计算方法实验
实验一常用计算方法及描述统计量分析
实验一常用计算方法及描述统计量分析1.引言描述统计量是统计学中常用的数据分析方法。
通过统计样本数据的各种特征指标,可以对总体数据的一些性质进行分析和描述。
本实验主要介绍几种常用的计算方法及描述统计量分析。
2.均值均值是描述数据集中趋势的一个重要统计量。
一组数据的均值可以通过将所有观察值相加,然后除以观察值的总数来计算。
均值可以用来描述一个数据集的集中趋势,通常用符号μ来表示。
3.中位数中位数是将一组有序数据划分为较小和较大两部分的值,位于中间位置的值。
对于一个有序的数据集,中位数就是位于中间位置的数值。
如果数据集的观察值个数是奇数,则中位数是排在中间的值;如果数据集的观察值个数是偶数,中位数是排在中间两个值的平均值。
4.众数众数是数据集中出现频率最高的数值。
一个数据集可以有一个或多个众数。
众数可以用来描述数据集中出现频率最高的数值,通常用符号Mo 表示。
5.极差极差是描述数据集分散程度的一个统计量。
它是数据集中最大值与最小值的差别。
极差可以用来描述数据集的波动性,如果极差较大,说明数据分散程度较大。
6.方差方差是描述数据集分散程度的一个统计量。
方差是数据与其均值之间差异的平均平方值。
方差可以用来描述数据集的波动性,如果方差较大,说明数据分散程度较大。
7.标准差标准差是描述数据集分散程度的一个统计量。
标准差是方差的平方根,用符号σ来表示。
标准差可以用来描述数据集的波动性,如果标准差较大,说明数据分散程度较大。
8.相关系数相关系数是描述两个变量之间关系强度的一个统计量。
相关系数的取值范围在-1到1之间,当相关系数为正时,表示两个变量正相关,当相关系数为负时,表示两个变量负相关。
相关系数可以用来描述两个变量之间的关联程度。
9.回归分析回归分析是一种描述和预测变量之间关系的方法。
回归分析可以用来研究因变量与自变量之间的关系,并通过建立回归方程对因变量进行预测和解释。
10.结论通过实验一的学习,我们了解了常用的计算方法及描述统计量分析。
计算方法 实验一 方程求根
实验一方程求根(1)二分法
1、实验程序
实现二分法的MATLAB函数文件agui_bisect.m
2. 在MATLAB命令窗口输入及实验结果及操作界面
(2)迭代法
1、实验程序
实现二分法的MATLAB函数文件agui_iterative.m
2、在MATLAB命令窗口输入及实验结果及操作界面
(3)牛顿法
1、实验程序
实现二分法的MATLAB函数文件agui_newton.m
2、在MATLAB命令窗口输入及实验结果及操作界面
结果分析:
由上面的对二分法、迭代法、牛顿法三种方法的三次实验结果,我们可以得出这样的结论:
二分法要循环k=10次,迭代法要迭代k=4次,牛顿法要迭代k=2次才能达到精度为0.5*10^-3的要求,而且方程0210=-+x e x
的精确解经计算,为0.0905250,由此可知,牛顿法和迭代法的精确度要优越于二分法。
而这三种方法中,牛顿法不仅计算量少,而且精确度高。
从而可知牛顿迭代法收敛速度明显加快,但由所学的内容可知,其收敛性与初值有关,它是局部收敛的。
二分法收敛虽然是速度最慢,但也常用于求精度不高的近似根。
而迭代法是逐次逼近的方法,原理简单,但存在收敛性和收敛速度的问题。
总之各种方法都各有优劣,适用于不同的情况中,须具体情况具体分析。
计算方法实验报告
班级:地信11102班序号: 20姓名:任亮目录计算方法实验报告(一) (3)计算方法实验报告(二) (6)计算方法实验报告(三) (9)计算方法实验报告(四) (13)计算方法实验报告(五) (18)计算方法实验报告(六) (22)计算方法实验报告(七) (26)计算方法实验报告(八) (28)计算方法实验报告(一)一、实验题目:Gauss消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯消去法基础原理2、掌握高斯消去法法解方程组的步骤3、能用程序语言对Gauss消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、建立工程,建立Gauss.h头文件,在头文件中建类,如下:class CGauss{public:CGauss();virtual ~CGauss();public:float **a; //二元数组float *x;int n;public:void OutPutX();void OutputA();void Init();void Input();void CalcuA();void CalcuX();void Calcu();};(2)、建立Gauss.cpp文件,在其中对个函数模块进行设计2-1:构造函数和析构函数设计CGauss::CGauss()//构造函数{a=NULL;x=NULL;cout<<"CGauss类的建立"<<endl;}CGauss::~CGauss()//析构函数{cout<<"CGauss类撤销"<<endl;if(a){for(int i=1;i<=n;i++)delete a[i];delete []a;}delete []x;}2-2:函数变量初始化模块void CGauss::Init()//变量的初始化{cout<<"请输入方程组的阶数n=";cin>>n;a=new float*[n+1];//二元数组初始化,表示行数for(int i=1;i<=n;i++){a[i]=new float[n+2];//表示列数}x=new float[n+1];}2-3:数据输入及输出验证函数模块void CGauss::Input()//数据的输入{cout<<"--------------start A--------------"<<endl;cout<<"A="<<endl;for(int