…(232+1)+1=264-1+1=264.综合练习整式的乘法及其应用1.计算6x3·x2的结果是( )A.6xB.6x5C.6x6D.6x9www-2-1-cnjy-com2.(m2)3·m4等于( )A.m9B.m10C.m12D.m1421*cnjy*com3.(2014·邵阳)下列计算正确的是( )A.2x-x=xB.a3·a2=a6C.(a-b)2=a2-b2D.(a+b)(a-b)=a2+b24.等式(-3x2-4y2)( )=16y4-9x4中括号内应填入下式中的( )A.3x2-4y2B.4y2-3x2C.-3x2-4y2D.3x2+4y25.若用简便方法计算1 9992,应当用下列式子中的( )A.(2 000-1)2B.(2 000-1)(2 000+1)C.(1 999+1)(1 999-1)D.(1 999+1)26.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①,然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②,②-①得6S-S=610-1,即5S=610-1,所以S=10615-,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2 014的值?你的答案是( )A.201411aa--B.201511aa--C.201611aa--D.a2 016-17.计算:(-a5)·(-a2)3·(-a3)2=__________.8.计算:42 014×(-0.25)2 015-1=__________.9.边长为a的正方形,边长增加b以后,则所得新正方形的面积比原正方形的面积增加了__________.10.若等式(x-4)2=x2-8x+m2成立,则m的值是__________.11.计算:(1)2(x2)3·x3-(-2x3)3+4x2·x7;(2)(3x+2y)(2x+3y)-(x-3y)(3x+4y);【来源:21cnj*y.co*m】(3)(a+3b)2-(2a-12b)2;(4)(x-2y+3)(x+2y-3);(5)(x+1)2(x-1)2(x2+1)2.【版权所有:21教育】12.已知多项式x2-mx-n与x-2的乘积中不含x2项和x项,求这两个多项式的乘积.13.已知A=2x+y,B=2x-y,计算A2-B2.14.先化简,再求值:(1) (a+2)2+(1+a)(1-a),其中a=-34;(2)(2x-y)2-4(x-2y)(x+2y),其中x=2,y=-1.15.用简便方法计算:(1)-0.2550×2100;(2)2 0002-4 000×1 999+1 9992;(3)999×1 001.16.比较大小:(1)1625与290;(2)2100与375.17.已知162×43×26=22x-1,(102)y=1012.求2x+y的值.参考答案1.B2.B3.A5.A6.B7.a178.-1.259.2ab+b210.4或-421教育网11.(1)原式=2x9+8x9+4x9=14x9.(2)原式=6x2+13xy+6y2-(3x2-5xy-12y2)=3x2+18xy+18y2.2·1·c·n·j·y(3)原式=a2+6ab+9b2-4a2+2ab-14b2=-3a2+8ab+354b2.(4)原式=[x-(2y-3)][x+(2y-3)]=x2-(2y-3)2=x2-4y2+12y-9.21教育名师原创作品(5)原式=(x2-1)2(x2+1)2=(x4-1)2=x8-2x4+1.12.(x-2)(x2-mx-n)=x3-mx2-nx-2x2+2mx+2n=x3-(m+2)x2+(2m-n)x+2n.21*cnjy*com 因为不含x2项和x项,所以()20,20.mm n-+=-=解得4.mn=-=-所以这两个多项式的乘积为x3-8.13.A2-B2=(2x+y)2-(2x-y)2=(4x2+4xy+y2)-(4x2-4xy+y2)=4x2+4xy+y2-4x2+4xy-y2=8xy.【出处:21教育名师】14.(1)原式=a2+4a+4+1-a2=4a+5.当a=-34时,原式=4×(-34)+5=2.(2)原式=4x2-4xy+y2-4(x2-4y2)=4x2-4xy+y2-4x2+16y2=-4xy+17y2. 当x=2,y=-1时,原式=-4×2×(-1)+17×(-1)2=25.15.(1)原式=-(14)50×(22)50=-(14×4)50=-1.(2)原式=2 0002-2×2 000×1 999+1 9992=(2 000-1 999)2=1.(3)原式=(1 000-1)×(1 000+1)=1 0002-12=999 999.16.(1)1625=(24)25=2100.因为2100>290,所以1625>290.(2)2100=(24)25=1625,375=(33)25=2725.因为1625<2725,所以2100<375.17.因为162×43×26=(24)2×(22)3×26=220=22x-1,所以2x-1=20,即2x=21.因为(102)y=102y=1012,所以2y=12,即y=6.所以2x+y=21+6=27.。

