2010年普通高等学校招生全国统一考试(全国卷Ⅰ)(数学[文])[1]
2010年高考新课标全国卷理科数学试题(附答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
(1)已知集合{||2}A x R x =∈≤},{|4}B x Z x =∈≤,则A B ⋂=(A)(0,2) (B)[0,2] (C){0,2] (D){0,1,2} (2)已知复数23(13)iz i +=-,z 是z 的共轭复数,则z z ⋅= (A)14 (B)12(C) 1 (D)2 (3)曲线2xy x =+在点(1,1)--处的切线方程为(A)21y x =+ (B)21y x =- (C) 23y x =-- (D)22y x =-- (4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为0(2,2)P -,角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为tdπ42OA B C D(5)已知命题1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p ⌝∨和4q :()12p p ∧⌝中,真命题是(A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为 (A)100 (B )200 (C)300 (D )400(7)如果执行右面的框图,输入5N =,则输出的数等于(A)54 (B )45(C)65 (D )56(8)设偶函数()f x 满足3()8(0)f x x x =-≥, 则{|(2)0}x f x ->=(A) {|24}x x x <->或 (B) {|04}x x x <>或 (C) {|06}x x x <>或 (D) {|22}x x x <->或(9)若4cos 5α=-,α是第三象限的角,则1tan21tan 2αα+=- (A) 12- (B) 12(C) 2 (D) 2-(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为 (A) 2a π(B)273a π (C)2113a π (D) 25a π (11)已知函数|lg |,010,()16,10.2x x f x x x <≤⎧⎪=⎨-+>⎪⎩若,,a b c 互不相等,且()()(),f a f b f c ==则abc的取值范围是(A) (1,10) (B) (5,6)(C) (10,12)(D) (20,24)(12)已知双曲线E 的中心为原点,(3,0)P 是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为(12,15)N --,则E 的方程式为(A)22136x y -= (B) 22145x y -= (C) 22163x y -= (D) 22154x y -=第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都必须做答,第(22)题~第(24)题为选考题,考试根据要求做答。
2010年高考全国卷1作文
2010年高考全国卷1作文:有鱼吃还捉老鼠?漫画作文。
餐桌,许多猫吃鱼,就一只猫捉老鼠,别的猫说:“有鱼吃还捉老鼠?2010年普通高等学校招生考试全国卷2作文题阅读下面的材料,根据要求写一篇不少于800字的文章。
今年世界读书日这天,网上展开了关于“浅阅读”的讨论。
甲:什么是浅阅读?乙:就是追求简单轻松、实用有趣的阅读嘛,浅阅读很时髦日。
丙:如今是读图时代,人们喜欢视觉上的冲击和享受。
丁:浅阅读就像吃快餐,好吃没营养,积累不了什么知识。
乙:社会竞争激烈,生活节奏这么快,大家压力这么大,我想深阅读,慢慢品味,行吗?丙:人人都有自己的阅读喜好,浅阅读流行,阅读就更个性化和多样化了,挺好。
丁:我很怀念过去的日子——斜倚在书店的一角,默默地读书,天黑了都不知道。
甲:浅阅读中,我们是不是失去了什么?要求选准角度、明确立意,自选体,自拟标题;不要脱离材料内容及含意的范围作文,不要套作,不得抄袭。
2010年浙江高考作文题:角色转换之间命题作文:“角色转换之间”传说有的雏鸟长大后,会衔食喂养衰老的母鸟。
人们把此现象称为“反哺”。
人类社会也存在类似现象。
年轻一代对年长一代的文化影响被称之为“文化反哺”。
千百年来,在以父辈对子辈施教为主流的正统传承方式下,文化反哺犹如潜流引而不现,但在迅疾变化的当今社会,年轻人获得了前所未有的反哺能力。
他们在科学知识、价值观念、生活方式、审美情趣等各个方面,越来越明显地影响着年长一代,施教者与受教者之间,角色常常发生转换。
以“角色转换之间”为题,可以讲述故事,抒发情感,也可以发表见解。
文体除诗歌外不限,字数在800字以上。
2010年普通高等学校招生考试山东卷作文题人生的一切变化,一切都有魅力,一切都是由光明和阴影构成的,要求根据以上的材料来写一篇800字以上的文字。
2010年普通高等学校招生考试宁夏卷作文题有一种热带观赏鱼,在小鱼缸里不管养多长时间只能长到三寸来长,然而把它放在大水池里,不到两个月就能长到一尺长。
2010高考全国Ⅰ数学试题与答案
2010年普通高等学校招生全国统一考试文科数学(必修+选修> 解读版参考公式:如果事件互斥,那么球的表面积公式如果事件相互独立,那么其中R表示球的半径球的体积公式如果事件A在一次实验中发生的概率是,那么次独立重复实验中事件恰好发生次的概率其中R表示球的半径一、选择题(1>(A> (B>- (C> (D>1.C【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识【解读】(2>设全集,集合,,则A.B.C. D.2.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解读】,,则=(3>若变量满足约束条件则的最大值为(A>4 (B>3 (C>2 (D>13.B 【命题意图】本小题主要考查线性规划知识、作图、识图能力及计算能力.【解读】画出可行域<如右图),,由图可知,当直线经过点A(1,-1>时,z最大,且最大值为.<4)已知各项均为正数的等比数列{},=5,=10,则(A>(B> 7 (C> 6 (D>A4.A【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.mmVxZudVti【解读】由等比数列的性质知,10,所以,所以(5>的展开式的系数是(A>-6 (B>-3 (C>0 (D>35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.mmVxZudVti【解读】的系数是 -12+6=-6(6>直三棱柱中,若,,则异面直线与所成的角等于(A>30° (B>45°(C>60° (D>90°6.C【命题意图】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法.【解读】延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,(7>已知函数.若且,,则的取值范围是(A> (B>(C> (D>7.C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a的取值范围,而利用均值不等式求得a+b=,从而错选D,这也是命题者的用苦良心之处.mmVxZudVti【解读1】因为 f(a>=f(b>,所以|lga|=|lgb|,所以a=b(舍去>,或,所以a+b=又0<a<b,所以0<a<1<b,令由“对勾”函数的性质知函数在(0,1>上为减函数,所以f(a>>f(1>=1+1=2,即a+b的取值范围是(2,+∞>.mmVxZudVti【解读2】由0<a<b,且f(a>=f(b>得:,利用线性规划得:,化为求的取值范围问题,,过点时z最小为2,∴(C> mmVxZudVti<8)已知、为双曲线C:的左、右焦点,点P在C上,∠=,则A BC DA 1B 1C 1D 1O(A>2 (B>4 (C> 6 (D> 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.mmVxZudVti 【解读1】.由余弦定理得cos ∠P =4【解读2】由焦点三角形面积公式得:4<9)正方体-中,与平面所成角的余弦值为 <A )<B )<C ) <D )9.D 【命题意图】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 的距离是解决本题的关键所在,这也是转化思想的具体体现.mmVxZudVti 【解读1】因为BB1//DD1,所以B 与平面AC 所成角和DD1与平面AC 所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,mmVxZudVti则,.所以,记DD1与平面AC所成角为,则,所以.【解读2】设上下底面的中心分别为;与平面AC所成角就是B与平面AC所成角,<10)设则<A)<B) (C> (D>10.C 【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.mmVxZudVti【解读1】 a=2=, b=In2=,而,所以a<b,c==,而,所以c<a,综上c<a<b.【解读2】a=2=,b=ln2=, ,; c=,∴c<a<b<11)已知圆的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为(A> (B> (C> (D>11.D【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力.mmVxZudVti 【解读1】如图所示:设PA=PB=,∠APO=,则∠APB=,PO=,,===,令,则,即,由是实数,所以,,解得或.故.此时.【解读2】设,换元:,【解读3】建系:园的方程为,设,<12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为mmVxZudVti(A> (B> (C> (D>12.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.mmVxZudVti【解读】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.mmVxZudVti第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫M黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2010年全国高考理科数学试卷及答案-四川
2010年普通高等学校招生全国统一考试四川卷(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.参考公式:如果事件A 、B 互斥,那么 球的表面积公式 P (A +B ) =P (A )+P (B ) 24s R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 P (A·B )=P (A )·P (B ) 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334R V π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径n ()(1)(0,1,2,...)k k n kn P k C p p k n -=-=第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. i 是虚数单位,计算i+i 2+i 3=( )A.-1B.1C-iD.i2. 下列四个图象所表示的函数,在点0x =处连续的是( ).AB.C.D.3. 552log 10log 0.25+=( )A.0B.1C. 2D.44. 函数2()1f x x mx =++的图象关于直线1x =对称的充要条件是( )A.2m =-B.2m =C.1m =-D.1m =5. 设点M 是线段BC 的中点,点A 在直线BC 外,216,BC AB AC AB AC =∣+∣=∣-∣,则AM ∣∣=( )A.8B.4C. 2D.16. 将函数sin y x =的图象上所有的点向右平行移动10π个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是( ) A. sin(2)10y x π=-B.sin(2)5y x π=-C. 1sin()210y x π=-D.1sin()220y x π=-7. 某加工厂用某原料由甲车间加工出A 产品,由乙车间加工出B 产品.甲车间加工一箱原料需耗费工时10小时,可加工出7千克A 产品,每千克A 产品获利40元,乙车间加工一箱原料需耗费工时6小时,可加工出4千克B 产品,每千克B 产品获利50元.甲、乙两车间每天共能完成至多70箱原料的加工,每天甲、乙两车间耗费工时总和不得超过480小时,甲、乙两车间每天总获利最大的生产计划为( ) A.甲车间加工原料10箱,乙车间加工原料60箱 B.甲车间加工原料15箱,乙车间加工原料55箱 C.甲车间加工原料18箱,乙车间加工原料50箱D.甲车间加工原料40箱,乙车间加工原料30箱8. 已知数列{}n a 的首项10a ≠,其前n 项的和为n S ,且112n n S S a +=+,则l i mnn na S →∞=( )A. 0B.12C. 1D. 29. 椭圆22221()x y a b a b+=>>0的右焦点为F ,其右准线与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是( )A. ⎛⎝⎦B. 10,2⎛⎤⎥⎝⎦C.)1,1D. 1,12⎡⎫⎪⎢⎣⎭10. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A. 72B. 96C. 108D. 144α∙AB∙β11. 如图1,半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,△BCD 是平面α内边长为R 的正三角形,线段AC 、AD 分别与球面交于点M ,N ,那么M 、N 两点间的球面距离是( ) A. 17arccos 25RB. 18arccos 25RC.13R πD. 415R π 图112. 设0a b c >>>,则221121025()a ac c ab a a b ++-+-的最小值是( ) A. 2 B. 4C. D. 5第Ⅱ卷二、填空题(本大题共4小题,每小题4分,共16分.把答案填在题中横线上) 13. 6(2的展开式中的第四项是__________. 14. .直线250x y -+=与圆228x y +=相交于A 、B 两点,则AB ∣∣=________. 15. 如图2,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是_________. 图216.设S 为复数集C 的非空子集.若对任意x,y S ∈,都有x y,x y,xy S +-∈,则称S 为封闭集。