i=1;i<=n;i++)//i表示行,j表示列{for(int j=1;j<=n+1;j++){cin>>a[i][j];}}cout<<"--------------- end --------------"<<endl;}void CGauss::OutputA()//对输入的输出验证{cout<<"-----------输出A的验证-----------"<<endl;for(int i=1;i<=n;i++){for(int j=1;j<=n+1;j++){cout<<a[i][j]<<" ";}cout<<endl;}cout<<"---------------END--------------"<<endl;}2-4:消元算法设计及实现void CGauss::CalcuA()//消元函数for(int k=1 ;k<n;k++){for(int i=k+1;i<=n;i++){double lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}a[i][k]=0; //显示消元的效果}}}2-5:回代计算算法设计及函数实现void CGauss::CalcuX()//回带函数{for(int i=n;i>=1;i--){double s=0;for(int j=i+1;j<=n;j++){s+=a[i][j]*x[j];}x[i]=(a[i][n+1]-s)/a[i][i];}}2-6:结果输出函数模块void CGauss::OutPutX()//结果输出函数{cout<<"----------------X---------------"<<endl;for(int i=1 ;i<=n;i++){cout<<"x["<<i<<"]="<<x[i]<<endl;}}(3)、“GAUSS消元法”主函数设计int main(int argc, char* argv[]){CGauss obj;obj.Init();obj.Input();obj.OutputA();obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();//obj.Calcu();return 0;2、实验运行结果计算方法实验报告(二)一、实验题目:Gauss列主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯列主元消去法基础原理(1)、主元素的选取(2)、代码对主元素的寻找及交换2、掌握高斯列主元消去法解方程组的步骤3、能用程序语言对Gauss列主元消去法进行编程实现四、实验过程代码及结果1、实验算法及其代码模块设计(1)、新建头文件CGuassCol.h,在实验一的基础上建立类CGauss的派生类CGuassCol公有继承类CGauss,如下:#include "Gauss.h"//包含类CGauss的头文件class CGaussCol:public CGauss{public:CGaussCol();//构造函数virtual ~CGaussCol();//析构函数public:void CalcuA();//列主元的消元函数int FindMaxIk(int k);//寻找列主元函数void Exchange(int k,int ik);//交换函数void Calcu();};(2)、建立CGaussCol.cpp文件,在其中对个函数模块进行设计2-1:头文件的声明#include "stdafx.h"#include "CGuassCol.h"#include "math.h"#include "iostream.h"2-2:派生类CGaussCol的构造函数和析构函数CGaussCol::CGaussCol()//CGaussCol类构造函数{cout<<"CGaussCol类被建立"<<endl;}CGaussCol::~CGaussCol()//CGaussCol类析构函数{cout<<"~CGaussCol类被撤销"<<endl;}2-3:高斯列主元消元函数设计及代码实现void CGaussCol::CalcuA()//{for(int k=1 ;k<n;k++){int ik=this->FindMaxIk(k);if(ik!=k)this->Exchange(k,ik);for(int i=k+1;i<=n;i++){float lik=a[i][k]/a[k][k];for(int j=k;j<=n+1;j++){a[i][j]-=lik*a[k][j];}}}}2-4:列主元寻找的代码实现int CGaussCol::FindMaxIk(int k)//寻找列主元{float max=fabs(a[k][k]);int ik=k;for(int i=k+1;i<=n;i++){if(max<fabs(a[i][k])){ik=i;max=fabs(a[i][k]);}}return ik;}2-5:主元交换的函数模块代码实现void CGaussCol::Exchange(int k,int ik)//做交换{for(int j=k;j<=n+1;j++){float t=a[k][j];a[k][j]=a[ik][j];a[ik][j]=t;}}(3)、建立主函数main.cpp文件,设计“Gauss列主元消去法”主函数模块3-1:所包含头文件声明#include "stdafx.h"#include "Gauss.h"#include "CGuassCol.h"3-2:主函数设计int main(int argc, char* argv[]){CGaussCol obj;obj.Init();//调用类Gauss的成员函数obj.Input();//调用类Gauss的成员函数obj.OutputA();//调用类Gauss的成员函数obj.CalcuA();obj.OutputA();obj.CalcuX();obj.OutPutX();return 0;}2、实验结果计算方法实验报告(三)一、实验题目:Gauss完全主元消去法解方程组二、实验学时: 2学时三、实验目的和要求1、掌握高斯完全主元消去法基础原理;2、掌握高斯完全主元消去法法解方程组的步骤;3、能用程序语言对Gauss完全主元消去法进行编程(C++)实现。