湘教版七年级下册数学第2章 整式的乘法含答案

湘教版七年级下册数学第2章 整式的乘法含答案

湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A. B. C. D.2、若x2﹣kxy+9y2是一个完全平方式,则k的值为()A.18B.6C.±6D.±183、计算a2·a4的结果是()A.a 6B.a 7C.a 8D.a 124、下列计算中,正确的是()A. B. C. D.5、下列计算正确的是()A.a+2a 2=3a 3B.2a·4a=8aC.a 3•a 2=a 6D.(a 3)2=a 66、计算的结果是()A. B. C. D.7、下列运算正确的是()A.(ab 3)2=a 2b 6B.(x﹣2)(x﹣3)=x 2﹣6C.(x﹣2)2=x 2﹣4D.2a×3a=6a8、下列计算中,正确的是()A. B. C.D.9、下列计算正确的是()A.x 3+x 3=x 6B.x 3÷x 4=C.(m 5)5=m 10D.x 2y 3=(xy)510、利用乘法公式计算正确的是()A.(2x﹣3)2=4x 2+12x﹣9B.(4x+1)2=16x 2+8x+1C.(a+b)(a+b)=a 2+b 2D.(2m+3)(2m﹣3)=4m 2﹣311、下列计算不正确的是( )A. B. C. D.12、下列运算正确的是()A. B.C. D.13、在下列运算中,计算正确的是()A.(x 5)2=x 7B.(x﹣y)2=x 2﹣y 2C.x 13÷x 3=x 10D.x 3+x 3=x 614、计算的结果为()A.1B.-1C.2D.-215、若a m=2,a n=3,则a m+n等于 ( )A.5B.6C.8D.9二、填空题(共10题,共计30分)16、若x+y=7,x﹣y=4,则x2﹣y2=________.17、计算.(﹣)2016×(1 )2017=________.18、订算:-4a3b2c·3ab3=________。

湘教版七年级下册数学第2章 整式的乘法含答案(往年考题)

湘教版七年级下册数学第2章 整式的乘法含答案(往年考题)

湘教版七年级下册数学第2章整式的乘法含答案一、单选题(共15题,共计45分)1、若x2-2(k+1)x+4是完全平方式,则k的值为()A.±1B.±3C.-1或3D.1或-32、若,,则的值为()A.6B.5C.1D.1.53、下列运算正确的是()A. B. C. D.4、下列运算正确的是()A.5m+2m=7m 2B.﹣2m 2•m 3=2m 5C.(﹣a 2b)3=﹣a 6b 3D.(b+2a)(2a﹣b)=b 2﹣4a 25、下列计算中:①x(2x2﹣x+1)=2x3﹣x2+1;②(a+b)2=a2+b2;③(x﹣4)2=x2﹣4x+16;④(5a﹣1)(﹣5a﹣1)=25a2﹣1;⑤(﹣a﹣b)2=a2+2ab+b2,正确的个数有()A.1个B.2个C.3个D.4个6、代数式(﹣4a)2的值是()A.16aB.4a 2C.﹣4a 2D.16a 27、下列运算正确的是()A. B.C. D.8、计算(﹣ab2)3的结果是()A.a 3b 5B.﹣a 3b 5C.﹣a 3b 6D.a 3b 69、马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A.a 8÷a 4=a 2B.a 3•a 4=a 12C. =±2D.2x 3•x 2=2x 510、计算(a2)3的结果是()A.a 5B.a 6C.a 8D.3a 211、下列运算正确的是()A. B. C. D.12、下列运算中,结果正确的是( )A. ÷ =aB.a 2+a 2=a 4C.D.13、下列去括号正确的是()A.﹣(2x+5)=﹣2x+5B.C.D.14、下列运算正确的是()A.3a+2a=5a 2B.a 6÷a 2=a 3C.(﹣3a 3)2=9a 6D.(a+2)2=a 2+415、计算a(1+a)﹣a(1﹣a)的结果为()A.2aB.2a 2C.0D.﹣2a+2a二、填空题(共10题,共计30分)16、计算:________.17、x2+x+b乘以x2﹣ax﹣2的结果不含x3项,则a=________.18、计算________ 。

