巧算与速算
第1讲 速算与巧算
第一章速算与巧算知识要点在速算与巧算中,主要是运算定律、性质和一些技巧方法的运用。
1.加法巧算。
(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
字母表示:a+b=b+a(2)加法结合律;三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,再同第一个数相加,它们的和不变。
字母表示:a+b+c=(a+b)+c=a+(b+c)交换律和结合律通常是在一起使用。
如果多个数相加,任意交换加数的位置,它们的和不变,或者先把其中的几个数结合成一组相加,再把所得的和同其他剩下的数相加,它们的和仍然不变。
字母表示:a+b+c+d+e=d+(b+d+e)+c2.减法巧算。
(1)减法的运算性质(有时可以将减法的运算性质理解成填括号或去括号的性质):一个数减去几个数的和,等于从这个数里依次减去和中的每一个加数。
字母表示:a-(b+c+d)=a-b-c-d(2)一个数连续减去几个数,等于从这个数中减去这几个数的和。
字母表示:a-b-c-d=a-(b+c+d)3.乘法巧算。
(1)乘法交换律:两个数相乘,交换因数的位置,积不变。
字母表示:a×b=b×a(2)乘法结合律:三个数相乘,可以先把前两个数结合起来相乘,再和第三个数相乘;也可以先把后两个数结合起来先乘,再和第一个数相乘,它们的积不变。
字母表示:a×b×c=(a×b)×c=a×(b×c)交换律和结合律通常是在一起使用。
如果多个数相乘,任意交换因数的位置,它们的积不变;可以选择两个因数相乘,得出便于运算的整十、整百、整千……的积,再将这个积与其他的因数相乘;有时可以把一个因数用几个因数相乘的形式表示,使其中一个因数与算式中其他的某个因数的积成为便于运算的数,然后再与其他的因数相乘,使计算快捷准确。
(3)积不变的规律:如果一个因数扩大若干倍,另一个因数缩小同样的倍数,那么它们的积不变。
速算与巧算(后附答案)
速算与巧算(后附答案)一【要点提示】1、简便运算是计算中的一个非常重要的组成部分,掌握一些简便算法,有助于提高我的计算能力和思维能力。
而简便算法往往要根据一定的运算定律和运算性质通过对算式进行“有的放矢”从而使计算简便。
2、在巧算的方法里,蕴含着重要的解决问题的策略:转化法。
即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或凑整,从而变成一个易于算出结果的算式。
3、运算定律和运算性质:如交换律、结合律、乘法分配律、添括号、拆分法。
除法的性质:如4、在分解因数凑整相乘时,记住一些特殊的积有益于速算,如25=10 25258=200 1258=1000 6258=5000等等。
但是,凑整法需要灵活运用,要想算的快又准,最根本的是抓住题目特点,灵活运用乘、除法运算定律进行计算。
二【经典题型】例1计算(1)9+99+999 (2)479+478+477+476+481+482(3)326+289+74-189 (4)354+(146-78)(5) 735-(335-287) (6)735-487+187【模仿提升】第1页共 5 页1、99999+9999+999+99+92、9+98+997+9996+999953、80+81+82+83+84+854、998+999+1000+1001+10025、1306-889-3066、2426-589+74+8897、564-(212-236) 8、639+(410-239)9、632-385+185 10、458-889+188911、12345+23451+34512+45123+51234第2页共 5 页【奥数训练营】速算与巧算速算与巧算是在运算过程中,根据数的特点与数之间的特殊关系,恰当,准确,灵活地运用定律,性质及和、差、积、商的变化规律,进行一种简便、迅速的计算。
++++例1. 计算889899899989999例2. 计算:20191817161514134321…+--++--+++--⨯例3. 44425⨯+⨯例4. 375480625048⨯例5. 计算:333333333333第3页共 5 页第 4 页 共 5 页例6. 计算:343535353434⨯-⨯【模拟试题】(答题时间:40分钟)1. 用简便方法计算(1)678354322++()(2)283147171653+++ (3)38437184-+()(4)29041327173-- (5)653197-(6)12517125⨯-(7)23599⨯(8)()130052013-÷ ( 9)672118218579⨯+⨯+⨯(10)222222999999⨯ (11)399999399993999399393+++++第 5 页 共 5 页(12)201918174321-+-++-+-… (13)8888125⨯ (14) 34534515015÷。
速算和巧算
第一讲速算和巧算例1 计算:18+21+23+20+19+15例2 计算:199999+19999+1999+199+19例3 计算:2541-1998例4 计算:1991+8119+8009+1881例5 计算:25×19×64×125例6 计算:(1)125×34+125×66(2)43×11+43×36+43×52+43例7 计算:(1)68×62(2)85×85例8 计算:26×11例9 计算:358×11练习1. 计算:78+76+81+82+77+80+79+832. 计算:998+1413+99893. 计算:19+299+3999+499995. 计算:673+(528-373)6. 计算:829+(571-629)7. 计算:(1)1164×25 (2)1730÷58. 计算:3600-785+534-2159. 计算:9+99+999+9999+…+99999个11. 计算:26×8612. 计算:548-164-23613. 计算:(1)54-36+64+36 (2)54×36×64÷3614. 计算:28÷3×54×15÷54÷1415. 