「实验报告计算方法」
「实验报告计算方法」实验报告的计算方法包括统计数据的处理、数据分析与图表的绘制等内容。
下面将以实验报告中常见的计算方法为例进行详细介绍。
首先,实验报告中常见的计算方法之一是平均值的计算。
在实验中,往往需要多次重复测量同一个实验现象或现象相关的参数,然后将测得的数据求平均值。
计算平均值的步骤如下:1.将测得的数据依次排列;2.求出所有数据的总和;3.将总和除以数据的个数,得到平均值。
例如,实验中测得物体从起点到终点的位移分别为32 cm、35 cm和38 cm,那么求位移的平均值时,先将这3个数相加得到:32 + 35 + 38 = 105 cm,然后将总和105除以3(数据的个数),得到位移的平均值为35 cm。
第二,实验报告中还常常需要计算数据组的标准差。
标准差是用来描述一组数据的离散程度的指标,用来衡量数据的分散程度。
计算标准差的步骤如下:1.求出数据的平均值;2.将每组数据减去平均值后的差值平方;3.将所有平方差值相加;4.将总和除以数据的个数;5.将上一步骤的结果开平方,得到标准差。
例如,实验中测得物体从起点到终点的位移分别为32 cm、35 cm和38 cm,先求位移的平均值得到35 cm,然后将每组数据减去平均值后的差值平方,得到:(32-35)^2 + (35-35)^2 + (38-35)^2 = 9 + 0 + 9 = 18,然后将平方差值相加得到18,再将18除以3(数据的个数),得到6,最后将6开平方,得到标准差为2.45 cm。
第三,实验报告中还涉及数据的比较与分析。
通过比较不同样本或者不同实验条件下的数据来推导结论。
常用的比较与分析方法有:T检验、方差分析、线性回归等。
T检验用于比较两组数据的均值是否存在显著差异。
根据两组数据的均值、标准差和数据个数,通过T检验的统计分析可以给出是否存在显著差异的结论。
方差分析用于比较多组数据的均值是否存在显著差异。
根据多组数据的均值、标准差和数据个数,通过方差分析的统计分析可以给出是否存在显著差异的结论。
《计算方法》上机实验指导书刘轶中-8页word资料
理学院《计算方法》实验指导书适合专业:信息与计算科学数学与应用数学贵州大学二OO七年八月前言《计算机数值计算方法》包括很多常用的近似计算的处理手段和算法,是计算科学与技术专业的必修课程,为了加强学生对该门课程的理解,使学生更好地掌握书中的计算方法、编制程序的能力,学习计算方法课程必须重视实验环节,即独立编写出程序,独立上机调试程序,必须保证有足够的上机实验时间。
在多年教学实践基础上编写了《计算机数值计算方法》上机实习指南,目的是通过上机实践,使学生能对教学内容加深理解,同时培养学生动手的能力.本实习指南,可与《计算机数值计算方法》课本配套使用,但是又有独立性,它不具体依赖哪本教科书,主要的计算方法在本指南中都有,因此,凡学习计算方法课的学生都可以参考本指南进行上机实习。
上机结束后,按要求整理出实验报告。
实验报告的内容参阅《计算机数值计算方法》上机实验大纲。
目录第一章解线性方程组的直接法实验一 Gauss列主元素消去法实验二解三对角线性方程组的追赶法第二章插值法与最小二乘法实验三 lagrange插值法实验四分段插值法实验五 曲线拟合的最小二乘法第三章 数值积分实验六 复合求积法实验七 变步长法第四章 常微分方程数值解法实验八 Euler 方法第五章 解线性方程组和非线性方程的迭代法实验九 Jacobi 迭代法、Gauss-Seidel 迭代法实验十 Newton 迭代法实验一 : Gauss 列主元素消去法实验学时:2实验类型:验证实验要求:必修一、实验目的用gauss 消去法求线性方程组AX=b. 其中一、 实验内容二、 实验条件PC 机,tc2.0,Internet 网。
三、 实验步骤1.根据算法事先写出相应程序。
2.启动PC 机,进入tc 集成环境,输入代码。
3.编译调试。
4. 调试通过,计算出正确结果后。
实验二 解三对角线性方程组的追赶法⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=b b b x x x a a a a a a a a a n n nn n n n n b X A M M 2122122221112111....................................实验学时:2实验类型:验证实验要求:必修一、实验目的二、实验内容三、实验组织远行要求统一进行实验,一人一组四、实验条件PC机,tc2.0,Internet网五、实验步骤a)根据算法事先写出相应程序。
计算方法非线性方程求根实验
f (a ) ⋅ f (b) < 0 ;又设 f ( x) 的一个零点 x* ∈ (a, b) 的近似值 (设f ′( x0 ) ≠ 0) 。用过曲
计算方法实验五牛顿法,牛顿下山法,切线法,二分法
计算机实现数值积分 实验目的:非线性方程求解 实验内容:1.二分法的 Matlab 实现; 2.牛顿法的 Matlab 实现; 3.牛顿下山法、割线法、艾特金加速法、重根 迭代法、非线性方程组牛顿法中任选其一。 实验要求:1.每种算法要求达到给定的精度,输出近似 解结果及所需迭代次数; 2. P.239、171,或自选题目; 3.每个算法至少实验一个题目。
Therefore,the root is x=1.3571,iteration number is k=2.
