平移与旋转测试题及答案

合集下载

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

【苏教版】三年级上册数学 6.平移、旋转和轴对称测试卷_含答案

三年级上册数学单元测试- 6.平移、旋转和轴对称一、单选题1.下列现象中,既有平移现象又有旋转现象的是()A. 正在工作的电扇叶片B. 行驶中的汽车C. 扔出去的铅球D. 放飞的风筝2.如图。

将图1中的三角形甲平移到图2中所示的位置,与三角形乙拼成一个长方形,那么,下面的平移方法中,正确的是( )。

A. 先向下平移3格,再向右平移1格B. 先向下平移3格.再向右平移2格C. 先向下平移2格,再向F平移2格D. 先向有平移3格.再向F平移2格3.电风扇的运动是()A. 平移B. 旋转C. 既平移又旋转4.图①绕点O()变为图②。

A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°5.一个图形经过平移变换后,有以下几种说法,其中不恰当的说法是( )A. 平移后,图形的形状和大小都不改变B. 平移后的图形与原图形的对应线段、对应角都相等C. 平移后的图形形状不变,但大小可以改变D. 利用基本图形的平移可以设计美丽的图案6.从12时到12时30分,分针绕中心点()。

A. 逆时针旋转了90°B. 顺时针旋转了90°C. 顺时针旋转了180°7.下列哪种运动可以看成平移()A. 升国旗B. 电风扇叶片转动C. 钟摆的运动8.下列每组中的前后两个图形,()组通过平移就可以重合。

A. B. C. D.9.补全轴对称图形的时候,要先找到()A. 边界B. 对称轴C. 端点10.下列现象中,不属于平移的是()A. 乘直升电梯从一楼上到二楼B. 钟表的指针嘀嗒嘀嗒地走C. 火车在笔直的轨道上行驶D. 汽车在平坦笔直的公路上行驶二、判断题11.平移必须在水平方向上移动。

12.收费站转杆打开,旋转了180度。

13.电风扇转动是平移现象。

14.左图是由连续两次向右平移2个方格组成的图案。

15.小朋友们玩跷跷板是平移现象。

三、填空题16.看图回答图形B可以看作图形A绕点________顺时针方向旋转90°得到的。

八年级上数学第四章+图形的平移与旋转(题+答案)

八年级上数学第四章+图形的平移与旋转(题+答案)

第四章图形的平移与旋转单元测试卷一、选择题(本大题共10小题,共30分。

在每小题列出的选项中,选出符合题目的一项)1.如图,在△ABC中,∠BAC=90°,AB=3,AC=4,BC=5,EF垂直平分BC,点P为直线EF上的任一点,则AP+BP的最小值是( )A. 3B. 4C. 5D. 62.如图,在△ABC中,∠CAB=65°,将△ABC在平面内绕点A旋转到△AB′C′的位置.若∠CAB′=25°,则∠CAC′的度数为( )A. 25°B. 40°C. 65°D. 70°3.将一副三角板顶点重合,三角板ABC绕点A顺时针转动的过程中,∠EAB度数符合下列条件时,三角尺不存在一组边平行的是(三角板边AB=AE)( )A. ∠EAB=30°B. ∠EAB=45°C. ∠EAB=60°D. ∠EAB=75°4.在平面直角坐标系中,P点关于原点的对称点为P1(−3,−8),P点关于x轴的对称点为33=( )P2(a,b),则√abA. −2B. 2C. 4D. −45.如图直角梯形ABCD中,AD//BC,AB⊥BC,AD=2,BC=3,将CD以D为中心逆时针旋转90°至ED,连AE、CE,则△ADE的面积是( )A. 1B. 2C. 3D. 不能确定6.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AC=2√3,P是BC边上一动点,连接AP,把线段AP绕点A逆时针旋转60°到线段AQ,连接CQ,则线段CQ的最小值为( )A. 1B. 2C. 3D. √37.将一图形绕着点O顺时针方向旋转60°,再绕着点O逆时针方向旋转170°,这时如果使图形回到原来的位置,需要将图形绕着点O( )A. 顺时针旋转230°B. 逆时针旋转110°C. 顺时针旋转110°D. 逆时针旋转230°8.已知点A的坐标为(1,3),点B的坐标为(2,1).将线段AB沿某一方向平移后,点A的对应点的坐标为(−2,1).则点B的对应点的坐标为( )A. (5,3)B. (−1,−2)C. (−1,−1)D. (0,−1)9.如图,△DEF是由△ABC绕着某点旋转得到的,则这点的坐标是 ( )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)10.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到△DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为( )A. 48B. 96C. 84D. 42二、填空题(本大题共8小题,共24分)11.如图,已知直线AB与y轴交于点A(0,2),与x轴的负半轴交于点B,且∠ABO=30°,点C为x轴的正半轴上一点,将线段CA绕点C按顺时针方向旋转60°得线段CD,连接BD,若BD=√41,则点C的坐标为.12.如图,将△ABC绕点A逆时针旋转得到△ADE,点C和点E是对应点,若∠CAE=90°,AB=1,则BD=.13.如图,已知△AOB与△DOC成中心对称,△AOB的面积是6,AB=3,则△DOC中CD边上的高是.14.在所示的数轴上,点B与点C关于点A成中心对称,A、B两点对应的实数分别是√3和−1,则点C所对应的实数是.15.如图所示,已知AB=3,AC=1,∠D=90∘,△DEC与△ABC关于点C成中心对称,则AE的长是.16.如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,斜边AC=4,点P是三角形内的一动点,则PA+PB+PC的最小值是______.17.如图,矩形ABCD中,AB=2,BC=1,将矩形ABCD绕顶点C顺时针旋转90°,得到矩形EFCG,连接AE,取AE的中点H,连接DH,则DH=.18.如图,在正方形ABCD中,AB=a,点E,F在对角线BD上,且∠ECF=∠ABD,将△BCE绕点C旋转一定角度后,得到△DCG,连接FG,则下列结论:a2; ③FC平分∠BFG; ①∠FCG=∠CDG; ②△CEF的面积等于14 ④BE2+DF2=EF2.其中正确的是.(填写所有正确结论的序号)三、解答题(本大题共8小题,共66分。

平移与旋转测试题

平移与旋转测试题

平移与旋转测试题一、选择题1. 平移变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置2. 旋转变换不改变图形的:A. 形状B. 大小C. 方向D. 颜色3. 下列哪个图形经过平移后,其形状会发生变化?A. 圆形B. 正方形C. 矩形D. 五角星4. 一个图形绕着某一点旋转90度后,其形状和大小:A. 发生变化B. 不变C. 形状变化,大小不变D. 大小变化,形状不变5. 平移和旋转的共同点是:A. 改变图形的形状B. 改变图形的大小C. 不改变图形的形状和大小D. 改变图形的颜色二、填空题6. 平移是将一个图形沿着直线方向移动一定的________。

7. 旋转是将一个图形绕着某一点或________,按照一定的角度进行转动。

8. 平移后的图形与原图形在形状和大小上是________的。

9. 旋转后的图形与原图形在形状和大小上也是________的。

10. 如果一个图形绕着其中心点旋转180度,那么它将与原图形________(完全/部分)重合。

三、判断题11. 平移可以改变图形的方向。

(对/错)12. 旋转可以改变图形的位置。

(对/错)13. 一个图形经过平移后,其位置会发生变化,但方向不变。

(对/错)14. 一个图形经过旋转后,其位置和方向都可能发生变化。

(对/错)15. 平移和旋转都不会改变图形的大小。

(对/错)四、简答题16. 请简述平移和旋转在几何变换中的区别。

17. 举例说明平移和旋转在日常生活中的应用。

五、应用题18. 一个正方形沿着一条直线平移了5个单位长度,如果原正方形的边长为10厘米,请画出平移后的正方形,并标出平移的方向和距离。

19. 一个时钟的时针在12小时内绕着钟表中心点旋转了多少度?请解释时针旋转的规律。

20. 如果一个图形绕着其中心点顺时针旋转了45度,那么它相对于原位置旋转了多少度?请画出旋转后的图形,并标出旋转的角度。

图形的平移,对称与旋转的经典测试题含答案

图形的平移,对称与旋转的经典测试题含答案
故选B.
【点睛】
本题主要考查图形的轴对称以及勾股定理的实际应用,把立体图形化为平面图形,掌握“马饮水”模型,是解题的关键.
11.下列字母中:H、F、A、O、M、W、Y、E,轴对称图形的个数是()
A.5 B.4 C.6 D.7
【答案】D
【解析】从第一个字母研究,只要能够找到一条对称轴,令这个字母沿这条对称轴折叠后,两边的部分能够互相重合,就是轴对称图形,可以得出:字母H、A、O、M、W、Y、E这七个字母,属于轴对称图形.
本题考查了平行四边形的性质、折叠的性质、三角形的内角和定理等知识,属于常考题型,熟练掌握上述基本知识是解题关键.
15.下列几何图形中,既是轴对称图形又是中心对称图形的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据轴对称图形与中心对称图形的概念求解.
【详解】
A、是轴对称图形,不是中心对称图形,故本选项错误;
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.在平行四边形、菱形、矩形、正方形这四种图形中,是轴对称图形的有( )
故选:D.
12.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=4,CD=5.把三角板DCE绕着点C顺时针旋转15°得到△D1CE1(如图2),此时AB与CD1交于点O,则线段AD1的长度为()
A. B. C. D.4
【答案】A
【解析】

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

八年级数学下册《第三章图形的平移与旋转》单元测试题含答案

第三章图形的平移与旋转第Ⅰ卷(选择题共30分)一、选择题(每小题3分,共30分)1.下列英文字母既是中心对称图形又是轴对称图形的是( )图12.如图2所示的各组图形中,由图形甲变成图形乙,既能用平移,又能用旋转的是( )图23.如图3,如果将△ABC的顶点A先向下平移3格,再向左平移1格到达A′点,连接A′B,那么线段A′B与线段AC的关系是( )图3A.互相垂直 B.相等C.互相平分 D.互相垂直且平分4.如图4,将△PQR先向右平移2个单位长度,再向下平移3个单位长度,则顶点P 平移后的坐标是( )图4A.(-2,-4) B.(-2,4) C.(2,-3) D.(-1,-3)5.已知A(-1,3),B(2,-3)两点,现将线段AB平移至A1B1,如果A1(a,1),B1(5,-b),那么a b的值是( )A .16B .25C .32D .496.如图5所示,将边长为2的正方形ABCD 沿对角线AC 向右平移,使点A 移至线段AC 的中点A ′处,得到新正方形A ′B ′C ′D ′,则新正方形与原正方形重叠部分(图中阴影部分)的面积是( )图5A. 2B.12 C .1 D.147.如图6所示,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移,得到△A ′B ′C ′,再将△A ′B ′C ′绕点A ′逆时针旋转一定角度后,点B ′恰好与点C 重合,则平移的距离和旋转角的度数分别为( )图6A .4,30°B .2,60°C .1,30°D .3,60°8.如图7,在△ABC 中,∠CAB =75°,在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′的度数为( )图7A .30°B .35°C .40°D .50°9.如图8,将△ABC 绕点C (0,1)旋转180°得到△A ′B ′C ,若点A 的坐标为(a ,b ),则点A ′的坐标是( )图8A .(-a ,-b )B .(-a ,-b -1)C .(-a ,-b +1)D .(-a ,-b +2) 10.如图9所示,在Rt △ABC 中,∠ACB =90°,∠B =30°,AC =1,且AC 在直线l 上,将△ABC 绕点A 顺时针旋转到位置①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+3;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+3……按此规律继续旋转,直到得到点P为止,则AP等于( )图9A.+673 3 B.+672 3 C.+672 3 D.+673 3第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.有下列运动:①物体随传送带的移动;②踢足球时,足球的移动;③轻轨列车在笔直轨道上行驶;④从书的某一页翻到下一页时,这一页上的某个图形的移动.其中属于平移现象的有________.(将所有正确的序号都填上)12.如图10,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC 于点D.若∠A′DC=90°,则∠A=________°.图1013.如图11,在平面直角坐标系中,点A的坐标为(-1,2),点C的坐标为(-3,0),先将点C绕点A逆时针旋转90°,再向下平移3个单位长度,此时点C的对应点的坐标为________.图1114.如图12,在等边三角形ABC中,AB=10,D是BC的中点,将△ABD绕点A旋转后得到△ACE,则线段DE的长为________.图1215.如图13,在△ABC中,∠C=90°,AC=BC=2,将△ABC绕点A顺时针旋转60°到△AB′C′的位置,连接C′B,则C′B的长为________.图1316.有两张完全重合的长方形纸片,小亮同学将其中一张绕点A顺时针旋转90°后得到长方形AMEF(如图14①),连接BD,MF,此时他测得∠ADB=30°.小红同学用剪刀将△BCD 与△MEF剪去,与小亮同学探究.他们将△ABD绕点A顺时针旋转得到△AB1D1,AD1交MF于点K(如图②),设旋转角为β(0°<β<90°),当△AFK为等腰三角形时,旋转角β的度数为________.图14三、解答题(共52分)17.(6分)青花瓷是我国民族艺术瑰宝之一,它以洁白细腻的胎体、晶莹透明的釉色、幽靓浓艳的纹饰、华美丰富的造型而闻名于世,它的清新雅丽、质朴率真最能代表中华民族含蓄而豪迈的民族风格,因而素有“国瓷”之誉.请欣赏下面这幅青花瓷图案,试用两种方法分析图案的形成过程.图1518.(6分)如图16,在△ABC和△ADE中,点E在BC边上,∠BAC=∠DAE,∠B=∠D,AB=AD.(1)求证:△ABC≌△ADE;(2)如果∠AEC=75°,将△ADE绕着点A逆时针旋转一定角度(小于90°)后与△ABC重合,求这个旋转角的大小.图1619.(6分)如图17,桌面内,直线l上摆放着两个大小相同的三角板,它们中较大锐角的度数为60°.将△ECD沿直线l向左平移到△E′C′D′的位置,使点E′落在AB上,P 为AC与E′D′的交点,试解决下列问题:(1)求∠CPD′的度数;(2)求证:AB⊥E′D′.图1720.(6分)如图18,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移BC 的长度,得到△DCE,连接BD,交AC于点F.(1)猜想AC与BD的位置关系,并证明你的结论;(2)求线段BD的长.图1821.(6分)如图19,用等腰直角三角板画∠DOB=45°,并将三角板沿OB方向平移到如图所示的△AMB处后,再将三角板绕点M逆时针旋转22°得到△EMC,EM与OD交于点D,求此时三角板的斜边与射线OD的夹角∠ODM的度数.图1922.(6分)如图20所示,在平面直角坐标系中,有一直角三角形ABC,且A(0,5),B(-5,2),C(0,2),△AA1C1是由△ABC经过旋转变换得到的.图20(1)由△ABC旋转得到△AA1C1的旋转角的度数是多少?并写出旋转中心的坐标;(2)请你画出仍以(1)中的旋转中心为旋转中心,将△AA1C1按顺时针,△ABC按逆时针各旋转90°后得到的两个三角形,并写出△AA1C1按顺时针旋转90°后点A1的对应点A2的坐标;(3)利用变换前后所形成的图案证明勾股定理(设△ABC的两直角边长分别为a,b,斜边长为c).23.(8分)如图21所示,△ABC,△ECD都是等边三角形.(1)试确定AE,BD之间的大小关系;(2)如果把△CDE绕点C按逆时针方向旋转到如图②所示的位置,那么(1)中的结论还成立吗?请说明理由.图2124.(8分)如图22,在正方形ABCD中,E为BC上任意一点,将△ABE旋转后得到△CBF.(1)指出旋转中心和旋转角的度数;(2)判断AE与CF的位置关系;(3)如果正方形的面积为18 cm2,△BCF的面积为4 cm2,那么四边形AECD的面积是多少?图221.D 2.C 3.D 4.A 5.C 6.B7.B 8.A 9.D 10.D11.①③12.55 13.(1,-3) 14.5 3 15.3-1 16.60°或15°17.解:(答案不唯一)方案一:以一个花瓣为基本图案,依次旋转45°,90°,135°,180°,225°,270°,315°可得到整个图案;方案二:以相邻两个花瓣为基本图案,依次旋转90°,180°,270°可得到整个图案.18.解:(1)证明:在△ABC和△ADE中,∵∠BAC=∠DAE,AB=AD,∠B=∠D,∴△ABC≌△ADE.(2)∵△ABC≌△ADE,∴AC与AE是一组对应边,∴∠CAE为旋转角.∵AE=AC,∠AEC=75°,∴∠ACE=∠AEC=75°,∴∠CAE=180°-75°-75°=30°.即旋转角为30°.19.解:(1)由平移的性质知DE∥D′E′,∴∠CPD′=∠CED=60°.(2)证明:由平移的性质知CE∥C′E′,∠CED=∠C′E′D′=60°,∴∠BE′C′=∠BAC=30°,∴∠BE′D′=90°,∴AB⊥E′D′.20.解:(1)AC⊥BD.证明如下:∵△DCE是由△ABC平移而得到的,∴△DCE≌△ABC,AC∥DE.又∵△ABC是等边三角形,∴BC=CD=CE=DE,∠DCE=∠CDE=60°,∴∠DBC=∠BDC=30°,∴∠BDE=90°,∴DE⊥BD.∵AC∥DE,∴AC⊥BD.(2)在Rt△BED中,∵BE=6,DE=3,∴BD=BE2-DE2=62-32=3 3.21.解:∵三角板绕点M逆时针旋转了22°,∴∠BMC=22°.∵∠DMC=45°,∴∠OMD=180°-45°-22°=113°.又∵∠DOB=45°,∴∠ODM=180°-113°-45°=22°,即此时三角板的斜边与射线OD的夹角∠ODM的度数是22°.22.解:(1)旋转角为90°,旋转中心的坐标为(-1,1).(2)如图所示,点A1的对应点A2的坐标为(-2,-3).(3)证明:设AC=a,BC=b,则正方形AA1A2B的面积为c2,正方形C1C2C3C的面积为(b -a)2,由图可得c2-(b-a)2=4×12 ab,即c2-b2+2ab-a2=2ab,∴c2=a2+b2. 23.解:(1)在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD=60°,CE=CD,∴△ACE≌△BCD,∴AE=BD.(2)成立.理由如下:∵∠ACB=∠ECD=60°,∴∠ACE=∠BCD.在△ACE和△BCD中,∵AC=BC,∠ACE=∠BCD,CE=CD,∴△ACE≌△BCD,∴AE=BD.24.解:(1)旋转中心是点B,旋转角是90°.(2)如图,延长AE交CF于点M.∵△CBF是由△ABE旋转得到的,∴△CBF≌△ABE,∴∠FCB=∠EAB.∵∠AEB=∠CEM,∴∠BAE+∠AEB=∠FCB+∠CEM.∵四边形ABCD是正方形,∴∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠FCB+∠CEM=90°,∴∠CME=90°,∴AE⊥CF.(3)∵△CBF≌△ABE,△CBF的面积为4 cm2,∴△ABE的面积为4 cm2.∵正方形的面积为18 cm2,∴四边形AECD的面积为14 cm2.11/ 11。

