小学奥数课本02-02(下)
三年级下册奥数章节
三年级下册奥数章节
通常情况下,三年级的奥数(奥林匹克数学竞赛)内容主要围绕基础数学知识展开,包括数字、几何形状、简单的逻辑推理等。
下面是一些可能涉及的奥数章节和相关内容:
数字与运算:
1.数的性质和关系:奇数、偶数、质数、倍数等的概念及相关性质。
2.加减法和乘除法:多位数的加减法、乘除法的计算技巧。
3.数字的整体观念:如数字的排列组合、填空、找规律等题型。
几何形状:
1.基本图形的性质:正方形、长方形、三角形、圆形等基本图形的特点和
关系。
2.几何变换:平移、旋转、翻转等基本几何变换。
3.空间想象能力:立体图形、视角变换、简单的空间问题等。
逻辑推理:
1.找规律和推理:给定一系列数字或图形,找出其中的规律并推理下一个
数或图形。
2.数学推理和证明:通过逻辑推理解决数学问题,有时候需要构建简单的
证明。
其他可能的题型:
1.解决实际问题:将数学知识应用到日常生活或简单情境中解决问题。
2.计数与排列组合:简单的排列组合问题,如有多少种排列方式等。
3.奇思妙想题:鼓励学生发散思维,解决一些趣味性或创造性的数学问题。
奥数的题目通常设计有一定的趣味性和挑战性,鼓励学生动手尝试、多思考、多实践,培养其数学思维和解决问题的能力。
建议参考当地教材或奥数相关资料,以便更详细地了解涉及的具体章节和题型。
人教版小学数学四年级下册奥数培训教材
第一讲植树问题(2课时)【学习导航】在实际植树中,我们研究总距离、间隔距离和棵数之间的数量关系,称为植树问题。
植树问题我们一般分为不封闭路线植树和封闭路线植树。
1.不封闭路线的植树问题又可以分为以下三种情况:(1)如果在植树的线路两端都要植树:棵数=段数+1(2)如果植树线路的一端植树,另一端不植树;棵数=段数(3)如果植树线路两端都不植树:棵数=段数-12.在封闭的路线上植数,棵数与段数相等,即:棵数=段数注意:这类问题,题中会明确告诉我们每段间隔长是相等的。
段数=总距离÷间隔长总距离=间隔长×段数间隔长=总距离÷段数例1城中小学在一条大路边从头至尾栽树28棵,每隔6米栽一棵。
这条路长多少米?【思路导航】题中已知栽树28棵,且线路两端都栽了树,故28棵树之间有28-1=27段,每隔6米为一段,所以这条大路长6×27=162米。
试一试在一条马路一边从头至尾植树36棵,每相邻两棵树之间隔8米,这长马路有多长?例2在一个周长是240米的游泳池周围栽树,每隔5米栽一棵,一共要栽多少棵树?【思路导航】这道题是封闭线路上的植树问题,植树的棵数和段数相等。
240÷5=48(棵)一个鱼塘的周长是1500米,沿鱼塘周围每隔6米栽一棵杨树,需要种多少棵杨树?例3在一座长800米的大桥两边挂彩灯,起点和终点都挂,一共挂了202盏,相邻两盏之间的距离都相等。
求相邻两盏彩灯之间的距离。
【思路导航】大桥两边一共挂了202盏彩灯,每边各挂202÷2=101盏,101盏彩灯把800米长的大桥分成101-1=100段,所以,相邻两盏彩灯之间的距离是800÷100=8米。
试一试在一条长100米的大路两旁各栽一行树,起点和终点都栽,一共栽52棵,相邻的两棵树之间的距离相等。
求相邻两棵树之间的距离。
例4一个木工锯一根19米的木料,他先把一头损坏部分锯下来1米,然后锯了5次,锯成同样长的短木条。
小学数学奥数基础教程(四年级)目录
小学数学奥数基础教程(四年级)目录
(含答案)
.
word文档下载地址
.
文档贡献者:与你的缘
.
第1讲速算与巧算(一)
练习1
第2讲速算与巧算(二)
练习2
第3讲高斯求和
练习3
第4讲数的整除性(一)
练习4
第5讲弃九法
练习5
第6讲数的整除性
练习6
第7讲找规律(一)
练习7
第8讲找规律(二)
练习8
第九讲数字迷(一)
练习9
第10讲数字迷(二)
练习10
第11讲归一问题与归总问题
练习11
第12讲年龄问题
练习12
第13讲鸡兔同笼问题与假设法
练习13
第14讲盈亏问题与比较法(一)
练习14
第15讲盈亏问题与比较法(二)
练习15
第16讲数阵图(一)
练习16
第17讲数阵图(二)
练习17
第18讲数阵图(三)
练习18
第19讲乘法原理
练习19
第20讲加法原理(一)
练习20
第21讲加法原理(二)
练习21
第22讲还原问题(一)
练习22
第23讲还原问题(二)
练习23
第24讲页码问题
练习24
第25讲智取火柴
练习25
第26讲逻辑问题(一)
练习26
第27讲逻辑问题(二)
练习27
第28讲逻辑问题(二)
练习28
第29讲抽屉原理(一)
练习29
第30讲抽屉原理(二)
练习30。
博识二年级下奥数教材
第一讲 比一比 分一分【知识概要】比较几条线段的线段的长短或一根绳子如何一刀剪成四段等等,这类题目非常有趣,我们在做题的时候要仔细观察,认真思考。
比较线段的长短,可借助方格图数一数,每条线段占几格,横的、竖的、斜的分别比一比,很快就可以比出哪条线段长些。
将绳子对折剪开时,别忘了对折一次,有一处相连。
再对折一次,又有两处相连,所以剪开后的段数中必须去掉相连的几处。
例1 下列哪条线长?哪条线最短?(3)(2)(1)练习1:如图,白猫和花猫跑得一样快,谁最先捉到老鼠?花猫白猫老鼠例2 下图是时港到兴仁、金沙的路线图,是石港到金沙近,还是石港到兴仁近?石港金沙兴仁练习2:白兔、灰兔跑得一样快,图中,哪只兔子最先吃到萝卜?萝卜灰兔白兔例3 一张长方形纸,怎样折剩下3个角、4个角、5个角?我们可以拿三张纸亲自实践实验一下?去去去(3)(2)(1)练习3:一块三角形版,切去其中的一个角,还有几个角?例4 一根绳子对折,再对折,从中间剪一刀,绳子会分成几段?练习4:2根彩带,先对折,再对折,从中间剪开,分成几段?【课后练习】1.小明和小宇用同样的速度同时出发,谁先到公园?小明小宇公园2.一个三角形纸板,剪去其中一个角,还会剩下1个、2个、3个、4个角?3.一根彩带对折后从中间剪断,一共有几段?家长签名:______时间:_______第二讲简单的数阵【知识概要】填数阵图要合理安排一种有趣的填数游戏,它的形式多样,有封闭的、辐射型、复合型数阵图。
填数阵图要合理安排。
首先要分析数阵图的内在规律,明确要求,找出突破口,尽量想出多种复合要求的填法。
例1把1、2、3、4、5、6、7七个数填入下图中的七个○内,使每条直线上的和都等于12。
练习1:把1、2、3、5、7、8、9这七个数填入下图的○里,使每条直线上的和都等于15。
例2把2、3、4、5、6、7、8、9这八个数,分别填入下图的○里,使每条线边上的三个数的和都等于15。
(完整版)小学数学奥数基础教程(六年级)目30讲全
小学奥数基础教程(六年级)第1讲比较分数的大小第2讲巧求分数第3讲分数运算的技巧第4讲循环小数与分数第5讲工程问题(一)第6讲工程问题(二)第7讲巧用单位“1”第8讲比和比例第9讲百分数第10讲商业中的数学第11讲圆与扇形第12讲圆柱与圆锥第13讲立体图形(一)第14讲立体图形(二)第15讲棋盘的覆盖第16讲找规律第17讲操作问题第18讲取整计算第19讲近似值与估算第20讲数值代入法第21讲枚举法第22讲列表法第23讲图解法第24讲时钟问题第25讲时间问题第26讲牛吃草问题第27讲运筹学初步(一)第28讲运筹学初步(二)第29讲运筹学初步(三)第30讲趣题巧解第一讲比较分数的大小同学们从一开始接触数学,就有比较数的大小问题。
比较整数、小数的大小的方法比较简单,而比较分数的大小就不那么简单了,因此也就产生了多种多样的方法。
对于两个不同的分数,有分母相同,分子相同以及分子、分母都不相同三种情况,其中前两种情况判别大小的方法是:分母相同的两个分数,分子大的那个分数比较大;分子相同的两个分数,分母大的那个分数比较小。
第三种情况,即分子、分母都不同的两个分数,通常是采用通分的方法,使它们的分母相同,化为第一种情况,再比较大小。
由于要比较的分数千差万别,所以通分的方法不一定是最简捷的。
下面我们介绍另外几种方法。
1.“通分子”。
当两个已知分数的分母的最小公倍数比较大,而分子的最小公倍数比较小时,可以把它们化成同分子的分数,再比较大小,这种方法比通分的方法简便。
如果我们把课本里的通分称为“通分母”,那么这里讲的方法可以称为“通分子”。
2.化为小数。
这种方法对任意的分数都适用,因此也叫万能方法。
但在比较大小时是否简便,就要看具体情况了。
3.先约分,后比较。
有时已知分数不是最简分数,可以先约分。
4.根据倒数比较大小。
5.若两个真分数的分母与分子的差相等、则分母(子)大的分数较大;若两个假分数的分子与分母的差相等,则分母(子)小的分数较大。
四年级下册奥数全册教案
四年级奥数下册班级:姓名:桂林泓文实验学校-1-第一讲定义新运算我们已经学习过加、减、乘、除运算,这些运算,即四则运算是数学中最基本的运算,它们的意义、符号及运算律已被同学们熟知。
除此之外,还会有什么别的运算吗?这两讲我们就来研究这个问题。
这些新的运算及其符号,在中、小学课本中没有统一的定义及运算符号,但学习讨论这些新运算,对于开拓思路及今后的学习都大有益处。
第一课时例1:对于任意数a,b,定义运算“*”:a*b=a×b-a-b。
求12*4的值。
分析与解:根据题目定义的运算要求,直接代入后用四则运算即可。
12*4=12×4-12-4=48-12-4=32。
例题2:设a、b都表示数,规定是a△b表示a的3倍减去b的2倍,a△b=a×3-b×2。
试计算:①5△6②6△5【思路导航】解这类题的关键是抓住定义的本质,这道题规定的运算本质是:运算符号前面的3倍减去运算符号后面的数的2倍。
解:5△6=5×3-6×2=36△5=6×3-5×2=8显然,本例题定义和运算不满足交换律,计算时不能将△前后的数交换。
例题3:对于两个数a、b,规定a☆b=a×b+a+b。
试计算6☆2。
【思路导航】这道题规定的运算本质是:将运算符号的前后两个数的积加上这两个数。
解:6☆2=6×2+6+2=20疯狂操练1、设a、b都表示数,规定a○b=6×a-2×b。
试计算3○4。
2、设a、b都表示数,规定a#b=3×a+2×b。
试计算①(5#6)#7②5#(6#7)3、有两个整数是A、B,A@B表示A与B的平均数。
已知A@6=17,求A。
4、对于两个数a、b,规定a☆b=a×b-(a+b)。
试计算3☆5。
5、对于两个数A与B,规定A※B=A×B÷2。
试算6※4。
6、对于两个数a、b,规定a&b=a×b+a+b。
小学奥数课本01-02(下)
第一讲速算与巧算(一)一、凑十法:同学们已经知道,下面的五组成对的数相加之和都等于10:1+9=102+8=103+7=104+6=105+5=10巧用这些结果,可以使计算又快又准。
例1计算1+2+3+4+5+6+7+8+9+10解:对于这道题,当然可以从左往右逐步相加:1+2=33+3=66+4=1010+5=1515+6=2121+7=2828+8=3636+9=4545+10=55这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。
若是利用凑十法,就能克服这种缺点。
二、凑整法同学们还知道,有些数相加之和是整十、整百的数,如:1+19=2011+9=302+18=2012+28=403+17=2013+37=504+16=2014+46=605+15=2015+55=706+14=2016+64=807+13=2017+73=908+12=2018+82=1009+11=20又如:15+85=10014+86=10025+75=10024+76=10035+65=10034+66=10045+55=10044+56=100等等巧用这些结果,可以使那些较大的数相加又快又准。
像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。
例2计算1+3+5+7+9+11+13+15+17+19解:这是求1到19共10个单数之和,用凑整法做:例3计算2+4+6+8+10+12+14+16+18+20解:这是求2到20共10个双数之和,用凑整法做:例4计算2+13+25+44+18+37+56+75解:用凑整法:三、用已知求未知利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。
下面再举两个例子。
例5计算1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20解:由例2和例3,已经知道从1开始的前10个单数之和以及从2开始的前10个双数之和,巧用这些结果计算这道题就容易了。
小学奥数课本04-02(下)
华罗庚学校数学课本:四年级下册第一讲乘法原理习题一第二讲加法原理习题二第三讲排列习题三第四讲组合习题四第五讲排列组合习题五第六讲排列组合的综合应用习题六第七讲行程问题习题七第八讲数学游戏习题八第九讲有趣的数阵图(一)习题九第十讲有趣的数阵图(二)习题十第十一讲简单的幻方及其他数阵图习题十一第十二讲数字综合题选讲习题十二第十三讲三角形的等积变形习题十三第十四讲简单的统筹规化问题习题十四第十五讲数学竞赛试题选讲第一讲乘法原理在日常生活中常常会遇到这样一些问题,就是在做一件事时,要分几步才能完成,而在完成每一步时,又有几种不同的方法,要知道完成这件事一共有多少种方法,就用我们将讨论的乘法原理来解决.例如某人要从北京到大连拿一份资料,之后再到天津开会.其中,他从北京到大连可以乘长途汽车、火车或飞机,而他从大连到天津却只想乘船.那么,他从北京经大连到天津共有多少种不同的走法?分析这个问题发现,某人从北京到天津要分两步走.第一步是从北京到大连,可以有三种走法,即:第二步是从大连到天津,只选择乘船这一种走法,所以他从北京到天津共有下面的三种走法:注意到3×1=3.如果此人到大连后,可以乘船或飞机到天津,那么他从北京到天津则有以下的走法:共有六种走法,注意到3×2=6.在上面讨论问题的过程中,我们把所有可能的办法一一列举出来.这种方法叫穷举法.穷举法对于讨论方法数不太多的问题是很有效的.在上面的例子中,完成一件事要分两个步骤.由穷举法得到的结论看到,用第一步所有的可能方法数乘以第二步所有的可能方法数,就是完成这件事所有的方法数.一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,那么,完成这件事一共有N=m1×m2×…×mn种不同的方法.这就是乘法原理.例1 某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?分析某人买饭要分两步完成,即先买一种主食,再买一种副食(或先买副食后买主食).其中,买主食有3种不同的方法,买副食有5种不同的方法.故可以由乘法原理解决.解:由乘法原理,主食和副食各买一种共有3×5=15种不同的方法.补充说明:由例题可以看出,乘法原理运用的范围是:①这件事要分几个彼此互不影响的独立步骤来完成;②每个步骤各有若干种不同的方法来完成.这样的问题就可以使用乘法原理解决问题.例2 右图中有7个点和十条线段,一只甲虫要从A点沿着线段爬到B点,要求任何线段和点不得重复经过.问:这只甲虫最多有几种不同的走法?分析甲虫要从A点沿线段爬到B点,必经过C点,所以,完成这段路分两步,即由A 到C,再由C到B.而由A到C有三种走法,由C到B也有三种走法,所以,由乘法原理便可得到结论.解:这只甲虫从A到B共有3×3=9种不同的走法.例3 书架上有6本不同的外语书,4本不同的语文书,从中任取外语、语文书各一本,有多少种不同的取法?分析要做的事情是从外语、语文书中各取一本.完成它要分两步:即先取一本外语书(有6种取法),再取一本语文书(有4种取法).(或先取语文书,再取外语书.)所以,用乘法原理解决.解:从架上各取一本共有6×4=24种不同的取法.例4 王英、赵明、李刚三人约好每人报名参加学校运动会的跳远、跳高、100米跑、200米跑四项中的一项比赛,问:报名的结果会出现多少种不同的情形?分析三人报名参加比赛,彼此互不影响独立报名.所以可以看成是分三步完成,即一个人一个人地去报名.