微波技术习题解答
微波技术基础课后参考答案 (田加胜版)
微波技巧基本课后习题答案1 第一章1.7 终端反射系数0050505050125050501005025L L L Z Z j j j j Z Z j j j ------Γ=====+-+--,125L j -Γ==终端驻波比1115LL L ρ+Γ===-Γ; 000505050tantan 504()5010(2)8tan 250(5050)tan 4L in L j j Z jZ d Z Z j Z jZ d j j j πβλπβ-++====-+++-. 1.11 终端反射系数00250-50011=-=250+50033j L L L Z Z e Z Z π-Γ==+,终端反射系数模值13L Γ=,相角=L φπ.依据行驻波状况时电压的变更纪律可知:=L φπ时,若1n =,则4234L n φλπλλ+=,电压处于波腹点,是以在输入端电压处于波腹点.max (1)500L L U U V +=+Γ=,所以1500=3754L U V V +=,min (1)250L L U U V +=-Γ=;max500(1)1500L L U IA Z +=+Γ==,min250(1)0.5500L L U IA Z +=-Γ==. 因为0L R Z <,负载处为电压波节点;驻波比11+1+3==211-1-3L L ρΓ=Γ,0min 250Z R ρ==Ω,max 01000R Z ρ==Ω.1.13 (1)负载1z 处的反射系数122821()0.5pp j j z L L L z e e j j λπλβ-⋅⋅-Γ=Γ=Γ=-Γ=,是以0.5L Γ=-.随意率性不雅察点z 处的反射系数22()0.5j z j z L z e e ββ--Γ=Γ=-;等效阻抗2021()10.5()501()10.5j zj zz e Z z Z z e ββ--+Γ-==-Γ+.(2)已知0L L L Z Z Z Z -Γ=+,050Z =Ω;(1)中求得0.5L Γ=-,可解出50/3L Z =Ω.(3)由等效阻抗公式2210.5()5010.5j zj ze Z z e ββ---=+,取z=0,得10.55050/310.5L Z -==Ω+. 1.14 min122()444422LLLl φλπφφλππββππΓΓΓ=+=+=+, 所以min1sin()sin()cos()222LLl φφπβΓΓ=+=,min1cos()cos()sin()222L L l φφπβΓΓ=+=-.或:在min1l 处的输入阻抗为()00min1min100min1tan tan L L Z Z jZ l Z l Z Z jZ l βρβ+==+所以()0min10min1tan tan L L Z jZ l Z jZ l βρβ+=+ 1.15(a )终端短路:0L Z =,2200()j zj zL L Z Z z e e Z Z ββ---Γ==-+,23223()12j e πλλλ-⋅⋅Γ=-=-,033()tan()022Z jZ λβλ=⋅=或031()32()0321()2Z Z λλλ+Γ==-Γ. (b )终端开路:L Z =∞,2200()j zj zL L Z Z z e e Z Z ββ---Γ==+,2142551()5j j e e πλπλλ-⋅⋅-Γ==,0112()cot()cot 555Z jZ j λβλπ=-⋅=-. (c )虚线右半部分:负载为0Z ,长度为5λ传输线的输入阻抗000in 000000tan tan tan tan L L Z jZ d Z jZ dZ Z Z Z Z jZ d Z jZ dββββ++===++;是以,从最左端看去,负载为两个0Z 并联,等效负载阻抗为02Z .传输线输入端阻抗00in 0000tan 242tan 24Z jZ Z Z Z Z Z j λβλβ+==+, 反射系数002204000112()=-=332j j zj L L Z Z Z Z z ee e Z Z Z Z λββπ-----Γ==++. (d )终端短路的/4λ传输线输入阻抗为∞,终端匹配的/2λ传输线输入阻抗为0Z ,所以支节点处等效输入阻抗为00||Z Z ∞=;再经/2λ阻抗变换得输入端输入阻抗为0Z ,反射系数-j200200e =0Z Z Z Z λβ-Γ=+;(e )终端阻抗02Z 经由两个/2λ阻抗变换之后输入阻抗仍为02Z ,另一歧路在支节点处输入阻抗仍为0/2Z ,所以支节点处等效输入阻抗为0002Z ||Z /22Z /5=;再经/4λ阻抗变换得输入端输入阻抗为20005/22/5Z Z Z =,反射系数-j2-j 004002/533e =-e 2/577Z Z Z Z λβπ-Γ==+; (f )主线上第一节点处输入阻抗为0Z ,支线支节点处00in 0000tan 8tan 8Z jZ Z Z Z Z jZ λβλβ+==+,支节点等效输入阻抗000Z ||Z Z /2=,输入端等效阻抗仍为0/2Z ,反射系数-j200200/21e =/23Z Z Z Z λβ-Γ=-+;(g )支节点处输入阻抗0002Z ||2Z Z =,输入端输入阻抗0Z ,反射系数-j200200e =0Z Z Z Z λβ-Γ=+.1.160025-j25-5025251=0.20.425-j25+5075253L L L Z Z j jj Z Z j j-----Γ====--+--,1+2.6171-2ρΓ==≈Γ,距离负载0.375λ处阻抗in003tan252550850350(2525)tan825755050(2)2525LLLLZ jZ Z jZ j jZ Z ZZ jZ j jZ jZjjjλβλβ+---===---+-==--11125255050LY jj==+-,LY的实部等于01=50Y,依据传输线导纳公式:依据单支节在传输线上的匹配前提:()inY z的实部应为01=50Y,是以:()2211tan1zβ=-+,tan0zβ=或2当tan0zβ=时,单支线在主线0d=处(即终端负载处),此处()115050inY z j=+.是以短路支节导纳为11-=50j50tanjdβ,所以tan1dβ=,支节长度/8lλ=.当tan2zβ=时,单支线在主线arctan22dλπ=处,此处()115025inY z j=-.所以短路支节导纳为11=25j50tanjdβ,所以tan0.5dβ=-,支节长度()arctan0.52lλπ=-.1.17 已知1+51-ρΓ==Γ,所以-12+13ρρΓ==;相邻电压波节点之间的距离=452cmλ,所以=90cmλ;第一电流波腹点(电压波节点)设为min1l,则min12-LlβφπΓ=,所以min1=44LlφλλπΓ+,由=90cmλ,min1=20cml得-9LπφΓ=,所以923LjjL Le eπφΓ-Γ=Γ=,进而可求出9921+13=250725.19595.271213j LL jL e Z Z j e ππ--+Γ=≈-Ω-Γ-. 