速算下面各题:(1)2×31×5 (2)72×125×3(3)125×64+125×36 (4)21×73+26×21+2116. 先观察下列各题有什么特点再计算:(1)23×27 (2)46×44 (3)55×55 (4)353×11 (5)638×9 (6)38×999四年级第一讲速算与巧算(一)例题例1 计算:1966+1976+1986+1996+2006例2 计算:125×25×32例3 计算:(1)567×422+567+577×567 (2)5328×9999 例4 计算:99999×22222+33333×33334例5 计算:1991×199219921992-1992×199119911991例6 计算:1234+3142+4321+2413练习一1. 计算:1+2+3+4+5+6+7+8+9+10+11+…+1002. 计算:3600000÷125÷32÷253. 计算:5×96×125×254. 计算:899998+89998+8998+8985. 计算:3456×9986. 计算:37×18+27×427. 计算:38×82+17×38+388. 计算:347×69+653×31+306×199. 计算:3983993433333个个10. 计算:111111×999999+999999×77777711. 计算:123+234+345+456+567+67812. 计算:(2+4+6+…+1998+2000)-(1+3+5+…+1997+1999)13. 计算:99999×77778+33333×6666614. 计算:12345+23451+34512+45123+5123415. 计算:19961997×19971996-19961996×19971997第二讲 速算与巧算(二)例19199291992919929991999999个个个+⨯的末尾有多少个零?例2 计算:98+97-96-95+94+93-92-91+90+89-…-4-3+2+1例3 计算:98989898×99999999÷1010101÷11111111例4 计算:7+77+777+7777+77777例5 计算:9÷(9÷8)÷(8÷7)÷(7÷6)÷(6÷5)÷(5÷4)÷(4÷3) 例6 计算:11111×11111练习二1. 计算:999999999×999999999+19999999992. 计算:1-2+3-4+5-6+…+97-98+99+1003. 计算:76000÷98010000020001个个4. 计算:[1-1×﹙0+1﹚+1÷1] ÷﹙1000-999﹚5. 计算:3+33+333+…+39333个6. 计算:1+2-3-4+5+6-7-8+9+10-…+19907. 计算:1+2-3+4+5-6+7+8-9+…+97+98-1008. 计算:99+198+297+396+495+594+693+792+891+9909. 计算:(1)11111111×11111111(2)1111111111×111111111110. 计算:1÷(2÷3) ÷(3÷4) ÷(4÷5) ÷(5÷6) ÷(6÷7) ÷(7÷8)11. 计算:36×12004111个+412. 计算:22222×2222213. 计算:61996619976766666个个14. 计算:123456789×987654321-123456788×987654322。
(完整版)常用的巧算和速算方法
小学数学速算与巧算方法例解【转】速算与巧算在小学数学中,关于整数、小数、分数的四则运算,怎么样才能算得既快又准确呢?这就需要我们熟练地掌握计算法则和运算顺序,根据题目本身的特点,综合应用各种运算定律和性质,或利用和、差、积、商变化规律及有关运算公式,选用合理、灵活的计算方法。
速算和巧算不仅能简便运算过程,化繁为简,化难为易,同时又会算得又快又准确。
一、“凑整”先算1.计算:(1)24+44+56(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+36=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,91,3,5,7,92,4,6,8,103,6,9,12,154,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9=5×9 中间数是5=45 共9个数(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10=6×5 中间数是6=30 共有5个数(4)计算:3+6+9+12+15=9×5 中间数是9=45 共有5个数(5)计算:4+8+12+16+20=12×5 中间数是12=60 共有5个数2. 等差连续数的个数是偶数时,它们的和等于首数与末数之和乘以个数的一半,简记成:(1)计算:1+2+3+4+5+6+7+8+9+10=(1+10)×5=11×5=55共10个数,个数的一半是5,首数是1,末数是10.(2)计算:3+5+7+9+11+13+15+17=(3+17)×4=20×4=80共8个数,个数的一半是4,首数是3,末数是17.(3)计算:2+4+6+8+10+12+14+16+18+20=(2+20)×5=110共10个数,个数的一半是5,首数是2,末数是20.四、基准数法(1)计算:23+20+19+22+18+21解:仔细观察,各个加数的大小都接近20,所以可以把每个加数先按20相加,然后再把少算的加上,把多算的减去.23+20+19+22+18+21=20×6+3+0-1+2-2+1=120+3=1236个加数都按20相加,其和=20×6=120.23按20计算就少加了“3”,所以再加上“3”;19按20计算多加了“1”,所以再减去“1”,以此类推.(2)计算:102+100+99+101+98解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.加法中的巧算1.什么叫“补数”?两个数相加,若能恰好凑成整十、整百、整千、整万…,就把其中的一个数叫做另一个数的“补数”。
常用的巧算和速算方法
