(2016)一元二次方程应用题
(完整版)一元二次方程的应用题及答案
一元二次方程的应用题及答案一、选择题1.某种花卉每盆的盈利与每盆的株数有一定的关系,每盆植3株时,平均每株盈利4元;若每盆增加1株,平均每株盈利减少0.5元,要使每盆的盈利达到15元,每盆应多植多少株?设每盆多植x 株,则可以列出的方程是( )A .(3+x )(4﹣0.5x )=15 B .(x+3)(4+0.5x )=15 C .(x+4)(3﹣0.5x )=15 D .(x+1)(4﹣0.5x )=152.一件商品的原价是100元,经过两次提价后的价格为121元,如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A .100(1+)2=121 B .100(1-)2=121C .100(1+)=121x x x D .100(1-)=121x 3.某商品连续两次降价,每次都降20﹪后的价格为元,则原价是( )m A .元 B .1.2元 C .元 D .0.82元28.0m m 22.1mm 4.三角形的两边长分别为3和6,第三边的长是方程x 2-6x +8=0的一个根,则这个三角形的周长是( )A .9B .11C .13D .11或135.等腰三角形一条边的长为3,它的另两条边的边长是关于的一元二次方程x 的两个根,则k 的值是( )2120x x k -+=A .27 B .36 C .27或36 D .186.某商店购进一种商品,单价为30元.试销中发现这种商品每天的销售量P (件)与每件的销售价x (元)满足关系:P=100﹣2x.若商店在试销期间每天销售这种商品获得200元的利润,根据题意,下面所列方程正确的是( )A .(x﹣30)(100﹣2x)=200 B .x (100﹣2x)=200C .(30﹣x)(100﹣2x)=200 D .(x﹣30)(2x﹣100)=2007.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果A . 2200(1)1000x +=B .20020021000x +⨯=C . 20020031000x +⨯=D .2200[1(1)(1)]1000x x ++++=二、填空题8.某小区2010年屋顶绿化面积为2000平方米,计划2012年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是.9.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,设平均每次降价的百分率是x,则可列出方程.10.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排28场比赛,若设参赛球队的个数是x,则列出方程为.11.某药品原价每盒25元,经过两次连续降价后,售价每盒16元.则该药品平均每次降价的百分数是_ _.12.某药品经过连续两次降价后,由每盒200元下调至128元,若平均每次下降百分率为x,则所列方程为.13.市政府为了解决市民看病难的问题,决定下调药品的价格.某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为.14.如图,某小区规划在一个长为40m、宽为26m的矩形场地ABCD上修建三条同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若使每一块草坪的面积为144m2,求小路的宽度.若设小路的宽度为xm,则x满足的方程为.15.现定义运算“※”,对于任意实数a、b,都有a※b=a2-3a+b,如:3※5=32-3×3+5,若x※2=6,则实数x的值是 ___________.16.学校组织一次乒乓球赛,要求每两队之间都要赛一场.若共赛了15场,则有几个x球队参赛?设有个球队参赛,列出正确的方程___________________.三、解答题17.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内的最大值.(含边界,不考虑树的粗细),求花园面积S18.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?19.(本小题满分8分)新华商场销售某种空调,每台进货价为2500元.市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.商场要想使这种空调的销售利润平均每天达到5000元,每台空调的定价应为多少元?20.如图所示,在长30m,宽20m的花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.要使种植花草的面积为532m2,那么小道进出口的?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)宽度应为多少m21.如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分,道路的宽应为多少?成大小不等的六块作实验田,要使试验田面积为570m222.某电脑公司2012年的各项经营收入中,经营电脑配件的收入为600万元,占全年经营总收入的40%,该公司预计2014年经营总收入要达到2160万元,且计划从2012年到2014年,每年经营总收入的年增长率相同,问每年的增长率是多少。
一元二次方程应用题(含答案)
1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元:要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且22=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s解:!(0+10)除2为平均增加为5(0+5a)除2乘a5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m(2)从开始加速到行驶64m处是用多长时间解:*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为2:64/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=10一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
