速算与巧算(分数)
六年级奥数-第一讲[1].分数的速算与巧算.学生版(最新整理)
第一讲:分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题.4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即形式的,这里我们把较小的数写在前面,即,那么有1a b⨯a b <1111(a b b a a b=-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:,形式的,我们有:1(1)(2)n n n ⨯+⨯+1(1)(2)(3)n n n n ⨯+⨯+⨯+1111[(1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”(3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1) (2)11a b a b a b a b a b b a+=+=+⨯⨯⨯2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数的速算与巧算(教师)
分数的速算与巧算教学目标本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型.1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数的巧算和速算
分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791 (2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201【举一反三】 计算:(1)64178÷8 (2)14575÷12 (3)5452÷17 (4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧!12006⨯÷+20042006原式=200420051200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】计算:(5)2000÷200020012000+20021(6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。
20分数的速算与巧算
重庆专注教育考试服务中心江北校区:重庆市江北区观音桥步行街嘉年华大厦12-3(苏宁电器背面)电话:86798788 渝北校区:重庆市渝北区两路步行街金易都会七楼705(米萝咖啡楼上) 电话:67158018分数的速算与巧算1、 裂项:是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力2、 换元:让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分:掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式. 知识点拨一、裂项综合 (一)、“裂差”型运算 (1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a bb a a b =-⨯-(2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有:1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++ 1111[](1)(2)(3)3(1)(2)(1)(2)(3)n n n n n n n n n n =-⨯+⨯+⨯+⨯+⨯++⨯+⨯+裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
第二讲:分数与带分数速算与巧算
小学六年级数学思维预备班讲义分数/带分数速算与巧算 第2讲知识要点及解题技巧:1、裂项拆分法:把若干个分数之和,可以把其中的每个加数,根据:)11(1)(1kn n k k n n +-=+的原理,分裂为两个分数之差,算式中除首尾两项外,其余各部分分数均加减相消。
2、分数与整数的乘法巧解:将整数部分分成两个数的和/差,以便于整数与分数的分母约分。
3、整数与带分数之间的乘除法巧解:现将带分数化为假分数,再合并约分。
【典型例题1】25127⨯【模仿练习】1、29157⨯2、199619951994⨯3、761767777-⨯【典型例题2】50491431321211⨯+⨯+⨯+⨯【模仿练习】1、9017215614213012011216121++++++++2、39371191711715115131⨯+⨯+⨯+⨯3、16131131011071741411⨯+⨯+⨯+⨯+⨯4、1281641321161814121++++++【典型例题3】1995199319931993÷【模仿练习】1、)200520042004(2004+÷2、981119898÷【典型例题4】54999954999549954954++++【模仿练习】1、87987687657654654354⨯+⨯+⨯+⨯+⨯【典型例题】13121170÷【模仿练习】1、98182÷2、41201166÷3、544156766171833185⨯+⨯+⨯4、655161544151433141⨯+⨯+⨯。