首先,王英去报名,可报4个项目中的一项,有4种不同的报名方法.其次,赵明去报名,也有4种不同的报名方法.同样,李刚也有4种不同的报名方法.满足乘法原理的条件,可由乘法原理解决.解:由乘法原理,报名的结果共有4×4×4=64种不同的情形.例5 由数字0、1、2、3组成三位数,问:①可组成多少个不相等的三位数?②可组成多少个没有重复数字的三位数?分析在确定由0、1、2、3组成的三位数的过程中,应该一位一位地去确定.所以,每个问题都可以看成是分三个步骤来完成.①要求组成不相等的三位数.所以,数字可以重复使用,百位上,不能取0,故有3种不同的取法;十位上,可以在四个数字中任取一个,有4种不同的取法;个位上,也有4种不同的取法,由乘法原理,共可组成3×4×4=48个不相等的三位数.②要求组成的三位数中没有重复数字,百位上,不能取0,有3种不同的取法;十位上,由于百位已在1、2、3中取走一个,故只剩下0和其余两个数字,故有3种取法;个位上,由于百位和十位已各取走一个数字,故只能在剩下的两个数字中取,有2种取法,由乘法原理,共有3×3×2=18个没有重复数字的三位数.解:由乘法原理①共可组成3×4×4=48(个)不同的三位数;②共可组成3×3×2=18(个)没有重复数字的三位数.例6 由数字1、2、3、4、5、6共可组成多少个没有重复数字的四位奇数?分析要组成四位数,需一位一位地确定各个数位上的数字,即分四步完成,由于要求组成的数是奇数,故个位上只有能取1、3、5中的一个,有3种不同的取法;十位上,可以从余下的五个数字中取一个,有5种取法;百位上有4种取法;千位上有3种取法,故可由乘法原理解决.解:由1、2、3、4、5、6共可组成3×4×5×3=180个没有重复数字的四位奇数.例7 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行每列只能出现一个棋子.问:共有多少种不同的放法?分析由于四个棋子要一个一个地放入方格内.故可看成是分四步完成这件事.第一步放棋子A,A可以放在16个方格中的任意一个中,故有16种不同的放法;第二步放棋子B,由于A已放定,那么放A的那一行和一列中的其他方格内也不能放B,故还剩下9个方格可以放B,B有9种放法;第三步放C,再去掉B所在的行和列的方格,还剩下四个方格可以放C,C有4种放法;最后一步放D,再去掉C所在的行和列的方格,只剩下一个方格可以放D,D有1种放法,本题要由乘法原理解决.解:由乘法原理,共有16×9×4×1=576种不同的放法.例8 现有一角的人民币4张,贰角的人民币2张,壹元的人民币3张,如果从中至少取一张,至多取9张,那么,共可以配成多少种不同的钱数?分析要从三种面值的人民币中任取几张,构成一个钱数,需一步一步地来做.如先取一角的,再取贰角的,最后取壹元的.但注意到,取2张一角的人民币和取1张贰角的人民币,得到的钱数是相同的.这就会产生重复,如何解决这一问题呢?我们可以把壹角的人民币4张和贰角的人民币2张统一起来考虑.即从中取出几张组成一种面值,看共可以组成多少种.分析知,共可以组成从壹角到捌角间的任何一种面值,共8种情况.(即取两张壹角的人民币与取一张贰角的人民币是一种情况;取4张壹角的人民币与取2张贰角的人民币是一种情况.)这样一来,可以把它们看成是8张壹角的人民币.整个问题就变成了从8张壹角的人民币和3张壹元的人民币中分别取钱.这样,第一步,从8张壹角的人民币中取,共9种取法,即0、1、2、3、4、5、6、7、8;第二步,从3张壹元的人民币中取共4种取法,即0、1、2、3.由乘法原理,共有9×4=36种情形,但注意到,要求“至少取一张”而现在包含了一张都不取的这一种情形,应减掉.解:取出的总钱数是9×4-1=35种不同的情形.习题一1.某罪犯要从甲地途经乙地和丙地逃到丁地,现在知道从甲地到乙地有3条路可以走,从乙地到丙地有2条路可以走,从丙地到丁地有4条路可以走.问,罪犯共有多少种逃走的方法?2.如右图,在三条平行线上分别有一个点,四个点,三个点(且不在同一条直线上的三个点不共线).在每条直线上各取一个点,可以画出一个三角形.问:一共可以画出多少个这样的三角形?3.在自然数中,用两位数做被减数,用一位数做减数.共可以组成多少个不同的减法算式?4.一个篮球队,五名队员A、B、C、D、E,由于某种原因,C不能做中锋,而其余四人可以分配到五个位置的任何一个上.问:共有多少种不同的站位方法?5.由数字1、2、3、4、5、6、7、8可组成多少个①三位数?②三位偶数?③没有重复数字的三位偶数?④百位为8的没有重复数字的三位数?⑤百位为8的没有重复数字的三位偶数?6.某市的电话号码是六位数的,首位不能是0,其余各位数上可以是0~9中的任何一个,并且不同位上的数字可以重复.那么,这个城市最多可容纳多少部电话机?第二讲加法原理生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用我们将讨论的加法原理来解决.例如某人从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,此人去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.一般地,如果完成一件事有k类方法,第一类方法中有m1种不同做法,第二类方法中有m 2种不同做法,…,第k类方法中有mk种不同的做法,则完成这件事共有N=m1+m2+…+mk种不同的方法.这就是加法原理.例1 学校组织读书活动,要求每个同学读一本书.小明到图书馆借书时,图书馆有不同的外语书150本,不同的科技书200本,不同的小说100本.那么,小明借一本书可以有多少种不同的选法?分析在这个问题中,小明选一本书有三类方法.即要么选外语书,要么选科技书,要么选小说.所以,是应用加法原理的问题.解:小明借一本书共有:150+200+100=450(种)不同的选法.例2 一个口袋内装有3个小球,另一个口袋内装有8个小球,所有这些小球颜色各不相同.问:①从两个口袋内任取一个小球,有多少种不同的取法?②从两个口袋内各取一个小球,有多少种不同的取法?分析①中,从两个口袋中只需取一个小球,则这个小球要么从第一个口袋中取,要么从第二个口袋中取,共有两大类方法.所以是加法原理的问题.②中,要从两个口袋中各取一个小球,则可看成先从第一个口袋中取一个,再从第二个口袋中取一个,分两步完成,是乘法原理的问题.解:①从两个口袋中任取一个小球共有3+8=11(种),不同的取法.②从两个口袋中各取一个小球共有3×8=24(种)不同的取法.补充说明:由本题应注意加法原理和乘法原理的区别及使用范围的不同,乘法原理中,做完一件事要分成若干个步骤,一步接一步地去做才能完成这件事;加法原理中,做完一件事可以有几类方法,每一类方法中的一种做法都可以完成这件事.事实上,往往有许多事情是有几大类方法来做的,而每一类方法又要由几步来完成,这就要熟悉加法原理和乘法原理的内容,综合使用这两个原理.例3 如右图,从甲地到乙地有4条路可走,从乙地到丙地有2条路可走,从甲地到丙地有3条路可走.那么,从甲地到丙地共有多少种走法?分析从甲地到丙地共有两大类不同的走法.第一类,由甲地途经乙地到丙地.这时,要分两步走,第一步从甲地到乙地,有4种走法;第二步从乙地到丙地共2种走法,所以由乘法原理,这时共有4×2=8种不同的走法.第二类,由甲地直接到丙地,由条件知,有3种不同的走法.解:由加法原理知,由甲地到丙地共有:4×2+3=11(种)不同的走法.例4 如下页图,一只小甲虫要从A点出发沿着线段爬到B点,要求任何点和线段不可重复经过.问:这只甲虫有多少种不同的走法?分析从A点到B点有两类走法,一类是从A点先经过C点到B点,一类是从A点先经过D点到B点.两类中的每一种具体走法都要分两步完成,所以每一类中,都要用乘法原理,而最后计算从A到B的全部走法时,只要用加法原理求和即可.解:从A点先经过C到B点共有:1×3=3(种)不同的走法.从A点先经过D到B点共有:2×3=6(种)不同的走法.所以,从A点到B点共有:3+6=9(种)不同的走法.例5 有两个相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6.将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?分析要使两个数字之和为偶数,只要这两个数字的奇偶性相同,即这两个数字要么同为奇数,要么同为偶数,所以,要分两大类来考虑.第一类,两个数字同为奇数.由于放两个正方体可认为是一个一个地放.放第一个正方体时,出现奇数有三种可能,即1,3,5;放第二个正方体,出现奇数也有三种可能,由乘法原理,这时共有3×3=9种不同的情形.第二类,两个数字同为偶数,类似第一类的讨论方法,也有3×3=9种不同情形.最后再由加法原理即可求解.解:两个正方体向上的一面同为奇数共有3×3=9(种)不同的情形;两个正方体向上的一面同为偶数共有3×3=9(种)不同的情形.所以,两个正方体向上的一面数字之和为偶数的共有3×3+3×3=18(种)不同的情形.例6 从1到500的所有自然数中,不含有数字4的自然数有多少个?分析从1到500的所有自然数可分为三大类,即一位数,两位数,三位数.一位数中,不含4的有8个,它们是1、2、3、5、6、7、8、9;两位数中,不含4的可以这样考虑:十位上,不含4的有1、2、3、5、6、7、8、9这八种情况.个位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,要确定一个两位数,可以先取十位数,再取个位数,应用乘法原理,这时共有8×9=72个数不含4.三位数中,小于500并且不含数字4的可以这样考虑:百位上,不含4的有1、2、3、这三种情况.十位上,不含4的有0、1、2、3、5、6、7、8、9这九种情况,个位上,不含4的也有九种情况.要确定一个三位数,可以先取百位数,再取十位数,最后取个位数,应用乘法原理,这时共有3×9×9=243个三位数.由于500也是一个不含4的三位数.所以,1~500中,不含4的三位数共有3×9×9+1=244个.解:在1~500中,不含4的一位数有8个;不含4的两位数有8×9=72个;不含4的三位数有3×9×9+1=244个,由加法原理,在1~500中,共有:8+8×9+3×9×9+1=324(个)不含4的自然数.补充说明:这道题也可以这样想:把一位数看成是前面有两个0的三位数,如:把1看成是001.把两位数看成是前面有一个0的三位数.如:把11看成011.那么所有的从1到500的自然数都可以看成是“三位数”,除去500外,考虑不含有4的这样的“三位数”.百位上,有0、1、2、3这四种选法;十位上,有0、1、2、3、5、6、7、8、9这九种选法;个位上,也有九种选法.所以,除500外,有4×9×9=324个不含4的“三位数”.注意到,这里面有一个数是000,应该去掉.而500还没有算进去,应该加进去.所以,从1到500中,不含4的自然数仍有324个.这是一种特殊的思考问题的方法,注意到当我们对“三位数”重新给予规定之后,问题很简捷地得到解决.例7 如下页左图,要从A点沿线段走到B,要求每一步都是向右、向上或者向斜上方.问有多少种不同的走法?分析观察下页左图,注意到,从A到B要一直向右、向上,那么,经过下页右图中C、D、E、F四点中的某一点的路线一定不再经过其他的点.也就是说从A到B点的路线共分为四类,它们是分别经过C、D、E、F的路线.第一类,经过C的路线,分为两步,从A到C再从C到B,从A到C有2条路可走,从C到B也有两条路可走,由乘法原理,从A经C到B共有2×2=4条不同的路线.第二类,经过D点的路线,分为两步,从A到D有4条路,从D到B有4条路,由乘法原理,从A经D到B共有4×4=16种不同的走法.第三类,经过E点的路线,分为两步,从A到E再从E到B,观察发现.各有一条路.所以,从A经E到B共有1种走法.第四类,经过F点的路线,从A经F到B只有一种走法.最后由加法原理即可求解.解:如上右图,从A到B共有下面的走法:从A经C到B共有2×2=4种走法;从A经D到B共有4×4=16种走法;从A经E到B共有1种走法;从A经F到B共有1种走法.所以,从A到B共有:4+16+1+1=22种不同的走法.习题二1.如右图,从甲地到乙地有三条路,从乙地到丙地有三条路,从甲地到丁地有两条路,从丁地到丙地有四条路,问:从甲地到丙地共有多少种走法?2.书架上有6本不同的画报和7本不同的书,从中最多拿两本(不能不拿),有多少种不同的拿法?3.如下图中,沿线段从点A走最短的路线到B,各有多少种走法?4.在1~1000的自然数中,一共有多少个数字0?5.在1~500的自然数中,不含数字0和1的数有多少个?6.十把钥匙开十把锁,但不知道哪把钥匙开哪把锁,问:最多试开多少次,就能把锁和钥匙配起来?第三讲排列在实际生活中常遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法.就是排列问题.在排的过程中,不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关.例如某客轮航行于天津、青岛、大连三个城市之间.问:应准备有多少种不同船票?分析这个问题,可以用枚举法解决,三个城市之间,船票有下面六种设置方式:如果不用枚举法,注意到要准备的船票的种类不仅与所选的两个城市有关,而且与这两个城市作为起点、终点的顺序有关,所以,要考虑共准备多少种不同的船票,就要在三个城市之间每次取出两个,按照起点、终点的顺序排列.首先确定起点站,在三个城市中,任取一个为起点站,共有三种选法.其次确定终点站,每次确定了一个起点站后,只能从剩下的两个城市之中选终点站,共有两种选法.由乘法原理,共需准备:3×2=6种不同的船票.为叙述方便,我们把研究对象(如天津、青岛、大连)看作元素,那么上面的问题就是在三个不同的元素中取出两个,按照一定的顺序排成一列的问题.我们把每一种排法叫做一个排列(如天津——青岛就是一个排列),把所有排列的个数叫做排列数.那么上面的问题就是求排列数的问题.一般地,从n个不同的元素中任取出m个(m≤n)元素,按照一定的顺序排成一列.叫做从n个不同元素中取出m个元素的一个排列.由排列的定义可以看出,两个排列相同,不仅要求这两个排列中的元素完全相同,而且各元素的先后顺序也一样.如果两个排列的元素不完全相同.或者各元素的排列顺序不完全一样,则这就是两个不同的排列.从n个不同元素中取出m个(m≢n)元素的所有排列的个数,叫做从上面的问题要计算从3个城市中取出2个城市排成一列的排列数,就是一般地,从n个不同元素中取出m个元素(m≢n)排成一列的问题,可以看成是从n 个不同元素中取出m个,排在m个不同的位置上的问题,而第一步:先排第一个位置上的元素,可以从n个元素中任选一个,有n种不同的选法;第二步:排第二个位置上的元素.这时,由于第一个位置已用去了一个元素,只剩下(n-1)个不同的元素可供选择,共有(n-1)种不同的选法;第三步:排第三个位置上的元素,有(n-2)种不同的选法;…第m步:排第m个位置上的元素.由于前面已经排了(m-1)个位置,用去了(m-1)个元素.这样,第m个位置上只能从剩下的[n-(m-1)]=(n-m+1)个元素中选择,有(n-m+1)种不同的选法.由乘法原理知,共有:n(n-1)(n-2)…(n-m+1)种不同的排法,即:这里,m≢n;且等号右边从n开始,后面每个因数比前一个因数小1,共有m个因数相乘.例1解:由排列数公式知:例2 有五面颜色不同的小旗,任意取出三面排成一行表示一种信号,问:共可以表示多少种不同的信号?分析这里五面不同颜色的小旗就是五个不同的元素,三面小旗表示一种信号,就是有三个位置.我们的问题就是要从五个不同的元素中取三个,排在三个位置的问题.由于信号不仅与旗子的颜色有关,而且与不同旗子所在的位置有关,所以是排列问题,且其中n=5,m=3.解:由排列数公式知,共可组成种不同的信号.补充说明:这个问题也可以用乘法原理来做,一般,乘法原理中与顺序有关的问题常常可以用排列数公式做,用排列数公式解决问题时,可避免一步步地分析考虑,使问题简化.例3用1、2、3、4、5、6、7、8可组成多少个没有重复数字的五位数?分析这是一个从8个元素中取5个元素的排列问题,且知n=8,m=5.解:由排列数公式,共可组成:个不同的五位数.例4 幼儿园里的6名小朋友去坐3把不同的椅子,有多少种坐法?分析在这个问题中,只要把3把椅子看成是3个位置,而6名小朋友作为6个不同元素,则问题就可以转化成从6个元素中取3个,排在3个不同位置的排列问题.解:由排列数公式,共有:种不同的坐法.例5 幼儿园里3名小朋友去坐6把不同的椅子(每人只能坐一把),有多少种不同的坐法?分析与例4不同,这次是椅子多而人少,可以考虑把6把椅子看成是6个元素,而把3名小朋友作为3个位置,则问题转化为从6把椅子中选出3把,排在3名小朋友面前的排列问题.解:由排列公式,共有:种不同的坐法.例6 有4个同学一起去郊游,照相时,必须有一名同学给其他3人拍照,共可能有多少种拍照情况?(照相时3人站成一排)分析由于4人中必须有一个人拍照,所以,每张照片只能有3人,可以看成有3个位置由这3人来站.由于要选一人拍照,也就是要从四个人中选3人照相,所以,问题就转化成从四个人中选3人,排在3个位置中的排列问题.要计算的是有多少种排法.解:由排列数公式,共可能有:种不同的拍照情况.例7 4名同学到照相馆照相.他们要排成一排,问:共有多少种不同的排法?分析4个人到照相馆照相,那么4个人要分坐在四个不同的位置上.所以这是一个从4个元素中选4个,排成一列的问题.这时n=4,m=4.解:由排列数公式知,共有种不同的排法.一般地,对于m=n的情况,排列数公式变为表示从n个不同元素中取n个元素排成一列所构成排列的排列数.这种n个排列全部取出的排列,叫做n个不同元素的全排列.(2)式右边是从n开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,记为n!,读做n的阶乘,则(2)式可以写为:其中n!=n(n-1)(n-2)…3•2•1.例8 9名同学站成两排照相,前排4人,后排5人,共有多少种站法?分析如果问题是9名同学站成一排照相,则是9个元素的全排列的问个人排成一排后,左边4个人站在前排,右边5个人站在后排,所以实质上,还是9个人站9个位置的全排列问题.解:由全排列公式,共有=9×8×7×6×5×4×3×2×1。
