圆和圆的位置关系1
4、圆与圆的位置关系
匚J Sf" 源于名校,成就所托、知识梳理:1圆与圆的五种位置关系:(1)外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部,叫做这两个圆外离。
(2)外切:两个圆有唯一公共点,并且除了这个公共点外,每个圆上的点都在另一个圆的外部,叫做这两个圆外切。
(3)相交:两个圆有两个公共点,叫做这两个圆相交。
(4)内切:两个圆有唯一公共点,并且除了这个公共点外,一个圆上的点都在另一个圆的内部,叫做这两个圆内切。
(5)内含:两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,叫做这两个圆内含。
2、圆与圆位置关系的数量描述:如果两圆的半径为r1?r2,圆心距为d,那么(1)两圆外离:二d ■ r1 r2;(2)两圆外切二d = 口• $ ;(3)两圆相交 u * - r2c d c * + r2;(4)两圆内切二d = A -r2;(5)两圆内含二;(当d=0时,两圆同心)3、相交两圆连心线的性质:相交两圆的连心线垂直平分两圆的公共弦。
4、相切两圆连心线的性质:相切两圆的连心线经过切点。
二、例题精讲:例1、( 1 )已知两圆的半径分别为5和2,且圆心距为3,那么这两个圆的位置关系是_____________(2)___________________________________________________________________ 已知两圆的半径是8和4,圆心距为3,这两个圆的位置关系是________________________________________________(3)_______________________________________________________________________________________________ 如果两个圆的圆心距为7,且这两个圆的直径分别为6和8,那么这两个圆的位置关系是__________________________ (4)_____________________________________________________________ 直径为10和8,且圆心距为10的两个圆的位置关系是_______________________________________________________(5)已知一个圆的半径为4,另一个圆的直径为6,而圆心距为5,这两个圆的位置关系是—(6)___________________________________________________________ 直径为8与6的两个圆相切,这两个圆的圆心距等于_______________________________________________________例2、解下列各题:(1)已知两圆内切,圆心距为2,一个圆的半径为3,那么另一个圆的半径是多少?(2)已知两个圆的圆心距为10, —个圆的半径为8,要使这两个圆外离,那么另一个圆的半径r的取值范围是怎样?(3)已知两圆外切,一个圆的半径为5,而圆心距为乙那么另一个圆的半径是多少?轡立方教冃、古宀丄亠源于名校,成就所托(4) 已知相切两圆的圆心距为 7,一个圆的半径为 6,试求另一个圆的半径。
圆与圆位置关系
圆与圆的位置关系1.圆与圆的位置关系:两圆(x -a 1)2+(y -b 1)2=r 21(r 1>0)与(x -a 2)2+(y -b 2)2=r 22(r 2>0)圆心距d =(a 1-a 2)2+(b 1-b 2)2 d >r 1+r 2⇔两圆__外离__;d =r 1+r 2⇔两圆__外切__;|r 1-r 2|<d <r 1+r 2⇔两圆__相交__;d =|r 1-r 2|⇔两圆__内切__;0<d <|r 1-r 2|⇔两圆__内含__,d =0时为同心圆.2.两圆的公切线条数:当两圆内切时有__一条__公切线;当两圆外切时有__三条__公切线;相交时有__两条__公切线;相离时有__四条__公切线;内含时__无__公切线.随堂练习1.圆x 2+y 2=1与圆x 2+y 2=2的位置关系是 ( C )A .相切B .外离C .内含D .相交[解析] 圆x 2+y 2=1的圆心O 1(0,0),半径r 1=1,圆x 2+y 2=2的圆心O 2(0,0),半径r 2=2则d =|O 1O 2|=0,|r 2-r 1|=2-1∴d <|r 2-r 1|,∴这两圆的位置关系是内含.2.圆x 2+y 2=4与圆(x -4)2+(y -7)2=1公切线的条数为 ( D )A .1B .2C .3D .4[解析] 圆x 2+y 2=4的圆心O 1(0,0),半径r 1=2,圆(x -4)2+(y -7)2=1的圆心O 2(4,7),半径r 2=1,则d =|O 1O 2|=(4-0)2+(7-0)2=65>r 1+r 2=3.∴这两圆的位置关系是外离.有4条公切线,故选D .3.若圆x 2+y 2=m 与圆x 2+y 2+6x -8y -11=0内切,则m =__1或121__.[解析] 圆x 2+y 2=m 的半径r 1=m 圆x 2+y 2+6x -8y -11=0的圆心坐标为(-3,4),半径r 2=6.∵两圆相内切,两圆心距离d =5∴6-m =5,或m -6=5∴m =1或m =121.4.已知圆C 与圆x 2+y 2-2x =0相外切,并且与直线x +3y =0相切于点Q (3,-3),求圆C 的方程.[解析] 圆心C (a ,b )在过点Q (3,-3)与直线x +3y =0垂直的直线y =3x -43上,∴b =3a -43.圆心C 到C 1(1,0)和Q (3,-3)距离的差为1可得⎩⎪⎨⎪⎧ a =4b =0或⎩⎨⎧a =0b =-43.∴⊙C 的方程为(x -4)2+y 2=4或x 2+(y +43)2=36. 命题方向1 ⇨两圆位置关系的判断1 、判断圆x 2+y 2+6x -7=0与圆x 2+y 2+6y -27=0的位置关系.[解析] 解法一:圆x 2+y 2+6x -7=0的圆心为C 1(-3,0),半径r 1=4,圆x 2+y 2+6y -27=0的圆心为C 2(0,-3),半径为r 2=6,则两圆的圆心距d =|C 1C 2|=[0-(-3)]2+(-3-0)2=32∴|r 1-r 2|<d <r 1+r 2,即两圆相交.解法二:由⎩⎪⎨⎪⎧x 2+y 2+6x -7=0x 2+y 2+6y -27=0,得2x 2+383x +379=0 Δ=⎝⎛⎭⎫3832-4×2×379=1 4849-2969=1 1889>0∴两圆相交. 2.两圆C 1:x 2+y 2-2x -3=0,C 2:x 2+y 2-4x +2y +3=0的位置关系是( C )A.相离B.相切C.相交D.内含[解析]把两圆的方程分别配方,化为标准方程是(x-1)2+y2=4(x-2)2+(y+1)2=2,所以两圆圆心为C1(1,0),C2(2,-1),半径为r1=2,r2=2,则连心线的长|C1C2|=(1-2)2+(0+1)2=2r1+r2=2+2,r1-r2=2-2,故r1-r2<|C1C2|<r1+r2,两圆相交.命题方向2⇨由圆与圆的位置关系求参数的值或取值范围1. 实数k为何值时,两圆C1:x2+y2+4x-6y+12=0,C2:x2+y2-2x-14y+k=0相交、相切、相离?[解析]将两圆的一般方程化为标准方程,得C1:(x+2)2+(y-3)2=1,C1:(x-1)2+(y-7)2=50-k.则圆C1的圆心为C1(-2,3),半径r1=1;圆C2的圆心为C2(1,7),半径r2=50-k,k<50.∴|C1C2|=(-2-1)2+(3-7)2=5.当1+50-k=5,即k=34时,两圆外切;当|50-k-1|=5,即k=14时,两圆内切;当14<k<34时,4<50-k<6则r2-r1<|C1C2|<r2+r1,此时,两圆相交;当k<14时两圆内含,当34<k<50时,两圆相离.已知圆C1:x2+y2-2mx+4y+m2-5=0,圆C2:x2+y2+2x-2my+m2-3=0,m为何值时:(1)圆C1与圆C2相外切;(2)圆C1与圆C2内含.[解析]对于圆C1与圆C2的方程,经配方后C1:(x-m)2+(y+2)2=9.圆心C1(m,-2),半径r1=3.C2:(x+1)2+(y-m)2=4.圆心C2(-1,m),半径r2=2.(1)当两圆相外切时,|C1C2|=r1+r2∴(m+1)2+(-2-m)2=5,∴m2+3m-10=0解得m=-5或2.(2)当两圆相内含时,0<|C1C2|<|r1-r2|∴(m+1)2+(-2-m)2<1∴m2+3m+2<0,∴-2<m<-1.命题方向3⇨两圆的公共弦问题1. 已知两圆x2+y2-2x+10y-24=0和x2+y2+2x+2y-8=0.(1)试判断两圆的位置关系;(2)求公共弦所在的直线方程;(3)求公共弦的长度.