常用的巧算和速算方法【顺逆相加】用"顺逆相加〞算式可求出假设干个连续数的和。
例如著名的大数学家高斯〔德国〕小时候就做过的"百数求和〞题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。
"3+5+7+………+97+99=?3+5+7+……+97+99=〔99+3〕×49÷2= 2499。
这种算法的思路,见于书籍中最早的是我国古代的"张丘建算经"。
张丘建利用这一思路巧妙地解答了"有女不善织〞这一名题:"今有女子不善织,日减功,迟。
初日织五尺,末日织一尺,今三十日织讫。
问织几何?〞题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。
她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。
问她一共织了多少布?张丘建在"算经"上给出的解法是:"并初末日织尺数,半之,余以乘织讫日数,即得。
〞"答曰:二匹一丈〞。
这一解法,用现代的算式表达,就是1 匹=4 丈,1 丈=10 尺,90 尺=9 丈=2 匹1 丈。
〔答略〕张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个一样的数,而这一递减的数不会是个整数。
假设把这个式子反过来,则算式便是1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个一样的数。
同样,这一递增的一样的数,也不是一个整数。
假假设把上面这两个式子相加,并在相加时,利用"对应的数相加和会相等〞这一特点,则,就会出现下面的式子:所以,加得的结果是6×30=180〔尺〕但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。
速算与巧算大全
一、速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。
例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。
【解答】:原式=(298+502)+(304+196)=800+500=1300二、速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。
特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。
例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464减545根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。
【解答】原式=464+836-545-455=1300-(545+455)=300思考:4.75÷0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?三、速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。
例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413分成1400、2与11三个数的和。
【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400 例:73.15×9.9【分析】把9.9看作10减0.1的差,然后用乘法分配率可简化运算。
【解答】原式=73.15×(10-0.1)=73.15×10-73.15×0.1=731.5-7.315=724.185四、速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便。
第一讲 :速算与巧算
速算与巧算速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。
速算巧算中会用到加法和减法,乘法和除法的运算定律和运算性质!巧算方法中,蕴含着一种重要的解决问题的策略:转化问题法。
即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或凑整从而变成一个易于算出结果的算式。
例1:9+99+999+9999(凑数法)即时练习:计算:(1)999999+99999+9999+999+99+9(2)9+98+996+9997(3)19999+2998+396+497(4)198+297+396+495(5)1998+2997+4995+5994(6)19998+39996+49995+69996例2:489+487+483+485+484+486+488(基准数)即时练习:计算:(1)50+52+53+54+51(2)262+266+270+268+264(3)89+94+92+95+93+94+88+96+87(4)381+378+382+383+379(5)1032+1028+1033+1029+1031+1030(6)2451+2452+2446+2453例3:(1)632—136—232 (2)128+186+72—86在一个没有括号的算式中,如果只有第一级计算,计算时可以根据运算定律和性质调换加数或减数的位置。
即时练习:(1)1208—569—208(2)283+69—183(3)132—85+68(4)2318+625—1318+375例4:(1)248+(152—127)(2)324—(124—97)(3)283+(358—183)计算有括号的加减混合运算时:括号前面是“+”,去掉括号不改号,括号前面是“-”,去掉括号要改号。
即时练习:(1)384+(252—166)(2)629+(320—129)(3)462—(262—129)(4)662—(315—238)(5)5623—(623—289)+452—(352—211)(6)736+678+2386—(336+278)—186例5:(1)286+879—679 (2)812—593+193=286+(879—679)=812—(593—193)=286+200 =812—400=486 =412计算没有括号的加建混合运算时:括号前面是“+”,添、去括号不改号,括号前面是“-”,添、去括号要改号。