小学奥数课本02-02(下)附答案和详解
第一讲机智与顿悟 数学需要踏实与严谨,也含有机智与顿悟. 例1 在美国把5月2日写成5/2,而在英国把5月2日写成2/5.问在一年之中,在两国的写法中,符号相同的有多少天? 解:一年中两国符号相同的日子共有12天. 它们是:一月一日 1/1 七月七日 7/7 二月二日 2/2 八月八日 8/8 三月三日 3/3 九月九日 9/9 四月四日 4/4 十月十日 10/10 五月五日 5/5 十一月十一日 11/11 六月六日 6/6 十二月十二日 12/12 注意由差异应当想到统一,有差异就必须有统一,仔细想一想这道题就会有所领悟. 例2 有一个老妈妈,她有三个男孩,每个男孩又都有一个妹妹,问这一家共有几口人? 解:全家共有5口人.妹妹的年龄最小,她是每一个男孩的妹妹.如果你列出算式: 1个妈妈+3个男孩+3个妹妹=7口人那就错了. 为什么呢?请你想一想. 例3 小明给了小刚2支铅笔,他们俩的铅笔数就一样多了,问小明比小刚多几支铅笔? 解:小明比小刚多4支铅笔. 注意,可不是多2支;如果只多2支的话,小明给小刚后,小刚就反而比小明多2支,不会一样多了. 例4 小公共汽车正向前跑着,售票员对车内的人数数了一遍,便说道,车里没买票的人数是买票的人数的2倍.你知道车上买了票的乘客最少有几人吗? 解:最少1人.因为售票员和司机是永远不必买票的,这是题目的“隐含条件”.有时发现“隐含条件”会使解题形势豁然开朗. 例5 大家都知道:一般说来,几个数的和要比它们的积小,如2+3+4比2×3×4小.那么请你回答:0、1、2、3、4、5、6、7、8、9这几个数相加的和大还是相乘的积大? 解:和大.注意:“0”是个很有特点的数. ①0加到任何数上仍等于这个数本身; ②0乘以任何数时积都等于0; 把它们写出来就是: 0+1+2+3+4+5+6+7+8+9=45 0×1×2×3×4×5×6×7×8×9=0 所以,应当重视特例. 例6两个数的和比其中一个数大17,比另一个数大15,你知道这两个数都是几?你由此想到一般关系式吗? 解:这两个数就是17和15. 因为它们的和比15大17,又比17大15. 由一个特例联想、推广到一般,是数学思维的特点之一. 此题可能引起你如下联想: 和-15=17, 那么和=15+17. 一般和=一个数+另一个加数, 或写成:和-一个加数=另一个加数, 或写成:被减数-减数=差, 也可写成:被减数-差=减数. 以上这些都是你从课本上学过的内容,这里不过是把它们联想到一起罢了. 学数学要注意联想,学会联想才能融会贯通. 例7 小明和小英一同去买本,小明买的是作文本,小英买的是数学本.已知小英买的数学本的本数是小明买的作文本的2倍.又知一本作文本的价钱却是一本数学本的价钱的2倍,请问他俩谁用的钱多? 解:他俩花的钱一样多. 可以这样想:因为作文本的价钱是数学本的2倍,所以把买作文本的钱用来买数学本,同样多的钱所买到的本数应该是作文本的2倍,这刚好与题意相符.可见两人花的钱一样多. 结论是隐含着的,推理就是要把它明明白白地想通,写出来的推理过程就叫“证明”,这是同学们现在就可以知道的. 例8 中午放学的时候,还在下雨,大家都盼着晴天.小明对小英说:“已经连续三天下雨了,你说再过36小时会出太阳吗?”小朋友你说呢? 解:不会出太阳.因为从中午起再过36个小时正好是半夜.而阴雨天和夜里是不会出太阳的. 注意:解题的第一要义是首先明确“问什么”,而且要紧紧抓住“问什么”?“问什么”是思考目标,这就好比小朋友走着来上学,学校是你走路的目的,试想,如果你走路没有目标,结果会怎样?本题迷惑人的地方就是想用阴天下雨把你的注意力从应当思考的目标引开,给你的思维活动造成干扰.学会删繁就简,抓住目标,将会大大地提高你的解题效率. 例9 一位画家想订做一个像框,用来装进他的立体画.他画了一张像框的尺寸图拿给你看(右图),请你帮他算算,需要多长的材料才能做好?(画家说,材料粗细要求一样,形状尺寸一定要按图示加工,拐角部分都要做成直角). 解:不管多长的材料,像框也无法做成. 从每一部分来说,这个图看来是合理的,但从整体上看,这个图是“荒谬的”、“失调的”.用一句普通的话说,就是“有点不对劲的”.请你注意,对现实生活觉得有点不对劲的感觉是创造性的起因.习题一 1.如右图所示,若每个圆圈里都有五只蚂蚁,问右图中一共应有多少只蚂蚁? 2.一个课外小组活动日,老师进教室一看,来参加活动的学生只占教室里全体人数的一半.老师很生气.你知道这天共来了多少学生吗? 3.小林和小蓉两人口袋里各有10元钱.两人去书店买书.买完书后发现,小林花去的钱正好和小蓉剩下的钱数一样多.请问,现在他们两人一共还有多少钱? 4.满满一杯牛奶,小明先喝了半杯;然后添水加满,之后再喝去半杯;再一次添水加满,最后把它全部喝完.请问小明一共喝了多少杯牛奶多少杯水? 5.小黄和小兰想买同一本书.小黄缺一分钱,小兰缺4角2分钱.若用他俩的钱合买这本书,钱还是不够.请问这本书的价钱是多少?他俩各有多少钱? 6.一个骑自行车的人以每小时10公里的速度从一个城镇出发去一个村庄;与此同时,另一个人步行,以每小时5公里的速度从那个村庄出发去那个城镇.经过一小时后他们相遇.问这时谁离城镇较远,是骑车的人还是步行的人? 7.有人去买葱,他问多少钱一斤.卖葱的说:“1角钱1斤.”买葱的说:“我要都买了.不过要切开称.从中间切断,葱叶那段每斤2分,葱白那部分每斤8分.你卖不卖?”卖葱的一想:“8分+2分就是1角”.他就同意全部卖了.但是卖后一算账,发现赔了不少钱.小朋友,你知道为什么吗? 8.一天鲍勃用赛车送海伦回家.汽车在快车道上急驶.鲍勃看到前面有辆大卡车.灵机一动,突然向海伦提出了一个巧妙的问题.鲍勃说:“海伦,你看!前面那辆大卡车开得多快!但是我们可以超过它.假定现在我们在它后面正好是1500米,它以每分钟1000米的速度前进,而我用每分钟1100米的速度追赶它,我们这样一直开下去,到时候肯定会从后面撞上它.但是,海伦,请你告诉我,在相撞前一分钟,我们与它相距多少米?”聪明的海伦略加思考立刻回答了鲍勃的问题.小朋友,你也能回答吗? 9.小明家附近有个梯形公园,公园中有4棵树排成了一行,如图所示.小明每天放学回家都要到公园里去玩一会儿.有一天,他玩着玩着突然想出了一个问题:“能不能把公园分成大小和形状都相同的4块,而且每一块上保留一棵树?”回到家以后,他又和爸爸妈妈一块儿讨论,终于像小明想的那样分好了,小明非常高兴.小朋友,你也回家与爸爸妈妈讨论讨论,看能不能分好? 10.小莉在少年宫学画油画.一天,他找到了一块中间有个圆孔的纸板.他想把这块板分成两块,重新组合成一块调色板,如下图,小朋友看该怎么切才好呢? 注意:回顾由第9题到第10题的解题思路,这里有一个克服“思维定势”的问题.在做第9题时,你可能费了很大劲,把大梯形这样划分,那样划分,试来试去,最终得到了满意的结果. 做完了第9题后这种思考问题的方式方法就可能深深地在你的头脑中扎根了.当你着手解第10题时,你可能还是沿着原来的思路,按原来的思维方式处理面临的新问题,这种情况心理学上就叫做“思维定势”. 思维定势不利于创造性的发挥,从这个意义上讲,有人说学习的最大障碍是头脑中已有的东西,是有一定道理的,你在做第10题时,对此大概也有体会了吧!今后要以此为训. 对本讲其它各题,在你做完以后也希望你做一些回顾和总结,以便发现些更有价值的东西,使自己变得更聪明起来.第二讲数数与计数 从数数与计数中,可以发现重要的算术运算定律. 例1 数一数,下面图形中有多少个点? 解:方法1:从上到下一行一行地数,见下图. 点的总数是: 5+5+5+5=5×4. 方法2:从左至右一列一列地数,见下图. 点的总数是:4+4+4+4+4=4×5. 因为不论人们怎样数,点数的多少都是一定的,不会因为数数的方法不同而变化.所以应有下列等式成立: 5×4=4×5 从这个等式中,我们不难发现这样的事实: 两个数相乘,乘数和被乘数互相交换,积不变. 这就是乘法交换律. 正因为这样,在两个数相乘时,以后我们也可以不再区分哪个是乘数,哪个是被乘数,把两个数都叫做“因数”,因此,乘法交换律也可以换个说法: 两个数相乘,交换因数的位置,积不变. 如果用字母a、b表示两个因数,那么乘法交换律可以表示成下面的形式:a×b=b×a. 方法3:分成两块数,见右图. 前一块4行,每行3个点,共3×4个点. 后一块4行,每行2个点,共2×4个点. 两块的总点数=3×4+2×4. 因为不论人们怎样数,原图中总的点数的多少都是一定的,不会因为数数的方法不同而变化.所以应有下列等式成立: 3×4+2×4=5×4. 仔细观察图和等式,不难发现其中三个数的关系: 3+2=5 所以上面的等式可以写成: 3×4+2×4=(3+2)×4 也可以把这个等式调过头来写成: (3+2)×4=3×4+2×4. 这就是乘法对加法的分配律. 如果用字母a、b、c代表三个数,那么乘法对加法的分配律可以表示成下面的形式: (a+b)×c=a×c+b×c 分配律的意思是说:两个数相加之和再乘以第三数的积等于第一个数与第三个数的积加上第二个数与第三个数的积之和. 进一步再看,分配律是否也适用于括号中是减法运算的情况呢?请看下面的例子: 计算(3-2)×4和3×4-2×4. 解:(3-2)×4=1×4=4 3×4-2×4=12-8=4. 两式的计算结果都是4,从而可知: (3-2)×4=3×4-2×4 这就是说,这个分配律也适用于一个数与另一个数的差与第三个数相乘的情况. 如果用字母a、b、c(假设a>b)表示三个数,那么上述事实可以表示如下:(a-b)×c=a×c-b×c. 正因为这个分配律对括号中的“+”和“-”号都成立,于是,通常人们就简称它为乘法分配律. 例2 数一数,下左图中的大长方体是由多少个小长方体组成的? 解:方法1:从上至下一层一层地数,见上右图. 第一层 4×2个 第二层 4×2个 第三层 4×2个 三层小长方体的总个数(4×2)×3个. 方法2:从左至右一排一排地数,见下图. 第一排 2×3个 第二排 2×3个 第三排 2×3个 第四排 2×3个 四排小长方体的总个数为(2×3)×4. 若把括号中的2×3看成是一个因数,就可以运用乘法交换律,写成下面的形式:4×(2×3). 因为不论人们怎样数,原图中小长方体的总个数是一定的,不会因为数数的方法不同而变化.把两种方法连起来看,应有下列等式成立:(4×2)×3=4×(2×3). 这就是说在三个数相乘的运算中,改变相乘的顺序,所得的积相同. 或是说,三个数相乘,先把前两个数相乘再乘以第三个数,或者先把后两个数相乘,再去乘第一个数,积不变,这就是乘法结合律. 如果用字母a、b、c表示三个数,那么乘法结合律可以表示如下:(a×b)×c=a×(b ×c). 巧妙地运用乘法交换律、分配律和结合律,可使得运算变得简洁、迅速. 从数数与计数中,还可以发现巧妙的计算公式. 例3 数一数,下图中有多少个点? 解:方法1:从上至下一层一层地数,见下图. 总点数=1+2+3+4+5+6+7+8+9=45. 方法2:补上一个同样的三角形点群(但要上下颠倒放置)和原有的那个三角形点群共同拼成一个长方形点群,则显然有下式成立(见下图): 三角形点数=长方形点数÷2 因三角形点数=1+2+3+4+5+6+7+8+9 而长方形点数=10×9=(1+9)×9 代入上面的文字公式可得: 1+2+3+4+5+6+7+8+9 =(1+9)×9÷2=45. 进一步把两种方法联系起来看: 方法1是老老实实地直接数数. 方法2可以叫做“拼补法”.经拼补后,三角形点群变成了长方形点群,而长方形点群的点数就可以用乘法算式计算出来了. 即1+2+3+4+5+6+7+8+9 =(1+9)×9÷2. 这样从算法方面讲,拼补法的作用是把一个较复杂的连加算式变成了一个较简单的乘除算式了.这种方法在700多年前的中国的古算书上就出现了. 再进一步,若脱离开图形(点群)的背景,纯粹从数的方面找规律,不难发现下述事实: 这个等式的左边就是从1开始的连续自然数相加之和,第一个数1又叫首项,最后一个数9叫末项,共有9个数又可以说成共有9项,这样,等式的含义就可以用下面的语言来表述: 从1开始的连续自然数前几项的和等于首项加末项之和乘以项数的积的一半.或是写成下面的文字式: 和=(首项+末项)×项数÷2 这个文字式通常又叫做等差数列求和公式. 例4 数一数,下图中有多少个点? 解:方法1:从上至下一层一层地数,见下图: 总点数=2+3+4+5+6=20. 方法2:补上一个同样的梯形点群,但要上下颠倒放置,和原图一起拼成一个长方形点群如下图所示: 由图可见,有下列等式成立: 梯形点数=长方形点数÷2. 因为梯形点数=2+3+4+5+6 而长方形点数=8×5=(2+6)×5 代入上面的文字式,可得: 2+3+4+5+6=(2+6)×5÷2 与例1类似,我们用拼补法得到了一个计算梯形点群总点数的较为简单的公式. 再进一步,若脱离开图形(点群)的背景纯粹从数的方面找找规律,不难发现下述事实: 这个等式的左边就是一个等差数列的求和式,它的首项是2,末项是6,公差是1,项数是5.这样这个等式的含义就可以用下面的语言来表述: 等差数列前几项的和等于首项加末项之和乘以项数的积的一半. 写成下面较简化的文字式: 和=(首项+末项)×项数÷2 这就是等差数列的求和公式. 例5 数一数,下图中有多少个小三角形? 解:方法1:从上至下一层一层地数,见下图. 小三角形总数=1+3+5+7=16个. 方法2:补上一个同样的图形,但要上下颠倒放置、和原来的一起拼成一个大平行四边形如下图所示. 显然平行四边形包含的小三角形个数等于原图中的大三角形所包含的小三角形个数的两倍,即下式成立. 