2010年高考新课标全国卷文科数学(含答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .23.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -24.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 46.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .4007.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.568.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( )A .-12B.12C .2D .-210.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2 C.113πa 2 D .5πa 211.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分10⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分10⎰f (x )d x 的近似值为________.14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.16.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1. (1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程. 21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分. 22.(本小题满分10分) 选修4-1:几何证明选讲如图,已知圆上的弧¼AC =»BD ,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD . 23.(本小题满分10分) 选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.24.(本小题满分10分) 选修4-5:不等式选讲 设函数f (x )=|2x -4|+1. (1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.2010年高校招生考试文数(新课标) 试题及答案一:选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。
2010新课标全国卷数学
2010年普通高等学校招生全国统一考试(新课标全国卷)数 学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.其中第Ⅱ卷第22~24题为选考题,其他题为必考题.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={x ||x |≤2,x ∈R},B ={x |x ≤4,x ∈Z},则A ∩B =( ) A .(0,2) B .[0,2] C .{0,2}D .{0,1,2}解析:∵A ={x |-2≤x ≤2,x ∈R},B ={x |0≤x ≤16,x ∈Z}, ∴A ∩B ={x |0≤x ≤2,x ∈Z}={0,1,2}. 答案:D 2.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =( )A.14B.12C .1D .2解析:∵z =3+i (1-3i )2=3+i1-23i -3=3+i -2-23i =3+i-2(1+3i )=(3+i )(1-3i )-2×(1+3)=3-3i +i +3-8=23-2i -8=3-i-4, ∴z =3+i-4, ∴z ·z =|z |2=14.答案:A 3.曲线y =xx +2在点(-1,-1)处的切线方程为( ) A .y =2x +1B .y =2x -1C .y =-2x -3D .y =-2x -2解析:∵y ′=x ′(x +2)-x (x +2)′(x +2)2=2(x +2)2, ∴k =y ′|x =-1=2(-1+2)2=2,∴切线方程为:y +1=2(x +1),即y =2x +1. 答案:A4.如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图象大致为( )解析:法一:(排除法)当t =0时,P 点到x 轴的距离为2,排除A 、D ,由角速度为1知,当t =π4或t =5π4时,P 点落在x 轴上,即P 点到x 轴的距离为0,故选C. 法二:由题意知P (2cos(t -π4),2sin(t -π4)),∴P 点到x 轴的距离为d =|y 0|=2|sin(t -π4)|,当t =0时,d =2; 当t =π4时,d =0.故选C.答案:C5.已知命题p 1:函数y =2x -2-x在R 为增函数.p 2:函数y =2x +2-x在R 为减函数.则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析:p 1是真命题,则綈p 1为假命题;p 2是假命题,则綈p 2为真命题; ∴q 1:p 1∨p 2是真命题,q 2:p 1∧p 2是假命题, ∴q 3:(綈p 1)∨p 2为假命题,q 4:p 1∧(綈p 2)为真命题.∴真命题是q 1,q 4. 答案:C6.某种种子每粒发芽的概率都为0.9,现播种了1 000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为( )A .100B .200C .300D .400解析:记“不发芽的种子数为ξ”,则ξ~B (1 000,0.1),所以Eξ=1 000×0.1=100,而X =2ξ,故EX =E (2ξ)=2Eξ=200.答案:B7.如果执行如图的框图,输入N =5,则输出的数等于( )A.54B.45C.65D.56解析:由框图知:k =1时,S =0+11×2; k =2时,S =11×2+12×3; 当k =3时,S =11×2+12×3+13×4; 当k =4时,S =11×2+12×3+13×4+14×5; 满足条件k <5,故还需进行下一步运算, 当k =5时,S =11×2+12×3+13×4+14×5+15×6=(1-12)+(12-13)+…+(15-16)=1-16=56,不满足条件k <5,故输出S ,选D. 答案:D8.设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=( ) A .{x |x <-2或x >4} B .{x |x <0或x >4} C .{x |x <0或x >6}D .{x |x <-2或x >2}解析:当x <0时,-x >0, ∴f (-x )=(-x )3-8=-x 3-8, 又f (x )是偶函数, ∴f (x )=f (-x )=-x 3-8,∴f (x )=⎩⎪⎨⎪⎧x 3-8,x ≥0-x 3-8,x <0. ∴f (x -2)=⎩⎪⎨⎪⎧(x -2)3-8,x ≥2-(x -2)3-8,x <2, ⎩⎪⎨⎪⎧x ≥2(x -2)3-8>0或⎩⎪⎨⎪⎧x <2-(x -2)3-8>0, 解得x >4或x <0. 答案:B9.若cos α=-45,α是第三象限的角,则1+tanα21-tanα2=( ) A .-12B.12C .2D .-2解析:∵cos α=-45且α是第三象限的角,∴sin α=-35,∴1+tan α21-tan α2=cos α2+sin α2cos α2cos α2-sinα2cos α2=cos α2+sin α2cos α2-sin α2=(cos α2+sin α2)2(cos α2-sin α2)(cos α2+sin α2)=1+sin αcos 2α2-sin 2α2=1+sin αcos α=1-35-45=-12.答案:A10.设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为( )A .πa 2B.73πa 2C.113πa 2D .5πa 2解析:三棱柱如图所示,由题意可知:球心在三棱柱上、下底面的中心O 1、O 2的连线的中点O 处, 连接O 1B 、O 1O 、OB ,其中OB 即为球的半径R , 由题意知:O 1B =23×3a 2=3a 3,所以半径R 2=(a 2)2+(3a 3)2=7a 212,所以球的表面积是S =4πR 2=7πa 23.答案:B11.已知函数f (x )=⎩⎪⎨⎪⎧|lg x |,0<x ≤10,-12x +6,x >10.若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是( )A .(1,10)B .(5,6)C .(10,12)D .(20,24)解析:由a ,b ,c 互不相等,结合图象可知 : 这三个数分别在区间(0,1),(1,10),(10,12)上, 不妨设a ∈(0,1),b ∈(1,10),c ∈(10,12), 由f (a )=f (b )得lg a +lg b =0,即lg ab =0,所以ab =1,所以abc ∈(10,12). 答案:C12.已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为( )A.x 23-y 26=1B.x 24-y 25=1C.x 26-y 23=1D.x 25-y 24=1 解析:设双曲线的标准方程为x 2a 2-y 2b 2=1(a >0,b >0),由题意知c =3,a 2+b 2=9,设A (x 1,y 1),B (x 2,y 2)则有:⎩⎨⎧x 21a 2-y 21b2=1x 22a 2-y 22b 2=1,两式作差得:y 1-y 2x 1-x 2=b 2(x 1+x 2)a 2(y 1+y 1)=-12b 2-15a 2=4b 25a 2, 又AB 的斜率是-15-0-12-3=1,所以将4b 2=5a 2代入a 2+b 2=9得 a 2=4,b 2=5,所以双曲线标准方程是x 24-y 25=1.答案:B第Ⅱ卷(非选择题 共90分)本卷包括必考题和选考题两部分,第13题~第21题为必考题,每个试题考生都必须做答.第22题~第24题为选考题,考生根据要求做答.二、填空题:本大题共4小题,每小题5分.13.设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分1⎰f (x )d x .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分1⎰f (x )d x 的近似值为________.解析:由均匀随机数产生的原理知:在区间[0,1]满足y i ≤f (x i )的点都落在了函数y =f (x )的下方, 又因为0≤f (x )≤1, 所以由⎩⎪⎨⎪⎧0≤x ≤10≤y ≤1y ≤f (x )围成的图形的面积是N 1N ,由积分的几何意义知1⎰f (x )d x =N 1N.答案:N 1N14.正视图为一个三角形的几何体可以是________.(写出三种)解析:正视图是三角形的几何体,最容易想到的是三棱锥,其次是四棱锥、圆锥;对于五棱锥、六棱锥等,正视图也可以是三角形.答案:三棱锥、四棱锥、圆锥(其他正确答案同样给分)15.过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为________________.解析:设圆的标准方程为(x -a )2+(y -b )2=r 2,由题意知:⎩⎪⎨⎪⎧(4-a )2+(1-b )2=r 2b -1a -2=-1|a -b -1|2=r,解之得:a =3,b =0,r =2,所以圆的方程是:(x -3)2+y 2=2. 答案:(x -3)2+y 2=216.在△ABC 中,D 为边BC 上一点,BD =12CD ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =________.解析:由∠ADB =120°知∠ADC =60°,又因为AD =2,所以S △ADC =12AD ·DC sin60°=3-3,所以DC =2(3-1),又因为BD =12DC ,所以BD =3-1,过A 点作AE ⊥BC 于E 点,则S △ADC =12DC ·AE =3-3,所以AE =3,又在直角三角形AED 中,DE =1,所以BE =3,在直角三角形ABE 中,BE =AE ,所以△ABE 是等腰直角三角形,所以∠ABC =45°,在直角三角形AEC 中,EC =23-3, 所以tan ∠ACE =AE EC =323-3=2+3,所以∠ACE =75°,所以∠BAC =180°-75°-45°=60°. 答案:60°三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .解:(1)由已知得,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n+1)-1,而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n-1知S n =1·2+2·23+3·25+…+n ·22n-1① 从而22·S n =1·23+2·25+3·27+…+n ·22n +1②①-②得(1-22)S n =2+23+25+…+22n -1-n ·22n +1.即S n =19[(3n -1)22n +1+2].18.(本小题满分12分)如图,已知四棱锥P -ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明:PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.解:以H 为原点,HA ,HB ,HP 所在直线分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A (1,0,0),B (0,1,0).(1)证明:设C (m,0,0),P (0,0,n )(m <0,n >0), 则D (0,m,0),E (12,m2,0).可得PE =(12,m2,-n ),BC =(m ,-1,0).因为PE ·BC=m 2-m 2+0=0,所以PE ⊥BC .(2)由已知条件可得m =-33,n =1, 故C (-33,0,0),D (0,-33,0),E (12,-36,0),P (0,0,1). 设n =(x ,y ,z )为平面PEH 的法向量,则⎩⎨⎧n ·HE=0,n ·HP=0,即⎩⎪⎨⎪⎧12x -36y =0,z =0.因此可以取n =(1,3,0).由PA =(1,0,-1),可得|cos 〈PA ,n 〉|=24,所以直线PA 与平面PEH 所成角的正弦值为24. 19.(本小题满分12分)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关? (3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为70500=14%.(2)K 2=500×(40×270-30×160)2200×300×70×430≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关. (3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法,比采用简单随机抽样方法更好.20.(本小题满分12分)设F 1,F 2分别是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程.解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,又2|AB |=|AF 2|+|BF 2|,得|AB |=43a .l 的方程为y =x +c, 其中c =a 2-b 2.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组 ⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1.化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0, 则x 1+x 2=-2a 2c a 2+b 2,x 1x 2=a 2(c 2-b 2)a 2+b 2.因为直线AB 斜率为1,所以|AB |=2|x 2-x 1|= 2[(x 1+x 2)2-4x 1x 2].得43a =4ab 2a 2+b2,故a 2=2b 2, 所以E 的离心率e =c a =a 2-b 2a =22.(2)设AB 的中点为N (x 0,y 0),由(1)知 x 0=x 1+x 22=-a 2c a 2+b 2=-23c ,y 0=x 0+c =c 3. 由|PA |=|PB |得k PN =-1. 即y 0+1x 0=-1, 得c =3,从而a =32,b =3. 故椭圆E 的方程为x 218+y 29=1.21.(本小题满分12分)设函数f (x )=e x -1-x -ax 2. (1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围. 解:(1)a =0时,f (x )=e x -1-x ,f ′(x )=e x -1. 当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)单调减少,在(0,+∞)单调增加. (2)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立. 