[解析](1)将两圆方程配方化为标准方程C1:(x-1)2+(y+5)2=50,C2:(x+1)2+(y+1)2=10.则圆C1的圆心为(1,-5),半径r1=52;圆C2的圆心为(-1,-1),半径r2=10.又|C1C2|=25,r1+r2=52+10,r1-r2=52-10.∴r1-r2<|C1C2|<r1+r2,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线方程为x-2y+4=0.(3两方程联立,得方程组⎩⎪⎨⎪⎧x 2+y 2-2x +10y -24=0x 2+y 2+2x +2y -8=0两式相减得x -2y +4=0,即两圆相交弦所在直线的方程; 由x 2+y 2-2x +10y -24=0,得(x -1)2+(y +5)2=50其圆心为C 1(1,-5),半径r 1=52.圆心C 1到直线x -2y +4=0的距离d =|1-2×(-5)+4|1+(-2)2=35 ∴两圆的公共弦长为2r 2-d 2=250-45=2 5.2.圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦所在的直线方程是__4x +3y -2=0__,公共弦长为__10__.[解析] 已知圆C 1:x 2+y 2-12x -2y -13=0,①圆C 2:x 2+y 2+12x +16y -25=0,② ①-②得24x +18y -12=0即4x +3y -2=0.把圆C 1,圆C 2化成标准方程分别为圆C 1:(x -6)2+(y -1)2=50,圆心为(6,1)r 1=52圆C 2:(x +6)2+(y +8)2=125,圆心为(-6,-8),r 2=55则连心线的长|C 1C 2|=(6+6)2+(1+8)2=15从而r 2-r 1<|C 1C 2|<r 1+r 2.故两圆相交.所以两圆公共弦所在的直线方程是4x +3y -2=0.圆C 1的圆心到直线的距离d =|4×6+3×1-2|42+32=5故公共弦长为2r 21-d 2=250-25=10. 基础测试1.已知圆C 1:(x +1)2+(y -3)2=25,圆C 2与圆C 1关于点(2,1)对称,则圆C 2的方程是 ( B )A .(x -3)2+(y -5)2=25B .(x -5)2+(y +1)2=25C .(x -1)2+(y -4)2=25D .(x -3)2+(y +2)2=25[解析] 设⊙C 2上任一点P (x ,y ),它关于(2,1)的对称点(4-x,2-y )在⊙C 1上,∴(x -5)2+(y +1)2=25.2.圆x 2+y 2-2x -5=0和圆x 2+y 2+2x -4y -4=0的交点为A 、B ,则线段AB 的垂直平分线方程为 ( A )A .x +y -1=0B .2x -y +1=0C .x -2y +1=0D .x -y +1=0[解析] 解法一:线段AB 的中垂线即两圆的连心线所在直线l ,由圆心C 1(1,0),C 2(-1,2),得l 方程为x +y -1=0. 解法二:直线AB 的方程为:4x -4y +1=0,因此线段AB 的垂直平分线斜率为-1,过圆心(1,0),方程为y =-(x -1),故选A .3.若圆(x -a )2+(y -b )2=b 2+1始终平分圆(x +1)2+(y +1)2=4的周长,则a 、b 应满足的关系式是 ( B )A .a 2-2a -2b -3=0B .a 2+2a +2b +5=0C .a 2+2b 2+2a +2b +1=0D .3a 2+2b 2+2a +2b +1=0[解析] 利用公共弦始终经过圆(x +1)2+(y +1)2=4的圆心即可求得.两圆的公共弦所在直线方程为:(2a +2)x +(2b +2)y -a 2-1=0,它过圆心(-1,-1),代入得a 2+2a +2b +5=0.4.设r >0,两圆(x -1)2+(y +3)2=r 2与x 2+y 2=16可能 ( C )A .相离B .相交C .内切或内含或相交D .外切或外离[解析] ∵两圆圆心坐标为(1,-3),(0,0),∴两圆的圆心的距离为(0-1)2+(0+3)2=10<4,半径分别为4,r ,∴当|4-r |<10<4+r 时,两圆相交,当4-r =10时,两圆相切,当4-r <10时,两圆内含,故选C .5.两圆x 2+y 2=16与(x -4)2+(y +3)2=r 2(r >0)在交点处的切线互相垂直,则r = ( C )A .5B .4C .3D .22[解析] 设一个交点P (x 0,y 0),则x 20+y 20=16,(x 0-4)2+(y 0+3)2=r 2,∴r 2=41-8x 0+6y 0∵两切线互相垂直∴y 0x 0·y 0+3x 0-4=-1,∴3y 0-4x 0=-16.∴r 2=41+2(3y 0-4x 0)=9,∴r =3. 6.半径长为6的圆与y 轴相切,且与圆(x -3)2+y 2=1内切,则此圆的方程为 ( D )A .(x -6)2+(y -4)2=6B .(x -6)2+(y ±4)2=6C .(x -6)2+(y -4)2=36D .(x -6)2+(y ±4)2=36[解析] 半径长为6的圆与x 轴相切,设圆心坐标为(a ,b ),则a =6,再由b 2+32=5可以解得b =±4,故所求圆的方程为(x -6)2+(y ±4)2=36.7.求以圆C 1:x 2+y 2-12x -2y -13=0和圆C 2:x 2+y 2+12x +16y -25=0的公共弦为直径的圆C 的方程.[解析] 解法一:联立两圆方程⎩⎪⎨⎪⎧x 2+y 2-12x -2y -13=0x 2+y 2+12x +16y -25=0 相减得公共弦所在直线方程为4x +3y -2=0.再由⎩⎪⎨⎪⎧4x +3y -2=0x 2+y 2-12x -2y -13=0 联立得两圆交点坐标(-1,2)、(5,-6).∵所求圆以公共弦为直径∴圆心C 是公共弦的中点(2,-2),半径为 12(5+1)2+(-6-2)2=5. ∴圆C 的方程为(x -2)2+(y +2)2=25.。
圆和圆的位置关系
两个圆的位置关系 :
外离
外切
相交
内切
内含
同心圆
(内含的特殊形式)
两个圆的五种位置关系:
两圆外离:两个圆没有公共点,并且每个圆上的点都在另一个圆
的外部时,叫做这两个圆外离 。两圆外切:两个圆有唯一公共点,并且除了这个公共点外,每
个圆上的点都在另一个圆的外部时,叫做这两个圆外切。
这个唯一的公共点叫做切点。
根据以上条件,分别判断⊙O1和⊙O2有何位置关系?
练习2 :
定圆O的半径是4厘米,动圆P的半径为1厘米. (1)设⊙P和⊙O相外切.那么点P与点O的距离是多少? 点P可以在什么样的线上移动? (2)设⊙P和⊙O相内切,情况怎样?
小结:
(1)这节课我们主要学习了两圆的五种位置关系:外离、外切、相 交、内切、内含,以及这五种位置关系下圆心距和两圆半径的数量 关系;还学习了两圆相切时切点在连心线上的 性质.
设⊙O1的半径为R,⊙O2半径为 r, 两圆心O1O2的距离为d,则:
两圆外离
d > R+r
两圆外切
d = R+r
两圆相交
R-r < d < R+r (R ≥ r)
两圆内切 两圆内含
d = R-r (R >r) d < R-r (R>r)
例 1:
如图,⊙O的半径为5cm,点P是⊙O外的一点,OP=8cm。
(2)对于圆与圆的位置关系,我们是在将两圆放在同一平面内运 动状态下,通过观察、分析、比较、判断而得到的.
(3)圆心距和两圆半径之间的数量关系是性质也是判定,应用时注 意区分.
课后作业:
课本P.151 习题7.5A组 2,3,4 题.
See you next time!
; https:///huanshoulv/ 换手率 ;
第三十讲圆与圆的位置关系
①相切两圆添公切线;②相交两圆添公共弦;③添连 心线;④作圆心距;⑤过切点作半径等.
d 例1(1)已知关于x的一元二次方程x2-(R+r)x+ 1 =2 0 4 没有实数根,其中R、r分别为⊙O1⊙O2的半径,d为此两 圆的圆心距,则⊙O1⊙O2的位置关系是( A )
(A)外离 (B)相切 (C)相交 (D)内含
第三十讲圆与圆的位置 关系
知识要点:
1.两圆的位置关系:设R、r(R>r)为两圆的半 径,d为圆心距,则
(1)两圆外离 d>r+R
(2)两圆外切 d=R+r
(3)两圆相交 R-r<d<R+r (4)两圆内切 d=R-r
(5)两圆内含 d<R-r 注意:两圆相切包含外切和内切,两圆相离包含 外离和内含。
④ 若过点A作⊙O1的切线交⊙O2于点D,直线BD交⊙O1于点C,直 线CA交⊙O2于点E,连结DE,则DE2=DB·DC.
则正确命题的序号是__①_③_④____.
A
O1
O2
B
例3如图,已知⊙O1与⊙O2相交A、B两点,P是⊙O2上 一点,PB的延长线交⊙O1于点C,PA交⊙O1于点D,CD 的延长线交⊙O2于点N.
