2018-2019年滁州市初中分班数学模拟试卷(53)附详细答案
2024年9月安徽省滁州市小升初数学分班思维应用题模拟试卷四含答案解析
2024年9月安徽省滁州市小升初分班数学思维应用题模拟试卷四含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.学校买来640本科技书,分给六年级100本,其余的按2:3:4分给三、四、五年级.三、四、五年级各分到多少本?2.小华的爸爸1分钟可以剪好5只自己的指甲.他在5分钟内可以剪好多少只自己的指甲?3.一辆车从甲地开往乙地,山路占全程的20%,上山路占山路的40%,如果上山路是16千米,则全程是多少千米?4.自开展新教育实验以来,四年级的学生掀起了读书热潮。
小亮看一本315页的书,前3天看了135页。
照这样计算,余下的还要几天才能看完?5.甲、乙两辆汽车同时从同一地点往相反方向开出,3小时后两辆车540千米。
甲车的速度是95千米/时,乙车的速度是多少千米/时?(列方程解答)6.一项工程,计划20天完工,实际16天完成,工作时间缩短了百分之几?7.六年级原有学生126人,其中女生占总人数的4/9,后来又转进了几个女生,这时男生和女生的人数比是7:6.现在女生有多少人?8.实验小学五年级有学生539人.男生人数是女生人数的1.2倍.男、女生各有多少人?9.一桶油连桶带油共重200斤,用去一半的油后,连桶带油重110斤,油一共有多重?桶有多重?10.一个长50厘米,宽40厘米,高30厘米的长方体玻璃缸,水深20厘米,如果把一块不规则的石块放入水中并淹没,量得水深25厘米,这块石块的体积是多少?11.甲、乙两辆汽车同时从相距345千米的两地相对开出,经过2.5小时相遇,甲车比乙车每小时多行12千米,甲车和乙车每小时行的速度分别是多少千米?(列方程解)12.两块小麦田,第一块地36公顷,比第二块地多3/4,比第二块地多多少公顷?13.甲、乙、丙三人都在银行里都有存款,乙的存款比甲的2倍少100元,丙的存款比甲、乙两人存款数和少300元,甲的存款是丙的2/5,求甲、乙、丙三人各有存款多少元?14.建筑工地运来20车水泥,每车45袋,每袋水泥重50千克.一共运来水泥多少千克?15.李明看一本书,第一天看了55页,第二天看了65页,两天看的页数正好占总页数的60%,这本书共有多少页?16.商店从工厂批发80台计算机,每台150元,要付给工厂多少元?如果按每台170元先卖出70台后,开始降价按每台148元销售完,商店是赚钱还是亏损?17.甲乙两站相距768千米,一列火车每小时行46千米,另一列火车每小时行50千米,两车同时从甲乙两站相对开出,几小时相遇?18.一件上衣46元,一条裤子36元.把一件上衣和一条裤子配成一套,买15套这样的衣服,应付多少元?19.一辆汽车从A地开向B地,行驶了129千米,正好是全程的3/5.A、B两地相距多少千米?20.一本故事书286页,小明3天看了54页,照这样的速度,小明连续看了7天,第8天小明应从第几页看起?21.两辆汽车同时从相距250千米的两地相对开出,经过2.5小时后,还相距25千米,甲车每小时行48千米,乙车每小时行多少千米?22.植树节同学进行植树活动,五年级栽了186棵,比四年级栽的3倍少18棵,四年级栽树多少棵?23.实验小学四、五年级共挖中草药175.6千克.四年级有45人,平均每人挖1.5千克;五年级有47人,平均每人挖多少千克?24.甲、乙两个商场推出迎新年优惠活动,甲商场规定:“每满200元减101元.”乙商场规定:“每满101减50元.”小明的爸看中了一双标价699元的运动鞋和一件标价910的羊毛衫,这两类商品在两个商场都有销售,问:怎么买更便宜呢?共需多少钱?请说明理由.25.甲乙两车从两地同时相对开出,甲车的速度比乙车快,5小时后在距离中点30千米处相遇.甲车每小时行60千米,乙车每小时行多少千米?26.六年级有24名学生参加电脑比赛,占五年级学生人数的1/7,五年级人数占全校学生的8/61,全校学生有多少人?27.同学们做了3种不同颜色的花.每种25朵,布置教室用了一些后,还剩28朵.布置教室用去多少朵?28.甲乙两人从东西两村同时相向而行,甲每小时行6.2千米,乙每小时行4.8千米.当他们在途中相遇时,甲比乙多走了6.3千米,东西两村相距多少米?29.一个修路队修筑一段公路,第一天修了74.8米,第二天比第一天多修8.2米,第三天比第二天少11.6米,第三天修了多少米?30.一项工程,甲队独做10天完成,乙队独做16天完成,甲队的工作效率比乙队快百分之几?31.商店运来苹果橘子各40筐.已知每筐苹果重15千克,每筐橘子重20千克.这两种水果共重多少千克?32.五年级的学生去旅游.四年级有389人,五年级有403人,他们乘坐定员36人的大客车,需要多少辆这样的车?33.甲乙两城相距435千米,两辆摩托车同时从两城相对开出,已知一辆摩托车每小时行84千米,另一辆摩托车每小时行90千米.多少小时后两车相遇?34.每年的3月12日是我国的植树节.五年级2个班和六年级3个班的同学参加植树.五年级一共植树46棵,六年级一共植树87棵.(列出算式后,用竖式计算)①五年级平均每个班植树多少棵?②六年级平均每个班植树多少棵?还能提出什么问题?35.五年级三班的同学既可以平均分成8个组,又可以平均分成6个组,五年级三班至少有多少人(每组不少于4人)36.做一个无盖的木箱,长8分米,宽5分米,高4分米,做这样一个木箱要用木板多少平方分米.37.师徒两人同时给商品打包装,师傅每小时打45个,徒弟每小时打15个.经过几小时师傅比徒弟正好多打120个包装?(用方程解)38.某养鸡场的母鸡只数是公鸡只数的6倍,后来公鸡、母鸡各增加60只,母鸡的只数变成公鸡只数的4倍.则养鸡场原来一共养了多少只鸡?39.某商店上午卖出玩具车18辆,下午卖出同样的玩具车25辆,下午比上午多收入122.5元.这一天共收人多少元?40.某蔬菜公司用42千克绿豆生出了252千克豆芽。
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析
2018-2019学年七年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共计36分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的序号填在括号内)1.(3分)在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数分析:本题可根据数轴的定义,原点表示的数是0,原点右边的点表示的数是正数,都是非负数.解答:解:依题意得:原点及原点右边所表示的数大于或等于0.故选D.点评:解答此题只要知道数轴的定义即可.在数轴上原点左边表示的数为负数,原点右边表示的数为正数,原点表示数0.2.(3分)当x=1时,代数式2x+5的值为()A. 3 B. 5 C.7 D.﹣2考点:代数式求值.专题:计算题.分析:将x=1代入代数式2x+5即可求得它的值.解答:解:当x=1时,2x+5=2×1+5=7.故选:C.点评:本题考查代数式的求值问题,直接把值代入即可.3.(3分)计算:﹣32+(﹣2)3的值是()A.0 B.﹣17 C.1D.﹣1考点:有理数的乘方.专题:计算题.分析:根据有理数的乘方法则计算:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0.解答:解:﹣32+(﹣2)3=﹣9﹣8=﹣17.故选B.点评:本题考查了有理数的乘方法则,解题的关键是牢记法则,此题比较简单,易于掌握.4.(3分)x增加2倍的值比x扩大5倍少3,列方程得()A.2x=5x+3 B.2x=5x﹣3 C.3x=5x+3 D.3x=5x﹣3考点:由实际问题抽象出一元一次方程.专题:和差倍关系问题.分析:首先理解题意,x增加2倍即是3x,x扩大5倍即为5x,从而列出方程即可.解答:解:因为x增加2倍的值应为x+2x=3x,x扩大5倍即为5x,所以由题意可得出方程:3x=5x﹣3.故选D.点评:此题的关键是理解增加和扩大的含义,否则很容易出错.5.(3分)方程2x+a﹣4=0的解是x=﹣2,则a等于()A.﹣8 B.0 C. 2 D.8考点:方程的解.分析:方程的解就是能够使方程左右两边相等的未知数的值,即利用方程的解代替未知数,所得到的式子左右两边相等.解答:解:把x=﹣2代入方程2x+a﹣4=0,得到:﹣4+a﹣4=0解得a=8.故选D.点评:本题主要考查了方程解的定义,已知x=﹣2是方程的解实际就是得到了一个关于a 的方程.6.(3分)如果a与b互为相反数,x与y互为倒数,则代数式|a+b|﹣2xy值为()A.0 B.﹣2 C.﹣1 D.无法确定考点:有理数的减法;相反数;倒数.专题:计算题.分析:根据相反数的定义:a与b互为相反数,必有a+b=0,即|a+b|=0;x与y互为倒数,则xy=1;据此代入即可求得代数式的值.解答:解:∵a与b互为相反数,∴必有a+b=0,即|a+b|=0;又∵x与y互为倒数,∴xy=1;∴|a+b|﹣2xy=0﹣2=﹣2.故选B.点评:主要考查相反数、倒数的定义.相反数的定义:只有符号相反的两个数互为相反数,0的相反数是0.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.本题所求代数式中的字母表示的数没有明确告知,而是隐含在题设中,首先应从题设中获取代数式a+b和xy的值,然后利用“整体代入法”求代数式的值.7.(3分)减去2﹣x等于3x2﹣x+6的整式是()A.3x2﹣2x+8 B.3x2+8 C.3x2﹣2x﹣4 D.3x2+4考点:整式的加减.分析:设该整式为A,则A﹣(2﹣x)=3x2﹣x+6,求出A即可.解答:解:设该整式为A,∵A减去2﹣x等于3x2﹣x+6,∴A﹣(2﹣x)=3x2﹣x+6,∴A=3x2﹣x+6+2﹣x=3x2﹣2x+8.故选A.点评:本题考查的是整式的加减,熟知整式加减的法则是解答此题的关键.8.(3分)在①近似数39.0有三个有效数字;②近似数2.5万精确到十分位;③如果a<0,b>0,那么ab<0;④多项式a2﹣2a+1是二次三项式中,正确的个数有()A.1个B.2个C.3个D. 4个考点:不等式的性质;近似数和有效数字;多项式.分析:根据有效数字、精确度的定义,有理数的乘法符号法则及多项式的次数和项数的定义作答.解答:解:①正确;②近似数2.5万精确到千位,错误;③正确;④正确.故选C.点评:本题主要考查了有效数字、精确度、多项式的次数和项数的定义,以及有理数的乘法符号法则.有效数字:在四舍五入后的近似数中,从左边第一个不是0的数字起到右边最后一个精确的数位止,所有的数字都叫它的有效数字.精确度:一个近似数,四舍五入到哪一位,就叫精确到哪一位.有理数的乘法符号法则:两数相乘,同号得正,异号得负.多项式的次数:一个多项式中,次数最高项的次数叫做这个多项式的次数.多项式的项数:一个多项式含有几项,就叫几项式.9.(3分)一批电脑进价为a元,加上20%的利润后优惠8%出售,则售出价为()A.a(1+20%)B.a(1+20%)8% C.a(1+20%)(1﹣8%)D.8%a考点:列代数式.分析:此题要根据题意列出代数式.可先求加上20%的利润价格后,再求出又优惠8%的价格.解答:解:依题意可知加上20%的利润后价格为a(1+20%)又优惠8%的价格是a(1+20%)(1﹣8%)∴售出价为a(1+20%)(1﹣8%).故选C.点评:读懂题意,找到关键语列出代数式.需注意用字母表示数时,在代数式中出现的乘号,通常简写做“•”或者省略不写,数字与数字相乘一般仍用“×”号.10.(3分)已知有理数a,b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.a﹣b>0 C.a﹣1>0 D.b+1>0考点:数轴.分析:根据数轴上a|的位置可以判定a与b大小与符号;然后据此来求a、b与1的大小比较.解答:解:根据图示知:b<﹣1<0<a<1;∴a+b<0,a﹣b>0,a﹣1<0,b+1<0.故选B.点评:本题考查了数轴.解答本题时,需注意:b在﹣1的左边,a在1的左边.11.(3分)个位数字为a,十位数字为b,则这个两位数可用代数式表示为()A.ab B.ba C.10a+b D. 10b+a考点:列代数式.分析:两位数=10×十位数字+个位数字,把相关字母代入即可求解.解答:解:∵个位上的数字是a,十位上的数字是b,∴这个两位数可表示为10b+a.故选:D.点评:本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.12.(3分)小明在一张日历上圈出一个竖列且相邻的三个日期,算出它们的和是48,则这三天分别是()A.6,16,26 B.15,16,17 C.9,16,23 D.不确定考点:一元一次方程的应用.专题:数字问题.分析:竖列且相邻的三个日期,则上边的数总比下边的数小7,根据这个关系可以设中间的数是x,列出方程求解.解答:解:设中间的数是x,则上边的数是x﹣7,下边的数是x+7,根据题意列方程得:x+(x﹣7)+(x+7)=48解得:x=16,x﹣7=9,x+7=23这三天分别是9,16,23.故选C.点评:解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.二、填空题(本大题共10小题,每题3分,共计30分.不需写出解答过程,请把答案直接填写在横线上)13.(4分)单项式的系数是,次数是3.考点:单项式.专题:应用题.分析:根据单项式系数、次数的定义来求解.单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数.解答:解:单项式的数字因数是,所有字母的指数和为1+2=3,所以它的系数是,次数是3.故答案为,3.点评:确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.本题注意π不是字母,是一个数,应作为单项式的数字因数.14.(4分)比较大小:﹣3<2;﹣>﹣|﹣|.考点:有理数大小比较.专题:计算题.分析:根据正数大于一切负数进行比较即可;先比较两个数的绝对值的大小,再根据两个负数相比较,绝对值大的反而小比较即可.解答:解:﹣3<2;|﹣|=,﹣|﹣|=﹣,|﹣|=,=,=,<,∴﹣>﹣|﹣|.故答案为:<,>.点评:本题考查了有理数的大小比较,熟记正数大于一切负数,两个负数相比较,绝对值大的反而小是解题的关键.15.(4分)已知:2x+3y=4,则代数式(2x+3y)2+4x+6y﹣2的值是22.考点:代数式求值.专题:整体思想.分析:把2x+3y的值整体代入所求代数式求值即可.解答:解:当2x+3y=4时,原式=(2x+3y)2+2(2x+3y)﹣2=42+2×4﹣2=22.点评:代数式求值以及整体代入的思想.16.(4分)若单项式与﹣2x m y3是同类项,则m﹣n的值为﹣1.考点:同类项.专题:计算题.分析:此题的切入点是由同类项列等式.由已知与﹣2x m y3是同类项,根据其意义可得,x2=x m,y n=y3,所以能求出m,n的值.解答:解:∵单项式与﹣2x m y3是同类项,∴x2=x m,y n=y3,∴m=2,n=3,则m﹣n=2﹣3=﹣1,故答案为:﹣1点评:此题考查了学生对同类项的理解和掌握.关键是根据题意得出关系式x2=x m,y n=y3求得m,n的值.17.(4分)如果3x5a﹣2=﹣6是关于x的一元一次方程,那么a=,方程的解x=﹣2.考点:一元一次方程的定义.专题:计算题.分析:若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可得出关于m的方程,继而可求出m的值.解答:解:由一元一次方程的特点得5a﹣2=1,解得:a=,故原方程可化为3x=﹣6,解得:x=﹣2.点评:判断一元一次方程,第一步先看是否是整式方程,第二步化简后是否只含有一个未知数,且未知数的次数是1,此类题目可严格按照定义解题.18.(4分)2008年北京奥运会火炬接力传递距离约为137000千米,将137000用科学记数法表示为 1.37×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:137000=1.37×105,故答案为:1.37×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.19.(4分)某股票星期一收盘时每股18元,星期二收盘每股跌了1.8元,星期三收盘每股涨了1.1元,则星期三的收盘价为每股17.3元.考点:有理数的加减混合运算.专题:应用题.分析:根据股票的涨跌信息,转化为数学问题,这里根据具有相反意义的量规定一个为正,则另一个为负,再运用有理数的加减混合运算规则.就可以容易的得到答案.解答:解:星期三的收盘价为每股18+(﹣1.8)+1.1=17.3元.故答案为:17.3.点评:考查了有理数的加减混合运算.有理数加减混合运算的方法:有理数加减法统一成加法.方法指引:(1)在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.(2)转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.20.(4分)按下面程序计算:输入x=﹣3,则输出的答案是﹣12.考点:代数式求值.专题:图表型.分析:根据程序写出运算式,然后把x=﹣3代入进行计算即可得解.解答:解:根据程序可得,运算式为(x3﹣x)÷2,输入x=﹣3,则(x3﹣x)÷2=[(﹣3)3﹣(﹣3)]÷2=(﹣27+3)÷2=﹣12所以,输出的答案是﹣12.故答案为:﹣12.点评:本题考查了代数式求值,根据题目提供程序,准确写出运算式是解题的关键.21.(4分)若m、n满足|m﹣2|+(n+3)2=0,则n m=9.考点:非负数的性质:偶次方;非负数的性质:绝对值.分析:根据非负数的性质可求出m、n的值,再将它们代入n m中求解即可.解答:解:∵m、n满足|m﹣2|+(n+3)2=0,∴m﹣2=0,m=2;n+3=0,n=﹣3;则n m=(﹣3)2=9.点评:本题考查了非负数的性质:有限个非负数的和为零,那么每一个加数也必为零.22.(4分)有两桶水,甲桶水装有180升,乙桶装有150升,要使两桶水的重量相同,则甲桶应向乙桶倒水15升.考点:一元一次方程的应用.专题:应用题.分析:要求甲桶应向乙桶倒水多少,可先设甲桶应向乙桶倒水x升,然后根据甲桶﹣倒水=乙桶+倒水这个等量关系列出方程求解.解答:解:设甲桶应向乙桶倒水x升.