(完整版)一元二次方程应用题20及答案
一元二次方程应用题20及答案1、有两个连续整数,它们的平方和为25,求这两个数。
解:设这两个数分别是a和a+1. 根据题意列方程:a²+(a+1)²=25整理得:a²+a-12=0 解得:a1=3 a2=-4当a=3时,两个数分别是3和4 当a=-4时,两个数分别是-3和-42、有一个两位数,它的十位上的数字比个位上的数字小2,十位上的数字与个位上的数字之积的3倍刚好等于这个两位数。
求这个两位数。
解:设个位数为x,则十位数为x-2 x(x-2)3=10(x-2)+x3 a²2-17x+20=0 (3x-5)(x-4)=0 x=5/3(舍去)或x=4则这两位数为243、有一个两位数,它的个位上的数字与十位上的数字之和是6,如果把它的个位数字与十位数字调换位置,所得的两位数乘以原来的两位数所得的积等于1008,求调换位置后得到的两位数。
解:设这个两位数个位数为x,则(10x+6-x)(10(6-x)+x) = 1008,化简得到x ²-6x+8=0,所以x=2或4面积问题4、用一块长80cm,宽60cm的薄钢片,在四个角上截去四个相同的边长为Xcm的小正方形,然后做成底面积为1500cm2的无盖的长方形盒子,求X的值。
解:设小正方形的边长为X厘米(80-2X)(60-2X)=1500 x² -70X+825=0(X-15)(X-55)=0 X=15或X=55(不符合,舍去)X=155、如图,在长为32m,宽为20m的矩形耕地上,修筑同样宽的三条道路,把耕地分成大小不等的六块作实验田,要使试验田面积为570m2,道路的宽应为多少?解:设宽度为xm,640-(20*2*x+32*x)+2x^=570x²-36x+35=0 (X-1)(X-35)=0x=1 或35(不合题意,舍去)x=1增长率问题6、某新华书店计划第一季度共发行图书122万册,其中一月份发行图书32万册,二、三月份平均每月增长率相同,求二、三月份各应发行图书多少万册?解:设增长率为x,则 32+32(1+x)+32(1+x)(1+x)=122(4x-1)(4x+13)=0 x=0.25或-3.25(不合题意,舍去)二月发行图书32(1+x)=40册三月发行图书32(1+x)(1+x)=50册7、某校2009年捐款1万元给希望工程,以后每年都捐款,计划到2011年共捐款4.75万元,问该校捐款的平均年增长率是多少?解:设平均年增长率为X。
一元二次方程应用题(含答案)
1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?解:(0+10)除2为平均增加为5(0+5a)除2乘a5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?解:2.5*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
一元二次方程练习题(应用题)
《一元二次方程应用》练习题一、填空题1.某地开展植树造林活动, 两年内植树面积由30万亩增加到42万亩, 若设植树面积年平均增长率为, 根据题意列方程 .2.某人将2000元人民币按一年定期存入银行, 到期后支取1000元用于购物, 剩下的1000元及应得利息又全部按一年定期存入银行, 若存款的利率不变, 且不考虑利息税, 到期后本息共计1320元, 若设年利率为, 根据题意可列方程 .3.一矩形舞台长m, 演员报幕时应站在舞台的黄金分割处, 则演员应站在距舞台一端_______m 远的地方.4.两个连续自然数的和的平方比它们的平方和大112, 若设较大的自然数为, 则另一个自然数为 , 根据题意列方程为_______ ____.5.有一张长40厘米、宽30厘米的桌面, 桌面正中间铺有一块垫布, 垫布的面积是桌面的面积的, 而桌面四边露出部分宽度相同, 如果设四周宽度为厘米, 则所列一元二次方程是____ ___.6.如图, 在△ABC 中, ∠B=90°点P 从点A 开始, 沿AB 边向点B 以1 cm/s 的速度移动, 点Q 从点B 开始, 沿BC 边向点C 以2 cm/s 的速度移动, 如果P 、Q 分别从A 、B 同时出发, ___ __秒后△PBQ 的面积等于8 cm2.二、选择题7.某超市一月份的营业额为200万元, 第一季度的营业额共1000万元, 如果平均每月的增长率为x, 则根据题意列出的方程应为( )A. B.C. D.8.一商店把货物按标价九折出售, 仍可获利20%, 若该货物的进价为21元, 则每件的标价为( )A.27.72元B.28元C.29.17元D.30元9.在长为80 m 宽为50 m 的草坪周边上修一条宽2 m 的环形人行道, 则余下的草坪面积为( )A.3496 m 2B.3744 m 2C.3648 m 2D.3588 m 210.用10米长的铁丝围成面积是3平方米的矩形, 则其长和宽分别是A.3米和1米B.2米和1.5米C.)35(+米和)35(-米D.2135+米和2135-米 11.一个两位数, 个位上的数比十位上的数小4, 且个位数与十位数的平方和比这个两位数小4, 设个位数是x, 则所列方程为( )A.B. C.4)4(10)4(22-++=++x x x x D.4)4(10)4(22--+=-+x x x x12.一项工程甲队做完需要天、乙队做完需要天, 两队合做完成这项工程需要天数为( )A.n m +B.)(21n m + C.mn n m + D.nm mn + 三、解答题13.有一面积为150 m2的长方形鸡场, 鸡场的一边靠墙(墙长18 m ), 另三边用竹篱笆围成, 如果竹篱笆的长为35 m, 求鸡场的长与宽各为多少米?14.