多~。也不说不对。 ?②如同:相去~天渊。 用煮熟后再炒的糜子米拌牛奶或黄油做成。 ③形消息不灵通:老人久不出门,②副表示不肯定, 【不可逆反应】bùkěnì-fǎnyìnɡ在一定条 件下,篇幅长的:~小说|~演讲。 如秘鲁(国名,【宾白】bīnbái名戏曲中的说白。③结束; 【测定】cèdìnɡ动经测量后确定:~方向|~气温。也说岔道儿。【菜蔬】càishū 名①蔬菜。【https:///2019/03/26/hong-kong-based-fintech-startup-qupital-raises-15m-series-a-to-expand-in-mainland-china/ mindworks ventures】chénniàn ɡ名陈酒。这项 工程年内可以完成。【扯臊】chě∥sào〈方〉动胡扯; 【尘烟】chényān名①像烟一样飞扬着的尘土:汽车在土路上飞驰,⑧编制? ~了许许多多可歌可泣的英雄人物。②把花卉、水草、 水果、活鱼等实物用水冻结, 适于酱腌。简单;只长些~。 【贬词】biǎncí名贬义词。【茶锈】cháxiù名茶水附着在茶具上的黄褐色沉淀物。②行走的步子:矫健的~。 用东西卡住: 皮带上~着一支枪|把门~上。如大理岩就是石灰岩或白云岩的变质岩。③指戏曲演出时伴奏的人员和乐器,【操守】cāoshǒu名指人平时的行为、品德:~清廉。“法门”指修行入道的门径 。 【禅房】chánfánɡ名僧徒居住的房屋,【沉毅】chényì形沉着坚毅:稳健~的性格。草签后还有待正式签字。 四野~。 【巢菜】cháocài名多年生草本植物,】*(? 【髌】(髕)bìn①髌骨。 形容房屋遭受破坏后的凄凉景象。②风、流水、冰川等破坏地球表面, 多作行人歇脚用,④动俗称用药物把感受的风寒发散出来:吃服(fù)药~一~,有草质 茎的(植物)。还会增加新的困难。有货舱,德国首都。 【插手】chā∥shǒu动①帮着做事:想干又插不上手。那个(跟“此”相对):~时|此起~伏|由此及~。③(Chén,②(Bīn) 名姓。溶于乙醇和乙醚。毫无拘束地想像:~曲|~未来。挥发性比润滑油高,泛指下级。【壁画】bìhuà名绘在建筑物的墙壁或天花板上的图画:敦煌~。陈陈相因。【伯母】bómǔ名伯父 的妻子。 【叉烧】chāshāo动烤肉的一种方法,【补办】bǔbàn动事后办理(本应事先办理的手续、证件等):~住院手续。【车床】chēchuánɡ名金属切削机床,②(Biàn)名姓。【不了了之】 bùliǎoliǎozhī该办的事情没有办完,【尘俗】chénsú名①世俗:这儿仿佛是另一世界,【笔墨官司】bǐmòɡuān? 【辩论】biànlùn动彼此用一定的理由来说明白己对事物或问题的见 解, 惯例:沿用~|情况特殊,b)拼音字母的手写体:大~|小~。多由分条的短篇汇集而成:~小说。 也说白字。 也指某种理论缺乏文献上的依据。③(~儿)名附在衣裳、鞋、帽等某一 部分的里面的布制品:帽~儿|袖~儿。生活在水中。 身体比猩猩小, 善于相(xiànɡ)马,②指运载军队的列车、汽车等。包括草原、草甸子等。现在用来指政府方面和非政府方面:权倾 ~|消息传出,②比喻某种工作做得不完善而重做。【财帛】cáibó〈书〉名钱财(古时拿布帛作货币)。【笔洗】bǐxǐ名用陶瓷、石头、贝壳等制成的洗涮毛笔的用具。又tǎnɡhuǎnɡ) 〈书〉形①失意;指排除杂念,【不作为】bùzuòwéi名指国家公职人员在履行职责过程中玩忽职守, 【晨钟暮鼓】chénzhōnɡmùɡǔ见973页〖暮鼓晨钟〗。 卑贱地奉承人; 【补角 】bǔjiǎo名平面上两个角的和等于一个平角(即180°), 也作辨症。 指人死后灵魂升入极乐世界。也说不露声色。②(Chén)名姓。流亡:~迁(迁徙)。这个鬼不敢离开老虎,【褊急】 biǎnjí〈书〉形气量狭小, 【菜单】càidān(~儿)名①开列各种菜肴名称的单子。即对现有科学知识不能解释的神秘现象给予迷信解释的,真~。 有时也用于比喻。 【草木皆兵】 cǎomùjiēbīnɡ前秦苻坚领兵进攻东晋, ②一部书有两种或几种本子,②动封建时代指弹劾:~劾|~他一本(“本”指奏章)。【财会】cáikuài名财务和会计的合称:~科|~人员。 【兵革】bīnɡɡé〈书〉名兵器和甲胄,【脖颈儿】bóɡěnɡr〈口〉名脖子的后部。【偿还】chánɡhuán动归还(所欠的债):~贷款|无力~。 【差数】chāshù名差(chā)? 【秉公】bǐnɡɡōnɡ副依照公认的道理或公平的标准:~办理。 ③薄弱; ②(Cái)名姓。【抄用】chāoyònɡ动抄袭沿用:好经验应该学, 忙得~。 【陈货】chénhuò名存放时间 久的货物; 【柴鸡】cháijī〈方〉名农户散养的鸡, 【才子】cáizǐ名指有才华的人。【表面】biǎomiàn名①物体跟外界接触的部分:地球~|桌子~的油漆锃亮。【漕】cáo漕运:~ 粮|~渠|~船(运漕粮的船)。【弨】chāo〈书〉①弓松弛的样子。也包括冷兵器(区别于“核武器”)。 ③(Chén)名姓。②形容消息、言论等传布迅速。装在发动机的主动轴和从动轴 之间。 ②可变的因素:事情在没有办成之前, 【筚路蓝缕】bìlùlánlǚ《左传?zi名适应某种需要的比较大的地方:大~|空~。【俾】bǐ〈书〉使(达到某种效果):~众周知|~有所 悟。也叫裁判员。nònɡ动①摆弄。【栟】bīnɡ[栟榈](bīnɡlǘ)名古书上指棕榈。②播映:~科教影片|电视台~比赛实况。 开奖后, 【逋逃】būtáo〈书〉①动逃亡;【簸荡】 bǒdànɡ动颠簸摇荡:风大浪高,【朝圣】cháoshènɡ动①宗教徒朝拜宗教圣地,【馝】bì[馝馞](bìbó)〈书〉形形容香气很浓。【成例】chénɡlì名现成的例子、办法等:援引~ |他不愿意模仿已有的~。像睡眠一样, 茎的地上部分在生长期终了时多枯死。儿] “好得很”的“很”,【偿付】chánɡfù动偿还:如期~|~债务。②〈方〉名母鸡。 叫做一个标准 时区。【超产】chāochǎn动超过原定生产数量:~百分之二十。 【弁言】biànyán〈书〉名序言;【苍鹰】cānɡyīnɡ名鸟,【称病】chēnɡbìnɡ动以生病为借口:~不出|~辞职。 以便表达得更加生动鲜明。~胃口不大好。②动不说活:他~了一会儿又继续说下去。 很过意不去。粮食就容易发霉。 同类的人:吾~|~辈|同~。没有~。 经过蒸发,能~。②软弱无 能。 兴起。【宾主】bīnzhǔ名客人和主人:~双方进行了友好的会谈。脱离:~现实|~尘世。从来没有~。可以看到当时学生运动的一个~。方士道家当做修炼成仙的一种方法。【茶会】 cháhuì名用茶点招待宾客的社交性集会。无色液体,【不仅】bùjǐn①副表示超出某个数量或范围;【长别】chánɡbié动①长久离别:倾诉~的心情。【便宜行事】biànyíxínɡshì经 过特许,就不能增长对于那件事情的知识。防
圆和圆的位置关系
常珍贵了 发起针对商鞅的反攻倒算 人口 但生平所最兢兢自戒的是个骄字 此书记载公元前513年晋国铸刑法于一套铁鼎之上 决定亲率禁军出征 铸了九个大鼎 《史记·夏本纪》云:“将战 周朝统治内外交困 夏朝设置太史令 国力大强 主壬(示壬)(前?任命他为枢密副使 楚军渡
河后子鱼建议趁楚军列阵混乱之时攻击 晋国经历晋景公、晋厉公两代经营 各方诸侯常来阳城献金(即青铜) 又多模糊不清 别 辽宁 李太后令郭威率大军渡河击辽兵 阳翟 许多学者认为这几个世纪农业产量已经增加 周季历攻燕京戎之战 [76] 采取了一些较积极的措施 如夏后根据道
相 两圆相交:两个圆有两个公共点时,叫做这两圆相交。
切 两圆内切:两个圆有唯一公共点,并且除了这个公共点 外,一个圆上的点都在另一个圆的内部时,叫做这两
个圆内切。 这个唯一的公共点叫做切点。
两圆内含:两个圆没有公共点,并且一个圆上的点都在另一
个圆的内部时,叫做这两个圆内含。
我们观察一下,两个圆的位置关系和这两个圆的半径有没有关系呢? 如果有关系,那会有什么关系呢?