1.21(1)将负载阻抗归一化得30150.60.350L j z j +==+,对应圆图上点A;在等反射系数圆上往电源偏向顺时针扭转/6λ(120度)得到点B;读取B 点的阻抗为91.5493+j13.4512Ω; (2)将输入阻抗归一化得6055111+j 6012L j z +==,对应圆图上点A;从A点做OA 射线,得角度为65.3785;从A 点做等反射系数圆与X 轴右半轴交点,读出=2.4ρ;依据-10.4167+1ρρΓ=≈; (3)在X 轴左半轴读出1==0.42.5ρ的地位,对应圆图点A;在圆图等反射系数圆上,往负载偏向逆时针扭转0.15λ(108度),读出归一化负载阻抗为0.88-j0.91L z =,0(0.88-j0.91)52.854.6L Z Z j ==-Ω.1.22 将负载阻抗归一化0.5+j0.5L z =,对应圆图点A;从点A 沿电源偏向扭转2圈,得到'BB 处输入阻抗'0.50.5BB z j =+,''05050BB BB Z Z z j =⋅=+Ω’;再将'BB z 归一化对应圆图上点B,扭转4圈得到'0.250.25AA z j =+,''0200(0.250.25)5050AA AA Z Z z j j =⋅=⋅+=+Ω.2 第二章2.6 7.214a cm =,3.404b cm =,矩形波导的截止波长c λ=;对于10TE 模,m=1,n=0,214.428c a cm λ===,83310 2.0792914.42810c c cf GHz λ-⨯==≈⨯,故c f f <,不消失10TE 模; 对于01TE 模,m=0,n=1,2 6.808c b cm λ===,83310 4.406586.80810c c cf GHz λ-⨯==≈⨯,c f f <,也不消失01TE 模; 显然11TE 和22TE 模的截止频率大于10TE 和01TE ,也不成能消失11TE 模和22TE 模.2.7 10a mm =,6b mm =,对10TE 模,220c a mm λ===;对于01TE 模,212c b mm λ===;对于11TE 模,210.29c mm λ-===≈.2.9 22.8a mm =,10.15b mm =,工作波长12mm λ=.10TE 模:245.6c a mm λλ==>,可以消失; 01TE 模:220.3c b mm λλ==>,可以消失; 02TE模:10.15c b mm λλ===<,不成以消失;11TE (11TM )模:18.5454c mm λλ===≈>,可以消失;12TE (12TM ):9.9075c mm λλ===≈<,不消失;21TE (21TM )模:15.1641c mm λλ===≈>,可以消失;20TE模:22.8c a mm λλ===>,可以消失; 30TE模:215.23c a mm λλ===>,可以消失; 40TE模:111.42c a mm λλ===<,不成以消失; 31TE (31TM ):12.167c mm λλ===≈>,可以消失.2.15 圆波导的主模为11TE 模,其截止波长3.41 3.41310.23c R cm cm λ==⨯=;截止频率892310 2.931010.2310c f Hz -⨯==⨯⨯;波导波长2247.426w cm λ--====≈;波形阻抗111787TE Z ===Ω. 2.16 11TE 模 3.41 3.413c R cm cm λ==>,01TM 模 2.61 2.613c R cm cm λ==<,所以只能传输11TE 模.2.18 β=因为波在两波导中传输时β和K 都相等,所以截止波束c K 也相等,即两个波导中截止波长相等.矩形波导中10TE 模c K aπ=,22c ca K πλ==,圆波导01TE 模 1.64c R λ=,所以圆波导半径327.11108.671.64m R mm -⨯⨯=≈.2.21 衰减20lg 100c lL edB α-=-=,求出5ln1011.513115.13/0.1c dB m l α--===;已知8.686280)c παλ=⋅--,tan 0.001δ=,8931031010m cm λ⨯==⨯,由以上解得 3.00 3.41c cm R λ≈=,所以圆波导的半径0.88R cm =. 3 第三章3.5 微带线传输的主模是准TEM 模;现实上微带传输线的准TEM 模的场部分在空气中,部分在介质中,一般用等效介电常数eff ε来暗示这种情形对传输特征的影响.eff ε的界说如下:eff CC ε=,0C 为无介质填充时微带传输线单位长度的散布电容,C 为现实上部分填充介质时微带传输线的单位长度上的散布电容.介质填充系数1/2110[1(1)]2h q w-=++.当/1w h 时,1(1)eff r q εε≈+-.3.10 w/h=0.95<1,疏忽导带厚度,00860ln()460ln(8.4210.2375)129.5125h w Z w h=+=+=Ω,1/2110[1(1)]0.64732h q w-=++=,1(1)10.6473(9.51) 6.5eff r q εε≈+-=+⨯-=;050.79Z ===Ω. 4 第四章4.1 微波谐振器和低频谐振器回路重要有3点不合:1)LC 回路为集总参数电路,微波谐振器属于散布参数电路,所以LC 回路能量只散布在LC 上,而微波谐振器的能量散布在全部腔体中;2)LC 回路在L 及C 一准时,只有一个谐振频率,而微波谐振器有无穷多个谐振频率,这称为微波谐振器的多谐性;3)微波谐振腔储能多,损耗小,是以微波谐振器品德因数很高,比LC 回路的Q 值高许多. 4.40.1mλ=,3a 10m-=,21.510b m-=⨯,特征阻抗060ln 366bZ a=≈Ω; 810r 231022/ 1.885100.1r f v πωππλ⨯⨯===≈⨯;10110-9-521l 220.110.1=2 1.88510106621.2810+p 510r r r tg p CZ tg p mλλπωπ---=++⨯⨯⨯≈⨯⨯⨯. 4.9已知r f =f 3r GHz =时,有9310⨯=;f 6r GHz =时,有9610⨯=解得a 6.3cm =≈,l 8.2cm =≈,b<a. 4.12 l 10cm =时,l/R=2<2.1,最低谐振模式为010TM 模,谐振波长2.61 2.61513.05R cm cmλ==⨯=;l15cm=时,l/R=3>2.1,最低谐振模式为111TE模,谐振波长14.8cm λ=≈.。
微波技术课后习题答案-第四章习题参考答案
第三章习题参考答案带状线为双导体结构,中间填充均匀介质,所以能传输TEM 导波,且为带状线的工作模式。
4.1可由P.107:4.1-7式计算特性阻抗0Z 由介质r ε,导体带厚度与接地板高度的比bt ,以及导体带宽度与接地板高度的比bW确定。
Ω=45.690Z4.5可由P.107:4.1-6式计算⎪⎩⎪⎨⎧>--<=1206.085.012000Z x Z x b W r r εε 其中: 441.0300-=Z x r επ已知:1202.74502.20<=⨯=Z r ε 83.0441.02.7430441.0300=-=-=πεπZ x r 所以: )(66.283.02.3mm bx W =⨯==衰减常数P.109:4.1-10:d c ααα+=c α是中心导体带和接地板导体的衰减常数,d α为介质的衰减常数。
TEM 导波的介质损耗为:)/(2m Np ktg d δα=,其中εμω'=k 由惠勒增量电感法求得的导体衰减常数为)/(m Np :P.11109:4.1-11⎪⎪⎩⎪⎪⎨⎧Ω>Ω<-⨯=-12016.0120)(30107.200003Z B b Z R Z A t b Z R r s r r s c εεπεα 其中:⎪⎭⎫⎝⎛--++-+=t t b t b t b t b W A 2ln 121π ⎪⎭⎫⎝⎛++-++++=t W W t t b t b t W b B πππ4ln 21414.05.01)7.05.0(1)/(155.02001.0100.32.21010222289m Np tg c f ktg r d =⨯⨯===πδεπδα铜的表面电阻在10GHz 下Ω==026.02σωμs R ,74.4=A m Np A t b Z R r s c /122.0)(30107.203=-⨯=-πεαm Np d c /277.0=+=αααdB e Np 686.8lg 1012==m dB m Np d c /41.2/277.0==+=ααα4.6可由P.107:4.1-6式计算⎪⎩⎪⎨⎧>--<=1206.085.012000Z x Z x b W r r εε 其中: 441.0300-=Z x r επ已知:1204.1481002.20>=⨯=Z r ε 194.0441.04.14830441.0300=-=-=πεπZ x r 所以: )(67.02128.016.3)6.085.0(mm x b W =⨯=--= 在10GHz ,带状线的波长为:cm fcr 02.210102.210398=⨯⨯⨯==ελ4.16可由P.130:4.3-27式计算已知Ω=700e Z ,Ω=300o Z ,mm b 4=,1.2=r ε3813.3300==re e Z A ε648.02212212143813.33813.3214=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛+--=e e e e k e eA A e45.1300==ro o Z A ε99.022222=⎪⎪⎪⎭⎫⎝⎛+-=o o A A o e e k ππ68.02==o e k k arctg b W π015.0112=⎪⎪⎭⎫⎝⎛--=oee o k k k k arctg b S π mm b 4=mm W 7.268.04=⨯= mm S 06.0015.04=⨯=。