常用的巧算和速算方法
常用的巧算和速算方法【顺逆相加】用"顺逆相加〞算式可求出假设干个连续数的和。
例如著名的大数学家高斯〔德国〕小时候就做过的"百数求和〞题,可以计算为1 +2 + ……+ 99 + 100所以,1+2+3+4+……+99+100=101×100÷2=5050。
"3+5+7+………+97+99=?3+5+7+……+97+99=〔99+3〕×49÷2= 2499。
这种算法的思路,见于书籍中最早的是我国古代的"张丘建算经"。
张丘建利用这一思路巧妙地解答了"有女不善织〞这一名题:"今有女子不善织,日减功,迟。
初日织五尺,末日织一尺,今三十日织讫。
问织几何?〞题目的意思是:有位妇女不善于织布,她每天织的布都比上一天减少一些,并且减少的数量都相等。
她第一天织了5 尺布,最后一天织了1 尺,一共织了30 天。
问她一共织了多少布?张丘建在"算经"上给出的解法是:"并初末日织尺数,半之,余以乘织讫日数,即得。
〞"答曰:二匹一丈〞。
这一解法,用现代的算式表达,就是1 匹=4 丈,1 丈=10 尺,90 尺=9 丈=2 匹1 丈。
〔答略〕张丘建这一解法的思路,据推测为:如果把这妇女从第一天直到第30 天所织的布都加起来,算式就是5+…………+1在这一算式中,每一个往后加的加数,都会比它前一个紧挨着它的加数,要递减一个一样的数,而这一递减的数不会是个整数。
假设把这个式子反过来,则算式便是1+………………+5此时,每一个往后的加数,就都会比它前一个紧挨着它的加数,要递增一个一样的数。
同样,这一递增的一样的数,也不是一个整数。
假假设把上面这两个式子相加,并在相加时,利用"对应的数相加和会相等〞这一特点,则,就会出现下面的式子:所以,加得的结果是6×30=180〔尺〕但这妇女用30 天织的布没有180 尺,而只有180 尺布的一半。
分数的速算与巧算3
分数的速算与巧算(3)【例 1】 计算:234561111111333333++++++【解析】 法一:利用等比数列求和公式。
原式71113113⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=-法二:错位相减法.设234561111111333333S =++++++则23451111133133333S =++++++,61333S S -=-,整理可得3641729S =.法三:本题与例3相比,式子中各项都是成等比数列,但是例3中的分子为3,与公比4差1, 所以可以采用“借来还去”的方法,本题如果也要采用“借来还去”的方法,需要将每一项的分子变得也都与公比差1.由于公比为3,要把分子变为2,可以先将每一项都乘以2进行算,最后再将所得的结果除以2即得到原式的值.由题设,2345622222222333333S =++++++,则运用“借来还去”的方法可得到61233S +=,整理得到3641729S =.【例 2】 计算:22222222(246100)(13599)12391098321+++⋅⋅⋅+-+++⋅⋅⋅++++⋅⋅⋅+++++⋅⋅⋅+++【解析】 原式222222222(21)(43)(65)(10099)10-+-+-+⋅⋅⋅+-=(21)(21)(43)(43)(65)(65)(10099)(10099)100+⨯-++⨯-++⨯-+⋅⋅⋅++⨯-=12349910050501501001002++++⋅⋅⋅++===【巩固】 ⑴()2314159263141592531415927-⨯=________;⑵221234876624688766++⨯=________. 【解析】 ⑴ 观察可知31415925和31415927都与31415926相差1,设31415926a =,原式()()()2221111a a a a a =--+=--=⑵ 原式2212348766212348766=++⨯⨯()221234876610000100000000=+==【巩固】 计算:22222221234200520062007-+-++-+【解析】 原式22222222007200654321=-++-+-+(20072006)(20072006)(20052004)(20052004)(32)(32)1=-⨯++-⨯+++-⨯++2007200620052004321=+++++++ ()120071200720150282=⨯+⨯=【例 3】 计算:222222222212233445200020011223344520002001+++++++++⋅⋅⋅+⨯⨯⨯⨯⨯【解析】 原式221212=+⨯⨯12233445200020012132435420012000=++++++++⋅⋅⋅++2132435199920012000()()1223344200020002001⎛⎫⎛⎫=+++++++⋅⋅⋅+++ ⎪ ⎪⎝⎭⎝⎭ 20002000200022222400020012001=++++⋅⋅⋅++=个2相加【例 4】 ()20078.58.5 1.5 1.5101600.3-⨯-⨯÷÷-=⎡⎤⎣⎦ . 