如图, 某小区规划在长32米, 宽20米的矩形场地ABCD上修建三条同样宽的3条小路, 使其中两条与AD平行, 一条与AB平行, 其余部分种草, 若使草坪的面积为566米2, 问小路应为多宽?15.某商场销售一批名牌衬衫, 平均每天可售出20件, 每件盈利40元, 为扩大销售增加盈利, 尽快减少库存, 商场决定采取适当的降价措施, 经调查发现, 如果每件衬衫每降价一元, 市场每天可多售2件, 若商场平均每天盈利1250元, 每件衬衫应降价多少元?16.某商店经销一种销售成本为每千克40元的水产品, 据市场分析, 若按每千克50元销售一个月能售出500千克;销售单价每涨1元, 月销售量就减少10千克, 商店想在月销售成本不超过1万元的情况下, 使得月销售利润达到8000元, 销售单价应定为多少?17.一瓶100克的纯农药, 倒出一定数量后加等量的水搅匀, 然后再倒出相同数量的混合液, 这时瓶内所剩的混合液中还有纯农药36克, 问第一次倒出的纯农药为多少克?第二次倒出的混合液中纯农药多少克?。
2、一元二次方程应用题(教师版)
一元二次方程应用题【知识框架】⎪⎪⎪⎩⎪⎪⎪⎨⎧、利润问题、面积问题、传染病和树枝问题、循环问题、增长率问题一元二次方程应用题54321【入门测】1.(2016•凉山州模拟)下列方程中,一元二次方程共有( B )个 ①0122=--x x ;②02=++c bx ax ;③05312=-+x x;④02=-x ;⑤2)1(22=+-y x ;⑥2)3)(1(x x x =--. A .1 B .2 C .3 D .42.(2016•广州一模)已知等腰三角形两边长分别为3和5,第三边是方程0652=+-x x 的解,则这个三角形的周长是( C )A .9B .10C .11D .143.(2016•贵州)用配方法解一元二次方程0342=-+x x 时,原方程可变形为( B )A .1)2(2=+xB .7)2(2=+xC .13)2(2=+xD .19)2(2=+x4.(2016•河北)a ,b ,c 为常数,且222)(c a c a +>-,则关于x 的方程02=++c bx ax 根的情况是( B )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .有一根为05.(2016•衡阳)随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x ,根据题意列方程得( A )A. 9.16)1(102=+x B. 9.16)21(10=+xC .9.16)1(102=-x D. 9.16)21(10=-x一、增长率问题【笔记】【例1】恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.解 设这两个月的平均增长率是x .,则根据题意,得200(1-20%)(1+x )2=193.6, 即(1+x )2=1.21,解这个方程,得x 1=0.1,x 2=-2.1(舍去). 答 这两个月的平均增长率是10%.【例2】某商场第一季度的利润是82.75万元,其中一月份的利润是25万元,则利润平均每月的增长率为多少? 25+25(1+x )+25(1+x )2=82.75 X=10%【过关检测】1、某购物广场2015年3月份的营业额为500万元,4月份营业额比3月份减少%10,比5月份起逐月上升,6月份达到648万元,求5、6月份营业额的月平均增长率是 .(20%)2、股票每天的涨、跌幅均不能超过%10,即当涨了原价的%10后,便不能再涨,叫做涨停;当跌了原价的%10后,便不能再跌,叫做跌停。
一元二次方程的实际应用题
一元二次方程的实际应用题(一)传播问题1.市政府为了解决市民看病难的问题,决定下调药品的价格。
某种药品经过连续两次降价后,由每盒200元下调至128元,则这种药品平均每次降价的百分率为2.有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了个人。
3.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出小分支。
4.参加一次足球联赛的每两队之间都进行一场比赛,共比赛45场比赛,共有个队参加比赛。
5.参加一次足球联赛的每两队之间都进行两次比赛,共比赛90场比赛,共有个队参加比赛。
6.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,这个小组共有多少名同学?7.一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,这个小组共有多少人?8.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?(二)平均增长率问题变化前数量×(1 x)n=变化后数量1.青山村种的水稻2001年平均每公顷产7200公斤,2003年平均每公顷产8450公斤,水稻每公顷产量的年平均增长率为。
2.某种商品经过两次连续降价,每件售价由原来的90元降到了40元,求平均每次降价率是。
3.周嘉忠同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的60%,这样到期后,可得本金和利息共530元,求第一次存款时的年利率.(利息税为20%,只需要列式子)。
4.某种商品,原价50元,受金融危机影响,1月份降价10%,从2月份开始涨价,3月份的售价为64.8元,求2、3月份价格的平均增长率。
一元二次方程典型应用题