故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0, 即a ≤12时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0.由e x >1+x (x ≠0)可得e -x >1-x (x ≠0),从而当a >12时,f ′(x )<e x -1+2a (e -x -1)=e -x (e x-1)(e x -2a ),故当x ∈(0,ln2a )时, f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0,综合得a 的取值范围为(-∞,12]. 请考生在第22、23、24三题中任选一题做答.如果多做,则按所做的第一题记分.22.(本小题满分10分)选修4-1:几何证明选讲如图,已知圆上的弧 AC = BD,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×CD .证明:(1)因为 AC = BD, 所以∠BCD =∠ABC .又因为EC 与圆相切于点C ,故∠ACE =∠ABC ,所以∠ACE =∠BCD .(2)因为∠ECB =∠CDB ,∠EBC =∠BCD ,所以△BDC ∽△ECB ,故BC BE =CD BC , 即BC 2=BE ×CD .23.(本小题满分10分)选修4-4:坐标系与参数方程已知直线C 1:⎩⎪⎨⎪⎧ x =1+t cos α,y =t sin α,(t 为参数),圆C 2:⎩⎪⎨⎪⎧x =cos θy =sin θ,(θ为参数). (1)当α=π3时,求C 1与C 2的交点坐标; (2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点.当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=π3时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1. 联立方程组⎩⎨⎧y =3(x -1),x 2+y 2=1,解得C 1与C 2的交点为(1,0),(12,-32). (2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎩⎨⎧ x =12sin 2α,y =-12sin αcos α,(α为参数).P 点轨迹的普通方程为(x -14)2+y 2=116. 故P 点轨迹是圆心为(14,0),半径为14的圆.24.(本小题满分10分)选修4-5:不等式选讲设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图象;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.解:(1)由于f (x )=⎩⎪⎨⎪⎧-2x +5,x <2,2x -3,x ≥2, 则函数y =f (x )的图象如图所示.(2)由函数y =f (x )与函数y =ax 的图象可知,当且仅当a ≥12或a <-2时,函数y =f (x )与函数y =ax 的图象有交点. 故不等式f (x )≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[12,+∞).。
2010年高考全国I卷——文综试题及答案
2010年普通高等学校招生全国统一考试(全国卷Ⅰ卷)文科综合能力测试第Ⅰ卷(选择题 140分)共35小题,每小题4分,共140分,在每题给出的四个选项中,只有一项是符合题目要求的。
江苏北部沿海滩涂围垦,需要经过筑堤、挖渠等工程措施和种植适应性植物等生物措施改造,4—5年后才能种植粮食作物。
据此完成1—2题。
1.改造滩涂所种植的适应性植物应A.耐湿 B.耐旱 C.耐盐 D.抗倒伏【答案】C【解析】本题主要考查地理环境的整体性。
由题意,沿海滩涂是指沿海大潮高潮位与低潮位之间的潮浸地带,盐碱化程度高,所以改造滩涂所种植的适应性植物应具有耐盐碱性特征。
2.若缩短滩涂改造时间,需投入更多的A.化肥 B.农家肥 C.农药 D.淡水【答案】D【解析】本题主要考查对沿海盐碱滩涂改造改良的主要措施及可行性。
淡水是改造沿海滩涂盐碱地不可缺少的重要因素,由题意,如果缩短滩涂改造的时间,就需要投入更多的淡水淋洗土壤以降低盐度。
北京的王女士登录总部位于上海的M公司(服装公司)网站,订购了两件衬衣,两天后在家收到货。
下图示意M公司的企业组织、经营网络。
据此完成3~5题。
3.王女士此次购买的衬衣,由M公司员工完成的环节是A.设计 B.提供面料 C.加工 D.送货上门【答案】A【解析】本题主要考查商业贸易的流程。
由题图,可知M公司内部员工完成的环节是“网站呼叫”,“设计、采购、市场销售、库存管理……”等,所以很容易判断出王女士此次购买的衬衣,其中由M公司员工完成的环节是“设计”这一环节,选项A正确。
4.M公司的产品销售依靠A.大型服装超市 B.服装专卖店 C.代理销售商 D.信息交流平台【答案】D【解析】本题主要考查地理信息技术系统。
由图例可知:M公司内部,M公司与供应商、物流公司、消费者之间的信息联系是通过“实时信息流”完成的,那么公司的产品销售必须依靠“信息交流平台”,选项D正确。
5.在M公司的组织、经营网络中,区位选择最灵活的是A.配送仓库 B.面料厂 C.制衣厂 D.仓储中心【答案】A【解析】本题主要考查商业网点的选择及布局。
2010年全国1卷高考数学(含答案)
绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷1至2页,第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并帖好条形码.请认真核准条形码的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........3.第I 卷共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项符合题目要求.参考公式:如果事件A 、B 互斥,那么球的表面积公式P(A+B)=P(A)+P(B) 24RS 如果事件A 、B 相互独立,那么其中R 表示球的半径P(A ·B)=P(A)·P (B)球的体积公式如果事件A 在一次试验中发生的概率是P ,那么334RV 球n 次独立重复试验中恰好发生k 次的概率其中R 表示球的半径kn kk n n P P C k P )1()(一、选择题(1)复数ii 3223(A )i (B )i(C )i 1312(D )i1312(2)记k )80cos(,那么100tan (A )kk 21(B )-kk 21(C )21kk (D )-21kk (3)若变量y x,满足约束条件.02,0,1yxy x y则y x z 2的最大值为(A )4(B )3(C )2(D )1(4)已知各项均为正数的等比数列}{n a 中,634987321,10,5a a a a a a a a a 则=(A )25(B )7(C )6(D )24(5)533)1()21(x x 的展开式中x 的系数是(A )-4(B )-2(C )2(D )4(6)某校开设A 类选修课3门,B 类选择题4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有(A )30种(B )35种(C )42种(D )48种(7)正方体ABCD —A 1B 1C 1D 1中,BB 1与平面ACD 1所成角的余弦值为(A )32(B )33(C )32(D )36(8)设2135,2ln ,2log cb a,则(A )cba(B )a cb (C )b ac (D )ab c (9)已知F 1、F 2为双曲线1:22yx C 的左、右焦点,点P 在C 上,6021PF F ,则P到x 轴的距离为(A )23(B )26(C )3(D )6(10)已知函数)()(,0.|lg |)(b f a f b a x x f 且若,则b a2的取值范围是(A )),22((B ),22(C )),3((D ),3(11)已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PB PA 的最小值为(A )24(B )23(C )224(D )223(12)已知在半径为2的球面上有A 、B 、C 、D 四点,若AC=CD=2,则四面体ABCD 的体积的最大值为(A )332(B )334(C )32(D )338绝密★启用前2010年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷注意事项:.;.1.答题前,考生先在答题卡上用直径0.5毫米黑色签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。
2010年高考新课标全国卷理科数学试题(附答案)
2010年普通高等学校招生全国统一考试(新课标全国卷)理科数学试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符 合题目要求的。
(1)已知集合A{xR|x |2}},B{xZ|x4},则AB(A)(0,2)(B)[0,2](C){0,2](D){0,1,2} (2)已知复数 z3i2 (13i) ,z 是z 的共轭复数,则zz=(A)1 4(B)1 2(C)1(D)2x在点(1,1)处的切线方程为 (3)曲线yx2(A)y2x1(B)y2x1(C)y2x3(D)y2x2(4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,2),角速度为1,那么点P 到x 轴距离d 关于时间t 的函数图像大致为d 2 tOπ 4ABCD(5)已知命题xxp :函数y22在R 为增函数, 1xxp :函数y22在R 为减函数, 2则在命题 q :p 1p 2,q 2:p 1p 2,q 3:p 1p 2和q 4:p 1p 2中,真命1 题是(A ) q ,1 q (B ) 3 q , 2 q (C ) 3 q , 1 q (D ) 4q , 2 q4(6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再 补种2粒,补种的种子数记为X ,则X 的数学期望为 开始 (A)100(B )200 输入N (C)300(D )400k=1,S=0 (7)如果执行右面的框图,输入N5,则输出的数等于(A) 5 4 (B )4 5(C) 6 5 (D )5 61S=S+k(k+1) k<N 否 输出Sk=k+1 是(8)设偶函数f(x)满足 3 f(x)x8(x0),结束则{x|f(x 2)0}(A){x |x2或x4}(B){x |x0或x4} (C){x |x0或x6}(D){x |x2或x2}(9)若cos 45 ,是第三象限的角,则 1tan 1tan2 2(A)1 2(B)1 2(C)2(D)2(10)设三棱柱的侧棱垂直于底面,所有棱长都为a ,顶点都在一个球面上,则该球的表面积为(A) 2 a(B)7 3 2 a(C)11 3 2 a(D)2 5a|lgx|,0x10,(11)已知函数 f x ()12x6,x10.若a,b,c 互不相等,且f(a)f(b)f(c),则abc 的取值范围是(A)(1,10)(B)(5,6)(C)(10,12)(D)(20,24)(12)已知双曲线E 的中心为原点,P(3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (12,15),则E 的方程式为(A) 22 xy 36 1 (B) 22 xy 45 1 (C) 22 xy 63 1 (D) 22 xy 541第Ⅱ卷本卷包括必考题和选考题两部分,第(13)题~第(21)题为必考题,每个试题考生都 必须做答,第(22)题~第(24)题为选考题,考试求做答。
2010年全国高考文综试题及答案-全国卷
2010年普通高等学校招生全国统一考试文科综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至8页,第Ⅱ卷9至12页。
考试结束后,将本试卷和答题卡一并交回。
满分300分,考试时间:150分钟。
第Ⅰ卷(选择题共140分)注意事项:1.答题前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号在答题卡上填写清楚,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目。
在规定的位置贴好条形码。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效。
本卷共35小题,每小题4分,共140分。
在每小题给出的四个选项中,只有一项符合题目要求的。
图1 是2010年3月中旬发生在我国的沙尘暴的一幅遥感影像,图中色调由浅至深,依次是云层,被卷到空中的沙尘和陆地表面。
读图1,完成1-3题。
1.该沙尘暴发生地位于A.副极地低压带B.西风带C.副热带高压带D.东北信风带2.导致该沙尘暴的天气系统是A.反气旋、冷锋B. 反气旋、暖锋C. 气旋、冷锋D. 气旋、暖锋3.影像中部显示的是该沙尘暴的A.中心区,沙尘扬升B.边缘区,沙尘扩散C. 中心区,沙尘沉降D. 边缘区,沙尘沉降图2示意某河流入海径流量和输沙量的逐年变化。
读图2,完成4-5题。
4.图中信息表明该河流年输沙量与径流量年变化同步年之后输沙量和径流量变化趋势相反年输沙量的变化率高于径流量的变化率D.高径流量年份与高输沙量年份逐一对应5.比较1984年以来径流量和输沙量的变化趋势,可以看出流域内A.气候变暖、变干的速度日益加快B.水土保持和水利工程效益显着C.地质灾害得到有效控制D.水资源总量呈波动式下降巴西的柑橘产量位居世界前列。
巴西柑橘果酱生产几乎全部集中在东南部沿海的S州。
该州面积不大,拥有大型港口。
20世纪80年代中期,随着运输果酱的专用轮船的使用,巴西柑橘果酱在国际市场的统治地位得以巩固。
2010年高考全国卷1试题及答案逐题详解
2010年普通高等学校招生全国统一考试(全国1卷)语文本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至4页,第Ⅱ卷5至8页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷一、(12分,每小题3分)1.下列词语中加点的字,读音全都正确的一组是A.行伍(háng)名宿(sù)恶贯满盈(yíng)厉兵秣马(mù)B倾轧(zhá)不啻(chì)补苴罅漏(xia)荆钗布裙(chāi)C.巨擘(bò)河蚌(bàn g)得不偿失(cháng)莘莘学子(shēn)D.解剖(pāo)羁绊(jī)火中取栗(lì)感慨系之(xì)【解析】A项厉兵秣mò马,B项倾轧yà,D项解剖pōu。
本题主要考查多音字和常见误读字的读音,字音尤其是多音字的识记,一要注意从词语含义上区别;二要注意从词性上区别,如“宿”;三要注意通过书面语与口头语的不同记忆,如“血”;四要注意记少不记多,像“蚌”只有地名“蚌埠”中读bèng,记住这一处特殊读音既可;五要记住一些常考的字音。
【考点】识记现代汉语普通话的字音,能力层级为识记A2.下列各句中,加点的成语使用正确的一项是A.现在我们单位职工上下班或步行,或骑车,为的是倡导绿色、地毯生活。
尤为可喜的是,始作俑者是我们新来的局长。
B.几年前,学界几乎没有人不对他的学说大加挞伐,可现在当他被尊奉为大师之后,移樽就教的人简直要踏破他家的门槛。
C.他是当今少数几位声名卓著的电视剧编剧之一,这不光是因为他善于编故事,更重要的原因是他写的剧本声情并茂,情节曲折。
D.旁边一位中学生模样的青年诚恳地说:“叔叔,这些都是名人的字画,您就买一幅吧,挂在客厅里不仅没关打气,还可附庸风雅。
”【解析】A、始作俑者:俑,古代殉葬用的木制或陶制的俑人。
开始制作俑的人。
比喻首先做某件坏事的人。
2010年高考新课标全国卷理科数学试题(附答案)
x2 y2
(A)
1
36
x2
(B)
4
y2 1
5
x2
(C)
6
y2 1
3
x2
(D)
5
y2 1
4
第Ⅱ卷
本卷包括必考题和选考题两部分,第( 13)题 ~第( 21)题为必考题,每个试题考生都 必须做答,第( 22)题 ~第( 24)题为选考题,考试根据要求做答。 二、填空题:本大题共 4 小题,每小题 5 分.