大三角形中所含=平行四边形所含÷2 平行四边形所含=8×4=(1+7)×4(个) 大三角形中所含=1+3+5+7=16 代入上述文字式: 1+3+5+7=(1+7)×4÷2 这样,我们就得到了一个公式: 小三角形个数=(第一层的数+最末层的数)×层数÷2 脱离开图形的背景,纯粹从数的方面进行考察,找找规律,不难发现下述事实: 等式左边就表示一个等差数列的前几项的和,它的首项是1,末项是7,公差是2,项数是4.这样这个等式的含义也就可以用下面的语言来表述: 等差数列前几项的和等于首项加末项之和乘以项数之积的一半. 写成较简单的文字式: 和=(首项+末项)×项数÷2.习题二 下列各题至少用两种方法数数与计数. 1.数一数,下图中有多少个点? 2.数一数,下图中的三角形点群有多少个点? 3.数一数,下图中有多少个小正方形? 4.数一数,下图中共有多少个小三角形?第三讲速算与巧算 利用上一讲得到的乘法运算定律和等差数列求和公式,可以使计算变得巧妙而迅速. 例1 2×4×5×25×54 =(2×5)×(4×25)×54 (利用了交换 =10×100×54 律和结合律) =54000 例2 54×125×16×8×625 =54×(125×8)×(625×16)(利用了 =54×1000×10000 交换律和结合律) =540000000 例3 5×64×25×125 将64分解为2、4、8 =5×(2×4×8)×25×125 的连乘积是关键一 =(5×2)×(4×25)×(8×125)步. =1000000 例5 37×48×625 =37×(3×16)×625 注意37×3=111 =(37×3)×(16×625) =111×10000 =1110000 例6 27×25+13×25 逆用乘法分配律, =(27+13)×25 这样做叫提公因数 =40×25 =1000 例7 123×23+123+123×76 注意123=123×1;再 =123×23+123×1+123×76 提公因数123 =123×(23×1+76) =123×100 =12300 例8 81+991×9 把81改写(叫分解因 =9×9+991×9 数)为9×9是为了下 =(9+991)×9 一步提出公因数9 =1000×9 =9000 例9 111×99 =111×(100-1) =11100-111 =10989 例10 23×57-48×23+23 =23×(57-48+1) =23×10 =230 例11求1+2+3+…+24+25的和. 解:此题是求自然数列前25项的和. 方法1:利用上一讲得出的公式 和=(首项+末项)×项数÷2 1+2+3+…+24+25 =(1+25)×25÷2 =26×25÷2 =325 方法2:把两个和式头尾相加(注意此法多么巧妙!) 想一想,这种头尾相加的巧妙求和方法和前面的“拼补法”有联系吗? 例12求8+16+24+32+…+792+800的和. 解:可先提公因数 8+16+24+32+…+792+800 =8×(1+2+3+4+…+99+100) =8×(1+100)×100÷2 =8×5050 =40400 例13某剧院有25排座位,后一排都比前一排多2个座位,最后一排有70个座位,问这个剧院一共有多少个座位? 解:由题意可知,若把剧院座位数按第1排、第2排、第3排、…、第25排的顺序写出来,必是一个等差数列. 那么第1排有多少个座位呢?因为: 第2排比第1排多2个座位,2=2×1 第3排就比第1排多4个座位,4=2×2 第4排就比第1排多6个座位,6=2×3 这样,第25排就比第1排多48个座位, 48=2×24. 所以第1排的座位数是:70-48=22. 再按等差数列求和公式计算剧院的总座位数: 和=(22+70)×25÷2 =92×25÷2 =1150.习题三 计算下列各题: 1.4×135×25 2.38×25×6 3.124×25 4.132476×111 5.35×53+47×35 6.53×46+71×54+82×54 7.①11×11 ②111×111 ③1111×1111 ④11111×11111 ⑤111111111×111111111 8.①12×14 ②13×17 ③15×17 ④17×18 ⑤19×15 ⑥16×12 9.①11×11 ②12×12 ③13×13 ④14×14 ⑤15×15 ⑥16×16 ⑦17×17 ⑧18×18 ⑨19×19 10.计算下列各题,并牢记答案,以备后用. ①15×15 ②25×25 ③35×35 ④45×45 ⑤55×55 ⑥65×65 ⑦75×75 ⑧85×85 ⑨95×95 11.求1+2+3+…+(n-1)+n之和,并牢记结果. 12.求下列各题之和.把四道题联系起来看,你能发现具有规律性的东西吗? ①1+2+3+…+10 ②1+2+3+…+100 ③1+2+3+…+1000 ④1+2+3+…+10000 13.求下表中所有数的和.你能想出多少种不同的计算方法?第四讲数与形相映 形和数的密切关系,在古代就被人们注意到了.古希腊人发现的形数就是非常有趣的例子. 例1最初的数和最简的图相对应. 这是古希腊人的观点,他们说一切几何图形都是由数产生的. 例2我国在春秋战国时代就有了“洛图”(见下图).图中也是用“圆点”表示数,而且还区分了偶数和奇数,偶数用实心点表示,奇数用空心点表示.你能把这张图用自然数写出来吗?见下图所示,这个图又叫九宫图. 例3古希腊数学家毕达哥拉斯发现了“形数”的奥秘.比如他把1,3,6,10,15,…叫做三角形数.因为用圆点按这些数可以堆垒成三角形,见下图. 毕达哥拉斯还从圆点的堆垒规律,发现每一个三角形数,都可以写成从1开始的n 个自然数之和,最大的自然数就是三角形底边圆点的个数. 第一个数:1=1 第二个数:3=1+2 第三个数:6=1+2+3 第四个数:10=1+2+3+4 第五个数:15=1+2+3+4+5 … 第n个数:1+2+3+4+5+…+n指定的三角形数.比如第100个三角形数是: 例4毕达哥拉斯还发现了四角形数,见下图.因为用圆点按四角形数可以堆垒成正方形,因此它们最受毕达哥拉斯及其弟子推崇. 第一个数:1=12=1 第二个数:4=22=1+3 第三个数:9=32=1+3+5 第四个数:16=42=1+3+5+7 第五个数:25=52=1+3+5+7+9 … 第n个数:n2=1+3+5+9+…+(2n-1). 四角形数(又叫正方形数)可以表示成自然数的平方,也可以表示成从1开始的几个连续奇数之和.奇数的个数就等于正方形的一条边上的点数. 例5类似地,还有四面体数见下图. 仔细观察可发现,四面体的每一层的圆点个数都是三角形数.因此四面体数可由几个三角形数相加得到: 第一个数:1 第二个数:4=1+3 第三个数:10=1+3+6 第四个数:20=1+3+6+10 第五个数:35=1+3+6+10+15. 例6五面体数,见下图. 仔细观察可以发现,五面体的每一层的圆点个数都是四角形数,因此五面体数可由几个四角形数相加得到: 第一个数:1=1 第二个数:5=1+4 第三个数:14=1+4+9 第四个数:30=1+4+9+16 第五个数:55=1+4+9+16+25. 例7按不同的方法对图中的点进行数数与计数,可以得出一系列等式,进而可猜想到一个重要的公式.由此可以使人体会到数与形之间的耐人导味的微妙关系. 方法1:先算空心点,再算实心点: 22+2×2+1. 方法2:把点图看作一个整体来算32. 因为点数不会因计数方法不同而变,所以得出: 22+2×2+1=32. 方法1:先算空心点,再算实心点: 32+2×3+1. 方法2:把点图看成一个整体来算:42. 因为点数不会因计数方法不同而变,所以得出: 32+2×3+1=42. 方法1:先算空心点,再算实心点: 42+2×4+1. 方法2:把点图看成一个整体来算52. 因为点数不会因计数方法不同而变,所以得出: 42+2×4+1=52. 把上面的几个等式连起来看,进一步联想下去,可以猜到一个一般的公式: 22+2×2+1=32 32+2×3+1=42 42+2×4+1=52 … n2+2×n+1=(n+1)2. 利用这个公式,也可用于速算与巧算. 如:92+2×9+1=(9+1)2=102=100 992+2×99+1=(99+1)2 =1002=10000.习题四 1.第25个三角形数是几? 2.第50个三角形数是几? 3.第1000个三角形数是几? 4.三角形数的奇偶性是很有规律的, 想一想,这是为什么? 5.观察下列图形,你能发现什么? 6.第99个与第100个三角形数的和等于多少? 7.每一个四角形数(或叫正方形数)(除1外)都能拆成两个三角形数吗?比如,100是哪两个三角形数的和? 8.第8个三角形数恰是第6个四角形数,因为 你还能试着找到一个这样的例子吗?(这事比较困难) 9.请你试着画一画五角形数和六角形数的图形.并试着把第n个五(六)角形数拆成以1为首页、有n项的等差数列之和的形式. 10.写出前10个四面体数. 11.写出前10个五面体数. 12.按不同的方法对下图中的点进行数数与计数,得出一系列等式,进而猜想出一个公式来,从中体会数与形之间的微妙关系.如: 因为点数不会因计数方法不同而变,所以得出: 请你照此继续做下去.(可参考本讲例7) 13.模仿例7,用不同的方法分别对下两图中的点进行数数与计数,先得出一系列等式,进而猜想出一个重要的公式.第五讲一笔画问题 一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图) 这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图) 经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题: 如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢? 能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成? 先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了. 首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等. 其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图) (1)两个点,一条线. 每个点都只与一条线相连. (2)三个点. 两个端点都只与一条线相连,中间点与两条线连. 第一组的两个图都能一笔画出来. (但注意第(2)个图必须从一个端点画起)第二组(见下图) (1)五个点,五条线. A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连. (2)六个点,七条线.(“日”字图) A点与B点各与三条线相连,其他点都各与两条线相连. 第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B 点),而终点则定是B点(或A点). 第三组(见下图) (1)四个点,三条线. 三个端点各与一条线相连,中间点与三条线相连. (2)四个点,六条线. 每个点都与三条线相连. (3)五个点,八条线. 点O与四条线相连,其他四个顶点各与三条线相连. 第三组的三个图形都不能一笔画出来. 第四组(见下图) (1)这个图通常叫五角星. 五个角的顶点各与两条线相连,其他各点都各与四条线相连. (2)由一个圆及一个内接三角形构成. 三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线). (3)一个正方形和一个内切圆构成. 正方形的四个顶点各与两条线相连,四个交点各与四条线相连. (四条线是两条线段和两条弧线). 第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图) (1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连. (2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连. 第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来.。
二年级下册奥数教材
二年级下册奥数教材 work Information Technology Company.2020YEAR春季二年级数学习题目录第一章:算一算第一讲巧填竖式(二)第二讲简便运算(一)第三讲简便运算(二)第四讲简单数的分解用第五讲数的读写单元练习(一)(另附)第二章:实践与应用(一)第一讲应用题(一)第二讲应用题(二)第三讲应用题(三)单元练习(二)(另附)第三章:合理推算第一讲简单推理(一)第二讲简单推理(二)第三讲简单推理(三)第四讲合理安排单元练习(三)(另附)第四章:趣味数学与游戏第一讲巧填数第二讲数学游戏第三讲杂题单元练习(四)(另附)第五章:实践与应用(二)第一讲余数的妙用(二)第二讲年龄问题第三讲间隔趣谈(三)第四讲画画凑凑第五讲排队问题单元练习(五)(另附)第六章:认识时间第一讲时钟问题(一)第二讲时钟问题(二)单元练习(六)(另附)综合练习(一)(另附)综合练习(二)(另附)第一章算一算第一讲巧填竖式(二)【专题导引】“算式谜”是一种常见的猜谜游戏。
通常是给出一个式子,但式子中却含有一些用汉字、字母等表示的特定的数字。
要求我们根据一定的法则和逻辑推理的方法,找到要填的数字。
解答这类题目,要分析算式的特点,运用加、减的运算法则来安排每一个数。
一个算式中填几个数时,要选好先填什么,再填什么,选准“突破口”,其他就好填了。
【典型例题】【例1】在下面竖式中的空白处填入适当的数,使算式成立。
□4+79□【试一试】在下面竖式中的空白处填入适当的数,使算式成立。
8□+4□0□3+□90【例2】在下面竖式中的空白处填入适当的数,使算式成立。
6□-9□25□-7□1□7-□49□□+□□【试一试】1911、在下面空白处填入适当的数,有哪几种填法?□□+□□1492、在下边的算式里,空格里的四个数字总和是()。
□□+□□175【例4】在下面算式的空格里填上数字,使竖式成立。
□81+□5□□94□【试一试】在□里填上适当的数,使算式成立。
小学奥数教程下册(最完美)
目录第一讲分数乘法(乘法中的简算) (2)练习卷........................................................ (5)第二讲长方体和正方体(巧算表面积) (6)练习卷…………………………………………………….…10第三讲分数除法应用题……………………………………………11练习卷……………………………………………………….15第四讲长方体和正方体(巧算体积) (16)练习卷………………………………………………………20第五讲较复杂的分数应用题(寻找不变量) (21)练习卷 (24)第六讲 百分数(浓度问题)………………………………………… 25练习卷 (28)综合演习(1) (29)综合演习(2) (31)第一讲分数乘法例题讲学例1 (1)1514×19 (2) 27×2611 【思路点拨】 观察这两道题中数的特点,第(1)题中的1514比1少151,可以把1514看作1-151,然后和19相乘,利用乘法分配律使计算简便;同样,第(2)题中27与2611中的分母26相差1,可以把27看作(26+1),然后和2611相乘,再运用乘法分配律使计算简便。
把哪个数拆分是解决问题的关键,或拆成与1有关的两数之差或和;或者把一个数拆分成与分数分母相关的和或差,最后用乘法分配律使计算简便。
同步精练1.3613×35 2. 2322×10 3. 8×1514 4. 253×1265. 17×1211 6.262524⨯ 例2120001999199820001999-⨯⨯+【思路点拨】仔细观察分子、分母中各数的特点,我们就会发现,分子1999+2000×1998=1999+2000×(1999-1)=1999+2000×1999-2000=2000×1999-1,这样就把分子转化成与分母完全相同的式子,结果自然就好计算了,试试吧!解决稍复杂的分数乘法问题时,不要慌张,要仔细观察数的特点,根据数的特点一般都能化成分子、分母能约分的情况,然后使计算简便。