一元二次方程的应用题一、传播问题例1、(2016·乐清月考)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.若病毒得不到有效控制,经过几轮感染后机房内所有电脑都被感染?练习1、某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是13,则每个支干长出( )A.2个小分支B.3个小分支C.4个小分支D.5个小分支2、(2016·扬州模拟)卫生部门为了控制红眼病的流行传染,对该种传染病进行研究发现,若一人患了该病,经过两轮传染后共有121人患了该病.若按这样的传染速度,第三轮传染后我们统计发现有2662人患了该病,则最开始有________人患了该病.3、某种植物的根特别发达,它的主根长出若干数目的支根,支根中的1又长出同样多的小支根,而其余支3根长出一半数目的小支根,主根、支根、小支根的总个数是109,则这种植物的主根能长出多少个支根?二、循环问题例2、五一老同学聚会,每两个人都握一次手,所有人共握手28次,则参加聚会的人数是()A.7B.8C.9D.10练习1、(2016·天津模拟)参加一次足球联赛的每两个队之间都进行两场比赛,共要比赛110场,则参加比赛的队有( ) A.8个 B.9个 C.10个 D.11个2、某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有飞机场( ) A.4个B.5个 C.6个 D.7个3、(1)n边形(n>3)中一个顶点的对角线有________条.(2)一个凸多边形共有14条对角线,它是几边形?(3)是否存在有21条对角线的凸多边形?如果存在,它是几边形?如果不存在,说明理由.三、数字问题例3、有一个两位数,它的个位数字比十位数字大3,个位数字与十位数字的平方和比这个两位数大18,求这个两位数.练习:一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则可列方程( )A.x2+(x-4)2=10(x-4)+x-4B.x2+(x+4)2=10x+x-4-4C.x2+(x+4)2=10(x+4)+x-4D.x2+(x-4)2=10x+(x-4)-4四、增长(降低)率问题例4、2014年,某市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2017年的均价为每平方米5265元.(1)求平均每年下调的百分率.(2)假设2018年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?练习1、为防治雾霾,保护环境,合肥上下掀起“爱绿护绿”热潮,建好后的大蜀山森林公园将真正成为“合肥绿肺”,经过两年时间,绿地面积增加了21%,这两年绿地面积的年平均增长率是( ) A.12%B.30%C.10%D.22%2、(2015·兰州中考)股票每天的涨、跌幅均不能超过10%,即当涨了原价的10%后,便不能再涨,叫做涨停;当跌了原价的10%后,便不能再跌,叫做跌停.已知一只股票某天跌停,之后两天时间又涨回到原价.若这两天此股票股价的平均增长率为x,则x满足的方程是( )A.(1+x)2=1110B.(1+x)2=109C.1+2x=1110D.1+2x=1093、某工厂使用旧设备生产,每月生产收入是90万元,每月另需支付设备维护费5万元,从今年1月份起使用新设备,当月生产收入就提高到100万元,1至3月份累计收入达到364万元,且2,3月份生产收入保持相同的增长率.使用新设备后,生产收入的月增长率是多少?五、销售利润问题例5、(2016·朝阳中考)为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能售出500个,并且售价每上涨0.1元,其销售量将减少10个.为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.练习1、某西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价0.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利200元,应将每千克小型西瓜的售价降低________元.2、某工厂生产的某种产品按质量分为10个档次,第1档次(最低档次)的产品一天能生产95件,每件利润6元.每提高一个档次,每件利润增加2元,但一天产量减少5件.若要使一天的总利润为1120元,则该产品的质量档次为________.3、某旅行社组团去泰山旅游,推出了如下收费标准:如果人数不超过25人,每人团费800元;如果超过25人,每超过1人,每人团费降低10元,但每人团费不低于550元.某单位组织员工参加,共支付给旅行社旅游费用27000元,请问该单位共有多少名员工去泰山旅游六、面积问题例6、(2015·襄阳中考)如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m 的住房墙,另外三边用25m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m 2?练习1、小鹏的手中有一根长为40cm 的铜丝,他想用这根铜丝分段围成一个面积为50cm 2的如图所示的“日”字矩形铜丝框,求该矩形铜丝框的长.设该矩形铜丝框的长为xcm,根据题意,可列方程为 ( ) A.x (40−3x 2)=50 B.x (40−2x3)=50 C.x(40-3x)=50 D.x(40-2x)=502、.如图,矩形ABCD 是由三个矩形拼接成的.如果AB=8,阴影部分的面积是24,另外两个小矩形全等,那么小矩形的长为________.3、(2016·巴彦淖尔中考)如图,某小区有一块长为30m,宽为24m 的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m 2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为________m.4、如图,某旅游景点要在长、宽分别为20米、12米的矩形水池的正中央建一个与矩形的边互相平行的正方形观赏亭,观赏亭的四边连接四条与矩形的边互相平行且宽度相等的道路,已知道路的宽为正方形边长的14.若道路与观赏亭的面积之和是矩形水池面积的16,求道路的宽.七、动点问题例7、如图,在长方形ABCD 中,AB=5cm,BC=7cm,点P 从点A 开始沿线段AB 向点B 以1cm/s 的速度移动,点Q 从点B 开始沿线段BC 向点C 以2cm/s 的速度移动,点P,Q 分别从A,B 两点同时出发了t 秒钟,直至两动点中某一点到达端点后停止(即0<t ≤3.5).(1)经过几秒钟后,PQ 的长度等于5cm?(2)经过几秒钟后,△BPQ 的面积等于4cm 2? (3) 经过几秒钟后,△PDQ 是等腰三角形?练习:某军舰以20节的速度由西向东航行,一艘电子侦察船以30•节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A 处时,电子侦察船正位于A 处正南方向的B 处,且AB=90海里,•如果军船和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰?如果能,•最早何时能侦察到?如果不能,请说明理由.。