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试题(答案解析)

(必考题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试题(答案解析)

一、选择题1.在平面直角坐标系中,A (0,3),B (4,0),把△AOB 绕点O 旋转,使点A ,B 分别落在点A ′,B ′处,若A ′B ′∥x 轴,点B ′在第一象限,则点A 的对应点A ′的坐标为( ) A .(912,55-) B .(129,55-) C .(1612,55-) D .(1216,55-) 2.下列图案中,既是中心对称图形,又是轴对称图形的是( )A .B .C .D . 3.在平面直角坐标系中,点A 为()3,2,连接OA 并把线段OA 绕原点O 逆时针旋转90°,所得到的对应点A '的坐标为( )A .()2,3B .()2,3-C .()3,2-D .()2,3- 4.下列图案中,是中心对称图形的是( )A .B .C .D . 5.如图,等边ABC 的顶点(1,1)A ,(3,1)B ,规定把等边ABC “先沿x 轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,ABC 顶点C 的坐标为( )A .(2020,13)-+B .(2020,13)---C .(2019,13)-+D .(2019,13)--- 6.推进生态文明建设,实行垃圾分类和资源化利用是每个公民义不容辞的责任.下列四幅图是垃圾分类标志图案,每幅图案下配有文字说明.则四幅图案中既是轴对称图形,又是中心对称图形的是( )A .有害垃圾B .可回收物C .厨余垃圾D .其他垃圾7.下列说法中正确的是( )A .如果一个图形是旋转对称图形,那么这个图形一定也是轴对称图形;B .如果一个图形是中心对称图形,那么这个图形一定也是轴对称图形;C .如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形;D .如果一个图形是旋转对称图形,那么这个图形一定也是中心对称图形;8.关于平移后对应点所连的线段,下列说法正确的是( )①对应点所连的线段一定平行,但不一定相等;②对应点所连的线段一定相等,但不一定平行,有可能相交;③对应点所连的线段平行且相等,也有可能在同一条直线上;④有可能所有对应点的连线都在同一条直线上.A .①③B .②③C .③④D .①②9.下列标志中是中心对称图形的是( )A .B .C .D . 10.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是( ) A . B . C . D . 11.在平面直角坐标系中,点A (2, -1)向右平移3个单位,再向上平移2个单位得到点B ,则线段AB 的长度是 ( )A .8B 34C 13D .3212.下列语句说法正确的是 ( )A .两锐角分别相等的两个直角三角形全等B .经过旋转,对应线段平行且相等C .一个命题是真命题,它的逆命题一定也是真命题D .两条直角边分别相等的两直角三角形全等二、填空题13.把直线3y x =-向上平移后得到直线AB ,若直线AB 经过点(,)C a b ,且36,a b +=则直线AB 的表达式为_______14.已知A 、B 两点关于原点对称,若点A 的坐标为(-1,2),则点B 的坐标为________.15.如图,在△ABC 中,∠BAC =105°,将△ABC 绕点A 逆时针旋转得到△AB ′C ′.若点B 恰好落在BC 边上,且AB ′=CB ′,则∠C ′的度数为_____°.16.如图是某公园里一处矩形风景欣赏区ABCD ,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为______米.17.已知点(),1A a a +在直线122y x =+上,则点关于原点的对称点的坐标是_________ 18.如图,在ABC 中,60,BAC ∠=︒将ABC 绕着点A 顺时针旋转40︒后得到,ADE 则BAE ∠的度数为_______.19.如图,在正方形ABCD 中,AB=4,点M 在CD 的边上,且DM=1,ΔAEM 与ΔADM 关于AM 所在的直线对称,将ΔADM 按顺时针方向绕点A 旋转90°得到ΔABF ,连接EF ,则线段EF 的长为_________20.如图,在ABC ∆中,8AB =,6AC =,30BAC ∠=,将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,连接1BC ,则1BC 的长为__________.三、解答题21.在平面直角坐标系中,O 为原点,点A (2,0),点B (0,2),把△ABO 绕点B 逆时针旋转,得△A ′BO ′,点A ,O 旋转后的对应点为A ′,O ′.记旋转角为α.(1)如图①,当点O ′落在边AB 上时,求点O ′的坐标;(2)如图②,当α=60°时,求AA ′的长及点A ′的坐标.22.如图,在正方形ABCD 中,请仅用无刻度直尺按下列要求作图(保留作图痕迹,不写作法).(1)在图①中,将线段AB 绕点O 逆时针旋转一定角度,使点A 与点B 重合,点B 与点C 重合,作出点O 的位置.(2)在图②中,E 为AB 的中点,将ABD △绕点D 逆时针旋转某个角度,得到CFD △,使DA 与DC 重合,作出CFD △.23.如图,在ABC 中,AB BC =,90ABC ∠=︒,点D 在AC 上,将ADB △绕点B 顺时针方向旋转90°后,得到CEB △.(1)求DCE ∠的度数;(2)若8AB =,13AD CD =,求DE 的长. 24.将两块大小相同的含30角的直角三角板(30BAC B A C ''∠=∠=︒)按图①的方式放置,固定三角板A B C '',然后将三角板ABC 绕直角顶点C 顺时针方向旋转(旋转角小于90︒)至图②所示的位置,AB 与A C '交于点E ,AC 与A B ''交于点F ,AB 与A B ''交于点O .(1)求证:BCE B CF '△≌△;(2)当旋转角等于30时,AB 与A B ''垂直吗?请说明理由.25.在边长为1个单位长度的小正方形网格中,给出了△ABC (顶点是网格线的交点). (1)△ABC 的面积为 ;(2)在直线l 上找一点P ,使点P 到边AB 、BC 的距离相等;(3)画出△ABC 关于直线l 对称的图形△A 1B 1C 1;再将△A 1B 1C 1向下平移4个单位,画出平移后得到的△A 2B 2C 2.26.已知:点A 、B 在平面直角坐标系中的位置如图所示,则:(1)写出这两点坐标:A_______,B________;(2)点A 平移到点(0,-1),请说出是怎样平移的,并写出点B 平移后的坐标. (3)求△AOB 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设A ′B ′交y 轴于T ′,利用勾股定理可求出A ′B ′的长度,再利用三角形面积公式求出OT 的长度,最后再利用勾股定理即可求出A ′T ′的长度,即可求出A ′点坐标 .【详解】解:如图,设A ′B ′交y 轴于T ′.∵A (0,3),B (4,0),∴OA =3,OB =4,∵∠A ′OB ′=90°,OT'⊥A ′B ′,OA =OA ′=3,OB =OB ′=4,∴AB =A ′B ′22OA OB +2234+,∵A OB S ''=12•OA ′•OB ′=12•A ′B ′•OT ′,∴OT ′=125, ∴A ′T ′=22OA OT '-=221293()55-=, ∴A ′(-95,125). 故选:A .【点睛】 本题考查坐标与图形的变化-旋转,熟练利用勾股定理解直角三角形以及三角形的面积公式是解答本题的关键.2.B解析:B【分析】根据中心对称图形和轴对称图形的概念进行判断即可;【详解】A 、是中心对称图形,不是轴对称图形,故本选项错误;B 、既是中心对称图形,又是轴对称图形,故本选项正确;C 、是中心对称图形,不是轴对称图形,故本选项错误;D 、是中心对称图形,不是轴对称图形,故本选项错误;故选:B .【点睛】本题考查了中心对称图形和轴对称图形的概念,正确掌握知识点是解题的关键; 3.D解析:D【分析】如图:过点A 作AB x ⊥轴于点B ,过点'A 作D y A '⊥轴于点D ,可得'ABO ODA ∆∆≌,所以,3OD =,'2DA =,即可求解点'A 的坐标【详解】如图,过点A 作AB x ⊥轴于点B ,过点'A 作'A D x ⊥轴于点D ,∴∠ABO =∠A 'DO =90°,由题意得AO=A 'O ,∠AO A '=90°,∴∠AOD +∠A 'OD =90°,∵90AOB AOD ∠+∠=︒,∴AOB A OD '∠=∠,∴'AOB A OD ∆∆≌,∴OB=OD =3,AB=A 'D =2,∵点A '在第二象限,∴点A '坐标为(2,3)-.故选:D .【点睛】本题考查了坐标与图形变换—旋转,在平面直角坐标系中,求点的坐标,采用作x 轴或y 轴的垂线段,实现化斜为直,是一种常见方法.4.A解析:A【分析】根据中心对称图形的概念解答.【详解】A 、是中心对称图形,故本选项符合题意;B 、不是中心对称图形,故本选项不符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意;故选:A .【点睛】本题考查中心对称图形的概念:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.5.D解析:D【分析】先求出点C 坐标,第一次变换,根据轴对称判断出点C 变换后在x 轴下方然后求出点C 纵坐标,再根据平移的距离求出点C 变换后的横坐标,最后写出第一次变换后点C 坐标,同理可以求出第二次变换后点C 坐标,以此类推可求出第n 次变化后点C 坐标.【详解】∵△ABC 是等边三角形AB=3-1=2∴点C 到x 轴的距离为1+212⨯=+2 ∴C(2,1+由题意可得:第1次变换后点C 的坐标变为(2-1,1),即(1,1-,第2次变换后点C 的坐标变为(2-21),即(0,1+第3次变换后点C 的坐标变为(2-3,1),即(-1,1--第n次变换后点C的坐标变为(2-n,1)(n为奇数)或(2-n,1+为偶数),∴连续经过2021次变换后,等边ABC的顶点C的坐标为(-2019,1-,故选:D.【点睛】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.6.A解析:A【分析】根据轴对称图形与中心对称图形的概念可知.【详解】A选项既是轴对称图形也是中心对称图形B选项不是轴对称图形也不是中心对称图形C选项是轴对称图形而不是中心对称图形D选项不是中心对称图形也不是轴对称图形故选A【点睛】本题考查轴对称及中心对称的定义,掌握中心对称图形与轴对称图形的概念,要注意:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.7.C解析:C【分析】根据旋转对称图形、轴对称图形、中心对称图形的定义及性质判断各选项即可得出答案.【详解】A、如果一个图形是旋转对称图形,那么这个图形不一定是轴对称图形,故选项不符合题意;B、如果一个图形是中心对称图形,那么这个图形不一定是轴对称图形,如平行四边形是中心对称图形,但不是轴对称图形,故选项不符合题意;C、如果一个图形是中心对称图形,那么这个图形一定也是旋转对称图形,故选项符合题意;D、如果一个图形是旋转对称图形,那么这个图形不一定也是中心对称图形,当一个旋转对称图形没有旋转180︒则不是中心对称图形,故选项不符合题意;故选:C.【点睛】本题考查了旋转对称图形、轴对称图形、中心对称图形,属于基础题,注意掌握把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称.8.C解析:C【分析】根据平移的性质,对应点所连的线段一定平行或在一条直线上,对应点所连的线段一定相等,分别求解即可.【详解】①的说法“对应点所连的线段一定相等,但不一定平行”错误;②的说法“对应点所连的线段一定相等,但不一定平行,有可能相交”错误;③的说法“对应点所连的线段平行且相等,也有可能在同一条直线上”正确;④的说法“有可能所有对应点的连线都在同一条直线上”正确;故正确的说法为③④.故选:C.【点睛】本题主要考查了平移的性质:①把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.②新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行或在一条直线上且相等.9.B解析:B【分析】根据中心对称图形的定义即可解答.【详解】解:A、是轴对称图形,不是中心对称的图形,不合题意;B、是中心对称图形,符合题意;C、既不是轴对称图形,也不是中心对称的图形,不合题意;D、是轴对称图形,不是中心对称的图形,不合题意.故选:B.【点睛】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合.10.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.11.C解析:C【分析】首先确定B 点坐标,然后利用勾股定理计算出线段AB 的长度.【详解】点A (2,-1)向右平移3个单位,再向上平移2个单位得到点B ,则B (2+3,-1+2),即B (5,1),线段AB =,故选:C .【点睛】本题主要考查了坐标与图形的变化-平移,以及勾股定理的应用,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减. 12.D解析:D【分析】利用直角三角形全等、旋转的性质、逆命题分别判断后即可确定正确的选项.【详解】A 、两锐角分别相等的两个直角三角形不一定全等,原命题是假命题;B 、经过旋转,对应线段相等,原命题是假命题;C 、一个命题是真命题,它的逆命题不一定是真命题,原命题是假命题;D 、两条直角边分别相等的两直角三角形一定全等,是真命题;故选:D .【点睛】本题考查了命题与定理的知识,解题的关键是了解直角三角形全等、旋转的性质、逆命题等知识,难度不大.二、填空题13.【分析】利用平移规律列式计算即可【详解】设直线y=-3x 向上平移了m 个单位∴直线的解析式为y=-3x+m ∵直线经过点∴b=-3a+m ∵∴b=-3a+6∴-3a+m=-3a+6∴m=6∴直线AB 的解析解析:36y x =-+.【分析】利用平移规律,列式计算即可.设直线y= -3x 向上平移了m 个单位,∴直线的解析式为y= -3x+m ,∵直线AB 经过点(,)C a b ,∴b=-3a+m ,∵36,a b +=∴b=-3a+6,∴-3a+m=-3a+6,∴m=6,∴直线AB 的解析式为y=-3x+6,故答案为:y=-3x+6.【点睛】本题考查了一次函数的平移,熟记平移规律,灵活确定函数的表达式是解题的关键. 14.(1-2)【分析】根据关于原点对称的点横纵坐标都变为相反数计算即可【详解】∵AB 两点关于原点对称点A 的坐标为(-12)∴点B 的坐标为;故答案为【点睛】本题主要考查了关于原点对称的点的坐标准确计算是解 解析:(1,-2)【分析】根据关于原点对称的点横纵坐标都变为相反数计算即可.【详解】∵A 、B 两点关于原点对称,点A 的坐标为(-1,2),∴点B 的坐标为()1,2-;故答案为()1,2-.【点睛】本题主要考查了关于原点对称的点的坐标,准确计算是解题的关键.15.25【分析】由旋转的性质可得∠C=∠CAB=AB 由等腰三角形的性质可得∠C=∠CAB ∠B=∠ABB 由三角形的外角性质和三角形内角和定理可求解【详解】解:∵AB=CB ∴∠C=∠CAB ∴∠ABB=∠C+解析:25【分析】由旋转的性质可得∠C=∠C',AB=AB',由等腰三角形的性质可得∠C=∠CAB',∠B=∠AB'B ,由三角形的外角性质和三角形内角和定理可求解.【详解】解:∵AB'=CB',∴∠C=∠CAB',∴∠AB'B=∠C+∠CAB'=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB'C',∴∠C=∠C',AB=AB',∴∠B=∠AB'B=2∠C ,∵∠B+∠C+∠CAB=180°,∴3∠C=180°-105°,∴∠C=25°,∴∠C'=∠C=25°,故答案为:25.【点睛】本题考查了旋转的性质,等腰三角形的性质,灵活运用这些的性质解决问题是本题的关键.16.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.17.(-2-3)【分析】首先把点代入中计算出的值再根据关于原点对称的点的坐标特点可以直接得到答案【详解】解:点在直线上点关于原点的对称点的坐标是故答案为:【点睛】此题主要考查了关于原点对称的点的坐标特点解析:(-2,-3)【分析】首先把点(,1)A a a +代入122y x =+中,计算出a 的值,再根据关于原点对称的点的坐标特点可以直接得到答案.【详解】 解:点(,1)A a a +在直线122y x =+上, 1122a a ∴+=+, 2a ∴=,(2,3)A ∴,∴点A 关于原点的对称点的坐标是(2,3)--,故答案为:(2,3)--.【点睛】此题主要考查了关于原点对称的点的坐标特点,以及一次函数图象上点的坐标特征,关键是掌握两个点关于原点对称时,它们的坐标符号相反.18.100°【分析】根据旋转角可得∠CAE=40°然后根据∠BAE=∠BAC+∠CAE代入数据进行计算即可得解【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE∴∠CAE=40°∵∠BAC=6解析:100°【分析】根据旋转角可得∠CAE=40°,然后根据∠BAE=∠BAC+∠CAE,代入数据进行计算即可得解.【详解】解:∵△ABC绕着点A顺时针旋转40°后得到△ADE,∴∠CAE=40°,∵∠BAC=60°,∴∠BAE=∠BAC+∠CAE=60°+40°=100°.故答案为:100°.【点睛】本题考查旋转的性质,是基础题,确定出∠CAE=40°是解题关键.19.5【分析】连接BM先判定△FAE≌△MAB(SAS)即可得到EF=BM在Rt△BCM中利用勾股定理即可得到BM的值【详解】如图连接BM∵△AEM与△ADM关于AM所在的直线对称∴AE=AD∠MAD=解析:5【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.在Rt△BCM中,利用勾股定理即可得到BM的值.【详解】如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD,∴∠FAB=∠MAE ,∴∠FAB+∠BAE=∠BAE+∠MAE ,∴∠FAE=∠MAB ,∴△FAE ≌△MAB (SAS ),∴EF=BM .因为正方形ABCD 的边长为4,则MC=4-1=3,BC=4.在Rt △BCM 中,∵BC 2+MC 2=BM 2,∴42+32=BM 2,解得:BM =5,∴EF=BM=5.故答案为:5.【点睛】本题考查了正方形的性质,勾股定理,全等三角形的判定与性质以及旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.【分析】根据旋转的性质可得出在中利用勾股定理求解即可【详解】解:∵∴∵将绕点逆时针旋转得到∴∴∴在中故答案为:【点睛】本题考查的知识点是旋转的性质以及勾股定理利用旋转的性质得出是解此题的关键解析:10【分析】根据旋转的性质可得出11116,30,60AC BAC B AC BA A B C ==∠=∠=︒∠=︒,在1ABC ∆中利用勾股定理求解即可.【详解】解:∵8AB =,6AC =,30BAC ∠=,∴1116,30AC BAC B AC AC ==∠=∠=︒,∵将ABC ∆绕点A 逆时针旋转60得到11AB C ∆,∴160BAB ∠=︒∴190BAC ∠=︒∴在1ABC ∆中,110BC ===.故答案为:10.【点睛】本题考查的知识点是旋转的性质以及勾股定理,利用旋转的性质得出190BAC ∠=︒是解此题的关键.三、解答题21.(1)点O ′的坐标为(2,2﹣2);(2)AA ′=22,点A ′的坐标为(1+3,1+3)【分析】(1)根据点A (2,0),点B (0,2),可得△ABO 是等腰直角三角形,当点O′落在边AB 上时,α=45°,可得点O′的横坐标为12AB =2,纵坐标为2﹣2,即可得答案; (2)根据勾股定理得AB ,由旋转性质可得∠A′BA =60°,A′B =AB ,继而得出AA′和点A′的坐标.【详解】解:(1)如图①,∵点A(2,0),点B(0,2),∴OA =OB =2,△ABO 是等腰直角三角形,∴AB =22,当点O′落在边AB 上时,α=45°,∴点O′的横坐标为22O ′B =2,纵坐标为2﹣2, ∴点O′的坐标为(2,2﹣2);(2)如图②,当α=60°时,∴∠ABA′=60°,AB =A′B ,∴△ABA′为等边三角形,∴AA′=A′B =AB =22,连接OA′,在△OBA′和△OAA′中,OB OA OA OA A A A B '''=⎧='⎪⎨⎪=⎩, ∴△OBA′≌△OAA′(SSS ),∴∠BOA′=∠AOA′,∠BA′O =∠AA′O ,∴直线OA′的函数解析式为y =x ,∴OA′⊥AB ,∴OA′=2+6,∴点A′的坐标为(1+3 ,1+3).【点睛】本题主要考查旋转的性质及全等三角形的性质与判定、等边三角形的性质,等腰三角形的性质,熟练掌握旋转的性质是解题的关键.22.(1)如图所示,点O 即为所求.见解析;(2)如图所示,CFD △即为所求.见解析.【分析】(1)依题意做出两条对应点的中垂线的交点既是旋转中心,旋转中心刚好在正方形中心,由于尺子没刻度,则连接两条对角线交点既是点O 的位置.(2)依题意得旋转角度90o 为,由于尺子没有刻度,第一步连接AC,BD 交点O,再连接EO 并延长EO 交DC 为H ,则H 为DC 中点,第二步连接AH 并延长交BC 延长线与F,由△ADH ≌△FCH 即可得出CF=AD ,从而得到CFD △.【详解】(1)如图所示,点O 即为所求.(2)如图所示,CFD △即为所求.【点睛】本题主要考察了图形的旋转,全等三角形等知识点,准确记住旋转中心找法和全等三角形的判定方法是解题关键.23.(1)90°;(2)45【分析】(1)由BA =BC 、∠ABC =90°,可得出∠A =∠ACB =45°,根据旋转的性质可得出∠BCE =∠A =45°,再由∠DCE =∠ACB +∠BCE 即可求出∠DCE 的度数;(2)根据等腰直角三角形的性质可求出AC 的长度,由CD =3AD 可得出AD 、CD 的长度,进而可得出CE 的长度,再在Rt △DCE 中利用勾股定理即可求出DE 的长.【详解】解:(1)在ABC 中,AB BC =,90ABC ∠=︒45BAC BCA ∴∠=∠=︒.由旋转的性质可知45BCE BAC ∠=∠=︒. 454590DCE BCA BCE BCA BAC ∴∠=∠+∠=∠+∠=︒+︒=︒.(2)8BC AB ==,ABC 90∠=︒,2282AC AB BC ∴=+=13AD CD =, 22AD ∴=62CD =由旋转的性质可知:22CE AD ==在Rt DCE 中,DCE 90∠=︒,2245DE CE CD ∴=+=【点睛】本题考查了旋转的性质、等腰直角三角形以及勾股定理,解题的关键是:(1)根据等腰直角三角形的性质结合旋转的性质,找出∠ACB 和∠BCE 的度数;(2)在Rt △DCE 中,利用勾股定理求出DE 的长度.24.(1)证明见解析;(2)AB 与A B ''垂直,理由见解析.【分析】(1)根据题意可知∠B=∠B′,BC=B′C ,∠BCE=∠B′CF ,利用ASA 即可证出△BCE ≌△B′CF ; (2)由旋转角等于30°得出∠ECF=30°,所以∠FCB′=60°,根据四边形的内角和可知∠BOB′的度数,最后计算出∠BOB′的度数即可.【详解】解:(1)证明:∵''BCA B CA ∠=∠,∴''BCA ACE B CA ACE ∠-∠=∠-∠,即'BCE B CF ∠=∠,又∵''B B BC B C ∠=∠=,,∴'BCE B CF ≌(2)AB 与A B ''垂直.理由如下:若旋转角等于30,即30ECF ∠=︒,∴'60FCB ∠=︒,∴'150BCB ∠=︒又∵'60B B ∠=∠=︒根据四边形的内角和得'360606015090BOB ∠=︒-︒-︒-︒=︒,∴''AB A B ⊥.【点睛】 此题考查了旋转的性质,解题时要根据旋转的性质求出角的度数,要与全等三角形的判定和四边形的内角和定理相结合是解题的关键.25.(1)4;(2)见解析;(3)见解析【分析】(1)利用割补法求解可得;(2)作∠ABC 的平分线,与直线l 的交点即为所求;(3)先作出△ABC 关于直线l 的对称三角形,再向下平移4个单位即可.【详解】(1)△ABC 的面积为4×3-12×1×2-12×2×3-12×2×4=4, 故答案为:4;(2)如图点P 即为所找的点;(3)如图△A 1B 1C 1和△A 2B 2C 2即为所画的三角形.【点睛】本题主要考查了作图-轴对称变换和平移变换,解题的关键是掌握轴对称变换与平移变换的定义和性质,并据此得出变换后的对应点.26.(1)(-1,2),(3,-2);(2)把点A先向下平移3个单位长度,再向右平移1个单位长度,(4,-5);(3)S△AOB=2【分析】(1)直接根据图中点的坐标即可求得答案;(2)由A( -1,2)对应点的对应点 ( 0,-1)得平移平移规律,即可得到答案;(3)将图中ABC分补成一个长方形减去三个三角形和一个小长方形的面积即可得出答案.【详解】解:(1)A(-1,2),B(3,-2);故答案为:(-1,2),(3,-2);(2)∵点A(-1,2)平移到点(0,-1)∴把点A先向下平移3个单位长度,再向右平移1个单位长度,∵B(3,-2)∴平移后的B点坐标为:(4,-5);(3)11144442121231681232 222AOBS=⨯-⨯⨯-⨯⨯-⨯-⨯⨯=----=.【点睛】本题考查平面直角坐标系相关,结合平面直角坐标系的坐标确定方法以及整体减去部分求图形面积的方法和点的平移规律进行分析.。