四年级下册奥数培训教材-最新
目录第一章组合与推理第一讲逻辑推理第二讲容斥问题第二章数与计算(一)第一讲速算与巧算(一)第二讲速算与巧算(二)单元练习(一)第三章实践与应用(一)第一讲应用题(二)第二讲平均数问题第三讲差倍问题第四讲和差问题第五讲巧算年龄第六讲假设法解题第七讲盈亏问题第八讲还原问题单元练习(二)第四章数与计算(二)第一讲定义新运算第二讲速算与巧算(三)第三讲二进制单元练习(三)第五章实践与应用(二)第一讲行程问题(一)第二讲行程问题(二)第三讲应用题(三)第四讲应用题(四)第五讲较复杂的和差倍问题单元练习(四)第六章趣题与智巧第一讲周期问题第二讲数学开放题综合练习(一)综合练习(二)第一章组合与推理第一讲逻辑推理【专题导引】解答推理问题常用的方法有:排除法、假设法、反证法。
一般可以从以下几方面考虑:1、选准突破口,分析时综合几个条件进行判断。
2、根据题中条件,在推理过程中,不断排除不可能的情况,从而得出要求的结论。
3、对可能出现的情况作出假设,然后再根据条件推理,如果得到的结论和条件不矛盾,说明假设是正确的。
4、遇到比较复杂的推理问题,可以借助图表进行分析。
【典型例题】【例1】桌上有排球、足球、篮球各1个。
排球在足球的右边,篮球在足球的左边。
请按从左到右的顺序排列出球的摆放情况。
【试一试】1、甲、乙、丙比身高,甲说:“丙的身高没有乙高。
”乙说;“甲的身高比丙高。
”丙说:“乙比甲矮。
”问:最高的是谁?2、某班学生,如果:有红色铅笔的人没有绿色铅笔;没有红色铅笔的人有蓝色铅笔。
那么“有绿色铅笔的人就有蓝色铅笔”。
对吗?【例2】刘老师、夏老师和胡老师三人在语、英、数三门课中每人教一门课。
已知:夏老师:我不教数学。
胡老师:我既不教语文,也不教数学。
请你说这三位老师分别教什么课?【试一试】1、有4个球,编号为①、②、③、④,其中3个球一样重,有一个球比其他球轻1克。
为了找出这个轻球用天平称了两次,结果如下:第一次:①+②比③+④轻;第二次:①+③比②+④重。
小学奥数经典教材目录详解
小学奥数经典教材推荐小学奥数的学习选对教材很重要,奥数学习中哪些教材属于经典教材呢?1.《仁华学校奥林匹克数学课本》(俗称“课本”,一共六册,从一年级到六年级)这套书写的非常详细,把小学奥数基本内容都涵盖了,而且内容不太复杂,非常适合让孩子自学!如果孩子不太自觉,那可以报一个班儿,让老师来教,监督孩子扎实地掌握里面的内容。
里头每一讲都既有例题又有练习,而且练习不光有答案,还有解答。
大家可以学完例题,然后做练习。
注意,练习一定要做,而且要一道不落!因为光看是绝对学不会数学的!三年级孩子比较适合从这套书入手开始奥数的学习。
需要注意的是这套书一二年级两本书编排的相对差一些,比如二年级很多计算学校课堂还没有学,但是题目中却经常出现(这对孩子理解会造成非常大的障碍);二年级仁华课本中经常有枚举类问题(比如整数拆分问题等等),这类问题逻辑严谨性很高,对二年级学生来讲比较难,但是课本中很前面就出现了。
所以我们建议如果低年级学生学习该课本时,应该在相应章节讲之前补充适当的基础知识,一些较难的章节应适当放在后面学习。
另外,这套书成书较早,很多内容相对简单。
作为基础教材,必须有一个超前使用的意识。
比如三年级的孩子,不要仅仅局限于学习三年级的课本,很多四年级课本的知识也可以给孩子学,比如整数的简便运算,四年级课本里就有,但三年级的孩子完全可以学。
一般到了五年级,在接触了分数的四则运算之后,学习六年级课本里的绝大多数内容是没有问题的了,所以五年级的孩子就应该当六年级的孩子来看待了。
不过话说回来,超前学是一方面,无论如何学踏实是一定要有的,绝对不能盲目追求速度,学得囫囵吞枣。
2.《仁华学校数学思维训练导引》(俗称“导引”,一共两册,三、四年级一册,五、六年级一册)这套书是其实就是习题集,而且是难题集。
里面的大多数题目都有一定难度,有的甚至是IMO(国际数学奥林匹克竞赛)的题目。
而且,里面的内容并不是完全按题目难度来编排的,而是根据所需要的数学知识。
小学奥数数学课本二年级
小学奥数数学课本二年级WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】华罗庚学校数学课本:二年级第一讲一、1.计算:(1)24+44+56上册第一讲速算与巧算第二讲数数与计数(一)下册第一讲机智与顿悟第二讲数数与计数(2)53+36+47解:(1)24+44+56=24+(44+56)=24+100=124这样想:因为44+56=100是个整百的数,所以先把它们的和算出来.(2)53+36+47=53+47+364,8,12,16,20等等都是等差连续数.1. 等差连续数的个数是奇数时,它们的和等于中间数乘以个数,简记成:(1)计算:1+2+3+4+5+6+7+8+9第三讲数数与计数(二)第三讲速算与巧算=(53+47)+36=100+36=136这样想:因为53+47=100是个整百的数,所以先把+47带=5×9=45中间数是5共9个数第四讲认识简单数列第五讲自然数列趣题第四讲数与形相映第五讲一笔画问题着符号搬家,搬到+36前面;然后再把53+47的和算出来.2.计算:(1)96+15(2)52+69解:(1)96+15=96+(4+11)(2)计算:1+3+5+7+9=5×5 中间数是5=25 共有5个数(3)计算:2+4+6+8+10第六讲找规律(一)第六讲七座桥问题=(96+4)+11=100+11=111这样想:把15分拆成15=4+11,这是因为96+4=100,可凑=6×5=30中间数是6共有5个数第七讲找规律(二)第八讲找规律(三)第九讲填图与拆数第十讲考虑所有可能情况(一)第十一讲考虑所有可能情况(二)第十二讲仔细审题第十三讲猜猜凑凑第十四讲列表尝试法第十五讲画图凑数法第七讲数字游戏问题(一)第八讲数字游戏问题(二)第九讲整数的分拆第十讲枚举法第十一讲找规律法第十二讲逆序推理法第十三讲画图显示法第十四讲等量代换法第十五讲等式加减法附:第一讲重量的认识附:第二讲长度的认识附:第三讲时间的认识(上)附:第四讲时间的认识(下)整先算.(2)52+69=(21+31)+69=21+(31+69)=21+100=121这样想:因为69+31=100,所以把52分拆成21与31之和,再把31+69=100凑整先算.3.计算:(1)63+18+19(2)28+28+28解:(1)63+18+19=60+2+1+18+19=60+(2+18)+(1+19)=60+20+20=100这样想:将63分拆成63=60+2+1就是因为2+18和1+19可以凑整先算.(2)28+28+28=(28+2)+(28+2)+(28+2)-6=30+30+30-6=90-6=84这样想:因为28+2=30可凑整,但最后要把多加的三个2减去.二、改变运算顺序:在只有“+”、“-”号的混合算式中,运算顺序可改变计算:(1)45-18+19(2)45+18-19解:(1)45-18+19=45+19-18=45+(19-18)=45+1=46这样想:把+19带着符号搬家,搬到-18的前面.然后先算19-18=1.(2)45+18-19=45+(18-19)=45-1=44这样想:加18减19的结果就等于减1.三、计算等差连续数的和相邻的两个数的差都相等的一串数就叫等差连续数,又叫等差数列,如:1,2,3,4,5,6,7,8,9解:方法1:仔细观察,可知各个加数都接近100,所以选100为基准数,采用基准数法进行巧算.102+100+99+101+98=100×5+2+0-1+1-2=500方法2:仔细观察,可将5个数重新排列如下:(实际上就是把有的加数带有符号搬家)102+100+99+101+98=98+99+100+101+102=100×5=500可发现这是一个等差连续数的求和问题,中间数是100,个数是5.习题一1.计算:(1)18+28+72(2)87+15+13(3)43+56+17+24(4)28+44+39+62+56+212.计算:(1)98+67(2)43+28(3)75+263.计算:(1)82-49+18 3.解:(1)82-49+18=82+18-49=100-49=51(2)82-50+49=82-1=81(减50再加49等于减1)(3)41-64+29=41+29-64=70-64=64.解:(1)99+98+97+96+95=100×5-1-2-3-4-5=500-15=485(每个加数都按 100 算,再把多加的减去)或99+98+97+96+95=97×5=485(2)9+99+999=10+100+1000-3=1110-3=11075.解:(1)5+6+7+8+9=7×5=35(2)5+10+15+20+25+30+35=20×7=140(3)9+18+27+36+45+54=(9+54)×3=63×3=189(4)12+14+16+18+20+22+24+26=(12+26)×4=38×4=1526.解:(1)53+49+51+48+52+50=50×6+3-1+1-2+2+0=300+3=303第一行白方块5个,黑方块4个;第二行白方块4个,黑方块5个;第三、五、七行同第一行,第四、六、八行同第二行;但最后的第九行是白方块5个,黑方块4个.可见白方块总数比黑方块总数多1个.白方块总数:5+4+5+4+5+4+5+4+5=41(个)黑方块总数:4+5+4+5+4+5+4+5+4=40(个)再一种方法是:每一行的白方块和黑方块共9个.共有9行,所以,白、黑方块的总数是:9×9=81(个).由于白方块比黑方块多1个,所以白方块是41个,黑方块是40个.例2图2-3所示砖墙是由正六边形的特型砖砌成,中间有个“雪花”状的墙洞,问需要几块正六边形的砖(图2-4)才能把它补好?(1)3面涂色的小立方体共有1个;(2)4面涂色的小立方体共有4个;(3)5面涂色的小立方体共有3个.例4如图2-7所示,一个大长方体的表面上都涂上红色,然后切成18个小立方体(切线如图中虚线所示).在这些切成的小立方体中,问:](1)1面涂成红色的有几个?(2)2面涂成红色的有几个?(3)3面涂成红色的有几个?解:仔细观察图形,并发挥想像力,可知:(1)上下两层中间的2块只有一面涂色;(2)每层四边中间的1块有两面涂色,上下两层共8块;(3)每层四角的4块有三面涂色,上下两层共有8块.最后检验一下小立体总块数:2+8+8=18(个).(2)82-50+49 ( 2 )(3)41-64+294.计算:(1)99+98+97+96+95 (2)9+99+9995.计算:(1)5+6+7+8+9 (2)5+10+15+20+25+30+35 (3)9+18+27+36+45+54 87+74+85+83+75+77+80+78+81+84=80×10+7-6+5+3-5-3+0-2+1+4=800+4=8047.解:方法1:原式=21+21+21+15=78方法2:原式=21×4-6=84-6=78方法3:原式=(1+2+3+4+5+6)×3+15=21×3+15=63+15=78解:仔细观察,并发挥想象力可得出答案,用七块正六边形的砖可把这个墙洞补好.如果动手画一画,就会看得更清楚了.例3将8个小立方块组成如图2-5所示的“丁”字型,再将表面都涂成红色,然后就把小立方块分开,问:(1)3面被涂成红色的小立方块有多少个?习题二1.如图2-8所示,数一数,需要多少块砖才能把坏了的墙补好?(4)12+14+16+18+20+22+24+266.计算:(1)53+49+51+48+52+50 第二讲数数与计数(一)(2)4面被涂成红色的小立方块有多少个?(2)87+74+85+83+75+77+80+78+81+84 数学需要观察.大数学家欧拉就特别强调观察对于数学发 2.图2-9所示的墙洞,用1号和2号两种特型砖能补好吗?7. 计算:现的重要作用,认为“观察是一件极为重要的事”.本讲数数若能补好,共需几块?1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5+6+1+2+3+4+5习题一解答1.解:(1)18+28+72=18+(28+72)=18+100=118 与计数的学习有助于培养同学们的观察能力.在这里请大家记住,观察不只是用眼睛看,还要用脑子想,要充分发挥想像力.例1数一数,图2-1和图2-2中各有多少黑方块和白方(2)87+15+13=(87+13)+15 =100+15=115(3)43+56+17+24 块?(3)5面被涂成红色的小立方块有多少个?解:如图2-6所示,看着图,想像涂色情况.当把整个表面都涂成红色后,只有那些“粘在一起”的面(又叫互相接=(43+17)+(56+24)=60+80=140(4)28+44+39+62+56+21=(28+62)+(44+56)+(39+21)=90+100+60=250 2.解:(1)98+67=98+2+65=100+65=165(2)43+28=43+7+21=50+21=71或43+28=41+(2+28)=41+30=71(3)75+26=75+25+1=100+1=101解:仔细观察图2-1,可发现黑方块和白方块同样多.因为每一行中有4个黑方块和4个白方块,共有8行,所以:黑方块是:4×8=32(个)白方块是:4×8=32(个)再仔细观察图2-2,从上往下看:触的面),没有被涂色.每个小立方体都有6个面,减去没涂色的面数,就得涂色的面数.每个小立方体涂色面数都写在了它的上面,参看图2-6所示.六个面都被涂成了红色.如果沿着图中画出的线切成棱长5.解:同上题(1)8块;(2)24块;(3)24块;第十四层6个为1寸的小正方体. 习题二解答1.解:用10块砖可把墙补好,可以从下往上一层一层地数(发挥想像力):(4)8块;(5)64块.6.解:3面被涂成绿色的小正方体共有16块,就是图2—18中有“点”的那些块(注意最下层有2块看不见).第十五层5个第十六层4个第十七层3个第十八层2个第十九层1个总数1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1=(1+2+3+4+5+6+7+8+9+10)+(9+8+7+6+5+4+3+2+1)=55+45=100(利用已学过的知识计算).(2)方法2:如图3-3所示:从上往下,沿折线数7.解:分类数一数可知,围成小猫的那条绳子比较长.因为求:(1)3面涂成红色的有多少块?(2)2面涂成红色的有多少块?(3)1面涂成红色的有多少块?(4)各面都没有涂色的有多少块?共1+2+2+1+2+2=10(块).小狗身体的外形是由32条直线段和6条斜线段组成;小猫身体的外形是由32条直线段和8条斜线段组成.(5)切成的小正方体共有多少块?5.图2-12所示为棱长4寸的正方体木块,将它的表面全染成蓝色,然后锯成棱长为1寸的小正方体. 如果用铅笔把砖画出来(注意把砖缝对好)就会十分清楚了,如图2-15所示.2.解:仔细观察,同时发挥想像力可知需1号砖2块、2号第三讲数数与计数(二)例1数一数,图3-1中共有多少点?砖1块,也就是共需(如图2-16所示)第一层1个第二层3个第三层5个第四层7个第五层9个问:(1)有3面被染成蓝色的多少块?(2)有2面被染成蓝色的多少块?(3)有1面被染成蓝色的多少块?(4)各面都没有被染色的多少块?(5)锯成的小正方体木块共有多少块?6.图2-13所示为一个由小正方体堆成的“塔”.如果把它的外表面(包括底面)全部涂成绿色,那么当把“塔”完全拆开时,3面被涂成绿色的小正方体有多少块?1+2=3(块).3.解:因为图形复杂,要特别仔细,最好是有次序地按行分类数,再进行统计:解:(1)方法1:如图3-2所示从上往下一层一层数:第六层11个第七层13个第八层15个第九层17个第十层19个总数:1+3+5+7+9+11+13+15+17+19=100(利用已学过的知识计算).