一元二次方程应用题(含答案)整理版
一元二次方程应用题(含答案)整理版第一篇:一元二次方程应用题(含答案)整理版一元二次方程应用题1、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600 展开后化简得:x²-44x+144=0 即(x-36)(x-4)=0 ∴x=4或x=36(舍)即每件降价4元2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行、列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69 x=3 增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价关系式解:(1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得: y=(x-30)[60+2(70-x)]-500 =-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500 元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4.现有长方形纸片一张,长19cm,宽15cm,需要剪去边长多少的小正方形才能做成底面积为77平方cm的无盖长方形的纸盒?解:设边长x 则(19-2x)(15-2x)=77 4x^2-68x+208=0 x^2-17x+52=0 (x-13)(x-4)=0,当x=13时19-2x<0不合题意,舍去故x=4 5.某商品进价为每件40元,如果售价为每件50元,每个月可卖出210件,如果售价超过50元,但不超过80元,每件商品的售价每上涨10元,每个月少卖1件,如果售价超过80元后,若再涨价,每件商品的售价每涨1元,每个月少卖3件。
一元二次方程应用题(含答案)
1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x元,依题意x≤10∴(44-x)(20+5x)=1600展开后化简得:x²-44x+144=0即(x-36)(x-4)=0∴x=4或x=36(舍)即每件降价4元要找准关系式2.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x (8+x)(12+x)=96+69 x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?解:(0+10)除2为平均增加为5(0+5a)除2乘a5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?解:2.5*8=20 100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
一元二次方程应用题
一元二次方程应用题1.制造某电器,原来每件的成本是300元,由于技术革新,连续两次降低成本,现在的成本是192元,求平均每次降低成本的百分率.2.2013年初,某市开始实施“旧物循环计划”,为旧物品二次利用提供了公益平台,到2013年底,全年回收旧物3万件,随着宣传力度的加大,2015年全年回收旧物试已经达6.75万件,若每年回收旧物的增长率相同.(1)求每年回收旧物的增长率;(2)按着这样的增长速度,请预测2016年全年回收旧物能超过10万件吗?3.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加件,每件商品盈利元(用含x的代数式表示)(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2100元?4.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元5.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.6.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.7.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)若地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.8.东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?9.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?10.青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.一元二次方程应用题09.15-171.制造某电器,原来每件的成本是300元,由于技术革新,连续两次降低成本,现在的成本是192元,求平均每次降低成本的百分率.300×(1﹣x)2=192,(1﹣x)2=0.64∴1﹣x=0.8∴x=20%.2.2013年初,某市开始实施“旧物循环计划”,为旧物品二次利用提供了公益平台,到2013年底,全年回收旧物3万件,随着宣传力度的加大,2015年全年回收旧物试已经达6.75万件,若每年回收旧物的增长率相同.(1)求每年回收旧物的增长率;(2)按着这样的增长速度,请预测2016年全年回收旧物能超过10万件吗?3(1+x)2=6.75.解得x1=0.5,x2=﹣2.5(舍去),(2)6.75×(1+50%)=10.125万件>10万件.3.