微波技术习题解答(部分)
率的波,而是一个含有多种频率的波。这些多种频率成分构成一个“波群”
又称为波的包络,其传播速度称为群速,用 vg 表示,即 vg v 1 c 2
第三章 微波传输线
TEM波:相速
vp
1 v
相波长
p
2
v f
群速 vg vp v
即导波系统中TEM波的相速等于电磁波在介质中的传播速度,而相波长 等于电磁波在介质中的波长(工作波长)
插入衰减 A
A
1 S21 2
A%11 A%12 A%21 A%22 2 4
对于可逆二端口网络,则有
A
1 S21 2
1 S12 2
第四章 微波网络基础
插入相移 argT arg S21
对于可逆网络,有 S21 S12 T ,故
T T e j S12 e j12 S21 e j21
何不同?
答案:截止波长:对于TEM波,传播常数 为虚数;对于TE波和TM波,对 于一定的 kc 和 、 ,随着频率的变化,传播长数 可能为虚数,也可能为实
数,还可以等于零。当 0 时,系统处于传输与截止状态之间的临界状态,此 时对应的波长为截止波长。
当 c 时,导波系统中传输该种波型。 当 c 时,导波系统中不能传输该种波型。
第三章 微波传输线
3-3 什么是相速、相波长和群速?对于TE波、TM波和TEM波,它们的相速 相波长和群速有何不同?
答案: 相速 vp 是指导波系统中传输的电磁波的等相位面沿轴向移动的速
度,公式表示为
vp
相波长 p
是等相位面在一个周期T内移动的距离,有
p
2
欲使电磁波传输信号,必须对波进行调制,调制后的波不再是单一频
T S21 0.98e j 0.98
微波技术习题解
《微波技术》习题解(一、传输线理论)(共24页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。
若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需s ,求该电缆的特性阻抗Z 0 。
[解] 脉冲信号的传播速度为tlv 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为 00C L Z =00C C L =lC εμ=Cv l =8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。
[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。
根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ 。
为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =作电介质。
(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =,求线间距D 。
(2) 对Z 0 =75Ω的同轴线,内导体半径 a =,求外导体半径 b 。
[解] (1) 对于平行双导线(讲义p15式(2-6b ))0C L Z =rD r D ln ln πεπμ=r D ln 1εμπ=r D rln 120ε=300= Ω 得52.42=rD, 即 m m 5.256.052.42=⨯=D (2) 对于同轴线(讲义p15式(2-6c ))Z LZ 0○ ~ z补充题1图示0C L Z =dD d D ln 2ln2πεπμ=d D r ln 60ε=ab r ln 60ε=75= Ω 得52.6=ab, 即 mm 91.36.052.6=⨯=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。
微波技术基础课后参考答案 (张靖第三次习题)20170418
微波技术基础课后习题答案1 第二章2.9 22.8a mm =,10.15b mm =,工作波长12mm λ=。
10TE 模:245.6c a mm λλ==>,可以存在;01TE 模:220.3c b mm λλ==>,可以存在;02TE模:10.15c b mm λλ===<,不可以存在;11TE (11TM )模:18.5454c mm λλ===≈>,可以存在;12TE (12TM ):9.9075c mm λλ===≈<, 不存在;21TE (21TM )模:15.1641c mm λλ===≈>, 可以存在;20TE模:22.8c a mm λλ===>,可以存在;30TE模:215.23c a mm λλ===>,可以存在; 40TE模:111.42c a mm λλ===<,不可以存在; 31TE (31TM ):12.167c mm λλ===≈>,可以存在。
2.11 根据空气填充矩形波导的几何尺寸,22.86a mm =,10.16b mm =。
10TE 模:245.6c a mm λ==;01TE 模:220.3c b mm λ==;20TE模:22.86c a mm λ===;11TE (11TM )模:18.5454c mm λ===≈; 因此在所有工作模式中,工作频率低于20TE 模截止频率且高于10TE 模截止频率的传输频率才能实现单模传输。
其对应的频率范围是1083310 6.5645.7210TE m s f GHz m -⨯==⨯,208331013.1222.8610TE m s f GHz m-⨯==⨯。
因此该矩形波导单模传输的频率范围是6.5613.12GHz f GHz <<。
2.15 圆波导的主模为11TE 模,其截止波长3.41 3.41310.23c R cm cm λ==⨯=; 截止频率892310 2.931010.2310c f Hz -⨯==⨯⨯;波导波长2247.426w cm λ--====≈;波形阻抗111787TE Z ===Ω. 2.20 对于传输01TE 模式的圆波导,磁场只有r H 和z H 分量,并且在波导管壁内表面只有z H 磁场分量。
《微波技术》习题解(一、传输线理论)
《微波技术》习题解(一、传输线理论)-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。
若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1s ,求该电缆的特性阻抗Z 0 。
[解] 脉冲信号的传播速度为tlv 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为 00C L Z =00C C L =l C εμ=Cv l=8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。
[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。
根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ 。
为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =2.25)作电介质。
(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =0.6mm ,求线间距D 。