则180﹣x=150+x解得:x=15故填15.点评:此题的关键是找出等量关系,即:甲桶﹣倒水=乙桶+倒水.三、解答题(本大题共5小题,23至28小题每题8分,共计84分,请在指定区域内作答,解答时应写出必要文字说明、证明过程或演算步骤.)23.(16分)(1)1+(﹣1)+4﹣4(2)﹣14+(1﹣0.5)××|2﹣(﹣3)2|(3)6a2+4ab﹣4(2a2+ab)(4)2(a2﹣2ab﹣b2)+(a2+3ab+3b2)(5)3x﹣(2x+7)=32(6)=1﹣.考点:有理数的混合运算;整式的加减;解一元一次方程.专题:计算题.分析:(1)原式结合后,相加即可得到结果;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(3)原式去括号合并即可得到结果;(4)原式去括号合并即可得到结果;(5)方程去括号,移项合并,将x系数化为1,即可求出解;(6)方程去分母,去括号,移项合并,将x系数化为1,即可求出解.解答:解:(1)原式=6﹣6=0;(2)原式=﹣1+××7=﹣1+=;(3)原式=6a2+4ab﹣8a2﹣2ab=﹣2a2+2ab;(4)原式=2a2﹣4ab﹣2b2+a2+3ab+3b2=3a2﹣ab+b2;(5)方程去括号得:3x﹣2x﹣7=32,移项合并得:x=41;(6)去分母得:10x+5=15﹣3x+3.移项合并得:13x=13,解得:x=1.点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.24.(14分)有这样一道计算题:“计算2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2的值,其中x=,y=﹣1”,王聪同学把“x=”错看成“x=﹣”,但计算结果仍正确,许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的,你知道其中的道理吗?请加以说明.考点:整式的混合运算—化简求值.分析:先将2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y2﹣x3+3x2y﹣y2合并同类项,再进行分析.解答:解:将原式合并同类项得﹣2y2,此代数式与x的取值无关,所以王聪将“x=”错看成“x=﹣”,计算结果仍正确;又因为当y取互为相反数时,﹣2y2的值相同,所以许明同学把“y=﹣1”错看成“y=1”,计算结果也是正确的.点评:本题是一道生活问题,解答时要读出题中的隐含条件:把“x=”错看成“x=﹣”,但计算结果仍正确,即可考虑此代数式与x的取值无关,进而想到先合并同类项.25.(16分)某自行车厂计划一周生产自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产记为正、减产记为负):星期一21 二三四五六日增减+5 ﹣2 ﹣4 +13 ﹣10 +16 ﹣9(1)根据记录的数据可知该厂星期四生产自行车多少辆;(2)根据记录的数据可知该厂本周实际生产自行车多少辆;(3)产量最多的一天比产量最少的一天多生产自行车多少辆;(4)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣20元,那么该厂工人这一周的工资总额是多少?考点:有理数的加法.专题:应用题;图表型.分析:(1)该厂星期四生产自行车200+13=213辆;(2)该厂本周实际生产自行车(5﹣2﹣4+13﹣10+16﹣9)+200×7=1409辆;(3)产量最多的一天比产量最少的一天多生产自行车16﹣(﹣10)=26辆;(4)这一周的工资总额是200×7×60+(5﹣2﹣4+13﹣10+16﹣9)×(60+15)=84675辆.解答:解:(1)超产记为正、减产记为负,所以星期四生产自行车200+13辆,故该厂星期四生产自行车213辆;(2)根据题意5﹣2﹣4+13﹣10+16﹣9=9,200×7+9=1409辆,故该厂本周实际生产自行车1409辆;(3)根据图示产量最多的一天是216辆,产量最少的一天是190辆,216﹣190=26辆,故产量最多的一天比产量最少的一天多生产自行车26辆;(4)根据图示本周工人工资总额=7×200×60+9×75=84675元,故该厂工人这一周的工资总额是84675元.点评:此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,不能死学.26.(12分)列方程解应用题.把一批图书分给某班学生阅读,如果每人分3本,则剩余20本,如果每人分4本,则还缺25本.这个班有多少名学生?考点:一元一次方程的应用.专题:应用题.分析:可设有x名学生,根据总本数相等和每人分3本,剩余20本,每人分4本,缺25本可列出方程,求解即可.解答:解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45(名).答:这个班有45名学生.点评:本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目中书的总量相等的等量关系列出方程,再求解.27.(16分)先阅读下列解题过程,然后解答问题(1)、(2)解方程:|x+3|=2.解:当x+3≥0时,原方程可化为:x+3=2,解得x=﹣1;当x+3<0时,原方程可化为:x+3=﹣2,解得x=﹣5.所以原方程的解是x=﹣1,x=﹣5.(1)解方程:|3x﹣2|﹣4=0;(2)探究:当b为何值时,方程|x﹣2|=b+1 ①无解;②只有一个解;③有两个解.考点:同解方程.专题:应用题;分类讨论.分析:(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)运用分类讨论进行解答.解答:答:(1)当3x﹣2≥0时,原方程可化为:3x﹣2=4,解得x=2;当3x﹣2<0时,原方程可化为:3x﹣2=﹣4,解得x=﹣.所以原方程的解是x=2或x=﹣;(2)∵|x﹣2|≥0,∴当b+1<0,即b<﹣1时,方程无解;当b+1=0,即b=﹣1时,方程只有一个解;当b+1>0,即b>﹣1时,方程有两个解.点评:此题比较难,提高了学生的分析能力,解题的关键是认真审题.。
滁州市初中2018-2019学年初中七年级上学期数学第一次月考试卷
滁州市初中2018-2019学年初中七年级上学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)(2015•深圳)某商品的标价为200元,8折销售仍赚40元,则商品进价为()元.A. 140B. 120C. 160D. 1002.(2分)(2015•南通)如果水位升高6m时水位变化记作+6m,那么水位下降6m时水位变化记作()A. ﹣3m B. 3m C. 6m D. ﹣6m3.(2分)(2015•柳州)在下列单项式中,与2xy是同类项的是()A. 2x2y2B. 3yC. xyD. 4x4.(2分)(2015•南京)某市2013年底机动车的数量是2×106辆,2014年新增3×105辆,用科学记数法表示该市2014年底机动车的数量是()A. 2.3×105辆B. 3.2×105辆C. 2.3×106辆D. 3.2×106辆5.(2分)(2015•贺州)观察下列等式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,…,解答下面问题:2+22+23+24+…+22015﹣1的末位数字是()A. 0B. 3C. 4D. 86.(2分)(2015•南宁)3的绝对值是()A. 3B. -3C.D.7.(2分)(2015•常州)﹣3的绝对值是()A. 3B. -3C.D. -8.(2分)(2015•贺州)下列各数是负数的是()A. 0B.C. 2.5D. -19.(2分)(2015•大连)方程3x+2(1﹣x)=4的解是()A. x=B. x=C. x=2D. x=110.(2分)(2015•北京)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米,将140000用科学记数法表示应为()A. 14×104B. 1.4×105C. 1.4×106D. 14×10611.(2分)(2015•烟台)﹣的相反数是()A. -B.C. -D.12.(2分)(2015•宁德)有理数a,b在数轴上对应点的位置如图所示,下列各式正确的是()A. a+b<0B. a﹣b<0C. a•b>0D. >0二、填空题13.(1分)(2015•梧州)如图,已知直线AB与CD交于点O,ON平分∠DOB,若∠BOC=110°,则∠AON 的度数为 ________度.14.(1分)(2015•重庆)我国“南仓”级远洋综合补给舱满载排水量为37000吨,把数37000用科学记数法表示为________ .15.(1分)(2015•呼伦贝尔)将图1的正方形作如下操作:第1次分别连接对边中点如图2,得到5个正方形;第2次将图2左上角正方形按上述方法再分割如图3,得到9个正方形…,以此类推,第n次操作后,得到正方形的个数是 ________.16.(1分)(2015•三明)观察下列图形的构成规律,依照此规律,第10个图形中共有________ 个“•”.17.(1分)(2015•娄底)下列数据是按一定规律排列的,则第7行的第一个数为________ .三、解答题18.(15分)据统计,某市2017 年底二手房的均价为每平米1.3 万元,下表是2018 年上半年每个月二手房每平米均价的变化情况(单位:万元)(2)2018 年上半年几月份二手房每平米均价最低?最低价为多少万元?(3)2014 年底小王以每平米8000 元价格购买了一套50 平米的新房,除房款外他还另支付了房款总额1%的契税与0.05%的印花税,以及3000 元其他费用;2018 年7 月,小王因工作调动,急售该房,根据当地政策,小王只需缴纳卖房过程中产生的其他费用1000 元,无需再缴税;若将(2)中的最低均价定为该房每平米的售价,那么小王能获利多少万元?19.(8分)有理数、、在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b-c________0,+________0,c-________0.(2)化简:| b-c|+| +b|-|c-|20.(7分)小明同学积极参加体育锻炼,天天坚持跑步,他每天以2000m为标准,超过的米数记作正数,m):(2)他跑得最多的一天比最少的一天多跑了________m;(3)若他跑步的平均速度为200m/min,求这周他跑步的时间.21.(10分)小华家买了一辆轿车,他连续10天记录了他家轿车每天行驶的路程,以40km为标准,超过或不足部分分别用正数、负数表示,得到的数据分别如下(单位:km)+3,+1,2,+8,-7,+2.5,4,+5,-3,+2(1)请你运用所学知识估计小华家一个月(按30天算)轿车行驶的路程(2)若已知该轿车每行驶100km耗用汽油7L,且汽油的价格为每升804元,试根据第(1)题估计小华家一年(按12个月算)的汽油费用22.(8分)(教材回顾)课本88页,有这样一段文字:人们通过长期观察发现如果早晨天空中棉絮的高积云,那么午后常有雷雨降临,于是有了“朝有破絮云,午后雷雨临”的谚语.在数学的学习过程中,我们经常用这样的方法探究规律.(数学问题)三角形有3个顶点,如果在它的内部再画n个点,并以这(n+3)个点为顶点画三角形,那么最多可以剪得多少个这样的三角形?(问题探究)为了解决这个问题,我们可以从n=1,n=2,n=3等具体的、简单的情形入手,探索最多可以剪得的三角形个数的变化规律.357①当三角形内有4个点时,最多剪得的三角形个数为________;②你发现的变化规律是:三角形内的点每增加1个,最多剪得的三角形增加________个;③猜想:当三角形内点的个数为n时,最多可以剪得________个三角形;像这样通过对简单情形的观察、分析,从特殊到一般地探索这类现象的规律、提出猜想的思想方法称为归纳.(2)【问题拓展】请你尝试用归纳的方法探索1+3+5+7+…+(2n-1)+(2n+1)的和是多少?23.(10分)在解决数学问题的过程中,我们常用到“分类讨论”的数学思想,下面是运用分类讨论的数学思想解决问题的过程,请仔细阅读,并解答题目后提出的(探究).(提出问题)两个有理数a、b满足a、b同号,求的值.(解决问题)解:由a、b同号,可知a、b有两种可能:①当a,b都正数;②当a,b都是负数.①若a、b都是正数,即a>0,b>0,有|a|=a,|b|=b,则= =1+1=2;②若a、b都是负数,即a<0,b<0,有|a|=﹣a,|b|=﹣b,则= =(﹣1)+(﹣1)=﹣2,所以的值为2或﹣2.(探究)请根据上面的解题思路解答下面的问题:(1)两个有理数a、b满足a、b异号,求的值;(2)已知|a|=3,|b|=7,且a<b,求a+b的值.24.(5分)如图所示,在数轴上A点表示数aB点表示数,且a、b满足,点A、点B之间的数轴上有一点C,且BC=2AC,(1)点A表示的数为________,点B表示的数为________;则C点表示的数为________.(2)若一动点P从点A出发,以3个单位长度/秒速度由A向B运动;同一时刻,另一动点Q从点C出发,以1个单位长度/秒速度由C向B运动,终点都为B点.当一点到达终点时,这点就停止运动,而另一点则继续运动,直至两点都到达终点时才结束整个运动过程.设点Q运动时间为t秒.①经过________秒后,P、Q两点重合;②点P与点Q之间的距离PQ=1时,求t的值.________25.(15分)某电动车厂平均每天计划生产200辆电动车,由于各种原因实际每天的生产量与计划量相比有出入.下表是某周的生产情况(超产为正,减产为负)(2)根据记录可知前五天共生产多少辆?(3)该厂实行计件工资制,每辆车100元,超额完成则超额部分每辆车再奖励40元(以一周为单位结算),那么该厂工人这一周的工资总额是多少元?滁州市初中2018-2019学年初中七年级上学期数学第一次月考试卷(参考答案)一、选择题。
2024年安徽省滁州市小升初分班数学应用题达标模拟试卷三含答案及解析
2024年安徽省滁州市小升初分班数学应用题达标模拟试卷三含答案及解析姓名:________ 考号:________ 得分:________一、应用题(精选150道题;要求一、审题:在开始解答前,应仔细阅读题目,理解题目的意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用楷书,尽量避免连笔,字迹稍大,并注意排版;四、π一律取值3.14。
)1.师徒二人共同加工360个零件,两人合做6天可以完成,徒弟单独做15天可完成,如果由师傅单独做多少天可以完成?2.甲、乙两辆汽车同时从南京和无锡相对开出,甲车每小时行49千米,乙车每小时行39千米.经过2.5小时两车相遇.南京和无锡两地相距多少千米?3.小明的平均步长是0.65米。
他步测一块平行四边形的土地,底是340步,高是178步,这块地的面积是多少平方米?约多少公顷?(保留2位小数)4.一个长方形的长是20厘米,宽是9厘米,它的周长是多少厘米.5.一块布长55.2米,正好可以做20件大人衣服和16件儿童衣服,如果每件大人衣服用1.8米布,每件儿童衣服用几米布?6.某工程由甲、乙两队合做24天完成,由乙、丙两队合做30天完成,由甲、丙两队合做40天完成,那么甲队单独做需要多少天完成.7.机床厂原来知道机床每台用钢材1.02吨,改进设计后,每台比原来节约0.12吨,原来制造300台所用的钢材,现在可以制造机床多少台?8.甲、乙两辆汽车同时从上海出发开往北京.经过18小时后,甲车落后乙车144千米.甲车每小时行65千米,乙车每小时行多少千米?(列方程)9.某工厂女职工有128人,比男职工人数多1/7.该厂有男职工多少人?10.工人生产零件,甲车间共生产52个零件,是乙车间生产零件的4倍少8个.乙车间生产零件多少个?11.少先队员在山坡上栽的松树是柏树的25%,松树比柏树少150棵,柏树有多少棵?12.有一块三角形麦地,底长250米,高是84米,每平方米可收小麦0.07吨,这块麦地可收小麦多少吨?13.妈妈把1000元钱存入银行,整存整取3年,年利率4.41%,到期时妈妈可以取回本金和税后利息一共多少元?(利息税为20%)14.在抗洪救灾“献爱心”活动中,五年级学生捐款312元,比六年级少捐1/7,六年级学生捐款多少元?(列方程解)15.一批产品合格的有189件,次品有11件,这批产品的合格率是多少?16.某工厂做铁箱子,箱子是由一个铁框和两个铁板组成是由老李和小张做,老李每时做9个铁框或12块铁板,小张每时做10块铁板,现在要63个铁箱,至少有几个小时?17.妈妈在银行存了定期储蓄2万元,如果年利率是3.85%,存满5年时,本金和税后利息共多少元?(利息税5%)18.一本书有165页,小红前4天看了60页.照这样计算,7天能看多少页?这本书一共需要几天看完?19.同学们去划船,6条船可以坐30人,三年级共有48人,9条船够吗?20.一辆货车第一次运23/16吨的西瓜,第二次比第一次少运1/4吨.两次共运西瓜多少吨?21.一双舞蹈鞋原价50元,打折后32元,校舞蹈队买了56双,打折后少花多少钱?22.小华要测量一块不规则的石块的体积,他利用一个圆柱形铁块以及一个其它等底等高的圆锥形铁块、一个圆柱形容器做了如下实验操作和记录:(1)将放有石块的容器盛满水:(2)取出石块、水面下降了13厘米;(3)放入圆柱形铁块,水面上升至距离容器口1厘米处;(4)继续放入圆锥形铁块,容器中的水溢出24毫升.请你根据以上材料求出石块的体积.(注:以上操作过程中,石块、圆柱铁块、圆锥铁块均完全浸没在水中)23.李强14分钟打了588个字,王丽16分钟打了720个字,李强平均每分钟比王丽少打多少个字?24.一个长方形铁片,长37.68厘米,宽15厘米,以它做侧面卷成一个圆柱体,圆柱体的体积最大是多少?25.一桶油连桶重180千克,用去一半油之后,连桶重还有100千克.问原来油和桶各重多少千克?26.某车间计划生产零件5200个,前12天共生产零件1800个,从第十三天起,每天能生产零件200个,这个车间完成这批零件的任务共需要多少天?27.商店有大中小三筐苹果,大筐装的是小筐的5倍,比中筐多10千克,小筐装的是中筐的1/3,三筐共装苹果多少千克?28.上衣每件154元,裙子每条46元,学校舞蹈队购买了28套,应付多少元?29.某工厂有工人450人,其中女工占36%,因生产需要又招进一批女工,这时女工人数占全厂工人总数的40%.