6.在 MATLAB 工作窗口输入程序 [k,xk,yk,piancha,xdpiancha]=newtonqx(1,1e-8, 1e-8,100) 7.运行结果 y =16 y =26 y =0.3350 ans =1.0000 1.3846 0.3350 0.6154 0.4444 y =0.3350 y =18.5207 y =-0.0481
-0.0481
0.0181
0.0132
0.0072
0.0026
0.0019
-0.0011
0.0004
0.0003
0.0002
0.0001
0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000
0.0000
0.0000
0.0000
0.0000
0.0000
-0.0000
Therefore,the root is x=1.3688,iteration number is k=7.
pare the number of computations for finding the root of
计算方法实验报告(附代码)
实验一 牛顿下山法实验说明:求非线性方程组的解是科学计算常遇到的问题,有很多实际背景.各种算法层出不穷,其中迭代是主流算法。
只有建立有效的迭代格式,迭代数列才可以收敛于所求的根。
因此设计算法之前,对于一般迭代进行收敛性的判断是至关重要的。
牛顿法也叫切线法,是迭代算法中典型方法,只要初值选取适当,在单根附近,牛顿法收敛速度很快,初值对于牛顿迭代 至关重要。
当初值选取不当可以采用牛顿下山算法进行纠正。
牛顿下山公式:)()(1k k k k x f x f x x '-=+λ下山因子 ,,,,322121211=λ下山条件|)(||)(|1k k x f x f <+实验代码:#include<iostream> #include<iomanip> #include<cmath>using namespace std;double newton_downhill(double x0,double x1); //牛顿下山法函数,返回下山成功后的修正初值double Y; //定义下山因子Y double k; //k为下山因子Y允许的最小值double dfun(double x){return 3*x*x-1;} //dfun()计算f(x)的导数值double fun1(double x){return x*x*x-x-1;} //fun1()计算f(x)的函数值double fun2(double x) {return x-fun1(x)/dfun(x);} //fun2()计算迭代值int N; //N记录迭代次数double e; //e表示要求的精度int main(){double x0,x1;cout<<"请输入初值x0:";cin>>x0;cout<<"请输入要求的精度:";cin>>e;N=1;if(dfun(x0)==0){cout<<"f'(x0)=0,无法进行牛顿迭代!"<<endl;}x1=fun2(x0);cout<<"x0"<<setw(18)<<"x1"<<setw(18)<<"e"<<setw(25)<<"f(x1)-f(x0)"<<endl;cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<" "<<fabs(fun1(x1))-fabs(fun1(x0))<<endl;if(fabs(fun1(x1))>=fabs(fun1(x0))){ //初值不满足要求时,转入牛顿下山法x1=newton_downhill(x0,x1);} //牛顿下山法结束后,转入牛顿迭代法进行计算while(fabs(x1-x0)>=e){ //当精度不满足要求时N=N+1;x0=x1;if(dfun(x0)==0){cout<<"迭代途中f'(x0)=0,无法进行牛顿迭代!"<<endl;} x1=fun2(x0);cout<<setiosflags(ios::fixed)<<setprecision(6)<<x0<<" "<<x1<<" "<<fabs(x1-x0)<<endl;}cout<<"迭代值为:"<<setiosflags(ios::fixed)<<setprecision(6)<<x1<<'\n';cout<<"迭代次数为:"<<N<<endl;return 0;}double newton_downhill(double x0,double x1){Y=1;cout<<"转入牛顿下山法,请输入下山因子允许的最小值:";cin>>k;while(fabs(fun1(x1))>=fabs(fun1(x0))){if(Y>k){Y=Y/2;}else {cout<<"下山失败!";exit(0);}x1=x0-Y*fun1(x0)/dfun(x0);}//下山成功则cout<<"下山成功!Y="<<Y<<",转入牛顿迭代法计算!"<<endl;return x1;}实验结果:图4.1G-S 迭代算法流程图实验二 高斯-塞德尔迭代法实验说明:线性方程组大致分迭代法和直接法。
计算方法实验报告
实验一:误差传播与算法稳定性实验目的:体会稳定性在选择算法中的地位。
实验内容:考虑一个简单的由积分定义的序列10I ,0,1,10nn x dx n a x==+⎰其中a 为参数,分别对0.05a =及15a =按下列两种方法计算。