(3)方法3:把点群的整体转个角度,成为如图3-4所示的样子,变成为 10 行 10 列的点阵 . 显然点的总数为10×10=100(个).第一层1个7.图2-14中的小狗与小猫的身体的外形是用绳子分别围成的,你知道哪一条绳子长吗?(仔细观察,想办法比较第二层2个第三层3个出来). 4.解:(1)3面涂色的有8块:它们是最上层四个角上的4块和最下层四个角上的4块.(2)2面涂色的有12块:它们是上、下两层每边中间的那块共8块和中层四角的4块.(3)1面涂色的有6块:它们是各面(共有6个面)中心的第四层4个第五层5个第六层6个第七层7个第八层8个那块.(4)各面都没有涂色的有一块:它是正方体中心的那块. (5)共切成了3×3×3=27(块).或是如下计算:8 + 110+11+12+13+14+15+14+13+12+11+10=135(本).方法2:把这摞书形成的图形看成是由一个长方形和一个三角形“尖顶”组成.长方形中的书10×11=110 以 OG 边和 OH,GH 两边构成的三角形仅有:△OGH1个;三角形总数:7+6+5+4+3+2+1=28(个).(2)方法2:显然底边 AH 上的每一条线段对应着一个三角形,而基本线段是 7 条,所以三角形总数为:例51,3,7,15,为止(见表四(2)).三角形中的书1+2+3+4+5+4+3+2+1=25总数:110+25=135(本).2.解:因为棋孔较多,应找出排列规律,以便于计数.仔细观察可知,图中大三角形 ABC 上的棋孔的排列规律是(从上往下数):1,2,3,4,5,6,7,8,9,10,11,12,13,另外还有三个小三角形中的棋孔的排列规律是1,2 , 3 , 4 ,所以棋孔总数是:( 1+2+3+4+5+6+7+8+9+10+11+12+13 ) + ( 1+2+3+4 )×3=91+10×3=121(个).3.解:方法1:按图3-22所示方法数(图中只画出了一部分)7+6+5+4+3+2+1=28(个).6.解:最小的正方形有25个,由4个小正方形组成的正方形16个;由9个小正方形组成的正方形9个;由16个小正方形组成的正方形4个;由25个小正方形组成的正方形1个;正方形总数:25+16+9+4+1=55个.第四讲认识简单数列我们把按一定规律排列起来的一列数叫数列.在这一讲里,我们要认识一些重要的简单数列,还要学习解:规律是:后一个数减前一个数的差是逐渐变大的,差的变化规律是个等比数列,后一个差是前一个差的2倍.另外,原数列的规律也可以这样看:后一个数等于前一个数乘以2再加1,即后一个数=前一个数×2+1.例61,4,9,16,解:这是自然数平方数列,它的每一个数都是自然数的自乘积 .如: 1=1×1, 4=2×2, 9=3×3, 16=4×4, 25=5×5,可见73是第11项.例9一天,爸爸给小明买了一包糖,数一数刚好100块.爸爸灵机一动,又拿来了10个纸盒,接着说:“小明,现在你把糖往盒子里放,我要求你在第一个盒子里放2块,第二个盒子里放4块,第三个盒子里放8块,第四个盒子里放16块,……照这样一直放下去.要放满这10个盒,你说这100块糖够不够?”小朋友,请你帮小明想一想?解:小朋友,你是不是以为100块糖肯定能够放满这10个纸盒的了!下面让我们算一算,看你想得对不对(见表四(3)).表四(3)找出数列的生成规律;学会把数列中缺少的数写出来,最后还要学习解答一些生活中涉及数列知识的实际问题.例1,64=8×8,81=9×9,100=10×10.若写成下面对应起来的形式,就看得更清楚.(1)1,2,3,4(2)1,3,5,7(3)2,4,6,8(4)1,4,7,自然数列:↓↓↓↓↓↓↓↓↓↓自然数平方数列:例7一辆公共汽车有78个座位,空车出发.第一站上1位乘放满10个盒所需要的糖块总数:线段总数:7+6+5+4+3+2+1=28(条). (5) 5,10,15客,第二站上2位,第三站上3位,依此下去,多少站以后,方法2:基本线段共7条,所以线段总数是:7+6+5+4+3+2+1=28(条).4.解:按图3-23的方法数:角的总数:7+6+5+4+3+2+1=28(个).5.解:方法1:(1)三角形是由三条边构成的图形.以 OA 边为左公共边构成的三角形有:△OAB,△OAC,△OAD,△OAE,△OAF,△OAG,△OAH,共7个;以 OB 边为左公共边构成的三角形有:△OBC,△OBD,注意:自然数列、奇数列、偶数列也是等差数列.例21,1,2,3,5,8,解:这叫斐波那契数列,从第三个数起,每个数都是它前面的两个数之和 .这是个有重要用途的数列 .8+13=21,13+21=34.所以:空处依次填:例3找出下面数列的生成规律并填空.车上坐满乘客?(假定在坐满以前,无乘客下车,见表四(1))可见100块糖是远远不够的,还差1946块呢!这可能是你没有想到的吧!其实,数学中还有很多很多奇妙无比的故事呢.习题四1.从1开始,每隔两个数写出一个自然数,共写出十个数来.2.从1开始,每隔六个数写出一个自然数,共写出十个数来.3.在习题一和习题二中,按题目要求写出的两个数列中,除1以外出现的最小的相同的数是几?4.自2开始,隔两个数写一个数:2,5,8, (101)可以看出,2是这列数的第一项,5是第二项,8是第三项,等等.问101是第几个数?5.如图4-1所示,“阶梯形”的最高处是4个正方形叠起来的高度,而且整个图形包括了10个小正方形.如果这个“阶梯△OBE,△OBF,△OBG,△OBH,共6个;以 OC 边为左公共边构成的三角形有:△OCD,△OCE,△OCF,△OCG,△OCH,共5个;以 OD 边为左公共边构成的三角形有:△ODE,△ODF,△ODG,△ODH,共4个;以 OE 边为左公共边构成的三角形有:△OEF,△OEG,△OEH,共3个;以 OF 边为左公共边构成的三角形有:△OFG,△OFH,共2个;1,2,4,8,解:它叫等比数列,它的后一个数是前一个数的 2倍.16×2=32,32×2=64,所以空处依次填:例4.1,2,4,7,的,这些差是个自然数列:方法2:由上表可知,车上的人数是自1开始的连续自然数相加之和,到第几站后,就加到几,所以只要加到出现78时,就可知道是到多少站了,1+2+3+4+5+6+7+8+9+10+11+12=78(人)可见第12站以后,车上坐满乘客.例8如果第一个数是3,以后每隔6个数写出一个数,得到一列数:3,10,17,……,73.这里3叫第一项,10叫第+8×10+9×10=(1+2+3+4+5+6+7+8+9)×107.开学的第一个星期,小明准备发起成立一个趣味数学小组,这时只有他一个人.他决定第二个星期吸收两名新组员,而每个新组员要在进入小组后的下一个星期再吸收两可见两个数列中最小的相同数是22.4.解:经仔细观察后可以看出,这是一个等差数列,后一个数比前一个数大3,即公差是3.下面再多写出几项,以便从中发现规律:(表四(4))①在盒子里有:4+1+4=9(个).②这一串珠子总数是:1+1+1+2+1+3+1+4+1+5+1+6+1+7+1=1+2+3+4+5+6+7+(1+1+1+1+1+1+1+1)=28+8=36(个).第五讲自然数列趣题=45×10=450.另外100这个数的数字和是1+0+0=1.所以,这一百个自然数的数字总和是:450+450+1=901.顺便提请同学们注意的是:一道数学题的解法往往不只一种,谁能寻找并发现出更简洁的解法来,往往标志着谁有更强的数学能力.比如说这道题就还有更简洁的解法,试名新组员,求开学4个星期后,这个小组共有多少组员?8.图4-3所示为细胞的增长方式.就是说一个分裂为两个,再次分裂变为4个,第三次分裂为8个,……照这样下去,问经过10次分裂,一个细胞变成几个?9.图4-4所示是一串“黑”、“白”两色的珠子,其中有一些珠子在盒子里,问再仔细观察可知:第二项=第一项+1×公差,即5=2+1×3;第三项=第一项+2×公差,即8=2+2×3;第四项=第一项+3×公差,即11=2+3×3;第五项=第一项+4×公差,即14=2+4×3;…………由于101=2+33×3;可见,101是第34项,即第34个数.5.解:仔细观察可发现,这个“阶梯形”图形最高处是4个小本讲的习题,大都是关于自然数列方面的计数问题,解题的思维方法一般是运用枚举法及分类统计方法,望同学们能很好地掌握它.例1小明从1写到100,他共写了多少个数字“1”?解:分类计算:“1”出现在个位上的数有:1,11,21,31,41,51,61,71,81,91共10个;“1”出现在十位上的数有:10,11,12,13,14,15,16,17,18,19共10个;试看,你能不能找出来?习题五1.有一本书共200页,页码依次为1、2、3、 (199)200,问数字“1”在页码中共出现了多少次?2.在1至100的奇数中,数字“3”共出现了多少次?3.在10至100的自然数中,个位数字是2或是7的数共有多少个?(1)盒子里有多少珠子?(2)这串珠子共有多少个?正方形时,它就有4个台阶,整个图形包括的小正方形数为:1+2+3+4=10.所以最高处是12个小正方形时,它必有12个台阶,整个图形包括的小正方形数为:1+2+3+4+5+6+7+8+9+10+11+12=78(个).6.解:从上往下数,小宝塔共有六层.仔细观察可发现如下规律(表四(5)):所以六层小立方体的总数为:“1”出现在百位上的数有:100共1个;共计10+10+1=21个.例2一本小人书共100页,排版时一个铅字只能排一位数字,请你算一下,排这本书的页码共用了多少个铅字?解:分类计算:从第1页到第9页,共9页,每页用1个铅字,共用1×9=9(个);从第 10页到第 99页,共 90页,每页用 2个铅字,共用2×90=180(个);第100页,只1页共用3个铅字,所以排100页书的页码共用铅字的总数是:9+180+3=192(个).例3把1到100的一百个自然数全部写出来,用到的所有数4.一本书共200页,如果页码的每个数字都得用一个单独的铅字排版(比如,“150”这个页码就需要三个铅字“1”、“5”和“0”),问排这本书的页码一共需要多少个铅字?5.像“21”这个两位数,它的十位数字“2”大于个位数字“1”,问从1至100的所有自然数中有多少个这样的两位数?6.像“101”这个三位数,它的个位数字与百位数字调换以后,数的大小并不改变,问从100至200之间有多少个这样的三位数?7.像11、12、13这三个数,它们的数位上的各个数字相加之和是(1+1)+(1+2)+(1+3)=9.问自然数列的前20个数的数字之和是多少?8.把1到100的一百个自然数全部写出来,用到的所有数字习题四解答1.解:可以先写出从1开始的自然数列,再按题目要求删1+3+6+10+15+21=56(个).7.解:列表如下:字的和是多少?的和是多少?9.从1到1000的一千个自然数的所有数字的和是多少?去那些不应该出现的数,就得到答案了:习题五解答1.解:分类计算,并将有数字“1”的数枚举出来.即1,4,7,10,13,16,19,22,25,28可以看出,这是一个等差数列,后面一个数比前面一个数“1”出现在个位上的数有:1,11,21,31,41,51,61,71,81,91,大3.2.解:仿习题1,先写前面的几个数如下:4个星期后小组的总人数:1+2+4+8=15(人).101,111,121,131,141,151,161,171,181,191共20个;可以看出,1,8,15,22,……也是一个等差数列,后面8.解:列表如下:解:(见图5—1)先按题要求,把1到100的一百个自然数全部写出来,再分类进行计算:如图5—1所示,宽竖条带中都是个位数字,共有10条,数字之和是:(1+2+3+4+5+6+7+8+9)×10 “1”出现在十位上的数有:10,11,12,13,14,15,16,17,18,19110,111,112,113,114,115,116,117,118,119 共20个;“1”出现在百位上的数有:的一个数比前面的一个数大7.按照这个规律,可以写出所有的10个数:1,8,15,22,29,36,43,50,57,64. 一个细胞经过10次分裂变为1024个.150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199 共100个;数字“1”在1至200中出现的总次数是:(3)前十个点群,所有点的总数是:1+4+7+10+13+16+19+22+25+28=145(个)例2图6—2表示“宝塔”,它们的层数不同,但都是由一样解:(1)数一数,“宝塔”每层包含的方砖块数:可见各层的方砖块数组成自然数平方数列,按此规律,第五层应包含的方砖块数是:20+20+100=140(次).2.解:采用枚举法,并分类计算:“3”在个位上:3,13,23,33,43,53,63,73,83,93 共10个;“3”在十位上:31,33,35,37,39共5个;数字“3”在1至100的奇数中出现的总次数:10+5=15(次).3.解:枚举法:12,17,22,27,32,37,42,47,52,57,62,67,72,77,82,87,92,97共18个.4.解:分段统计,再总计.页数铅字个数1~9共9页1×9=9(个)(每个页码用1个铅字)10~90共90页 2×90=180(个)(每个页码用2个铅字)若再补个0(并不影响题目的答案)还可以写出一个类似的算式:0+99=99;因此共得出50个99.而一个99的数字和是:9+9=18;50个99的数字和是:18×50=900,再加上100这个数的数字和是1+0+0=1,就得出从1到100的所有自然数的数字之和为901.照以上方法列出算式就非常简洁:(9+9)×50+1=901.9.解:(见图5—2)写出1~1000的自然数列的头、尾和中间的几部分,并在1的前面加个“0”;又因为9+9+9=27,1+0+0+0=1,大的小三角形摆成的.仔细观察后,请你回答:(1)五层的“宝塔”的最下层包含多少个小三角形?(2)整个五层“宝塔”一共包含多少个小三角形?(3)从第(1)到第(10)的十个“宝塔”,共包含多少个小三角形?解:(1)数一数“宝塔”每层包含的小三角形数:5×5=25(块).(2)整个五层“宝塔”共包含的方砖块数应是从1开始的前五个自然数的平方数相加之和,即:1+4+9+16+25=55(块).(3)根据上面得到的规律,可求出十层宝塔所包含的方砖的块数:100~199共100页个铅字)3×100=300(个)(每个页码用3 所以从1~1000的所有自然数的所有数字之和为:27×500+1=13501.习题六1.观察图6—4中的点群,请回答:第200页共1页 3×1=3(个)(这页用3个铅字)总数:9+180+300+3=492(个). (1)方框内的点群包含多少个点?(2)第10个点群中包含多少个点?5.解:列表枚举,分类统计:10 1个2021 2个303132 3个个个个第六讲找规律(一)例1观察下面由点组成的图形(点群),请回答:可见1,3,5,7是个奇数列,所以由这个规律猜出第五层应包含的小三角形是9个.(2)整个五层塔共包含的小三角形个数是:1+3+5+7+9=25(个).(3)每个“宝塔”所包含的小三角形数可列表如下:(3)前十个点群中,所有点的总数是多少?个个(1)方框内的点群包含多少个点?(2)第(10)个点群中包含多少个点?由此发现从第(1)到第(10)共十个“宝塔”所包含的小2.观察下面图6—5中的点群,请回答:9个(3)前十个点群中,所有点的总数是多少?三角形数是从1开始的自然数平方数列前十项之和:总数1+2+3+4+5+6+7+8+9=45(个).6.解:枚举法,再总计:101,111,121,131,141,151,161,171,181,191共10个.7.解:分段统计(见表五(1)),再总计:(1)方框内的点群包含多少个点?(2)推测第10个点群中包含多少个点?总的数字相加之和:45+45+10+2=102.8.解:按题意,试着写出从1到100的自然数中的头、尾和中间的几部分:1,2,3,……,48,49,50,51,……,96,97,98,99,100.