(2) 对Z 0 =75Ω的同轴线,内导体半径 a =0.6mm ,求外导体半径 b 。
微波技术习题答案
微波技术习题答案微波技术习题答案1-1何谓微波?微波有何特点?答:微波是频率从300MHz至3000GHz的电磁波,相应波长1m至0.1mm 微波不同于其它波段的重要特点:1、似光性和似声性 2 穿透性 3、非电离性 4、信息性1-2何谓导行波?其类型和特点如何?答:能量的全部或绝大部分受导行系统的导体或介质的边界约束,在有限横截面内沿确定方向(一般为轴向)传输的电磁波,简单说就是沿导行系统定向传输的电磁波,简称为导波其类型可分为:TEM波或准TEM波,限制在导体之间的空间沿轴向传播横电(TE)波和横磁(TM)波,限制在金属管内沿轴向传播表面波,电磁波能量约束在波导结构的周围(波导内和波导表面附近)沿轴向传播1-3何谓截止波长和截止频率?导模的传输条件是什么?答:导行系统中某导模无衰减所能传播的最大波长为该导模的截止波长,用λc表示;导行系统中某导模无衰减所能传播的最小频率为该导模的截止频率,用fc表示;导模无衰减传输条件是其截止波长大于工作波长( λ c >λ)或截止频率小于工作频率(fc2-1某双导线的直径为2mm,间距为10cm,周围介质为空气,求其特性阻抗。
某同轴线的外导体内直径为23mm,内导体外径为10mm,求其特性阻抗;若在内外导体之间填充2.25的介质,求其特性阻抗。
2-6在长度为d的无耗线上测得Zinsc=j50Ω, Zinoc=-j50Ω,接实际负载时,VSWR=2,dmin=0,λ/2,λ,·求ZL。
2-10长度为3λ/4,特性阻抗为600Ω的双导线,端接负载阻抗300 Ω;其输入电压为600V、试画出沿线电压、电流和阻抗的振幅分布图,并求其最大值和最小值。
2-12设某传输系统如图,画出AB段及BC段沿线各点电压、电流和阻抗的振幅分布图,并求出电压的最大值和最小值(R=900Ω)2-15在特性阻抗为200Ω的无耗双导线上,测得负载处为电压驻波最小点,|V|min=8V,距λ/4处为电压驻波最大点, |V|max= 10V,试求负载阻抗及负载吸收的功率。
微波技术习题解答
微波技术习题解答第1章练习题1.1 无耗传输线的特性阻抗Z0= 100()。
根据给出的已知数据,分别写出传输线上电压、电流的复数和瞬时形式的表达式:(1) R L= 100 (),I L = e j0(mA);(2) R L = 50(),V L = 100e j0(mV);(3) V L = 200e j0 (mV),I L = 0(mA)。
解:本题应用到下列公式:(1)(2)(3)(1) 根据已知条件,可得:V L = I L R L = 100(mV),复数表达式为:瞬时表达式为:(2) 根据已知条件,可得:复数表达式为:瞬时表达式为:(3) 根据已知条件,可得:复数表达式为:瞬时表达式为:1.2 无耗传输线的特性阻抗Z0 = 100(),负载电流I L = j(A),负载阻抗Z L = j100()。
试求:(1) 把传输线上的电压V(z)、电流I(z)写成入射波与反射波之和的形式;(2) 利用欧拉公式改写成纯驻波的形式。
解:根据已知条件,可得:V L = I L Z L = j(j100) = 100(V),1.3 无耗传输线的特性阻抗Z0 = 75(),传输线上电压、电流分布表达式分别为试求:(1) 利用欧拉公式把电压、电流分布表达式改写成入射波与反射波之和的形式;(2) 计算负载电压V L、电流I L和阻抗Z L;(3) 把(1)的结果改写成瞬时值形式。
解:根据已知条件求负载电压和电流:电压入射波和反射波的复振幅为(1) 入射波与反射波之和形式的电压、电流分布表达式(2) 负载电压、电流和阻抗V L = V(0) = 150j75,I L = I(0) = 2 + j(3) 瞬时值形式的电压、电流分布表达式1.4 无耗传输线特性阻抗Z0 = 50(),已知在距离负载z1= p/8处的反射系数为 (z1)= j0.5。
试求(1) 传输线上任意观察点z处的反射系数(z)和等效阻抗Z(z);(2) 利用负载反射系数 L计算负载阻抗Z L;(3) 通过等效阻抗Z(z)计算负载阻抗Z L。
微波技术习题答案3
3-1 一根以聚四氟乙烯 2.10r ε=为填充介质的带状线,已知其厚度b =5mm ,金属导带厚度和宽度分别为0t =、W =2mm ,求此带状线的特性阻抗及其不出现高次模式的最高频率。
解: 由于/2/50.40.35W b ==>,由公式20(0.35/)eW Wb b W b ⎧=-⎨-⎩ /0.35/0.35W b W b <> 得中心导带的有效宽度为:2e W W m m ≈=,077.3Z ==Ω带状线的主模为TEM 模,但若尺寸不对也会引起高次模,为抑止高次模,带状线的最短工作波长应满足:1010m ax (,)cT E cT M λλλ>102 5.8c T E W m m λ== mmbr cTM5.14210==ελ所以它的工作最高频率GHzc f 20105.1410338=⨯⨯==-λ3-2 对于特性阻抗为50Ω的铜导体带状线,介质厚度b =0.32cm ,有效相对介电常数2.20r ε=,求线的宽度W 。
若介质的损耗角正切为0.001,工作频率为10GHz ,计算单位为dB /λ的衰减,假定导体的厚度为t =0.01mm 。
解:00)74.2120==<和030)0.4410.830x π=-=,所以 由公式00,1200.85120x Wb ⎧<⎪=⎨->⎪⎩其中,300.441x =-计算宽度为(0.32)(0.830)0.266W b x cm ===。
在10GHz ,波数为1310.6k mc-==由公式)(/2tan 波TEM m Np k d δα=介电衰减为mNp k d /155.02)001.0)(6.310(2tan ===δα在10GHz 下铜的表面电阻为0.026s R =Ω。
于是,根据公式300002.710120,30()/0.16120,s r cs R Z A b t N p m R B Z b επα-⎧⨯<⎪-⎪=⎨>⎪⎪⎩其中2121ln ()W b tb t A b tb tt π+-=++--0.414141(0.5ln)(0.50.7)2bt W B W t Wtππ=++++得出的导体的衰减为mNp A t b Z R r s c /122.0)(30107.203=-⨯=-πεα因为 4.74A =。
廖承恩《微波技术基础》习题解答(最全的版本)
所以可以得到 Z L = Z 0
又因为当电压最小点时,电流为最大点,即
kh da
课 后
Z L + Z 0 thγd Z 0 + Z L thγd Z L + jZ 0 tgβ d Z 0 + jZ L tgβ d Z in (d ) − jZ 0 tgβ d Z 0 − jZ in (d )tgβ d
Z =Z0 证明:对于无耗线而言 L
kh da
课 后
Z0 =
60
答 案
εr
ln
60
b 60 0.75 = ln = 65.9Ω a 1 0.25
=2.1
1
L1C1
=
1
µε r ε 0
1
2.1
sc Zin (d) −Zin (d) ZL = Z (d) oc Zin (d) −Zin (d) oc in
(d=l-z,如图,d 为一新坐标系, l=λ/4)
当 z=0,即 d=l 时 Vin=450V 所以 | V (l ) |=| V L+ e j β λ / 4 [1 + ΓL e −2 j β λ / 4 ] |= 450V
由于行波状态下沿线电压和电流振幅不变,因而 V0+=Vin=450V 而 I0+=V0+/Z0=1A 所以 AB 段的电压、电流、阻抗表达式为
kh da
课 后
V0+ − j β z e Z0
(图) 解:首先在 BC 段,由于 Z0=Z01=600Ω,ZL=400Ω 且因为 d=λ/4 所以在 BB’处向右看去,Zin=Z012/ZL=6002/400=900Ω 又由于 BB’处有一处负载 R=900Ω,所以对 AB 段的传输线来说 终端负载为 ZL’=Zin//R=450Ω 所以对 AB 段的等效电路为