方案1:用递推公式11,1,2,,10n n I aI n n-=-+= 递推初值可由积分直接得01lna I a+= 方案2:用递推公式111(),,1,,1n n I I n N N a n-=-+=-根据估计式当1n a n ≥+时,11(1)(1)(1)n I a n a n <<+++或当01n a n ≤<+时,11(1)(1)n I a n n<≤++ 取递推初值 当1n a n ≥+时, 11121()2(1)(1)(1)2(1)(1)N N a I I a N a N a a N +≈+=+++++ 当01n a n ≤<+时,111()2(1)(1)N N I I a N N≈+++ 实验要求:列出结果,并对其稳定性进行分析比较,说明原因。
实验二:非线性方程数值解法实验目的:探讨不同方法的计算效果和各自特点 实验内容:应用算法(1)牛顿法;(2)割线法 实验要求:(1)用上述各种方法,分别计算下面的两个例子。
在达到精度相同的前提下,比较其迭代次数。
(I )31080x x +-=,取00x =;(II) 2281(0.1)sin 1.060x x x -+++=,取00x =;(2) 取其它的初值0x ,结果如何?反复选取不同的初值,比较其结果; (3) 总结归纳你的实验结果,试说明各种方法的特点。
实验三:选主元高斯消去法----主元的选取与算法的稳定性问题提出:Gauss 消去法是我们在线性代数中已经熟悉的。
但由于计算机的数值运算是在一个有限的浮点数集合上进行的,如何才能确保Gauss 消去法作为数值算法的稳定性呢?Gauss 消去法从理论算法到数值算法,其关键是主元的选择。
计算方法实验方法过程
计算方法实验方法过程
计算方法和实验方法是科学研究中的重要手段,它们可以帮助我们探索未知的领域和验证假设。
以下是计算方法和实验方法的详细过程:
确定研究问题:首先需要确定一个具体的研究问题,这通常是基于现实生活中的现象或实验现象,并具有实际应用价值。
收集数据:根据研究问题,需要收集相关的数据。
这可以通过各种途径,如调查、实验、观察等。
在收集数据时,需要保证数据的准确性和可靠性。
建立模型:在收集完数据后,需要建立一个适当的模型来描述问题。
这个模型可以是数学模型、物理模型或计算机模型等。
模型的建立需要基于对问题的深入理解和分析。
计算方法:根据建立的模型,选择适当的计算方法来进行数据处理和分析。
计算方法的选择需要基于问题的性质和数据的特点,并且需要考虑计算的效率和精度。
实验方法:根据研究问题,设计适当的实验来验证假设或探究现象。
实验方法的选择需要考虑实验的目的、实验条件、实验步骤等因素,并确保实验结果的准确性和可重复性。
数据处理和分析:使用计算方法对实验数据进行处理和分析,提取有用的信息,并进行统计和可视化处理。
在这个过程中,需要注意数据的处理方式和处理工具的选择。
结果解释和结论:根据数据处理和分析的结果,解释现象并得出结论。
如果结果与预期不一致,可能需要重新审视模型和实验方法,并进行修正和改进。
总的来说,计算方法和实验方法都是科学研究中的重要手段,它们可以帮助我们探索未知的领域和验证假设。
在具体的研究过程中,需要根据问题的性质和数据的特点选择适当的方法,并进行充分的准备和实验设计。
计算方法实验心得体会(专业13篇)
计算方法实验心得体会(专业13篇)计算机实验心得体会一学期的计算机网络实验课结束了。
通过这一学期的学习,使得自己在计算机网络这一方面有了更多的了解,更深刻的体会,对计算机网络也有了更多的兴趣。
大家在一起对计算机基础教学中、培训中的一些问题进行了探讨、相互间受到许多启发。
特别是每一次实验课,以团队为基础进行试验。
这样不仅能使我们快速完成实验,而且培养了团队合作的精神。
当实验过程中,不同人扮演不同的角色时,还可以分享实验心得,这样起到了互补的作用。
我们学习了:双绞线的制作与测试,我们认识了局域网中几种网线及其各自的特点;学会了用双绞线制作网线;学习掌握了路由器间背靠背的连接方法,路由器的工作原理等;交换机的工作原理、交换技术和vlan作用;alc配置;配置虚拟网等等的内容。
计算机网络实验,我们熟悉了解路由器的基本作用和基本功能。
了解代理服务的概念和掌握配置代理服务器的'方法和过程。
体会到协作学习的一些理念。
希望以后还会有机会再去接触计算机网络实验这门课程,也希望能从中得到更多的启示,并希望这门课的老师越讲越好,这门课越来越好。
计算机网络课程的实验不同于以前做过的c语言上机实验和数据结构上机实验,后两者都是编程的,要求的是个人对基础知识的掌握和熟练的应用,简单地说就是一个人的战场。
而计算机网络课程则是一门操作性很强的课程,很多时候它更要求我们注重团队之间的交流与配合,而不是独自完成。
第一次实验是双绞线的制作,通过这个实验让我学到了如何制作双绞线,也是我大学期间第一次做操作性这么强的实验。
以前的实验都是编程,而这一次的实验却是完完全全地让我们自己动手。
剥皮—排序—理直—剪齐—插入—压线,虽然实验过去了有一段时间,但是还是能清楚地记得做法。
虽然最后我们的实验没有成功,但是这并不代表我们没有收获。
第二次的实验是linux的使用与dns服务器的配置与管理。
在课堂上,由于机子的问题,linux不能成功打开。
《计算方法》实验报告材料
double Newton(double x,vector<double>&X,vector<double>&Y);