数学巧算速算方法
数学巧算速算方法
以下是一些常见的数学巧算速算方法:
1. 乘法速算:
- 相邻两位数相乘:如72 × 74 = 5376,先计算7 × 7 = 49,再计算2 × 4 = 8,最后将结果连接起来,得到5376。
- 一位数乘以11的倍数:如4 × 44 = 176,将原数首尾加起来得到第一位数(4 + 4 = 8),再将原数的个位数放在中间,得到结果176。
2. 除法速算:
- 除以10的倍数:如240 ÷ 30 = 8,将被除数末尾的0去掉,再将结果与被除数的个位数相乘,得到最终结果8。
- 除以2的倍数:如468 ÷ 12 = 39,将被除数每一位数相加得到和(4 + 6 + 8 = 18),再判断和是否能被12整除,如果可以,则商为和除以12,否则商加1。
3. 平方速算:
- 以5为基准的平方:如65² = 4225,将原数去掉个位数后乘以(原数加1),再在末尾加上25,得到结果4225。
- 以50为基准的平方:如57² = 3249,将原数去掉个位数后乘以(原数加1),再在末尾加上49,得到结果3249。
这些巧算速算方法可以帮助简化数学运算,提高计算速度。
但需要注意的是,速算方法适用于简单的计算,对于复杂的计算仍然需要使用正常的计算方法。
第二讲 速算与巧算
第二讲速算与巧算第二讲速算与巧算第二讲速算与巧算(一)专题鼓励:1、凑成整十、整百、整千的数,把一些接近整十、整百、整千的数看成接近的数进行简算,对于原数与整十、整百、整千相差的数,要根据“多加减去,少加还要加,多减要加上,少减还要减”的原则进行处理。
2、利用运算定律使运算简便。
典型例题:例1、计算:(1)548+397(2)2867+502解析:(1)式中的397吻合400,548+400就化后原式加之397多提了“3”,所以必须在算式后面乘以“3”:548+397=58+400-3=948-3=945(2)式中的502接近500,2867+500就比原式加上502少加了“2”,所以应在算式后面再加上“2”:2867+502=2867+500+2=3367+2=3369基准2、排序:(1)736-197(2)2463-304解析:(1)式中的197接近200,用736-200就比原来减去197多减了“3”,所以要在算式后加之“3”:736-197=736-200+3=536+3=539(2)式中的304接近300,2643-300比原来减去304少减了“4”,所以要在后面再减去“4”:2463-304=2463-300-4=2163-4=2159恶搞训练:用简便方法计算下面各题:(1)、472+198(2)、402+2729(3)、278-199(4)、2645-403基准3、排序:(1)、2739-325-175(2)、856-(156+78)解析:(1)通过观察可以发现(1)式中的减数175和325正好可以凑成整百数,应用加法性质并使排序方便快捷。
(一个数边续乘以几个数,等同于这个数乘以这几个数的和。
)(1)2739-325-175=2739-(325+175)=2739-500=2239(2)题目中856与156有相同的尾数,可以先减,是上面减法性质的反用。
(1)856-(156+78)=856-156-78=700-78=622基准4、排序:(1)、3652-289+348(2)、497+303解析:(1)式中的3652与348可以凑成整千数,先加起来,然后再减去289。
速算与巧算
速算与巧算知识要点在各类数学竞赛中,都有一定数量的计算题。
计算题一般可以分为两类:一类是基础题,主要考查对基础知识理解和掌握的程度;另一类则是综合性较强和灵活性较大的题目,主要考查灵活、综合运用知识的能力,一般分值在10分到20分之间。
这就要求有扎实的基础知识和熟练的技巧。
1.速算与巧算主要是运用定律:加法的交换律、结合律,减法的性质,乘法的交换律、结合律和乘法对加法的分配律,除法的性质等。
2.除法运算规律:(1)A÷B=1÷B A(2)a÷b±c÷b=(a±c)÷b3.拆项法:(1)1111(1) n n n n=+++(2)11 ()dn n d n n d=-++(3)1111() ()n n d d n n d=-++(4)1111 (1)(2)2(1)(1)(2) n n n n n n n⎡⎤=-⎢⎥+++++⎣⎦(5)22(1)11111(1)11n n n nn n n n n n +++=+=-++ +++(6)将1A分拆成两个分数单位和的方法:先找出A的两个约数a1和a2,然后分子、分母分别乘以(a1+a2),再拆分,最后进行约分。
1 A =12121()()a aA a a⨯+⨯+=121212()()a aA a a A a a+⨯+⨯+=12121211()()A Aa a a aa a+⨯+⨯+4.等差数列求和:(首项+末项)×项数÷2=和5.约分法简算:将写成分数形式的算式中的分子部分与分母部分同时除以它们的公有因数或公有因式。
典例巧解例1 (第五届“希望杯”邀请赛试题)2007÷200720072008=。
点拨一被除数是2007,除数是一个带分式,整数部分和分数部分的分子都是2007,我们可以把200720072008化为假分数,再把分子用两个数相乘的形式表示,便于约分和计算。
四则运算常用速算与巧算方法
四则运算常用速算与巧算方法1.同除法运算:当除数和被除数同时除以相同的数时,商不变。
例如:计算72÷6可以转换为计算36÷3或者18÷2,这样计算起来会更简单。
2.同乘法运算:当乘数和被乘数同时乘以相同的数时,积不变。
例如:计算24×3可以转换为计算8×9或者4×6,这样计算起来会更简单。
3.分解法:将较大的数分解成更容易计算的两个数相加或相乘。
例如:计算58×12可以分解为50×12+8×12,这样计算起来会更简单。
4.加法与减法结合:利用相加和相减的关系,进行合理的组合计算。