【解析】 原式()()20=-⎡⎤⎣⎦()2=-⎡⎤⎣⎦()200771600.3=-÷-12.50.3=-12.2=【巩固】 计算:53574743⨯-⨯= .【解析】 本题可以直接将两个乘积计算出来再求它们的差,但灵活采用平方差公式能收到更好的效果.原式()()()()552552452452=-⨯+-+⨯-()2222552452=---()()225545554555451000=-=-⨯+=【巩固】 计算:1119121813171416⨯+⨯+⨯+⨯= . 【解析】 本题可以直接计算出各项乘积再求和,也可以采用平方差公式.原式()()()()22222222154153152151=-+-+-+-()222221541234=⨯-+++90030870=-=其中22221234+++可以直接计算,但如果项数较多,应采用公式()()2221121216n n n n +++=++ 进行计算.【巩固】 计算:1992983974951⨯+⨯+⨯++⨯= . 【解析】 观察发现式子中每相乘的两个数的和都是相等的,可以采用平方差公式. 原式()()()()()()5049504950485048501501=-⨯++-⨯+++-⨯+()()()22222250495048501=-+-++-()222250491249=⨯-+++ ()222250491249=⨯-+++2150494950996=⨯-⨯⨯⨯25049492533=⨯-⨯⨯ ()492510033=⨯⨯-492567=⨯⨯ 82075=【巩固】 看规律 3211=,332123+=,33321236++=……,试求3 3.36714+++原式()()3312=+()()221231412345=++++-++++()()22105151051510515=-=-+9012010800=⨯=【例 5】 计算:1111111111(1)()(1)()2424624624++⨯++-+++⨯+【解析】 令1111246a +++=,111246b ++=,则:原式11()()66a b a b =-⨯-⨯-1166ab b ab a =--+1()6a b =-11166=⨯=【巩固】 11111111111111(1)()(1)()23423452345234+++⨯+++-++++⨯++【解析】 设111234a =++,则原式化简为:1111(1555a a a a +(+)(+)-+)=【巩固】 111111111111111111213141213141511121314151213141⎛⎫⎛⎫⎛⎫⎛⎫+++⨯+++-++++⨯++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【解析】 设111111213141a +++=,111213141b ++=,原式115151a b a b ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭ 115151ab a ab b =+--1()51a b =-1115111561=⨯= 【巩固】 1111111111111111())()5791179111357911137911+++⨯+++-++++⨯++()(【解析】 设111157911A +++=,1117911B ++=,原式111313A B A B ⎛⎫⎛⎫=⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭ 111313A B A A B B =⨯+-⨯-()113A B =-11113565=⨯=【巩固】 计算11111111111111111111234523456234562345⎛⎫⎛⎫⎛⎫⎛⎫++++⨯++++-+++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【解析】 设111112345A ++++=,11112345B +++=原式=1166A B A B⎛⎫⎛⎫⨯+-+⨯ ⎪ ⎪⎝⎭⎝⎭=1166A B A A B B⨯+⨯-⨯-⨯=1166A B ⨯-⨯16=⨯(A B -)16=【巩固】212391239112923912341023410223103410⎛⎫⎛⎫⎛⎫⎛⎫+++++++++⨯-++++⨯+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【解析】 设123923410t =++++ ,则有22211111(1)222222t t t t t t t t t ⎛⎫⎛⎫+⨯-+-=+-+--= ⎪ ⎪⎝⎭⎝⎭ 【巩固】 21239123911239239()()(1)()23410234102234103410+++++++++⨯-+++++⨯+++【解析】 设123923410t =++++,则有22211111(1)()()222222t t t t t t t t t +⨯-+-=+-+--=【巩固】 计算11112111311143114120092009++++++++++【解析】 设3N =+11412009++. 