int main(){
char a='n';
do{
int n;
cout<<"请输入插值点个数:"<<endl;
for(int i=0;i<N;i++){
X[i]=p;
Y[i]=1/(1+p*p);
p=p+c;
}
cout<<"请输入要求值x的值:"<<endl;
double x;
cin>>x;
double result=fenduan(N,X,Y,x,c);
cout<<"由分段线性插值法得出结果: "<<result<<endl;
cin>>n;
vector<double>X(n,0);
vector<double>Y(n,0);
cout<<"请输入插值点对应的值及函数值(Xi,Yi):"<<endl;
for(int i=0;i<n;i++){
cin>>X[i]>>Y[i];
}
cout<<"请输入要求值x的值:"<<endl;
计算方法实验二
《计算方法》实验报告实验二插值法二级学院:计算机学院专业:计算机科学与技术指导教师:爨莹班级学号:姓名:实验二插值法1、实验目的:1、掌握直接利用拉格郎日插值多项式计算函数在已知点的函数值;观察拉格郎日插值的龙格现象。
2、了解Hermite插值法、三次样条插值法原理,结合计算公式,确定函数值。
2、实验要求:1、认真分析题目的条件和要求,复习相关的理论知识,选择适当的解决方案和算法;2、编写上机实验程序,作好上机前的准备工作;3、上机调试程序,并试算各种方案,记录计算的结果(包括必要的中间结果);4、分析和解释计算结果;5、按照要求书写实验报告;3、实验内容:1、用拉格郎日插值公式确定函数值;对函数f(x)进行拉格郎日插值,并对f(x)与插值多项式的曲线作比较。
2、已知函数表:(0.56160,0.82741)、(0.56280,0.82659)、(0.56401,0.82577)、(0.56521,0.82495)用三次拉格朗日插值多项式求x=0.5635时函数近似值。
3、P129,(12)4、题目:插值法5、原理:拉格朗日插值法是以法国十八世纪数学家约瑟夫·路易斯·拉格朗日命名的一种多项式插值方法。
许多实际问题中都用函数来表示某种内在联系或规律,而不少函数都只能通过实验和观测来了解。
如对实践中的某个物理量进行观测,在若干个不同的地方得到相应的观测值,拉格朗日插值法可以找到一个多项式,其恰好在各个观测的点取到观测到的值。
这样的多项式称为拉格朗日(插值)多项式。
数学上来说,拉格朗日插值法可以给出一个恰好穿过二维平面上若干个已知点的多项式函数。
6、设计思想:通过拉格朗日插值法找到拉格朗日多项式,计算某个x对应的y值。
7、对应程序://Lagrange.cpp#include <stdio.h>#include <conio.h>#define N 4int checkvalid(double x[], int n);void printLag (double x[], double y[], double varx, int n);double Lagrange(double x[], double y[], double varx, int n);void main (){double x[N+1] = {0.56160, 0.56280, 0.56401, 0.56521};double y[N+1] = {0.82741, 0.82659, 0.82577, 0.82459};double varx = 0.5635;if (checkvalid(x, N) == 1){printf("\n\n插值结果: P(%f)=%f\n", varx, Lagrange(x, y, varx, N));}else{printf("结点必须互异");}getch();}int checkvalid (double x[], int n){int i,j;for (i = 0; i < n; i++){for (j = i + 1; j < n+1; j++){if (x[i] == x[j])//若出现两个相同的结点,返回-1{return -1;}}}return 1;}double Lagrange (double x[], double y[], double varx, int n){double fenmu;double fenzi;double result = 0;int i,j;printf("Ln(x) =\n");for (i = 0; i < n+1; i++){fenmu = 1;for (j = 0; j < n+1; j++){if (i != j){fenmu = fenmu * (x[i] - x[j]);}}printf("\t%f", y[i] / fenmu);fenzi = 1;for (j = 0; j < n+1; j++){if (i != j){printf("*(x-%f)", x[j]);fenzi = fenzi * (varx - x[j]);}}if (i != n){printf("+\n");}result += y[i] / fenmu * fenzi;}return result;}8、实验结果:9、实验体会:拉格朗日插值法能很好的解决生产和科研中的一些问题,计算机编程的实现有利于其更好的应用。
计算方法实验.