华师大版七年级数学下册《第十章轴对称、平移与旋转》 达标测试卷-带参考答案

华师大版七年级数学下册《第十章轴对称、平移与旋转》 达标测试卷-带参考答案

华师大版七年级数学下册《第十章轴对称、平移与旋转》达标测试卷-带参考答案一、选择题(每题3分,共24分)1.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看成是轴对称图形的是()2.下列四组图形中,不能视为由一个基本图形通过平移得到的是()3.美丽的雪花呈现出浪漫空灵的气质.如图,雪花图案可以看成是由自身的一部分围绕它的中心依次旋转一定角度得到的,这个角的度数可以是()A.30°B.45°C.60°D.90°(第3题)(第5题)4.下列图形中既是轴对称图形又是中心对称图形的是()5.如图,点A,E,C在同一直线上,△ABC≌△DEC,AE=3,CD=8,则BC 的长为()A.3 B.5 C.8 D.116.如图,在长方形ABCD中,E是CD上一点,连结AE,将△ADE沿AE折叠,使点D的对应点F落在BC上,若AB=3,BC=5,BF=4,则CE的长为()(第6题)A.2 B.1 C.53 D.437.如图①所示,魔术师把4张扑克牌放在桌子上,然后蒙住眼睛,请一位观众上台,把其中一张扑克牌旋转180°.魔术师解除蒙具后,看到4张牌如图②所示.那么被旋转过的牌是()(第7题)A.方块4 B.黑桃5 C.梅花6 D.红桃7 8.如图,长方形ABCD中,AB=6,第1次平移将长方形ABCD沿AB的方向向右平移5个单位长度,得到长方形A1B1C1D1,第2次平移将长方形A1B1C1D1沿A1B1的方向向右平移5个单位长度,得到长方形A2B2C2D2,…,第n次平移将长方形A n-1B n-1C n-1D n-1沿A n-1B n-1的方向向右平移5个单位长度,得到长方形A n B n C n D n(n>2),若AB n的长度为2 026,则n的值为()(第8题)A.407 B.406 C.405 D.404二、填空题(每题3分,共18分)9.如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________°.(第9题)(第11题)10.把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.11.如图,方格纸(1格长为1个单位长度)中,△ABC的顶点都在格点上,将△ABC绕点O按顺时针方向旋转得到△A′B′C′,使各顶点仍在格点上,则其旋转角的最小度数是________°.12.如图,直角三角形DEF是由直角三角形ABC沿BC平移得到的,若AB=8,BE=3,DH=2,则图中阴影部分的面积是________.(第12题)(第13题)13.如图,三角形纸片ABC中,∠A=65°,∠B=75°,将纸片的一角折叠,使点C的对应点C′落在△ABC内,则∠1+∠2=________°.14.如图,在锐角三角形ABC中,AB=8,△ABC的面积为40,BD平分∠ABC,若M、N分别是BD、BC上的动点,则CM+MN的最小值为________.(第14题)三、解答题(共78分)15.(6分)如图是正方形纸片ABCD,点E、F分别在边BC、CD上,连结AF,AE,将△ABE,△ADF分别沿AE、AF折叠,折叠后边AB与AD恰好重叠于AG,求∠EAF的大小.(第15题)第3 页共12 页16.(6分)如图,在边长均为1的小正方形组成的网格中,△AOB的顶点均在格点上.(1)将△AOB向下平移2个单位后得到△A1O1B1,请画出△A1O1B1;(2)将△AOB绕点O逆时针旋转90°后得到△A2OB2,请画出△A2OB2;(3)△A3OB3与△AOB关于点O中心对称,请画出△A3OB3.(第16题)17.(6分)如图,将△ABC绕点A逆时针旋转得到△ADE,点D在BC上,已知∠B=70°,求∠CDE的大小.(第17题)18.(7分)如图,阴影部分是由5个小正方形组成的一个直角图形,请用3种不同的方法分别在下图方格内涂黑2个小正方形,使它们成为轴对称图形.(第18题)19.(7分)如图,△ABD≌△EBC,AB=3 cm,BC=6 cm.(1)求DE的长;(2)若A、B、C在一条直线上,则DB与AC垂直吗?为什么?(第19题)20.(7分)如图,E是正方形ABCD的边AB上一点,AB=4,AE=1.5,△DAE逆时针旋转后能够与△DCF重合.第5 页共12 页(1)旋转中心是哪一点,旋转角为多少度?(2)请你判断△DFE的形状,并说明理由.(3)求四边形ABFD的面积.(第20题)21.(8分)如图①②均为上底为1,下底为2,高为1的直角梯形.(1)用实线把图①分割成六个全等图形;(2)用实线把图②分割成四个全等图形.(第21题)22.(9分)如图,小丽将直角三角形ABC沿某条直线折叠,使斜边的两个端点A 与B重合,折痕为DE.(1)如果AC=6,BC=8,试求△ACD的周长;(2)如果∠CAD∶∠BAD=4∶7,求∠B的度数.(第22题)23.(10分)如图①,将一副直角三角尺OCD、PMN放在同一条直线AB上,其中∠PNM=30°,∠OCD=45°.(1)【观察猜想】将图①中的三角尺OCD沿AB的方向平移至图②的位置,使得点O与点N重合,CD与MN相交于点E,则∠CEN=________.(2)【操作探究】将图①中的三角尺OCD绕点O按顺时针方向旋转,使一边OD在∠MON的内部,如图③,且OD恰好平分∠MON,CD与NM相交于点E,求∠CEN的度数;(3)【深化拓展】将图①中的三角尺OCD绕点O按顺时针方向旋转一周,在旋转的过程中,若边CD恰好与边MN平行,请你求出此时旋转的角度.(第23题)第7 页共12 页24.(12分)将一副直角三角尺按如图①所示的方式摆放在直线MN上(∠DEC=60°,∠BAC=45°),保持三角尺EDC不动,将三角尺ABC绕点C以每秒5°的速度顺时针旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转.(1)如图②,当CA平分∠DCE时,求此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB之间的数量关系,并说明理由;(3)在旋转过程中,当三角尺ABC的某一边平行于三角尺EDC的某一边时,求此时t的值.(第24题)答案一、1.B 2.C 3.C 4.A 5.B6.D思路点睛:根据长方形的面积列方程求解.7.A点拨:观察发现旋转之前和旋转之后扑克牌的图案没变化,所以旋转的扑克牌转180°后图案与原来相同,只有方块4符合题意,故选A.8.D思路点睛:根据平移的性质得出AA1=5,A1A2=5,A1B1=6,A2B2=6,进而求出AB1和AB2的长,然后总结规律,得出AB n=(n+1)×5+1,求出n 即可.二、9.12010.6011.9012.2113.8014.10三、15.解:∵四边形ABCD是正方形,∴∠BAD=90°由折叠的性质得,∠DAF=∠GAF=12∠DAG,∠BAE=∠GAE=12∠BAG,∴∠EAF=∠GAF+∠GAE=12∠DAG+12∠BAG=12(∠DAG+∠BAG)=12∠BAD=45°.16.解:(1)如图,△A1O1B1即为所作.(2)如图,△A2OB2即为所作.(3)如图,△A3OB3即为所作.(第16题) 17.解:由旋转的性质可得,AB=AD,∠ADE=∠B=70°∴∠ADB=∠B=70°∴∠CDE=180°-∠ADB-∠ADE=40°.18.解:如图.(方法不唯一)(第18题)第9 页共12 页19.解:(1)∵△ABD ≌△EBC ∴AB =BE ,BD =BC∴DE =BD -BE =BC -AB =6-3=3(cm).(2)垂直.∵△ABD ≌△EBC ,且A 、B 、C 在一条直线上 ∴∠ABD =∠CBE ,∠ABD +∠CBE =180° ∴∠ABD =∠CBE =90°,即DB ⊥AC . 20.解:(1)旋转中心是点D ,旋转角为90°.(2)△DFE 是等腰直角三角形.理由如下: ∵四边形ABCD 是正方形,∴∠ADC =90°.根据旋转的性质可得DE =DF ,∠EDF =∠ADC =90° ∴△DFE 是等腰直角三角形.(3)∵四边形ABCD 是正方形,∴∠A =90°,AD =AB =4,S正方形ABCD=4×4=16,根据旋转的性质可得S △CDF =S △ADE =12AD ·AE =12×4×1.5=3 ∴S 四边形ABFD =S 正方形ABCD +S △CDF =16+3=19. 21.解:(1)如图①所示. (2)如图②所示.(第21题)22.解:(1)由折叠的性质可得BD =AD ,∴△ACD 的周长=AC +AD +CD =AC+BD +CD =AC +BC =6+8=14. (2)可设∠CAD =4x °,∠BAD =7x °由折叠的性质可得∠B =∠BAD ,∴∠B =7x ° ∵∠C =90°,∴∠B +∠DAB +∠CAD =90° ∴7x °+7x °+4x °=90°,解得x =5,∴∠B =35°. 23.解:(1)105°(2)∵OD 平分∠MON ,∴∠DON =12∠MON =12×90°=45°,∴∠DON =∠D =45°,∴CD ∥AB∴∠CEN =180°-∠MNO =180°-30°=150°.(3)设直线MO 与CD 相交于点F 如图①,当CD 在AB 上方时(第23题)∵CD∥MN,∴∠OFD=∠M=60°在△ODF中,∠MOD=180°-∠D-∠OFD=180°-45°-60°=75°,∴旋转角为75°;如图②,当CD在AB的下方时∵CD∥MN,∴∠DFO=∠M=60°,在△DOF中,∠DOF=180°-∠D-∠DFO=180°-45°-60°=75°∴旋转角为75°+180°=255°.综上所述,旋转的角度为75°或255°时,边CD恰好与边MN平行.24.解:(1)∵CA平分∠DCE,∴∠ACE =12∠DCE=15°∴t=15°÷5°=3.(第24题)(2)∠ECB-∠DCA=15°.理由如下:如图①,由旋转得∠ACE=5°t,∴∠DCA=30°-5°t,∠ECB=45°-5°t,∴∠ECB-∠DCA=(45°-5°t)-(30°-5°t)=15°.(3)分四种情况:①当AB∥DE时,如图②,∠ACE=∠ACB+∠DCE=45°+30°=75°,∴t=75°÷5°=15;(第24题)②当AB∥CE时,如图③,则∠BCE=∠B=90°∴∠ACE=∠BCE+∠ACB=90°+45°=135°第11 页共12 页∴t=135°÷5°=27;③当AB∥CD时,如图④,则∠DCB=∠B=90°∴∠ACE=∠DCE+∠DCB+∠ACB=30°+90°+45°=165°,∴t=165°÷5°=33;(第24题)④当AC∥DE时,如图⑤,则∠ACD=∠D=90°∴∠ACE=∠ACD+∠DCE=90°+30°=120°∴t=120°÷5°=24.综上所述,t的值是15,24,27或33.第12 页共12 页。

新人教版第20章平移与旋转测试题及答案

新人教版第20章平移与旋转测试题及答案

人教版 九年级第20章《平移与旋转》检测试题一、选择题 (每题2分,共20分)1,下列运动属于平移的是( ) A .空中放飞的风筝B .飞机在跑道上滑行到停止的运动C .球运动员投出并进入篮筐的过程D .乒乓球比赛中的高抛发球后,乒乓球的运动方式 2,下列说法正确的是( )A .平移不改变图形的形状和大小,而旋转则改变图形的形状和大小B .平移和旋转的共同点是改变图形的位置C .图形可以向某方向平移一定距离,也可以向某方向旋转一定距离D .在平移和旋转图形中,对应角相等,对应线段相等且平行3,如图1,△DEF 是由△ABC 经过平移后得到的,则平移的距离是( ) A .线段BE 的长度 B .线段EC 的长度 C .线段BC 的长度 D .线段EF 的长度4,将一图形绕着点O 顺时针方向旋转70°后,再绕着点O 逆时针方向旋转120°,这时如果要使图形回到原来的位置,需要将图形绕着点O 什么方向旋转的度是( )A .顺时针方向50° B.逆时针方向50° C .顺时针方向190° D.逆时针方向190° 5,如图2,图形旋转一定角度后能与自身重合,则旋转的角度可能是( ) A .30°B .60°C .90°D .120°6,如图3,面积为12cm 2的△ABC 沿BC 方向平移至△DEF 的位置,平移的距离是边BC 长的两倍,则图中的四边形ACED 的面积为( )A .24cm 2B .36cm 2C .48cm 2D .无法确定图2图3图1 F C E B二、填空题(每空2分,共20分)1,如果△ABC 经过平移后得到△DEF ,若∠A =41°,∠C =32°,EF =3cm ,则∠E =__,BC =__cm .2,如果△ABC 沿着北偏东35°的方向移动了6cm ,那么△ABC 的一条角平分线AD 上的中点Q 向_______方向移动了____cm .3,将一图形沿着正北方向平移5cm 后,再沿着正西方向平移5cm ,这时图形在原来位置的____方向上.4,如图4,已知梯形ABCD ,AD ∥BC ,BC =6,AD =3,AB =4,CD =2,AB 平移后到DE 处,则ΔCDE 的周长是___.5,如图5,△ABC 以点A 为旋转中心,按逆时针方向旋转60°,得△AB 'C ',则△ABB '是___三角形.6,如图6,在四边形ABCD 中,AD ∥BC ,BC >AD ,∠B 与∠C 互余,将AB ,CD 分别平移到EF 和EG 的位置,则△EFG 为___三角形,若AD =2cm ,BC =8cm ,则FG =___.三、解答题1,先画出一个10×10的正方形网格,再根据要求,在画出的方格图中画出图形: ⑴画出四边形ABCD 关于点D 成中心对称的图形A ′B ′C ′D ′,⑵将图形A ′B ′C ′D ′向右平移3格,再向下平移2格后的图形A ″B ″C ″D ″. 2,四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图7所示,如果AF =4,AB =7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?3,在△ABC 中,∠B =10°,∠ACB =20°,AB =4cm ,△ABC 逆时针旋转一定角度后与△ADE 重合,且点C 恰好成为AD 中点,如图8,⑴指出旋转中心,并求出旋转的度数。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试卷(有答案解析)