原式=112N++11111N++=121N N++111N N ++=112121NN N N ++=++.【巩固】 (7.88 6.77 5.66++)⨯(9.3110.9810++)-(7.88 6.77 5.6610+++)⨯(9.3110.98+)【解析】 换元的思想即“打包”,令7.88 6.77 5.66a =++,9.3110.98b =+,则原式a =⨯(10b +)-(10a +)b ⨯=(10ab a +)-(10ab b +)101010ab a ab b =+--=⨯ (a b -)10=⨯(7.88 6.77 5.669.3110.98++--)100.020.2=⨯= 【巩固】 计算(10.450.56++)⨯(0.450.560.67++)-(10.450.560.67+++)⨯(0.450.56+)【解析】 该题相对简单,尽量凑相同的部分,即能简化运算.设0.450.56a =+,0.450.560.67b =++,有原式=(1a +)b ⨯-(1b +)0.67a b ab a ab b a ⨯=+--=-= 三、循环小数与分数互化【例 6】 计算:0.1+0.125+0.3+0.16,结果保留三位小数. 【解析】 方法一:0.1+0.125+0.3+0.160.1111+0.1250+0.3333+0.1666=0.7359=0.736≈ 方法二:0.1+0.125+0.3+0.161131598990=+++111188=+530.736172== 【巩固】 ⑴ 0.540.36+= ; ⑵191.2 1.2427∙∙∙⨯+=【解析】 ⑴ 法一:原式5453649489990999011990-=+=+=. 法二:将算式变为竖式:可判断出结果应该是··0.908,化为分数即是9089899990990-=. ⑵ 原式224191112319201199927999279=⨯+=⨯+=【巩固】 计算:0.010.120.230.340.780.89+++++ 【解析】 方法一:0.010.120.230.340.780.89+++++ 0.5444440.3636360.908080+1121232343787898909090909090-----=+++++11121317181909090909090=+++++= 21690 方法二:0.010.120.230.340.780.89+++++ =0+0.1+0.2+0.3+0.7+0.8+0.010.020.030.040.080.09+++++ =2.1+0.01(1+2+3+4+8+9)⨯12.12790=+⨯2.10.3 2.4=+=【巩固】 计算 (1)0.2910.1920.3750.526-++ (2)0.3300.186⨯ 【解析】 (1)原式29119213755265999990999990--=+++291375521191999990+-=+6663301999990=+=(2)原式3301861999990-=⨯330185999990⨯=⨯581=【例 7】 某学生将1.23乘以一个数a 时,把1.23 误看成 1.23,使乘积比正确结果减少0.3.则正确结果该是多少?【解析】 由题意得:1.23 1.230.3a a ∙-=,即:0.0030.3a ∙=,所以有:3390010a =.解得90a =,所以1111.23 1.23909011190a ∙∙=⨯=⨯=【巩固】 将循环小数0.027与0.179672 相乘,取近似值,要求保留一百位小数,那么该近似值的最后一位小数是多少?【解析】 0.027×0.179672 27179672117967248560.00485699999999937999999999999=⨯=⨯== 循环节有6位,100÷6=16……4,因此第100位小数是循环节中的第4位8,第10l 位是5.这样四舍五入后第100位为9.【例 8】 有8个数,0.51,23,59,0.51,2413,4725是其中6个,如果按从小到大的顺序排列时,第4个数是0.51,那么按从大到小排列时,第4个数是哪一个数? 【解析】 2=0.63 ,5=0.59 ,240.510647≈,13=0.5225显然有0.5106<0.51<0.51<0.52<0.5<0.6 即241352<051<0.51<<<472593,8个数从小到大排列第4个是0.51 ,所以有241352<<<0.51<0.51<<<472593口口.(“□”,表示未知的那2个数).所以,这8个数从大到小排列第4个数是0.51. 【例 9】 真分数7a化为小数后,如果从小数点后第一位的数字开始连续若干个数字之和是1992,那么a是多少?【解析】1=0.1428577, 27=0.285714,37=0.428571 ,47=0.571428 ,57=0.714285 , 67=0.857142.因此,真分数7a 化为小数后,从小数点第一位开始每连续六个数字之和都是1+4+2+8+5+7=27,又因为1992÷27=73……21,27-21=6,而6=2+4,所以.=0.8571427a ,即6a =. 【巩固】 真分数7a化成循环小数之后,从小数点后第1位起若干位数字之和是9039,则a 是多少?【解析】 我们知道形如7a的真分数转化成循环小数后,循环节都是由1、2、4、5、7、8这6个数字组成,只是各个数字的位置不同而已,那么9039就应该由若干个完整的142857+++++和一个不完整142857+++++组成。