计算方法实验指导姓名______________学号______________院系______________专业______________哈尔滨工业大学计算方法实验指导根据实际问题建立的数学模型,一般不能求出所谓的解析解,必须针对数学模型的特点确定适当的计算方法,编制出计算机能够执行的计算程序,输入计算机,进行调试,完成运算,如果计算结果存在问题或不知是否正确,还需要重新确定新的计算方法,再编制出计算程序,输入计算机,重新调试,完成运算,直至获得正确的计算结果,这就是数值计算的全部过程。
学生在学习“计算方法”和“高级语言”等课程时普遍存在的问题是:只会套用教科书中的标准程序进行数值计算,很少有人能够独立地将学过的数值算法编制成计算机程序,至于灵活应用已经掌握的算法求解综合性较大的课题,则更是困难的事情。
编写《计算方法实验指导》的目的是:突出数值计算程序结构化的思想。
提高学生的编程能力,加深对“计算方法”课程内容的理解和掌握,为”计算方法“课程的教学服务,进一步奠定从事数值计算工作的基础。
具体地1.根据“计算方法”课程内容的特点,给出五个典型算法的分析流程,学生可以利用所掌握的“高级语言”顺利地编制出计算机程序,上机实习,完成实验环节的教学要求。
2.所有的计算实习题目都经过任课教师逐一检验,准确无误。
3.充分利用循环的思想、迭代的思想,给出算法结构描述和程序语言的对应关系,有利于学生编制相应的程序。
4.结合实习题目,提出实验要求,要求学生按规范格式写出相应的实验报告,实验报告成绩记入期末总成绩。
需要提醒学生:不能简单地套用现成的标准程序完成实验题目,应当把重点放在对算法的理解、程序的优化设计、上机调试和计算结果分析上,否则就失去实验课的目的啦。
5. 五个具体的实验题目是:实验题目1拉格朗日(Lagrange)插值实验题目2龙贝格(Romberg)积分法实验题目3四阶龙格—库塔(Runge—Kutta)方法实验题目4牛顿(Newton)迭代法实验题目5高斯(Gauss)列主元消去法要求必须完成其中三个(如果全部完成更好)。
《计算方法实验》课件
计算方法实验 PPT 课件
实验介绍
实验安排
详细介绍了实验进行的时间安排和实验室要求。
实验目的
阐述了学习计算方法实验的重要目标和价值。
实验内容概述
概括性地介绍了实验涉及的主要内容和操作。
计算方法基础知识回顾
数值计算方法概述
概括了数值计算方法的定义和应用领域。
插值法简介
解释了插值法在数值计算中的作用和原理。
1 实验步骤
具体描述了进行插值法实验的步骤和操作流程。
2 实验要求
列举了完成实验所需的前置条件和要求。
3 实验结果和分析
总结了实验结果并给出了相关数据的分析和解释。
实验三:数值微积分实验
1 实验步骤
具体说明了进行数值微 积分实验的步骤和具体 操作。
2 实验要求
概述了完成实验所需的 前提条件和技术要求。
其他资料
介绍了一些其他有关计算方法实验的相关资料和参考。
3 实验结果和分析
总结了实验的结果,并 进行了相应数据分析和 解读。
实验总结
实验心得
分享了在完成实验过程中 的感悟和收获。
实验成果展示
展示了实验中获得的数据 和图表等成果知识和技能。
参考资料
书籍
推荐了一些计算方法方面的经典教材和参考书籍。
网络资源
提供了一些在线学习计算方法实验的优质网站和资源。
矩阵运算基础
介绍了矩阵的基本运算规则和重要性。
数值微积分概述
回顾了数值微积分的基本概念和计算方法。
实验一:矩阵运算实验
1 实验步骤
详细说明了进行矩阵运 算实验的步骤和操作。
2 实验要求
列出了完成实验所需的 前提条件和要求。
孟德尔实验计算方法
孟德尔实验计算方法孟德尔实验计算方法探究孟德尔遗传实验是遗传学领域的重要基石。
通过豌豆实验,孟德尔揭示了遗传规律,为后世遗传学研究奠定了基础。
本文将详细阐述孟德尔实验的计算方法,帮助读者更好地理解遗传规律。
一、孟德尔实验简介孟德尔通过对豌豆植物的杂交实验,发现了遗传规律。
他提出了两个基本假设:1.每个个体都有两个遗传因子,一个来自父亲,一个来自母亲;2.在生殖过程中,这两个遗传因子分离,分别进入不同的配子。
孟德尔通过实验验证了这两个假设,并总结出了遗传规律。
二、孟德尔实验计算方法1.提取遗传因子在孟德尔实验中,首先需要提取豌豆植物的遗传因子。
通常用大写字母表示显性遗传因子,小写字母表示隐性遗传因子。
例如,红色花(显性)的遗传因子可以表示为R,白色花(隐性)的遗传因子可以表示为r。
2.构建杂交组合根据实验目的,选择具有不同遗传因子的豌豆植物进行杂交。
例如,将红色花(RR)与白色花(rr)进行杂交。
3.列出可能的配子组合在杂交过程中,每个亲本会产生两种配子,分别携带一个遗传因子。
因此,可以根据亲本的遗传因子列出所有可能的配子组合。
例如,红色花(RR)的配子为R,白色花(rr)的配子为r。
4.计算杂交后代的比例将两个亲本的配子组合进行组合,可以得到杂交后代的遗传因子组合。
根据孟德尔遗传规律,可以计算出各种遗传因子组合的比例。
例如,红色花(R)与白色花(r)的杂交后代有:RR(红色花)、Rr(红色花)、rR(红色花)和rr(白色花)。
其中,红色花与白色花的比例为3:1。
5.分析实验结果根据计算得到的比例,分析实验结果是否符合孟德尔遗传规律。
如果实验结果与理论预测相符,说明遗传规律正确。
三、总结孟德尔实验计算方法通过对遗传因子的提取、配子组合、后代比例计算等步骤,揭示了遗传规律。
这种方法为遗传学研究提供了有力工具,对生物学的发展具有重要意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一:姓名:学号:班级:2013级计算机6班实验地点:第二机房实验时间:2015/3/171 实验目的和要求1. 二分法求方程的根2. 基本迭代法求方程的根3. 用埃特金求方程010423=-+x x 在1.5处的一个根,精度要求410-。
4. 牛顿下山法求方程的根求方程013=--x x 的根,初值取6.00=x ,精度满足510-。