y
(
sin
为参数).
(Ⅰ)当 = 3 时,求 C1 与 C2 的交点坐标: (Ⅱ)过坐标原点 O 做 C1 的垂线,垂足为 A 、 P 为 OA 的中点,当
变化时,求
P 点轨迹的参数方程,并指出它是什么曲线。
(24)(本小题满分 10 分)选修 4— 5:不等式选讲
设函数 f ( x) = 2 x 4 1. (Ⅰ)画出函数 y f ( x) 的图像: (Ⅱ)若不等式 f (x) , ax 的解集非空,求 a 的取值范围
( 3)根据( 2)的结论,能否提供更好的调查方法来估计该地区老年人,需要志愿帮助
的老年人的比例?说明理由
附: K 2
n(ad bc)2
(a b)( c d)( a c)(b d)
P(K 2 …k)
0.050 0.010
0.001
k
3.841 6.635 10.828
(20)(本小题满分 12 分)
( 1)求数列 an 的通项公式;
( 2)令 bn nan ,求数列的前 n 项和 Sn
(18)(本小题满分 12 分)
如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB ∥ CD , AC BD ,垂足为 H , PH 是四棱锥的高 , E 为 AD 中点 ( 1)证明: PE BC
2010年全国统一高考数学试卷(文科)(全国卷一)及答案
2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)一、选择题(共12小题,每小题5分,满分60分)1.(5分)cos300°=()A.B.﹣ C.D.2.(5分)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}3.(5分)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.14.(5分)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.5.(5分)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.36.(5分)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°7.(5分)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)8.(5分)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.89.(5分)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.10.(5分)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a11.(5分)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.12.(5分)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.二、填空题(共4小题,每小题5分,满分20分)13.(5分)不等式的解集是.14.(5分)已知α为第二象限的角,,则tan2α=.15.(5分)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有种.(用数字作答)16.(5分)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.三、解答题(共6小题,满分70分)17.(10分)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.18.(12分)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.19.(12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.20.(12分)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.21.(12分)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.22.(12分)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C 相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.2010年全国统一高考数学试卷(文科)(大纲版Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2010•大纲版Ⅰ)cos300°=()A.B.﹣ C.D.【分析】利用三角函数的诱导公式,将300°角的三角函数化成锐角三角函数求值.【解答】解:∵.故选C.2.(5分)(2010•大纲版Ⅰ)设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3}B.{1,5}C.{3,5}D.{4,5}【分析】根据补集意义先求C U M,再根据交集的意义求N∩(C U M).【解答】解:(C U M)={2,3,5},N={1,3,5},则N∩(C U M)={1,3,5}∩{2,3,5}={3,5}.故选C3.(5分)(2010•大纲版Ⅰ)若变量x,y满足约束条件,则z=x﹣2y的最大值为()A.4 B.3 C.2 D.1【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=x﹣2y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最小值即可.【解答】解:画出可行域(如图),z=x﹣2y⇒y=x﹣z,由图可知,当直线l经过点A(1,﹣1)时,z最大,且最大值为z max=1﹣2×(﹣1)=3.故选:B.4.(5分)(2010•大纲版Ⅰ)已知各项均为正数的等比数列{a n},a1a2a3=5,a7a8a9=10,则a4a5a6=()A.B.7 C.6 D.【分析】由数列{a n}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.5.(5分)(2010•大纲版Ⅰ)(1﹣x)4(1﹣)3的展开式x2的系数是()A.﹣6 B.﹣3 C.0 D.3【分析】列举(1﹣x)4与可以出现x2的情况,通过二项式定理得到展开式x2的系数.【解答】解:将看作两部分与相乘,则出现x2的情况有:①m=1,n=2;②m=2,n=0;系数分别为:①=﹣12;②=6;x2的系数是﹣12+6=﹣6故选A6.(5分)(2010•大纲版Ⅰ)直三棱柱ABC﹣A1B1C1中,若∠BAC=90°,AB=AC=AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°【分析】延长CA到D,根据异面直线所成角的定义可知∠DA1B就是异面直线BA1与AC1所成的角,而三角形A1DB为等边三角形,可求得此角.【解答】解:延长CA到D,使得AD=AC,则ADA1C1为平行四边形,∠DA1B就是异面直线BA1与AC1所成的角,又A1D=A1B=DB=AB,则三角形A1DB为等边三角形,∴∠DA1B=60°故选C.7.(5分)(2010•大纲版Ⅰ)已知函数f(x)=|lgx|.若a≠b且,f(a)=f(b),则a+b的取值范围是()A.(1,+∞)B.[1,+∞)C.(2,+∞)D.[2,+∞)【分析】由已知条件a≠b,不妨令a<b,又y=lgx是一个增函数,且f(a)=f (b),故可得,0<a<1<b,则lga=﹣lgb,再化简整理即可求解;或采用线性规划问题处理也可以.【解答】解:(方法一)因为f(a)=f(b),所以|lga|=|lgb|,不妨设0<a<b,则0<a<1<b,∴lga=﹣lgb,lga+lgb=0∴lg(ab)=0∴ab=1,又a>0,b>0,且a≠b∴(a+b)2>4ab=4∴a+b>2故选:C.(方法二)由对数的定义域,设0<a<b,且f(a)=f(b),得:,整理得线性规划表达式为:,因此问题转化为求z=x+y的取值范围问题,则z=x+y⇒y=﹣x+z,即求函数的截距最值.根据导数定义,函数图象过点(1,1)时z有最小为2(因为是开区域,所以取不到2),∴a+b的取值范围是(2,+∞).故选:C.8.(5分)(2010•大纲版Ⅰ)已知F1、F2为双曲线C:x2﹣y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则|PF1|•|PF2|=()A.2 B.4 C.6 D.8【分析】解法1,利用余弦定理及双曲线的定义,解方程求|PF1|•|PF2|的值.解法2,由焦点三角形面积公式和另一种方法求得的三角形面积相等,解出|PF1|•|PF2|的值.【解答】解:法1.由双曲线方程得a=1,b=1,c=,由余弦定理得cos∠F1PF2=∴|PF1|•|PF2|=4.法2;由焦点三角形面积公式得:∴|PF1|•|PF2|=4;故选B.9.(5分)(2010•大纲版Ⅰ)正方体ABCD﹣A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.B.C.D.【分析】正方体上下底面中心的连线平行于BB1,上下底面中心的连线与平面ACD1所成角,即为BB1与平面ACD1所成角,直角三角形中,利用边角关系求出此角的余弦值.【解答】解:如图,设上下底面的中心分别为O1,O,设正方体的棱长等于1,则O1O与平面ACD1所成角就是BB1与平面ACD1所成角,即∠O1OD1,直角三角形OO1D1中,cos∠O1OD1===,故选D.10.(5分)(2010•大纲版Ⅰ)设a=log32,b=ln2,c=,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a【分析】根据a的真数与b的真数相等可取倒数,使底数相同,找中间量1与之比较大小,便值a、b、c的大小关系.【解答】解:a=log32=,b=ln2=,而log23>log2e>1,所以a<b,c==,而,所以c<a,综上c<a<b,故选C.11.(5分)(2010•大纲版Ⅰ)已知圆O的半径为1,PA、PB为该圆的两条切线,A、B为两切点,那么的最小值为()A. B. C.D.【分析】要求的最小值,我们可以根据已知中,圆O的半径为1,PA、PB 为该圆的两条切线,A、B为两切点,结合切线长定理,设出PA,PB的长度和夹角,并将表示成一个关于x的函数,然后根据求函数最值的办法,进行解答.【解答】解:如图所示:设OP=x(x>0),则PA=PB=,∠APO=α,则∠APB=2α,sinα=,==×(1﹣2sin2α)=(x2﹣1)(1﹣)==x2+﹣3≥2﹣3,∴当且仅当x2=时取“=”,故的最小值为2﹣3.故选D.12.(5分)(2010•大纲版Ⅰ)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A.B.C.D.【分析】四面体ABCD的体积的最大值,AB与CD是对棱,必须垂直,确定球心的位置,即可求出体积的最大值.【解答】解:过CD作平面PCD,使AB⊥平面PCD,交AB于P,设点P到CD的距离为h,则有,当直径通过AB与CD的中点时,,故.故选B.二、填空题(共4小题,每小题5分,满分20分)13.(5分)(2010•大纲版Ⅰ)不等式的解集是{x|﹣2<x<﹣1,或x>2} .【分析】本题是解分式不等式,先将分母分解因式,再利用穿根法求解.【解答】解::,数轴标根得:{x|﹣2<x<﹣1,或x>2}故答案为:{x|﹣2<x<﹣1,或x>2}14.(5分)(2010•大纲版Ⅰ)已知α为第二象限的角,,则tan2α=.【分析】先求出tanα的值,再由正切函数的二倍角公式可得答案.【解答】解:因为α为第二象限的角,又,所以,,∴故答案为:﹣15.(5分)(2010•大纲版Ⅰ)某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有30种.(用数字作答)【分析】由题意分类:(1)A类选修课选1门,B类选修课选2门,确定选法;(2)A类选修课选2门,B类选修课选1门,确定选法;然后求和即可.