常用的巧算和速算方法
巧算和速算方法,包括:九九乘法口诀:通过记忆乘法口诀表格,可以快速算出两个数的积。
平方差公式:对于两个整数 $a$ 和 $b$,可以快速计算 $(a+b)^2$ 和$(a-b)^2$,分别为 $a^2+2ab+b^2$ 和 $a^2-2ab+b^2$。
除法倒数法:通过求出某个数的倒数,然后用这个倒数乘以需要除的数,可以快速计算除法结果。
11乘法口诀:对于两位数相乘,可以通过将这两个数字的和放在中间,例如$24 \times 11$ 可以计算为 $2$ 和 $4+2$ 和 $4$,得到 $264$。
规律判断法:在一些数列中,如果存在规律,可以通过观察规律推算出下一个数字。
四舍五入法:在进行精确计算不必要的时候,可以使用四舍五入法,保留一定的有效数字即可。
近似取整法:在进行大致计算的时候,可以使用近似取整法,将一个数字取整到最接近的整数,例如 $23.6$ 取整到 $24$。
连加连乘法:对于一些需要进行连加或连乘的数列,可以通过提取公因子,将计算过程简化。
小数移位法:在对小数进行计算时,可以通过移位小数点来将小数转换为整数,然后进行整数运算,最后再将小数点移回原位。
分式化简法:在进行分式运算时,可以通过化简分数,将分式化为最简形式,简化运算。
凑整法:将一个数凑整为最近的整数或10的倍数,然后再进行计算,最后再进行减法运算补回凑整时的误差。
差积因式法:在进行乘法或除法时,将数字拆分为其因子的乘积,然后再进行计算。
近似数法:在进行加减运算时,将数近似为离它最近的10、100、1000等倍数,然后再进行计算。
最后,再将结果还原为原数的近似值。
线性加减法:对于两个数 $a$ 和 $b$,如果它们的差为 $k$,那么 $a\pmb$ 就等于 $a\pm k\pm (b-k)$,其中 $k$ 是某个整数,使得 $b-k$ 或$a-k$ 是一个整数。
平方法:在进行乘法时,如果两个数都离平方数的差不远,那么可以利用公式$(a+b)^2=a^2+2ab+b^2$ 来简化计算。
四年级奥数——速算与巧算(加减乘除)
四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
例1所用的方法叫做加法的基准数法。
这种方法适用于加数较多,而且所有的加数相差不大的情况。
作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。
由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。
在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。
同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。
例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。
求平均每块麦田的产量。
六年级分数的速算与巧算(完整资料).doc
【最新整理,下载后即可编辑】六年级分数的速算与巧算——教师版〖书海导航〗分数的速算与巧算是小学数学的重要内容,也是各类数学竞赛的重要内容之一。
分数的速算与巧算既有知识要求,也有能力要求,法则、定律、性质是进行计算的依据,要使计算快速、准确,关键在于掌握运算技巧,对算式进行认真观察,剖析算式的特点及各数之间的关系,巧妙地、灵活地运用运算定律,合理改变运算顺序,使计算简便易行,既快又准,这对开拓知识、启迪思维、培养学生综合分析、推理能力和灵活、快速、准确的运算能力,使智能得到协调发展,都有很大的帮助。
〖孤岛寻宝〗[例1] 计算:11×2+12×3+13×4+…..+199×100寻宝路线图:原式=(1-12)+(12-13)+(13-14)+…..+(199-1100)=1-12+12-13+13-14+…..+199-1100=1-1 100=99 100〖巧练密笈〗1.14×5+15×6+16×7+…..+139×402.110×11+111×12+112×13+113×14+114×15〖孤岛寻宝〗[例2] 计算:12×4+14×6+16×8+…..+148×50寻宝路线图:原式=(22×4+24×6+26×8+…..+248×50)×12=【(12-14)+(14-16)+(16-18)…..+ (148-150)】×12=【12 -150 】×12=625〖巧练密笈〗1. 13×5 +15×7 +17×9 +…..+ 197×992. 11×4 +14×7 +17×10 +…..