一、选择题1.下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下面是几种病毒的形态模式图,这些图案中既不是轴对称图形也不是中心对称图形的是()A.B.C.D.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.矩形B.等边三角形C.正五边形D.角'''关于原点O成中心对称的是()4.在平面直角坐标系xOy中,ABC与A B CA.B.C.D .5.下列图形中既是中心对称图形又是轴对称图形的是( )A .B .C .D . 6.点(1,2)A m --与点(3,1)B n +关于原点对称,则m n +=( )A .1B .-1C .-5D .57.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 8.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 9.下列说法错误的是( )A .对顶角相等B .两直线平行,同旁内角相等C .平移不改变图形的大小和形状D .同一平面内,垂直于同一直线的两条直线平行10.将ABC ∆沿BC 方向平移3个单位得DEF ∆,若ABC ∆的周长等于20,则四边形ABFD 的周长为( )A .28B .26C .24D .2011.如图,四边形ABCD 与四边形FGHE 关于一个点成中心对称,则这个点是( )A .O 1B .O 2C .O 3D .O 412.如图,线段AD 由线段AB 绕点A 按逆时针方向旋转90得到,EFG ∆由ABC ∆沿CB 方向平移得到,且直线EF 过点D .则BDF ∠=( )A .30B .45C .50D .60二、填空题13.如果规定:在平面内,将一个图形绕着某一点旋转一定的角度(小于周角)后能和自身重合,就称此图形为旋转对称图形那么下列图形中:①正三角形;②正方形;③正六边形是旋转对称图形,且有一个旋转角为90︒的是______(填序号).14.如图,在平面直角坐标系中,点A ,B ,C 的坐标分别为()0,1,()1,0,()1,0-,一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点1P 与点2P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称,第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点5P 与点4P 关于点B 成中心对称……照此规律重复下去,则点2021P 的坐标为_________.15.已知点P(-3,2)关于原点的对称点是_______.16.如图,在平面直角坐标系中,第1次将边长为1的正方形OABC 绕点O 逆时针旋转45°后,得到正方形OA 1B 1C 1;第2次将正方形OA 1B 1C 1绕点O 逆时针旋转45°后,得到正方形OA 2B 2C 2;.....按此规律,绕点O 旋转得到正方形OA 2020B 2020C 2020,则点B 2020的坐标为______.17.如图,ODC ∆是由OAB ∆绕点O 顺时针旋转40︒后得到的图形,若点D 恰好落在AB 上,且105AOC ∠=︒,则C ∠的度数是_______.18.如图所示,大长方形的长为8cm ,宽为4cm ,则阴影部分的面积是________.19.如图,将△ABC 沿BC 方向平移1个单位得到△DEF ,若△ABC 的周长等于8,则四边形ABFD 的周长等于_______.20.已知:如图,在AOB ∆中,9034AOB AO cm BO cm ︒∠===,,,将AOB ∆绕顶点O ,按顺时针方向旋转得到11A OB ∆,线段1OB 与边AB 相交于点D ,则线段1B D 最大值为=________cm三、解答题21.如图,点E 是等边△ABC 内一点,3EA =,2EC =,1EB .求BEC ∠的度数.22.如图网格中,AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.23.ABC 在平面直角坐标系中的位置如图所示.(1)请作出ABC 关于y 轴对称的111A B C △,并写出111,,A B C 三点的坐标:1A _______,1B ________,1C _________;(2)将ABC 向右平移6个单位长度,作出作出平移后的222A B C △;(3)观察111A B C △与222A B C △,它们是否关于某直线对称?若是,请在图上画出这条对称轴.24.如图1是实验室中的一种机械装置,BC 在地面上,所在等腰直角三角形ABC 是固定支架,机械臂AD 可以绕点A 旋转,同时机械臂DM 可以绕点D 旋转,已知90,6,1∠=︒==BAC AD DM .(1)在旋转过程中,①当A 、D 、M 三点在同一直线上时,直接写出线段AM 的长;②当以A 、D 、M 为顶点的三角形是直角三角形时,求AM 的长;(2)如图2,把机械臂AD 顺时针旋转90︒,点D 旋转到点E 处,连结DE ,当135,7∠=︒=AEC CE 时,求BE 的长.25.如图所示,在正方形网格中,ABC 的顶点坐标分别为()2,4,()1,2,()4,1.请在所给直角坐标系中按要求画图和解答下列问题:(1)以点P 为旋转中心,将ABC 按逆时针方向旋转90︒得到A B C ''',请在图中画出A B C ''',并写出点B 的对应点B '的坐标为_________.(2)在y 轴上求作一点M ,使MA MB +的值最小,点M 的坐标为_________.26.如图,在边长为1个单位长度的小正方形组成的网格中,给出了△ABC 和点D (A ,B ,C ,D 是网格线交点).(1)画出一个△DEF ,使它与△ABC 全等,且点D 与点A 是对应点,点E 与点B 是对应点,点F 与点C 是对应点(要求:△DEF 是由△ABC 经历平移、旋转得到的,两种图形变化至少各一次).(2)在(1)的条件下,网格中建立平面直角坐标系,写出点C 和点F 的坐标.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.【详解】解:A、是中心对称图形,不是轴对称图形,故本选项不合题意;B、不是中心对称图形,但是轴对称图形,故本选项不合题意;C、是中心对称图形,又是轴对称图形,故本选项合题意;D、既不是中心对称图形,也不是轴对称图形,故本选项不符合题意;故选:C.【点睛】本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.C解析:C【分析】根据轴对称图形和中心对称图形的定义进行判定即可;【详解】A、是轴对称图形不是中心对称图形,故不符合题意;B、是轴对称图形不是中心对称图形,故不符合题意;C、既不是轴对称图形也不是中心对称图形,故符合题意;D、既是轴对称图形又是中心对称图形,故不符合题意;故选:C.【点睛】本题考查了轴对称图形和中心对称图形,正确理解轴对称图形和中心对称图形的定义是解题的关键;3.A解析:A【分析】根据轴对称图形与中心对称图形的概念依次判断即可得.【详解】解:A. 矩形是轴对称图形,也是中心对称图形.故正确.B. 等边三角形是轴对称图形,不是中心对称图形.故错误;C. 正五边形是轴对称图形,不是中心对称图形.故错误;D. 角是轴对称图形,不是中心对称图形.故错误;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】根据关于y轴对称的点的坐标特征对A进行判断;根据关于x轴对称的点的坐标特征对B 进行判断;根据关于原点对称的点的坐标特征对C、D进行判断.【详解】解:A、△ABC与△A'B'C'关于y轴对称,所以A选项不符合题意;B、△ABC与△A'B'C'关于x轴对称,所以B选项不符合题意;C、△ABC与△A'B'C'关于(-12,0)对称,所以C选项不符合题意;D、△ABC与△A'B'C'关于原点对称,所以D选项符合题意;【点睛】本题考查了中心对称:把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点.中心对称的性质:关于中心对称的两个图形能够完全重合;关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.5.A解析:A【分析】本题利用轴对称图形和中心对称图形的概念求解即可,轴对称图形:沿某一直线折叠后直线两旁的部分互相重合;中心对称图形:将一个图形绕着中心点旋转180°后能与自身重合的图形叫做中心对称图形;【详解】A、此图形既是中心对称图形,也是轴对称图形故此选项正确;B、此图形是中心对称图形,但不是轴对称图形故此选项不正确;C、此图形是轴对称图形,但不是中心对称图形故此选项不正确;D、此图形是轴对称图形,但不是中心对称图形故此选项不正确;故选:A.【点睛】本题考查了轴对称图形和中心对称图形的概念,正确理解它们的概念是解题的关键;6.B解析:B【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【详解】解:∵点(1,2)A m --与点(3,1)B n +关于原点对称,∴1312m n -=-⎧⎨+=⎩, ∴21m n =-⎧⎨=⎩, ∴211m n +=-+=-;故选:B .【点睛】本题考查了关于原点 对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2, 根据勾股定理,2216423BC BO OC =-=-=,∴()2,23A '-.故选:D .【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质. 8.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,但不是轴对称图形,符合题意;C、既是中心对称图形,又是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.9.B解析:B【分析】根据图形的有关性质和变化解题.【详解】根据平行线的性质,两直线平行,同旁内角互补,所以B错误;由对顶角的性质知A正确;由平移的性质知C正确;由垂直的性质知D正确.故选B.【点睛】本题考查图形的有关性质和变化,准确记忆图形的性质和图形变化的性质是解题关键.10.B解析:B【分析】先根据平移的性质得AD=CF=3,AC=DF,然后AB+BC+AC=20,通过等线段代换计算四边形ABFD的周长.【详解】解:∵△ABC沿BC方向平移3个单位得△DEF,∴AD=CF=3,AC=DF,∵△ABC的周长等于20,∴AB+BC+AC=20,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=20+3+3=26.故选:B.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.11.A解析:A【分析】连接任意两对对应点,连线的交点即为对称中心.【详解】如图,连接HC和DE交于O1,故选A.【点睛】此题考查了中心对称的知识,解题的关键是了解成中心对称的两个图形的对应点的连线经过对称中心,难度不大.12.B解析:B【分析】由旋转的性质得,AD=AB,∠ABD=45°,再由平移的性质即可得出结论.【详解】解:∵线段AD是由线段AB绕点A按逆时针方向旋转90°得到,∴∠DAB=90°,AD=AB,∴∠ABD=45°,∵△EFG是△ABC沿CB方向平移得到,∴AB∥EF,∴∠BDF=∠ABD=45°;故选B【点睛】此题主要考查了图形的平移与旋转,平行线的性质,等腰直角三角形的判定和性质.二、填空题13.②【分析】根据旋转的性质判断出正三角形正方形和正六边形的旋转角找出旋转角是的图形即可【详解】①正三角形的最小旋转角是;②正方形的最小旋转角是;③正六边形的最小旋转角是故答案为:②【点睛】本题考查了旋解析:②【分析】根据旋转的性质判断出正三角形,正方形和正六边形的旋转角,找出旋转角是90︒的图形即可.【详解】①正三角形的最小旋转角是120︒;②正方形的最小旋转角是90︒;③正六边形的最小旋转角是60︒故答案为:②.【点睛】本题考查了旋转对称图形的知识,解答本题的关键是掌握旋转角的定义,求出每个图形的旋转角.14.(-20)【分析】计算出前几次跳跃后点P1P2P3P4P5P6P7的坐标可以得出规律继而可求出点的坐标【详解】解:根据题意得:点P1(02)P2(2-2)P3(-42)P4(40)P5(-20)P6解析:(-2,0)【分析】计算出前几次跳跃后,点P1、P2、P3、P4、P5、P6、P7的坐标,可以得出规律,继而可求出P的坐标.点2021【详解】解:根据题意得:点P1(0,2)、P2(2,-2)、P3(-4,2)、P4(4,0)、P5(-2,0)、P6(0,0)、P7(0,2),,∴每6次为一个循环,÷=,∵202163365∴点P的坐标与点P5的坐标相同,即为(-2,0),2021故答案为:(-2,0).【点睛】此题考查坐标的变化规律探究,中心对称的定义,正确掌握中心对称的定义确定点的坐标,发现规律并运用解决问题是解题的关键.15.(3-2)【分析】根据关于原点对称点的坐标变化规律求解即可【详解】解:关于原点对称的两个点横坐标互为相反数纵坐标也互为相反数所以P(-32)关于原点的对称点是(3-2)故答案为:(3-2)【点睛】本解析:(3,-2)【分析】根据关于原点对称点的坐标变化规律求解即可.【详解】解:关于原点对称的两个点横坐标互为相反数,纵坐标也互为相反数,所以P(-3,2)关于原点的对称点是(3,-2),故答案为:(3,-2).【点睛】本题考查了关于原点对称坐标变化,熟记点在坐标系中的几何变换的坐标变化规律是解题关键.16.(-1-1)【分析】根据图形可知:点B在以O为圆心以OB为半径的圆上运动由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形OABC相当于将线段OB绕点O逆时针旋转45°可得对应点B的坐标解析:(-1,-1)【分析】根据图形可知:点B在以O为圆心,以OB为半径的圆上运动,由旋转可知:将正方形OABC绕点O逆时针旋转45°后得到正方形O A1B1C1,相当于将线段OB绕点O逆时针旋转45°,可得对应点B的坐标,根据规律发现是8次一循环,可得结论.【详解】解:∵四边形OABC是正方形,且OA=1,∴B(1,1);连接OB,由勾股定理得:OB= 2,由旋转得:OB= OB1= OB2=OB3= (2)∵将正方形OABC绕点O逆时针旋转45°后得到正方形OA1B1C1,相当于将线段OB绕点O=∠B1O B2=…=45°,逆时针旋转45°,依次得到∠AOB=∠BO B1∴B(0,2),B2(-1,1),B3(-2,0),B4(-1,-1),…,发现是8次一循1环,所以2020÷8=252 (4)∴点B的坐标为(-1,1).2020故答案为(-1,-1).【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角。