又招进女工多少人?30.小东家做了一个长10分米,宽4分米的长方体金鱼缸,有8分米深的水.如果小东不小心将一个棱长为20厘米的正方体铁块,沉入水中,这时鱼缸中水深多少分米?31.一辆汽车从甲地开往乙地,1.5小时行驶了96千米,这时离乙地还有134.4千米.照这样的速度,这辆汽车从甲地到乙地一共需要多少小时?32.某小区的停车场有电动自行车和三轮摩托车共40辆,若两种车共有95个轮子,那么电动自行车和三轮摩托车各有多少辆?33.甲仓存粮40吨,乙仓存粮62吨,甲仓每天存入4吨,乙仓每天存入9吨,几天后乙仓存粮是甲仓的2倍?34.六年级有35个同学要拍集体照,价钱是23.5元,送6张照片;如果另外加洗,每张是0.6元,如果全班每人一张,共需要付多少元?35.一个水缸从里面量长、宽、高分别是6分米、8分米、9分米,如果往里面倒水,需少水才能灌满?(5分)36.植树节那天,五(2)班植树142棵,五(2)班植树棵数比五(1)班的2倍少26棵,五(1)班同学植树多少棵?37.某公司接到一笔冰箱的定单,原计划每天生产200台,8天完成,实际每天生产250台,多少天完成?38.王老师的钱包里有2元和5元的纸币共18张,总共54元.2元和5元的纸币各有多少张?39.学校开联欢会,同学们布置教室,按照下面的顺序挂气球.红黄蓝绿紫红黄蓝绿紫红黄… 第34个气球是什么色的气球,第123个气球是什么色的气球.40.修路队修一段长1000米的路,计划每天修460米,24天能修完吗?41.六年级开展数学竞赛,一共20题.答对一题得5分,答错一题要扣1分,王明得了76分,他答对了多少题.42.甲车每小时行56千米,从A地出发行了50千米后,乙车才开始从A地出发,每小时行66千米,乙车行了几小时后追上甲车?43.某工厂要加工500个零件,已经加工了3天,每天加工96个,余下的要两天完成.平均每天要加工多少个?44.一辆汽车每小时行驶68千米,上午10时从甲地开出,下午3时到达乙地.甲、乙两地相隔多少千米?45.王芳看一本320页的故事书,前15天看了120页,照这样计算,剩下的20天能看完吗?46.某校参加一次数学竞赛的平均成绩是75分.选手中男生人数比女生多80%,而女生比男生的平均分高20%,女生的平均分是多少?47.小华从1、3、5、9中任意抽取两张卡片.规则:如果两数之差是6,则小丽胜;如果两数之差是4,则小华胜,差既不是6又不是4就重来.(1)规则公平吗?为什么?(2)如果不公平,你能把这个规则修改公平吗?48.在一块长15米,宽28米的长方形地上铺一层4厘米厚的沙土.(1)需要多少沙土?(2)一辆汽车每次运送1.5立方米的沙土,运11次够吗?(计算后回答)49.东风乡为改善村民饮水条件,乡政府计划铺设2070米自来水管道,第一工程队平均每天铺设65米,第二工程队平均每天铺设73米.两队同时开工多少天后可以完成任务?50.某工程队承包一条自来水管道的安装任务,原计划每天安装0.48千米,15天安装完.实际每天安装0.6千米,实际多少天安装完?51.甲、乙两地相距192千米,一辆汽车在上午8时从甲地开出,下午2时到达乙地.这辆车平均每小时行多少千米?52.一辆汽车从甲地到乙地前2小时每小时行驶100千米,后3小时共行驶240千米.这辆汽车从甲地到乙地平均每小时行驶多少千米.53.1kg小麦可以磨出面粉0.85kg,1吨小麦可以磨多少千克面粉?54.一本书一共有105页,小兴从第一页开始看起,第一天看了这本书的2/7,第二天应从第多少页看起?55.甲乙两地相距1260千米.一列火车18时从甲地开出,第二天8时到达乙地.这列火车每小时行多少千米?56.某机床厂,上半年完成全年生产任务的5/8,下半年完成全年任务的7/12,结果超产150台.原计划全年生产多少台机床?57.修一段路,如果每天修42米,13天可以完成.修了4天后,每天多修6米,还要几天才能完成?58.星光小学五年级学生有580人要参加秋游,每辆车准载30人,一共要准备多少辆车才能载完这些学生.59.一块平行四边形的地,底长180米,高54米,在这块地里植树,平均每棵树占地2.25平方米,这块地可植树多少棵?60.组装车间10月份计划组装2800台电冰箱,已经装了7天,每天装108台,还要组装多少台?61.用800千克花生仁榨出花生油288千克,出油率是多少?62.甲乙两车同时从东西两城相向而行,甲车每小时行50千米,乙车每小时行70千米,两车在距两城中点15千米处相遇.求东西两城相距多少千米?63.一列快车和一列慢车分别从相距1440千米的甲、乙两站同时相对开出,4.8小时相遇,快、慢两车的速度比是3∶2.慢车每小时行多少千米?64.梨树小学组织学生春游,学校老师有23人,学生有597人.大车可坐40人,租金1000元,小车可坐20人,租金600元.问怎样租车最省钱?65.100千克花生仁可以榨油38千克,照这样计算,55.2千克花生仁可以榨油多少千克?66.甲、乙、丙三人共有54元,甲用了自己钱数的3/5,乙用了自己钱数的3/4,丙用了自己钱数的2/3,各买一支价钱相同的钢笔,那么他们三人原来各有多少元?67.一块三角形地,底边长500米,高78米,共收棉花13650千克,平均每公顷产棉花多少千克?68.一个长方形和正方形的周长相等.正方形的边长是6厘米,长方形的长是8厘米,你知道这个长方形的宽是多少厘米吗?69.工人小王在一定时间内完成一批零件,前4天每天做20个零件,后来每天多做15个零件,又做了6天,正好做完,小王平均每天做多少个零件.70.小华第一次月考语文成绩是90分,数学成绩是语文的0.9倍,英语成绩是数学的1.1倍,小华第一次月考英语成绩是多少?(得数保留整数)71.商店购进875瓶饮料,第一天卖了229瓶,第二天卖了297瓶.一共卖了多少瓶?72.文苑小区有一栋居民楼,每户人家都订了2份不同的报纸,一共订了3种报纸.其中《××都市报》订了34份,《××晚报》订了30份,《××周报》订了22份.问:有多少户人家同时订了《××都市报》和《××周报》?73.工人叔叔加工一批零件,先加工了160个,有6个不合格,后来又加工了140个,全部合格.求这批零件的合格率.74.两辆汽车同时从相距225千米的两地出发,一辆汽车每小时行驶45千米,另一辆汽车每小时行驶35千米.这两辆汽车相向而行,几小时后相距65千米?75.甲、乙、丙三人拿出同样多的钱买一批苹果,分配时,甲、乙都比丙多拿30千克,结帐时甲和乙都要付给丙65元,每千克苹果多少元?76.一个长方体的汽油桶,底面是边长4分米的正方形,高是6分米,做一个这样的油桶至少需要多少平方米的铁皮?如果每升汽油重0.74千克,这个油桶最多能装汽油多少千克?77.一个面粉厂,用100千克小麦磨出75千克面粉.磨出的面粉占小麦总数的几分之几?78.一个长方形花圃长6米,宽50分米.要在花圃的四周围上木栏,围木栏的长度是多少?这花圃的面积是多少平方米?79.某学校六年级有418人,六年级的人数比五年级多10%,五年级比六年级少多少人?80.某工厂存煤148吨,按计划烧了8天后,还剩下84吨,如果以后每天烧煤量相当于计划的87.5%,以后每天烧煤多少吨?81.某商品按定价出售,每个可获利润45元.如果按定价的70%出售10个,与按定价每个减价25元出售12个所获得的利润一样多,那么这种商品每个定价几元.82.商店以每个48元的价格购进一批篮球,售价为58元,卖到还剩10个时,除成本外,已获利540元.这批篮球一共多少个?83.妈妈的体重54千克.小明的体重36千克.小明出生时才3千克!(1)现在妈妈和小明的体重一共多少千克?(2)小明比刚出生时体重增加多少千克?(3)你还能提出什么问题?84.两个筑路队,甲队8天修路6.48千米,乙队9天修路10.35千米,先说说哪个队的工作效率高些,再计算一下你说的对不对.85.仓库里有16箱同一规格的零件,李师傅只记得从其中某一箱中用去3个,但现在无法凭眼睛看出哪一箱是用过的,若要数,由于零件较小,很难数清。
最新2018-2019年七年级上期末数学试卷含答案解析
七年级(上)期末数学试卷一、选择题(本大题共12小题,共36.0分)1.如果股票指数上涨30点记作+30,那么股票指数下跌20点记作()A. −20B. +20C. −10D. +102.如图是由一些大小相同的小正方体堆成的几何体,则该几何体的左视图是()A. B. C. D.3.已知地球围绕太阳公转的轨道半长径约为150000000km,这个数据用科学记数法表示为()A. 15×107kmB. 1.5×107kmC. 1.5×108kmD. 0.15×109km4.小明父亲拟用不锈钢制造一个上部是一个长方形、下部是一个正方形的窗户,相关数据(单位米)如图所示,那么制造这个窗户所需不锈钢的总长是()A. (4a+2b)米B. (5a+2b)米C. (6a+2b)米D. (a2+ab)米5.下列两种现象:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动;②过马路时,行人选择横穿马路而不走人行天桥其中可用“两点之间线段最短”来解释的现象是()A. ①B. ②C. ①②D. 都不可以6.若关于x的方程3x+a+4=0的解是x=−1,则a的值等于()A. −1B. 1C. −7D. 77.在下列调查方式中,较为合适的是()A. 为了解深圳市中小学生的视力情况,采用普查的方式B. 为了解龙华区中小学生的课外阅读习惯情况,采用普查的方式C. 为了解某校七年级(1)班学生期末考试数学成绩情况,采用抽样调查的方式D. 为了解我市市民对社会主义核心价值观的内容的了解情况,采用抽样调查的方式8.2017年,深圳市顺利获评为全国文明城市,为此小颖特别制作了一个正方体玩具,其展开图如图所示,则原正方体中与“文”字相对的字是()A. 全B. 城C. 市D. 明9.空气污染物主要包括可吸入颗粒物(PM10)、细颗粒物(PM2.5),臭氧/二氧化硫、氮氧化物、一氧化碳六类,为了刻画每一类污染物所占的比例,最适合使用的统计图是()A. 折线统计图B. 条形统计图C. 扇形统计图D. 以上均可以10.已知有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()>0A. a+b<0B. a−b<0C. ab>0D. ab11.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x−7x=1B. 9x+7x+1C. 17x+19x=1 D. 17x−19x=112.如图,将两块三角尺AOB与COD的直角顶点O重合在一起,若∠AOD=4∠BOC,OE为∠BOC的平分线,则∠DOE的度数为()A. 36∘B. 45∘C. 60∘D. 72∘二、填空题(本大题共4小题,共12.0分)13.计算:(−1)2018的结果是______14.若−4x a+5y3+x3y b=3x3y3,则ab的值是______.15.已知数轴上的A、B两点所表示的数分别为−4和7,C为线段AB的中点,则点C所表示的数为______16.用火柴棒按如图所示的方式搭出新的图形,其中第1个图形有6个正方形,第2个图形有11个正方形,第3个图形有16个正方形,则第n个图形中正方形的个数为______.三、计算题(本大题共4小题,共24.0分)17.计算:(1)22+(−33)−4×(−11)(2)|−36|×(34−56)+(−8)÷(−2)218.(1)化简:(2a2b−6ab)−3(−ab+a2b)(2)李老师让同学们计算“当a=−2017,b=2018时,代数式3a2+(ab−a2)−2(a2+12ab−1)的值”,小亮错把“a=−2017,b=2018”抄成了“a=2017,b=−2018”,但他最终的计算结果并没错误,请问是什么原因呢?19.解方程:(1)2(x−3)+3(x−1)=6(2)x+12−2x−36=120.阅读下列内容,并完成相关问题:小明说:“我定义了一种新的运算,叫❈(加乘)运算.”然后他写出了一些按照❈(加乘)运算的运算法则进行运算的算式:(+4)❈(+2)=+6;(−4)❈(−3)=+7;(−5)❈(+3)=−8;(+6)❈(−7)=−13;(+8)❈0=8;0❈(−9)=9.小亮看了这些算式后说:“我知道你定义的❈(加乘)运算的运算法则了.”聪明的你也明白了吗?(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,______.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,______.(2)计算:[(−2)❈(+3)]❈[(−12)❈0](括号的作用与它在有理数运算中的作用一致)(3)我们知道加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用吗?请你任选一个运算律,判断它在❈(加乘)运算中是否适用,并举例验证.(举一个例子即可)”四、解答题(本大题共3小题,共24.0分)21.为了解深圳市民对“垃圾分类知识”的知晓程度,某数学学习兴趣小组对市民进行随机抽样的问卷调查,调查结果分为“A.非常了解”、“B.了解”、“C.基本了解”、“D.不太了解”四个等级进行统计,并将统计结果绘制成了如下两幅不完整的统计图(图1、图2),请根据图中的信息解答下列问题.(1)这次调查的市民人数为______人,图2中,n=______(2)补全图1中的条形统计图;(3)在图2中的扇形统计图中,表示“C.基本了解”所在扇形的圆心角度数为______度;(4)据统计,2017年深圳市约有市民2000万人,那么根据抽样调查的结果,可估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有______万人22.如图,已知不在同一条直线上的三点A、B、C(1)按下列要求作图(用尺规作图,保留作图痕迹)①分别作直线BC、射线BA、线段AC;②在线段BA的延长线上作AD=AC−AB(2)若∠CAD比∠CAB大100∘,则∠CAB的度数为______.23.列方程解应用题:(1)“自由骑”共享单车公司委托甲、乙两家公司分别生产一批数量相同的共享单车,已知甲公司每天能生产共享单车100辆,乙公司每天能生产共享单车70辆,甲公司比乙公司提前3天完成任务,请问乙公司完成任务需要多少天?(2)元旦期间,天虹商场用2000元购进某种品牌的毛衣共10件进行销售,每件毛衣的标价为400元,实际销售时,商场决定对这批毛衣全部按如下的方式进行打折销售:一次性购买一件打8折,一次性购买两件或两件以上,都打6折,商场在销售完这批毛衣后,发现仍能获利44%①该商场在售出这批毛衣时,属于“一次性购买一件毛衣”的方式有多少件?②小颖妈妈计划在元旦期间在天虹商场购买3件这种品牌的毛衣,请问她有哪几种购买方案?哪一种购买方案最省钱?请说明理由.答案和解析【答案】1. A2. D3. C4. B5. B6. A7. D8. B9. C10. B11. C12. D13. 114. −615. 1.516. 5n+117. 解:(1)原式=−11+44=33;(2)原式=36×(−112)+(−8)÷4=−3+(−2)=−5.18. 解:(1)原式=2a2b−6ab+3ab−3a2b=−a2b−3ab;(2)原式=3a2+ab−a2−2a2−ab+2=2,所以无论a、b为何值时,原式的都为2,因此小亮虽然抄错了a、b的值,但只要结果为2,都正确.19. 解:(1)2(x−3)+3(x−1)=62x−6+3x−3=62x+3x=6+6+35x=15x=3;(2)x+12−2x−36=13(x+1)−(2x−3)=63x+3−2x+3=63x−2x=6−3−3x=020. 同号得正、异号得负,并把绝对值相加;都得这个数的绝对值21. 1000;35;72;34022. 40∘23. 解:(1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据题意得:100(x−3)=70x,解得:x=10.答:乙公司完成任务需要10天.(2)①设属于“一次性购买一件毛衣”的方式有x件,=44%,根据题意得:0.8×400x+0.6×400(10−x)−20002000解得:x=6.答:设属于“一次性购买一件毛衣”的方式有6件.②共有三种购买方案:方案一:每次购买1件,共需400×0.8×3=960(元);方案二:一次购买1件,另一次购买2件,共需400×0.8+400×0.6×2=800(元);方案三:一次性购买3件,共需400×0.6×3=720(元).∵960>800>720,∴一次性购买3件最省钱.【解析】1. 解:如果股票指数上涨30点记作+30,那么股票指数下跌20点记作−20,故选:A.根据正数和负数表示相反意义的量,股票指数上涨记为正,可得股票指数下跌的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.2. 解:左视图有2列,每列小正方形数目分别为2,1,故选:D.读图可得,左视图有2列,每列小正方形数目分别为2,1.此题主要考查实物体的三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.3. 解:150000000km用科学记数法表示为1.5×108km,故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4. 解:依题意得:2(a+b)+3a=5a+2b.故选:B.根据矩形周长公式进行解答.考查了列代数式.解题的关键是弄清楚该窗户所含有棱的条数和对应的棱长.5. 解:①用一个钉子把一根细木条钉在木板上,用手拨木条,木条能转动,不能用“两点之间线段最短”来解释,②过马路时,行人选择横穿马路而不走人行天桥,可用“两点之间线段最短”来解释.故选:B.直接利用两点之间线段最短分析得出答案.此题主要考查了线段的性质,正确把握线段的性质是解题关键.6. 解:把x=−1代入3x+a+4=0得,−3+a+4=0,解得a=−1.故选:A.把x=−1代入3x+a+4=0得到关于a的方程,然后解方程即可.本题考查了一元一次方程的解,熟悉等式的性质是解题的关键.7. 解:A、了解深圳市中小学生的视力情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;B、了解龙华区中小学生的课外阅读习惯情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项不符合题意;C、了解某校七年级(1)班学生期末考试数学成绩情况,比较容易做到,适于全面调查,采用普查,故本选项不符合题意;D、了解我市市民对社会主义核心价值观的内容的了解情况,工作量较大,且不必全面调查,宜采用抽样调查,故本选项符合题意.