湘教版数学七年级下第2章整式的乘法单元测试卷含答案

湘教版数学七年级下第2章整式的乘法单元测试卷含答案

第2章整式的乘法单元测试卷一、选择题(每题3分,共30分)1.下列各式中,与其他三个选项可能不相等的是( )A. (a2)3B. (a3)2C. a3·a3D. a3+a32.下列等式错误的是( )A.(2mn)2=4m2n2B.(-2mn)2=4m2n2C.(2m2n2)3=8m6n6D.(-2m2n2)3=-8m5n53.计算(m3n)2的结果是( )A.m6nB.m6n2C.m5n2D.m3n24.已知a m=8,a n=16,则a m+n等于( )A.24B.32C.64D.1285.一个长方体的长、宽、高分别是3x-4,2x-1和x,则它的体积是( )A.6x3-5x2+4xB.6x3-11x2+4xC.6x3-4x2D.6x3-4x2+x+46.已知a+b=3,ab=2,则a2+b2的值为( )A.3B.4C.5D.67.20152-2014×2016的计算结果是( )A.-1B.0C. 1D.4 0308.下面计算(-7+a+b)(-7-a-b)正确的是( )A.原式=[-(7-a-b)][-(7+a+b)]=72-(a+b)2B.原式=[-(7+a)+b][-(7+a)-b]=(7+a)2-b2C.原式=(-7+a+b)[-7-(a+b)]=-72-(a+b)2D.原式=(-7+a+b)[-7-(a+b)]=72+(a+b)29.当x=-1时,代数式x2(x3+2x2+6)-(x3+2x2+6)的值是( )A.32B.-32C.0D.-6410.如图所示的各图形中的三个数之间均具有相同的规律.根据此规律,图形中M与m,n的关系是( )A.M=mnB.M=n(m+1)C.M=mn+1D.M=m(n+1)二、填空题(每题3分,共24分)11.计算:3a·2a2=_________.12.已知ab2=-1,则2a2b·3ab5=_________.13.如果(x-5)(x+20)=x2+mx+n,那么m=_________,n=_________.14.若a2n=3,则2a6n-1=_________.15.若16a2-ka+9是完全平方式,则k=_________.16.若ab=3,a-2b=5,则a2b-2ab2的值是_________.17.要使(x2+ax+1)·(-6x3)的计算结果中不含x4项,则a=_________.18.观察下列各式的规律:(a-b)(a+b)=a2-b2,(a-b)(a2+ab+b2)=a3-b3,(a-b)(a 3+a 2b+ab 2+b 3)=a 4-b 4,,…,可得到(a-b)(a 2 016+a 2 015b+…+ab 2 015+b 2 016)= _________.三、解答题(19、20题每题8分,其余每题10分,共46分)19.化简:(1)(a-b)2+a(2b-a);(2)(a+2)2+(1-a)(1+a).20.(1)先化简,再求值:(x+1)(x-1)+x(3-x),其中x=2.(2)化简求值:(a+2b+1)·(-a+2b-1)+(a-1)2,其中a=12,b=3.21.(1)已知a m =3,a n =6,a k =4,求a m+n+k 的值;(2)若a 2+3a-1=0,求3a 3+10a 2+2 013的值.22.对于任意的有理数a,b,c,d,我们规定|a b c d|=ad-bc. 如:|-2 -43 5|=(-2)×5-(-4)×3=2.根据这一规定,解答下列问题: (1)化简|x +3y 2x3y 2x +y |;(2)若x,y 同时满足|3-2yx |=5,|x 1y 2|=8,求x,y 的值.23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘数”.(1)2 014和2 012这两个数是“神秘数”吗?为什么?(2)说明:由两个连续偶数构造的“神秘数”是4的倍数.参考答案1.【答案】D解:(a 2)3=a 6,(a 3)2=a 6,a 3·a 3=a 6,a 3+a 3=2a 3,故选D.2.【答案】D3.【答案】B解:根据积的乘方公式,即可得到答案.4.【答案】D解:a m+n =a m ·a n =8×16=128,故选D.5.【答案】B6.【答案】C7.【答案】C解:20152-2014× 016=20152-(2015-1)(2015+1)=20152-20152+1=1,故选C.8.【答案】A 9.【答案】C 10.【答案】D二、11.【答案】6a312.【答案】-6解:2a2b·3ab5=6a3b6=6(ab2)3=6×(-1)=-6.13.【答案】15;-100解:因为(x-5)(x+20)=x2+20x-5x-100=x2+15x-100= x2+mx+n,所以m=15,n=-100.14.【答案】53 15.【答案】±24 16.【答案】1517.【答案】0解:因为(x2+ax+1)·(-6x3)=-6x5-6ax4-6x3,且(x2+ax+1)·(-6x3)的计算结果中不含x4项,所以-6a=0,所以a=0.18.【答案】a2 017-b2 017三、19.解:(1)原式=a2-2ab+b2+2ab-a2=b2.(2)原式=a2+4a+4+1-a2=4a+5.20.解:(1)原式=x2-1+3x-x2=3x-1,当x=2时,原式=3×2-1=5.(2)原式=-[(a+1)+2b]·[(a+1)-2b]+(a-1)2=-[(a+1)2-(2b)2]+(a-1)2=4b2-(a2+2a+1)+a2-2a+1=4b2-a2-2a-1+a2-2a+1=4b2-4a.,b=3时,当a=12原式=4×32-4×12=36-2=34. 21.解:(1)a m+n+k =a m ·a n ·a k =3×6×4=72.本题是同底数幂的乘法法则的逆用,只要把a m+n+k 转化为a m ·a n ·a k ,代入求值即可.(2)因为a 2+3a-1=0,所以a 2+3a=1,所以3a 3+10a 2+2 013=3a(a 2+3a)+a 2+2 013=3a+a 2+2013=1+2013=2014.22.解:(1)|x +3y 2x 3y 2x +y|=(x+3y)(2x+y)-2x ·3y=2x 2+xy+3y 2. (2)由|3 -2y x|=5,得3x+2y=5;由|x 1y 2|=8,得2x-y=8;联立可得方程组{3x +2y =5,2x -y =8,解得{x =3,y =-2. 23.解:(1)2014不是“神秘数”,2012是“神秘数”.理由:假如2 014和2012都是“神秘数”,设2014是x 和x-2两数的平方差(x 为正整数),则x 2-(x-2)2=2014,解得x=504.5,因为504.5不是整数,所以2014不是“神秘数”.设2012是y 和y-2两数的平方差(y 为正整数),则y 2-(y-2)2=2012,解得y=504,y-2=502,即2 012=5042-5022,所以2 012是“神秘数”.(2)设两个连续偶数为2k+2和2k(k取非负整数),则(2k+2)2-(2k)2=(2k+2-2k)(2k+2+2k)=4(2k+1),所以由2k+2和2k构造的“神秘数”是4的倍数,即两个连续偶数构造的“神秘数”是4的倍数.。