+ 197×100〖孤岛寻宝〗[例3] 计算:113 -712 +920 -1130 +1342 -1556寻宝路线图:原式=113 -(13 +14 )+(14 +15 )-(15 +16)+(16 +17 )-(17 +18) =113 -13 -14 +14 +15 -15 -16 +16 +17 -17 -18=1-18=78〖巧练密笈〗1. 112 +56 -712 +920 -11302. 114 -920 +1130 -1342 +1556〖孤岛寻宝〗[例4] 计算:12 +14 +18 +116 +132 +164寻宝路线图:原式=(12 +14 +18 +116 +132 +164 +164 )-164=1-164=6364〖巧练密笈〗1. 12 +14 +18 +………+12562. 23 +29 +227 +281 +2243〖孤岛寻宝〗[例5] 计算:(1+12 +13 +14 )×(12 +13 +14 +15 )-(1+12 +13 +14+15 )×(12 +13 +14) 寻宝路线图:设1+12 +13 +14 =a 12 +13 +14=b 原式=a ×(b+15 )-(a+15)×b =ab+15 a -ab -15b =15(a -b ) =15〖巧练密笈〗1. (12 +13 +14 +15 )×(13 +14 +15 +16 )-(12 +13 +14 +15 +16 )×(13 +14 +15)2.(18+19+110+111)×(19+110+111+112)-(18+19+110+111+112)×(19+110+111)〖笑傲题海〗(A:初试锋芒)1.12+16+112+120+130+1422.1-16+142+156+1723.11×5+15×9+19×13+…..+133×374. 14 +128 +170 +1130 +12085.19981×2 +19982×3 +19983×4 + 19984×5 +19985×66.6×712 -920 ×6+ 1130 ×67.(1+11999 +12000 +12001 )×(11999 +12000 +12001 +12002 )-(1+11999 +12000 +12001 +12002 )×(11999 +12000 +12001 )(B :再战成名)1.12 +16 +112 +120 + 130 +1422.1-16 +142 +156 +1723.411⨯+741⨯+1071⨯+ (100971)4.4321⨯⨯+5431⨯⨯+…+10981⨯⨯5.4513612812111511016131+++++++6.33333...144771022252528+++++⨯⨯⨯⨯⨯7.11111111312111098742870130208304418++++++。
分数的速算与巧算综合未排版
第一讲 分数的速算与巧算知识导航在分数的运算中,一般有以下四种技巧与方法:①运用四则运算定律和性质快速合理地运算。
例如:乘法分配律、商不变的性质。
②利用化简或约分将分子与分母同时扩大或缩小若干倍,从而简化计算过程。
③用裂项、约分、转化、提取公因数法进行巧妙的计算。
④用凑整法、代换法、错位相减法、分组法进行巧妙的计算。
精典例题例1:① 97×9596 +47×4748 ②999991999 ÷4思路点拨在①中,两个乘法算式的一个因数与另一个因数的分母很接近,如果将整数进行适当的变化可以使计算简便。
例如:97×9596 =97×(1-196 )=97-97×196 =959596 或97×9596 =(96+1)×9596 =959596 。
在②中,999991999 接近1000,所以可以将原题目变成:(1000-8999 )×14。
模仿练习(1)139111÷1401(2006年成都七中育才(东区)初中招生考试题)(2)9811198÷98(2007年成都七中育才学校(东区)衔接班招生考试题1)例2:1×2×3+7×14×211×3×5+7×21×35 (1995年小学数学奥林匹克初赛民族卷试题)思路点拨此类题属于a ×b ×c+xa ×xb ×xc+……+ya ×yb ×yc A ×B ×C+xA ×xB ×xC+……+yA ×yB ×yC特型题,我们可以用提取公因式的方法把此类题转化为abc ×(1+x 3……+y 3)ABC ×(1+x 3……+y 3) =abc ABC,再进行化简。
小学奥数全解 之 分数加减法速算与巧算