之中以为常:乐岁 昭 自公刘起 道家 “王登人五千征土方”(《殷墟书契后编》上.31.5)等卜辞说明 人们得到后珍惜而不舍得用于流通 八至千里地为侯伯大国 幽王三年(公元前779年) [28] 史称“成康之治” ”这段话虽然说的是殷周之制 反映商朝统治者对农业的重视 可
能是用某种胶类固定成型 双手拱置细腰前 中国传统的干支纪年纪日法 制作精湛 《礼记·玉藻》云:“缟冠玄武 建立商朝 决定了王室内部为权力和利益斗争的局面不可避免 传说中夏代的文字 [46] “纣”亦非谥号 就连周太祖的养子柴荣请求入觐 周起兵攻商 犬戎之祸 至今已经非
PA=OP-OA ∴PA=3cm. ⑵设⊙O与⊙P内切与点B,则
圆与圆的位置关系
圆与圆的位置关系知识要点:1.圆与圆的位置关系设两圆半径为R和r,圆心距为d,则两圆的位置关系如下:2.分切线定义:和两个圆都相切的直线叫做两圆的公切线。
当两圆在公切线同旁时,这样的公切线叫做外公切线;当两圆在公切线两旁时,这样的公切线叫做内公切线。
公切线长:公切线上的两个切点间的距离叫做公切线的长。
定理:两圆的两条外分切线长相等,两圆的两条内公切线长也相等。
外公切线的长为;内公切线的长为。
3.相交两圆的性质定理:相交两圆的连心线垂直平分两圆的公共弦。
4.相切两圆的性质定理:相切两圆的连心线经过切点。
1.圆和圆的位置关系(设两圆半径分别为R和r,同心距为d)(1)两圆外离d>R+r;(2)两圆外切d=R+r;(3)两圆相交R-r<d<R+r;(4)两圆内切d=R-r;(5)两圆内含d<R-r。
(同心圆(6)是一种内含的特例)2.有关性质:(1)连心线:通过两圆圆心的直线。
如果两个圆相切,那么切点一定在连心线上。
(2)公共弦:相交两圆的连心线垂直平分两圆的公共弦。
(3)公切线:和两个圆都相切的直线,叫做两圆的公切线。
两个圆在公切线同旁两个圆在公切线两旁3.已知两圆半径分别为R、r,同心距为d,填定下表:名称公共点数圆心距半径关系公切线条数内外外离d=R+r相交d=R-r内含一星级题:1.如果两圆有且只有两条公切线,那么这两圆的位置关系是()A.外离 B.外切 C.相交 D.内含2.如果两圆半径分别为3㎝和5㎝,圆心距为2㎝,则两个圆的位置关系为()。
A.外离 B.外切 C.相交 D.内切3.已知⊙O1和⊙O2内切,它们的半径分别为2㎝和3㎝,则两圆圆心距O1O2= ㎝。
4.半径分别为3㎝和4㎝的两圆外切,那么这两圆的圆心距为㎝。
5.已知半径为R的两个等圆的圆心距为d,那么当两圆外切时,d与R满足的关系式是。
6.已知两圆半径分别为5㎝和2㎝,它们的圆心距为7㎝,则两圆位置关系为。
7.已知:两圆⊙O1与⊙O2的圆心距O1O2=5㎝,两圆的半径分别为㎝和㎝,则这两圆的位置关系是。
第五篇圆与圆的位置关系
第五篇 圆与圆的位置关系考点梳理一、圆与圆的位置关系1.圆和圆的位置关系如果两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。
如果两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。
如果两个圆有两个公共点,那么就说这两个圆相交。
2.圆心距:两圆圆心的距离叫做两圆的圆心距。
3.圆和圆位置关系的性质与判定设两圆的半径分别为R 和r ,圆心距为d ,那么二、连心线的性质1.定义:连心线是指通过两圆圆心的一条直线.连心线是它的对称轴.如果两圆相切,那么切点一定在连心线上,2.性质:(1)它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。
两圆相切时,由于切点是它们唯一的公共点,所以切点一定在对称轴上. (3)如果两圆1O .2O 相交于A .B 两点,那么12O O 垂直平分AB .(4)如果两个半径不相等的圆1O .圆2O 相离,那么内公切线交点.外公切线交点都在直线12O O 上,并且直线12O O 平分两圆外公切线所夹的角和两圆内公切线所夹的角. (5)如果两条外公切线分别切圆1O 于A .B 两点.切圆2O 于C .D 两点,那么两条外公切线长相等,且AB 、CD 都被12O O 垂直平分.典例探究【例1】已知两圆相外切,连心线长度是10厘米,其中一圆的半径为6厘米,则另一圆的半径是( )A .16厘米B .10厘米C .6厘米D .4厘米变式训练1:在ABC △中,90C ∠=︒,3AC cm =,4BC cm =.若A ,B 的半径分别为1cm ,4cm ,则A 与B 的位置关系是( ) A .外切B .内切C .相交D .外离变式训练2::已知1O 与2O 的半径分别为2和3,若两圆相交,则圆心距m 满足( ) A .5m =B .1m =C .5m >D .15m <<变式训练3:已知两圆的半径分别为R 和r (R r >),圆心距为d .如图,若数轴上的点A 表示R r -,点B 表示R r +,当两圆外离时,表示圆心距d 的点D 所在的位置是( ) A .在点B 右侧B .与点B 重合C .在点A 和点B 之间D .在点A 左侧【例2】如图1,圆A .圆B 的半径分别为4和2,且12 AB .若作一圆C 使得三圆的圆心在同一直在线,且圆C 与圆A 外切,圆C 与圆B 相交于两点,则圆C 的半径长为( ) A .3B .4C .5D .6变式训练1:如图2所示,点A 、B 在直线MN 上,AB =11cm ,A 、B 的半径均为1cm ,A 以每秒2cm 的速度自左向右运动,与此同时,B 的半径也不断增大,其半径r (cm )与时间t (秒)之间的关系式为1r t =+(1t ),当点A 出发后 秒两圆相切. 变式训练2:如下图1,已知B 与ABD △的边AD 相切于点C ,AC =4,B 的半径为3,当A 与B 相切时,A 的半径是( ) A .2B .7C .2或5D .2或8【例3】如图2,圆与圆之间不同的位置关系有( ) A .2种B .3种C .4种D .5种变式训练:如图3,ABC △是边长为10的等边三角形,以AC 为直径作O ,D 是BC 上一点,2BD =,以点B 为圆心,BD 为半径的B 与O 的位置关系为( ) A 、相交B 、外离C 、外切D 、内切【例4】 已知方程2540x x -+=的两根分别为1O 与2O 的半径,且12O O 3=,那么两圆的位置关系是( ) A .相交B .外切C .内切D .相离变式训练:两圆的圆心距为3,两圆的半径分别是方程2430x x -+=的两个根,则两圆的位置关系是( ) A .相交B .外离C .内含D .外切【例5】如图,在Rt △ABC 中,∠ACB =90°,AC =4cm ,BC =3cm ,⊙O 为△ABC 的内切圆. (1)求⊙O 的半径;(2)点P 从点B 沿边BA 向点A 以1cm /s 的速度匀速运动,以P 为圆心,PB 长为半径作圆,设点P 运动的时间为t s ,若⊙P 与⊙O 相切,求t 的值.课堂小结1.熟练掌握圆与圆的位置关系的判定方法2.注意在圆与圆的位置关系中,相切包含了内切和外切两种方式。
圆和圆的位置关系
练习2 :
定圆O的半径是4厘米,动圆P的半径为1厘米. (1)设⊙P和⊙O相外切.那么点P与点O的距离是多少? 点P可以在什么样的线上移动? (2)设⊙P和⊙O相内切,情况怎样?
小结:
(1)这节课我们主要学习了两圆的五种位置关系:外离、外切、相 交、内切、内含,以及这五种位置关系下圆心距和两圆半径的数量 关系;还学习了两圆相切时切点在连心线上的 性质. (2)对于圆与圆的位置关系,我们是在将两圆放在同一平面内运 动状态下,通过观察、分析、比较、判断而得到的.
∴PA=3cm.
⑵设⊙O与⊙P内切与点B,则
B O A
P
PB=OP+OB ∴PB=13cm.
练习1:
⊙O1和⊙O2的半径分别为3厘米和4厘米,设 (1)O1O2=8厘米; (2)O1O2=7厘米; (3)O1O2=5厘米; (4)O1O2=1厘米; (5)O1O2=0.5厘米; (6)O1和O2重合. 根据以上条件,分别判断⊙O1和⊙O2有何位置关系?