仔细观察可知:解:数一数可知:前四个点群中包含的点数分别是:1,4,7,10.可见,这是一个等差数列,在每相邻的两个数中,后一个数都比前一个数大3(即公差是3).(1)因为方框内应是第(5)个点群,它的点数应该是10+3=13(个).(2)列表,依次写出各点群的点数,可知第(10)个点群包含有28个点.例3下面的图形表示由一些方砖堆起来的“宝塔”.仔细观察后,请你回答:(1)从上往下数,第五层包含几块砖?(2)整个五层的“宝塔”共包含多少块砖?(3)若另有一座这样的十层宝塔,共包含多少块砖?4.图6—7所示为一堆砖.中央最高一摞是10块,它的左右两边各是9块,再往两边是8块、7块、6块、5块、4块、3块、2块、1块.问:(1)这堆砖共有多少块?(2)如果中央最高一摞是10O 块,两边按图示的方式堆砌,问这堆砖共多少块?3.解:(1)数一数,前四个点群包含的点数分别是:4,8,12,16.不难发现,这是一个等差数列,公差是4,可以推出,第5则看不见的砖块总数为:个点群(即方框中的点群)包含的点数是:16+4=20(个).第七讲找规律(二)例1仔细观察下面的图形,找出变化规律,猜猜在第3组的5.图6—8所示为堆积的方砖,共画出了五层.如果以同样的(2)下面依次写出各点群的点数,可得第10个点群的点数为40. 右框空白格内填一个什么样的图?解:图7—5的?处应填.▲注意观察第1组和第2组,每组都是由三对小图形组成;而每对小图形都是由一个“空白”的和一个“黑色”的小图形组成;而且它俩的排列顺序都是“空白”的在左边,“黑色”的在右边.再按着第1、第2、第3组的顺序观察下去,可发现每对小方式继续堆积下去,共堆积了10层,问:(1)能看到的方砖有多少块?(2)不能看到的方砖有多少块?(3)前十个点群的所有的点数为:4.解:从最简单情况入手,找规律:解:仔细观察图7—1,可知:第1组左边是个大菱形,右边是个小菱形.第2组左边是个大三角形,右边是个小三角形.其规律是:每组中左右两边图形的形状相同,大小不同.都是左边的图形大,右边的图形小.猜出答案:第3组中右边空白格内应填个小长方形.(如图图形在各组中的位置的变化规律:它们都在向左移动,当一对小图形移动到最左边后,下一步它就回到了最右边.按这个移动规律,可知图7—5中第3组“?”处应填:.▲图7—6的?处应填□0. 仔细观察可发现第1组和第2组中间的部分都是由三个小图形构成的.构成的规律是:当你按照第1、第2、第3组的顺序观察时,6个小图形都在向左移动,而且移动的同时又在重新分组和组合,但排列顺序保持不变,当某一个小图形移动到了最左边时,下一步它就回到了最右边.按这个规律可知图7—6中第3组中间“?”例3观察图7—7的变化,请先回答:在方框(4)中应画出怎样的图形?习题六解答1.解:(1)数一数,前四个点群包含的点数分别是:1,5,9,13.不难发现,这是一个等差数列,公差是4,可以推出,第5 个点群包含的点数是:按着这种规律可求得:(1)当中央最高一摞是10块时,这堆砖的总数是:7—3). 再答按(1)、(2)、(3)、……的顺序数下去,第(10)个方框中是怎样的图形?13+4=17(个).(2)下面依次写出各点群的点数,可得第10个点群的点1+2+3+4+5+6+7+8+9+10+9+8+7+6+5+4+3+2+1仔细观察图7—2可知:第1组左边是个圆,而且左半圆涂有阴影线.右边是左边的数为37.(3)前十个点群的所有点数为:=10×10=100(块).(2)当中央最高一摞是100块时,这堆砖的总数是:1+2+3+……+98+99+100+99+98+……+3+2+1=100×100=10000(块).5.解:(1)数一数,前五层中各层可见的方砖数是:1,3,5,7,9不难发现,这是一个奇数列.照此规律,十层中可见的方砖总数是:阴影半圆顺时针旋转后放置的.第2组左边是个等腰三角形,而且左半部(直角三角形)涂有阴影线,右边是左边阴影直角三角形顺时针旋转后放置的.其规律是:每组的右边格内的图形都是左边图形左边的一半,顺时针旋转放置后成为右边图形.猜出答案:第3组中右框内应填个阴影小长方形.如图7—4示.解:先按(1)、(2)、(3)、……的顺序仔细观察,可发现:方框中的箭头是按逆时针方向旋转的;方框中的其他小图形,如□、和也都是按逆时针方向旋转的.也就是说,方框连同内部的所有小图形作为一个整体在按逆时针方向旋转.1+3+5+7+9+11+13+15+17+192.解:(1)数一数,前4个点群包含的点数分别是:1,4,9,16.不难发现,这是一个自然数平方数列.所以第5个点群(即=100(块).(2)再想一想,前五层中,各层不能看到的方砖数是:第一层0块;第二层1块;第三层4块;方框中的点群)包含的点数是:第四层9块;第五层16块;例2按顺序仔细观察图7—5、7—6的形状,猜一猜第3组的5×5=25(个). (2)按发现的规律推出,第十个点群的点数是:10×10=100(个). (3)前十个点群,所有的点数是:。
博识二年级下奥数教材
第一讲 比一比 分一分【知识概要】比较几条线段的线段的长短或一根绳索如何一刀剪成四段等等,这种题目超级有趣,咱们在做题的时候要认真观看,认真试探。
比较线段的长短,可借助方格图数一数,每条线段占几格,横的、竖的、斜的别离比一比,专门快就能够够比出哪条线段长些。
将绳索对折剪开时,别忘了对折一次,有一处相连。
再对折一次,又有两处相连,因此剪开后的段数中必需去掉相连的几处。
例1 以下哪条线长?哪条线最短?(3)(2)(1)练习1:如图,白猫和花猫跑得一样快,谁最先捉到老鼠?花猫白猫老鼠例2 以下图是时港到兴仁、金沙的线路图,是石港到金沙近,仍是石港到兴仁近?石港金沙兴仁练习2:白兔、灰兔跑得一样快,图中,哪只兔子最先吃到萝卜?灰兔白兔例3 一张长方形纸,如何折剩下3个角、4个角、5个角?咱们能够拿三张纸亲自实践实验一下?去去去(3)(2)(1)练习3:一块三角形版,切去其中的一个角,还有几个角?例4 一根绳索对折,再对折,从中间剪一刀,绳索会分成几段?练习4:2根彩带,先对折,再对折,从中间剪开,分成几段?【课后练习】1.小明和小宇用一样的速度同时动身,谁先到公园?小明小宇2.一个三角形纸板,剪去其中一个角,还会剩下1个、2个、3个、4个角?3.一根彩带对折后从中间剪断,一共有几段?家长签名:______时刻:_______第二讲简单的数阵【知识概要】填数阵图要合理安排一种有趣的填数游戏,它的形式多样,有封锁的、辐射型、复合型数阵图。
填数阵图要合理安排。
第一要分析数阵图的内在规律,明确要求,找出冲破口,尽可能想出多种复合要求的填法。
例1把一、二、3、4、五、六、7七个数填入以下图中的七个○内,使每条直线上的和都等于12。
练习1:把一、二、3、五、7、八、9这七个数填入以下图的○里,使每条直线上的和都等于15。
例2把二、3、4、五、六、7、八、9这八个数,别离填入以下图的○里,使每条线边上的三个数的和都等于15。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲机智与顿悟数学需要踏实与严谨,也含有机智与顿悟.例1 在美国把5月2日写成5/2,而在英国把5月2日写成2/5.问在一年之中,在两国的写法中,符号相同的有多少天?解:一年中两国符号相同的日子共有12天.它们是:一月一日 1/1 七月七日 7/7二月二日 2/2 八月八日 8/8三月三日 3/3 九月九日 9/9四月四日 4/4 十月十日 10/10五月五日 5/5 十一月十一日 11/11六月六日 6/6 十二月十二日 12/12注意由差异应当想到统一,有差异就必须有统一,仔细想一想这道题就会有所领悟.例2 有一个老妈妈,她有三个男孩,每个男孩又都有一个妹妹,问这一家共有几口人?解:全家共有5口人.妹妹的年龄最小,她是每一个男孩的妹妹.如果你列出算式:1个妈妈+3个男孩+3个妹妹=7口人那就错了.为什么呢?请你想一想.例3 小明给了小刚2支铅笔,他们俩的铅笔数就一样多了,问小明比小刚多几支铅笔?解:小明比小刚多4支铅笔.注意,可不是多2支;如果只多2支的话,小明给小刚后,小刚就反而比小明多2支,不会一样多了.例4 小公共汽车正向前跑着,售票员对车内的人数数了一遍,便说道,车里没买票的人数是买票的人数的2倍.你知道车上买了票的乘客最少有几人吗?解:最少1人.因为售票员和司机是永远不必买票的,这是题目的“隐含条件”.有时发现“隐含条件”会使解题形势豁然开朗.例5 大家都知道:一般说来,几个数的和要比它们的积小,如2+3+4比2×3×4小.那么请你回答:0、1、2、3、4、5、6、7、8、9这几个数相加的和大还是相乘的积大?解:和大.注意:“0”是个很有特点的数.①0加到任何数上仍等于这个数本身;②0乘以任何数时积都等于0;把它们写出来就是:0+1+2+3+4+5+6+7+8+9=450×1×2×3×4×5×6×7×8×9=0所以,应当重视特例.例6两个数的和比其中一个数大17,比另一个数大15,你知道这两个数都是几?你由此想到一般关系式吗?解:这两个数就是17和15.因为它们的和比15大17,又比17大15.由一个特例联想、推广到一般,是数学思维的特点之一.此题可能引起你如下联想:和-15=17,那么和=15+17.一般和=一个数+另一个加数,或写成:和-一个加数=另一个加数,或写成:被减数-减数=差,也可写成:被减数-差=减数.以上这些都是你从课本上学过的内容,这里不过是把它们联想到一起罢了.学数学要注意联想,学会联想才能融会贯通.例7 小明和小英一同去买本,小明买的是作文本,小英买的是数学本.已知小英买的数学本的本数是小明买的作文本的2倍.又知一本作文本的价钱却是一本数学本的价钱的2倍,请问他俩谁用的钱多?解:他俩花的钱一样多.可以这样想:因为作文本的价钱是数学本的2倍,所以把买作文本的钱用来买数学本,同样多的钱所买到的本数应该是作文本的2倍,这刚好与题意相符.可见两人花的钱一样多.结论是隐含着的,推理就是要把它明明白白地想通,写出来的推理过程就叫“证明”,这是同学们现在就可以知道的.例8 中午放学的时候,还在下雨,大家都盼着晴天.小明对小英说:“已经连续三天下雨了,你说再过36小时会出太阳吗?”小朋友你说呢?解:不会出太阳.因为从中午起再过36个小时正好是半夜.而阴雨天和夜里是不会出太阳的.注意:解题的第一要义是首先明确“问什么”,而且要紧紧抓住“问什么”?“问什么”是思考目标,这就好比小朋友走着来上学,学校是你走路的目的,试想,如果你走路没有目标,结果会怎样?本题迷惑人的地方就是想用阴天下雨把你的注意力从应当思考的目标引开,给你的思维活动造成干扰.学会删繁就简,抓住目标,将会大大地提高你的解题效率.例9 一位画家想订做一个像框,用来装进他的立体画.他画了一张像框的尺寸图拿给你看(右图),请你帮他算算,需要多长的材料才能做好?(画家说,材料粗细要求一样,形状尺寸一定要按图示加工,拐角部分都要做成直角).解:不管多长的材料,像框也无法做成.从每一部分来说,这个图看来是合理的,但从整体上看,这个图是“荒谬的”、“失调的”.用一句普通的话说,就是“有点不对劲的”.请你注意,对现实生活觉得有点不对劲的感觉是创造性的起因.习题一1.如右图所示,若每个圆圈里都有五只蚂蚁,问右图中一共应有多少只蚂蚁?2.一个课外小组活动日,老师进教室一看,来参加活动的学生只占教室里全体人数的一半.老师很生气.你知道这天共来了多少学生吗?3.小林和小蓉两人口袋里各有10元钱.两人去书店买书.买完书后发现,小林花去的钱正好和小蓉剩下的钱数一样多.请问,现在他们两人一共还有多少钱?4.满满一杯牛奶,小明先喝了半杯;然后添水加满,之后再喝去半杯;再一次添水加满,最后把它全部喝完.请问小明一共喝了多少杯牛奶多少杯水?5.小黄和小兰想买同一本书.小黄缺一分钱,小兰缺4角2分钱.若用他俩的钱合买这本书,钱还是不够.请问这本书的价钱是多少?他俩各有多少钱?6.一个骑自行车的人以每小时10公里的速度从一个城镇出发去一个村庄;与此同时,另一个人步行,以每小时5公里的速度从那个村庄出发去那个城镇.经过一小时后他们相遇.问这时谁离城镇较远,是骑车的人还是步行的人?7.有人去买葱,他问多少钱一斤.卖葱的说:“1角钱1斤.”买葱的说:“我要都买了.不过要切开称.从中间切断,葱叶那段每斤2分,葱白那部分每斤8分.你卖不卖?”卖葱的一想:“8分+2分就是1角”.他就同意全部卖了.但是卖后一算账,发现赔了不少钱.小朋友,你知道为什么吗?8.一天鲍勃用赛车送海伦回家.汽车在快车道上急驶.鲍勃看到前面有辆大卡车.灵机一动,突然向海伦提出了一个巧妙的问题.鲍勃说:“海伦,你看!前面那辆大卡车开得多快!但是我们可以超过它.假定现在我们在它后面正好是1500米,它以每分钟1000米的速度前进,而我用每分钟1100米的速度追赶它,我们这样一直开下去,到时候肯定会从后面撞上它.但是,海伦,请你告诉我,在相撞前一分钟,我们与它相距多少米?”聪明的海伦略加思考立刻回答了鲍勃的问题.小朋友,你也能回答吗?9.小明家附近有个梯形公园,公园中有4棵树排成了一行,如图所示.小明每天放学回家都要到公园里去玩一会儿.有一天,他玩着玩着突然想出了一个问题:“能不能把公园分成大小和形状都相同的4块,而且每一块上保留一棵树?”回到家以后,他又和爸爸妈妈一块儿讨论,终于像小明想的那样分好了,小明非常高兴.小朋友,你也回家与爸爸妈妈讨论讨论,看能不能分好?10.小莉在少年宫学画油画.一天,他找到了一块中间有个圆孔的纸板.他想把这块板分成两块,重新组合成一块调色板,如下图,小朋友看该怎么切才好呢?注意:回顾由第9题到第10题的解题思路,这里有一个克服“思维定势”的问题.在做第9题时,你可能费了很大劲,把大梯形这样划分,那样划分,试来试去,最终得到了满意的结果.做完了第9题后这种思考问题的方式方法就可能深深地在你的头脑中扎根了.当你着手解第10题时,你可能还是沿着原来的思路,按原来的思维方式处理面临的新问题,这种情况心理学上就叫做“思维定势”.思维定势不利于创造性的发挥,从这个意义上讲,有人说学习的最大障碍是头脑中已有的东西,是有一定道理的,你在做第10题时,对此大概也有体会了吧!今后要以此为训.对本讲其它各题,在你做完以后也希望你做一些回顾和总结,以便发现些更有价值的东西,使自己变得更聪明起来.第二讲数数与计数从数数与计数中,可以发现重要的算术运算定律.例1 数一数,下面图形中有多少个点?解:方法1:从上到下一行一行地数,见下图.点的总数是:5+5+5+5=5×4.方法2:从左至右一列一列地数,见下图.点的总数是:4+4+4+4+4=4×5.因为不论人们怎样数,点数的多少都是一定的,不会因为数数的方法不同而变化.所以应有下列等式成立:5×4=4×5从这个等式中,我们不难发现这样的事实:两个数相乘,乘数和被乘数互相交换,积不变.这就是乘法交换律.正因为这样,在两个数相乘时,以后我们也可以不再区分哪个是乘数,哪个是被乘数,把两个数都叫做“因数”,因此,乘法交换律也可以换个说法:两个数相乘,交换因数的位置,积不变.如果用字母a、b表示两个因数,那么乘法交换律可以表示成下面的形式:a×b=b ×a.方法3:分成两块数,见右图.前一块4行,每行3个点,共3×4个点.后一块4行,每行2个点,共2×4个点.两块的总点数=3×4+2×4.因为不论人们怎样数,原图中总的点数的多少都是一定的,不会因为数数的方法不同而变化.所以应有下列等式成立:3×4+2×4=5×4.仔细观察图和等式,不难发现其中三个数的关系:3+2=5所以上面的等式可以写成:3×4+2×4=(3+2)×4也可以把这个等式调过头来写成:(3+2)×4=3×4+2×4.这就是乘法对加法的分配律.如果用字母a、b、c代表三个数,那么乘法对加法的分配律可以表示成下面的形式:(a+b)×c=a×c+b×c分配律的意思是说:两个数相加之和再乘以第三数的积等于第一个数与第三个数的积加上第二个数与第三个数的积之和.进一步再看,分配律是否也适用于括号中是减法运算的情况呢?请看下面的例子:计算(3-2)×4和3×4-2×4.