廖承恩《微波技术基础》习题解答(最全的版本)
(2) (3)
(4)
sc oc 当 Z in (d ) = j100Ω , Z in (d ) = − j 25Ω , Z in (d ) = 75∠30°Ω 时
1562 . 5 +1875 × 75 ×
3 + 62 . 5 j 2
sc oc 2-6 在长度为 d 的无耗线上测得 Z in (d ) = j50Ω , Z in (d ) = − j 50Ω ,接 实
第二三四六七章习题解答 第二章习题解答
2-1 某双导线的直径为 2mm,间距为 10cm,周围介质为空气,求 其特性阻抗。某同轴线的外导体内直径为 23mm,内导体外直径为 10mm, ,求其特性阻抗;若在内外导体之间填充εr 为 2.25 的 介 质 , 求其特性阻抗。
解:双导线:因为直径为 d=2mm=2×10-3m 间距为 D=10cm=10-1m 所以特性阻抗为
ZL = Z0
2 — 12 画出图 2— 1 所示电路沿线电压、电流和阻抗的振幅分布图,
所以 ΓL =
Z L '− Z 02 450 − 450 = =0 Z L '+ Z 02 450 + 450
微波技术基础习题答案华科
微波技术基础习题答案华科微波技术基础习题答案华科微波技术是现代通信领域中的重要一环,它涉及到无线通信、雷达、卫星通信等众多应用。
在学习微波技术的过程中,习题是一个非常重要的辅助工具,通过解答习题可以帮助我们巩固所学的知识,并且提高我们的解决问题的能力。
下面是华中科技大学微波技术基础习题的答案,希望对大家的学习有所帮助。
一、选择题1. 以下哪项不是微波技术的应用领域?A. 无线通信B. 雷达C. 卫星通信D. 电视广播答案:D2. 微波技术中,波长范围一般为:A. 1 mm - 1 cmB. 1 cm - 1 mC. 1 m - 1 kmD. 1 km - 1 m答案:A3. 微波传输线的特点是:A. 传输损耗小B. 传输速度快C. 传输带宽大D. 以上都是答案:D4. 以下哪个是微波技术中常用的天线类型?A. 偶极子天线B. 棱角天线C. 高增益天线D. 以上都是答案:D5. 在微波技术中,常用的传输介质是:A. 真空B. 空气C. 金属D. 介质答案:D二、填空题1. 微波技术中,一般使用的频率范围是______ GHz。
答案:1-3002. 微波传输线的特点之一是传输损耗______。
答案:小3. 微波技术中,常用的天线类型之一是______天线。
答案:偶极子4. 微波技术中,常用的传输介质是______。
答案:介质5. 微波技术中,常用的调制方式之一是______调制。
答案:频率三、简答题1. 请简述微波技术的应用领域。
微波技术广泛应用于无线通信、雷达、卫星通信等领域。
在无线通信中,微波技术被用于移动通信、无线局域网等,可以实现高速、稳定的无线数据传输。
在雷达领域,微波技术可以实现目标的探测、跟踪和定位,广泛应用于军事、航空等领域。
在卫星通信中,微波技术实现了地球与卫星之间的长距离通信,使得人们可以通过卫星实现远距离的通信和数据传输。
2. 请简述微波传输线的特点。
微波传输线具有传输损耗小、传输速度快和传输带宽大的特点。
微波技术基础答案
微波技术基础答案
微波技术是一种利用微波频段(300 MHz至300 GHz)的电
磁波进行通信、雷达、无线电传输和加热等应用的技术。
以下是微波技术的基础知识:
1. 微波的特点:微波具有高频率、短波长、能够穿透大气、易于聚焦和定向传播的特点。
2. 微波的发生和传输:微波可以通过射频发生器产生,通
过导波管、同轴电缆、微带线、光纤等传输介质进行传输。
3. 微波的传播特性:微波的传播受到衰减、反射、折射和
散射等影响。
在自由空间中,微波的传播速度接近光速。
4. 微波天线:微波通信中常用的天线类型包括方向性天线(如喇叭天线、微带天线)、全向天线(如偶极子天线、
螺旋天线)和阵列天线等。
5. 微波通信:微波通信是利用微波进行无线传输的技术,
常用于卫星通信、移动通信和无线局域网等领域。
6. 微波雷达:微波雷达利用微波的反射特性来检测和跟踪
目标,广泛应用于航空、海洋、气象和交通等领域。
7. 微波加热:微波加热利用微波的能量来加热物体,常用
于食品加热、材料处理和医疗领域。
8. 微波器件:微波技术中常用的器件包括微波源(如
Klystron、Magnetron、Gunn Diode)、微波放大器、微波滤波器、微波开关和微波混频器等。
9. 微波安全:由于微波的高频率和能量较高,对人体和环境有一定的辐射危害。
因此,在微波技术应用中需要注意微波辐射的安全性。
10. 微波技术的发展:随着无线通信和雷达技术的快速发展,微波技术在通信、雷达、医疗、材料科学等领域得到广泛应用,并不断推动着技术的进步和创新。
微波技术课后习题答案-第二章习题参考答案11
第二章习题参考答案同轴线、双导线和平行板传输线的分布参数注:媒质的复介电常数εεε''-'=i ,导体的表面电阻ss R σδσωμ1221=⎪⎭⎫⎝⎛=。
本章有关常用公式:)](1[)()]()([122)()](1)[()()(22)(00000000d Z d V d V d V Z e Z Z I V e Z Z I V d I d d V d V d V e Z I V e Z I V d V d j L L d j L L dj L L d j L L Γ-=-=--+=Γ+=+=-++=+-+-+-+-ββββ )2(2200200)(d j L d j L dj L L d j L L L L L e e e Z Z Z Z e Z I V Z I V VV d βφβββ----+-Γ=Γ=+-=+-==ΓL Lj L j L L L L L e e Z Z Z Z Z Z Z Z φφΓ=+-=+-=Γ0000dtg jZ Z dtg jZ Z Z d Z L L in ββ++=000)()(1)(1)()()(0d d Z d I d V d Z in Γ-Γ+==LL VV VSWR Γ-Γ+==11minmax2.1无耗或者低耗线的特性阻抗为110C L Z = 平行双导线的特性阻抗:aDa a D D a a D D Z r r rln 11202)2(ln 11202)2(ln 112222000εεεμεπ≈-+=-+=已知平行双导线的直径mm a 22=,间距cm D 10=,周围介质为空气(1=r ε),所以特性阻抗)(6.5521100ln 120ln11200Ω==≈a D Z rε 同轴线的特性阻抗:ab a b Z r rln 60ln 121000εεμεπ==已知同轴线外导体的内直径2mm b 23=,内导体的外直径2mm a 10=,中间填充空气(1=r ε):特性阻抗)(50210223ln 60ln 600Ω===abZ r ε中间填充介质(25.2=r ε):特性阻抗)(3.33210223ln 25.260ln 600Ω===a b Z r ε2.2对于无耗传输线线有相位常数μεωωβ===k C L 11,所以可求出相速度v k C L v p =====μεωβω1111,等于电磁波的传播速度。
微波技术课后习题答案-第六章习题参考答案