故选:D.由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.8. 解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴“全”与“市”相对,“文”与“城”相对,“明”与“国”相对,故选:B.正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9. 解:根据题意,得为了刻画每一类污染物所占的比例,结合统计图各自的特点,应选择扇形统计图.故选:C.扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频数分布直方图,清楚显示在各个不同区间内取值,各组频数分布情况,易于显示各组之间频数的差别.本题考查扇形统计图、折线统计图、条形统计图各自的特点.10. 解:根据图示知:a<0<b,|a|<|b|;∴a+b>0,a−b<0,ab<0,ab<0.故选:B.根据数轴上a、b的位置可以判定a与b大小与符号;然后据此解答.本题考查了数轴,从a小于0,到b大于0,其积小于0,从而求得.11. 解:由题意可得,1 7x+19x=1,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.12. 解:∵∠AOB=90∘,∠COD=90∘,∴∠AOB+∠COD=180∘,∵∠AOB=∠AOC+∠BOC,∠COD=∠BOC+∠BOD,∴∠AOC+∠BOC+∠BOC+∠BOD=180∘,∴∠AOD+∠BOC=180∘,∵∠AOD=4∠BOC,∴4∠BOC+∠BOC=180∘,∴∠BOC=36∘,∵OE为∠BOC的平分线,∠BOC=18∘,∴∠COE=12∴∠DOE=∠COD−∠COE=90∘−18∘=72∘,故选:D.根据∠AOD+∠BOC=180∘,∠AOD=4∠BOC,求出∠BOC的度数,再根据角平分线求出∠COE的度数,利用∠DOE=∠COD−∠COE即可解答.本题考查了角的计算,解决本题的关键是明确∠AOD+∠BOC=180∘.13. 解:(−1)2018的结果是1;故答案为:1根据有理数乘方计算即可.此题考查有理数的乘方,关键是根据有理数乘方的法则解答.14. 解:−4x a+5y3+x3y b=3x3y3,a+5=3,b=3,a=−2,ab=−2×3=−6,故答案为:−6.根据合并同类项得出a+5=3,b=3,求出a、b的值,再代入求出即可.本题考查了合并同类项,能求出a、b的值是解此题的关键.15. 解:∵数轴上A,B两点所表示的数分别是−4和7,(−4+7)=1.5.∴线段AB的中点所表示的数=12故答案为:1.5.根据A、B两点所表示的数分别为−4和7,利用中点公式求出线段AB的中点所表示的数即可.本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.16. 解:∵第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……∴第n个图形中正方形的个数为5n+1,故答案为:5n+1.由第1个图形中正方形的个数6=1×5+1,第2个图形中正方形的个数11=2×5+1,第3个图形中正方形的个数16=3×5+1,……据此可得.本题主要考查图形的变化规律,解题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.17. (1)先计算乘法,再计算加法即可得;(2)根据有理数混合运算顺序和运算法则计算可得.本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.18. (1)先去括号,再合并同类项可得;(2)先去括号、合并同类项化简原式,据此可得.本题主要考查整式的加减,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.19. (1)去括号、移项、合并同类项,系数化成1即可求解.(2)去分母、去括号、移项、合并同类项,系数化成1即可求解.本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.20. 解:(1)归纳❈(加乘)运算的运算法则:两数进行❈(加乘)运算时,同号得正、异号得负,并把绝对值相加.特别地,0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,都得这个数的绝对值,故答案为:同号得正、异号得负,并把绝对值相加;都得这个数的绝对值.(2)原式=(−5)❈12=−17;(3)加法的交换律仍然适用,例如:(−3)❈(−5)=8,(−5)❈(−3)=8,所以(−3)❈(−5)=(−5)❈(−3),故加法的交换律仍然适用.(1)首先根据❈(加乘)运算的运算法则进行运算的算式,归纳出❈(加乘)运算的运算法则即可;然后根据:0❈(+8)=8;(−6)❈0=6,可得:0和任何数进行❈(加乘)运算,或任何数和0进行❈(加乘)运算,等于这个数的绝对值.(2)根据(1)中总结出的❈(加乘)运算的运算法则,以及有理数的混合运算的运算方法,求出[(−2)❈(+3)]❈[(−12)❈0]的值是多少即可.(3)加法有交换律和结合律,这两种运算律在有理数的❈(加乘)运算中还适用,并举例验证加法交换律适用即可.此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意加法运算定律的应用.21. 解:(1)这次调查的市民人数为:20÷20%=1000(人);×100%=28%,∵m%=2801000n%=1−20%−17%−28%=35%,∴n=35;故答案为:1000,35;(2)B等级的人数是:1000×35%=350(人),补图如下:(3)基本了解”所在扇形的圆心角度数为:360∘×20%=72∘;故答案为:72;(4)根据题意得:2000×17%=340(万人),答:估计对“垃圾分类知识”的知晓程度为“D.不太了解”的市民约有340万人;故答案为:340.(1)根据C类的人数和所占的百分比求出调查的总人数,再根据A类的人数求出A类所占的百分比,从而求出n的值;(2)根据求出的总人数和B类所占的百分比即可求出B类的人数,从而补全统计图;(3)用360∘乘以“C.基本了解”所占的百分比即可;(4)用2017年深圳市约有的市民乘以“D.不太了解”所占的百分比即可得出答案.本题主要考查了条形统计图以及扇形统计图的运用,解题时注意:从条形图可以很容易看出数据的大小,便于比较.从扇形图上可以清楚地看出各部分数量和总数量之间的关系.22. 解:(1)①如图,直线BC、射线BA、线段AC为所作;②如图,线段AD为所作;(2)∵∠CAD−∠CAB=100∘,∠CAD+∠CAB=180∘,∴2∠CAB=80∘,∴∠CAB=40∘.故答案为40∘.(1)①利用几何语言画出对应几何图形;②先在AC上截取AB得到AC−AB,然后在线段BA的延长线上截取AD,使AD=AC−AB;(2)利用邻补角的定义得到∠CAD+∠CAB=180∘,再加上已知条件∠CAD−∠CAB= 100∘,然后通过解方程组得到∠CAB的度数.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.23. (1)设乙公司完成任务需要x天,则甲公司完成任务需要(x−3)天,根据工作总量=工作效率×工作时间结合该批共享单车数量相同,即可得出关于x的一元一次方程,解之即可得出结论;(2)①设属于“一次性购买一件毛衣”的方式有x件,根据利润率=(销售收入−成本)÷成本,即可得出关于x的一元一次方程,解之即可得出结论;②由购买该品牌毛衣的数量为3件,可得出共三种购买方案,分别求出三种方案所需费用,比较后即可得出结论.本题考查了一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)①找准等量关系,正确列出一元一次方程;②分别求出三种购买方案的费用.。
2018-2019年滁州市小升初数学模拟试题整理(2)附答案
小升初数学综合模拟试卷2一、填空题:1.用简便方法计算:2.某工厂,三月比二月产量高20%,二月比一月产量高20%,则三月比一月高______%.3.算式:(121+122+…+170)-(41+42+…+98)的结果是______(填奇数或偶数).4.两个桶里共盛水40斤,若把第一桶里的水倒7斤到第2个桶里,两个桶里的水就一样多,则第一桶有______斤水.5.20名乒乓球运动员参加单打比赛,两两配对进行淘汰赛,要决出冠军,一共要比赛______场.6.一个六位数的各位数字都不相同,最左一位数字是3,且它能被11整除,这样的六位数中最小的是______.7.一个周长为20厘米的大圆内有许多小圆,这些小圆的圆心都在大圆的一个直径上.则小圆的周长之和为______厘米.8.某次数学竞赛,试题共有10道,每做对一题得8分,每做错一题倒扣5分.小宇最终得41分,他做对______题.9.在下面16个6之间添上+、-、×、÷(),使下面的算式成立:6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6=1997二、解答题:1.如图中,三角形的个数有多少?2.某次大会安排代表住宿,若每间2人,则有12人没有床位;若每间3人,则多出2个空床位.问宿舍共有几间?代表共有几人?3.现有10吨货物,分装在若干箱内,每箱不超过一吨,现调来若干货车,每车至多装3吨,问至少派出几辆车才能保证一次运走?4.在九个连续的自然数中,至多有多少个质数?答案一、填空题:1.(1/5)2.(44)[1×(1+20%)×(1+20%)-1]÷1×100%=44%3.(偶数)在121+122+…+170中共有奇数(170+1-121)÷2=25(个),所以121+122+…+170是25个奇数之和再加上一些偶数,其和为奇数,同理可求出在41+42+…+98中共有奇数29个,其和为奇数,所以奇数减奇数,其差为偶数.4.(27)(40+7×2)÷2=27(斤)5.(19)淘汰赛每赛一场就要淘汰运动员一名,而且只能淘汰一名.即淘汰掉多少名运动员就恰好进行了多少场比赛.即20名运动员要赛19场.6.(301246)设这六位数是301240+a(a是个一位数),则301240+a=27385×11+(5+a),这个数能被11整除,易知a=6.7.(20)每个小圆的半径未知,但所有小圆直径加起来正好是大圆的直径。
2018-2019年六安市初中分班数学模拟试题(共10套)附详细答案
小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。
安徽省芜湖市2018-2019学年度第一学期七年级数学期中试卷(含答案)
2018~2019学年度 素质教育评估试卷第一学期期中七 年级数学试卷温馨提示:本卷共八大题,计23小题,满分150分,考试时间120分钟。
一.选择题:每小题给出的四个选项中,其中只有一个是正确的。
请把正确选项的代号写在下面的答题表内,(本大题共10小题, 每题4分,共40分)1 2 3 4 5 6 7 8 9 101.﹣2018的相反数是( ) A .﹣B .C .﹣2018D .20182.阿里巴巴数据显示,2017年天猫商城“双11”全球狂欢交易额超957亿元,数据957亿用科学记数法表示为( ) A .957×108B .95.7×109C .9.57×1010D .0.957×10103.有理数a ,b ,c 在数轴上的位置如图所示,则下列结论正确的是( )A .a+c=0B .a+b >0C .b ﹣a >0D .bc <04.下列计算正确的是( ) A .6b ﹣5b=1B .2m+3m 2=5m 3C .﹣2(c ﹣d )=﹣2c+2dD .﹣(a ﹣b )=﹣a ﹣b5.如表为蒙城县2018年某日天气预报信息,根据图表可知当天最高气温比最低气温高了( )题号 一 二 三 四 五 六 七 八 总 分 (1~10) (11~14) 1516 17 18 19 20 21 22 23得分得分 评卷人学校 班级 姓名 学号……………………………………装……………………………………订……………………………………线……………………………………2018年1月6日蒙城天气预报天气现象气温1月6日星期六白天晴高温7℃夜间晴低温﹣5℃A.2℃B.﹣2℃C.12℃D.﹣12℃6.取一个自然数,若它是奇数,则乘以3加上1,若它是偶数,则除以2,按此规则经过若干步的计算最终可得到1.这个结论在数学上还没有得到证明.但举例验证都是正确的.例如:取自然数5.经过下面5步运算可得1,即:如图所示.如果自然数m恰好经过7步运算可得到1,则所有符合条件的m的值有()A.3个B.4个C.5个D.6个7.下列说法正确的是()①最小的负整数是﹣1;②数轴上表示数2和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a+5一定比a大;⑤(﹣2)3和﹣23相等.A.2个B.3个C.4个D.5个8.下列说法中正确的是()A.单独一个有理数不是单项式B.﹣的系数是﹣C.﹣的次数是3 D.x3﹣1是三次二项式9.如果单项式x m+2n y与x4y4m﹣2n的和是单项式,那么m,n的值为()A.m=﹣1,n=1.5 B.m=1,n=1.5 C.m=2,n=1 D.m=﹣2,n=﹣1 10.定义一种对正整数n的“F”运算:①当n为奇数时,F(n)=3n+1;②当n为偶数时,F(n)=(其中k是使F(n)为奇数的正整数)……,两种运算交替重复进行,例如,取n=24,则:若n=13,则第2018次“F”运算的结果是( ) A .1 B .4C .2018D .42018二、填空题 (本大题共4小题,每小题5分,满分20分) 11.在一次全市的数学监测中某6名学生的成绩与全市学生的平均分80的差分别为5,﹣2,8,11,5,﹣6,则这6名学生的平均成绩为 分.12.整式(a +1)x 2﹣3x ﹣(a ﹣1)是关于x 的一次式,那么a= .13.规定义新运算“※”,对任意有理数a ,b ,规定a ※b=ab +a ﹣b ,例如:1※2=1×2+1﹣2=1,则计算3※(﹣6)=14.某商店在甲批发市场以每包m 元的价格进了40包茶叶,又在乙批发市场以每包n 元(m >n )的价格进了同样的60包茶叶.如果以每包元的价格全部卖出这种茶叶,那么这家商店 (盈利,亏损,不盈不亏). 三、(本大题共2小题,每小题8分,满分16分)15.计算 (1)(﹣)×(﹣24)(2)﹣14+(1﹣0.5)××[2﹣(﹣3)2]得分 评卷人得分 评卷人16.化简(1)(3x2y﹣2y2)﹣(2x2y﹣4y2)(2)(3a2﹣2a)﹣2(a2﹣a+1)四、(本大题共2小题,每小题8分,满分16分)17.先化简,再求值:2(x2y+3xy)﹣3(x2y﹣1)﹣2xy﹣2,其中x=﹣2,y=2.18.已知A=﹣x2+x+1,B=2x2﹣x.(1)当x=﹣2时,求A+2B的值;(2)若2A与B互为相反数,求x的值.五、(本大题共2小题,每小题10分,满分20分)19.一出租车司机从客运站出发,在一条东西向的大街上拉乘客.规定客运站向东为正,向西为负,第一位乘客从客运站上车后,这天下午行车里程如下,(单位:千米)﹣5,+8,﹣10,﹣4,+6,+11,﹣12,+15(1)当最后一名乘客初送到目的地时,此出租车在客运站的什么方向,距客运站多少千米.(2)若每千米的营运额为3元,则这天下午司机的营业额为多少元?20.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离为|4﹣1|=;表示5和﹣2两点之间的距离为|5﹣(﹣2)|=|5+2|=;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|,如果表示数a和﹣2的两点之间的距离是3,那么a=.(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a=时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为.得分评卷人21.如图,将一条数轴在原点O和点B处各折一下,得到一条“折线数轴”.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:(1)动点P从点A运动至C点需要多少时间?(2)P、Q两点相遇时,求出相遇点M所对应的数是多少;(3)求当t为何值时,P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等.22.观察下列两个等式:2﹣=2×+1,5﹣=5×+1,给出定义如下:我们称使等式a ﹣b=ab+1的成立的一对有理数a ,b为“共生有理数对”,记为(a,b),如:数对(2,),(5,),都是“共生有理数对”.(1)数对(﹣2,1),(3,)中是“共生有理数对”的是;(2)若(m,n)是“共生有理数对”,则(﹣n,﹣m)“共生有理数对”(填“是”或“不是”);(3)请再写出一对符合条件的“共生有理数对”为;(注意:不能与题目中已有的“共生有理数对”重复)(4)若(a,3)是“共生有理数对”,求a的值.23.一个能被13整除的自然数我们称为“十三数”,“十三数”的特征是:若把这个自然数的末三位与末三位以前的数字组成的数之差,如果能被13整除,那么这个自然数就一定能被13整除.例如:判断383357能不能被13整除,这个数的末三位数字是357,末三位以前的数字组成的数是383,这两个数的差是383﹣357=26,26能被13整除,因此383357是“十三数”.(1)判断3253和254514是否为“十三数”,请说明理由.(2)若一个四位自然数,千位数字和十位数字相同,百位数字与个位数字相同,则称这个四位数为“间同数”.①求证:任意一个四位“间同数”能被101整除.②若一个四位自然数既是“十三数”,又是“间同数”,求满足条件的所有四位数的最大值与最小值之差.2018~2019学年度第一学期期中考试七年级数学参考答案一、选择题(本大题共10小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案 D C B C C B C D B A 二、填空题(本大题共4小题,每小题5分,共20分)11.83.5.12.﹣1.13.﹣9 14.