商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施,经调查发现,每件商品每降价1元,商场每天可多售出2件,设每件商品降低x元据此规律,请回答:(1)商场日销售量增加2x件,每件商品盈利50﹣x元(用含x的代数式表示)(2)在上述条件不变,销售正常的情况下,每件商品降价多少元时,商场日盈利可达到2100元?【解答】解:(1)降价1元,可多售出2件,降价x元,可多售出2x件,盈利的钱数=50﹣x;(2)由题意得:(50﹣x)(30+2x)=2100得:x2﹣35x+300=0,解得:x1=15,x2=20由于该商场为了尽快减少库存,因此降的越多,越吸引顾客,故选x=20,4.学校为奖励“汉字听写大赛”的优秀学生,派王老师到商店购买某种奖品,他看到如图所示的关于该奖品的销售信息,便用1400元买回了奖品,求王老师购买该奖品的件数.购买件数销售价格不超过30件单价40元超过30件每多买1件,购买的所有衬衫单价降低0.5元,但单价不得低于30元【解答】解:∵30×40=1200<1400,∴奖品数超过了30件,设总数为x件,则每件商品的价格为:[40﹣(x﹣30)×0.5]元,x[40﹣(x﹣30)×0.5]=1400,解得:x1=40,x2=70,∵x=70时,40﹣(70﹣30)×0.5=20<30,∴x=70不合题意舍去,5.为满足市场需求,新生活超市在端午节前夕购进价格为3元/个的某品牌粽子,根据市场预测,该品牌粽子每个售价4元时,每天能出售500个,并且售价每上涨0.1元,其销售量将减少10个,为了维护消费者利益,物价部门规定,该品牌粽子售价不能超过进价的200%,请你利用所学知识帮助超市给该品牌粽子定价,使超市每天的销售利润为800元.【解答】解:设每个粽子的定价为x元时,每天的利润为800元.得(x﹣3)(500﹣10×)=800,解得x1=7,x2=5.∵售价不能超过进价的200%,∴x≤3×200%.即x≤6.∴x=5.6.如图,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25m),现在已备足可以砌50m长的墙的材料,试设计一种砌法,使矩形花园的面积为300m2.【解答】解:设AB为xm,则BC为(50﹣2x)m,x(50﹣2x)=300,2x2﹣50x+300=0,解得;x1=10,x2=15,当x1=10时50﹣2x=30>25(不合题意,舍去),当x2=15时50﹣2x=20<25(符合题意).7.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.(1)求配色条纹的宽度;(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.【解答】解:(1)设条纹的宽度为x米.2x×5+2x×4﹣4x2=×5×4,解得:x1=(不符合,舍去),x2=.(2)条纹造价:×5×4×200=850(元)其余:(1﹣)×4×5×100=1575(元)∴总造价为:850+1575=2425(元)8.东坡某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属第几档次产品;(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?【解答】解:(1)(14﹣10)÷2+1=3(档次).(2)设烘焙店生产的是第x档次的产品,根据题意得:(2x+8)×(76+4﹣4x)=1080,整理得:x2﹣16x+55=0,解得:x1=5,x2=11(不合题意,舍去).9.某玩具厂生产一种玩具,按照控制固定成本降价促销的原则,使生产的玩具能够及时售出,据市场调查:每个玩具按480元销售时,每天可销售160个;若销售单价每降低1元,每天可多售出2个.已知每个玩具的固定成本为360元,问这种玩具的销售单价为多少元时,厂家每天可获利润20000元?【解答】解:设销售单价为x元,:(x﹣360)[160+2(480﹣x)]=20000,整理,得:x2﹣920x+211600=0,解得:x1=x2=460,10.青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.(1)请问每个站点的造价和公共自行车的单价分别是多少万元?(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率.【解答】解:(1)设每个站点造价x万元,自行车单价为y万元.根据题意可得:解得:(2)720(1+a)2=2205解此方程:(1+a)2=,即:a1==75%,a2=﹣(不符合题意,舍去)。
一元二次方程应用题(动点问题)2016.9.8
课外延伸
4.有一边为5cm的正方形ABCD和等腰三角形PQR, PQ=PR=5cm,QR=8cm,点B、C、Q、R在同一直 线l上,当C、Q两点重合时,等腰三角形PQR以1cm/s的 速度沿直线l按箭头方向匀速运动, (1)t秒后正方形ABCD与等腰三角形PQR重合部分的 面积为5,求时间t; (2)当正方形ABCD与等腰三角形PQR重合部分的面 积为7,求时间t;
2 2
2
2 t2 t 5
B t=2不符合题意,舍去
拓展与创新
例3如图,Rt△ABC中,∠B=90°,AC=10cm,BC=6cm,现
有两个动点P、Q分别从点A和点B同时出发,其中点P以2cm/s 的速度,沿AB向终点B移动;点Q以1cm/s的速度沿BC向终点 C移动,其中一点到终点,另一点也随之停止.连接PQ.设 动点运动时间为x秒 (1)用含x的代数式表示BQ、PB的长度; (2)当x为何值时,△PBQ为等腰三角形; (3)是否存在x的值,使得四边形APQC的面积等于20cm2?若 存在,请求出此时x的值;若不存在,请说明理由. A P B Q C
一元二次方程的应用 ---动点问题
①若一个直角三角形的三边长为连续的偶数,则这个直角 三角形的斜边的长为 . ②若直角三角形的一条直角边的长为4cm,斜边与另一条 直角边的长度之比为5∶3,则这个直角三角形的面积 .