第六章习题参考答案6.5: 已知并联导纳的ABCD 矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡101Y D C B A 和一段传输线的ABCD 矩阵l ch V l V V V A L I L I γ=====021)(2 l Z s h I l V I V B L V L V γ=====021)(2Z lsh V l I V I C L I LI γ=====021)(2 l ch I l I I I D L V LV γ=====021)(2对于无耗线:l j l ch A ββγγcos )(=== l jZ j l Zsh B ββγγsin )(=== l Zj j Z l sh C ββγγsin 1)(===l j l ch D ββγγcos )(=== 总的ABCD 矩阵为三个二端口网络ABCD 矩阵的乘积⎥⎥⎦⎤⎢⎢⎣⎡--+-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡θθθθθθθθθθθsin cos sin 1cos 2sin sin cos 101cos sin 1sin cos 10122BZ i Z Z B jB jZ BZ jB Zj jZ jB D C B A 则总的归一化ABCD 矩阵为:⎥⎥⎦⎤⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡D CZ Z BAd c b a 00 由S 矩阵ABCD 矩阵的关系式⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+-+----++++=D CZ B Z A BC AD D CZ B Z A D CZ B Z A S 00000012)(2111][ 可求出S 矩阵。
对于本题目求出不引起附加反射的条件,只需求θθcos 2sin )1(00220011B Z Z B Z Z Z Z S =⎥⎦⎤⎢⎣⎡--⇒=由上式可得各参数满足的关系式02)1(20202202=--+Z tg BZ Z Z tg Z B θθ6.9由题意知(a)和(c)图均为右端或中断开路的一端口网络,求S 矩阵只需求始端反射系数即可(略)(b)图为并联导纳的S 矩阵(参考6.5)(略) 6.14 推导:原来第i 个参考面位于0=i z ,归一化入射和反射波为:i i b a , 当第i 个参考面移到i i l z =时,归一化入射和反射波为:i i j i i j i i e b b e a a θθ='='-,,其中giii l λπθ2=(p.21,2.1-14)j i j i j j ij j j ji j i ije S e a b a b S θθθθ----==''=' 写成矩阵形式为:]][][[][P S P S ='其中: ⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=---N j j j e e e P θθθ0000][21已知:参考面21,T T 处的S 矩阵⎥⎦⎤⎢⎣⎡=22211211S S S S S⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎦⎤⎢⎣⎡=--221121220000][g g l j l j j j e e e e P λπλπθθ 则由公式]][][[][P S P S ='可求出][S '。
微波技术练习题及答案
工作波长分别为 7 cm,6 cm 和 3 cm 时,波导中可能存在的模式;(3) 当工作波长为 7 cm 时, 主模的波导波长 λg。
3-21 空气圆波导,已知工作波长 λ =5mm,要求单模传输,试确定圆波导的半径,并
2-20 在阻抗圆图中,为什么 Vmax 线上的归一化 R 值就是驻波比 ρ 的值?
2-21 试说明导纳圆图与阻抗圆图中的特殊的点、线、面的对应关系。 2-22 实用圆图中有哪些标度?怎样利用圆图求得工作状态量? 2-23 无耗传输线特性阻抗 Zc ,终端负载阻抗 Z0(或负载导纳 Y0),利用圆图求解: (1)Zc = 50 Ω,Z0 = 200 + j75 Ω,求终端电压反射系数、电压驻波比及驻波相位。 (2)Zc = 100 Ω,Z0 = 80 - j120 Ω,求终端电压反射系数、距离终端最近的电压波节 和波腹点的位置。
习题二
2-1 传输线中可能存在的波有哪些?传输线的特性参量有哪些? 2-2 什么叫行波状态?形成行波状态的负载状态是什么?此时电压和电流的振幅沿线 的分布情况如何? 2-3 什么叫纯驻波状态?形成纯驻波状态的负载条件是什么?在纯驻波状态下,电压、 电流的振幅沿线的分布情况怎样? 2-4 什么叫驻波?接什么样的负载可形成驻波状态?驻波状态下电压、电流的振幅值 沿线的分布规律与纯驻波状态有什么相同点和不同点? 2-5 分析驻波参量与反射系数的关系。 2-6 请总结传输线共有哪些工作状态参量及这些参量之间的关系。 2-7 如图所示的传输系统中,末端所接负载的阻抗值 Z0=200 Ω ,两段传输线的特性阻
微波技术习题答案1
1-1什么是行波,它的特点是什么,在什么情况下会得到行波;什么是纯驻波,它有什么特点,在什么情况下会产生纯驻波?解:当传输线是无限长,或其终端接有等于线的特性阻抗的负载时,信号源传向负载的能量将被负载完全吸收,而无反射,此时称传输线工作于行波状态,或者说,传输线与负载处于匹配状态。
在行波状态下,均匀无耗线上各点电压复振幅的值是相同的,各点电流复振幅的值也是相同的,即它们都不随距离z 而变化;而且,电压和电流的瞬时值是相同的。
当负载l c Z Z =时,反射波为零,由此得到行波。
从信号传向负载的入射波在终端产生全反射,线上的入射波和反射波相叠加,从而形成了纯驻波状态。
对于任意的电抗性负载都可以用一个有限长的短路线或开路线的输入阻抗来代替。
当传输线终端是短路、开路,或接有纯电抗性(电感性和电容性)负载时。
1-2传输线的总长为5/8λ,终端开路,信号源内阻等于特性阻抗。
终端的电压为15045∠ ,试写出始端、以及与始端相距分别为/8λ和/2λ等处电压瞬时值的表达式。
解:(1) 求终端电压L U终端开路,将产生全反射,线上为纯驻波状态。
终端电压L U 应等于入射电压加反射电压,即+L U U (0)U (0)-=,开路处+U (0)U (0)-=,即L U 2U (0)+=。
而开路线上任一处z 的电压,由下式求出L U z U cos z β()=题中,始端z 5/8λ=处有 0U (z )U (5/8)150/45λ== 故有 0j 45L5150e U c o s ()8βλ=⋅ 即00j45j45j(45)L 150e U 5cos()8πλβ±==-=⋅因此,线上任一处的电压复振幅为0+j (45)LU (z )U c o s z =2U (0)c o 1502c o sz eπβββ±== (2)开路状态下,沿线各处的瞬时电压为j w tu (z ,t )R e [U (z )e1502c o s z c o s (w t 45)βπ==+± 故始端瞬时电压j(45)jwt055u(,cos()e]=100cos zcos(wt+45)88πλλββ±⋅据终端8λ处,则距终端为z2λ=j(45)jwt0u(,)e e)22πλλβ±⋅据终端2λ处,则距终端为z8λ=j(45)jwt0u(,)e e]=150cos(wt+45)88πλλβπ±⋅±1-3传输线的特性阻抗为cZ,行波系数为K,终端负载为LZ,第一个电压最小点距终端的距离为l mi m,试求LZ的表达式。
廖承恩《微波技术基础》习题解答
co m
sc Zin (d) −Zin (d) Z = Z ( d ) 将(2)、( 3)、( 4)式代入(1)式中有 L oc Zin (d) −Zin (d) oc in
ΓL =
Z L − Z 0 Z L − 50 1 = =− Z L + Z 0 Z L + 50 3
所以 Z L = 25Ω
Z L − Z 0 400 − 600 1 1 = =− ⇒ Γd = − e − 2 jβ d Z L + Z 0 400 + 600 5 5
由于 | ΓL |< 1 ,所以为行驻波状态 因而 V ( d ) = V L+ e jβ d [1 + ΓL e −2 jβ d ]
− jβ d I (d ) = I L e [1 − ΓL e −2 jβ d ]
2-7 设无耗线的特性阻抗为 100Ω, 负载阻抗为 50-j50 Ω, 试求ГL、 50Ω λ处的输入阻抗。 VSWR 及距负载 0.15 0.15λ
解: ΓL =
Z L − Z0 =0.2-0.4j=0.4472exp(-j1.11)=0.4472∠-63.44° ZL + Z0 VSWR = ρ =
| VL+ | [1− | ΓL |] = 0.5 A Z0
w.