【解答】解:分以下2种情况:(1)A类选修课选1门,B类选修课选2门,有C31C42种不同的选法;(2)A类选修课选2门,B类选修课选1门,有C32C41种不同的选法.所以不同的选法共有C31C42+C32C41=18+12=30种.故答案为:3016.(5分)(2010•大纲版Ⅰ)已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为.【分析】由椭圆的性质求出|BF|的值,利用已知的向量间的关系、三角形相似求出D的横坐标,再由椭圆的第二定义求出|FD|的值,又由|BF|=2|FD|建立关于a、c的方程,解方程求出的值.【解答】解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.三、解答题(共6小题,满分70分)17.(10分)(2010•大纲版Ⅰ)记等差数列{a n}的前n项和为S n,设S3=12,且2a1,a2,a3+1成等比数列,求S n.【分析】由2a1,a2,a3+1成等比数列,可得a22=2a1(a3+1),结合s3=12,可列出关于a1,d的方程组,求出a1,d,进而求出前n项和s n.【解答】解:设等差数列{a n}的公差为d,由题意得,解得或,∴s n=n(3n﹣1)或s n=2n(5﹣n).18.(12分)(2010•大纲版Ⅰ)已知△ABC的内角A,B及其对边a,b满足a+b=acotA+bcotB,求内角C.【分析】先利用正弦定理题设等式中的边转化角的正弦,化简整理求得sin(A ﹣)=sin(B+),进而根据A,B的范围,求得A﹣和B+的关系,进而求得A+B=,则C的值可求.【解答】解:由已知及正弦定理,有sinA+sinB=sinA•+sinB•=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB∴sin(A﹣)=sin(B+),∵0<A<π,0<B<π∴﹣<A﹣<<B+<∴A﹣+B+=π,∴A+B=,C=π﹣(A+B)=19.(12分)(2010•大纲版Ⅰ)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专家的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(Ⅰ)求投到该杂志的1篇稿件被录用的概率;(Ⅱ)求投到该杂志的4篇稿件中,至少有2篇被录用的概率.【分析】(1)投到该杂志的1篇稿件被录用包括稿件能通过两位初审专家的评审或稿件恰能通过一位初审专家的评审又能通过复审专家的评审两种情况,这两种情况是互斥的,且每种情况中包含的事情有时相互独立的,列出算式.(2)投到该杂志的4篇稿件中,至少有2篇被录用的对立事件是0篇被录用,1篇被录用两种结果,从对立事件来考虑比较简单.【解答】解:(Ⅰ)记A表示事件:稿件能通过两位初审专家的评审;B表示事件:稿件恰能通过一位初审专家的评审;C表示事件:稿件能通过复审专家的评审;D表示事件:稿件被录用.则D=A+B•C,P(A)=0.5×0.5=0.25,P(B)=2×0.5×0.5=0.5,P(C)=0.3,P(D)=P(A+B•C)=P(A)+P(B•C)=P(A)+P(B)P(C)=0.25+0.5×0.3=0.40.(2)记4篇稿件有1篇或0篇被录用为事件E,则P(E)=(1﹣0.4)4+C41×0.4×(1﹣0.4)3=0.1296+0.3456=0.4752,∴=1﹣0.4752=0.5248,即投到该杂志的4篇稿件中,至少有2篇被录用的概率是0.5248.20.(12分)(2010•大纲版Ⅰ)如图,四棱锥S﹣ABCD中,SD⊥底面ABCD,AB ∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(Ⅰ)证明:SE=2EB;(Ⅱ)求二面角A﹣DE﹣C的大小.【分析】(Ⅰ)连接BD,取DC的中点G,连接BG,作BK⊥EC,K为垂足,根据线面垂直的判定定理可知DE⊥平面SBC,然后分别求出SE与EB的长,从而得到结论;(Ⅱ)根据边长的关系可知△ADE为等腰三角形,取ED中点F,连接AF,连接FG,根据二面角平面角的定义可知∠AFG是二面角A﹣DE﹣C的平面角,然后在三角形AGF中求出二面角A﹣DE﹣C的大小.【解答】解:(Ⅰ)连接BD,取DC的中点G,连接BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD,所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足,因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE,DE与平面SBC内的两条相交直线BK、BC都垂直,DE⊥平面SBC,DE⊥EC,DE⊥SB.SB=,DE=EB=所以SE=2EB(Ⅱ)由SA=,AB=1,SE=2EB,AB⊥SA,知AE==1,又AD=1.故△ADE为等腰三角形.取ED中点F,连接AF,则AF⊥DE,AF=.连接FG,则FG∥EC,FG⊥DE.所以,∠AFG是二面角A﹣DE﹣C的平面角.连接AG,AG=,FG=,cos∠AFG=,所以,二面角A﹣DE﹣C的大小为120°.21.(12分)(2010•大纲版Ⅰ)求函数f(x)=x3﹣3x在[﹣3,3]上的最值.【分析】先求函数的极值,根据极值与最值的求解方法,将f(x)的各极值与其端点的函数值比较,其中最大的一个就是最大值,最小的一个就是最小值.【解答】解:f′(x)=3x2﹣3=3(x+1)(x﹣1),令f′(x)=0,则x=﹣1或x=1,经验证x=﹣1和x=1为极值点,即f(1)=﹣2为极小值,f(﹣1)=2为极大值.又因为f(﹣3)=﹣18,f(3)=18,所以函数f(x)的最大值为18,最小值为﹣18.22.(12分)(2010•大纲版Ⅰ)已知抛物线C:y2=4x的焦点为F,过点K(﹣1,0)的直线l与C相交于A、B两点,点A关于x轴的对称点为D.(Ⅰ)证明:点F在直线BD上;(Ⅱ)设,求△BDK的内切圆M的方程.【分析】(Ⅰ)先根据抛物线方程求得焦点坐标,设出过点K的直线L方程代入抛物线方程消去x,设L与C 的交点A(x1,y1),B(x2,y2),根据韦达定理求得y1+y2和y1y2的表达式,进而根据点A求得点D的坐标,进而表示出直线BD 和BF的斜率,进而问题转化两斜率相等,进而转化为4x2=y22,依题意可知等式成立进而推断出k1=k2原式得证.(Ⅱ)首先表示出结果为求得m,进而求得y2﹣y1的值,推知BD的斜率,则BD方程可知,设M为(a,0),M到x=y﹣1和到BD的距离相等,进而求得a和圆的半径,则圆的方程可得.【解答】解:(Ⅰ)抛物线C:y2=4x①的焦点为F(1,0),设过点K(﹣1,0)的直线L:x=my﹣1,代入①,整理得y2﹣4my+4=0,设L与C 的交点A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=4,点A关于X轴的对称点D为(x1,﹣y1).BD的斜率k1===,BF的斜率k2=.要使点F在直线BD上需k1=k2需4(x2﹣1)=y2(y2﹣y1),需4x2=y22,上式成立,∴k1=k2,∴点F在直线BD上.(Ⅱ)=(x1﹣1,y1)(x2﹣1,y2)=(x1﹣1)(x2﹣1)+y1y2=(my1﹣2)(my2﹣2)+y1y2=4(m2+1)﹣8m2+4=8﹣4m2=,∴m2=,m=±.y2﹣y1==4=,∴k1=,BD:y=(x﹣1).易知圆心M在x轴上,设为(a,0),M到x=y﹣1和到BD的距离相等,即|a+1|×=|((a﹣1)|×,∴4|a+1|=5|a﹣1|,﹣1<a<1,解得a=.∴半径r=,∴△BDK的内切圆M的方程为(x﹣)2+y2=.。
2010年全国高考文科数学试题及答案-安徽
绝密★启用前2010年普通高等学校招生全国统一考试(安徽卷)数 学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分l50分,考试时间l20分钟.参考公式:S 表示底面积,h 表示底面上的高 如果事件A 与B 互斥,那么 棱柱体积V=ShP(A+B)=P(A)+P(B ) 棱锥体积V=13Sh第Ⅰ卷(选择题 共50分)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中.只有一项是符合题目要求的.(1)若A={}|10x x +>,B={}|30x x -<,则A B =(A)(-1,+∞) (B)(-∞,3) (C)(-1,3) (D)(1,3) 答案:C解析:画数轴易知.(2)已知21i =-,则i(1)=i i (C)i (D)i 答案:B 解析:直接计算.(3)设向量(1,0)a =,11(,)22b =,则下列结论中正确的是(A)a b = (B)2a b =(C)//a b (D)a b -与b 垂直 答案:D解析:利用公式计算,采用排除法.(4)过点(1,0)且与直线x-2y-2=0平行的直线方程是(A )x-2y-1=0 (B)x-2y+1=0 (C)2x+y-2=0 (D )x+2y-1=0 答案:A解析:利用点斜式方程.(5)设数列{na}的前n项和n s=2n,则8a的值为(A)15 (B) 16 (C) 49 (D)64答案:A 解析:利用8a=S8-S7,即前8项和减去前7项和.(6)设ab c>0,二次函数f(x)=a x2+bx+c的图像可能是答案:D 解析:利用开口方向a、对称轴的位置、y轴上的截距点c之间关系,结合ab c>0产生矛盾,采用排除法易知.(7)设a=2535⎛⎫⎪⎝⎭,b=3525⎛⎫⎪⎝⎭,c=2525⎛⎫⎪⎝⎭,则a,b,c的大小关系是(A)a>c>b(B)a>b>c(C)c>a>b(D)b>c>a 答案:A 解析:利用构造幂函数比较a、c再利用构造指数函数比较b、c.(8)设x,y满足约束条件260,260,0,x yx yy+-≥⎧⎪+-≤⎨⎪≥⎩则目标函数z=x+y的最大值是(A)3 (B) 4 (C) 6 (D)8答案:C 解析:画出可行域易求.(9)一个几何体的三视图如图,该几何体的表面积是(A)372 (C)292(B)360 (D)280答案:B 解析:可理解为长8、宽10、高2的长方体和长6、宽2、高8的长方体组合而成,注意2×6重合两次,应减去.(10)甲从正方形四个顶点中任意选择两个顶点连成直线,乙也从该正方形四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是(A)318(B)418(C)518(D)618答案:C 解析:所有可能有6×6,所得的两条直线相互垂直有5×2.数学(文科)(安徽卷)第Ⅱ卷(非选择题共100分)二.填空题:本大题共5小题,每小题5分,共25分.把答案填在答题卡的相应位置·(11)命题“存在x∈R,使得x2+2x+5=0”的否定是答案:对任何X∈R,都有X2+2X+5≠0解析:依据“存在”的否定为“任何、任意”,易知.(12)抛物线y2=8x的焦点坐标是答案:(2,0)解析:利用定义易知.(13)如图所示,程序框图(算法流程图)的输出值x=答案:12 解析:运算时X顺序取值为: 1,2,4,5,6,8,9,10,12.(14)某地有居民100000户,其中普通家庭99 000户,高收入家庭1 000户.从普通家庭中以简单随机抽样方式抽取990户,从高收入家庭中以简单随机抽样方式抽取l00户进行调查,发现共有120户家庭拥有3套或3套以上住房,其中普通家庭50户,高收人家庭70户.依据这些数据并结合所掌握的统计知识,你认为该地拥有3套或3套以上住房的家庭所占比例的合理估计是.答案:5.7% 解析:50500099099000=,707001001000=,易知57005.7%100000=.(15)若a>0,b>0,a+b=2,则下列不等式对一切满足条件的a,b恒成立的是、(写出所有正确命题的编号).①ab≤1;②a+b≤2;③a2+b2≥2;④a3+b3≥3;211≥+ba⑤答案:①,③,⑤解析:①,⑤化简后相同,令a=b=1排除②、易知④,再利a+b 2易知③正确三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.解答写在答题卡上的指定区域内.(16)△ABC 的面积是30,内角A,B,C,所对边长分别为a ,b ,c ,cosA=1213. (1)求AB AC ⋅(2)若c-b=1,求a 的值.