例如:计算138+65-30可以分别计算130+60和8+5,然后再进行相加和相减,这样计算起来会更快。
5.乘法与除法结合:利用相乘和相除的关系,进行合理的组合计算。
例如:计算56÷7×6可以先计算56÷7再乘以6,这样计算起来会更方便。
6.使用九九乘法口诀表:利用九九乘法口诀表中的规律,可以快速计算乘法运算。
例如:计算7×8可以根据口诀表中7所在的行找到8所在的列,交叉点的值即为答案,所以7×8=567.使用乘法交换律和结合律:利用乘法交换律和结合律,可以改变运算顺序,简化计算过程。
例如:计算48×5可以改为5×48,这样计算起来会更方便。
8.使用近似值:如果要计算的数不是很精确的话,可以使用近似值进行计算。
以上是一些常用的四则运算速算与巧算方法,通过灵活运用这些方法,可以大大提高计算效率。
当然,不同的运算题目可能适用不同的方法,需要根据具体情况选择合适的方法进行计算。
(完整版)三年级-速算与巧算
速算与巧算1.加法中的巧算(1)加法交换律:两个数相加,交换加数的位置,它们的和不变。
即:a+b=b+a (2)加法结合律:三个数相加,先把前两个数相加,再加上第三个数,或者先把后两个数相加,在和第一个数相加,它们的和不变。
即:a+b+c=(a+b)+c=a+(b+c) 2.减法和加减混合运算中的巧算(1)一个数连续减去几个数,等于减去这几个数的和。
相反,一个数减去几个数的和,等于连续减去这几个数。
即:a-b-c=a-(b+c)(2)在加减混合运算中,如果算式中没有括号,那么计算时可以带着运算符号“搬家”。
如:a-b+c=a+c-b(3)加减混合运算中去括号(或添括号)时,如果括号前面是“-”号,那么括号里“-”变“+”;如果括号前面是“+”号,那么括号里的符号不变。
如:a+(b-c)=a+b-c,a-(b-c)=a-b+c3.“基准数加累计差”方法几个相近的数相加,可以选择其中一个数,最好是整十,整百的数位“基准数”,、再找出每个加数与基准数的差,大于基准数的差做加数,小于基准数的差做减数,把这些差累计起来再加上基准数与加数个数的乘积就可以得到结果。
如果两个数的和恰好可以凑成整十,整百,整千……的数,那么其中一个数叫做另一个数的“补数”。
例如:1+9=10,1叫做9的补数。
判断两个数是否为补数:只要看两个数的个位数之和是否为104.等差数列求和公式和=(首项+末项)×项数÷2项数=(末项-首项)÷公差+1例1(1)82+354+18 (2)364+97+636+1003例2(1)400-21-29 (2)1000-27-60-73-40例2(1)624+31-324+69 (2)35+27-42-35-27+82例3(1)724-(180-76)(3)685-327+127例4(1)574+499 (2)1592-197 (3)987-399例5 (1)54+47+50+57+48+45 (2)29999+2999+299+29+9例6 (1)1+2+3+…+18+19+20 (2)1+4+7+…+19+22+25练习1.783+68+32 345+45+552.864+1673+136+327 78+23+222+179+21+3573.9998+998+98 9+99+999+9999+44.875-364-236 587-231-695.1797-(797-215)876-(376+123)6.4796-998 248+997.85+83+78+76+82+77+80+79 45+43+47+38+35+39+448.1000-90-80-70-60-50-40-30-20-10 1-2+3-4+5-6+7-8+9-10+114.乘法具有以下三个运算定律(1)乘法交换律:2个数相乘,交换2个数的位置,积不变。
小学常用的巧算和速算方法
小学常用的巧算和速算方法一、巧算方法:1.凑整法:将一个数调整到一个更容易处理的数。
例如:17+4,可以将4拆分成2+2,然后17+2+2=19+2=212.倍数法:将一个数按照倍数进行运算。
例如:23×5,可以将23拆分成20+3,然后20×5=100,3×5=15,最后100+15=1153.分解法:将一个数分解成更容易计算的数。
例如:36+28,可以将28拆分成20+8,然后36+20+8=56+8=644.倒算法:将一个数转化为与其相加减的数。
例如:80-27,可以将27转化为73,然后80-73=75.移项法:将一个式子中的数移动到另一边进行运算。
例如:8+5=15,可以转化为15-8=76.换位运算法:将两个数的位置进行调换再运算。
例如:78-35,可以调换顺序为35-78,然后将结果取负数得到-43二、速算方法:1.竖式计算法:将两个数竖直排列后进行运算。
例如:27×13,将27和13竖直排列,然后分别计算个位和十位,最后将结果相加得到3512.快速乘法:使用乘法表以及对称性进行快速计算。
例如:78×6,可以先计算78×3,然后将结果翻倍得到234×2=468,最后78×6=468+468=9363.快速除法:使用除法表以及对称性进行快速计算。
例如:56÷7,可以先计算56÷2,然后将结果翻倍得到28×2=56,最后56÷7=284.快速减法:使用对称性和调整变形进行快速计算。
例如:245-97,可以先计算245-100,然后将结果加上3,最后245-97=1455.快速加法:使用进位和调整变形进行快速计算。
例如:789+143,可以先计算700+100=800,然后分别计算80+40=120和9+3=12,最后800+120+12=932三、其他常用的巧算和速算方法:1.快速平方:使用平方公式或对称性进行快速计算。
第一讲 速算与巧算
第一讲 速算与巧算知识导航:1. 掌握运算性质和定律,应用性质和定律进行简便计算。
2. 利用和 差 积 商的变化规律进行巧算。
3. 在计算稍复杂的题时,根据题中运算符号或数字特点,合理的把参加运算的数字拆开,合并,再进行重新组合,这是常用的方法之一。
4. 简算灵活性强,难度大,算前要认真审题,弄清楚数或算式的结构特点,确定运算性质,定律是正用还是反用;是局部用还是整体用;是直接用还是变形用。