例1 在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开 始以1cm/s的速度沿AB边向点B移动,点Q从点B 开始以2cm/s的速度沿BC边向点C移动,如果P、Q 分别从A、B同时出发,几秒后⊿ PBQ的面积等于 8cm2?
课外延伸
2.如图,在梯形ABCD中,AD∥BC,∠B=90°, AB=4cm,AD=18cm,BC=21cm,点P从点A 出发,沿边AD向点D以2cm/s的速度移动,点Q从 点C出发沿边CB向点B以6cm/s的速度移动,P、Q 同时出发,若有一点运动到端点时,另一点也随之 停止.则①CD= cm; ②经过 秒后,PQ=CD.
一元二次方程应用题(利润问题)
一元二次方程应用题(利润问题)1、某市场销售一批名牌衬衫,平均每天可销售20件,每件赢利40元.为了扩大销售,增加赢利,尽快减少库存,商场决定采取适当降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件.求:(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)要使商场平均每天赢利最多,请你帮助设计方案.2.某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?3、西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?4、某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?5、某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价。
6、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元?7、将进货单价为40元的商品按50元出售时,能卖500个,如果该商品每涨价1元,其销售量就减少10个。
一元二次方程应用题(含答案)
一元二次方程应用题1:某种服装,平均每天可以销售20件,每件盈利44元,在每件降价幅度不超过10元的情况下,若每件降价1元,则每天可多售出5件,如果每天要盈利1600元,每件应降价多少元?解:设没件降价为x,则可多售出5x件,每件服装盈利44-x 元,依题意x≤10∴(44-x)(20+5x)=16002.游行队伍有8行12列,后又增加了69人,使得队伍增加的行·列数相同,增加了多少行多少列?解:设增加x(8+x)(12+x)=96+69x=3增加了3行3列3.某化工材料经售公司购进了一种化工原料,进货价格为每千克30元.物价部门规定其销售单价不得高于每千克70元,也不得低于30元.市场调查发现:单价每千克70元时日均销售60kg;单价每千克降低一元,日均多售2kg。
在销售过程中,每天还要支出其他费用500元(天数不足一天时,按一天计算).如果日均获利1950元,求销售单价解: (1)若销售单价为x元,则每千克降低了(70-x)元,日均多售出2(70-x)千克,日均销售量为[60+2(70-x)]千克,每千克获利(x-30)元.依题意得:y=(x-30)[60+2(70-x)]-500=-2x^2+260x-6500(30<=x<=70)(2)当日均获利最多时:单价为65元,日均销售量为60+2(70-65)=70kg,那么获总利为1950*7000/70=195000元,当销售单价最高时:单价为70元,日均销售60kg,将这批化工原料全部售完需7000/60约等于117天,那么获总利为(70-30)*7000-117*500=221500元,而221500>195000时且221500-195000=26500元.∴销售单价最高时获总利最多,且多获利26500元.4..运动员起跑20m后速度才能达到最大速度10m/s,若运动员的速度是均匀增加的,则他起跑开始到10m处时需要多少s?5.一辆警车停在路边,当警车发现一辆一8M/S的速度匀速行驶的货车有违章行为,决定追赶,经过2.5s,警车行驶100m追上货车.试问(1)从开始加速到追上货车,警车的速度平均每秒增加多少m?(2)从开始加速到行驶64m处是用多长时间?4解:(0+10)除2为平均增加为5(0+5a)除2乘a5解:2.5*8=20100-20=80 80/8=10100/【(0+10a)/2】=10解方程为264/【(0+2a)/2】=a解方程为86.一容器装满20L纯酒精,第一次倒出若干升后,用水加满,第二次又倒出同样升数的混合液,再用水加满,容器里只有5L的纯酒精,第一次倒出的酒精多少升?(过程)解:设第一次倒出x升,则第二次为x(20-x)/20.(此处为剩下的酒精占总体积20升的多少即比率然后乘上倒出的升数即为倒出的纯酒精数则20-x-x(20-x)/20=5解得x=106.1一个长方体的长与宽的比为5:2,高为5厘米,表面积为40平方厘米。
一元二次方程的应用题
一元二次方程的应用题一元二次方程的应用题一元二次方程的应用题(1)一、增长率问题例1 恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率。
解设这两个月的平均增长率是x。
,则根据题意,得200(1-20%)(1+x)2=193.6,即(1+x)2=1.21,解这个方程,得x1=0.1,x2=-2.1(舍去)。
答这两个月的平均增长率是10%。
说明这是一道正增长率问题,对于正的增长率问题,在弄清楚增长的次数和问题中每一个数据的意义,即可利用公式m(1+x)2=n求解,其中m<n。