盈利.三、(本大题共2小题,每小题8分,满分16分)15.(1)(﹣)×(﹣24)=(﹣40)+14=﹣26;(2)﹣14+(1﹣0.5)××[2﹣(﹣3)2]=﹣1+=﹣1+=﹣1+(﹣)=.16.解:(1)原式=3x2y﹣2y2﹣2x2y+4y2=x2y+2y2;(2)原式=3a2﹣2a﹣2a2+2a﹣2=a2﹣2.四、(本大题共2小题,每小题8分,满分16分)17.解:原式=2x2y+6xy﹣3x2y+3﹣2xy﹣2=﹣x2y+4xy+1,当x=﹣2、y=2时,原式=﹣(﹣2)2×2+4×(﹣2)×2+1=﹣4×2﹣16+1=﹣8﹣16+1=﹣23.18.解:(1)∵A=﹣x2+x+1,B=2x2﹣x,∴A+2B=﹣x2+x+1+4x2﹣2x=3x2﹣x+1,当x=﹣2时,原式=3×(﹣2)2﹣(﹣2)+1=15;(2)2A+B=0,即:﹣2x2+2x+2+2x2﹣x=0,解得:x=﹣2.五、(本大题共2小题,每小题10分,满分20分)19.解:(1)﹣5+8﹣10﹣4+6+11﹣12+15=9,故当最后一名乘客初送到目的地时,此出租车在客运站的东方,距客运站9千米.(2)5+8+10+4+6+11+12+15=71(千米),3×71=213(元).故这天下午司机的营业额为213元.20.解:(1)|4﹣1|=3,|5﹣(﹣2)|=|5+2|=7,|a+2|=3,则a+2=±3,解得a=﹣5或1;故答案为3;5;﹣5或1(2)∵数轴上表示数a的点位于﹣4和2之间,∴|a+4|+|a﹣2|=a+4﹣a+2=6;(3)当a=1时,|a+5|+|a﹣1|+|a﹣4|=6+0+3=9.故当a=1时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值为9.故答案为1,9.六、(本题满分12分)21.解:(1)点P运动至点C时,所需时间t=10÷2+10÷1+8÷2=19(秒),(2)由题可知,P、Q两点相遇在线段OB上于M处,设OM=x.则10÷2+x÷1=8÷1+(10﹣x)÷2,解得x=.故相遇点M所对应的数是.(3)P、O两点在数轴上相距的长度与Q、B两点在数轴上相距的长度相等有4种可能:①动点Q在CB上,动点P在AO上,则:8﹣t=10﹣2t,解得:t=2.②动点Q在CB上,动点P在OB上,则:8﹣t=(t﹣5)×1,解得:t=6.5.③动点Q在BO上,动点P在OB上,则:2(t﹣8)=(t﹣5)×1,解得:t=11.④动点Q在OA上,动点P在BC上,则:10+2(t﹣15)=t﹣13+10,解得:t=17.综上所述:t的值为2、6.5、11或17.七、(本题满分12分)22.解:(1)﹣2﹣1=﹣3,﹣2×1+1=1,∴﹣2﹣1≠﹣2×1+1,∴(﹣2,1)不是“共生有理数对”,∵3﹣=,3×+1=,∴3﹣=3×=1,∴(3,)是“共生有理数对”;(2)是.理由:﹣m﹣(﹣m)=﹣n+m,﹣n•(﹣m)+1=mn+1,∵(m,n)是“共生有理数对”,∴m﹣n=mn+1,∴﹣n+m=mn+1,∴(﹣n,﹣m)是“共生有理数对”;(3)(4,)或(6,)等;(4)由题意得:a﹣3=3a+1,解得a=﹣2.故答案为:(3,);是;(4,)或(6,).八、(本题满分14分)23.(1)解:3253不是“十三数”,254514是“十三数”,理由如下:∵3﹣253=﹣250,不能被13整除,∴3253不是“十三数”,∵254﹣514=﹣260,﹣260÷13=﹣20∴254514是“十三数”;(3分)(2)①证明:设任意一个四位“间同数”为(1≤a≤9,0≤b≤9,a、b为整数),∵===10a+b,∵a、b为整数,∴10a+b是整数,即任意一个四位“间同数”能被101整除;②解:设任意一个四位“间同数”为(1≤a≤9,0≤b≤9,a、b为整数),∵=,(7分)∵这个四位自然数是“十三数”,∴101b+9a是13的倍数,当a=1,b=3时,101b+9a=303+9=312,312÷13=24,此时这个四位“间同数”为:1313;当a=2,b=6时,101b+9a=606+18=624,624÷13=48,此时这个四位“间同数”为:2626;当a=3,b=9时,101b+9a=909+27=736,936÷13=72,此时这个四位“间同数”为:3939;当a=5,b=2时,101b+9a=202+45=247,247÷13=19,此时这个四位“间同数”为:5252;当a=6,b=5时,101b+9a=505+54=559,559÷13=43,此时这个四位“间同数”为:6565;当a=7,b=8时,101b+9a=808+63=871,871÷13=67,此时这个四位“间同数”为:7878;当a=9,b=1时,101b+9a=101+81=182,182÷13=14,此时这个四位“间同数”为:9191;综上可知:这个四位“间同数”最大为9191,最小为1313,9191﹣1313=7878,则满足条件的所有四位数的最大值与最小值之差为7878.。
2018-2019年亳州市初中分班数学模拟试题(共10套)附详细答案
小升初数学综合模拟试卷21一、填空题:2.某班学生参加一次考试,成绩分为优、良、及格、不及格四等.已知人数不超过60人,则该班不及格的学生有______人.3.六个自然数的平均数是7,其中前四个数的平均数是8,第4个数是11,那么后三个数的平均数是______.4.在两位自然数的十位与个位中间插入0~9中的一个数码,这个两位数就变成了三位数.某些两位数中间插入某个数码后变成的三位数,是原来两位数的9倍.这样的两位数共有______个.5.10个连续偶数的和是从1开始的10个连续奇数和的3.5倍,其中最大的偶数是______.6.一堆草,可以供3头牛或4只羊吃14天,或者供4头牛和15只羊吃7天.将这堆草供给6头牛和7只羊吃,可以吃______天.7.将一根长为1997厘米的铁丝截成199厘米和177厘米两种长度的铁丝,剩余部分最少是______厘米.8.如图,在长方形ABCD中,AB=6厘米,BC=8厘米,四边形EFHG的面积是3平方厘米,阴影部分的面积和是______平方厘米.9.分子小于6,而分母小于60的不可约真分数有______个.10.在一条马路上,小明骑车与小光同向而行,小明骑车速度是小光速度的3倍,每隔10分有一辆公共汽车超过小光,每隔20分有一辆公共汽车超过小明,如果公共汽车从始发站每次间隔同样的时间发一辆车,那么相邻两车间隔______分.二、解答题:2.一个分数,分母是901,分子是一个质数,现在有下面两种方法:(1)分子和分母各加一个相同的一位数;(2)分子和分母各减一个相同的一位数.子.3.1997个数排成一行,除两头的两个数之外,其余每数的3倍恰好等于与它相邻前后两数之和,这一行数最左边的几个数是:0,1,3,8,…,问最右边那个数除以6余几?4.有一个蓄水池装有9根水管,其中1根为进水管,其余8根为相同的出水管.开始进水管以均匀的速度不停地向这个蓄水池蓄水.池内注入了一些水后,有人想把出水管也打开,使池内的水再全部排光.如果把8根出水管全部打开,需要3小时可将池内的水排光;而若仅打开3根出水管,则需要18小时.问如果想要在8小时内将池中的水全部排光,最少要打开几根出水管?答案一、填空题:1.42.1根据题意可知,该班人数应是2、3、7的公倍数.由于该班人数不超过60,所以该班人数为42.不及格人数为3.7后三个数的和为11+(7×6-8×4)=21所以后三个数的平均数为7.4.4可将原题转化为数字谜问题:其中A、B可以取相同的数字,也可以取不同的数字.显然B只能取5,A×9+4后必须进位,所以A=1,2,3,4.两位数分别是15、25、35、45.5.44从1开始的10个连续奇数的和是100,10个连续偶数的和是(100×3.5=)350,最大的偶数是350÷10+9=44根据题意,3头牛、4只羊吃14天,可推出6头牛、8只羊吃7天.对比4头牛、15只羊吃7天,可知2头牛与7只羊吃草量相同,即1头牛相当于3.5只羊的吃草量.所以4头牛、15只羊吃7天相当于3.5×4+15=29(只)羊吃7天,6头牛、7只羊相当于3.5×6+7=28(只)羊,可以吃7.6长度为199厘米的铁丝最少截1根,最多截9根,列表计算.8.15平行四边形面积为(6×8=)48平方厘米,三角形BEC面积为(48÷2=)24平方厘米,三角形BHC面积为(48÷4=)12平方厘米.因为S△BDC=S△BEC,所以S△DGC=S△BEG同理,S△ABF=S△FCE因此S阴=S△BEC-S△HBC+S四边形EFHG=24-12+3=15(平方厘米)9.197以分子为1、2、3、4、5分类计算.(1)分子是1的分数有58个;(2)分子是2的分数有29个;(3)分子是3的分数有38个;(4)分子是4的分数有28个;(5)分子是5的分数有44个.共有58+29+38+28+44=197(个)10.8设汽车速度为a,小光的速度为b,则小明的速度为3b,因为汽车之间的间隔相等,所以可列方程(a-b)×10=(a-3b)×20即a-b=(a-3b)×2整理后有a=5b这说明汽车的速度是小光速度的5倍.所以在相同的距离中,小光所用时间是汽车所用时间的5倍.即小光走10分,汽车行2分.由于每10分有一辆车超过小光,所以汽车间隔(10-2=)8分钟.二、解答题:1.82.487因为901=13×69+4,所以可分两种情况讨论:(1)分母加9后是13的倍数,此时分子为7×(69+1)-9=481但481=13×37不是质数,舍.(2)分母减4后是13的倍数,此时分子为7×69+4=487由于487是质数,所以487为所求.3.3设相邻的三个数为a n-1,a n,a n+1.根据题设有3a n=a n-1+an+1,所以an+1=3a n-a n-1.设a n=6q1+r1,a n-1=6q2+r2.则a n+1=3×(6q1+r1)-6q2+42=6(3q1-q2)+(3r1-r2)由此可知,a n+1除以6的余数等于(3r1-r2)除以6的余数.所以这一行数中被6除的余数分别为:0,1,3,2,3,1,0,5,3,4,3,5,0,可以发现,12个数为一个循环,所以1997÷12=166 (5)由此可知第 1997个数除以 6余 3.4.5根设1根出水管每小时的排水量为1份,则8根出水管3小时的排水量为(8×3=)24份, 3根出水管18小时的排水量为(3×18=)54份.所以进水管每小时的进水量为(54-24)÷(18-3)=2(份)蓄水池原有水最为24-2×3=18(份)要想在8小时放光水,应打开水管18÷8+2=4.25(根)所以至少应打开5根排水管.小升初数学综合模拟试卷22一、填空题:2.设A=30×70×110×170×210,那么不是A的约数的最小质数为______.3.一张试卷共有15道题,答对一道题得6分,答错一道题扣4分,小明答完了全部的题目却得了0分,那么他一共答对了______道题.4.一行苹果树有16棵,相邻两棵间的距离都是3米,在第一棵树旁有一口水井,小明用1只水桶给苹果树浇水,每棵浇半桶水,浇完最后一棵时,小明共走了______米.5.有一个四位数,它的个位数字与千位数字之和为10,且个位既是偶数又是质数,去掉个位数字和千位数字,得到一个两位质数,又知道这个四位数能被72整除,则这个四位数是______·6.甲、乙二人分别以每小时3千米和5千米的速度从A、B两地相向而行.相遇后二人继续往前走,如果甲从相遇点到达B地共行4小时,那么A、B两地相距______千米.7.如图,在△ABC中,DC=3BD,DE=EA,若△ABC面积是2,则阴影部分的面积是______.8.小朋从1997年的日历中抽出14张,是从5月14日到5月27日连续14天的.这14天的日期数相加是287.小红也抽出连续的14天的日历14张,这14天的日期数虽然与小明的不相同,但相加后恰好也是287.小红抽出的14张是从______月______日到______月______日的.9.今有五个自然数,计算其中任意三个数的和,得到了10个不同的自然数,它们是:15、16、18、19、21、22、23、26、27、29,这五个数的积是______.10.某工厂的记时钟走慢了,使得标准时间每70分钟分针与时针重合一次.李师傅按照这慢钟工作8小时,工厂规定超时工资要比原工资多3.5倍,李师傅原工资每小时3元,这天工厂应付给李师傅超时工资______元.二、解答题:1.计算问参加演出的男、女生各多少人?3.国际象棋比赛的奖金总数为10000元,发给前五名.每一名次的奖金都不一样,名次在前的钱数是比名次在后的钱数多,每份奖金钱数都是100元的整数倍.现在规定,第一名的钱数是第二、三名两人之和,第二名的钱数是第四、五名两人之和,那么第三名最多能得多少元?4.在一条公路上,甲、乙两地相距600米,小明和小强进行竞走训练,小明每小时行走4千米,小强每小时行走5千米.9点整,他们二人同时从甲、乙两地出发相向而行,1分后二人都调头反向而行,又过3分,二人又都调头相向而行,依次按照1、3、5、7、…(连续奇数)分钟数调头行走,那么二人相遇时是几点几分?答案一、填空题:1.1002.13根据A=30×70×110×170×210,可知2,3,5,7,11都是A的约数,而13不是A的约数.3.6因为小明答完了全部题目后得0分,所以他答对的题数与答错的题数之比为4∶6=2∶3,小明答对了15÷(2+3)×2=6(道)4.339(3+9+15+21+27+33+39)×2+45=339(米)能被8和9整除(8×9=72).因此8+a+b+2=10+a+b是9的倍数,由此可知a+b=8或a+b=17.53三种可能.若a+b=17,根据8+9=17,只有89一种可能.在四位数8172,8712,8532,8892中只有8712能被8整除,所以8712为所求.6.19.2因为甲、乙二人的速度比是3∶5,所以甲、乙二人在相同路程上所用的时间比是5∶3,因此A、B两地相距连结FD,由AE=ED可知:S△AFE=S△EFD,S△AEC=S△DCE由DC=3BD,可知:S△DCF=3S△BDF.因此S△ABC=(1+3+3)×S△BDF=7S△BDF8.2月16日,3月1日14+15+16+…+27=287,如果再找出14个连续的自然数之和为287是不可能的.需要调整,找出另外14个数的和为287,试验:(1)如果前面去掉14日,后面增加28日,显然和大于287;(2)如果前面去掉14、15日,后面增加2天,和为29,只能增加28日、 1日,这说明这个月的最后一天为28日.(3)如果前面去掉三天或三天以上,无论后面如何排,其和都不是287.所以小红抽出的14张是从2月16日到3月1日.9.5184因为计算其中任意三个数的和,所以每个数都使用了6次,因此这六个数的总和为(15+16+18+19+21+22+23+26+27+29)÷6=36设五个数从小到大依次为A、B、C、D、E,则所以 C=15+29-36=8.根据A+B+D=16,C=8,可推出D=9.所以E=29-(C+D)=12.根据B+D+E=27,可推出B=27-(D+E)=6.所以A=15-(B+C)=1.这五个数的乘积为1×6×8×9×12=5184.10.10.5走时正常的钟时针与分针重合一次需要慢钟走8小时,实际上是走所以应付超时工资二、解答题:1.22.男生16人,女生30人.因此女生人数为(46-16=)30人.3.1700为叙述方便,将100元作为计算单位,10000元就是100.根据题目条件可知五个人的奖金实际上是3个第二名与2个第三名的奖金之和.取偶数,因此第三名至多是(100-22×3)÷2=174.9点24分.如果不掉头行走,二人相遇时间为600÷[(4+5)×1000÷60]=4(分)两人相向行走1分后,掉头背向行走3分,相当于从出发地点背向行走(3-1=)2分;两人又掉头行走5分,相当于从出发地点相向行走(5-2=)3分;两人又掉头行走7分,相当于从出发地点背向行走(7-3=)4分;两人又掉头行走9分,相当于从出发地点相向行走(9-4=)5分.但在行走4分时二人就已经相遇了.因此共用时间1+3+5+7+8=24(分)相遇时间是9点24分.小升初数学综合模拟试卷23一、填空题:2.以正方形的4个顶点和正方形的中心(共5个点)为顶点,可以套出______种面积不等的三角形.3.某校组织不到200名同学外出参观,集合时,他们排成了一个正方形的队伍,乘车时,由于每人都要有座位,因此需要每辆有60个座位的大轿车至少4辆.那么参加活动的共有______人.4.服装厂的工人每人每天可以生产4件上衣或7条裤子,一件上衣和一条裤子为一套服装.现有66名工人生产,每天最多能生产______套.6.一列客车从甲站开往乙站,每小时行65千米,一列货车从乙站开往甲站,每小时行60千米,已知货车比客车早开出5分,两车相遇的地点距甲乙两站中点10千米,甲乙两站之间的距离是______千米.7.55道数学题,分给甲、乙、丙三人计算。
滁州三中 2018-2019 学年第一学期七年级第三次月考数学试卷
滁州三中 2018-2019 学年第一学期七年级第三次月考数 学 试 题 卷温馨提示: 本试卷共六大题 23小题,满分 150 分,考试时间 120 分钟。
答卷前,考生务必将自己的姓名、班级、准考证号、答案填写在答题卷上, 写在试题卷上无效。