分数加减法速算与巧算知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)【例 1】 如果111207265009A +=,则A =________(4级) 【考点】分数约分 【难度】2星 【题型】计算 【关键词】希望杯,六年级,一试 【解析】 111112591207265009873773725125920082008+=+=⨯=⨯⨯⨯⨯,所以A =2008. 【答案】2008【例 2】 11410410042282082008+++=_____ 【考点】分数约分 【难度】1星 【题型】计算【关键词】希望杯,五年级,一试【解析】 原式=1111=22222+++ 【答案】2模块一:分组凑整思想【例 3】 1111222233318181923420345204520192020⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是2分子和为1分母是3分子和为12+;分母是4分子和为123++;……依次类推;分母是20子和为12319++++. 原式()1111(12)(123)1231923420=+⨯++⨯++++⨯++++ ()1111(12)22(13)3211919223420=+⨯+⨯÷+⨯+⨯÷++⨯+⨯÷ 12319952222=++++=【例 4】 11211232112199511222333331995199519951995+++++++++++++++ 【考点】分组凑整 【难度】3星 【题型】计算 【解析】 观察可知分母是1的和为1;分母是2的和为2;分母是3的和为3;……依次类推;分母是1995的和为1995.这样,此题简化成求1231995++++的和.11211232112199511222333331995199519951995+++++++++++++++ 12341995119951995299819951991010=+++++=+⨯÷=⨯=() 【答案】1991010例题精讲【考点】分组凑整 【难度】2星 【题型】计算【解析】 因为1996=2×2×499。
分数加减法速算与巧算
分数加减法速算与巧算教学目标本讲知识点属于计算板块的部分,难度并不大。
要求学生熟记加减法运算规则和运算律,并在计算中运用凑整的技巧。
知识点拨一、基本运算律及公式一、加法加法交换律:两个数相加,交换加数的位置,他们的和不变。
即:a+b=b+a其中a,b各表示任意一数.例如,7+8=8+7=15.总结:多个数相加,任意交换相加的次序,其和不变.加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再与第一个数相加,他们的和不变。
即:a+b+c=(a+b)+c=a+(b+c)其中a,b,c各表示任意一数.例如,5+6+8=(5+6)+8=5+(6+8).总结:多个数相加,也可以把其中的任意两个数或者多个数相加,其和不变。
二、减法在连减或者加减混合运算中,如果算式中没有括号,那么计算时要带数字前面的运算符号“搬家”.例如:a-b-c=a-c-b,a-b+c=a+c-b,其中a,b,c各表示一个数.在加减法混合运算中,去括号时:如果括号前面是“+”号,那么去掉括号后,括号内的数的运算符号不变;如果括号前面是“-”号,那么去掉括号后,括号内的数的运算符号“+”变为“-”,“-”变为“+”.如:a+(b-c)=a+b-ca-(b+c)=a-b-ca-(b-c)=a-b+c在加、减法混合运算中,添括号时:如果添加的括号前面是“+”,那么括号内的数的原运算符号不变;如果添加的括号前面是“-”,那么括号内的数的原运算符号“+”变为“-”,“-”变为“+”。
如:a+b-c=a+(b-c)a-b+c=a-(b-c)a-b-c=a-(b+c)二、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)例题精讲【例1】1141041004 2282082008+++=_____【例2】如果111207265009A+=,则A=________(4级)模块一:分组凑整思想【例3】1121123211219951 1222333331995199519951995 ++++++++++++++【例4】11112222333181819 23420345204520192020⎛⎫⎛⎫⎛⎫⎛⎫+++++++++++++++++⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭【例5】分母为1996的所有最简分数之和是_________【巩固】所有分母小于30并且分母是质数的真分数相加,和是__________。
分数的巧算和速算
分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791(2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201 【举一反三】计算:(1)64178÷8 (2)14575÷12 (3)5452÷17(4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧!12006⨯÷+20042006原式=20042005 1200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】计算:(5)2000÷200020012000+20021(6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。
第1讲.分数的速算与巧算