湘教版七年级数学下册第二章 整式的乘法练习【含答案】

湘教版七年级数学下册第二章 整式的乘法练习【含答案】

湘教版七年级数学下册第二章 整式的乘法练习一、单选题1.计算2a a ⋅的结果是( )A .aB .2aC .3aD .32a 2.--a 2-7 等于( -A .-a 14B .a 14C .a 9D .-a 9 3.下列运算结果正确的是( )A .257a b ab +=B .()235a a a -⋅=-C .632a a a ÷=D .()236a a = 4.计算()223ab a c -⋅-的结果是( ) A .33a bc B .523a bc - C .6229a b c D .53a bc - 5.如果(x +1)(2x +m )的乘积中不含x 的一次项,则m 的值为( )A .2B .-2C .0.5D .-0.56.根据图-的面积可以说明多项式的乘法运算(2a+b)(a+b)=2a 2+3ab+b 2,那么根据图-的面积可以说明多项式的乘法运算是 ( )A .(a+3b)(a+b)=a 2+4ab+3b 2B .(a+3b)(a+b)=a 2-4ab+3b 2C .(b+3a)(b+a)=b 2+4ab+3a 2D .(a+3b)(a -b)=a 2+2ab -3b 27.下列多项式的乘法中,能使用平方差公式计算的有( )①(m -n)(-m+n);②(-a -b)(a -b);③(x+y)(-x -y);④(x+3y -z)(x+z -3y)A .1个B .2个C .3个D .4个8.已知216y my -+是关于y 的完全平方式,则m 的值为( )A .9B .±9C .36D .±369.化简:(a+2-2--a-2-2=( )A .2B .4C .8aD .2a 2+2 10.()()()()242212121......21n ++++=( )A .421n -B .421n +C .441n -D .441n +二、填空题 11.若21m x =+,34m y =+,则用含x 的代数式表示y 为______.12.已知x 2+mx -6=(x -3)(x+n),则m n =______.13.计算:2020201920211⨯+=____. 14.以下四个结论正确的是_____________.(填序号)①若()111x x +-=,则x 只能是2②若()()211x x ax -++的运算结果中不含2x 项,则1a =-③若10a b +=,24ab =,则2a b -=或2a b -=-④若4x a =,8y b =,则232x y -可表示为a b三、解答题15.计算(1)()()()235222--- (2)()()432x x x ---(3)()()()34m n n m n m ---16.(1)观察下列各式的规律:222233322344()()()()()()...a b a b a b a b a ab b a b a b a a b ab b a b-+=--++=--+++=- 可得到2018201720172018()(...)a b a a b ab b -++++= .(2)猜想:1221()(...)n n n n a b a a ab b -----++++= .(3)利用(2)猜想的结论计算:98732222...222-+-+-+.17.乘法公式的探究及应用.(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);(3)比较图1、图2阴影部分的面积,可以得到公式 ;(4)运用你所得到的公式,计算下列各题:-10.2×9.8,-(2m+n ﹣p )(2m ﹣n+p ).18.图①是一个长为2m 、宽为2n 的长方形,沿图中虚线用剪刀分成四块小长方形,然后按图②的形状拼成一个正方形.(1)请和两种不同的方法求图②中阴影部分的面积.方法1:__方法2:___(2)观察图②请你写出下列三个代数式;22(),(),m n m n +-mn 之间的等量关系;(3)根据(2)题中的等量关系,解决如下问题:①已知:3,2,a b ab -==-求2()a b +的值. ②已知:21a a -=,求2a a+的值.答案1.C2.A3.D4.B5.B6.A7.B8.A9.C10.A11.y=(x -1)2+312.113.1202014.③④.15.(1)102;(2)9x ;(3)()8n m -- 16.(1)a 2019−b 2019(2)a n −b n(3)10223+ 17.(1)a 2﹣b 2(2)a ﹣b ,a+b ,(a+b )(a ﹣b )(3)99.96(4)-99.96-4m 2﹣n 2+2np ﹣p 218.(1)(m +n )2−4mn ;(m−n )2(2)(m +n )2−4mn =(m−n )2(3)①1②±3。