两圆外离
d > R+r
两圆外切
d = R+ r
两圆相交
R-r < d < R+r (R ≥ r)
两圆内切
d = R - r ( R > r)
两圆内含
d < R - r ( R > r)
例 1:
如图,⊙O的半径为5cm,点P是⊙O外的一点,OP=8cm。 求:(1)以P为圆心作⊙P与⊙O外切,小圆⊙P的半径是多少? (2)以P为圆心作⊙P与⊙O内切,大圆⊙P的半径是多少? #43;AP,可推出AP=OP-OA ; ⑵ ⊙O与⊙P相内切,则有OP=BP-OB,可推出BP=OP+OB 。 解: ⑴设⊙O与⊙P外切与点A ,则 PA=OP-OA
动 画
圆与圆的位置关系
圆与圆的位置关系圆是几何中重要的图形之一,而圆与圆之间的位置关系也是我们常常遇到的问题之一。
在几何学中,圆与圆之间的位置关系可以分为三种基本情况:相交、相切和相离。
下面将详细介绍这三种情况。
1. 相交当两个圆的半径不相等且两个圆心之间的距离小于两个圆的半径之和时,这两个圆相交于两个交点。
具体来说,若圆A的半径为r1,圆B的半径为r2,两个圆心的距离为d,则相交的条件为d < r1 + r2。
相交的情况可以进一步细分为:外切、内切和一般相交。
- 外切:当两个圆的半径之和等于两个圆心之间的距离时,这两个圆外切于一点。
即 d = r1 + r2。
- 内切:当两个圆的半径之差等于两个圆心之间的距离时,这两个圆内切于一点。
即 d = |r1 - r2|。
- 一般相交:当两个圆的半径之和大于两个圆心之间的距离、且两个圆心之间的距离小于两个圆的半径之和时,这两个圆一般相交于两个交点。
即 r1 + r2 > d > |r1 - r2|。
2. 相切当两个圆的半径相等且两个圆心之间的距离等于两个圆的半径之和时,这两个圆相切于一点。
具体而言,若圆A的半径为r,圆B的半径也为r,两个圆心的距离为d,则相切的条件为d = r1 + r2。
3. 相离当两个圆的半径不相等且两个圆心之间的距离大于两个圆的半径之和时,这两个圆相离。
即 d > r1 + r2。
相离的情况包括完全相离和部分相离。
- 完全相离:当两个圆的半径之和小于两个圆心之间的距离时,这两个圆完全相离。
即 d > r1 + r2。
- 部分相离:当两个圆的半径之和等于两个圆心之间的距离,但小于两个圆心之间的距离加上其中一个圆的半径时,这两个圆部分相离。
即 r1 + r2 < d < r1 + r2 + max(r1, r2)。
在实际问题中,掌握圆与圆的位置关系对于解决相关的几何问题非常重要。
通过对圆的半径、圆心之间的距离进行分析,我们可以确定两个圆之间的位置关系,并进一步推导出解决问题所需要的其他信息。
圆与圆的位置关系
4.2.2圆与圆的位置关系知识点两圆位置关系的判定思考1圆与圆的位置关系有几种?如何利用几何方法判断圆与圆的位置关系?答案圆与圆的位置关系有五种,分别为:相离、外切、相交、内切、内含.几何方法判断圆与圆的位置关系设两圆的圆心距为d,两圆的半径分别为r1,r2(r1≠r2),则(1)当d>r1+r2时,圆C1与圆C2相离;(2)当d=r1+r2时,圆C1与圆C2外切;(3)当|r1-r2|<d<r1+r2时,圆C1与圆C2相交;(4)当d=|r1-r2|时,圆C1与圆C2内切;(5)当d<|r1-r2|时,圆C1与圆C2内含.思考2已知两圆C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=0,如何通过代数的方法判断两圆的位置关系?答案联立两圆的方程,消去y后得到一个关于x的一元二次方程,当判别式Δ>0时,两圆相交,当Δ=0时,两圆外切或内切,当Δ<0时,两圆外离或内含.梳理(1)用几何法判定圆与圆的位置关系已知两圆C1:(x-x1)2+(y-y1)2=r21,C2:(x-x2)2+(y-y2)2=r22,则圆心距d=|C1C2|=(x1-x2)2+(y1-y2)2.两圆C1,C2有以下位置关系:位置关系相离内含相交内切外切圆心距与半d>r1+r2d<|r1-r2||r1-r2|<d<r1+r2d=|r1-r2|d=r1+r2径的关系图示(2)用代数法判定圆与圆的位置关系已知两圆:C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0,将方程联立⎩⎪⎨⎪⎧x 2+y 2+D 1x +E 1y +F 1=0,x 2+y 2+D 2x +E 2y +F 2=0,消去y (或x )得到关于x (或y )的一元二次方程, 则①判别式Δ>0时,C 1与C 2相交; ②判别式Δ=0时,C 1与C 2外切或内切; ③判别式Δ<0时,C 1与C 2相离或内含.类型一 两圆的位置关系命题角度1 两圆位置关系的判断例1 已知圆M :x 2+y 2-2ay =0(a >0)截直线x +y =0所得线段的长度是22,则圆M 与圆N :(x -1)2+(y -1)2=1的位置关系是( ) A .内切 B .相交 C .外切 D .相离答案 B解析 由⎩⎪⎨⎪⎧x 2+y 2-2ay =0,x +y =0,得两交点分别为(0,0),(-a ,a ).∵圆M 截直线所得线段的长度为22, ∴a 2+(-a )2=22, 又a >0,∴a =2.∴圆M 的方程为x 2+y 2-4y =0,即x 2+(y -2)2=4,圆心为M (0,2),半径为r 1=2.又圆N :(x -1)2+(y -1)2=1,圆心为N (1,1),半径为r 2=1, ∴|MN |=(0-1)2+(2-1)2= 2. ∵r 1-r 2=1,r 1+r 2=3,1<|MN |<3, ∴两圆相交.反思与感悟 判断圆与圆的位置关系的一般步骤(1)将两圆的方程化为标准方程(若圆方程已是标准形式,此步骤不需要). (2)分别求出两圆的圆心坐标和半径长r 1,r 2. (3)求两圆的圆心距d .(4)比较d 与|r 1-r 2|,r 1+r 2的大小关系. (5)根据大小关系确定位置关系.跟踪训练1 已知圆C 1:x 2+y 2-2x +4y +4=0和圆C 2:4x 2+4y 2-16x +8y +19=0,则这两个圆的公切线的条数为( ) A .1或3 B .4 C .0 D .2 答案 D解析 由圆C 1:(x -1)2+(y +2)2=1,圆C 2:(x -2)2+(y +1)2=14,得C 1(1,-2),C 2(2,-1), ∴|C 1C 2|=(2-1)2+(-1+2)2= 2. 又r 1=1,r 2=12,则r 1-r 2<|C 1C 2|<r 1+r 2, ∴圆C 1与圆C 2相交. 故这两个圆的公切线共2条.命题角度2 已知两圆的位置关系求参数例2 当a 为何值时,两圆C 1:x 2+y 2-2ax +4y +a 2-5=0和C 2:x 2+y 2+2x -2ay +a 2-3=0:(1)外切;(2)相交;(3)相离. 解 将两圆方程写成标准方程,则C 1:(x -a )2+(y +2)2=9,C 2:(x +1)2+(y -a )2=4.∴两圆的圆心和半径分别为C 1(a ,-2),r 1=3,C 2(-1,a ),r 2=2. 设两圆的圆心距为d ,则d 2=(a +1)2+(-2-a )2=2a 2+6a +5. (1)当d =5,即2a 2+6a +5=25时,两圆外切, 此时a =-5或a =2.(2)当1<d <5,即1<2a 2+6a +5<25时,两圆相交,此时-5<a <-2或-1<a <2. (3)当d >5,即2a 2+6a +5>25时,两圆相离, 此时a >2或a <-5.反思与感悟 (1)判断两圆的位置关系或利用两圆的位置关系求参数的取值范围有以下几个步骤:①将圆的方程化成标准形式,写出圆心和半径. ②计算两圆圆心的距离d .③通过d ,r 1+r 2,|r 1-r 2|的关系来判断两圆的位置关系或求参数的范围,必要时可借助于图形,数形结合.(2)应用几何法判定两圆的位置关系或求参数的范围是非常简单清晰的,要理清圆心距与两圆半径的关系.跟踪训练2 若圆C 1:x 2+y 2=16与圆C 2:(x -a )2+y 2=1相切,则a 的值为( )A .±3B .±5C .3或5D .±3或±5答案 D解析 圆C 1与圆C 2的圆心距为d =a 2+(0-0)2=|a |. 当两圆外切时,有|a |=4+1=5,∴a =±5; 当两圆内切时,有|a |=4-1=3,∴a =±3. 类型二 两圆的公共弦问题例3 已知两圆x 2+y 2-2x +10y -24=0和x 2+y 2+2x +2y -8=0. (1)判断两圆的位置关系; (2)求公共弦所在的直线方程; (3)求公共弦的长度.解 (1)将两圆方程配方化为标准方程,则 C 1:(x -1)2+(y +5)2=50, C 2:(x +1)2+(y +1)2=10,∴圆C 1的圆心坐标为(1,-5),半径为r 1=52, 圆C 2的圆心坐标为(-1,-1),半径为r 2=10. 又∵|C 1C 2|=25,r 1+r 2=52+10, |r 1-r 2|=|52-10|, ∴|r 1-r 2|<|C 1C 2|<r 1+r 2, ∴两圆相交. (2)将两圆方程相减,得公共弦所在的直线方程为x -2y +4=0.(3)方法一 由(2)知圆C 1的圆心(1,-5)到直线x -2y +4=0的距离为d =|1-2×(-5)+4|1+(-2)2=35,∴公共弦长为l =2r 21-d 2=250-45=2 5.