第六单元 平移、旋转和轴对称(单元测试)-苏教版数学三年级上册(含解析)

第六单元 平移、旋转和轴对称(单元测试)-苏教版数学三年级上册(含解析)

苏教版数学三年级上册单元测试卷第六单元平移、旋转和轴对称学校:___________姓名:___________班级:___________考号:___________一、选择题1.图b是由图a经过()变换得到的。

A.平移B.旋转C.轴对称2.下面属于旋转现象的是()。

A.用卷笔刀削铅笔B.从滑梯顶部滑下C.把晾晒的衣物从绳子的左边推到右边D.不小心将书掉在地上3.如图的图像绕虚线旋转一周,可以得到的几何体是()。

A.B.C.D.4.图形在平移或旋转后,()变了。

A.形状B.大小C.位置D.方向5.下面的图形中,()不是轴对称图形。

A.B.C.D.6.下列图案是几种汽车的标志,其中轴对称图形有()个。

A.2个B.3个C.4个D.5个7.把三角形在方格纸上先向下平移2格,再向右平移6格,再向下平移2格的位置()。

A.相同B.不相同C.不一定相同D.无法确定8.下面每组中的两个图形经过平移后,可以互相重合的是()。

A.B.C.D.9.下列属于旋转现象的是()。

A.汽车方向盘的运动B.拉开抽屉C.电梯的运动D.升国旗10.下面的第一个图形是通过()变成第二个图形的。

A.旋转B.平移C.对称11.是从下面哪张对折后的纸上剪下来的?正确的是()。

A.B.C.12.下面的字母中()不是轴对称图形。

A.W B.X C.Y D.Z13.下列物体的运动方式中,()与其他三种运动方式不同。

A.抽屉运动B.螺旋桨运动C.钟摆摆动D.风扇叶片转动14.将旋转一周后得到的立体图形是()。

A.B.C.D.二、填空题15.平移不改变图形的______和______,只改变图形的______16.小船先向____移了____格,又向____平移了____格。

17.图形经过平移后,( )不变,( )发生了改变。

18.风车的运动是( )现象,打开车窗是( )现象。

19.下列图形中,哪些是对称的,在括号里打“√”。

20.如图的哪个图案是通过平移左面的图案得到的?请画“√”。

图形的平移,对称与旋转的经典测试题及解析

图形的平移,对称与旋转的经典测试题及解析
3.在平面直角坐标系中,一个图案上各个点的横坐标和纵坐标分别加正数 ,那么所得的图案与原来图案相比
A.形状不变,大小扩大到原来的 倍
B.图案向右平移了 个单位
C.图案向上平移了 个单位
D.图案向右平移了 个单位,并且向上平移了 个单位
【答案】D
【解析】
【分析】
直接利用平移中点的变化规律求解即可.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.
图形的平移,对称与旋转的经典测试题及解析
一、选择题
1.如图所示的网格中各有不同的图案,不能通过平移得到的是( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据平移的定义:在平面内,把一个图形整体沿某一的方向移动,这种图形的平行移动,叫做平移变换,结合各选项所给的图形即可作出判断.
【详解】
A、可以通过平移得到,不符合题意;
∴∠C=∠E,△ABD是等边三角形,∠CAD=60°,
∴∠D=∠CAD=60°、AD=BD,
∴AC∥BD,
∴∠CBD=∠C,
∴∠CBD=∠E,
则A、B、D均正确,
故选C.
【点睛】
本题主要考查旋转的性质,解题的关键是熟练掌握旋转的性质、等边三角形的判定与性质及平行线的判定与性质.
9.如图, 是由 经过平移后得到的,则平移的距离不是( )
B、可以通过平移得到,不符合题意;
C、不可以通过平移得到,符合题意;
D、可以通过平移得到,不符合题意.
故选C.
【点睛】
本题考查平移的性质,属于基础题,要掌握图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.
2.如图, 是等边三角形 内一点,将线段 绕点 顺时针旋转 得到线段 ,连接 .若 , , ,则四边形 的面积为()

初中数学华师大版七年级下学期第10章 轴对称、平移与旋转测试卷(含解析)

初中数学华师大版七年级下学期第10章 轴对称、平移与旋转测试卷(含解析)

第10章轴对称、平移与旋转一、单选题1.观察下面图案,在A、B、C、D四幅图案中,能通过图案(1)平移得到的是()A. B. C. D.2.如图将一矩形纸片对折后再对折,然后沿图中的虚线剪下,得到①和②两部分,将①展开后得到的平面图形一定是()A. 平行四边形B. 矩形C. 菱形D. 正方形3.如图,两个直角三角形重叠在一起,将沿AB方向平移得到,,,下列结论:① ;② ;③ :④ ;⑤阴影部分的面积为.其中正确的是()A. ①②③④B. ②③④⑤C. ①②③⑤D. ①②④⑤4.如图,在4×4的正方形网格中,△MNP绕某点旋转90°,得到△M1N1P1,则其旋转中心可以是()5.下列银行标志是中心对称图形的是()A. B. C. D.6.如图,在边长为1的小正力形组成的网格中,点A,B,C部在格点上,若将线段AB沿BC方向平移,使点B与点C重合,则线段AB扫过的面积为()A. 11B. 10C. 9D. 87.如图,在△ABC中,BC=5,∠A=80°,∠B=70°,把△ABC沿RS的方向平移到△DEF的位置,若CF=4,则下列结论中错误的是( )A. BE=4B. ∠F=30°C. AB∥DED. DF=58.如图,沿射线方向平移到(点E在线段上),如果,,那么平移距离为()A. 3cmB. 5cmC. 8cmD. 13cm9.如图,是一个纸折的小风车模型,将它绕着旋转中心旋转下列哪个度数后不能与原图形重合.()A. B. C. D.10.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列四个结论:①AC=AD;②AB⊥EB;③BC=EC;④∠A=∠EBC;其中一定正确的是()A. ①②B. ②③C. ③④D. ②③④11.如图,将(其中,),绕点按顺时针方向旋转到的位置,使得点,,在同一直线上,则旋转角的度数为( )A. B. C. D.12.如图,将△ABC绕点A顺时针旋转60°得到△AED,若线段AB=4,则BE的长为( )A. 3B. 4C. 5D. 613.图中的两个梯形成中心对称,点P的对称点是()A. 点AB. 点BC. 点CD. 点D14.如图,已知图形是中心对称图形,则对称中心是()A. 点CB. 点DC. 线段BC的中点D. 线段FC的中点15.下列说法中,正确的有()①正方形都是全等形;②等边三角形都是全等形;③形状相同的图形是全等形;④大小相同的图形是全等形;⑤能够完全重合的图形是全等形.A. 1个B. 2个C. 3个D. 4个二、填空题16.如图,将矩形ABCD沿DE折叠,使A点落在BC上的F处,若∠EFB=60°,则∠CFD=________.17.如图,将周长为12的△ABC沿BC方向平移2个单位得到△DEF,则四边形ABFD的周长为________18.如图,在正方形ABCD中,,点E在CD边上,且,将绕点A顺时针旋转90°,得到,连接,则线段的长为________.19.如图,图中有6个条形方格图,图上由实线围成的图形是全等形的有哪几对.20.如图,△DEF是由△ABC沿BC方向向右平移2cm后得到,若△ABC的周长为10cm,则四边形ABFD的周长等于________ cm。

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)