(本小题满分12分)本题考查同角三角形函数基本关系,三角形面积公式,向量的数量积,利用余弦定理解三角形以及运算求解能力. 解:由cosA=1213 ,得sinA=)21312( 1- =513 .又12 bc sinA=30,∴bc=156、(1)AB AC ⋅ =bc cosA=156·1213 =144.(2)a 2=b 2+c 2-2bc cosA=(c-b)2+2bc(1-cosA)=1+2·156·(1-1213 )=25,∴a=5(17)椭圆E 经过点A (2,3),对称轴为坐标轴,焦点F 1,F 2在x 轴上,离心率21=e .(1)求椭圆E 的方程;(2)求∠F 1AF 2的角平分线所在直线的方程.(本小题满分12分)本题考查椭圆的定义,椭圆的标准方程及简单几何性质,直线的点斜式方程与一般方程,点到直线的距离公式等基础知识,考查解析几何的基本思想和综合运算能力.解:(1)设椭圆E 的方程为22221x y a b+= 由e=12 ,得c a =12 ,b 2=a 2-c 2 =3c 2、∴2222143x y c c += 将A (2,3)代入,有22131c c += ,解得:c=2, 椭圆E 的方程为2211612x y += (Ⅱ)由(Ⅰ)知F 1(-2,0),F 2(2,0),所以直线AF 1的方程为 y=34 (X+2), 即3x-4y+6=0、直线AF 2的方程为x=2、由椭圆E 的图形知, ∠F 1AF 2的角平分线所在直线的斜率为正数.设P (x ,y )为∠F 1AF 2的角平分线所在直线上任一点, 则有34625x y x |-+⎥=|-⎥ 若3x-4y+6=5x-10,得x+2y-8=0,其斜率为负,不合题意,舍去. 于是3x-4y+6=-5x+10,即2x-y-1=0.所以∠F 1AF 2的角平分线所在直线的方程为2x-y-1=0.18、(本小题满分13分)某市2010年4月1日—4月30日对空气污染指数的检测数据如下(主要污染物为可吸入颗粒物):61,76,70,56,81,91,92,91,75,81,88,67,101,103,95,91, 77,86,81,83,82,82,64,79,86,85,75,71,49,45, (Ⅰ) 完成频率分布表; (Ⅱ)作出频率分布直方图;(Ⅲ)根据国家标准,污染指数在0~50之间时,空气质量为优:在51~100之间时,为良;在101~150之间时,为轻微污染;在151~200之间时,为轻度污染. 请你依据所给数据和上述标准,对该市的空气质量给出一个简短评价.(本小题满分13分)本题考查频数,频数及频率分布直方图,考查运用统计知识解决简单实际问题的能力,数据处理能力和应用意识. 解:(Ⅰ) 频率分布表:(Ⅱ)频率分布直方图:(Ⅲ)答对下述两条中的一条即可:(i )该市一个月中空气污染指数有2天处于优的水平,占当月天数的115 、有26天处于良好的水平,占当月天数的1315 、处于优或良的天数共有28天,占当月天数的1415 、说明该市空气质量基本良好.(ii )轻微污染有2天,占当月天数的115 、污染指数在80以上的接近轻微污染的天数有15天,加上处于轻微污染的天数,共有17天,占当月天数的1730 ,超过50%、说明该市空气质量有待进一步改善.(19) (本小题满分13分)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB=2EF=2,E F ∥AB,EF ⊥FB,∠BFC=90°,BF=FC,H 为BC 的中点, (Ⅰ)求证:F H ∥平面EDB;4151 61 71 8(Ⅱ)求证:A C ⊥平面EDB;(Ⅲ)求四面体B —DEF 的体积;(本小题满分13分)本题考查空间线面平行,线面垂直,面面垂直,体积的计算等基础知识,同时考查空间想象能力与推理论证能力.(Ⅰ) 证:设AC 与BD 交于点G ,则G 为AC 的中点、连EG ,GH ,由于H 为BC 的中点,故GH ∥AB 且 GH =12AB 又EF ∥AB 且 EF =12AB ∴EF ∥GH 、且 EF =GH ∴四边形EFHG 为平行四边形. ∴EG ∥FH ,而EG ⊂平面EDB ,∴FH ∥平面EDB. (Ⅱ)证:由四边形ABCD 为正方形,有A B ⊥BC.又EF ∥AB ,∴ EF ⊥BC 、而EF ⊥FB ,∴ EF ⊥平面BFC ,∴ EF ⊥FH. ∴ AB ⊥FH.又BF=FC H 为BC 的中点,FH ⊥BC.∴ FH ⊥平面ABCD. ∴ FH ⊥AC 、又FH ∥EG ,∴ AC ⊥EG 、又AC ⊥BD ,EG ∩BD=G , ∴ AC ⊥平面EDB.(Ⅲ)解:∵ EF ⊥FB ,∠BFC=90°,∴ BF ⊥平面CDEF.∴ BF 为四面体B-DEF 的高、又BC=AB=2, ∴ BF=FC=111.323B DEF V -==(20)(本小题满分12分)设函数f (x )=sinx-cosx+x+1, 0﹤x ﹤2 π,求函数f(x)的单调区间与极值. (本小题满分12分)本题考查导数的运算,利用导数研究函数的单调性与极值的方法,考查综合运用数学知识解决问题的能力. 解:由f(x)=sinx-cosx+x+1,0﹤x ﹤2π, 知'()f x =cosx+sinx+1, 于是'()f x =1+2sin(x+4π).令'()f x =0,从而sin(x+4π)=-22,得x= π,或x=32 π.当x 变化时,'()f x ,f(x)变化情况如下表:因此,由上表知f(x)的单调递增区间是(0, π)与(32 π,2 π),单调递减区间是(π,32 π),极小值为f (32 π)=32 π,极大值为f (π)= π+2.(21)(本小题满分13分)设1c ,2c ...,n c ,…是坐标平面上的一列圆,它们的圆心都在x 轴的正半轴上,且都与直线相切,对每一个正整数n,圆n c 都与圆1n c +相互外切,以n r 表示n c 的半径,已知{}n r 为递增数列.(Ⅰ)证明:{}nr 为等比数列;(Ⅱ)设1r =1,求数列n n r ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和、(本小题满分13分)本题考查等比数列的基本知识,利用错位相减法求和等基本方法,考查抽象能力以及推理论证能力.解:(Ⅰ)将直线y=33x 的倾斜角记为θ , 则有tan θ = 3,sin θ =12 .设C n 的圆心为(n λ,0),则由题意知nnγλ= sin θ =12 ,得n λ = 2n γ ;同理112n n ++λ=γ,题意知1112n n n n n +++λ=λ+γ+γ=γ将n λ = 2n γ代入,解得 r n+1=3r n . 故{ r n }为公比q=3的等比数列. (Ⅱ)由于r 1=1,q=3,故r n =3n-1,从而nnr=n ·13n -,记S n =1212nn ++⋯γγγ, 则有 S n =1+2·3-1+3·3-2+………+n ·13n -、 ① 3Sn=1·3-1+2·3-2+………+(n-1) ·13n -+n ·3n -、 ② ①-②,得 3Sn 2=1+3-1 +3-2+………+13n --n ·3n - =133n--- n ·3n -=32 –(n+32)·3n -S n =94 –12 (n+32)·13n-.。
课标全国卷,高考数学理科卷
2010年普通高等学校招生全国统一考试年普通高等学校招生全国统一考试··理科数学(课标全国卷)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2010课标全国卷,理1)已知集合A ={x ||x |≤2,x ∈R },B ={x |x ≤4,x ∈Z },则A ∩B =A.(0,2)B.[0,2]C.{0,2}D.{0,1,2}答案:D2.(2010课标全国卷,理2)已知复数z =23i)-(1i3+,z 是z 的共轭复数,则z ·z =A.41 B.21 C.1D.2答案:A3.(2010课标全国卷,理3)曲线y =2+x x在点(-1,-1)处的切线方程为A.y =2x +1 B.y =2x -1 C.y =-2x -3 D.y =-2x -2答案:A4.(2010课标全国卷,理4)如图,质点P 在半径为2的圆周上逆时针运动,其初始位置为P 0(2,-2),角速度为1,那么点P 到x 轴的距离d 关于时间t 的函数图像大致为答案:C5.(2010课标全国卷,理5)已知命题:p 1:函数y =2x -2-x 在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(¬p 1)∨p 2和q 4:p 1∧(¬p 2)中,真命题是A.q 1,q 3 B.q 2,q 3 C.q 1,q 4 D.q 2,q 4答案:C6.(2010课标全国卷,理6)某种种子每粒发芽的概率都为0.9,现播种了1000粒,对于没有发芽的种子,每粒需再补种2粒,补种的种子数记为X ,则X 的数学期望为A.100B.200C.300D.400答案:B7.(2010课标全国卷,理7)如果执行右面的框图,输入N =5,则输出的数等于A.45 B.54 C.56 D.65答案:D8.(2010课标全国卷,理8)设偶函数f (x )满足f (x )=x 3-8(x ≥0),则{x |f (x -2)>0}=A.{x |x <-2或x >4} B.{x |x <0或x >4} C.{x |x <0或x >6} D.{x |x <-2或x >2}答案:B9.(2010课标全国卷,理9)若cos α=-54,α是第三象限的角,则2tan 12tan1αα−+=A.-21 B.21 C.2 D.-2答案:A10.(2010课标全国卷,理10)设三棱柱的侧棱垂直于底面,所有棱的长都为a ,顶点都在一个球面上,则该球的表面积为A.πa 2B.37πa 2 C.31πa 2 D.5πa 2答案:B11.(2010课标全国卷,理11)已知函数f (x )=⎪⎩⎪⎨⎧>+−≤<.10,621,100|,lg |x x x x 若a ,b ,c 互不相等,且f (a )=f (b )=f (c ),则abc 的取值范围是A.(1,10)B.(5,6)C.(10,12)D.(20,24)答案:C12.(2010课标全国卷,理12)已知双曲线E 的中心为原点,F (3,0)是E 的焦点,过F 的直线l 与E 相交于A ,B 两点,且AB 的中点为N (-12,-15),则E 的方程为A.6322y x −=1B.5422y x −=1C.3622y x −=1 D.4522y x −=1答案:B第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.(2010课标全国卷,理13)设y =f (x )为区间[0,1]上的连续函数,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算积分∫1d )(x x f .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…,N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得积分∫1d )(x x f 的近似值为_______.答案:NN 114.(2010课标全国卷,理14)正视图为一个三角形的几何体可以是_______.(写出三种)答案:三棱锥、圆锥、四棱锥.(答案不唯一)15.(2010课标全国卷,理15)过点A (4,1)的圆C 与直线x -y -1=0相切于点B (2,1),则圆C 的方程为_______.答案:(x -3)2+y 2=216.(2010课标全国卷,理16)在△ABC 中,D 为边BC 上一点,BD =21DC ,∠ADB =120°,AD =2.若△ADC 的面积为3-3,则∠BAC =_______.答案:60°三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(2010课标全国卷,理17)设数列{a n }满足a 1=2,a n +1-a n =3·22n -1.(1)求数列{a n }的通项公式;(2)令b n =na n ,求数列{b n }的前n 项和S n .解:(1)由已知,当n ≥1时,a n +1=[(a n +1-a n )+(a n -a n -1)+…+(a 2-a 1)]+a 1=3(22n -1+22n -3+…+2)+2=22(n +1)-1.而a 1=2,所以数列{a n }的通项公式为a n =22n -1.