典型例题分析:例1:2001÷200120022001例2888888888888123456787654321⨯++++++++++++++例3.10981.......543143213211⨯⨯++⨯⨯+⨯⨯+⨯⨯ 基本练习; 1.23311723233114⨯++⨯ 2.199920022003⨯3.1321311301÷ 4.(4.8×7.5×8.1)÷(2.4×2.5×2.7)5.÷⨯85.4(41)53315.66.3185⨯+- 6.351549995499549⨯+++7.(2×4×8×16×32)×(0.5×0.625×0.125×0.25)8.计算 0.2004×2005.2005-0.2005×2004.20049.1+90117721155611342111301920171215613+++++++拓展提高;1.9.1×4.8×6.13.141217÷÷÷ 2.471471471÷1571571573120062005200620042005-⨯⨯+ 4.6.65.54.43.32.21.12.13118.86.64.42.2++++++++++5.1001×200111991981981981335+÷+6.69121345611728186414321216169121++++++7.818181182182218218181818⨯ 8.100971.......131011071741411⨯++⨯+⨯+⨯+⨯9.10...43211...432113211211+++++++++++++++塞题精选;1. 把4/7化成小数后是多少?小数点后第2000位的数是几?2一本书页数需要6909个数码,这本书一共有多少页?3用1至8这八个自然数中的四个数组成四位数,从个位到千位的数字依次增大,且任意两个数字的差都不是1,这样的四位数共有多少个?4一家三口人,爸爸比妈妈大3岁,现在他们一家人的年龄之和是80岁,10年前全家人的年龄之和是51岁,女儿今年多少岁?5 两人做移火柴棍的游戏,游戏的规则如下:两人从一堆火柴棍中轮流移走1到7根,直到移尽为止。
速算与巧算大全
速算与巧算之凑整先算【点拨】:加法、减法的简便计算中,基本思路是“凑整”,根据加法(乘法)的交换律、结合律以及减法的性质,其中若有能够凑整的,可以变更算式,使能凑整的数结成一对好朋友,进行凑整计算,能使计算简便。
例:298+304+196+502【分析】:本题可以运用加法交换律和结合律,把能够凑成整十、整百、整千……的数先加起来,可以使计算简便。
【解答】:原式=(298+502)+(304+196)=800+500=1300速算与巧算之带符号搬家【点拨】:在加减混合,乘除混合同级运算中,可以根据运算的需要以及题目的特点,交换数字的位置,可以使计算变得简便。
特别提醒的是:交换数字的位置,要注意运算符号也随之换位置。
例:464-545+836-455【分析】:观察例题我们会发现,如果按照惯例应该从左往右计算,464 减545 根本就不够减,在小学阶段,学生没办法做,所以要想做这道题,学生必须先观察数字特点,进行简便计算。
【解答】原式=464+836-545-455=1300- (545+455)=300思考:4.75 - 0.25-4.75能带符号搬家吗?什么情况下才能带符号搬家?带符号搬家需要注意什么?速算与巧算之拆数凑整【点拨】:根据运算定律和数字特点,常常灵活地把算式中的数拆分,重新组合,分别凑成整十、整百、整千。
例:998+1413+9989【分析】:给998添上2能凑成1000,给9989添上11凑成10000,所以就把1413 分成1400、2 与11 三个数的和。
【解答】原式==(998+2)+1400+(11+9989)=1000+1400+10000=12400 例: 73.15 X 9.9【分析】把9.9 看作10减0.1 的差,然后用乘法分配率可简化运算。
【解答】原式=73.15 X (10-0.1 )=73.15 X 10-73.15 X 0.1=731.5-7.315=724.185速算与巧算之基准数法【点拨】:许多数相加,如果这些数都接近某一个数,可以把这个数确定为一个基准数,将其他的数与这个数比较,在基准数的倍数上加上多余的部分,减去不足的,这样可以使计算简便。
速算与巧算
速算与巧算(一)【经典例题一】325÷25【思路导航】在除法里,被除数和除数同时乘或除以一个相同的数,商不变。
325÷25=(325×4)÷(25×4)=1300÷100=13【练一练1】(1)450÷25 (2)525÷25【经典例题二】计算25×125×4×8【思路导航】如果先把25与4相乘,可以得到100,同时把125与8相乘,可以得到1000;再把100和1000相乘就可以了。
运用了乘法交换律和结合律。
25×125×4×8=(25×4)×(125×8)=100×1000=100000【练一练2】(1)125×15×8×4 (2)125×25×32【经典例题三】计算:(1)125×34+125×66 (2)43×11+43×36+43×52+43 【思路导航】利用乘法分配律来计算这两题(1)125×34+125×66 (2)43×11+43×36+43×52+43 =125×(34+66)=43×(11+36+52+1)=125×100 =43×100=12500 =4300【练一练3】计算下面各题:(1)125×64+125×36 (2)64×45+64×71-64×16【经典例题四】计算(1)(360+108)÷36 (2)1÷2+3÷2+5÷2+7÷2 【思路导航】两个数的和、差除以一个数,可以用这个数分别去除这两个数,再求出两个商的和(差)。
巧算与速算(强烈推荐)
【例2】 计算:(1+23+34)×(23+34+65)(1+23+34+65)×(23+34)
假设1+23+34=A,再在被减数中假设23+34=B, 通过尽可能大的代换,利用乘法分配律,从 而求出结果。
解:A×(B+65)—(A+65)×B =AB+65A—AB—65B =65(A—B) =65×(1+23+34—23—34) =65
71-(23×□-□×14)÷7=62那么被盖住的数是多少?