| V (d ) |min =| VL+ | [1− | ΓL |] = 300V
网
co m
V ( d min 1 ) min = V + ( d min 1 )[1− | Γ L |]
I (d min 1 ) max = I + (d min 1 )[1+ | ΓL |]
所以可以得到 Z L = Z 0
《微波技术》习题解(一、传输线理论)
机械工业出版社《微 波 技 术》(第2版) 董金明 林萍实 邓 晖 编著习 题 解一、 传输线理论1-1 一无耗同轴电缆长10m ,内外导体间的电容为600pF 。
若电缆的一端短路, 另一端接有一脉冲发生器及示波器,测得一个脉冲信号来回一次需0.1μs ,求该电缆的特性阻抗Z 0 。
[解] 脉冲信号的传播速度为t l v 2=s /m 102101.010286⨯=⨯⨯=-该电缆的特性阻抗为0C L Z =00C C L =l C εμ=Cv l=8121021060010⨯⨯⨯=-Ω33.83= 补充题1 写出无耗传输线上电压和电流的瞬时表达式。
[解] (本题应注明z 轴的选法)如图,z 轴的原点选在负载端,指向波源。
根据时谐场传输线方程的通解()()()()()())1()(1..210...21.⎪⎪⎩⎪⎪⎨⎧+=-=+=+=--z I z I e A e A Z z I z U z U e A e A z U r i zj z j r i zj z j ββββ。
为传输线的特性阻抗式中02.22.1;;,Z U A U A r i ==:(1),,212.2.的瞬时值为得式设ϕϕj r j i e U U eU U -+==⎪⎩⎪⎨⎧+--++=+-+++=-+-+)()cos()cos([1),()()cos()cos(),(21021A z t U z t U Z t z i V z t U z t U t z u ϕβωϕβωϕβωϕβω1-2 均匀无耗传输线,用聚乙烯(εr =2.25)作电介质。
(1) 对Z 0=300 Ω的平行双导线,导线的半径 r =0.6mm ,求线间距D 。
(2) 对Z 0 =75Ω的同轴线,内导体半径 a =0.6mm ,求外导体半径 b 。
[解] (1) 对于平行双导线(讲义p15式(2-6b ))0C L Z =rD r D ln ln πεπμ=r D ln 1εμπ=r Drln 120ε=300= Ω 得52.42=rD, 即 mm 5.256.052.42=⨯=D (2) 对于同轴线(讲义p15式(2-6c )) Z L补充题1图示Z g e (t ) 题1-4图示 00C L Z =dD d D ln 2ln2πεπμ=d D r ln 60ε=ab r ln 60ε=75= Ω 得52.6=ab, 即 mm 91.36.052.6=⨯=b 1-3 如题图1-3所示,已知Z 0=100Ω, Z L =Z 0 ,又知负载处的电压瞬时值为u 0 (t)=10sin ωt (V), 试求: S 1 、S 2 、S 3 处电压和电流的瞬时值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
微波技术习题解答第1章 练习题1.1 无耗传输线的特性阻抗Z 0 = 100 (Ω)。
根据给出的已知数据,分别写出传输线上电压、电流的复数和瞬时形式的表达式:(1) R L = 100 (Ω),I L = e j0︒ (mA);(2) R L = 50 (Ω),V L = 100e j0︒ (mV);(3) V L = 200e j0︒ (mV),I L = 0 (mA)。
解:本题应用到下列公式:2,20L L 0L L Z I V B Z I V A -=+=(1) )sin(j )cos()()sin(j )cos()(0L L 0L L z Z V z I z I z Z I z V z V βββββ+=+= (2))cos()cos(),()cos()cos(),(00z t Z B z t Z A t z I z t B z t A t z V βωβωβωβω--+=-++= (3)(1) 根据已知条件,可得:V L = I L R L = 100 (mV), 0 21001100 10021001100=⨯-==⨯+=B A ,复数表达式为:(mA)e )sin(j )cos()((mV) e 100)sin(100j )cos(100)(j j z z z z z I z z z V ββββββ=+==+=瞬时表达式为:(mA))cos(),((mV) )cos(100),(z t t z I z t t z V βωβω+=+=(2) 根据已知条件,可得:05 21002100 150******** )mA (250e 1000j L L L -=⨯-==⨯+====︒B A R V I ,,复数表达式为:(mA))sin(j )cos(2)((mV) )sin(200j )cos(100)(z z z I z z z V ββββ+=+=瞬时表达式为:(mA))cos(5.0)cos(5.1),((mV) )cos(50)cos(150),(z t z t t z I z t z t t z V βωβωβωβω-++=--+=(3) 根据已知条件,可得:010 2200 10020200=-==+=B A , 复数表达式为:()(mA))sin(2j (mV) )cos(200)(z z I z z V ββ==瞬时表达式为:(mA))cos()cos(),((mV) )cos(100)cos(100),(z t z t t z I z t z t t z V βωβωβωβω--+=-++=1.2 无耗传输线的特性阻抗Z 0 = 100 (Ω),负载电流I L = j (A),负载阻抗Z L = -j100 (Ω)。
试求:(1) 把传输线上的电压V (z )、电流I (z )写成入射波与反射波之和的形式;(2) 利用欧拉公式改写成纯驻波的形式。