5. 牛顿迭代法求解7,精度满足510-2 实验环境和工具机房VC63 实验结果3.1 算法流程图3.2 程序核心代码二分法代码#include<iostream.h>#include<math.h>void main(){double x,a=1.0,b=1.5;for(int i=1;i<10;i++){x=(a+b)/2;if((a*a*a-a-1)*(x*x*x-x-1)<0) b=x;elsea=x;if(b-a<0.01) break;cout<<x<<endl;}}直接迭代法#include<iostream.h>#include<math.h>void main(){double x0=0.5,x,e=2.718281;for(int i=1;i<20;i++){x=pow(e,-x0);if(x-x0<0.00001) break;cout<<x<<endl;x0=x;}}爱特金方程代码#include<iostream>#include<math.h>#include<iomanip>using namespace std;//////////double fun(double x);void AitkenIterative(double(*pf)(double x)); ////////////////////int main(){AitkenIterative(fun);return 0;}////////////////////double fun(double x){return 10/(x*x+4*x);}void AitkenIterative(double(*pf)(double x)){double x,x0;int maxflag,k=1;double err;double temp1,temp2;cout<<endl<<" 请输入最大迭代次数(推荐10000):maxflag=";cin>>maxflag;cout<<" 请输入精度要求:err=";cin>>err;cout<<" 请输入初始值:x0=";cin>>x;cout<<endl;do{x0=x;temp1=pf(x0);temp2=pf(temp1);x=temp2-(temp2-temp1)*(temp2-temp1)/(temp2-2*temp1+x0);cout<<" 第"<<k<<"步迭代的结果为:x("<<k<<")="<<x<<endl;++k;}while(fabs(x-x0)>err&&k<maxflag);if(k>=maxflag)cout<<" 迭代失败!此时k="<<k<<endl;else{cout<<" 迭代成功!迭代次数为:k="<<k-1<<endl;cout<<" 方程的近似根为:root="<<x<<endl;cout<<" 函数值近似为:"<<pf(x)-x<<endl;}}4牛顿下山法核心代码int main(){NewtonIterative(fun,dfun);return 0;}double fun(double x){return (x*x*x-x-1);}double dfun(double x){return (3*x*x-1);}void NewtonIterative(double(*pfun)(double x),double (*pdfun)(double x)){int maxn,maxflag,k,n;k=1;n=0;double x0,x,temp;double err;cout<<endl<<" 请输入最大迭代次数(推荐10000):maxflag=";cin>>maxflag;cout<<endl<<" 请输入下山因子最多挑选次数(推荐10):maxn=";cin>>maxn;cout<<" 请输入精度要求:err=";cin>>err;cout<<" 请输入初始值x0=";cin>>x;cout<<endl;do{x0=x;temp=x0-1./pow(2,n)*pfun(x0)/pdfun(x0);if(fabs(pfun(temp))>=fabs(pfun(x0))&&n<maxn){n=n+1;temp=x0-1./pow(2,n)*pfun(x0)/pdfun(x0);}else if(fabs(pfun(temp))>=fabs(pfun(x0))){cout<<" 牛顿下山法失败!"<<endl;exit(1);}x=temp;if(n==0)cout<<" 第"<<k<<"步迭代的结果为:x("<<k<<")="<<x<<endl; else{cout<<" 第"<<k<<"步迭代的结果为:x("<<k<<")="<<x;cout<<" 下山因子为:r=1/2^"<<n<<endl;}n=0;++k;}while(fabs(x-x0)>err&&k<maxflag);if(k>=maxflag)cout<<endl<<" 牛顿下山法失败!迭代次数为k="<<k<<endl; else{cout<<endl<<" 牛顿下山法成功!迭代次数为k="<<k-1<<endl; cout<<" 牛顿下山法结果:近似根为root="<<x<<endl;牛顿法求根号7的值代码如下#include<iostream>#include<math.h>using namespace std;double f(double x);double df(double x);void main(){int maxflag,k=1,n=0;double x0,x,r;cout<<"请输入最大迭代次数:maxflag=";cin>>maxflag;cout<<" 请输入精度要求:r=";cin>>r;cout<<" 请输入初始值x0=";cin>>x;cout<<endl;if(df(x)==0)cout<<"牛顿迭代法失败"<<endl;elsewhile(k<maxflag){x=x0-1.0*f(x0)/df(x0);if(x-x0<r) break;cout<<x<<endl;x0=x;k=k+1;}cout<<"函数值为:"<<x<<endl;}double f(double x){return (x*x-7);}double df(double x){return (2*x);}3.3运行结果二分法运行结果直接迭代法运行结果爱特金方程运行结果牛顿下山法运行结果3.4牛顿法求根号7运行结果3.5运行结果分析由迭代次数k=4可知牛顿下山法的收敛速度快。