由题意可知两张小正方形纸片盖住的数相同, 不妨设相同的数为x,此题就变化为一般的解 方程了。
解:71-(23x-14x) ÷7=62 x=7
善于学习+及时复习=高效记忆
别忘了复习哦~
=B+AB-A-AB =B-A =67+78+89-67-78 =89
【例4】计算:
通过观察,2.8和28通过积不变的性质可以变成 相同的两个数,然后利用乘法分配律,再与 11.1×57.6结合再次利用乘法分配律,最终可 得出结果。
解:28×(2.34+6.54)+11.1×57.6 =2.8×88.8+11.1×57.6 =2.8×8×11.1+11.1×57.6 =11.1×(2.8×8+57.6) =11.1×80 =888
如一混合四则运算式子中有若干个相同的未知量, 不妨设未知量为x,将其转化为解方程的题目。
Hale Waihona Puke 1.在下面的□里填入一个数,使等式成立。 135-[□×(4.5+5.5)+31]=14 9
1.速算与巧算
第一讲速算与巧算一、运用加法运算定律巧算加法1.直接利用补数巧算加法如果两个数的和正好可以凑成整十、整百、整千,那么我们就可以说这两个数互为补数,其中的一个加数叫做另一个加数的补数。
如:28+52=80,49+51=100,936+64=1000。
其中,28和52互为补数;49和51互为补数;936和64互为补数。
在加法计算中,如果能观察出两个加数互为补数,那么根据加法交换律、结合律,可以把这两个数先相加,凑成整十、整百、整千,……再与其它加数相加,这样计算起来比较简便。
例1巧算下面各题:(1)42+39+58;(2)274+135+326+265。
解:(1)原式=(42+58)+39=100+39=139(2)原式=(274+326)+(135+265)=600+400=10002.间接利用补数巧算加法如果两个加数没有互补关系,可以间接利用补数进行加法巧算。
例2计算986+238。
解法1:原式=1000-14+238=1000+238-14=1238-14=1224解法2:原式=986+300-62=1286-62=1224以上两种方法是把其中一个加数看作整十、整百、整千……,再去掉多加的部分(即补数),所以可称为“凑整去补法”。
解法3:原式=(62+924)+238=924+(238+62)=924+300=1224解法4:原式=986+(14+224)=(986+14)+224=1224以上方法是把其中一个加数拆分为两个数,使其中一个数正好是另一个加数的补数。
所以可称为“拆分凑补法”。
3.相接近的若干数求和下面的加法算式是若干个大小相接近的数连加,这样的加法算式也可以用巧妙的办法进行计算。
例3计算71+73+69+74+68+70+69。
解:经过观察,算式中7个加数都接近70,我们把70称为“基准数”。
我们把这7个数都看作70,则变为7个70。
如果多加了,就减去,少加了再加上,这样计算比较简便。
常用的巧算和速算方法
常用的巧算和速算方法一、加法巧算和速算方法凑整法 凑整法是加法巧算和速算中最常用的方法之一。
它的基本思想是将加数凑成整十、整百、整千等,然后再进行计算。
例如,计算 23+45+55 时,可以将 45 和55 凑成 100,然后再加上 23,得到 123。
交换律和结合律 交换律和结合律是加法运算中的基本定律,它们可以帮助我们简化计算。
例如,计算 23+45+55 时,可以先将 45 和 55 相加,得到 100,然后再加上23,得到 123。
基准数法 基准数法是一种将加数都近似地看作某个基准数的方法。
例如,计算23+22+24+21 时,可以将 23 看作基准数,然后将其他加数都近似地看作 23,得到23×4=92。
二、减法巧算和速算方法凑整法 凑整法同样适用于减法巧算和速算。
例如,计算 100-45 时,可以将 45 凑成50,然后再用 100 减去 50,得到 50。
交换律和结合律 交换律和结合律在减法运算中同样适用。
例如,计算 100-45-55时,可以先将 45 和 55 相加,得到 100,然后再用 100 减去 100,得到 0。
基准数法 基准数法在减法运算中也可以使用。
例如,计算 100-45-55 时,可以将100 看作基准数,然后将其他减数都近似地看作 100,得到 100-100=0。
三、乘法巧算和速算方法乘法分配律 乘法分配律是乘法运算中的基本定律,它可以帮助我们简化计算。
例如,计算 25×(40+4)时,可以先将 40 和 4 分别乘以 25,然后将结果相加,得到25×40+25×4=1000+100=1100。
乘法结合律 乘法结合律是乘法运算中的另一个基本定律,它可以帮助我们简化计算。
例如,计算 25×4×25 时,可以先将 25 和 4 相乘,得到 100,然后再将 100 乘以 25,得到 2500。
乘法交换律 乘法交换律是乘法运算中的基本定律之一,它可以帮助我们简化计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲:分数的巧算与速算
一.考点、难点:
对分数拆分的掌握,以及特殊分数形式的变型。
二.规律与方法:
1.运算定律的巧算:加法的交换律、结合律,乘法的交换律、结合律和分配律,还有加、减法的运算性质、商不变的规律等。
2.除法计算规律:b c a b c b a ÷±=÷±÷)(。
3.拆项法简便运算:
(1)11
1)1(1+-=+⨯n n n n
(2)d
n n d n n d --=+⨯1
1)(
(3)
)1
1(1)(1d
n n d d n n +-⨯=+⨯ (4)⎥⎦
⎤⎢⎣⎡+⨯+-+⨯=+⨯+⨯)2()1(1
)1(121)2()1(1n n n n n n n 三.经典例题。
例1. 计算889899899989999
++++ 分析与解:
观察题目的特点发现:8可以看作9189-,可以看作901-,899可以看作9001
-……,又是连加的算式。
根据这个特点,可以看作9,90,900,9000与90000的和再减去5个1的和。
889++899+8999+89999
=(9-1)+(90-1)+(900-1)+(9000-1)+(90000-1)=(9+90+900+9000+90000)-(1+1+1+1+1)=99999-5=99994