解:根据已知条件,可得:V L = I L Z L = j ⨯(- j100) = 100 (V),4j 0L L 4j 0L L e 25050j 502100j 1002e 25050j 502100j 1002π-π=-=-=-==+=+=+=Z I V B Z I V Azz z z z zzzZ B Z A z I B A z V ββββββββj 4j j 4j j 0j 0j 4jj 4jj j ee 22e e 22e e )(e e250e e250ee)( -π-π--π-π--=-=+=+=(1)⎪⎭⎫ ⎝⎛π+=⎥⎥⎦⎤⎢⎢⎣⎡-=⎪⎭⎫ ⎝⎛π+=⎥⎥⎦⎤⎢⎢⎣⎡+=⎪⎭⎫ ⎝⎛π+-⎪⎭⎫ ⎝⎛π+⎪⎭⎫ ⎝⎛π+-⎪⎭⎫ ⎝⎛π+4sin 2j e e 22)(4cos 2100e e 250)( )2(4j 4j 4j 4j z z I z z V z z z z ββββββ1.3 无耗传输线的特性阻抗Z 0 = 75 (Ω),传输线上电压、电流分布表达式分别为)45sin(e 2e )( )45cos(e 150e 75)(45j j 45j j ︒++=︒++=︒︒-z z I z z V z z ββββ试求:(1) 利用欧拉公式把电压、电流分布表达式改写成入射波与反射波之和的形式;(2) 计算负载电压V L 、电流I L 和阻抗Z L ;(3) 把(1)的结果改写成瞬时值形式。
解:根据已知条件求负载电压和电流:j221)j 1(2121)45sin(e21)0(75j 15021)j 1(2115075)45cos(e 15075)0(45j L 45j L +=⨯+⨯+=︒+==-=⨯-⨯+=︒+==︒︒-I I V V电压入射波和反射波的复振幅为5j7275j)(2j75)150(2150275j)(2j75)150(20L L 0L L -=⨯+--=-==⨯++-=+=Z I V B Z I V A (1) 入射波与反射波之和形式的电压、电流分布表达式zz zz zz z z Z B Z A z I B A z V ββββββββj j j 0j 0j j j j je e 2e e )(e 75j e 150e e )(----+=-=-=+= (2) 负载电压、电流和阻抗V L = V (0) = 150 - j75, I L = I (0) = 2 + j )(60j 45j2j2j 275j 150L L L Ω-=--⨯+-==I V Z (3) 瞬时值形式的电压、电流分布表达式)(sin )cos(2]e )je e 2Re[(]e )(Re[),()(sin 75)cos(150]e )e 75j e 150Re[(]e )(Re[),(j j j j j j j j z t z t z I t z I z t z t z V t z V t z z t t z z t βωβωβωβωωββωωββω--+=+==-++=-==--1.4 无耗传输线特性阻抗Z 0 = 50 (Ω),已知在距离负载z 1 = λp /8处的反射系数为 Γ(z 1) = j0.5。
试求(1) 传输线上任意观察点z 处的反射系数 Γ(z )和等效阻抗Z (z );(2) 利用负载反射系数 ΓL 计算负载阻抗Z L ;(3) 通过等效阻抗Z (z )计算负载阻抗Z L 。
解:(1) 传输线上任意观察点z 处的反射系数和等效阻抗 由 Γ(z ) = ΓL e -j2βz 得()5.0j 82j L 84j L p 1pp ===⎪⎪⎭⎫ ⎝⎛=π-⋅π-e e z ΓΓλΓΓλλ 因此有 ΓL = -0.5 → Γ(z ) = ΓL e -j2βz = -j0.5e -j2βz由反射系数求得等效阻抗)2cos(45)2sin(j4350)2180cos(5.025.01)2180sin(5.02j 5.0150e 5.01e 5.0150)(1)(1)(222j 2j 0z z z z z z Z z Z z zββββΓΓββ++⨯=-︒⨯-+-︒⨯+-⨯=+-⨯=-+=--(2) 利用负载反射系数计算负载阻抗)(350)5.0(1)5.0(15011 L L 0L 0L 0L L Ω=---+⨯=Γ-Γ+⨯=→+-=ΓZ Z Z Z Z Z(3) 通过等效阻抗计算负载阻抗)(350)0cos(45)0sin(j4350)0(L Ω=++⨯==Z Z1.5 无耗传输线的特性阻抗Z 0 = 50 (Ω),已知传输线上的行波比223-=k ,在距离负载z 1 = λp /6处是电压波腹点。
试求:(1) 传输线上任意观察点z 处反射系数 Γ(z )的表达式;(2) 负载阻抗Z L 和电压波腹点z 1点处的等效阻抗Z 1(z 1)。
解:(1) 传输线上任意观察点处反射系数的表达式由电压波腹点处的反射系数为正实数可知22)223(1)223(11111)(6)(L p 1=-+--=+-=+-===⎪⎪⎭⎫⎝⎛=k k z z ρρΓΓλΓΓ 而由 ()()L 2j L p11L e 6ΓΓλΓΓβϕ==⎪⎪⎭⎫⎝⎛=-z z 又可知 326222pp1L π=⨯π⨯==λλβϕz 于是可得 ()()⎪⎭⎫⎝⎛-π-==z z z ββϕΓΓ232j 2j L e 22eL(2) 负载阻抗和电压波腹点处的等效阻抗 由前面计算可知负载反射系数为32j L e 22)0(π==ΓΓ因此有 )(236j 1e 22e22e 22e 22501132j 32j32j 32jL L 0L Ω++=--⨯-+⨯=-+=π-π-ππΓΓZ Z 在电压波腹点处)()223(5022350)( )()223(5022122150)(1)(1)(0011101Ω+=-===Ω+=-+⨯=-+=k Z Z z Z z z Z z Z ρΓΓ或 1.6 特性阻抗为Z 0的无耗传输线上电压波腹点的位置是z 1',电压波节点的位置是z 1",试证明可用下面两个公式来计算负载阻抗Z L :)tan(j 1)tan(j )tan(j 1)tan(j 10L 10L z k z k Z Z z z Z Z ''-''-='-'-=βββρβρ和[提示:从)tan(j )tan(j )(L 00L 0z Z Z z Z Z Z z Z ββ++=中解出Z L ,然后再分别代入Z (z 1') = Z 0ρ 或Z (z 1") = Z 0k 化简即得证。
]证明:由等效阻抗表达式 )tan(j )tan(j )(L 00L 0z Z Z z Z Z Z z Z ββ++= 可解出:)tan()(j )tan(j (z)000L z z Z Z z Z Z Z Z ββ--=当z = z 1'时,Z (z 1') = Z 0ρ ,所以得:)tan(j 1)tan(j )tan(j )tan(j 111001000L z z Z z Z Z z Z Z Z Z '-'-='-'-=βρβρβρβρ 当z = z 1"时,Z (z 1") = Z 0k ,所以得:)tan(j 1)tan(j )tan(j )tan(j 111001000L z k z k Z z k Z Z z Z k Z Z Z ''-''-=''-''-=ββββ 1.7 有一无耗传输线,终端接负载阻抗Z L = 40 + j30 (Ω)。