【精选】湘教版七年级下册数学第二章《整式的乘法》测试卷(含答案)

【精选】湘教版七年级下册数学第二章《整式的乘法》测试卷(含答案)

1 【精选】湘教版七年级下册数学第二章《整式的乘法》测试卷(含答案)一、选择题(共6题,每题3分,共18分)1.计算(-3a )3的正确结果是( )A .-3a 3B .27a 3C .-27a 3D .-9a 32.下列计算正确的是( )A .b 2·b 2=2b 2B .x 4·(x 4-1)=x 16-x 4C .(-2a )2=4a 2D .(m 2)3·m 4=m 93.下列各式中,与(1-a )2相等的是( )A .a 2-1B .a 2-2a +1C .a 2-2a -1D .a 2+14.下列各式能用平方差公式计算的是( )A .(3x +5y )(3x -5y )B .(1-5x )(5x -1)C .(-x +2y )(x -2y )D .(x +y )(y +x )5.根据如下图形的面积关系得到的数学公式是( )A .a (a -b )=a 2-abB .(a +b )2=a 2+2ab +b 2C .(a -b )2=a 2-2ab +b 2D .a (a +b )=a 2+ab6.若(x 2-mx +1)(x -2)的积中不含x 的二次项,则m 的值是( )A .-1B .-2C .1D .2二、填空题(共6题,每题4分,共24分)7.计算:4a 2·⎝ ⎛⎭⎪⎫-12a =________. 8.若(m +1)(m -1)=1,则m 2=________.9.如果一个长方形的长是(x +3y )m ,宽是(x -3y )m ,那么该长方形的面积是______m 2.10.已知代数式-3x m -1y 3与2x n ym +n 是同类项,则-3x m -1y 3与2x n y m +n 的积是____________.11.计算:852-130×85+652=________.12.若x+y=2,x2+y2=4,则x2 023+y2 023的值是________.三、解答题(共6题,共58分)13.(6分)计算:(1)x·x3+x2·x2; (2)(-a3)2·(-a2)3;(3)x4·x6-(x5)2; (4)(a-b)2+a(2b-a);(5)(3+a)(3-a)+a(a-4); (6)(2x-y)2-x(x+y)+5xy. 14.(8分)已知x2n=2,求(x3n)2-8(-x2)2n的值.2。