还可以这样想:889899899989999
++++
=++++++++=++++++++=++++=4111189899899989999489189918999189999149090090009000099994
()()()()
例2. 计算:20191817161514134321+--++--+++--… 分析与解:这是一道加,减混合算式,由于加、减数较多,要仔细观察能不能简化计算。
观察发现:20182191721614215132422-=-=-=-=-=,,,,…, 312-=,因此通过前后次序的交换,把某些数结合在一起算,比较简便。
20191817161514134321
+--++--+++--… =-+-+-++-+-=++++=()()()()()2018191716144231222210220
……个
例3. 44425
⨯ 分析与解:25是个特殊数,它与4相乘可以得到100,因此25与一个数相乘时,就要想办法从这个数中分离出4。
方法一:44425
⨯ =++⨯=⨯+⨯+⨯()40040425400254025425
=++=10000100010011100
方法二:44425
⨯ =⨯⨯=⨯⨯=()()11142511142511100
方法三:44425
⨯ =÷⨯⨯=⨯=()()4444254111100
11100
例4. 375480625048⨯+⨯ 分析与解:观察题目的特点发现:“乘、加,乘”的形式符合乘法分配律的符号特征,另外480比48末尾多了一个0,如果去掉6250末尾的0就与375凑成1000。
375480625048375480625480
4803756254801000480000
⨯+⨯=⨯+⨯=⨯+=⨯=()
例5. 计算:333333333333⨯ 分析与解:如果把一个因数改变成连续几个9的形式,就可以把它看成一个整十(整百、整千,整万……)数-1的形式,从而利用乘法分配律简算,我们知道3333333999999
⨯=,因此根据积不变的规律,把一个因数扩大3倍,变成999999,另一个因数缩小3倍,变成111111。
333333333333
⨯ =⨯⨯÷=⨯=-⨯=⨯-⨯=-=()()()33333333333333999999111111
1000000111111110000001111111111111111111000000111111111110888889
例6. 计算:343535353434
⨯-⨯ 分析与解:题目中的各数都与34,35有直接的关系。
方法一:343535353434
⨯-⨯ =⨯⨯-⨯⨯=⨯⨯-⨯⨯=34351013534101343510135341010()()
方法二:343535353434
⨯-⨯ =⨯+-⨯+=⨯+⨯-⨯+⨯=3435003535340034343500343535340035340
()()()()
【模拟试题】(答题时间:40分钟) 1. 用简便方法计算 (1)678354322++()
(2)283147171653
+++ (3)38437184-+()
(4)29041327173--
(5)653197
-
(6)12517125
⨯- (7)23599⨯
(8)()130052013-÷
(9)672118218579⨯+⨯+⨯ (10)222222999999⨯ 2. 计算:
(1)399999399993999399393
+++++ (2)201918174321-+-++-+-…
(3)10099989796959493929190898810++---+++---++++… 987654321+---+++- (4)8888125⨯ 3. 计算:34534515015÷. 【试题答案】
1. 用简便方法计算 (1)678354322++()
(2)283147171653
+++ =++=+=67832235410003541354 =+++=+=2831714716533001800
2100() (3)38437184-+()
(4)29041327173
-- =-+=--=-=3841843738418437
20037
163
()
=-+=-=2904132717329041500
1404
()
(5)653197- (6)12517125
⨯- =-+=+=65320034533456
=⨯-=⨯=⨯⨯=⨯=1251711251612582
100022000
()
(7)23599⨯ (8)()130052013-÷
=⨯-=⨯-⨯=-=2351001235100235123500235
23265
()
=÷-÷=-=130********
10040
60
(9)672118218579⨯+⨯+⨯ (10)222222999999
⨯ =+⨯+⨯=⨯+⨯=⨯+=⨯=()()
671821857985218579
852179851008500
=⨯-=⨯-⨯=-=2222221000000122222210000002222221
222222000000222222222221777778
()
2. 计算:
(1)399999399993999399393
+++++
=+++++-⨯=-
=400000400004000400404164444446444448 (2)201918174321
-+-++-+-… =-+-++-+-=++++=()()()()
201918174321111110110
……个
(3)10099989796959493929190898810++---+++---++++… 987654321+---+++-
=-+-+-+-++-+-+-+-++()()()()()()()
()1009799969895949110796854132
…
=++++++=33333503
2152
…个 (4)8888125
⨯ =⨯⨯=⨯⨯=⨯=()()81111125
11118125111110001111000
3. 计算 34534515015
÷ =⨯÷⨯=÷=()()345100115100134515
23。