(2)由b n =na n =n ·22n -1知S n =1·2+2·23+3·25+…+n ·22n -1.①从而22·S n =1·23+2·25+3·27+…+n ·22n +1.②①-②,得(1-22)S n =2+23+25+…+22n -1-n ·22n +1,即S n =91[(3n -1)22n +1+2].18.(2010课标全国卷,理18)如图,已知四棱锥P —ABCD 的底面为等腰梯形,AB ∥CD ,AC ⊥BD ,垂足为H ,PH 是四棱锥的高,E 为AD 中点.(1)证明PE ⊥BC ;(2)若∠APB =∠ADB =60°,求直线PA 与平面PEH 所成角的正弦值.解:以H 为原点,HA ,HB ,HP 分别为x ,y ,z 轴,线段HA 的长为单位长,建立空间直角坐标系如图,则A (1,0,0),B(0,1,0).(1)证明:设C (m ,0,0),P (0,0,n )(m <0,n >0),则D (0,m ,0),E (21,2m ,0).可得=(2,21m,-n ),=(m ,-1,0).因为⋅=22mm −+0=0,所以PE ⊥B C.(2)由已知条件可得m =-33,n =1,故C (-33,0,0),D (0,-33,0),E (21,63−,0),P (0,0,1).设n =(x ,y ,z )为平面PEH 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅,0,0HE n n 即⎪⎩⎨⎧==−.0,0621z y x 因此可以取n =(1,3,0).由=(1,0,-1),可得|cos 〈,n 〉|=42,所以直线PA 与平面PEH 所成角的正弦值为42.19.(2010课标全国卷,理19)为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:性别男女是否需要志愿者需要4030不需要160270(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例;(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?(3)根据(2)的结论,能否提出更好的调查方法来估计该地区的老年人中,需要志愿者提供帮助的老年人的比例?说明理由.附:P (K 2≥k )0.0500.0100.001k 3.841 6.63510.828K 2=))()()(()(2d b c a d c b a bc ad n ++++−解:(1)调查的500位老年人中有70位需要志愿者提供帮助,因此该地区老年人中,需要帮助的老年人的比例的估计值为50070=14%.(2)K 2=43070300200)160307040(5002××××−××≈9.967.由于9.967>6.635,所以有99%的把握认为该地区的老年人是否需要帮助与性别有关.(3)由(2)的结论知,该地区老年人是否需要帮助与性别有关,并且从样本数据能看出该地区男性老年人与女性老年人中需要帮助的比例有明显差异,因此在调查时,先确定该地区老年人中男、女的比例,再把老年人分成男、女两层并采用分层抽样方法比采用简单随机抽样方法更好.20.(2010课标全国卷,理20)设F 1,F 2分别是椭圆E :2222by a x +=1(a >b >0)的左、右焦点,过F 1斜率为1的直线l 与E 相交于A ,B 两点,且|AF 2|,|AB |,|BF 2|成等差数列.(1)求E 的离心率;(2)设点P (0,-1)满足|PA |=|PB |,求E 的方程.解:(1)由椭圆定义知|AF 2|+|BF 2|+|AB |=4a ,又2|AB |=|AF 2|+|BF 2|,得|AB |=34a .l 的方程为y =x +c ,其中c =22b a −.设A (x 1,y 1),B (x 2,y 2),则A ,B 两点坐标满足方程组⎪⎩⎪⎨⎧=++=.1,2222b y a x c x y 化简得(a 2+b 2)x 2+2a 2cx +a 2(c 2-b 2)=0,则x 1+x 2=2222b a c a +−,x 1x 2=22222)(ba b c a +−.因为直线AB 斜率为1,所以|AB |=2|x 2-x 1|=]4)[(221221x x x x −+,得34a =2224b a ab +,故a 2=2b 2.所以E 的离心率e =2222=−=a b a a c .(2)设AB 的中点为N (x 0,y 0),由(1)知x 0=221x x +=32222−=+−b a c a ,y 0=x 0+c =3c.由|PA |=|PB |得k PN =-1.即110−=+x y ,得c =3,从而a =32,b =3.故椭圆E 的方程为91822y x +=1.21.(2010课标全国卷,理21)设函数f (x )=e x -1-x -ax 2.(1)若a =0,求f (x )的单调区间;(2)若当x ≥0时f (x )≥0,求a 的取值范围.解:(1)a =0时,f (x )=e x -1-x ,f ′(x )=e x -1.当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调减少,在(0,+∞)上单调增加.(2)f ′(x )=e x -1-2ax .由(1)知e x ≥1+x ,当且仅当x =0时等号成立,故f ′(x )≥x -2ax =(1-2a )x ,从而当1-2a ≥0,即a ≤21时,f ′(x )≥0(x ≥0),而f (0)=0,于是当x ≥0时,f (x )≥0.由e x >1+x (x ≠0)可得e -x >1-x (x ≠0).从而当a >21时,f ′(x )<e x -1+2a (e -x -1)=e -x (e x -1)(e x -2a ),故当x ∈(0,ln2a )时,f ′(x )<0,而f (0)=0,于是当x ∈(0,ln2a )时,f (x )<0.综合得a 的取值范围为(-∞,21].22.(2010课标全国卷,理22)选修4-1:几何证明选讲如图,已知圆上的弧=,过C 点的圆的切线与BA 的延长线交于E 点,证明:(1)∠ACE =∠BCD ;(2)BC 2=BE ×C D.证明:(1)因为=,BCD =∠AB C.又因为EC 与圆相切于点C ,故∠ACE =∠ABC ,所以∠ACE =∠BC D.(2)因为∠ECB =∠CDB ,∠EBC =∠BCD ,所以△BDC ∽△ECB ,故BCCDBE BC =,即BC 2=BE ×C D.23.(2010课标全国卷,理23)选修4-4:坐标系与参数方程AC BD AC BD已知直线C 1:⎩⎨⎧=+=ααsin ,cos 1t y t x (t 为参数),圆C 2:⎩⎨⎧==θθsin ,cos y x (θ为参数).(1)当α=3π时,求C 1与C 2的交点坐标;(2)过坐标原点O 作C 1的垂线,垂足为A ,P 为OA 的中点,当α变化时,求P 点轨迹的参数方程,并指出它是什么曲线.解:(1)当α=3π时,C 1的普通方程为y =3(x -1),C 2的普通方程为x 2+y 2=1.联立方程组⎪⎩⎪⎨⎧=+−=,1),1(322y x x y 解得C 1与C 2的交点为(1,0),(21,-23).(2)C 1的普通方程为x sin α-y cos α-sin α=0.A 点坐标为(sin 2α,-cos αsin α),故当α变化时,P 点轨迹的参数方程为⎪⎪⎩⎪⎪⎨⎧−==αααcos sin 21,sin 212y x (α为参数).P 点轨迹的普通方程为(x -41)2+y 2=161.故P 点轨迹是圆心为(41,0),半径为41的圆.24.(2010课标全国卷,理24)选修4-5:不等式选讲设函数f (x )=|2x -4|+1.(1)画出函数y =f (x )的图像;(2)若不等式f (x )≤ax 的解集非空,求a 的取值范围.解:(1)由于f (x )=⎩⎨⎧≥−<+−,2,32,2,52x x x x 则函数y =f (x )的图像如图所示.(2)由函数y =f (x )与函数y =ax 的图像可知,当且仅当a ≥21或a <-2时,函数y =f (x )与函数y =ax 的图像有交点.故不等式f (x )≤ax 的解集非空时,a 的取值范围为(-∞,-2)∪[21,+∞).。
2010年高考题(海南、山东、重庆、全国1,含答案、含解析)
2010年普通高等学校招生全国统一考试生物第Ⅰ卷选择题:本题共20小题,每小题2分,在每小题给出的四个选项中,只有一项是符合要求的。
1.下列关于糖的叙述,正确的是A.葡萄糖和果糖分子均有还原性B.葡萄糖和麦芽糖可被水解C.构成纤维素的单体是葡萄糖和果糖D.乳糖可以被小肠上皮细胞直接吸收2.下列关于叶绿体的描述,错误..的是A.基粒由类囊体堆叠而成B.叶绿体被膜由双层膜组成C.暗反应发生在类囊体膜上D.类囊体膜上具有叶绿素和酶3.有关动物细胞有丝分裂的叙述,正确的是A.细胞板在细胞有丝分裂末期形成B.同源染色体配对通常发生在分裂前期C.在分裂末期,细胞膜内陷形成两个子细胞D.在分裂中期,两个中心粒复制形成两组中心粒4.光反应为暗反应提供的物质是A.[H]和H2O B.[H]和ATP C.ATP和CO2 D.H2O和CO25.当某植物顶芽比侧芽生长快时会产生顶端优势,其主要原因是A.侧芽附近的生长素浓度过高,其生长受抑制B.侧芽附近的生长素浓度较低,其生长受抑制C.顶芽附近的脱落酸浓度较高,其生长被促进D.侧芽附近的细胞分裂素浓度较高,其生长受抑制6.某植物种子成熟后需经低温贮藏才能萌发,为探究其原因,检测了该种子中的两种植物激素在低温贮藏过程中的含量变化,结果如图。
根据激素的作用特点,推测图中a、b依次为A.赤霉素、脱落酸B.细胞分裂素、生长素C.脱落酸、细胞分裂素D.赤霉素、乙烯7.某同学从杨树叶片中提取并分离得到4种色素样品,经测定得到下列吸收光谱图,其中属于叶绿素b的是8.可被人体免疫系统直接识别的是A.血液中O2浓度的变化 B.血糖浓度的变化C.环境中温度的变化 D.感染人体的流感病毒9.将记录仪(R)的两个电极置于某一条结构和功能完好的神经表面,如右图,给该神经一个适宜的刺激使其产生兴奋,可在R上记录到电位的变化。
能正确反映从刺激开始到兴奋完成这段过程中电位变化的曲线是10.下列叙述,错误..的是A.血液中甲状腺激素增加时会促进垂体分泌促甲状腺激素B.血浆渗透压的大小主要取决于血浆中无机盐和蛋白质的含量C.内分泌腺分泌的激素释放到内环境中,然后作用于靶细胞D.淋巴中的淋巴细胞可以通过淋巴循环由锁骨下静脉汇入血液11.成年大鼠血液中甲状腺激素浓度升高时,可能出现A.体温升高、耗氧量减少B.体温下降、耗氧量增加C.神经系统兴奋性提高、耗氧量增加D.神经系统兴奋性提高、体温下降12.下列关于遗传信息传递的叙述,错误..的是A.线粒体和叶绿体中遗传信息的传递遵循中心法则B.DNA中的遗传信息是通过转录传递给mRNA的C.DNA中的遗传信息可决定蛋白质中氨基酸的排列顺序D.DNA病毒中没有RNA,其遗传信息的传递不遵循中心法则13.某同学分离纯化了甲、乙两种噬菌体的蛋白质和DNA,重新组合为“杂合”噬菌体,然后分别感染大肠杆菌,并对子代噬菌体的表现型作出预测,见表。
2010年高考山东省数学试卷-文科(含详细答案)
绝密★启用前2010年普通高等学校招生全国统一考试(山东卷)文科数学第I 卷(共60分)一.选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
(1) 已知全集U R =,集合{}240M x x =-≤,则U C M =A. {}22x x -<< B. {}22x x -≤≤ C .{}22x x x <->或 D. {}22x x x ≤-≥或(3)函数()()2log 31xf x =+的值域为A. ()0,+∞B. )0,+∞⎡⎣C. ()1,+∞D. )1,+∞⎡⎣ 【答案】A【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
【命题意图】本题考查对数函数的单调性、函数值域的求法等基础知识。
(4)在空间,下列命题正确的是 A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【命题意图】本题考查平均数与方差的求法,属基础题。