轴对称、平移与旋转测试题(含答案)一、选择题(本大题共7小题,每小题5分,共35分;在每小题给出的四个选项中,只有一项符合题意)1.国产越野车“BJ40”中,哪个数字或字母既是中心对称图形又是轴对称图形( ) A.B B.J C.4 D.0图12.如图1,△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B 的度数为( )A.48°B.54°C.74°D.78°3.将一张长方形的纸片对折,然后用笔尖在上面扎出字母“B”,再把它展开铺平,你可以看到的图形是( )图24.如图3,在△ABC中,∠C=67°,将△ABC绕点A顺时针旋转后,得到△AB′C′,且点C′在BC上,则∠B′C′B的度数为( )A.56° B.50° C.46° D.40°图3 图45.如图4所示,将边长为2 cm的等边三角形ABC沿BC的方向向右平移1 cm得到△DEF,则四边形ABFD的周长为( )A.6 cm B.8 cm C.10 cm D.12 cm6.4张扑克牌如图5①所示放在桌面上,小敏把其中一张牌旋转180°得到图②,那么她所旋转的牌是从左数( )图5A.第一张 B.第二张 C.第三张 D.第四张7.下列说法正确的有( )图6(1)全等图形的面积相等,反过来,面积相等的两个图形是全等图形;(2)如图6所示的两个图形,放在一起能完全重合,但是图甲和图乙不全等;(3)如图7所示,△ABC与△DEF 是全等的,点A与点D是对应点,点B与点E是对应点,所以可以记为:△ABC≌△DEF;(4)如果两个图形的形状一样,大小一样,那么它们是全等图形.图7A.1个 B.2个 C.3个 D.4个二、填空题(本大题共7小题,每小题5分,共35分)8.如图8,下列各组图形中,由左边变成右边的图形,分别进行了平移、旋转、轴对称、中心对称等变换,其中进行平移变换的是________,进行旋转变换的是________,进行轴对称变换的是________,进行中心对称变换的是________.(填序号)图89.如图9所示,在正方形网格中,格点三角形DEF是由格点三角形ABC平移得到的,则点B向右移动了________格.图910.如图10所示,大长方形的长为8 cm,宽为4 cm,则阴影部分的面积是________.图1011.如图11,将长方形纸片ABCD的一角沿EF折叠,使点C落在长方形ABCD的内部点C′处.若∠EFC=35°,则∠DEC′=________°.图11 图1212.如图12是4×4的正方形网格,其中已有3个小方格涂成了黑色.现要在其余13个白色小方格中选出一个也涂成黑色,使整个黑色的小方格图案是轴对称图形,这样的白色小方格有________个.13.数轴上的点A表示-2,将数轴上到点A的距离为3的点B向右平移5个单位长度得到点C,再把点C绕点A旋转180°得到点D,则AD的长为________.图1314.如图13,在直角三角形ABC中,∠ACB=90°,∠A=α,将△ABC绕点C按顺时针方向旋转后得到△EDC,此时点D在AB边上,则旋转角的度数为________.三、解答题(本大题共3小题,共30分)15.(8分)在如图14所示的网格中有四边形ABCD.(1)画出四边形A1B1C1D1,使四边形A1B1C1D1与四边形ABCD关于直线MN成轴对称;(2)画出四边形A2B2C2D2,使四边形A2B2C2D2与四边形ABCD关于点O成中心对称;(3)四边形A1B1C1D1与四边形A2B2C2D2是否对称?若对称,请在图中画出对称轴或对称中心.图1416.(10分)如图15所示,在△ABC中,∠C=90°,将△ABC沿直线DE对折,点B刚好与点A重合,连结AD,∠DAE与∠DAC的度数之比为2∶1,求∠B的度数.图1517.(12分)取一副三角尺按图16①所示的方式放在一起,∠ACD=30°,∠BAC=45°,固定三角尺ADC,将三角尺ABC以点A为中心按顺时针方向旋转一个大小为α的角(0°<α≤45°)得到△ABC′,如图②所示.(1)当α为多少度时,能使得AB∥DC?(2)连结BD,当0°<α≤45°时,探究∠DBC′+∠CAC′+∠BDC的值的大小变化情况,并说明理由.图16教师详解详析1.[解析] D A.B不是中心对称图形,是轴对称图形,故本选项错误;B.J不是中心对称图形,也不是轴对称图形,故本选项错误;C.4不是中心对称图形,也不是轴对称图形,故本选项错误;D.0既是中心对称图形又是轴对称图形,故本选项正确.2.[答案] B3.[答案] C4.[解析] C∵点C′在边BC上,∴∠BC′C为平角.由于旋转不改变图形的大小,∴∠AC′B′=∠C=67°,AC′=AC,∴∠AC′C=∠C=67°,∴∠B′C′B=180°-∠AC′C-∠AC′B′=180°-67°-67°=46°.5.[解析] B由题意知△ABC≌△DEF,AD=BE=1 cm,DF=AC=2 cm,四边形ABFD的周长=AB+BF+DF+AD=8 cm.6.[答案] A7.[答案] B8.[答案] ③①④②④9.[答案] 5[解析] 注意点B的对应点是点E,从点B到点E向右平移了5格.10.[答案] 8 cm2[解析] 通过平移、旋转,可知阴影部分的面积是大长方形总面积的错误!.11.[答案] 7012.[答案] 413.[答案] 8或2[解析] 数轴上到点A的距离为3的点表示的数有两个:1和-5,向右平移5个单位长度得到的数分别是6和0,所以AC绕点A旋转180°得AD=8或2.14.[答案] 2α15.解:(1)四边形A1B1C1D1如图所示.(2)四边形A2B2C2D2如图所示.(3)四边形A1B1C1D1与四边形A2B2C2D2对称,对称轴为图中的直线EF.16.解:由翻折的性质知,DE平分∠ADB,所以∠ADE=∠BDE,∠DAB=∠B.又因为∠DAE与∠DAC的度数之比为2∶1,所以设∠DAC=x°,则∠B=∠DAB=2x°.因为∠C=90°,根据三角形的内角和为180°,得x°+2x°+2x°=90°,解得x=18,所以∠B=36°.17.解:(1)由题意得∠CAC′=α,要使AB∥DC,须∠BAC=∠ACD=30°,∴α=∠CAC′=∠BAC′-∠BAC=45°-30°=15°,即α=15°时,能使得AB∥DC.(2)如图,连结BD,∠DBC′+∠CAC′+∠BDC的值的大小没有变化,总是105°.理由:当0°<α≤45°时,总有△EFC′存在.∵∠EFC′=∠BDC+∠DBC′,∠CAC′=α,∠FEC′=∠CAC′+∠C,∠EFC′+∠FEC′+∠C′=180°,∴∠BDC+∠DBC′+∠C+α+∠C′=180°.又∵∠C′=45°,∠C=30°,∴∠DBC′+∠CAC′+∠BDC=105°.。

二年级上册数学单元测试-4.平移和旋转 北京版(含答案)

二年级上册数学单元测试-4.平移和旋转 北京版(含答案)

二年级上册数学单元测试-4.平移和旋转一、单选题1.下面()图形是由旋转得到的。

A. B. C. D.2.物体做平移运动是,本身的方向()A. 改变B. 不改变C. 看情况3.左图是经过()得到的。

A. 平移B. 旋转C. 既平移又旋转4.从9时到12时,时针绕中心点顺时针方向旋转了()度。

A. 90B. 60C. 120D. 1805.如图所示,四幅汽车标志设计中,能通过平移得到的是()。

A. B.C. D.6.下面说法正确的是()A. 旋转改变图形的形状和大小B. 平移改变图形的形状和大小C. 平移和旋转都不改变图形的形状和大小7.钟面指针做的是( )运动的。

A. 平移B. 旋转C. 既是平移又是旋转8.下面的图形中,( )通过平移能与原图相互重合。

A. B. C.9.三角形ABC通过平移到新位置的是()。

A. B. C.二、判断题10.火车拐弯是旋转现象。

11.当禁止通行时,公路收费站的横杆一定是按逆时针方向旋转了90度。

12.旋转中,对应点划过的痕迹是一条圆弧。

13.教室门的打开和关上,门的运动是既平移又旋转。

14.判断:下面是四边形ABCD绕点C顺时针旋转90°后的图形A′B′CD′.三、填空题15.a图形平移后得到的是________,旋转后得到的是________ .A、B、C、D、16.风扇转动是________现象,推拉抽屉(tì)是________现象。

17.汽车在笔直的公路上行驶,车身的运动是________现象。

18.如下图所示,图形A绕点O顺时针________得到图形B。

19.图形①往________方向平移________格就得到图形②。

20.下面哪些图形是由图形A旋转得到的?先动手试一试,再将序号写在横线上。

(1)由图形A 旋转得到的是________(2)由图形A 旋转得到的是________四、解答题21.下面哪些物体时运动是平移?是平移的画“√”22.观察图形并说说风车图形是怎样形成的?五、综合题23.下列图形中图①是怎么变换到图②的?(1)图①绕点O逆时针旋转________ 。

图形的平移与旋转练习题及答案全套

图形的平移与旋转练习题及答案全套

情景再现:你对以上图片熟悉吗?请你答复以下几个问题:〔1〕汽车中的乘客在乘车过程中,身高、体重改变了吗?乘客所处的地理位置改变了吗?〔2〕传送带上的物品,比方带有图标的长方体纸箱,向前移动了20米,它上面的图标移动了多少米?〔3〕以上都是我们常见的平移问题,认真想一想,你还能举一些平移的例子吗?1.如图1,面积为5平方厘米的梯形A′B′C′D′是梯形ABCD经过平移得到的且∠ABC=90°.那么梯形ABCD的面积为________,∠A′B′C =________.图12.在下面的六幅图中,〔2〕〔3〕〔4〕〔5〕〔6〕中的图案_________可以通过平移图案〔1〕得到的.图2“小鱼〞向左平移5格.图34.请欣赏下面的图形4,它是由假设干个体积相等的正方体拼成的.你能用平移分析这个图形是如何形成的吗?§图形的平移与旋转一、填空:1、如下左图,△ABC经过平移到△A′B′C′的位置,那么平移的方向是______,平移的距离是______,约厘米______.2、如下中图,线段AB是线段CD经过平移得到的,那么线段AC与BC的关系为〔〕3、如下右图,△ABC经过平移得到△DEF,请写出图中相等的线段______,互相平行的线段______,相等的角______.〔在两个三角形的内角中找〕4、如下左图,四边形ABCD平移后得到四边形EFGH,那么:①画出平移方向,平移距离是_______;〔准确到0.1cm〕②HE=_________,∠A=_______,∠A=_______.③DH=_________=_______A=_______.5、如下右图,△ABC平移后得到了△DEF,〔1〕假设∠A=28º,∠E=72º,BC=2,那么∠1=____º,∠F=____º,EF=____º;〔2〕在图中A、B、C、D、E、F六点中,选取点_______和点_______,使连结两点的线段与AE平行.6、如图,请画出△ABC向左平移4格后的△A1B1C1,然后再画出△A1B1C1向上平移3格后的△A2B2C2,假设把△A2B2C2看成是△ABC经过一次平移而得到的,那么平移的方向是______,距离是____的长度.二、选择题:7、如下左图,△ABC经过平移到△DEF的位置,那么以下说法:①AB∥DE,AD=CF=BE;②∠ACB=∠DEF;③平移的方向是点C到点E的方向;④平移距离为线段BE的长.其中说法正确的有〔〕8、如下右图,在等边△ABC中,D、E、F分别是边BC、AC、AB的中点,那么△AFE经过平移可以得到〔〕A.△DEFB.△FBDC.△EDCD.△FBD和△EDC三、探究升级:1、如图,△ABC上的点A平移到点A1,请画出平移后的图形△A1B1C1.3、△ABC经过平移后得到△DEF,这时,我们可以说△ABC与△DEF是两个全等三角形,请你说出全等三角形的一些特征,并与同伴交流.4、如以下图中,有一块长32米,宽24米的草坪,其中有两条宽2米的直道把草坪分为四块,那么草坪的面积是______.5、利用如图的图形,通过平移设计图案,并用一句诙谐、幽默的词语概括你所画的图形.§图形的平移与旋转一、填空、选择题:1、图形的旋转是由____和____决定的,在旋转过程中位置保持不动的点叫做____,任意一对对应点与旋转中心连线所成的角叫做_____.2、如以下图,如果线段MO绕点O旋转90°得到线段NO,在这个旋转过程中,旋转中心是_______,旋转角是_______,它时______°.3、如图,在以下四张图中不能看成由一个平面图形旋转而产生的是〔〕4、请你先观察图,然后确定第四张图为( )4、如下左图,△ABC绕着点O旋转后得到△DEF,那么点A的对应点是_______,线段AB 的对应线段是_____,_____的对应角是∠F. 6、如下中图,△ABC与△BDE都是等腰三角形,假设△ABC经旋转后能与△BDE重合,那么旋转中心是________,旋转了______°.7、如下右图,C是AB上一点,△ACD和△BCE 都是等边三角形,如果△ACE经过旋转后能与△DCB重合,那么旋转中心是_______,旋转了______°,点A的对应点是_______.二、解答题:8、如图11.4.7,△ABC绕顶点C旋转某一个角度后得到△A′B′C,问:〔1〕旋转中心是哪一点?〔2〕旋转角是什么?〔3〕如果点M是BC的中点,那么经过上述旋转后,点M转到了什么位置?9、观察以下图形,它可以看作是什么“根本图形〞通过怎样的旋转而得到的?三、探究升级10、如图,△ACE、△ABF都是等腰三角形,∠BAF=∠CAE=90°,那么△AFC是哪一点为旋转中心,旋转多少度之后能与另一个三角形重合?点F的对应点是什么?§图形的平移与旋转一、选择题1.平面图形的旋转一般情况下改变图形的〔 〕° ° ° °ABCD 旋转到平行四边形A ′B ′C ′D ′的位置,以下结论错误的选项是〔 〕A.AB =A ′B ′B.AB ∥A ′B ′C.∠A =∠A ′D.△ABC ≌△A ′B ′C ′ 二、填空题4.钟表上的指针随时间的变化而移动,这可以看作是数学上的_______.ABCD 绕点O 沿逆时针方向旋转到四边形D C B A '''',那么四边形D C B A ''''是________. 6.△ABC 绕一点旋转到△A ′B ′C ′,那么△ABC 和△A ′B ′C ′的关系是_______.7.钟表的时针经过20分钟,旋转了_______度. 8.图形的旋转只改变图形的_______,而不改变图形的_______. 三、解答题9.以下图中的两个正方形的边长相等,请你指出可以通过绕点O 旋转而相互得到的图形并说明旋转的角度.10.在图中,将大写字母H 绕它右上侧的顶点按逆时针方向旋转90°,请作出旋转后的图案.11.如图,菱形A ′B ′C ′D ′是菱形ABCD 绕点O 顺时针旋转90°后得到的,你能作出旋转前的图形吗?△ABC ,绕它的锐角顶点A 分别逆时针旋转90°、180°和顺时针旋转90°,〔1〕试作出Rt △ABC 旋转后的三角形; 〔2〕将所得的所有三角形看成一个图形,你将得到怎样的图形?13.如图,将右面的扇形绕点O 按顺时针方向旋转,分别作出旋转以下角度后的图形: 〔1〕90°;〔2〕180°;〔3〕270°.你能发现将扇形旋转多少度后能与原图形重合吗?14.如图,分析图中的旋转现象,并仿照此图案设计一个图案.§图形的平移与旋转看一看:以下三幅图案分别是由什么“根本图形〞经过平移或旋转而得到的?1.2.3.试一试:怎样将以下图中的甲图变成乙图?做一做:1、如图①,在正方形ABCD 中,E 是AD 的中点,F 是BA 延长线上的一点,AF =21AB , 〔1〕△ABE ≌△ADF .吗?说明理由。

图形的平移与旋转测试题及答案

图形的平移与旋转测试题及答案

图形的平移与旋转测试时间:分钟,满分:分一、选择题(每小题3分,共30分)1. 以下现象:①荡秋千;②呼啦圈;③跳绳;④转陀螺。

其中是旋转的有()。

(A)①②(B)②③(C)③④(D)①④2。

下列图形中只能用其中一部分平移可以得到的是()。

(A)(B)(C)(D)3。

下列标志既是轴对称图形又是中心对称图形的是()。

(A)(B) (C)(D)4。

如图1,四边形EFGH是由四边形ABCD平移得到的,已知,AD=5,∠B=70°,则下列说法中正确的是()。

(A)FG=5, ∠G=70°(B)EH=5,∠F=70°(C)EF=5,∠F=70°(D) EF=5,∠E=70°5。

如图3,△OAB绕点O逆时针旋转90°到△OCD的位置,已知∠AOB=45°,则∠AOD的度数为().(A)55°(B)45°(C)40°(D)35°6。

同学们曾玩过万花筒,它是由三块等宽等长的玻璃片围成的.如图是看到的万花筒的一个图案,如图3中所有小三角形均是全等的等边三角形,其中的菱形AEFG可看成是把菱形ABCD以A为中心()。

(A)顺时针旋转60°得到(B)逆时针旋转60°得到(C)顺时针旋转120°得到(D)逆时针旋转120°得到7. 如图,甲图案变成乙图案,既能用平移,又能用旋转的是().8。

下列图形中,绕某个点旋转180°能与自身重合的图形有 ( )。

(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆。

(A )2个 (B )3个 (C )4个 (D )5个9. 如图4,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF,则下列结论中,错误的是()。

(A )BE=EC(B)BC=EF(C )AC=DF(D )△ABC ≌△DEF10。

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(含答案解析)(1)

(典型题)初中数学八年级数学下册第三单元《图形的平移与旋转》测试(含答案解析)(1)