湘教版七年级数学下册第二章《整式的乘法》同步检测含答案

湘教版七年级数学下册第二章《整式的乘法》同步检测含答案

第二章《整式的乘法》单元测试一、填空题1.-xy 的次数是 ___,2ab +3a 2b +4a 2b 2+1是___次___项式.2.将0.00003651用科学记数法表示为___.3.计算:(-b )2·(-b )3·(-b )5=___,-2a (3a -4b )=___.4.(9x +4)(2x -1)=___,(3x +5y )· ___=9x 2-25y 2.5.(x +y )2-___=(x -y )2.6.已知被除式为x 3+3x 2-1,商式是x ,余式是-1,则除式是___.7.若x 2+x +m 2是一个完全平方式,则m =___.8.若2x -y =-3,则4x ÷2y =___.9.有一名同学把一个整式减去多项式xy +5yz +3xz 误认为加上这个多项式,结果答案为 5yz -3xz +2xy ,则原题正确答案为___.10.当a =___,b =___时,多项式a 2+b 2-4a +6b +18有最小值.二、选择题1、下列计算正确的是( )A 、B 、C 、D 、2、梁老师给下列四个判断,则其中错误的是( )22=-a a 326m m m =÷2010201020102x x x =+632t t t =⋅A 、数字 0 也是单项式B 、单项式 的系数与次数都是 1C 、是二次单项式D 、的系数是 3、代数式 ,, ,,, 中是单项式的个数有( )A 、2个 B 、3个 C 、4个 D 、5个 4、包老师把一个多项式减去等于,则这个多项式为( )A 、B 、C 、D 、5、如果一个多项式的次数是6,则这个多项式的任何一项的次数都( )A 、不大于6B 、小于6C 、等于6D 、不小于6 6、黎老师做了个长方形教具,其中一边长为,另一边为,则该长方形周长为( ) A 、 B 、 C 、D 、7、下列多项式中是完全平方式的是( ) A 、 B 、 C 、 D 、8、饶老师给出: , , 你能计算出 的值为( )a 2221y x 32ab -32-2010x 1xy 2π1y 21-2010ba +22b a -22b a +22b 22a 22b -22a -b a +2b a -a 6b a +6a 3b a -10142++x x 1222+-y x 2222y xy y x ++41292+-a a 2=+b a 222=+b a abA 、B 、C 、D 、 9、若,则的值为( )A 、B 、C 、D 、 10、已知 , , , 则、、、的大小关系为:( )A 、B 、C 、D 、 三、细心做一做,马到成功 1.计算下列各式(1)(2)(3)021-1-122)3(9+=++x ax x a 33±66±552=a 443=b 334=c a b c c b a >>b c a >>a c b >>c a b >>()223211482x y xyz xy ⎛⎫⎛⎫-⋅-÷ ⎪ ⎪⎝⎭⎝⎭()()()2232x y x y y x y +---()()222121a a -+(4)(运用乘法公式)2.先化简,再求值:,其中,.3.菜单位为响应政府发出的全民健身的号召,打算在长宽分别为20米和11米的长方形大厅内修建一长方形健身房ABCD ,该健身房的四面墙壁中有两侧沿用大厅的旧墙壁(如图为平面示意图),已知装修旧墙壁的费用为口元,平方米,比新建(含装修)墙壁的费用每平方米少50元,设健身房的高为3米,一面旧墙壁AB 的长为x 米,BC 为米,则修建健身房墙壁的总投入为多少元?(用含口、x 的代数式表示)2200720092008⨯-22[(2)(2)2(2)]()xy xy x y xy +---÷10x =125y =-)5(-x参考答案一、1.2、4、四;2.3.651×10-5;3.b 10、-6a 2+8ab ; 4.18x 2-x -4、(3x -5y );5.4xy ;6.x 2+3x ;7.±; 8..点拨:4x ÷2y =22x ÷2y =22x -y =2-3=;9.-5yz -9xz .点拨:设这个整式为A ,则A +xy +5yz +3xz =5yz -3xz +2xy , 所以A =xy -6xz ,所以正确的解法为xy -6xz -(xy +5yz +3xz )=-5yz -9xz ;10.2、-3.点拨:a 2+b 2-4a +6b +18=a 2-4a +4+b 2+6b +9+5=(a -2)2+(b +3)2+5. 二、选择题:1.(1)原式=(2)原式(3)原式= (4)原式 2.原式.121818342411224x y z x y xz ÷=222222323624x xy y xy y x y =+--+=+()()()22242212141168 1.a a a a a -+=-=-+⎡⎤⎣⎦222(20081)(20081)20082008120081=-⋅+-=-+=-2222(424)()x y x y xy =--+÷22()x y xy xy =-÷=-当,时,原式. 3.10x =125y =-1210255⎛⎫=-⨯-= ⎪⎝⎭[3(5)3][3(5)3](50)12303007503(25)(250)()x x a x x a ax a x x a +-⨯⨯++-⨯⨯+=-+-=-+元。

湘教版七年级数学下册第2章整式的乘法复习及测试卷含答案

湘教版七年级数学下册第2章整式的乘法复习及测试卷含答案

《整式的乘法》复习知识要点【知识结构】【法则及公式】 当m ,n 为正整数时,1. 同底数幂的乘法:底数不变,指数相加..。

n m n m a a a +=⋅. 2. 幂的乘方:底数不变,指数相乘..。

()mnnm a a =. 3. 积的乘方:把积的每个因式分别乘方后相乘。

()n n n nc b a abc =.4. 单项式的乘法:把系数相乘、同底数幂相乘,再把结果相乘。

5. 单项式乘多项式:把单项式同多项式的每一项相乘,再把结果相加.幂的运算 整式的乘法 同底数幂的乘法幂的乘方积的乘方单项式的乘法多项式的乘法平方差公式完全平方公式乘法公式6. 多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一 项,再把结果相加.7. 平方差公式:两数的和乘两数的差,等于这两个数的平方差。