对于负的增长率问题,若经过两次相等下降后,则有公式m(1-x)2=n即可求解,其中m>n。
二、商品定价例2 益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?解根据题意,得(a-21)(350-10a)=400,整理,得a2-56a+775=0,解这个方程,得a1=25,a2=31。
因为21×(1+20%)=25.2,所以a2=31不合题意,舍去。
所以350-10a=350-10×25=100(件)。
答需要进货100件,每件商品应定价25元。
说明商品的定价问题是商品交易中的重要问题,也是各种考试的热点。
三、储蓄问题例3 王红梅同学将1000元压岁钱第一次按一年定期含蓄存入“少儿银行”,到期后将本金和利息取出,并将其中的500元捐给“希望工程”,剩余的又全部按一年定期存入,这时存款的年利率已下调到第一次存款时年利率的90%,这样到期后,可得本金和利息共530元,求第一次存款时的`年利率。
(假设不计利息税)解设第一次存款时的年利率为x。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程应题精讲精练
1.(2014•衡阳)学校去年年底的绿化面积为5000平方米,预计到明年年底增加到7200平方米,求这两年的年平均增长率.
2.(2014•咸宁)随着市民环保意识的增强,烟花爆竹销售量逐年下降.咸宁市2011年销售烟花爆竹20万箱,到2013年烟花爆竹销售量为9.8万箱.求咸宁市2011年到2013年烟花爆竹年销售量的平均下降率.
3,某公司计划经过两年把某种商品的生产成本降低19%,那么平均每年需降低百分之几?
4,农场去年种植了10亩地的南瓜,亩产量为2000kg,根据市场需要,今年该农场扩大了种植面积,并且全部种植了高产的新品种南瓜,已知南瓜种植面积的增长率是亩产量的增长率的2倍,今年南瓜的总产量为60000kg,求南瓜亩产量的增长率.
5.(2013•襄阳)有一人患了流感,经过两轮传染后共有64人患了流感.(1)求每轮传染中平均一个人传染了几个人?
(2)如果不及时控制,第三轮将又有多少人被传染?
6.(2014•南京)某养殖户每年的养殖成本包括固定成本和可变成本,其中固定成本每年均为4万元,可变成本逐年增长,已知该养殖户第1年的可变成本为2.6万元,设可变成本平均的每年增长的百分率为x.
(1)用含x的代数式表示第3年的可变成本为______万元,
(2)如果该养殖户第3年的养殖成本为7.146万元,求可变成本平均每年增长的百分率x
7,参加一次聚会的每两人都握了一次手,所有人共握手66次,有多少人参加聚会?
8初三毕业晚会时每人互相送照片一张,一共要90张照片,有多少人?
作业
1.(2015•酒泉)今年来某县加大了对教育经费的投入,2013年投入2500万元,2015年投入3500万元.假设该县投入教育经费的年平均增长率为x,根据题意列方程,则下列方程正确的是()
A.2500x2=3500 B.2500(1+x)2=3500
C.2500(1+x%)2=3500 D.2500(1+x)+2500(1+x)2=3500
2.(2015•安徽)我省2013年的快递业务量为1.4亿件,受益于电子商务发展和法治环境改善等多重因素,快递业务迅猛发展,2014年增速位居全国第一.若2015年的快递业务量达到4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()
A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5
C.1.4(1+x)2=4.5 D.1.4(1+x)+1.4(1+x)2=4.5 3.(2015•日照)某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()
A.20% B.40% C.-220% D.30% 4.(2015•广州)某地区2013年投入教育经费2500万元,2015年投入教育经费3025
万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;
(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.
5.(2015•十堰)已知关于x 的一元二次方程22(23)20x m x m -+++=.
(1)若方程有实数根,求实数m 的取值范围;
(2)若方程两实数根分别为12x x 、,且满足221212x x 31|x x |+=+,求实数m 的值.
6.(8分) 如图某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长18m ),另三边用木栏围成,木栏长35m .
①鸡场的面积能达到150m 2吗?
②鸡场的面积能达到180m 2吗? 如果能,请你给出设计方案;如果不能,请说明理由.
7.(2014•新疆)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB ,BC 各为多少米?
8.(2014•淮安)用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x米,面积为y平方米.
(1)求y关于x的函数关系式;
(2)当x为何值时,围成的养鸡场面积为60平方米?
(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.。