一、选择题1.下列命题中真命题的是( )A .42=±B .点A(2,1)与B(-2,-1)关于原点对称C .64的立方根是±4D .若a<b ,则ac<bc 2.如图,在ABC 中,AB AC =,40BAC ∠=︒,将ABC 绕点A 逆时针方向旋转得AEF ,其中,E ,F 是点B ,C 旋转后的对应点,BE ,CF 相交于点D .当旋转到//AF BE 时,CAE ∠的大小是( )A .90°B .75°C .60°D .45°3.下列图形中,是中心对称图形的是( )A .B .C .D . 4.在平面直角坐标系中,点A 为()3,2,连接OA 并把线段OA 绕原点O 逆时针旋转90°,所得到的对应点A '的坐标为( )A .()2,3B .()2,3-C .()3,2-D .()2,3- 5.如图,△ABC 中,∠BAC=90°,AB=8,将△ABC 沿直线BC 向右平移,得到△EDF ,连接AD ,若四边形ACFD 为菱形,EC=4,则平移的距离为( )A .4B .5C .6D .86.如图,指针OA ,OB 别从与x 轴和y 轴重合的位置出发,绕着原点O 顺时针转动,已知OA每秒转动45°,OB的转动速度是OA的13,则第2020秒时,OA与OB之间夹角的度数为()A.130°B.145°C.150°D.165°7.图1是正方体的平面展开图,六个面的点数分别为1、2、3、4、5、6,将点数朝外折叠成一枚正方体骰子,并放置于水平桌面上,如图2所示,若骰子初始位置为图2所示的状态,将骰子向右翻滚90 ,则完成1次翻转,此时骰子朝下一面的点数是2,那么按上述规则连续完成2次翻折后,骰子朝下一面的点数是3;则连续完成2020次翻折后,骰子朝下一面的点数是()A.2 B.3 C.4 D.58.中国的传统建筑许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中只是中心对称图形但不是轴对称图形的是()A.B.C.D.9.在直角坐标系中,ABC 的顶点()1,5A -,()3,2B ,()0,1C ,将ABC 平移得到A B C ''',点A 、B 、C 分别对应A '、B '、C ',若点()1,4A ',则点'C 的坐标( ) A .()2,0- B .()2,2- C .()2,0 D .()5,110.如图,点O 为平面直角坐标系的原点,点A 在x 轴上,OAB 是边长为4的等边三角形,以O 为旋转中心,将OAB 按顺时针方向旋转60°,得到OA B ''△,那么点A '的坐标为( )A .(2,23)B .(2,4)-C .(2,22)-D .(2,23)- 11.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D . 12.下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是( )A .B .C .D .二、填空题13.如图,把ABC 绕点A 顺时针旋转50°得到ADE ,点B 的对应点是D ,则直线BC 与DE 所夹的锐角是______.14.如图①,O 为直线AB 上一点,作射线OC ,使60BOC ∠=︒,将一个直角三角尺如图摆放,直角顶点在点O 处,一条直角边OP 在射线OA 上.将图①中的三角尺绕点O 以每秒10°的速度按逆时针方向旋转(如图②所示),在旋转一周的过程中,第t 秒时,OQ 所在直线恰好平分AOC ∠,则t 的值为_______.15.如图,ABC 是等边三角形.若将AC 绕点A 逆时针旋转角α后得到AC ',连接BC '和CC ',则BC C '∠的度数为________.16.如图①,O 为直线AB 上一点,作射线OC ,使120AOC ∠=︒,将一个直角三角尺如图摆放,直角顶点在点O 处,一条直角边OP 在射线OA 上,将图①中的三角尺绕点O 以每秒6︒的速度按顺时针方向旋转(如图②所示),在旋转一周的过程中第t 秒时OP 所在直线恰好平分BOC ∠,则t 的值为________.17.如图,在△ABC 中,AB =4,BC =6,∠B =60°,将△ABC 沿射线BC 的方向平移2个单位后,得到A B C ''',连接A C ',则A B C ''的周长为________.18.如图,ODC ∆是由OAB ∆绕点O 顺时针旋转40︒后得到的图形,若点D 恰好落在AB 上,且105AOC ∠=︒,则C ∠的度数是_______.19.如图,将△ABC 沿BC 方向平移到△DEF ,若A 、D 间的距离为1,CE =2,则BF =_____.20.在 ABC 内的任意一点 ()P a b , 经过平移后的对应点为 ()1P cd ,,已知 ()32A , 在经过此次平移后对应点 1A 的坐标为 ()51-,,则 c d a b +-- 的值为________________.三、解答题21.如图,ABC 中,90C ∠=︒.ABC 绕点B 逆时针旋转,旋转角为α,点C '为点C 的对应点.(1)请用尺规作图法画出旋转后的A BC ''△;(2)若90α=︒,3BC =,4AC =.求A A '的长.22.如图,ABC 是直角三角形,90C ∠=︒,将ABC 绕点B 逆时针旋转60︒至DEB ,点E 落在AB 上,DE 延长线交AC 所在直线于点F .(1)求AFE ∠的度数;(2)求证:AF EF DE +=.23.如图,在平面直角坐标系中,ABC ∆的三个顶点的坐标分别是(1,4)A -,(3,2)B -,(0,2)C .(1)将ABC ∆以点C 为旋转中心旋转180°,画出旋转后对应的11A B C ∆;(2)平移ABC ∆,若A 的对应点2A 的坐标为()3,2--,画出平移后的222A B C ∆; (3)若将222A B C ∆绕某一点旋转可以得到11A B C ∆,请直接写出旋转中心的坐标. 24.如图,在Rt ABC △中,90ACB ∠=︒,点D 、E 分别在AB ,AC 上,CE BC =,连接CD ,将线段CD 绕点C 按顺时针方向旋转90︒后得CF ,连接EF .(1)补充完成图形;(2)若//EF CD ,求证:90BDC ∠=︒.25.如图,已知直线y =kx +2与直线y =3x 交于点A (1,m ),与y 轴交于点B . (1)求k 和m 的值;(2)求△AOB 的周长;(3)设直线y =n 与直线y =kx +2,y =3x 及y 轴有三个不同的交点,且其中两点关于第三点对称,求出n 的值.26.如图,ABC 在平面直角坐标系中,顶点的坐标分别为()1,4A -,()4,5B -,(5,2)C -.(1)画出与ABC 关于原点中心对称的111A B C △;(2)将ABC 绕点1O 顺时针旋转90︒得到111A B C △,2AA 是点A 所经过的路径,则旋转中心1O 的坐标为________________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据算术平方根、点关于原点对称、立方根以及不等式的性质进行判断即可.【详解】解:A 42=,故原选项是假命题,不符合题意;B . 点A (2,1)与B (-2,-1)关于原点对称,是真命题,故此选项是真命题,符合题意;C .64的立方根是4,故原选项是假命题,不符合题意;D .当c ≤0时ac ≥bc ,故原选项是假命题,不符合题意;故选B【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.C解析:C【分析】由旋转的性质可得∠EAF =∠BAC =40°,AB =AE ,由平行线的性质可求∠FAE =∠AEB =40°,由等腰三角形的性质和三角形内角和定理可求∠BAE 的度数,进而即可求解.【详解】解:∵将△ABC 绕点A 逆时针方向旋转得△AEF ,∴∠EAF =∠BAC =40°,AB =AE ,∵AF ∥BE ,∵AB =AE ,∴∠ABE =∠AEB =40°,∴∠BAE =180°−40°−40°=100°,∴∠CAE =100°-40°=60°,故选:C .【点睛】本题考查了旋转的性质,等腰三角形的性质,平行线的性质,求出∠AEB 的度数是本题的关键.3.B解析:B【分析】根据中心对称图形的概念对各选项分析判断即可得解.【详解】解:A 、不是中心对称图形,故本选项不符合题意;B 、是中心对称图形,故本选项符合题意;C 、不是中心对称图形,故本选项不符合题意;D 、不是中心对称图形,故本选项不符合题意.故选:B .【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.D解析:D【分析】如图:过点A 作AB x ⊥轴于点B ,过点'A 作D y A '⊥轴于点D ,可得'ABO ODA ∆∆≌,所以,3OD =,'2DA =,即可求解点'A 的坐标【详解】如图,过点A 作AB x ⊥轴于点B ,过点'A 作'A D x ⊥轴于点D ,∴∠ABO =∠A 'DO =90°,由题意得AO=A 'O ,∠AO A '=90°,∵90AOB AOD ∠+∠=︒,∴AOB A OD '∠=∠,∴'AOB A OD ∆∆≌,∴OB=OD =3,AB=A 'D =2,∵点A '在第二象限,∴点A '坐标为(2,3)-.故选:D .【点睛】本题考查了坐标与图形变换—旋转,在平面直角坐标系中,求点的坐标,采用作x 轴或y 轴的垂线段,实现化斜为直,是一种常见方法.5.C解析:C【分析】根据平移的性质可得8,,AB DE AC DF BC EF ====,设AC DF CF AD x ====,求得BC=4x +,再由勾股定理理出方程求解即可.【详解】解:由平移的性质可得:8,,AB DE AC DF BC EF ====又∵四边形ACFD 是菱形∴设AC DF CF AD x ====又∵4EC =∴4BC EF CF CE x ==+=+又∵∠90BAC ︒=∴222AB AC BC +=∴2228(4)x x +=+解得,6x =即6AD DF CF AC ====故平移的距离为:6AD =故选:C .【点睛】本题主要考查了平移的性质,熟练掌握平移的基本性质是解答此题的关键.6.C解析:C【分析】先求出线段OA 、OB 第2020秒时旋转的度数,再除以360°,即可确定最终状态时OA 、OB 的位置,再求其夹角度数即可.【详解】由题意可知OB的速度为每秒转动145153⨯︒=︒.则第2020秒时,线段OA旋转度数=2020×45°=90900°,线段OB旋转度数=2020×15°=30300°.90900°÷360°=252⋯⋯180°,30300°÷360°=84⋯⋯60°,此时OA、OB的位置如图所示,OA与OB之间的夹角度数=90°+60°=150°.故选:C.【点睛】本题考查线段的旋转,解题的关键是利用旋转周期确定最终状态时OA、OB所在位置.7.C解析:C【分析】先根据平面图形确定各对面的点数,根据翻转发现规律:每四次为一个循环,用2020除以4得到翻转完成2020次后的图形,即可得到答案.【详解】由平面图形可知:1与6是对面,2与5是对面,3与4是对面,这是一个正方体,完成1次翻转时骰子朝下一面的点数是2,完成5次翻转后朝下一面的点数还是2,故每四次为一个循环,∵20204505÷=,∴连续完成2020次翻折后,与图2的位置相同,骰子朝下一面的点数是4,故选:C.【点睛】此题考查图形类规律探究,正方体展开图,旋转的性质,正确理解旋转的规律并运用规律解决问题是解题的关键.8.A解析:A【分析】本题根据中心对称图形和轴对称图形的定义可直接得出结果.【详解】A 选项属于中心对称图形但不是轴对称图形,故正确;B 选项既属于中心对称图形也属于轴对称图形,故不正确;C 选项既属于中心对称图形也属于轴对称图形,故不正确;D 选项既属于中心对称图形也属于轴对称图形,故不正确.故选:A .【点睛】本题考查了中心对称图形和轴对称图形的定义,属于基础题,熟练掌握中心对称图形和轴对称图形的定义是解题的关键.9.C解析:C【分析】根据点A 的平移规律,求出点'C 的坐标即可.【详解】∵()15A -,向右平移2个单位,向下平移1个单位得到()'14A ,, ∴()01C ,向右平移2个单位,向下平移1个单位得到()'20C ,, 故选:C .【点睛】此题考查点的坐标的平移规律:横坐标左减右加,纵坐标上加下减,熟记规律是解题的关键.10.D解析:D【分析】根据旋转得到A '与点B 重合,过点B 作BC AO ⊥于点C ,利用等边三角形的性质求出OC 和BC 的长,得到坐标.【详解】解:如图,AOB 绕着点O 顺时针旋转60︒得到OA B ''△,此时A '与点B 重合, 过点B 作BC AO ⊥于点C ,∵△OAB 是边长为4的等边三角形,∴AB=BO ,BC AO ⊥,∴AC=OC=2,根据勾股定理,2216423=-=-=,BC BO OC∴()2,23A'-.故选:D.【点睛】本题考查图形的旋转和等边三角形的性质,解题的关键是掌握等边三角形的性质.11.B解析:B【分析】根据轴对称图形与中心对称图形的概念判断即可.【详解】A、不是中心对称图形,是轴对称图形,不符合题意;B、是中心对称图形,但不是轴对称图形,符合题意;C、既是中心对称图形,又是轴对称图形,不符合题意;D、不是中心对称图形,是轴对称图形,不符合题意;故选:B.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后和原图形重合.12.C解析:C【分析】根据中心对称图形的定义,结合选项所给图形进行判断即可.【详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选C.【点睛】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.二、填空题13.50°【分析】根据旋转的性质即可得到结论【详解】解:∵将△ABC 绕点A 顺时针旋转50°得到△ADE 点B 的对应点是点D ∴直线BC 与直线DE 所夹的锐角=旋转角=50°故答案为:50°【点睛】本题考查了旋解析:50°【分析】根据旋转的性质即可得到结论.【详解】解:∵将△ABC 绕点A 顺时针旋转50°得到△ADE ,点B 的对应点是点D ,∴直线BC 与直线DE 所夹的锐角=旋转角=50°,故答案为:50°.【点睛】本题考查了旋转的性质,熟记旋转变换时,对应线段的夹角与旋转角的关系是解题的关键.14.3或21【分析】过点O 作直线DE 平分∠AOC 根据及DE 平分∠AOC 求得∠AOE=∠BOD=当OQ 与OD 重合时所在直线恰好平分;当OQ 与OE 重合时所在直线恰好平分式求值即可【详解】过点O 作直线DE 平分解析:3或21【分析】过点O 作直线DE 平分∠AOC ,根据60BOC ∠=︒及DE 平分∠AOC ,求得∠AOE=∠BOD=60︒,当OQ 与OD 重合时,OQ 所在直线恰好平分AOC ∠,;当OQ 与OE 重合时,OQ 所在直线恰好平分AOC ∠,式求值即可.【详解】过点O 作直线DE 平分∠AOC ,如图,∵60BOC ∠=︒,∴120AOC ∠=︒∵DE 平分∠AOC ,∴∠AOE=∠BOD=60︒,当OQ 与OD 重合时,OQ 所在直线恰好平分AOC ∠,∴t=1809060310--=(秒); 当OQ 与OE 重合时,OQ 所在直线恰好平分AOC ∠, ∴36090602110t --==, 故答案为:3或21..【点睛】此题考查旋转角度计算,平分线的性质,有理数的混合运算,正确理解图形中旋转所得角度及OQ 所在的位置是解题的关键.15.30°【分析】由旋转的性质得出AC=AC ∠CAC=α由三角形的内角和定理求出∠ACC 的度数由等边三角形的性质得出AB=AC 由等腰三角形的性质求出∠ACB 的度数则可得出答案【详解】解:∵将AC 绕点A 逆解析:30°.【分析】由旋转的性质得出AC=AC',∠CAC'=α,由三角形的内角和定理求出∠AC'C 的度数,由等边三角形的性质得出AB=AC',由等腰三角形的性质求出∠AC'B 的度数,则可得出答案.【详解】解:∵将AC 绕点A 逆时针旋转角α后得到AC',∴AC=AC',∠CAC'=α,∴∠ACC'=∠AC'C=1809022︒-αα︒-, ∵△ABC 是等边三角形,∴AB=AC ,∠BAC=60°,∴AB=AC', ∴∠AC'B=180606022αα-=︒-︒-︒, ∴∠BC'C=∠AC'C-∠AC'B=(90°−2α)−(60°−2α)=30°. 故答案为:30°.【点睛】 本题考查了等边三角形的性质,旋转的性质,等腰三角形的性质,三角形内角和定理,熟练掌握旋转的性质是解题的关键.16.25或55【分析】根据平角的定义得到∠BOC =60°根据角平分线定义列出方程可求解【详解】解:∵∠AOC =120°∴∠BOC =60°∵OP 所在直线恰好平分∠BOC ∴∠BOP =∠BOC =30°或∠BO解析:25或55【分析】根据平角的定义得到∠BOC =60°,根据角平分线定义列出方程可求解.【详解】解:∵∠AOC =120°,∴∠BOC =60°,∵OP 所在直线恰好平分∠BOC ,∴∠BOP =12∠BOC =30°,或∠BOP =180°-30°=150°, ∴6t =180-30或6t =180+150,∴t =25或55,故答案为:25或55.【点睛】 本题考查了一元一次方程的应用,考查了角平分线定义,平角的定义,列出正确的方程是本题的关键.17.12【分析】根据平移的性质得则可计算则可判断为等边三角形继而可求得的周长【详解】平移两个单位得到的又是等边三角形的周长为故答案为:12【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动会 解析:12【分析】根据平移的性质得2BB '=,4A B AB ''==,=60A B C B ∠''∠=︒,则可计算624B C BC BB '=-'=-=,则4A B B C ''='=,可判断A B C ''△为等边三角形,继而可求得A B C ''△的周长.【详解】 ABC 平移两个单位得到的A B C ''',2BB ∴'=,AB A B ='',4AB =,6BC =,4A B AB ∴''==,624B C BC BB '=-'=-=,4A B B C ∴''='=,又60B ∠=︒,60A B C ∴∠''=︒,A B C ∴''是等边三角形,A B C ∴''的周长为4312⨯=.故答案为:12.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.18.45°【分析】根据旋转的性质可得∠AOD=∠BOC=40°AO=DO 再求出∠BOD ∠ADO 然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算解即可求解【详解】解:∵是绕点O 顺时针旋转40°解析:45°【分析】根据旋转的性质可得∠AOD=∠BOC=40°,AO=DO ,再求出∠BOD ,∠ADO ,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式计算解B ∠,即可求解.【详解】解:∵ODC ∆是OAB ∆绕点O 顺时针旋转40°后得到的图形,∴∠AOD=∠BOC=40°,AO=DO ,∵∠AOC=105°,∴∠BOD=105°-40°×2=25°,∠ADO=∠A=12(180°-∠AOD )=12(180°-40°)=70°, 由三角形的外角性质得,∠B=∠ADO-∠BOD=70°-25°=45°∴∠C=45°.故答案为:45°.【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.19.4【分析】根据平移的性质由AD=1得到BE=1CF=1再根据BF=BE+EC+CF 计算即可得到答案;【详解】解:根据平移的性质由AD=1得:BE=1CF=1由∵BF=BE+EC+CF ∴BF=1+2+解析:4【分析】根据平移的性质,由AD=1得到BE=1,CF=1,再根据BF= BE+EC+CF ,计算即可得到答案;【详解】解:根据平移的性质,由AD=1得:BE=1,CF=1,由∵BF= BE+EC+CF ,∴BF= 1+2+1=4,故答案为:4;【点睛】本题主要考查了平移的性质,能根据AD=1得到BE=1,CF=1是解题的关键. 20.-1【分析】由A (32)在经过此次平移后对应点A1的坐标为(5-1)可得△ABC 的平移规律为:向右平移2个单位向下平移3个单位由此得到结论【详解】解:由A (32)在经过此次平移后对应点A1的坐标为(解析:-1【分析】由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1),可得△ABC 的平移规律为:向右平移2个单位,向下平移3个单位,由此得到结论.【详解】解:由A (3,2)在经过此次平移后对应点A 1的坐标为(5,-1)知c=a+2、d=b -3, 即c -a=2、d -b=-3,则c+d -a -b=2-3=-1,故答案为:1-.【点睛】本题考查的是坐标与图形变化——平移,牢记平面直角坐标系内点的平移规律:上加下减、右加左减是解题的关键.三、解答题21.(1)作图见解析,(2)52.【分析】(1)作BA′=BA ,A′C′=AC 即可;(2)根据勾股定理求出AB ,由旋转可知,△AB A′是等腰直角三角形,根据勾股定理可求A A '. 【详解】解:(1)旋转后的A BC ''△如图所示;(2)∵90C ∠=︒,3BC =,4AC =, ∴2222435AB AC BC +=+=,由旋转可知,∠ABA′=90°,AB=A′B=5,22225552AA AB A B ''=+=+=【点睛】本题考查了旋转作图和性质,勾股定理,解题关键是熟练运用旋转性质和勾股定理. 22.(1)60︒;(2)见解析【分析】(1)由旋转的性质可得:∠D=∠A ,∠DBE=∠ABC=60°,再根据三角形内角和定理可得AFE DBE ∠=∠;(2)连接BF ,根据旋转性质证Rt Rt ()BCF BEF HL △≌△,得EF CF =,故AF EF AF CF +=+.【详解】解:(1)∵ABC 是直角三角形,ABC 绕点B 逆时针旋转60︒至DEB ,∴∠D=∠A ,∠DBE=∠ABC=60°又∵∠BED=∠AEF∴60AFE DBE ∠=∠=︒.(2)连接BF . BDE 由ABC 旋转而得,90DEB ∴∠=︒,DE AC =,BC BE =.在Rt BCF △和Rt BEF 中, BC BE BF BF =⎧⎨=⎩Rt Rt ()BCF BEF HL ∴△≌△,EF CF ∴=,AF EF AF CF AC DE ∴+=+==.【点睛】本题考核知识点:旋转性质.根据旋转性质得出对应角相等,对应边相等是关键. 23.(1)见解析;(2)见解析;(3)旋转中心为(1,1)--【分析】(1)根据网格结构找出点A 、B 绕点C 旋转180°后的对应点1A 、1B 的位置,然后顺次连接即可;(2)根据网格结构找出点A 、B 、C 平移后的位置,然后顺次连接即可;(3)根据旋转的性质,确定出旋转中心即可.【详解】解:(1)11A B C 如图所示;(2)222A B C ∆如图所示;(3)如图所示,旋转中心为(1,1)--.【点睛】本题考查了利用旋转变换作图,利用平移变换作图,熟练掌握网格结构以及旋转的性质,准确找出对应点的位置是解题的关键.24.(1)图形见解析;(2)证明见解析.【分析】(1)根据题意,利用旋转性质将图形补全,并按要求标清相应的字母即可;(2)由旋转的性质得到∠DCF 为直角,由EF 与CD 平行,得到∠F 为直角,利用SAS 得到△BDC 与△EFC 全等,利用全等三角形对应角相等即可得证.【详解】(1)解:所补图形如图所示:(2)证明:由旋转的性质得:DC FC =,90DCF ∠=︒,∴90DCE ECF ∠+∠=︒.90ACB ∠=︒,∴90BCD DCE ∠+∠=︒.BCD ECF ∴∠=∠.//EF DC ,180DCF F ∴∠+∠=︒.90F ∴∠=︒.在BCD ∆和ECF ∆中,BC EC BCD ECF DC FC =⎧⎪∠=∠⎨⎪=⎩,()BCD ECF SAS ∴∆≅∆.90BDC F ∴∠=∠=︒.【点睛】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.25.(1)m=3,k=1;(2)C △AOB 210;(3)n 的值为32或125或6. 【分析】(1)由直线y =3x 交于点A (1,m ),可得m=3,A(1,3),由直线y =kx +2与直线y =3x 交于点A (1,3),代入得3=k+2,解得k=1;(2)求出直线y =x +2与y 轴交于点B (0,2)利用勾股定理两点距离公式AB ,OA ,OB ,可求周长C △AOB 210(3)先求出直线y =n 与直线y =x +2,y =3x 及y 轴有三个不同的交点,E (n-2,n ),D (3n ,n ),C (0,n ),其中两点关于第三点对称,共有三种情况,①E (n-2,n ),D (3n ,n ),关于C (0,n )对称;②E (n-2,n ), C (0,n ),关于D (3n ,n )对称;③D (3n ,n ),C (0,n ),关于E (n-2,n )对称,列出两点距离等式,即可求出n 的值.【详解】解:(1)直线y =3x 交于点A (1,m ),∴m=3,A(1,3)直线y =kx +2与直线y =3x 交于点A (1,3),∴3=k+2,∴k=1;(2)直线y =x +2与y 轴交于点B .则x=0,y=2,B (0,2),,C △AOB ;(3)直线y =n 与直线y =x +2,y =3x 及y 轴有三个不同的交点,E (n-2,n ),D (3n ,n ),C (0,n ), 其中两点关于第三点对称,共有三种情况,①E (n-2,n ),D (3n ,n ),关于C (0,n )对称, 则n-2+3n =0, 32n =, ②E (n-2,n ), C (0,n ),关于D (3n ,n )对称, 则3n = 23n n --, 23n n --=3n ±, 23n n --=3n 或23n n --=3n -, n=6或n=2舍去,③D (3n ,n ),C (0,n ),关于E (n-2,n )对称,, 则()2=23n n n ---, ()()2=23n n n ±---,2=23n n n --+或2=23n n n -+-+, 125n =或n=0(舍去), 综合以上三种情况n 的值为32或125或6.【点睛】本题考查待定系数法求点坐标与解析式,勾股定理两点距离公式,中心对称的性质,掌握待定系数法求点坐标与解析式,勾股定理两点距离公式,中心对称的性质,会利用分类思想解决中心对称是关键.26.(1)作图见解析;(2)()4,1-【分析】(1)找到点A 关于原点的对称点1A ,点B 关于原点的对称点1B ,点C 关于原点的对称点1C 即可得到111A B C △;(2)连接2AA 并作它的垂直平分线,再连接2CC 并作它的垂直平分线,交于点1O 即为所求.【详解】解:(1)如图所示:111A B C △即为所求,(2)如图,连接2AA 并作它的垂直平分线,再连接2CC 并作它的垂直平分线,交于点1O ,∴()14,1O -.【点睛】本题考查图形的中心对称和旋转,解题的关键是掌握中心对称图形的画法和确定旋转中心的方法.。