()()22b a b a b a -=-+。

8. 完全平方公式:两数和的平方等于这两个数的平方和加上..这两个数 的积的2倍;两数和的平方等于这两个数的平方和减去..这两个数 的积的2倍。

()2222b ab a b a ++=+,()2222b ab a b a +-=+.【走出误区】1. 对于幂的运算,能识别是哪一种运算,并正确利用法则进行计算, 防止计算时法则混淆;能根据法则,对底数或指数进行转化;能逆向运用法则解决问题。

2. 做多项式的乘法时注意不漏乘,不错符号,要合并同类项;3. 运用乘法公式时,要准确识别什么相当于公式中a 和b ,能灵活运 用乘法法则进行简便运算;第二章整式的乘法测试卷一、选择. (每小题3分,共30分)1.若n m y x y x y x n n m m 43,992213-=⋅++-则等于( ) A.4 B.6 C. 8 D.无法确定2.下列计算正确的是( )A.3332x x x =⋅B.()1331--=m m a aC.3232a a a =+D.()()()743n m m n n m -=--3.如果计算)3)(2(++x m x 的结果中不含关于x 的一次项,则m 等于 ( )A.23 B.23- C. 2 D.-2 4.已知正数x 满足62122=+x x ,则xx 1+的值是( ) A.8 B.200232⨯- C.64 D.20023- 5.n ab b a ,0,≠互为相反数,且为正整数,则下列两数互为相反数的是( )A.n n b a 与B.n n b a 22与C.1212--n n b a 与D.2222))(----n n b a 与(6.下列各式计算正确的是( ) A.(a 2)7=(a 7)2B.3y 3·5y 4=15y 12C .(-c )4·(-c )2=-c 6D .(ab 5)2=ab 10 7.若a+b =-3,则a 2+b 2+2ab 的值是 ( )A. 9B. -9C. 3D. -38.下列等式一定成立的是( )A.()222y x y x +=+B.()222y x y x -=-C.()22222242y y x x y x ++=+ D.412122+-=⎪⎭⎫ ⎝⎛-x x x9.下列计算错误的是 ( )A.(- a )·(-a )2=-a 3B.(- a )2·(-a )2=a 4C.(- a )3·(-a )2=a 5D.(- a )3·(-a )3=a 6 10、计算(a 3)2+a 2·a 4的结果为 ( )A. 2a 9B. a 12C. a 6+a 8D. 2a 6 二、填空.(每题3分,共30分) 11. 计算64(310)(410)-⨯⋅⨯= . 12.(-8)101×(81)102的结果为 .13.若关于x 的二次三项式1412++mx x 是一个完全平方式,则m 的值为 .14.(1-a )(a +1)(a 2+1)= . 15. m 4-16=(m 2+4)· .16.如果2(2)(3)x x x px q -+=++,那么pq = . 17.81x 2+( )=(9x -y )2. 18.若4a =2a +3,则(2–a )2003 = .19. 某同学在计算一个多项式乘-2a 时,因抄错运算符号,算成加上-2a ,得到的结果是a ²+2a -5,正确的结果是 . 20.观察下列各式:(x -1)(x +1)=x 2-1 (x -1)(x 2+x +1)=x 3-1 (x -1)(x 3+x 2+x +1)=x 4-1 根据规律可得(x -1)(x n +……+x +1)= (其中n 为正整数)三、解答题21.计算(每题4分,共16分)(1)(-21x 2y )4·(-3xy 2)3 (2)2232(2)()23ab a a b ---(3)(x -y ) 2 - (x+y )2 (4)(xy+z )(-xy+z )22.用乘法公式进行简便运算:(1)224040480240+⨯- (2)2016 2 -2017×2015-123.先化简,再求值(8分)22)()())((2b a b a b a b a -++--+ ,其中31,3=-=b a24.已知x 2-2x -3=0,求代数式x (x +3)-2(x +1)-3x -6的值.25.肖敏红说:“无论m ,n 为何有理数,多项式624422+--+n m n m 的值总是正数”对此说法你怎么看?并请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湘教版七年级数学(下)第二章《整式的乘法》提升卷(含答案)
一、选择题(30分)
1、下列运算正确的是( )
A. a 2·a 3=a 6;
B. (-a+b )(a+b )=b 2-a 2;
C. (a 3)4=a 7;
D. a 3+a 5=a 8
2、计算(x 2-3x +n )(x 2+mx +8)的结果中不含x 2和x 3项,则m 、n 的值为( )
A. m=3,n =1;
B. m=0,n =0;
C. m=-3,n =-9;
D. m=-3,n =8;
3、我们约定a ⊗b =10a ×10b ,如:2⊗3=102×103=105,那么4⊗8为( )
A. 32;
B. 1032;
C. 1012;
D. 1210;
4、若(x n y m )3=x 9y 15,则m 、n 的值为( )
A. m=9,n =-5;
B. m=3,n =5;
C. m=5,n =3;
D. m=9,n =3;
5、计算-(-3a 2b 3) 4的结果是( )
A. 81a 8b 12;
B. 12a 6b 7;
C. -12a 6b 7;
D. -81a 8b 12;
6、计算1982等于( )
A. 39998;
B. 39996;
C. 39204;
D. 39206;
7、若2214a b -=,12
a b -=,则a+b 的值为( ) A. 12-; B. 12
; C. 1; D. 2; 8、下列运算错误的是( )
A.444358x x x +=;
B.66484x x -=-;
C.;333352x x x -+=
D. 666484x x x -=-;
9、如果
×3ab =3a 2b ,则 内应填的代数式是( )
A. ab ;
B. 3ab ;
C. a ;
D. 3a 10、把四张形状大小完全相同的小长方形卡片
(如图①)不重叠地放在一个底面为长方形
(长为m cm ,宽为n cm 盒子底面未被卡片覆盖的部分用阴影表示,
则如图②中两块阴影部分的周长之和是( ) A. 4m cm ; B. 4n cm ; C.2(m+n ) cm ; D. 4(m -n ) cm ; 二、填空题:(24分)
11、计算:3212()(2)4
c abc ac ⋅-⋅-= 。