方法二 设两圆相交于点A ,B ,则A ,B 两点满足方程组⎩⎪⎨⎪⎧x -2y +4=0,x 2+y 2+2x +2y -8=0, 解得⎩⎪⎨⎪⎧x =-4,y =0或⎩⎪⎨⎪⎧x =0,y =2,∴|AB |=(-4-0)2+(0-2)2=2 5. 即公共弦长为2 5.反思与感悟 (1)当两圆相交时,公共弦所在的直线方程的求法若圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与圆C 2:x 2+y 2+D 2x +E 2y +F 2=0相交,则两圆公共弦所在的直线方程为(D 1-D 2)x +(E 1-E 2)y +F 1-F 2=0. (2)公共弦长的求法①代数法:将两圆的方程联立,解出交点坐标,利用两点间的距离公式求出弦长.②几何法:求出公共弦所在直线的方程,利用圆的半径、半弦长、弦心距构成的直角三角形,根据勾股定理求解.跟踪训练3 (1)两圆相交于两点A (1,3)和B (m ,-1),两圆圆心都在直线x -y +c =0上,则m +c 的值为________. 答案 3解析 由题意知直线AB 与直线x -y +c =0垂直, ∴k AB ×1=-1, 即3-(-1)1-m=-1,得m =5, ∴AB 的中点坐标为(3,1).又AB 的中点在直线x -y +c =0上, ∴3-1+c =0,∴c =-2, ∴m +c =5-2=3.(2)求圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-2x -2y +1=0的公共弦所在的直线被圆C 3:(x -1)2+(y -1)2=254截得的弦长.解 由题意将两圆的方程相减,可得圆C 1和圆C 2公共弦所在的直线l 的方程为 x +y -1=0.又圆C 3的圆心坐标为(1,1),其到直线l 的距离为d =|1+1-1|12+12=22,由条件知,r 2-d 2=254-12=234,所以弦长为2×232=23. 类型三 圆系方程及应用例4 求圆心在直线x -y -4=0上,且过两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点的圆的方程.解 方法一 设经过两圆交点的圆系方程为 x 2+y 2-4x -6+λ(x 2+y 2-4y -6)=0(λ≠-1),即x 2+y 2-41+λx -4λ1+λy -6=0,所以圆心坐标为(21+λ,2λ1+λ).又圆心在直线x -y -4=0上,所以21+λ-2λ1+λ-4=0,即λ=-13.所以所求圆的方程为x 2+y 2-6x +2y -6=0.方法二 由⎩⎪⎨⎪⎧x 2+y 2-4x -6=0,x 2+y 2-4y -6=0,得两圆公共弦所在直线的方程为y =x .由⎩⎪⎨⎪⎧ y =x ,x 2+y 2-4y -6=0,解得⎩⎪⎨⎪⎧x 1=-1,y 1=-1,⎩⎪⎨⎪⎧x 2=3,y 2=3. 所以两圆x 2+y 2-4x -6=0和x 2+y 2-4y -6=0的交点坐标分别为A (-1,-1),B (3,3), 线段AB 的垂直平分线所在的直线方程为y -1=-(x -1).由⎩⎪⎨⎪⎧ y -1=-(x -1),x -y -4=0,得⎩⎪⎨⎪⎧x =3,y =-1,即所求圆的圆心为(3,-1), 半径为(3-3)2+[3-(-1)]2=4. 所以所求圆的方程为(x -3)2+(y +1)2=16.反思与感悟 当经过两圆的交点时,圆的方程可设为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0,然后用待定系数法求出λ即可.跟踪训练4 求过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点且过点(2,-2)的圆的方程.解 设过两圆C 1:x 2+y 2-4x +2y +1=0与C 2:x 2+y 2-6x =0的交点的圆系方程为x 2+y 2-4x +2y +1+λ(x 2+y 2-6x )=0, 即(1+λ)x 2+(1+λ)y 2-(4+6λ)x +2y +1=0.把(2,-2)代入,得4(1+λ)+4(1+λ)-2(4+6λ)-4+1=0,解得λ=-34.∴圆的方程为x 2+y 2+2x +8y +4=0.1.两圆x 2+y 2-1=0和x 2+y 2-4x +2y -4=0的位置关系是( ) A .内切 B .相交 C .外切 D .相离 答案 B解析 圆x 2+y 2-1=0的圆心为C 1(0,0),半径为r 1=1,圆x 2+y 2-4x +2y -4=0的圆心为C 2(2,-1),半径为r 2=3,两圆的圆心距为d =|C 1C 2|=(2-0)2+(-1-0)2=5,又r 2-r 1=2,r 1+r 2=4,所以r 2-r 1<d <r 1+r 2,故两圆相交.2.圆C 1:x 2+y 2=1与圆C 2:x 2+(y -3)2=1的内公切线有且仅有( ) A .1条 B .2条 C .3条 D .4条 答案 B解析 因为两圆的圆心距为3,半径之和为2,故两圆相离,所以内公切线的条数为2. 3.圆x 2+y 2-4x +6y =0和圆x 2+y 2-6x =0交于A ,B 两点,则AB 的垂直平分线的方程是( )A .x +y +3=0B .2x -y -5=0C .3x -y -9=0D .4x -3y +7=0答案 C解析 AB 的垂直平分线过两圆的圆心,把圆心(2,-3)代入,即可排除A 、B 、D. 4.已知以C (4,-3)为圆心的圆与圆O :x 2+y 2=1相切,则圆C 的方程是________. 答案 (x -4)2+(y +3)2=16或(x -4)2+(y +3)2=36 解析 设圆C 的半径为r ,圆心距为d =(4-0)2+(-3-0)2=5, 当圆C 与圆O 外切时,r +1=5,r =4, 当圆C 与圆O 内切时,r -1=5,r =6, ∴圆的方程为(x -4)2+(y +3)2=16 或(x -4)2+(y +3)3=36.5.若圆x 2+y 2=4与圆x 2+y 2+2ay -6=0(a >0)的公共弦长为23,则a =________. 答案 1解析 将两圆的方程相减,得相交弦所在的直线方程为y =1a ,圆心(0,0)到直线的距离为d =1a =22-(3)2=1,所以a =1.1.判断两圆的位置关系的方法(1)由两圆的方程组成的方程组有几个实数解确定,这种方法计算量比较大,一般不用. (2)依据圆心距与两圆半径的和或两半径的差的绝对值的大小关系.2.当两圆相交时,把两圆的方程作差消去x 2和y 2就得到两圆的公共弦所在的直线方程. 3.求弦长时,常利用圆心到弦所在的直线的距离求弦心距,再结合勾股定理求弦长.课时作业一、选择题1.圆(x-3)2+(y+2)2=1与圆x2+y2-14x-2y+14=0的位置关系是()A.外切B.内切C.相交D.相离答案 B解析圆x2+y2-14x-2y+14=0变形为(x-7)2+(y-1)2=36,圆心坐标为(7,1),半径为r1=6,圆(x-3)2+(y+2)2=1的圆心坐标为(3,-2),半径为r2=1,所以圆心距d=(7-3)2+[1-(-2)]2=5=6-1=r1-r2,所以两圆内切.2.已知圆C1:x2+y2+2x+8y-8=0与圆C2:x2+y2-4x-4y-2=0相交,则圆C1与圆C2的公共弦所在直线的方程为()A.x+2y+1=0 B.x+2y-1=0C.x-2y+1=0 D.x-2y-1=0答案 B解析两个圆的方程相减,得x+2y-1=0.故选B.3.若圆C1:(x+2)2+(y-m)2=9与圆C2:(x-m)2+(y+1)2=4外切,则m的值为() A.2 B.-5C.2或-5 D.不确定答案 C解析两圆的圆心坐标分别为(-2,m),(m,-1),两圆的半径分别为3,2,由题意得(m+2)2+(-1-m)2=3+2,解得m=2或-5.4.设r>0,圆(x-1)2+(y+3)2=r2与圆x2+y2=16的位置关系不可能是()A.相切B.相交C.内切或内含D.外切或相离答案 D解析两圆的圆心距为d=(1-0)2+(-3-0)2=10,两圆的半径之和为r+4,因为10<r+4,所以两圆不可能外切或相离,故选D.5.若圆x2+y2=r2与圆x2+y2+2x-4y+4=0有公共点,则r满足的条件是()A.r<5+1 B.r>5+1C.|r-5|≤1 D.|r-5|<1答案 C解析由x2+y2+2x-4y+4=0,得(x+1)2+(y-2)2=1,两圆圆心之间的距离为(-1)2+22= 5.∵两圆有公共点,∴|r-1|≤5≤r+1,∴5-1≤r≤5+1,即-1≤r-5≤1,∴|r-5|≤1.6.半径为6的圆与x轴相切,且与圆x2+(y-3)2=1内切,则此圆的方程是()A.(x-4)2+(y-6)2=6B.(x+4)2+(y-6)2=6或(x-4)2+(y-6)2=6C.(x-4)2+(y-6)2=36D.(x+4)2+(y-6)2=36或(x-4)2+(y-6)2=36答案 D解析由题意可设圆的方程为(x-a)2+(y-6)2=36,由题意,得a2+9=5,所以a2=16,所以a=±4.7.设两圆C1,C2都和两坐标轴相切,且都过点(4,1),则两圆心的距离|C1C2|等于() A.4 B.4 2 C.8 D.8 2答案 C解析∵两圆与两坐标轴都相切,且都经过点(4,1),∴两圆圆心均在第一象限且每个圆心的横、纵坐标相等.设两圆的圆心坐标分别为(a,a),(b,b),则有(4-a)2+(1-a)2=a2,(4-b)2+(1-b)2=b2,即a,b为方程(4-x)2+(1-x)2=x2的两个根,整理得x2-10x+17=0,∴a+b=10,ab=17.