几何综合练习(平移、旋转)(含答案)

几何综合练习(平移、旋转)(含答案)

学生做题前请先回答以下问题问题1:平移、旋转、轴对称统称为几何三大变换.几何三大变换都是_________,只改变图形的_________,不改变图形的_____________.问题2:平移的思考层次分别是什么?问题3:旋转的思考层次分别是什么?几何综合测试(平移、旋转)一、单选题(共6道,每道12分)1.如图,把△ABC绕点B逆时针旋转26°得到,若正好经过点A,则∠BAC=( )A.52°B.64°C.77°D.82°答案:C解题思路:试题难度:三颗星知识点:旋转的性质2.如图,E是正方形ABCD内一点,将△CDE绕点D按顺时针方向旋转90°后得到△ADF.若DE=3,则EF的长是( )A. B.C.3D.6答案:A解题思路:试题难度:三颗星知识点:旋转的性质3.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,,点A,B的坐标分别为(2,0)(8,0),将△ABC沿x轴向右平移,当点C落在直线y=3x-3上时,线段BC扫过的面积为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:平移的性质4.如图,已知,将△AOB绕点O旋转150°后,得到,则此时点A的对应点的坐标为( )A. B.C. D.答案:C解题思路:试题难度:三颗星知识点:旋转三要素5.如图,在△ABC中,∠ACB=90°,∠BAC=30°,将△ABC绕点C按逆时针方向旋转α角,得到△DEC,CD与AB交于点F,连接AD.当旋转角α的度数为( )时,△ADF是等腰三角形.A.30°或60°B.20°或40°C.25°或50°D.20°或40°或60°答案:B解题思路:试题难度:三颗星知识点:旋转的性质6.如图,在菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.若∠EAF=60°,则下列结论正确的是( )A.AF=ABB.BE+CF=EFC.∠EFC=∠BD.△AEF是等边三角形答案:D解题思路:试题难度:三颗星知识点:菱形二、填空题(共2道,每道14分)7.如图,将边长为3cm的等边三角形ABC沿BC方向向右平移2cm得到△DEF,则四边形ABFD 的周长为____cm.答案:13解题思路:试题难度:知识点:平移的性质8.如图,将面积为12的△ABC沿BC方向平移至△DEF的位置,平移的距离是BC的2倍,则四边形ACED的面积为____.答案:36解题思路:试题难度:知识点:平移的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

C
八年级(上)《平移与旋转》测试题
班级:_______姓名:__________成绩;________
一、选择题(每题3分,共27分)
1、下列说法正确的是()
A、平移不改变图形的形状和大小,而旋转则改变图形的形状和大小
B、平移和旋转的共同点是改变图形的位置
C、图形可以向某方向平移一定距离,也可以向某方向旋转一定距离
D、在平移和旋转图形中,对应角相等,对应线段相等且平行
2、如图1,△DEF是由△ABC经过平移后得到的,则平移的距离是()
A、线段BE的长度
B、线段EC的长度
C、线段BC的长度
D、线段EF的长度
3、如图2,△ABC与△A'B'C'关于点O成中心对称,则下列结论不成立的是()
A、点A与点A'是对称点
B、BO=B'O
C、AB∥A'B'
D、∠ACB= ∠C'A'B'
图1 图2
4、下列图形中既是轴对称图形,又是中心对称图形的是()
A、平行四边形
B、等边三角形
C、正方形
D、直角三角形
5、将一图形绕着点O顺时针方向旋转700后,再绕着点O逆时针方向旋转1200,这时如果要使图形回到原来的位置,需要将图形绕着点O什么方向旋转多少度?
A、顺时针方向500
B、逆时针方向500
C、顺时针方向1900
D、逆时针方向1900
6、下列说法不正确的是()
A、中心对称图形一定是旋转对称图形
B、轴对称图形一定是中心对称图形
C、在成中心对称的两个图形中,连结对称点的线段都被对称中心平分
D、在平移过程中,对应点所连的线段也可能在一条直线上
7、如图3,图形旋转一定角度后能与自身重合,则旋转的角度可能是( )
A、300
B、600
C、900
D、1200
A'
C'
F
8、如图4,面积为12cm2的△ABC沿BC方向平移至△DEF的位置,平移的距离是边BC长的两倍,则图中的四边形ACED的面积为()
A、24cm2
B、36cm2
C、48cm2
D、无法确定
9、如图5,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C 顺时针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD的度数为()
A、00C、200D、250
图3 图4 图5
二、填空题(每空3分,共27分)
1、等边三角形至少旋转__________度才能与自身重合。

2、如图6,△ABC以点A为旋转中心,按逆时针方向旋转600,得△AB'C',则△ABB'是__________三角形。

3、如图7,在四边形ABCD中,AD∥BC,BC>AD,∠B与∠C互余,将AB,CD分别平移到EF和EG的位置,则△EFG为________三角形,若AD=2cm,BC=8cm,则FG=____________。

4、如图8,把三角形△ABC绕着点C顺时针旋转350,得到△A'B'C,A'B'交AC于点D,若∠A'DC=900,则∠A的度数是
图 6 图7 图8 5、如图9,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A'B'C'的位置,则A'D'和B'D'位置关系是_____________,A'D'=_________。

6、如图10,△ABC绕点B逆时针方向旋转到△EBD的位置,若∠A=150,
∠C=100,E,B,C在同一直线上,则∠ABC=________,旋转角度是__________。

图9 图10
7
4
F
三、 解答题
1、根据要求,在给出的方格图中画出图形:(本小题12分) ⑴画出四边形ABCD 关于点D 成中心对称的图形A 'B 'C 'D ',
⑵将图形A 'B 'C '
A "
B "
C "
D "。

2、如图,图⑴⑵⑶⑷⑸中的图2由图1经过轴对称,平移,旋转这三种运动变换而得到,请分别指出它们是如何运动变换的。

(10分)
3、四边形ABCD 是正方形,△ADF 旋转一定角度后得到△ABE ,如图所示,如果AF=4,AB=7,求(1)指出旋转中心和旋转角度(2)求DE 的长度(3)BE 与DF 的位置关系如何?(12分)
4、在△ABC 中,∠B=100,∠ACB=200,AB=4cm ,△ABC 逆时针旋转一定角
D
度后与△ADE 重合,且点C 恰好成为AD 中点,如右图,⑴指出旋转中心,并求出旋转的度数。

⑵求出∠BAE 的度数和AE 的长。

(本小题12分)
参考答案
一、B A D C A B C C B
二、1、120 2、650 3、等边三角形
4、直角三角形 6cm
5、垂直 2
6、1550 250 三、1、作图(略)
2、⑴向上平移3格,然后再向右平移3格
⑵以点C 为对称中心的中心对称图形或者绕着点C 顺时针方向旋转1800
⑶以点A 为对称中心的中心对称图形或者绕着点A 逆时针方向旋转1800
⑷以AC 为对称轴的轴对称图形
⑸以点B 为对称中心的中心对称图形或者绕着点B 逆时针方
向旋转1800
3、旋转中心:点A 旋转角度:900
DE=3 垂直关系
4、旋转中心:点A 旋转角度:1500
∠BAE=600AE=2cm
1 2 3。

相关文档
最新文档