12、当x =3,y =1时,代数式(x+y )(x -y )+y 2的值是 。

13、计算:22222[()()]a b a b -+= 。

14、已知(m -n ) 2=8,(m+n ) 2=2,则m+n = 。

15、将一长为x ,宽为y 的长方形的长增加3,宽减少3,则面积比原来增加 。

16、计算:3221(3)()9
x x ⋅-= 。

17、定义新运算“⊕”,规定:a ⊕b=143a b -,则12⊕(-1)= 。

① ②
18、将4个数a、b、c、d排成2行2列,两边各加一条竖直线记成a b
c d

定义a b
c d
=ad-bc,上述记号叫2阶行列式,若
11
11
x x
x x
+-
-+
=6,则x= .
三、解答题(46分)
19、(16分)计算下列各题:
(1)22232
[()()]3
x x y xy y x x y x y
---⋅(2)(x-y-5)(x+y-5) (3)333223
(2)()
a a a a
⋅+-+-(4)(x+2)(x+3)-(x+1)(x-2) 20、(10分)先化简,再求值:
(1)x(x+2)-(x+1)(x-1),其中x=
1 2 -
(2)(x+y) 2 (x-y) 2-(x-y)(x+y)(x2+y2),其中x=1
2
,y=-2.
21、(5分)解方程:4(x-3) 2-(2x+1) 2=(3x+1)(1-3x)+9x2
22、(7分)已知a-b=2,a-c=1
2
,求代数式(b-c) 2-3(b-c)+
9
4
的值。

23、(8分)阅读材料,解答问题:计算:
(1)(x-1)(x+1)=x2-1
(x-1)(x2+x+1)=x3-1
(x-1)( x3+x2+x+1)=x4-1

猜想:(x-1)( x n+x n-1+…+x2+x+1)=x4-1= .
(2)根据以上结果,写出下面式子的结果:
(x-1)( x49+x48+…+x2+x+1)=x4-1= .
(3)由以上情形,你能求出下面式子的结果吗?若能求,直接写出结果,若不能求,说明理由。

(x20-1)÷(x-1)= 。

参考答案:一、1、B ;2、A ;3、C ;4、C ;5、D ;
6、C ;
7、A ;
8、A ;
9、B ;10、A ;
二、11、a 2bc 6;12、9;13、a 8-2a 4b 4+b 8;14、5;15、3y -3x -9;
16、-x 8;17、8;18、32;
三、19、(1)原式=6x 5y 3-6x 4y 2; (2)原式=x 2-10x +25-y 2;
(3)原式=4a 6; (4)原式=6x +8;
20、(1)原式=2x +1,当x =1
2
-时,原式=0;
(2)原式=2y 4-2x 2y 2,当x =12
,y =-2.时,原式=30; 21、x =1714
22、∵a -b =2,a -c =12,∴b -c =32
- 原式=23()2b c --=9 23、(1)x ,4-1,x ,n+1-1; (2)x ,50-1,
(3)x 19+x 18+ …+x 2+x +1。

相关文档
最新文档