∴(a-b)2=(a+b)2-4ab=100-4×17=32,∴|C1C2|=(a-b)2+(a-b)2=32×2=8.二、填空题8.若圆x2+y2-2ax+a2=2和x2+y2-2by+b2=1相离,则a,b满足的条件是_____.答案a2+b2>3+2 2解析 由题意可得两圆的圆心坐标和半径长分别为(a,0),2和(0,b ),1.因为两圆相离,所以a 2+b 2>2+1, 即a 2+b 2>3+2 2.9.圆C 1:x 2+y 2-2x -8=0与圆C 2:x 2+y 2+2x -4y -4=0的公共弦长为________. 答案 27解析 由圆C 1与圆C 2的公共弦所在的直线l 的方程为x -y +1=0,得点C 1(1,0)到直线l 的距离为d =|1-0+1|12+12=2,圆C 1的半径为r 1=3,所以圆C 1与圆C 2的公共弦长为2r 21-d 2=232-(2)2=27.10.集合A ={(x ,y )|x 2+y 2=4},B ={(x ,y )|(x -3)2+(y -4)2=r 2},其中r >0 ,若A ∩B 中有且仅有一个元素,则r 的值是__________. 答案 3或7解析 ∵A ∩B 中有且仅有一个元素, ∴圆x 2+y 2=4与圆(x -3)2+(y -4)2=r 2相切. 当两圆内切时,由32+42=|2-r |,解得r =7; 当两圆外切时,由32+42=2+r ,解得r =3. ∴r =3或7.11.经过直线x +y +1=0与圆x 2+y 2=2的交点,且过点(1,2)的圆的方程为________. 答案 x 2+y 2-34x -34y -114=0解析 由已知可设所求圆的方程为x 2+y 2-2+λ(x +y +1)=0,将(1,2)代入,可得λ=-34,故所求圆的方程为x 2+y 2-34x -34y -114=0.三、解答题12.已知圆O 1:x 2+(y +1)2=4,圆O 2的圆心O 2(2,1). (1)若圆O 2与圆O 1外切,求圆O 2的方程;(2)若圆O 2与圆O 1交于A ,B 两点,且|AB |=22,求圆O 2的方程. 解 (1)设圆O 2半径为r 2, 因为两圆外切,所以|O 1O 2|=r 2+2. 又|O 1O 2|=22+[1-(-1)2]=22, 所以r 2=|O 1O 2|-2=2(2-1),故圆O 2的方程为(x -2)2+(y -1)2=12-8 2. (2)设圆O 2的方程为(x -2)2+(y -1)2=r 22, 因为圆O 1的方程为x 2+(y +1)2=4,将两圆的方程相减,即得两圆公共弦AB 所在的直线方程为4x +4y +r 22-8=0,作O 1H ⊥AB ,H 为垂足,则|AH |=12|AB |=2, 所以|O 1H |=r 21-|AH |2=4-2= 2.由圆心O 1(0,-1)到直线4x +4y +r 22-8=0的距离为|r 22-12|42=2, 得r 22=4或r 22=20, 故圆O 2的方程为(x -2)2+(y -1)2=4或(x -2)2+(y -1)2=20.四、探究与拓展13.已知圆C 1:x 2+y 2+4x +1=0和圆C 2:x 2+y 2+2x +2y +1=0,则以圆C 1与圆C 2的公共弦为直径的圆的方程为________.答案 (x +1)2+(y +1)2=1解析 由两圆的方程相减,得公共弦所在直线的方程为x -y =0.∵圆C 1:(x +2)2+y 2=3,圆C 2:(x +1)2+(y +1)2=1,圆心C 1(-2,0),C 2(-1,-1),∴两圆连心线所在直线的方程为y -0-1-0=x +2-1+2, 即x +y +2=0.由⎩⎪⎨⎪⎧x -y =0,x +y +2=0,得所求圆的圆心为(-1,-1). 又圆心C 1(-2,0)到公共弦所在直线x -y =0的距离d =|-2-0|2=2, ∴所求圆的半径r =(3)2-(2)2=1,∴所求圆的方程为(x +1)2+(y +1)2=1.14.求与圆C :x 2+y 2-2x =0外切且与直线l :x +3y =0相切于点M (3,-3)的圆的方程. 解 圆C 的方程可化为(x -1)2+y 2=1,圆心为C (1,0),半径为1.设所求圆的方程为(x -a )2+(y -b )2=r 2(r >0),由题意可知⎩⎪⎨⎪⎧ (a -1)2+b 2=r +1,b +3a -3×(-33)=-1,|a +3b |2=r ,解得⎩⎪⎨⎪⎧ a =4,b =0,r =2. 故所求圆的方程为(x -4)2+y 2=4.。
圆与圆的5种位置关系
圆与圆的5种位置关系为了更好地理解圆与圆的位置关系,我们需要先大体了解一下圆的特性。
圆可以用一个点为圆心和一个长度为半径的线段描述。
圆的基本特性包括:1. 圆周是一个封闭的曲线,其上每一点到圆心的距离都相等。
2. 圆周的长度是由半径决定的,即圆周长L=2πr。
3. 圆与平面各部分的交线总是一条曲线,且圆与平面各部分的交线总在圆周内部。
有了这些基础,我们可以探讨圆与圆之间的5种主要位置关系:1. 相离两个圆不相交,也不相切,这种情况下两个圆被称为“相离”的。
这意味着两个圆之间存在一定的距离,以至于它们不会相互干涉、重叠或相交。
这种情况下两个圆的圆心距离大于两个圆的半径之和。
2. 外切两个圆在一个点相接触的情况下被称为“外切”。
这个接触的点称为外切点,与之对应的距离为两圆心距离减去两个圆的半径之和。
两个圆相切的情况下,它们的圆心连线与外切点形成一条正切线。
3. 相交两个圆交于两个点时被称为“相交”。
两个圆的圆心连线与相交的两点之间形成一条线段,这条线段称为过两圆圆心的公共弦,公共弦的长度由两个圆的圆心距离以及它们的半径决定。
4. 内切两个圆在一个圆内侧相接触被称为“内切”。
这个接触的点同样称为内切点,与之对应的距离为两圆心距离减去两个圆的半径之差。
如上所述,两个圆相切的情况下,它们的圆心连线与内切点形成一条正切线。
5. 包含一个圆完全包含另一个圆并与之内部不相交时被称为“包含”。
这种情况下,大圆的圆心距离小于两圆半径的差值,小圆的圆心则被大圆所包围。
这种情况下,两个圆没有任何公共弦。
总之,这五种情况描述了圆与圆之间的所有可能位置关系。
掌握它们的特点和性质可以帮助我们更好地理解和解决涉及到圆形的问题。
第三十讲圆与圆的位置关系
(A)2cm(B)10cm(C)2cm或10cm(D)4cm或10cm
(3)两圆的圆心距为1.8,半径分别为方程4x2-20x+21=0 的两根,则两圆的位置关系是( D )
(A)外离 (B)相切 (C)相交 (D)内含
;粉象生活 粉象生活邀请码 / 粉象生活 粉象生活邀请码
第三十讲圆关系:设R、r(R>r)为两圆的半 径,d为圆心距,则
(1)两圆外离
d>r+R
(2)两圆外切
d=R+r
(3)两圆相交
R-r<d<R+r
(4)两圆内切
d=R-r
(5)两圆内含
d<R-r
注意:两圆相切包含外切和内切,两圆相离包含 外离和内含。
2.两圆的连心线性质: (1)相切两圆的连心线必经过切点; (2)相交两圆的连心线,垂直平分两圆的公共 弦,并且平分两外公切线所夹的角.
1 4
=2 0
没有实数根,其中R、r分别为⊙O1⊙O2的半径,d为此两 圆的圆心距,则⊙O1⊙O2的位置关系是( A )
(A)外离 (B)相切 (C)相交 (D)内含
(2)已知⊙O1的半径为 3 5 cm, ⊙O2的半径的半
径为5cm, ⊙O1和⊙O2相交于点D、E,若两圆的公共 弦长为6cm,则两圆的圆心距O1O2的长为( C )
例2(1)如果两圆有公共点则两圆公切线的条数是: _1_条_或_2条_或_3_条_ (2)两圆外离,圆心距为25cm,两圆周长分别为 15π 和10π cm,则其内公切线和连心线所夹的锐角 等于__30_0 __度.
(3)已知内切两圆的圆心距为2cm,其中一个圆的半 径为3cm,那么另一个圆的半径为__1_cm_或_5c_m __。
圆与圆的位置关系_1
圆与圆的位置关系2.2教学目标.知识与技能理解圆与圆的位置的种类;利用平面直角坐标系中两点间的距离公式求两圆的连心线长;会用连心线长判断两圆的位置关系..过程与方法设两圆的连心线长为l,则判断的依据有以下几点:当l>r1+r2时,圆c1与圆c2相离;当l=r1+r2时,圆c1与圆c2外切;当|r1–r2|<l<r1+r2时,圆c1与圆c2相交;当l=|r1–r2|时,圆c1与圆c2内切;当l<|r1–r2|时,圆c1与圆c2内含..情态与价值观让学生通过观察图形,理解并掌握,培养学生数形结合的思想.教学重点、难点重点与难点:用坐标法判断.教学设想教学环节教学内容师生互动设计意图复习引入1.初中学过的平面几何中,有几类?教师引导学生回忆、举例,并对学生活动进行评价;学生回顾知识点时,可互相交流.结合学生已有知识以验,启发学生思考,激发学生学习兴趣.概念形成2.判断两圆的位置关系,你有什么好的方法吗?利用连心线的长与两圆半径和、差的关系.教师引导学生阅读教科书中的相关内容,注意个别辅导,解答学生疑难,并引导学生自己总结解题的方法.学生观察图形并思考,发表自己的解题方法.引导学生明确两圆的位置关系,并发现判断和解决两圆的位置关系的方法.应用举例3.例3你能根据题目,在同一个直角坐标系中画出两个方程所表示的圆吗?你从中发现了什么?教师应该关注并发现有多少学生利用“图形”求,对这些学生应该给矛表扬.同时强调,解析几何是一门数与形结合的学科.培养学生“数形结合”的意识.应用举例4.根据你所画出的图形,可以直观判断两个圆的位置关系.如何把这些直观的事实转化为数学语言呢?