一、裂项综合(一)、“裂差”型运算(1)对于分母可以写作两个因数乘积的分数,即1a b⨯形式的,这里我们把较小的数写在前面,即a b <,那么有1111()a b b a a b=-⨯- (2)对于分母上为3个或4个连续自然数乘积形式的分数,即:1(1)(2)n n n ⨯+⨯+,1(1)(2)(3)n n n n ⨯+⨯+⨯+形式的,我们有: 1111[](1)(2)2(1)(1)(2)n n n n n n n =-⨯+⨯+⨯+++本讲知识点属于计算大板块内容,分为三个方面系统复习和学习小升初常考计算题型. 1、 裂项是计算中需要发现规律、利用公式的过程,裂项与通项归纳是密不可分的,本讲要求学生掌握裂项技巧及寻找通项进行解题的能力 2、 换元让学生能够掌握等量代换的概念,通过等量代换讲复杂算式变成简单算式。
3、 循环小数与分数拆分掌握循环小数与分数的互化,循环小数之间简单的加、减运算,涉及循环小数与分数的主要利用运算定律进行简算的问题. 4、通项归纳法通项归纳法也要借助于代数,将算式化简,但换元法只是将“形同”的算式用字母代替并参与计算,使计算过程更加简便,而通项归纳法能将“形似”的复杂算式,用字母表示后化简为常见的一般形式.第一讲分数的速算与巧算教学目标知识点拨裂差型裂项的三大关键特征:(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x 为任意自然数)的,但是只要将x 提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接” (3)分母上几个因数间的差是一个定值。
(二)、“裂和”型运算:常见的裂和型运算主要有以下两种形式:(1)11a b a b a b a b a b b a+=+=+⨯⨯⨯ (2)2222a b a b a b a b a b a b b a +=+=+⨯⨯⨯ 裂和型运算与裂差型运算的对比:裂差型运算的核心环节是“两两抵消达到简化的目的”,裂和型运算的题目不仅有“两两抵消”型的,同时还有转化为“分数凑整”型的,以达到简化目的。
分数的巧算和速算
分数的巧算和速算 Prepared on 22 November 2020分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791 (2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201【举一反三】计算:(1)64178÷8 (2)14575÷12 (3)5452÷17 (4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧!12006⨯÷+20042006原式=20042005 1200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】计算:(5)2000÷200020012000+20021(6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。
最新分数的巧算和速算
1分数的速算与巧算【专题解析】在分数的简便计算中,掌握一些常用的简算方法,可以提高我们的计算能力,达到速算、巧算的目的。
(1)约分法:在分数乘除法运算中,如果先约分再计算,可以使计算过程更简便。
两个整数相除(后一个不为0)可以直接写成分数的形式。
两个分数相除,可以根据分数的运算性质,将其写成一个分数乘另一个分数的倒数的形式。
(2)错位相减法:根据算式的特点,将原算式扩大一个整数倍(0除外),用扩大后的算式同原算式相减,可以使复杂的计算变得简便。
【典型例题】例1. 计算:(1)5698÷8 (2)166201÷41分析与解:(1)直接把5698拆写成(56+98),除以一个数变成乘以这个数的倒数,再利用乘法分配率计算。
(2)把题中的166201分成41的倍数与另一个较小的数相加的形式,再利用除法的运算性质使计算简便。
(1)5698÷8=(56+98)÷8=(56+98)×81=56×81+98×81=7+91=791 (2)166201÷41 = (164 +2041)×411= 164×411+2041×411= 4201 【举一反三】计算:(1)64178÷8 (2)14575÷12 (3)5452÷17 (4)170121÷13例2. 计算:200412004200420052006÷+分析与解:数太大了,不妨用常规方法计算一下,先把带分数化成假分数。
分母200420052004⨯÷,这算式可以运用乘法分配律等于20042006⨯,又可以约分。
聪明的同学们,如果你的数感很强的话,不难看出÷2004200420052005的被除数与除数都含有2004,把他们同时除于2004得到11÷12005也是很好算的,这一方法就留给你们吧! 12006⨯÷+20042006原式=2004200521200620051200620061⨯+⨯=+=2005=200420042006 【举一反三】计算:(5)2000÷200020012000+20021(6)238÷238239238+2401例3. 计算:199419921993119941993⨯+-⨯分析与解:仔细观察分子和分母中各数的特点,可以考虑将分子变形。