一、选择题(本大题 10 小题,每小题 4 分,共40 分)1.下列方程中,是一元一次方程的是(B )A .X 2﹣4x=3B .x+1=0C .x+2y=1D .x ﹣1=2.阿里巴巴数据显示,2018 年天猫商城“双 11”全球狂欢交易额超 1056 亿元,数据 1056亿用科学计数法表示为(A )A .1.056×l011B .10.56×l09C .1.056×l012D .1.056×l010 3.下列说法中,正确的是(B ) A. 322-ab 是二次单项式B.任何有理数的绝对值都不是负数C.若线段 AC = BC ,则点C 是线段 AB 的中点D .由x =y ,得 ay a x = 4.方程 2x+a ﹣4=0 的解是 x =﹣2,则 a 等于(D )A .﹣8B .0C .2D .8 5.在解方程x -15+x=3x 13时,方程两边同时乘以15,去分母后,正确的是(B ) A.3x-1+15x=5(3x+1)B.3(x-1)+15x=5(3x+1)C.3(x-1)+x=5(3x+1)D.(x-1)+x=5(3x+1)6.如图,已知点C 在线段 AB 上,点 M 、 N 分别是 AC 、BC 的中点,且 AB = 8cm , 则MN 的长度为(A )A. 4 cmB.5 cmC. 2 cmD. 6 cm7.某药店将原价a 元的药品按七折销售仍能获得20%的利润,则该药品的进价可用代数式表示为( B ) A .78a 元 B .712a 元C .635a 元D .435a 元8.一艘轮船顺水航行时的速度为akm/h,逆水航行时速度为bkm/h,则水流速度为(C ) A(a-b)km/h B.)(b -a 21km/h C. )(2b -a km/h D.)2(b a +km/h 9.一种蔬菜加工后出售,单价可提高20%,但质量减少10%.现有未加工的这种蔬菜30千克,加工后可以比不加工多卖12元,则这种蔬菜加工前和加工后每千克各卖多少元?设这种蔬菜加工前每千克卖x 元,加工后每千克卖y元,根据题意,所列方程组正确的是(B)A.y(120%)x30(110%)y-30x12B.y(120%)x30(1-10%)y-30x12C.y(1-20%)x30(1-10%)y-30x12D.y(1-20%)x30(110%)y-30x1210.如图,八个大小相同的小长方形可拼成如图1,图2所示的两种大矩形,在拼成图2时,中间留下了一个边长为1的小正方形,则每个小长方形的面积是( c)A.12B.14C.15D.16二、填空题(每小题5 分,共20 分)11.如图,三棱锥有a个面,它们相交形成了b条棱,这些棱相交形成了c个点,则a+b-c= 6 .12.已知5+3x+x2的值为11,则代数式12932-+xx的值为6 .13.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.其中,方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有牛五、羊二,直金十两;牛二、羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?”设每头牛值金x两,每只羊值金y两,可列方程组为5x2y102x5y8.14.已知线段 AB=15cm,直线AB上有一点C,BC=6cm,若 M、N 两点分别是线段AB、BC 的中点,则线段M N=4.5或10.5cm.三、(本大题共2小题,每小题8分,满分16分)15.(1)-23 + [(-4)2 - (1 - 32 ) ⨯ 3]解:原式=-8+(16+24)=-8+40=32(2)先化简,再求值:(3a2-5a)-2(3a-5+a2),其中a=-1.解:原式=3a2-5a-6a+10-2a2=a2-11a+10.当a=-1时,原式=(-1)2-11×(-1)+10=22.16.解方程组:(1)2233)5(54--+=--+x x x x 解:去分母,得6(x+4)-30(x-5)=10(x+3)-15(x-2).去括号,得6x+24-30x+150=10x+30-15x+30.移项,得6x-30x-10x+15x=30+30-150-24.合并同类项,得-19x=-114.两边同除以-19,得x=6.(2) 55x 50y 740,50x 55y 730,解:①+②,得105x+105y=1470;化简,得x+y=14③①-②,得5x-5y=10化简,得x-y=2④联立③④组成方程组,得{③④142=+=-y x y x解得{8x 6y ==四、(本大题共2小题,每小题8分,满分16分)17.我们规定一种新运算“★”,其意义为a ★b=a 2-b ,若(3x-1)★(5-x )=-1,求x 的值.解:根据题意得3x -12-(5-x )=-1,解这个方程得x=95. 18.如图所示,C ,D 为线段AB 的三等分点,E 为线段AC 的中点,若ED=9,求线段AB 的长度.解:设EC=x ,则AC=CD=DB=2x ,AB=6x.因为ED=9,则有x+2x=9,解得x=3,则AB=6x=6×3=18.五、(本大题共2小题,每小题10分,满分20分)19.已知方程组 x a y 5, ①b x -3y 4, ②由于粗心,甲看错了方程①中的a ,得到方程组的解为 x -1,y -2;乙看错了方程②中的b ,得到方程组的解为 x 2,y 3.(1)试确定a ,b 的值;(2)请你求出原方程组的解.解:(1)由于甲看错了方程①中的a ,得到方程组的解为 x -1,y -2,所以 x -1,y -2适合方程bx-3y=4, 代入得-b+6=4,解得b=2.由于乙看错了方程②中的b ,得到方程组的解为 x 2,y 3,所以x 2,y 3适合方程x+ay=5,代入得2+3a=5,解得a=1. (2)原方程组为 x y 5,2x -3y 4, 解得x195,y 65.20.与铁路平行的一条小路上有一行人与一骑车人同时向东行进,行人速度为3.6km/h,骑车人速度为10.8km/h.如果有一列火车从他们背后开过来,它通过行人用了22s,通过骑车人用了26s,求这列火车速度为多少km/h 和火车身长为多少m.解:设这列火车速度为xm/s,火车身长ym ,由题意得3.6km/h=1m/s 10.8km/h=3m/s{①)(②)(y 1-x 22y 3-x 26== 解得{14x 286y ==14/ms=50.4km/h答:这列火车速度为50.4km/h 和火车身长为286m.六、(本题满分12分)21.下列图形都是由同样大小的空心圆圈按照一定规律所组成的.其中图(1)中一共有7个空心圆圈;图(2)中一共有11个空心圆圈;图(3)中一共有15个空心圆圈;…(1)图(4)中一共有 19 个空心圆圈.(2)按此规律排列下去,猜想图(n )中一共有多少个空心圆圈?用含n 的代数式表示.(不用说理)(3)是否存在图(x )中一共有2018个空心圆圈?若存在,求出x 的值;若不存在,请说明理由.解:(2)3n+2+(n+1)=4n+3.(3)不存在.理由:根据(2)中结论可知4x+3=2018,解得x=50334,由于50334不是正整数,所以不存在图(x )中一共有2018个空心圆圈.七、(本题满分12分) 22.某商场用 2500 元购进 A 、B 两种新型节能台灯共 50 盏,这两种台灯的进价、标价如下表所示.(1)这两种台灯各购进多少盏?(5 分)(2)若 A 型台灯按标价的 9 折出售,B 型台灯打 8 折出售,那么这批台灯全部售出后,商场共获利多少元?(7 分)解:(1)设 A 型台灯购进 x 盏,B 型台灯购进(50-x)盏.根据题意得:40x+65(50-x)=2500解得: x=3050-x=50-30=20(2)30×(60×90%-40)+20×(100×80%-65)=30×14+20×15=720(元).答:A 型台灯购进 30 盏,B 型台灯购进 20 盏;这批台灯全部售完后,商场共获利 720 元八、(本题满分14分)23.已知:用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B 型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案.(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次.请选出最省钱的租车方案,并求出最少租车费.解:(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨、y吨.根据题意得2x y10x2y11解得x3y4答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨、4吨.(2)根据题意可得3a+4b=31,b=313a4,使a,b都为整数的情况共有a=1,b=7或a=5,b=4或a=9,b=1三种情况,故租车方案有:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆.(3)设车费为w元,则w=100a+120b,方案①花费为w=100×1+120×7=940元;1方案②花费为w=100×5+120×4=980元;2方案③花费为w=100×9+120×1=1020元.3故方案①最省钱,即租用A型车1辆,B型车7辆.。
2023滁州市新初一分班数学试卷含答案
2023滁州市新初一分班数学试卷含答案一、选择题1.圆的面积与它的半径()。
A.成正比例B.成反比例C.不成比例D.不能确定2.下面的时刻中,钟面上时针与分针的夹角成直角的是()A.3时B.3时20分C.6时D.6时45分3.沿公园跑一圈是78千米,小李跑了5圈用了13小时。
小李平均1小时跑多少千米?正确的算式是()。
A.71583⨯÷B.71583⨯⨯C.17538⎛⎫÷⨯⎪⎝⎭D.17538÷⨯4.一个三角形三内角的度数的比为2∶2∶3,这个三角形是()。
A.锐角三角形B.直角三角形C.钝角三角形5.某校六年级共有学生180人,其中男生人数是女生人数的23,求女生有多少人?若设女生人数为x人,下列方程中正确的是()。
①23x+x=180 ②23+x=180 ③(23+1)x=180 ④23x=180+xA.①②B.②④C.①②③D.①③6.桌子上放着几叠碗,从上面,前面、右面观察分别得到下面的三幅图形,那么这张桌子上一共放着()个碗。
A.8 B.9 C.10 D.117.下列关于“统计与概率”的知识,说法错误的是()。
A.要描述小陈从一年级到六年级的平均体重变化情况,用折线统计图比较合适B.45,73,47,45,68,这五个数的平均数是68C.扇形统计图可以清楚地表示出各部分与总数之间的关系D.掷一枚硬币,连续8次都正面朝上,第9次掷出后,可能是反面朝上8.如图将一个圆柱转化成一个长方体、体积()。
A.不变B.增加C.减少9.两件进价一样的商品,一件降价10%后出售,另一件提价10%后出售,这两件商品卖出后结果是()A.赚了B.赔了C.不赚不赔10.把一根绳子对折3次,这时每段绳子是全长的()。
A.13B.16C.18D.19二、填空题11.370克=(________)千克 5立方分米5立方厘米=(________)立方分米6.25小时=(________)时(________)分 5.03公顷=(________)公顷(________)平方米十12.59的分数单位是_______,再加上_____个这样的分数单位就是最小的质数。
2022年安徽省滁州市小升初分班数学应用题达标模拟试卷三含答案及解析
2022年安徽省滁州市小升初分班数学应用题达标模拟试卷三含答案及解析姓名:________ 考号:________ 得分:________一、应用题(精选150道题;要求一、审题:在开始解答前,应仔细阅读题目,理解题目的意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用楷书,尽量避免连笔,字迹稍大,并注意排版;四、π一律取值3.14。
)1.一块长方形地种了小麦,这块地长450米,宽280米,它的面积是多少公顷?如果每公顷收小麦600千克,能收到7吨小麦吗?2.两汽车从相距364千米的两地同时相对开出,甲车每小时行80千米,乙车每小时行60千米,经过几小时两车相遇?3.周林学校六年级有男生146人,女生94人,四年级学生人数是六年级人数的7/8,四年级有学生多少人?4.甲、乙两车分别从A、B两地同时出发相向而行,相遇点距中点160千米,已知甲的速度是乙的速度的3/4,甲每小时行60千米,求A、B 两地之间的距离是多少千米?5.一辆汽车和一辆摩托车同时从相距162千米的两地出发,相对开出.汽车每小时行48千米,摩托车的速度是汽车的1.25倍,经过多长时间两车相遇?6.一个化肥厂今年计划生产化肥1.44万吨,实际提前两个月完成了全年计划.照这样计算,实际全年可以多生产多少万吨?7.某化肥厂十月份计划生产化肥1480吨,上旬完成计划的45%,中旬完成计划的2/5,再生产多少吨就完成了全月计划?8.AB两地相距1035千米.(1)甲乙两辆汽车同时从A地开往B地,3小时后,乙车落后甲车72千米.甲车每小时行112千米,乙车每小时行多少千米?(2)甲乙两车分别从A、B两地同时相向而行,几小时后甲乙两车还相距35千米?9.甲、乙两仓共有粮食180吨,甲仓运出30吨后,甲仓粮食是乙仓的2/3,原来甲、乙两仓各有多少吨?10.小明早上从家步行到学校去,当他走了一半路程的时候,爸爸发现小明的脑图本忘带了,随即开车给小明送书.当爸爸开车追上小明时,小明距学校还有3/10的路程.随后小明坐上爸爸的车子前往学校.刚好比步行提前了5分钟到达学校.那么小明从家到学校全部步行需要多少时间?11.甲、乙两人装订一批书,甲每小时装订560本,乙每小时装订650本,甲先装订450本后乙才开始装订.乙装订几小时后,两人装订的本数相等?12.唐僧师徒四人从大唐前往西天取经,一路上历经千辛万苦,一日正是烈日当空,口干舌燥之时,恰好来到了一处瓜园长,种瓜的老伯送上十几个西瓜给他们消暑解渴,唐僧给自己分了一个,剩下的分给三个徒弟,八戒肚量大,给他分得最多,沙僧只分得八戒的1/2,悟空只分得八戒的1/3,种瓜老伯共送给他们多少西瓜?13.制作一个长80厘米,宽40厘米,高30厘米的长方体玻璃鱼缸(无盖),至少需要多少平方米的玻璃?要使水面高25厘米,需要多少升水?14.工厂向银行申请甲乙两种贷款共40万元.每年需付利息5万元.甲种贷款年利率为12%,乙种贷款年利率为14%.该厂申请的两种贷款金额各多少万元?15.1千克小麦可磨出0.75千克面粉,那么100千克小麦可磨出多少千克面粉?16.机械厂四月份上旬生产机床250台,中旬生产机床150台,下旬生产机床200台,上、中、下三旬分别占四月份生产机床总台数的几分之几?17.一辆汽车从甲城到乙城每小时行40千米,经过4小时后,离乙城还有34千米.甲、乙两城之间的距离是多少千米?18.饲养大队养白兔的只数是大鹅的2倍,养小鸡的只数是白兔的6倍,已知养大鹅的只数是128只,养小鸡多少只?19.一辆客车从甲城到乙城,每小时行79千米,全程用了7.8小时,求从甲城到乙城的距离?20.一件衣服打七折后的售价是105元,如果按原价购买8件这样的衣服要多少钱?21.甲、乙两车分别从A,B两地同时出发相向而行,6小时后相遇在C 地,如果甲车的速度不变,乙车每小时多行5千米,且两车还从A,B 两地同时出发相向而行,则相遇的地点距离C地12千米;如果乙车的速度不变,甲车每小时多行5千米,且两车还从A,B两地同时出发相向而行,则相遇地点距离C地16千米.甲车原来每小时行多少千米?22.玩具厂408个工人2天共生产玩具91392个,平均每个工人每天生产玩具多少个?23.学校规定上午8时到校,小明去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小明几时几分离家刚好8时到校?由家到学校的路程是多少?24.一个工程队修筑高速公路,前4天一共修筑50千米,后5天每天修筑13.5千米.这个工程队平均每天修路多少千米?(得数保留一位小数.)25.甲、乙两车从A、B两地同时相向而行,甲车每小时行40千米,乙车每小时行35千米,两车在距中点15千米处相遇,求AB两地相距是多少?26.六年级一班有65人,女生是男生的5/8,女生有多少人?27.蚯蚓可以消化生活垃圾,一个蚯蚓养殖场3天可以消化240克活垃圾,照这样计算,这个蚯蚓养殖场一年(按365天)可以消化多少克生活垃圾?28.同学们去秋游,要带一些雪碧上路.批发60元/箱,每箱6瓶,零售12元/瓶,(1)如果买6瓶雪碧,怎样买合算?(2)按批发价算,买9瓶雪碧需要多少元?29.甲、乙两车分别同时从A、B两城相向行驶6小时后可在途中某处相遇.甲车因途中发生故障抛描,修理2.5小时后才继续行驶.因此,从出发到相遇经过7.5小时.那么,甲车从A城到B城共有多少小时.30.甲、乙两个存粮仓库,甲仓库有大米40袋,乙仓库有大米l70袋.从乙仓库运多少袋给甲仓库,可使乙仓库的大米袋数正好是甲仓库的2倍?31.小华的爸爸买了一辆15.6万元的小轿车,如果按车价的10%缴纳购置税,小华的爸爸应缴纳购置税多少万元.32.有甲、乙两辆汽车同时从朝阳开往相距468千米的锦州,已知甲车每小时行80千米,当乙车到达锦州时,甲车距离锦州还有52千米.乙车每小时行多少千米?33.小华由于粗心把60×(□+5)错写成60×□+5,她得到的结果与正确的结果相差多少?34.某化肥厂上月计划生产化肥28万吨,实际完成了32万吨,实际比原计划超额完成了多少万吨?超额完成的产量是计划的几分之几?35.一件衣服定价75元,售出可获利50%,如果按定价的七五折出售,则可获利多少元?36.胜利小学四、五、六年级共有学生1600人,六年级有学生740人,五年级有学生370人,求胜利小学四年级有学生多少人?37.两个城市间铁路长516千米,甲、乙两车同时从两个城市出发,4小时后相遇,甲车每小时行61千米,乙车每小时行多少千米?38.甲数除以乙数,商是5,甲数比乙数多72,甲数、乙数是多少?39.工人叔叔做零件,前3天每天做125个,后4天每天做160个,一星期工人叔叔做零件多少个?40.商店运进一批皮鞋,第一天卖出了总数的1/3,第二天卖出了第一天的3/5,还剩下280双,商店共运进皮鞋多少双?41.妈妈在工厂进了60只录音笔,每只单价125元.上半年卖出50只,每只售价144元,剩下的按每只110元.(1)妈妈应付给工厂多少元?(2)若卖完这批录音笔,妈妈是赚了还是亏了?42.某工厂有128名工人生产零件,他们每个月工作23天,在工作期间每人每天可以生产300个零件.月底将这些零件按17个一包的规格打包,发现最后一包不够17个.请问:最后一包有多少个零件?43.甲、乙两地间的公路长660千米,一辆汽车8:00从甲地出发,14:00到达乙地.这辆汽车平均每小时行多少千米?44.一块种植茶叶的梯形地块,上底长30米,下底长50米,高20米.平均每平方米收鲜茶叶600克,市场上收购价格为每千克108元,这块地里的茶叶价值是多少?45.甲、乙两车分别从A、B两地相向出发,当甲车行驶了全程的40%时乙车相遇,相遇后两车仍按原方向继续前行,当甲车距离B地还有全程的44%时,乙车又行驶了72千米.①甲、乙的速度比是2:3.②A、B两地间的距离是多少千米?46.甲、乙、丙三人的平均体重是39千克,甲乙两人的重量和是75千克,丙的体重是多少千克.47.工人叔叔做零件,前3天每天做125个,以后每天做160个,一星期工人叔叔共做零件几个?48.甲、乙两辆客车从A、B两城相向开出,甲车每小时行65千米,乙车每小时行70千米,2.5小时后两车相遇,求A、B两城相距多远.49.一桶油连桶重101.5千克,卖出油的一半后,连桶还重51.5千克。
【小升初】2023-2024学年人教版安徽省滁州市数学秋季分班考模拟试题2套(含解析)