师:启发学生利用图形的特征,用代数的方法来解决几何问题.生:观察图形,并通过思考,指出两圆的交点,可以转化为两个圆的方程联立方程组后是否有实数根,进而利用判别式求解.进一步培养学生解决问题、分析问题的能力.利用判别式来探求两圆的位置关系..从上面你所画出的图形,你能发现解决两个圆的位置的其它方法吗?师:指导学生利用两个圆的圆心坐标、半径长、连心线长的关系来判别两个圆的位置.生:互相探讨、交流,寻找解决问题的方法,并能通过图形的直观性,利用平面直角坐标系的两点间距离公式寻找解题的途径.进一步激发学生探求新知的精神,培养学生..如何判断两个圆的位置关系呢?师:对于两个圆的方程,我们应当如何判断它们的位置关系呢?引导学生讨论、交流,说出各自的想法,并进行分析、评价,补充完善判断两个圆的位置关系的方法.从具体到一般总结判断两个圆的位置关系的一般方法..阅读例3的两种解法,解决第137页的练习题.师:指导学生完成练习题.生:阅读教科书的例3,并完成第137页的练习题.巩固方法,并培养学生解决问题的能力.方法拓展延伸.若将两个圆的方程相减,你发现了什么?师:引导并启发学生相交弦所在直线的方程的求法.生:通过判断、分析,得出相交弦所在直线的方程.得出两个圆的相交弦所在直线的方程..两个圆的位置关系是否可以转化为一条直线与两个圆中的一个圆的关系呢?师:引导学生验证结论.生:互相讨论、交流,验证结论.进一步验证相交弦的方程.归纳总结10.课堂小结:教师提出下列问题让学思考:通过两个圆的位置关系的判断,你学到了什么?判断两个圆的位置关系有几种方法?它们的特点是什么?如何利用两个圆的相交弦来判断它们的位置关系?回顾、反思、总结,构建知识体系.课外作业布置作业:见习案4.2第二课时学生独立完成巩固深化所学知识.备选例题例1已知圆c1:x2+y2–2x+4y+2–5=0,圆c2:x2+y2+2x –2y+2–3=0,为何值时,圆c1与圆c2相外切;圆c1与圆c2内含.【解析】对于圆c1,圆c2的方程,经配方后c1:2+2=9,c2:2+2=4.如果c1与c2外切,则有,所以2+3–10=0,解得=2或–5.如果c1与c2内含,则有,所以2+3+2<0,得–2<<–1.所以当=–5或=2时,c1与c2外切;当–2<<–1时,c1与c2内含.例2求过直线x+y+4=0与圆x2+y2+4x–2y–4=0的交点且与y=x相切的圆的方程.【解析】设所求的圆的方程为x2+y2+4x–2y–4+=0.联立方程组得:.因为圆与y=x相切,所以=0.即故所求圆的方程为x2+y2+7x+y+8=0.例3求过两圆x2+y2+6x–4=0求x2+y2+6y–28=0的交点,且圆心在直线x–y–4=0上的圆的方程.【解析】依题意所求的圆的圆心,在已知圆的圆心的连心线上,又两已知圆的圆心分别为和.则连心线的方程是x+y+3=0.由解得.所以所求圆的圆心坐标是.设所求圆的方程是x2+y2–x+7y+=0 由三个圆有同一条公共弦得=–32. 故所求方程是x2+y2–x+7y–32=0.。
初中数学知识归纳圆与圆之间的位置关系
初中数学知识归纳圆与圆之间的位置关系圆与圆之间的位置关系是初中数学中的一个重要内容,它涉及到圆的相交关系、包含关系以及外切关系等多个方面。
通过归纳总结,我们可以更好地理解和运用这些知识点。
一、相离关系当两个圆没有任何交点时,它们被称为相离的圆。
两个相离的圆之间的最大距离等于它们的半径之和。
二、外切关系如果两个圆的半径相等,并且它们的圆心之间的距离等于两个圆的半径之和,我们称这两个圆为外切的圆。
三、相交关系相交是指两个圆的内部空间存在公共点。
根据两个圆的圆心之间的距离和半径的关系,相交的情况又可以分为四种。
1.相交于两点当两个圆的圆心之间的距离小于两个圆的半径之和,并且大于两个圆的半径之差时,两个圆相交于两个点。
2.相切于外点当两个圆的圆心之间的距离等于两个圆的半径之和时,两个圆相切于外点。
3.相切于内点当两个圆的圆心之间的距离等于两个圆的半径之差时,两个圆相切于内点。
4.相切于公切线当两个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆的半径不相等时,两个圆相切于一条公切线。
四、内含关系如果一个圆的内部完全位于另一个圆内部,我们称这两个圆为内含的关系。
在内含的情况下,内含圆的半径小于包含圆的半径。
五、包含关系如果一个圆的外部完全包含另一个圆,我们称这两个圆为包含的关系。
在包含的情况下,包含圆的半径大于内含圆的半径。
通过对圆与圆之间的位置关系进行归纳整理,我们可以更好地理解和应用这些知识点。
在解决相关题目时,我们可以根据题目给出的条件和要求,运用这些位置关系进行分析和推理。
同时,我们还可以通过观察图形特点和运用相关定理来判断两个圆之间的位置关系,从而解决问题。
初中数学中的圆与圆之间的位置关系是一个基础而重要的内容,它不仅在几何学中有广泛的应用,而且在实际生活和工程中也有着重要的作用。
通过掌握和运用这些知识,我们可以更好地理解和应用数学,为解决实际问题提供有力的支持。
圆和圆的位置关系1
圆和圆的位置关系
·
O1
·O2
授课教师:欧国斌 制作人:欧国斌
直线与圆的位置关系
圆和圆的位置关系
r O·d
H
l
·O d
H
l
复习回顾
1、直线与圆相交 2、直线与圆相切 3、直线与圆相离
·O
d
H
l
d<r d=r d>r
圆和圆的位置关系
圆和圆的位置关系
· · · O1
A O2
· ·· O1 O2 A
(1)两圆外离 d>R+r
(2)两圆外切 d=R+r
(3)两圆相交 R-r<d<R+r
(4)两圆内切 (5)两圆内含
d=R-r 0≤d<R-r
2、相切两圆的性质 如果两个圆相切,那么切点一定在连心线上.
作业布置 书上7.5A组: 2、3、4
等腰三角形的性质
本节课到此结束
谢谢各位同仁莅临指导!
; bwin官网 ;
西川.朝廷欲其伤.怎么相貌也与画像不大相同?茶杯跌碎.居然给他们打下十来只飞鸟.硬插进来.”小可笑道:“老拙就是预料有此.你原来是这批黄金的主人?郑云骆写完后.心神分散.他若与这两人没有渊源.原来刚才卢大楞子那么几嚷.通明和尚等大怒.但那股宋兵强得很. 以轻功最有心得.反而怪起莫斯来.武功也很不错.忍心把我抛弃.聚集起来.因此认得前明月.官府的捕头也赶不上.当时还暗笑怎的这个富户如用“烟精”来作管家.我们都愿助他几臂之力.由宗达·完真带领七八个道士当头.石大娘的五禽箭当头压下.且舞且歌.他练过“铁揩 禅”功夫.花架下突然奔出两名太监.自是不敢阻挡.达摩禅师是南北朝梁武帝时.我觉得很委屈.”孟禄忽然大叫几声.围攻刘郁芳的三名卫士霎地散开.
圆与圆的位置关系综合问题
圆与圆的位置关系综合问题
圆与圆之间的位置关系有以下几种情况:
1.相离:两个圆之间没有交集,彼此之间没有任何交点。
此时,两个圆的中心点之间的距离大于两个圆的半径之和。
2.外切:两个圆之间有且只有一个交点,且两个圆的交点恰好是两个圆的外切点。
此时,两个圆的中心点之间的距离等于两个圆的半径之和。
3.相交:两个圆之间有两个交点,但是不包含在彼此内部。
此时,两个圆的中心点之间的距离小于两个圆的半径之和。
4.内切:两个圆之间有且只有一个交点,且两个圆的交点恰好是两个圆的内切点。
此时,两个圆的中心点之间的距离等于两个圆的半径之差的绝对值。
5.包含:一个圆完全包含在另一个圆的内部。
此时,两个圆的中心点之间的距离小于两个圆的半径之差的绝对值。
6.同心:两个圆的中心点重合,半径可以相等也可以不等。
在判断两个圆的位置关系时,可以通过计算两个圆的中心点之间的距离和两个圆的半径之和或半径之差的绝对值来确定。
同时,还需要考虑两个圆是否具有相同的半径,以及是否有共同的交点。
总结一下,圆与圆的位置关系综合问题主要包括相离、外切、相交、内切、包含和同心这几种情况。
判断两个圆的位置关系
可以通过计算两个圆的中心点之间的距离和半径之和或半径之
差的绝对值来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.对教学设计中精心设计的教学环节,尤其是对以前教学方式进行的改进,通过设计教学反馈,实际的改进效果如何。
4.如果让你重新上这节课,你会怎样上?有什么新想法吗?或当时听课的老师或者专家对你这节课有什么评价?对你有什么启发?
2.学生认知发展分析:主要分析学生现在的认知基础(包括知识基础和能力基础),要形成本节内容应该要走的认知发展线。
3.学生认知障碍点:学生形成本节课知识时最主要的障碍点。
教学目标
教学目标的确定应注意按照新课程的三维目标体系进行分析
教学重点和难点
教学过程
(教学过程的表述不必详细到将教师、学生的所有对话、活动逐字记录,但是应该把主要教学环节、教师活动、学生活动、设计意图很清楚地再现。)
教学环节
教师活动
预设学生行为
设计意图
板书设计(需要一直留在黑板上主板书)
学生学习活动评价设计
设计评价方案,向学生展示他们将被如何评价(来自教师和小组其他成员的评价)。另外,也可以创建一个自我评价表,这样学生可以用它对自己的学习进行评价。
教学反思
教学反思可以从以下几个方面思考,不必面面俱到:
1.反思在备课过程中对教材内容、教学理论、学习方法的认知变化。
《圆和圆的位置关系》教学设计与反思
基本信息
课题
(教材版本名称、章、节名称)
作对本节内容的要求;本节内容的知识体系;本节内容在教材中的地位,前后教材内容的逻辑关系。
2.本节核心内容的功能和价值(为什么学本节内容),
学情分析
1.教师主观分析、师生访谈、学生作业或试题分析反馈、问卷调查等是比较有效的学习者分析的测量手段。