解:(3-2)×4=1×4=43×4-2×4=12-8=4.两式的计算结果都是4,从而可知:(3-2)×4=3×4-2×4这就是说,这个分配律也适用于一个数与另一个数的差与第三个数相乘的情况.如果用字母a、b、c(假设a>b)表示三个数,那么上述事实可以表示如下:(a-b)×c=a×c-b×c.正因为这个分配律对括号中的“+”和“-”号都成立,于是,通常人们就简称它为乘法分配律.例2 数一数,下左图中的大长方体是由多少个小长方体组成的?解:方法1:从上至下一层一层地数,见上右图.第一层 4×2个第二层 4×2个第三层 4×2个三层小长方体的总个数(4×2)×3个.方法2:从左至右一排一排地数,见下图.第一排 2×3个第二排 2×3个第三排 2×3个第四排 2×3个四排小长方体的总个数为(2×3)×4.若把括号中的2×3看成是一个因数,就可以运用乘法交换律,写成下面的形式:4×(2×3).因为不论人们怎样数,原图中小长方体的总个数是一定的,不会因为数数的方法不同而变化.把两种方法连起来看,应有下列等式成立:(4×2)×3=4×(2×3).这就是说在三个数相乘的运算中,改变相乘的顺序,所得的积相同.或是说,三个数相乘,先把前两个数相乘再乘以第三个数,或者先把后两个数相乘,再去乘第一个数,积不变,这就是乘法结合律.如果用字母a、b、c表示三个数,那么乘法结合律可以表示如下:(a×b)×c=a ×(b×c).巧妙地运用乘法交换律、分配律和结合律,可使得运算变得简洁、迅速.从数数与计数中,还可以发现巧妙的计算公式.例3 数一数,下图中有多少个点?解:方法1:从上至下一层一层地数,见下图.总点数=1+2+3+4+5+6+7+8+9=45.方法2:补上一个同样的三角形点群(但要上下颠倒放置)和原有的那个三角形点群共同拼成一个长方形点群,则显然有下式成立(见下图):三角形点数=长方形点数÷2因三角形点数=1+2+3+4+5+6+7+8+9而长方形点数=10×9=(1+9)×9代入上面的文字公式可得:1+2+3+4+5+6+7+8+9=(1+9)×9÷2=45.进一步把两种方法联系起来看:方法1是老老实实地直接数数.方法2可以叫做“拼补法”.经拼补后,三角形点群变成了长方形点群,而长方形点群的点数就可以用乘法算式计算出来了.即1+2+3+4+5+6+7+8+9=(1+9)×9÷2.这样从算法方面讲,拼补法的作用是把一个较复杂的连加算式变成了一个较简单的乘除算式了.这种方法在700多年前的中国的古算书上就出现了.再进一步,若脱离开图形(点群)的背景,纯粹从数的方面找规律,不难发现下述事实:这个等式的左边就是从1开始的连续自然数相加之和,第一个数1又叫首项,最后一个数9叫末项,共有9个数又可以说成共有9项,这样,等式的含义就可以用下面的语言来表述:从1开始的连续自然数前几项的和等于首项加末项之和乘以项数的积的一半.或是写成下面的文字式:和=(首项+末项)×项数÷2这个文字式通常又叫做等差数列求和公式.例4 数一数,下图中有多少个点?解:方法1:从上至下一层一层地数,见下图:总点数=2+3+4+5+6=20.方法2:补上一个同样的梯形点群,但要上下颠倒放置,和原图一起拼成一个长方形点群如下图所示:由图可见,有下列等式成立:梯形点数=长方形点数÷2.因为梯形点数=2+3+4+5+6而长方形点数=8×5=(2+6)×5代入上面的文字式,可得:2+3+4+5+6=(2+6)×5÷2与例1类似,我们用拼补法得到了一个计算梯形点群总点数的较为简单的公式.再进一步,若脱离开图形(点群)的背景纯粹从数的方面找找规律,不难发现下述事实:这个等式的左边就是一个等差数列的求和式,它的首项是2,末项是6,公差是1,项数是5.这样这个等式的含义就可以用下面的语言来表述:等差数列前几项的和等于首项加末项之和乘以项数的积的一半.写成下面较简化的文字式:和=(首项+末项)×项数÷2这就是等差数列的求和公式.例5 数一数,下图中有多少个小三角形?解:方法1:从上至下一层一层地数,见下图.小三角形总数=1+3+5+7=16个.方法2:补上一个同样的图形,但要上下颠倒放置、和原来的一起拼成一个大平行四边形如下图所示.显然平行四边形包含的小三角形个数等于原图中的大三角形所包含的小三角形个数的两倍,即下式成立.大三角形中所含=平行四边形所含÷2平行四边形所含=8×4=(1+7)×4(个)大三角形中所含=1+3+5+7=16代入上述文字式:1+3+5+7=(1+7)×4÷2这样,我们就得到了一个公式:小三角形个数=(第一层的数+最末层的数)×层数÷2脱离开图形的背景,纯粹从数的方面进行考察,找找规律,不难发现下述事实:等式左边就表示一个等差数列的前几项的和,它的首项是1,末项是7,公差是2,项数是4.这样这个等式的含义也就可以用下面的语言来表述:等差数列前几项的和等于首项加末项之和乘以项数之积的一半.写成较简单的文字式:和=(首项+末项)×项数÷2.习题二下列各题至少用两种方法数数与计数.1.数一数,下图中有多少个点?2.数一数,下图中的三角形点群有多少个点?3.数一数,下图中有多少个小正方形?4.数一数,下图中共有多少个小三角形?第三讲速算与巧算利用上一讲得到的乘法运算定律和等差数列求和公式,可以使计算变得巧妙而迅速.例1 2×4×5×25×54=(2×5)×(4×25)×54 (利用了交换=10×100×54 律和结合律)=54000例2 54×125×16×8×625=54×(125×8)×(625×16)(利用了=54×1000×10000 交换律和结合律)=540000000例3 5×64×25×125 将64分解为2、4、8=5×(2×4×8)×25×125 的连乘积是关键一=(5×2)×(4×25)×(8×125)步.=1000000例5 37×48×625=37×(3×16)×625 注意37×3=111=(37×3)×(16×625)=111×10000=1110000例6 27×25+13×25 逆用乘法分配律,=(27+13)×25 这样做叫提公因数=40×25=1000例7 123×23+123+123×76 注意123=123×1;再=123×23+123×1+123×76 提公因数123=123×(23×1+76)=123×100=12300例8 81+991×9 把81改写(叫分解因=9×9+991×9 数)为9×9是为了下=(9+991)×9 一步提出公因数9=1000×9=9000例9 111×99=111×(100-1)=11100-111=10989例10 23×57-48×23+23=23×(57-48+1)=23×10=230例11求1+2+3+…+24+25的和.解:此题是求自然数列前25项的和.方法1:利用上一讲得出的公式和=(首项+末项)×项数÷21+2+3+…+24+25=(1+25)×25÷2=26×25÷2=325方法2:把两个和式头尾相加(注意此法多么巧妙!)想一想,这种头尾相加的巧妙求和方法和前面的“拼补法”有联系吗?例12求8+16+24+32+…+792+800的和.解:可先提公因数8+16+24+32+…+792+800=8×(1+2+3+4+…+99+100)=8×(1+100)×100÷2=8×5050=40400例13某剧院有25排座位,后一排都比前一排多2个座位,最后一排有70个座位,问这个剧院一共有多少个座位?解:由题意可知,若把剧院座位数按第1排、第2排、第3排、…、第25排的顺序写出来,必是一个等差数列.那么第1排有多少个座位呢?因为:第2排比第1排多2个座位,2=2×1第3排就比第1排多4个座位,4=2×2第4排就比第1排多6个座位,6=2×3这样,第25排就比第1排多48个座位,48=2×24.所以第1排的座位数是:70-48=22.再按等差数列求和公式计算剧院的总座位数:和=(22+70)×25÷2=92×25÷2=1150.习题三计算下列各题:1.4×135×252.38×25×63.124×254.132476×1115.35×53+47×356.53×46+71×54+82×547.①11×11 ②111×111③1111×1111 ④11111×11111⑤111111111×1111111118.①12×14 ②13×17③15×17 ④17×18⑤19×15 ⑥16×129.①11×11 ②12×12③13×13 ④14×14⑤15×15 ⑥16×16⑦17×17 ⑧18×18⑨19×1910.计算下列各题,并牢记答案,以备后用.①15×15 ②25×25③35×35 ④45×45⑤55×55 ⑥65×65⑦75×75 ⑧85×85⑨95×9511.求1+2+3+…+(n-1)+n之和,并牢记结果.12.求下列各题之和.把四道题联系起来看,你能发现具有规律性的东西吗?①1+2+3+…+10②1+2+3+…+100③1+2+3+…+1000④1+2+3+…+1000013.求下表中所有数的和.你能想出多少种不同的计算方法?第四讲数与形相映形和数的密切关系,在古代就被人们注意到了.古希腊人发现的形数就是非常有趣的例子.例1最初的数和最简的图相对应.这是古希腊人的观点,他们说一切几何图形都是由数产生的.例2我国在春秋战国时代就有了“洛图”(见下图).图中也是用“圆点”表示数,而且还区分了偶数和奇数,偶数用实心点表示,奇数用空心点表示.你能把这张图用自然数写出来吗?见下图所示,这个图又叫九宫图.例3古希腊数学家毕达哥拉斯发现了“形数”的奥秘.比如他把1,3,6,10,15,…叫做三角形数.因为用圆点按这些数可以堆垒成三角形,见下图.毕达哥拉斯还从圆点的堆垒规律,发现每一个三角形数,都可以写成从1开始的n个自然数之和,最大的自然数就是三角形底边圆点的个数.第一个数:1=1第二个数:3=1+2第三个数:6=1+2+3第四个数:10=1+2+3+4第五个数:15=1+2+3+4+5…第n个数:1+2+3+4+5+…+n指定的三角形数.比如第100个三角形数是:例4毕达哥拉斯还发现了四角形数,见下图.因为用圆点按四角形数可以堆垒成正方形,因此它们最受毕达哥拉斯及其弟子推崇.第一个数:1=12=1第二个数:4=22=1+3第三个数:9=32=1+3+5第四个数:16=42=1+3+5+7第五个数:25=52=1+3+5+7+9…第n个数:n2=1+3+5+9+…+(2n-1).四角形数(又叫正方形数)可以表示成自然数的平方,也可以表示成从1开始的几个连续奇数之和.奇数的个数就等于正方形的一条边上的点数.例5类似地,还有四面体数见下图.仔细观察可发现,四面体的每一层的圆点个数都是三角形数.因此四面体数可由几个三角形数相加得到:第一个数:1第二个数:4=1+3第三个数:10=1+3+6第四个数:20=1+3+6+10第五个数:35=1+3+6+10+15.例6五面体数,见下图.仔细观察可以发现,五面体的每一层的圆点个数都是四角形数,因此五面体数可由几个四角形数相加得到:第一个数:1=1第二个数:5=1+4第三个数:14=1+4+9第四个数:30=1+4+9+16第五个数:55=1+4+9+16+25.例7按不同的方法对图中的点进行数数与计数,可以得出一系列等式,进而可猜想到一个重要的公式.由此可以使人体会到数与形之间的耐人导味的微妙关系.方法1:先算空心点,再算实心点:22+2×2+1.方法2:把点图看作一个整体来算32.因为点数不会因计数方法不同而变,所以得出:22+2×2+1=32.方法1:先算空心点,再算实心点:32+2×3+1.方法2:把点图看成一个整体来算:42.因为点数不会因计数方法不同而变,所以得出:32+2×3+1=42.方法1:先算空心点,再算实心点:42+2×4+1.方法2:把点图看成一个整体来算52.因为点数不会因计数方法不同而变,所以得出:42+2×4+1=52.把上面的几个等式连起来看,进一步联想下去,可以猜到一个一般的公式:22+2×2+1=3232+2×3+1=4242+2×4+1=52…n2+2×n+1=(n+1)2.利用这个公式,也可用于速算与巧算.如:92+2×9+1=(9+1)2=102=100992+2×99+1=(99+1)2=1002=10000.习题四1.第25个三角形数是几?2.第50个三角形数是几?3.第1000个三角形数是几?4.三角形数的奇偶性是很有规律的,想一想,这是为什么?5.观察下列图形,你能发现什么?6.第99个与第100个三角形数的和等于多少?7.每一个四角形数(或叫正方形数)(除1外)都能拆成两个三角形数吗?比如,100是哪两个三角形数的和?8.第8个三角形数恰是第6个四角形数,因为你还能试着找到一个这样的例子吗?(这事比较困难)9.请你试着画一画五角形数和六角形数的图形.并试着把第n个五(六)角形数拆成以1为首页、有n项的等差数列之和的形式.10.写出前10个四面体数.11.写出前10个五面体数.12.按不同的方法对下图中的点进行数数与计数,得出一系列等式,进而猜想出一个公式来,从中体会数与形之间的微妙关系.如:因为点数不会因计数方法不同而变,所以得出:请你照此继续做下去.(可参考本讲例7)13.模仿例7,用不同的方法分别对下两图中的点进行数数与计数,先得出一系列等式,进而猜想出一个重要的公式.第五讲一笔画问题一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图)这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图)经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题:如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢?能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成?先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了.首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等.其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图)(1)两个点,一条线.每个点都只与一条线相连.(2)三个点.两个端点都只与一条线相连,中间点与两条线连.第一组的两个图都能一笔画出来.(但注意第(2)个图必须从一个端点画起)第二组(见下图)(1)五个点,五条线.A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连.(2)六个点,七条线.(“日”字图)A点与B点各与三条线相连,其他点都各与两条线相连.第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B 点),而终点则定是B点(或A点).第三组(见下图)(1)四个点,三条线.三个端点各与一条线相连,中间点与三条线相连.(2)四个点,六条线.每个点都与三条线相连.(3)五个点,八条线.点O与四条线相连,其他四个顶点各与三条线相连.第三组的三个图形都不能一笔画出来.第四组(见下图)(1)这个图通常叫五角星.五个角的顶点各与两条线相连,其他各点都各与四条线相连.(2)由一个圆及一个内接三角形构成.三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线).(3)一个正方形和一个内切圆构成.正方形的四个顶点各与两条线相连,四个交点各与四条线相连.(四条线是两条线段和两条弧线).第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图)(1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连.(2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连.第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来.。