【小升初】2023-2024学年人教版安徽省滁州市数学秋季分班考模拟试题一、填空(共25分)1.(4分)2022年2月4日~2月20日,第24届冬季奥运会在中国北京成功举办。
共有91个国家,2892名运动员参加此次盛会。
赛事总预算约为一百零四亿五千二百万元。
横线上的数写作,省略亿位后面的尾数约是。
这一年的2月共有天。
为统计本届奥运会奖牌分布情况,应选择统计图比较合适。
2.(3分)我们常说“点动成线,线动成面,面动成体”。
一条线段绕一个端点旋转一周,所形成的平面图形是。
一个直角三角形(如图)绕直角边旋转一周后得到的几何体是。
它的体积是立方厘米。
3.(1分)如图是笑笑将一个圆柱形薯片盒的商标纸展开后的图形,这个薯片盒的侧面积是平方厘米。
4.(1分)过“六一”时,爸爸送给淘气一个圆锥形陀螺(如图),陀螺的底面直径是4厘米,高是6厘米,如果用一个长方体盒子包装它,至少需要平方厘米的包装纸。
5.(4分)在横线上填上“>”“<”或“=”。
3吨40千克 3.4吨时75分5200立方厘米 5.2升 4.5公顷450平方米6.(4分)如图,根据图中涂色部分与整个图形的面积关系填写等式。
6:==%=(填小数)7.(2分)把10千克糖果,平均装在n个袋中,每袋重千克,每袋占总质量的。
8.(1分)2022年4月16日凌晨00:44分,神舟十三号载人飞船与空间站天和核心舱成功分离,9:56分成功降落到地面,仅仅9个小时就完成了从天宫空间站到返回地球的整个旅程,而上次的神舟十二号返回却用了整整28个小时。
神舟十三号飞船返回时间比神舟十二号飞船返回时间缩短了%。
(百分号前保留一位小数)9.(1分)北京冬奥会共设北京赛区、延庆赛区、张家口赛区三个赛区,共13个竞赛场馆。
其中位于北京市赛区与延庆赛区的竞赛场馆数量占总场馆数量的,张家口赛区有个竞赛场馆。
10.(2分)根据如图的统计图,算一算中国第24届冬奥会奖牌的数量。
中国第24届冬奥会金牌数比第21届冬奥会金牌数多80%,银牌数和第23届冬奥会银牌数的比是2:3。
2023年9月安徽省滁州市小升初数学分班思维应用题模拟试卷一含答案解析
2023年9月安徽省滁州市小升初分班数学思维应用题模拟试卷一含答案解析学校:________ 姓名:________ 考号:________ 得分:________一、应用题(精选120题,每题1分。
一、审题:在开始解答前,应仔细阅读题目,理解题目意思、数量关系、问题是什么,以及需要几步解答;二、注意格式:正确使用算式、单位和答语;三、卷面要求:书写时应使用正楷,尽量避免连笔,字迹稍大,并注意排版,确保卷面整洁;四、π一律取值3.14。
)1.菜市场门口电瓶车和三轮车共停了20辆,一共有46个轮子,自行车和三轮车各有多少辆?2.一件衣服进价120元,按标价八折出售仍赚32元,则标价是多少元?3.化肥厂今年计划生产化肥5890吨,头5个月平均每月只生产450吨,余下的几个月平均每月生产多少吨才能完成全年计划?4.一块菜地8/9公顷,其中1/3种植玉米,1/6种植土豆,其余种植花生,那么花生的种植面积占这块地的几分之几?5.A、B两地相距409.5千米,甲、乙两辆汽车从两地同时出发相向而行,3小时相遇,已知甲车平均每小时行65.5千米,乙车平均每小时行多少千米?(用方程解)6.某小学组织学生划船,每只船坐7人余8人,每只船坐8人少7人.学校租了几只船,有多少人?7.妈妈在超市买1袋大米和3千克白糖一共用去42元.已知这袋大米的价钱是27元,每千克白糖多少元?8.一个长方形的长是55厘米,宽是30厘米.把这个长方形剪成尽可能大的同样的正方形而没有剩余.这样的正方形的边长是多少厘米?一共可以剪成多少个这样的正方形?9.甲乙两城铁路长1331千米,一列火车于6月22日下午3时从甲城开往乙城,于6月23日凌晨2时到达.这列火车每小时行多少千米?10.某体育用品商店进了100套福娃,售出85套.售出了百分之几?11.某筑路队第一天修筑公路220米,第二天比第一天增加了1/4,第二天修筑公路多少米?12.五年级同学栽树1200棵,比六年级同学栽树棵数的80%还少160棵,六年级同学栽树多少棵?13.开学初学校成立了舞蹈队,其中男队员占45%,后来又增加16名女队员,这批男队员只占总人数的25%,这批男队员一共有多少人?14.小华去外地3天,回来后撕掉了这三天的日历,这3天日历总和是60,她出去的第一天多少号?15.一支修路队要修一段路,第一天修了64.5米,第二天比第一天多修6.8米,第三天比前两天总数少10.4米,第三天修了多少米?16.有一个圆形花坛,直径为40米,在它周围铺一条宽为2米的小路,小路的面积是多少平方米?17.一片草场,24匹马6天可以把草吃完,30匹马4天可以把草吃完,多少匹马12天可以把草吃完,(假定草每天生长量是固定的)18.新和小学组织四年级381个同学到市影剧院观看演出.(1)用8辆48座的客车能一次载完吗?(2)市影剧院每排有25个座位,四年级的同学可以坐满几排?还剩几人?19.同学们参观历史博物馆,四年级师生共226人,五年级师生比四年级多34人,每张门票18元.(1)四年级师生买门票要用多少元钱?(2)五年级师生准备5000元钱买门票够吗?20.甲乙两车分别从A、B两城同时相对开出,经过4小时,甲车行了全程的80%,乙车超过中点13千米,已知甲车比乙车每小时多行3千米,A、B两城相距多少千米?21.两个工程队合修一段长148千米的高速公路,100天正好完工,甲队每天修0.76千米,乙队每天修多少千米?(用方程解)22.甲乙两地相距476千米,一辆客车和一辆货车同时从两地相对开出,3.5小时候两车相遇,客车每小时比货车快16千米,客车的速度是多少?23.手工制作比赛中,六年级学生做泥人玩具,一班48人,共做267个;二班50人,共做292个;三班47人,每人做6个.六年级学生平均每人做多少个?24.班级图书室一共有150本图书,其中故事书和科技书的本数占图书总数的90%,其余的都是文艺书,文艺书有多少本?25.六年级全体同学计划植树418棵,如果每小时植树62棵,大约多少小时能完成任务.26.六年级有女生110人,占全年级人数的55%,六年级的人数比五年级多1/19,五年级有多少人?27.师徒二人合作8天生产零件零件600个.师徒二人工作效率的比是3:2,徒弟平均每天做多少个零件?28.一个长方形较长的一条边与较短的一条边一共是17米,它的周长是多少米.29.小红在做加法时,把其中一个加数165错写成156,结果得481,正确的和是多少?30.一个长方形操场长40米,宽35米.1平方米能站12人,问这个操场能站下16000人吗?31.饲养场养鸡530只,养鸭的只数比鸡的只数的3倍少208只.饲养场养鸭多少只?32.同学们参加暑期夏令营.低年级有28人参加,高年级的人数比低年级的17倍还多16人.如果每13人合住一顶帐篷.那么低年级、高年级的同学们共需要架多少顶帐篷?33.小华在做一道除数是两位数,被除数是2016的题目时,把除数十位上的数字与个位上的数字抄反了.结果商是48.正确的商是多少?34.五年级(1)班有男生20人,男生比女生多1/4,女生有多少人?35.一个正方形与一个宽为5厘米,面积是204平方厘米的长方形恰好拼成一个长方形,求这个正方形面积最大是多少平方厘米.36.仓库将底面周长是25.12米、高是3米的一个圆锥形谷堆装进一个底面直径是8米的圆柱形粮仓里,正好装满.这个粮仓的高是多少米?37.服装加工厂4天加工了2400套服装,照这样计算,再加工5天就可以完成任务.还要加工多少套服装?(用比例解答)38.一台电磁炉的售价是290元,一台彩色电视机的售价是一台电磁炉的5倍.妈妈买两件商品一共要花多少钱?39.一桶油连桶重120千克,用去3/7油后,连桶重75千克.这桶油原来重多少千克?40.小华用200粒大豆做发芽试验,结果发芽率是99%,有多少粒种子发芽?41.某工程队要铺一条公路,原计划每天铺120米,15天可以完成,如果要提前2.5天铺完,那么每天铺的路比原计划增加百分之几?42.一个家具加工厂,要从火车站把76吨木材运回工厂仓库,货运站有两种车可供租用,大卡车每次每辆运5吨,每次运费85元,小卡车每次每辆运3吨,每次运费60元,请你设计一种租车方案,使运费最少。
2018-2019年滁州市初中分班数学模拟试卷(44)附详细答案
小升初数学综合模拟试卷44一、填空题:1.1997+1996-1995-1994+1993+1992…-2+1=_______.3.有一个新算符“*”,使下列算式成立:5*3=7,3*5=1,8*4=12,3*4=2,那么7*2=______.4.王朋家里买了150斤大米和100斤面粉,吃了一个月后,发现吃的米和面一样多,而且剩的米刚好是面的6倍,则米剩______斤.5.张、王、李三位老师分别在小学教劳动、数学、自然、手工、语文、思想品德,且每位老师教两门课.自然老师和劳动老师住同一个宿舍,张老师最年轻,劳动老师和李老师爱打篮球,数学老师比手工老师岁数大,比王老师岁数小,三人中最大的老师住的比其他两位老师远,则张老师教______,王老师教______,李老师教______.6.已知一个五边形的三条边的长和四个角,如图所示,那么,这个五边形的面积是______.7.在下面四个算式中,最大的是______.8.如图是一个半径为4厘米,高为4厘米的圆柱体,在它的中间依次向下挖半径分别为3厘米、2厘米、1厘米,高分别为2厘米、1厘米、0.5厘米的圆柱体,则最后得到的立体图形表面积是_______平方厘米.9.“红星”小学三年级和一年级学生去历史博物馆参观,由于学校仅有一辆车,车速是每小时60千米,且只能坐一个年级的学生.已知三年级学生步行速度是每小时5千米,一年级学生步行速度是每小时3千米,为使两个年级的学生在最短的时间内到达,则三年级与一年级学生步行的距离之比为______.10.有一串数;1,5,12,34,92,252,688,…其中第一个数是1,第二个数是5,从第三个数起,每个数恰好是前两个数之和的2倍.那么在这串数中,第4000个数除以9的余数是______.二、解答题:1.六年级学生和一年级学生共120人一起给树浇水,六年级学生一人提两桶水,一年级学生两人抬一桶水,两个年级一次浇水180桶,问有一年级学生多少人?2.小雪和小序两人比赛口算,共有1200题,小雪每分算出20题,小序每算出80题比小雪算同样多的题少用了4秒,问:小序做完1200题时,小雪还有多少题没做?3.小红有一只手表和一只小闹钟,走时总有点差别,小闹钟走半小时,手表要多走36秒,又知在半小时的标准时间里,小闹钟少走了36秒,问:这只手表准不准?每小时差多少?答案,仅供参考。
2018年滁州市中考数学模拟试题(含答案).doc
2018年滁州市中考数学模拟试题(含答案)为了方便您的阅读请点击全屏查看一、选择题下面各题均有四个选项,其中只有一个是符合题意的。
1.截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到1 40 000立方平米。
将140 000用科学记数法表示应为A.14×104B.1.4×105 C.1.4×106 D.0.14×106【考点】科学计数法与有效数字【难度】容易【答案】B【点评】此题考查科学计数法的表示方法,以及用科学计数法表示的数的有效数字的确定方法.该题目在初三强化提高班专题讲座第一章数与式第02讲科学计数法部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同,考查知识点完全相同。
2.实数a,b,c,d在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是A.a B.b C.c D.d【考点】数轴、绝对值【难度】容易【答案】A【点评】本题考查绝对值的基本概念。
该题目在初一强化提高班课程讲座第一章有理数第01讲有理数的定义,相关概念及有理数大小比较部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同,考查的知识点及解题方法完全相同。
3.一个不透明的盒子中装有3个红球,2个黄球和1个绿球,这些球除了颜色外无其他差别,从中随机摸出一个小球,恰好是黄球的概率为A.B.C.D.【考点】概率【难度】容易【答案】B【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.该题目在初三强化提高班专题讲座第八章中考总复习第01 讲中考综合复习串讲(3)部分做了专题讲解,中考原题与讲义中给出的题目只是数字不同,考查的知识点及解题方法完全相同。
而且讲义中的例题比中考中的这道题要复杂,老师对具体的分析方法等都做了详细讲解。
4.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的为【考点】轴对称图形【难度】容易【答案】D【点评】本题考查轴对称图形。
滁州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析
滁州市初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)下列是方程组的解的是()A.B.C.D.【答案】D【考点】解二元一次方程组【解析】【解答】解:根据代入消元法,把2x-y=-5变形为y=2x+5,把其代入方程x+2y=5,解得x=-1,代入y=2x+5=3,所以方程组的解为.故答案为:D.【分析】利用代入消元法,将方程组中的②方程变形为用含x的式子表示y得出③方程,再将③方程代入原方程组中的①方程消去y即可求出x的值,再将x的值代入③方程进而算出y的值,从而得出原方程组的解。
2、(2分)解为的方程组是()A.B.C.D.【答案】D【考点】二元一次方程组的解【解析】【解答】解:将分别代入A、B、C、D四个选项进行检验,能使每个方程的左右两边相等的x、y的值即是方程的解.A、B、C均不符合,只有D满足.故答案为:D.【分析】由题意把x=1和y=2代入方程组计算即可判断求解。
3、(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.4、(2分)如图,在三角形中,=90º,=3,=4,=5,则点到直线的距离等于()A. 3B. 4C. 5D. 以上都不对【答案】A【考点】点到直线的距离【解析】【解答】解:∵∠C=90°∴AC⊥BC∴点A到直线BC的距离就是线段AC的长,即AC=3故答案为:A【分析】根据点到直线的距离的定义求解即可。
2018-2019滁州市小学毕业数学总复习小升初模拟训练试卷3-5(共3套)附详细试题答案
小升初数学综合模拟试卷3一、填空题:1.用简便方法计算下列各题:(2)1997×19961996-1996×19971997=______;(3)100+99-98-97+…+4+3-2-1=______.2.右面算式中A代表______,B代表______,C代表______,D代表______(A、B、C、D各代表一个数字,且互不相同).3.今年弟弟6岁,哥哥15岁,当两人的年龄和为65时,弟弟______岁.4.在某校周长400米的环形跑道上,每隔8米插一面红旗,然后在相邻两面红旗之间每隔2米插一面黄旗,应准备红旗______面,黄旗______面.5.在乘积1×2×3×…×98×99×100中,末尾有______个零.6.如图中,能看到的方砖有______块,看不到的方砖有______块.7.右图是一个矩形,长为10厘米,宽为5厘米,则阴影部分面积为______平方厘米.8.在已考的4次考试中,张明的平均成绩为90分(每次考试的满分是100分),为了使平均成绩尽快达到95分以上,他至少还要连考______次满分.9.现有一叠纸币,分别是贰元和伍元的纸币.把它分成钱数相等的两堆.第一堆中伍元纸币张数与贰元张数相等;第二堆中伍元与贰元的钱数相等.则这叠纸币至少有______元.10.甲、乙两人同时从相距30千米的两地出发,相向而行.甲每小时走3.5千米,乙每小时走2.5千米.与甲同时、同地、同向出发的还有一只狗,每小时跑5千米,狗碰到乙后就回头向甲跑去,碰到甲后又回头向乙跑去,……这只狗就这样往返于甲、乙之间直到二人相遇而止,则相遇时这只狗共跑了______千米.二、解答题:1.右图是某一个浅湖泊的平面图,图中曲线都是湖岸(1)若P点在岸上,则A点在岸上还是水中?(2)某人过这湖泊,他下水时脱鞋,上岸时穿鞋.若有一点B,他脱鞋的次数与穿鞋的次数和是奇数,那么B点在岸上还是水中?说明理由.2.将1~3000的整数按照下表的方式排列.用一长方形框出九个数,要使九个数的和等于(1)1997(2)2160(3)2142能否办到?若办不到,简单说明理由.若办得到,写出正方框里的最大数和最小数.3.甲、乙、丙、丁四个人比赛乒乓球,每两人要赛一场,结果甲胜了丁,并且甲、乙、丙三人胜的场数相同,问丁胜了几场?4.有四条弧线都是半径为3厘米的圆的一部分,它们成一个花瓶(如图).请你把这个花瓶切成几块,再重新组成一个正方形,并求这个正方形的面积.答案一、填空题:1.(1)(24)(2)(0)原式=1997×(19960000+1996)-1996×(19970000+1997)=1997×19960000+1997×1996-1996×19970000-1996×1997=0(3)(100)原式=(100-98)+(99-97)+…+(4-2)+(3-1)=2×50=1002.(1、0、9、8)由于被减数的千位是A,而减数与差的千位是0,所以A=1,“ABCD”至少是“ABC”的10倍,所以“CDC”至少是ABC的9倍.于是C=9.再从个位数字看出D=8,十位数字B=0.3.(28)(65-9)÷2=284.(50、150)40O÷8=50,8÷2-1=33×50=1505.(24)由2×5=10,所以要计算末尾的零只需数清前100个自然数中含质因数2和5的个数,而其中2的个数远远大于5的个数,所以含5的因数个数等于末尾零的个数.6.(36,55)由图观察发现:第一层能看到:1块,第二层能看到:2×2-1=3块,第三层:3×2-1=5块.上面六层共能看到方砖:1+3+5+7+9+11=36块.而上面六层共有:1+4+9+16+25+36=91块,所以看不到的方砖有91-36=55块.7.(25)8.(5)考虑已失分情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小升初数学试卷54一、用心思考,正确填写.(每空1分,共23分)1、气温从﹣3℃上升到10℃,温度上升了________℃.2、九亿九千零五万四千写作________,把这个数改写成用“万”作单位是________,省略亿位后面的尾数约是________.3、21:________=________÷20=________=________%=七折.4、3 的分数单位是________,去掉________个这样的单位后等于最小的质数.5、3时15分=________时480平方米=________公顷.6、一列动车在高速铁路上行驶的时间和路程如图.看图填写如表:①这列动车行驶的时间和路程成________比例②照这样的速度,行1800千米需要________小时.7、已知数a和15是互质数,它们的最大公约数是________,最小公倍数是________.8、用小棒按照如下的方式摆图形,摆一个六边形需要6根小棒,摆4个需要________根小棒,摆n个需要________根小棒.9、如图,把三角形ABC的边BC延长到点D.已知∠2=41°,∠4=79°,那么∠1=________°.10、客车和货车分别从A、B两地同时相对开出,当客车行了全程的时,货车行了48千米;当客车到达B地时,货车行了全程的.A、B两地相距________千米.二、选择题(共5小题,每小题1分,满分5分)11、一袋上好佳薯片的外包装上写着50g±2g,这袋薯片最多或最少重()g.A、50,48B、51,49C、52,48D、49,5212、两个大小不同的圆.如果这两个圆的半径都增加3厘米,那么,它们周长增加的部分相比()A、大圆增加的多B、小圆增加的多C、增加的同样多D、无法比较13、一个圆锥和一个圆柱体积和底面积都相等,圆锥的高是9cm,圆柱的高是()A、3cmB、9cmC、18cmD、27cm14、下面4个算式中,结果一定等于的是()(其中□=2△,△≠0)A、(□+□)÷△B、□×(△﹣△)C、△÷(□+□)D、□×(△+△)15、下列说法正确的是()A、一条射线长30米B、8个球队淘汰赛,至少要经过7场比赛才能赛出冠军C、一个三角形三条边分别为3cm、9cm、5cmD、所有的偶数都是合数三、一丝不苟,巧妙计算.(共26分)16、直接写出得数.﹣+﹣+ =________17、计算下面各题,能简便计算的要用简便方法计算.45×(+ ﹣)1 ÷(+2.5× )(3.75+4+2.35)×9.9[ ﹣(﹣)]÷ .18、求未知数x.x﹣=x+ x=x:2.1=0.4:0.9.四、解答题(共1小题,满分16分)19、动手操作,实践应用.(1)用数对表示A、B、C的位置,A________,B________,C________.(2)以AB为直径,画一个经过C点的半圆.(3)把半圆绕B点按逆时针旋转90°,画出旋转后的图形.(4)画出图中平行四边形向右平移5格后的图形.(5)画出图中小旗按2:1放大后的图形.(6)小明家在学校南偏西________°方向________米处.(7)书店在学校的北偏东30°方向300米处,请在右下图中表示出书店的位置.(8)兴国路过P点并和淮海路平行.请在图中画出兴国路所在的直线.五、活用知识,解决问题.(每小题6分,共30分)20、某品牌的运动装搞促销活动,在中心商城按“满100元减40元”的方式销售,在丹尼斯商城打六折销售.妈妈准备给小美买一套标价320元的这种品牌运动装.在中心商城、丹尼斯商城两个商城买,各应付多少钱?你认为在哪个商城买合算?21、一列快车和一列慢车同时分别从相距630千米的两地相对开出,4.5小时相遇,快车每小时行78千米,慢车每小时行多少千米?22、一个圆柱形铁皮水桶,底面直径4分米,高5分米.(1)做这个水桶至少需要多少平方分米的铁皮?(2)这个水桶里最多能盛水多少升?(铁皮的厚度忽略不计)23、绿化队用三周完成了一条路的绿化任务.第一周绿化了这条路的20%,第二周绿化了400米,第二周与第三周绿化的长度比是5:6.这条路长多少米?24、某校为研究学生的课余活动情况,采取抽样的方法,从阅读、运动、娱乐、其它等四个方面调查了若干名学生的兴趣爱好,并将调查的结果绘制了如下的两幅不完整的统计图(如图),请你根据图中提供的信息解答下列问题:①这次调研,一共调查了________ 人.②有阅读兴趣的学生占被调查学生总数________ %.③有“其它”爱好的学生共________ 人?④补全折线统计图________ .答案解析部分一、<b >用心思考,正确填写.(每空1</b><b>分,共23</b><b>分)</b>1、【答案】13【考点】正、负数的运算【解析】【解答】解:根据题意得:10﹣(﹣3)=13(℃),故答案为:13℃.【分析】根据题意可得:现在的温度﹣原来的气温=上升的气温.2、【答案】990054000;99005.4万;10亿【考点】整数的读法和写法,整数的改写和近似数【解析】【解答】解:九亿九千零五万四千写作:9 9005 4000;9 9005 4000=9 9005.4万;9 9005 4000≈10亿.故答案为:9 9005 4000,10亿.【分析】根据整数的写法,从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0,即可写出此数;改写成用“万”作单位的数,就是在万位数的右下角点上小数点,然后把小数末尾的0去掉,再在数的后面写上“万”字;省略“亿”后面的尾数就是四舍五入到亿位,就是把亿位后的千万位上的数进行四舍五入,再在数的后面写上“亿”字.3、【答案】30①14②③70【考点】比与分数、除法的关系【解析】【解答】解:21:30=14÷20==70%=七折.故答案为:30,14,,70.【分析】根据折扣的意义七折就是70%;把70%化成分数并化简是;根据比与分数的关系=7:10,再根据比的基本性质比的前、后项都乘3就是21:30;根据分数与除法的有关系=7÷10,再根据商不变的性质被除数、除数都乘2就是14÷20.4、【答案】;7【考点】分数的意义、读写及分类,合数与质数【解析】【解答】解:的分数单位是;﹣2=,里面含有7个,即再去掉7个这样的单位后等于最小的质数.故答案为:、7.【分析】将单位“1”平均分成若干份,表示其中这样一份的数为分数单位.由此可知,的分数单位是;最小的质数是2,﹣2=,里面含有7个,即再去掉7个这样的单位后等于最小的质数.5、【答案】3.25;0.048【考点】时、分、秒及其关系、单位换算与计算,面积单位间的进率及单位换算【解析】【解答】解:3时15分=3.25时480平方米=0.048公顷;故答案为:3.25,0.048.【分析】把3小时15分换算为小时,先把15分换算为小时数,用15除以进率60,然后加上3;把480平方米换算为公顷,用480除以进率10000.6、【答案】正;4【考点】正比例和反比例的意义【解析】【解答】解:(1)因为图中是一条直线,所以这列动车行驶的时间和路程成正比例.(2)设这列动车行驶了1800千米所用的时间是x小时,由题意得:1800:x=200:1200x=1800×1200x=1800x=9答:这列动车行驶了1800千米所用的时间是9小时.就是它们的比值相等;然后根据图直接填表即可.(2)进一步观察图象,可知这列动车行驶了1小时的路程是200千米,据此设行驶了800千米所用的时间是x小时,列出比例式解答即可.【分析】(1)根据图象是一条过原点的直线,可知这列动车行驶的时间和路程成正比例,也7、【答案】1;15a【考点】求几个数的最大公因数的方法,求几个数的最小公倍数的方法【解析】【解答】解:数a和15是互质数,它们的最大公约数是1,最小公倍数是15a;故答案为:1,15a.【分析】根据互质数的意义,互质数的最大公因数是1,最小公倍数是它们的乘积,据此解答.8、【答案】21;5n+1【考点】数与形结合的规律【解析】【解答】解:摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要5n+1根小棒;摆4个需要5×4+1=21(根)即摆4个需要21根小棒,摆n个需要5n+1根小棒.故答案为:21;5n+1.【分析】摆一个六边形需要6根小棒,以后每增加一个六边形,就增加5根小棒,所以摆成n个六边形就需要:6+5(n﹣1)=5n+1根小棒,据此即可解答.9、【答案】38【考点】三角形的内角和【解析】【解答】解:∠3和∠4拼成的是平角∠3═180°﹣∠4=180°﹣79°=101°∠1=180°﹣(∠2+∠3)=180°﹣(41°+101°)=180°﹣142°=38°答:∠1等于38°.故答案为:38°.【分析】根据平角的含义可知,等于180°的角是平角,所以∠3和∠4组成平角;用180°减去∠4的度数,即可求出∠3的度数,再根据三角形的内角和等于180°,用180°减去∠3和∠2的度数和,即可求出∠1的度数,列式解答即可.10、【答案】160【考点】分数四则复合应用题【解析】【解答】解:[(1﹣)÷×48+48]÷=[×48+48]÷=112×=160(千米)答:A、B两地相距160千米.故答案为:160.【分析】当客车行完全程时,客车又行了全程的1﹣=,这时,货车应该又行了÷×48=64千米,货车一共行了全程的,实际行了64+48=112千米,进而求出A、B两地相距:112÷=160千米;由此解答即可.二、<b >选择题(共5</b><b >小题,每小题1</b><b>分,满分5</b><b>分)</b>11、【答案】C【考点】负数的意义及其应用【解析】【解答】解:50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.故选:C.【分析】正负数用来表示一组意义相反的数,50克+2克表示比50克多2克,是52克,50克﹣2克表示比50克少2克,是48克.12、【答案】C【考点】圆、圆环的周长【解析】【解答】解:圆的周长=2πr,半径增加3cm,则周长为:2π(r+3)=2πr+6π,所以,半径增加3cm,则它们的周长都是增加2π厘米,增加的一样多.所以它们的周长增加的一样多.故选:C.【分析】圆的周长=2πr,半径增加3cm后,周长为:2π(r+3)=2πr+6π,由此可得,半径增加3cm,则它们的周长就增加了6π厘米,由此即可选择.13、【答案】A【考点】圆柱的侧面积、表面积和体积【解析】【解答】解:设圆柱和圆锥的体积相等为V,底面积相等为S,则:圆柱的高为:;圆锥的高为:;所以圆柱的高与圆锥的高的比是::=1:3,因为圆锥的高是9厘米,所以圆柱的高为:9÷3=3(厘米).答:圆柱的高是3厘米.故选:A.【分析】设圆柱和圆锥的体积相等为V,底面积相等为S,由此利用圆柱和圆锥的体积公式推理得出它们的高的比,即可解答此类问题.14、【答案】C【考点】代换问题【解析】【解答】解:A,(□+□)÷△=(2△+2△)÷△,=4△÷△,=4;不符合要求.B,□×(△﹣△)=2△×(△﹣△),=2△×0,=0;不符合要求.C,△÷(□+□)=△÷(2△+2△),=△÷4△,=;符合要求.D,□×(△+△)=2△×2△=4△;不一定等于,不符合要求.故选:C.15、【答案】B【考点】奇数与偶数的初步认识,直线、线段和射线的认识,三角形的特性,握手问题【解析】【解答】解:A、射线不能计算长度,所以题干的说法是错误的;B、由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场,所以题干的说法是正确的;C、3+5<9,所以题干的说法是错误的;D、偶数是能被2整除的数,合数是除了1和它本身以外还有别的约数,2只有1和它本身两个约数,2是偶数但不是合数,所以题干的说法是错误的.故选:B.【分析】(1)射线只有一个端点,可以向一方无限延长,据此判断即可;(2)由于是淘汰赛比赛的场次最少,最后留下的冠军只有一个,所以需要淘汰另外7个队,所以至少赛7场;(3)根据三角形的特性:两边之和大于第三边,三角形的两边的差一定小于第三边;进行解答即可;(4)明确偶数和合数的定义,根据它们的定义即可解答.三、<b >一丝不苟,巧妙计算.(共26</b><b>分)</b>16、【答案】490;99;995;0.8;7;;100;【考点】整数四则混合运算,分数的四则混合运算【解析】【分析】(1)按照从左到右的顺序计算;(2)根据除法的性质简算;(3)根据凑整法简算;(4)根据小数除法的计算方法求解;(5)根据乘法分配律简算;(6)根据加法交换律简算;(7)按照从左到右的顺序计算;(8)先同时计算两个除法,再算减法.17、【答案】解:①45×(+ ﹣)=45× +45× ﹣45×=35+12﹣27=47﹣27=20;②)1 ÷(+2.5× )=1 ÷(+2)=1 ÷2= ;③(3.75+4+2.35)×9.9=(7.75+2.35)×9.9=10.1×9.9=(10+0.1)×9.9=10×9.9+0.1×9.9=99+0.99=99.99;④[ ﹣(﹣)]÷=[ ﹣+ ]÷=[ + ﹣]÷=[1﹣]÷= ÷= .【考点】运算定律与简便运算,分数的四则混合运算【解析】【分析】(1)根据乘法分配律进行简算;(2)先算小括号里面的乘法,再算小括号里面的加法,最后算除法;(3)小括号里面按照从左向右的顺序计算,然后再根据乘法分配律进行简算;(4)中括号里面根据减法的性质进行简算,最后算除法.18、【答案】解:① x﹣=x﹣+ = +x=x×4= ×4x=2② x+ x=x=x× = ×x=③x:2.1=0.4:0.90.9x=2.1×0.40.9x=0.840.9x÷0.9=0.84÷0.9x=【考点】方程的解和解方程【解析】【分析】(1)根据等式的性质,方程两边同时加上,再同时乘4求解;(2)先化简方程得x=,再根据等式的性质,在方程两边同时乘求解;(3)先根据比例的基本性质,把原式转化为0.9x=2.1×0.4,然后根据等式的性质,在方程两边同时除以0.9求解.四、<b >解答题(共1</b><b >小题,满分16</b><b>分)</b>19、【答案】(1)(2,6);(6,6);(4,8)(2)以AB为直径,画一个经过C点的半圆(下图红色部分)(3)把半圆绕B点按逆时针旋转90°,画出旋转后的图形(下图绿色部分)(4)画出图中平行四边形向右平移5格后的图形(下图黄色部分)(5)画出图中小旗按2:1放大后的图形(下图蓝色部分)(6)45;400(7)300÷200=1.5(厘米)即书店在学校的北偏东30°方向1.5厘米处(画图如下)(8)兴国路过P点并和淮海路平行.在图中画出兴国路所在的直线(下图)【考点】作平移后的图形,作旋转一定角度后的图形,画圆,图形的放大与缩小,数对与位置,在平面图上标出物体的位置,根据方向和距离确定物体的位置【解析】【解答】解:(1)用数对表示A、B、C的位置,A(2,6),B(6,6),C(4,8)(2)200×2=400(米)答:小明家在学校南偏西45°方向400米处【分析】(1)根据用数对表示点的位置的方法,第一个数字表示列数,第二个数字表示行数,即可用数对表示A、B、C各点的位置.(2)以AB的中心为圆心所画的半圆就经过点C.(3)根据旋转的特征,半圆绕点B逆时针旋转90°后,点B的位置不动,其余各部分均绕此点按相同方向旋转相同的度数,即可画出旋转后的图形.(4)根据平移的特征,把平行四边形的四个顶点分别向右平移5格,首尾连结即可得到平移后的图形.(5)根据图形放大与缩小的意义,把图中小旗子的各对应线段扩大到原来的2倍,就是按2:1放大后的图形.(6)根据地图上的方向,上北下南,左西右东,以学校为观测点即可确定小明的方向,再根据图中的所标注的线段比例尺及小明定与学校的图上距离,即可求出学校与小家的实际距离.(7)以学校为观测点即可确定书店的方向,根据书店与学校的实际距离及图中的线段比例尺即可求出图上距离,进而画出书店的位置.(8)根据过直线外一点作已知直线平行线的方法,即可画出兴国路.五、<b >活用知识,解决问题.(每小题6</b><b>分,共30</b><b>分)</b>20、【答案】解:中心商城:320﹣40×3=320﹣120=200(元)丹尼斯商城:320×60%=198(元)200元>198元.所以丹尼斯商城比较合算.答:中心商城需要200元,丹尼斯商城需要198元;到丹尼斯商城买比较合算.【考点】最优化问题【解析】【分析】根据中心商城的优惠,已经满300元,可以减去40×3=120元;丹尼斯商城打六折,就是售价是原价的60%,用原价乘60%即可;再比较大小即可解答.21、【答案】解:630÷4.5﹣78=140﹣78=62(千米)答:慢车每小时行62千米.【考点】简单的行程问题【解析】【分析】先依据速度=路程÷时间,求出两车的速度和,再依据慢车速度=两车速度和﹣快车速度即可解答.22、【答案】(1)解:3.14×4×5+3.14×(4÷2)2=62.8+3.14×4=62.8+12.56=75.36(平方分米)答:做这个水桶至少需要75.36平方分米的铁皮(2)解:3.14×(4÷2)2×5=3.14×4×5=62.8(立方分米)=62.8(升)答:这个水桶里最多能盛水62.8升【考点】关于圆柱的应用题【解析】【分析】(1)首先分清一个没有盖的圆柱形铁皮水桶,需要计算几个面的面积:侧面面积与底面圆的面积,由圆柱体侧面积和圆的面积计算方法列式解答即可.(2)求这个水桶最多能盛水多少升是求它的容积,根据V=sh进行计算即可.23、【答案】解:(400×+400)÷(1﹣20%)=(480+400)÷80%=880÷80%=1100(米)答:这段路全长为1100米【考点】比的应用【解析】【分析】第二周与第三周绿化的长度比是5:6,则第三周修了400×=480米,第二周与第三周共修了400+480=880米,由于后两周修的占全长的1﹣20%=80%.所以这段路全长为880÷80%=1100(米).24、【答案】200;30;20;【考点】扇形统计图【解析】【解答】解:①40÷20%=200(人)答:这次调研,一共调查了200人.②60÷200=30%答:有阅读兴趣的学生占被调查学生总数的30%.③1﹣20%﹣40%﹣30%=10%200×10%=20(人)答:有“其它”爱好的学生共20人.④200×40%=80(人)爱好娱乐的80人,“其它”爱好的20人,补全折线统计图如下:【分析】①由折线统计图可以看出爱好运动的人数是40人,由扇形统计图看出爱好运动的人数占抽样人数的20%,根据百分数除法的意义,用爱好运动的数除以所占的百分率就是被抽样调查的人数.②用有阅读兴趣的学生数(从折线统计图可以看出)除以被调查总人数(①已求出)).③把被调查的总人数看作单位“1”,用1减去有阅读兴趣、运动兴趣、娱乐兴趣人数所的百分率就是其它兴趣学生人数所占的百分率;根据百分数乘法的意义,用总人数乘其它爱好人数所占的百分率就是有“其它”爱好的学生人数.④根据百分数乘法的意义,用总人数乘爱好娱乐人数所占的百分率求出爱好娱乐人数,即可补全折线统计图.。