(7)设{}n a 是首项大于零的等比数列,则“12a a <”是“数列{}n a 是递增数列”的 (A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 【答案】C【解析】若已知12a <a ,则设数列{}n a 的公比为q ,因为12a <a ,所以有11a <a q ,解得q>1,又1a >0,所以数列{}n a 是递增数列;反之,若数列{}n a 是递增数列,则公比q>1且1a >0,所以11a <a q ,即12a <a ,所以12a <a 是数列{}n a 是递增数列的充分必要条件。
【命题意图】本题考查等比数列及充分必要条件的基础知识,属保分题。
(8)已知某生产厂家的年利润y (单位:万元)与年产量x (单位:万件)的函数关系式为31812343y x x =-+-,则使该生产厂家获得最大年利润的年产量为(A )13万件 (B)11万件 (C) 9万件 (D)7万件(10)观察2'()2x x =,4'3()4x x =,'(cos )sin x x =-,由归纳推理可得:若定义在R 上的函数()f x 满足()()f x f x -=,记()g x 为()f x 的导函数,则()g x -= (A )()f x (B)()f x - (C) ()g x (D)()g x - 【答案】D【解析】由给出的例子可以归纳推理得出:若函数()f x 是偶函数,则它的导函数是奇函数,因为定义在R 上的函数()f x 满足()()f x f x -=,即函数()f x 是偶函数,所以它的导函数是奇函数,即有()g x -=()g x -,故选D 。
2010年高考英语试题及答案(全国卷1)
绝密★启用前2010年普通高等学校招生全国统一考试英语本试卷分第一卷(选择题)和第二卷(非选择题)两部分。
第一卷1至l4页。
第二卷15至16页。
考试结束后,将本试卷和答题卡一并交回。
第一卷注意事项:1。
答题前.考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目。
2。
每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上.第一节(共5小题;每小题l 5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有l0秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍.例:How much is the shirt?A£19.15 8£9。
15 C£9。
18答案是B。
1 What will Dorothy do on the weekend?A Go out with her friendB Work on her paperC Make some plans2. What was the normal price of the T—shirt?A.$15B.$30.C。
$50.3 What has the woman decided to do On Sunday afternoon?A To attend a weddingB To visit an exhibitionC To meet a friend4 When does the bank close on Sa turday?A At l:00 pmB At 3:00 pmC At 4:00 pm5 Where are the speakers?A In a storeB In a classroomC At a hotel第二节(共15小题;每小题1 5分,满分22 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年普通高等学校招生全国统一考试(全国卷Ⅰ)数学本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.cos300°=()A.-32B.-12C.12 D.3 2解析:cos300°=cos(360°-60°)=cos60°=12.答案:C2.设全集U={1,2,3,4,5},集合M={1,4},N={1,3,5},则N∩(∁U M)=()A.{1,3} B.{1,5} C.{3,5} D.{4,5}解析:∵∁U M={2,3,5},∴N∩(∁U M)={3,5}.答案:C3.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤1,x +y ≥0,x -y -2≤0,则z =x -2y 的最大值为( )A .4B .3C .2D .1 解析:如图,画出约束条件表示的可行域,当目标函数z =x -2y 经过x +y =0与x -y -2=0的交点A (1,-1)时,取到最大值3.答案:B4.已知各项均为正数的等比数例{a n }中,a 1a 2a 3=5,a 7a 8a 9=10,则a 4a 5a 6( )A .5 2B .7C .6D .4 2解析:(a 1a 2a 3)×(a 7a 8a 9)=a 56=50,a 4a 5a 6=a 53=5 2.答案:A5.(1-x )4(1-x )3的展开式中x 2的系数是( )A .-6B .-3C .0D .3解析:(1-x )4的二项展开式的通项为T r +1=C 4 r (-x )r =(-1)r C 4 r x r ,(1-x )3的二项展开式的通项为T r ′+1=C 3 r ′(-x )r ′=(-1)r ′C 3 rx r ′2,因此,(1-x )4(1-x )3的展开式的各项为(-1)r ·(-1)r ′·C 4 r ·C 3 r ′·xr +r ′2,当r +r ′2=2时有r =2,且r ′=0或r =1且r ′=2两种情况,因此展开式中x 2的系数为6+(-12)=-6.答案:A6.直三棱柱ABC-A1B1C1中,若∠BAC=90°,AB=AC =AA1,则异面直线BA1与AC1所成的角等于()A.30°B.45°C.60°D.90°解析:延长CA至点M,使AM=CA,则A1M∥C1A,∠MA1B 或其补角为异面直线BA1与AC1所成的角,连接BM,易知△BMA1为等边三角形,因此,异面直线BA1与AC1所成的角为60°.答案:C7.已知函数f(x)=|lg x|,若a≠b,且f(a)=f(b),则a+b的取值范围是()A.(1,+∞) B.[1,+∞) C.(2,+∞) D.[2,+∞)解析:不妨设0<a<1<b,由f(a)=f(b)得-lg a=lg b,lg a+lg b=0,ab=1,因此,a+b=a+1a>2.答案:C8.已知F1、F2为双曲线C:x2-y2=1的左、右焦点,点P 在C上,∠F1PF2=60°,则|PF1|·|PF2|=()A.2 B.4 C.6D.8解析:||PF1|-|PF2||=2,|F1F2|=2 2∴|PF1|2+|PF2|2-2|PF1||PF2|cos60°=|F1F2|2∴(|PF1|-|PF2|)2+2|PF1||PF2|-2|PF1||PF2|×12=8∴|PF1||PF2|=8-22=4答案:B9.正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的余弦值为()A.23 B.33C.23 D.63解析:BB1与平面ACD1所成角等于DD1与平面ACD1所成角,在三棱锥D-ACD1中,由三条侧棱两两垂直得点D在底面ACD1内的射影为等边△ACD1的重心即中心H,则∠DD1H为DD1与平面ACD1所成角,设正方体的棱长为a,则cos ∠DD1H=63aa=63.答案:D10.设a=log32,b=ln2,c=5-12,则()A.a<b<c B.b<c<a C.c<a<b D.c<b<a解析:a=log32=ln 2ln 3<ln 2=b,又c=5-12=15<12,a=log32>log33=12,因此c<a<b.答案:C11.已知圆O的半径为1,PA、PB为该圆的两条切线,A、B 为两切点,那么PA ·PB 的最小值为( )A .-4+ 2B .-3+2C .-4+2 2D .-3+2 2 解析:设|PA |=|PB |=x ,∠APB =θ,则tan θ2=1x ,cos θ=x 2-1x 2+1,则PA ·PB =x 2×x 2-1x 2+1=x 4-x 2x 2+1=(x 2+1)2-3(x 2+1)+2x 2+1=x 2+1+2x 2+1-3≥22-3,当且仅当x 2+1=2,即x 2=2-1时,取“=”,故PA ·PB 的最小值为22-3. 答案:D12.已知在半径为2的球面上有A 、B 、C 、D 四点,若AB =CD =2,则四面体ABCD 的体积的最大值为( ) A.233B.433 C .2 3D.833解析:设球心为O ,如图,过O 、C 、D 三点作球的截面,交AB 于点M ,由条件知,△OAB 、△OCD 均为边长为2的等边三角形,设M 到CD的距离为h ,A 到面MCD 的距离为h 1,B 到面MCD 的距离为h 2,则V A -BCD =V A -MCD +V B -MCD =13S △MCD (h 1+h 2)=13·12·CD ·h ·(h 1+h 2),因此,当AB ⊥面MCD 时,V A -BCD =13×12×2×23×(1+1)=433最大.答案:B第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上.13.不等式x-2x2+3x+2>0的解集是________.解析:由x-2x2+3x+2>0⇒x-2(x+1)(x+2)>0⇒(x+1)(x+2)(x-2)>0,故原不等式的解集为{x|-2<x<-1,或x>2}.答案:{x|-2<x<-1,或x>2}14.已知α为第二象限的角,sinα=35,则tan2α=________.解析:由sinα=35,且α为第二象限的角得cosα=-45,得tanα=-34,tan2α=-247.答案:-24 715.某学校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少选一门,则不同的选法共有________种.(用数字作答)解析:选法可分两类,A类选修课1门,B类选修课2门,或者A类选修课2门,B类选修课1门,因此,共有C13·C24+C23·C14=30种选法.答案:3016.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF 的延长线交C 于点D ,且BF =2FD ,则C 的离心率为________. 解析:不妨设椭圆C 的焦点在x 轴上,中心在原点,B 点为椭圆的上顶点,F (c,0)(c >0)为右焦点,则由BF =2FD ,得D 点到右准线的距离是B 点到右准线距离的一半,则D 点横坐标x D=a 22c ,由BF =2 BF 知,F 分BD 所成的比为2,由定比分点坐标公式得c =0+2×a 22c 1+2=a 23c ,得3c 2=a 2,得e =33. 答案:33三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分10分)记等差数列{a n }的前n 项和为S n .设S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .解:设数列{a n }的公差为d .依题意有⎩⎪⎨⎪⎧ 2a 1(a 3+1)=a 22,a 1+a 2+a 3=12,即⎩⎪⎨⎪⎧ a 21+2a 1d -d 2+2a 1=0,a 1+d =4.解得a 1=1,d =3,或a 1=8,d =-4.因此S n =12n (3n -1),或S n =2n (5-n ). 18.(本小题满分12分)已知△ABC 的内角A ,B 及其对边a ,b 满足a +b =a cot A +b cot B ,求内角C .解:由a +b =a cot A +b cot B 及正弦定理得sin A +sin B =cos A +cos B ,sin A -cos A =cos B -sin B ,从而sin A cos π4-cos A sin π4=cos B sin π4-sin B cos π4, sin(A -π4)=sin(π4-B ). 又0<A +B <π,故A -π4=π4-B ,A +B =π2, 所以C =π2. 19.(本小题满分12分)投到某杂志的稿件,先由两位初审专家进行评审.若能通过两位初审专用的评审,则予以录用;若两位初审专家都未予通过,则不予录用;若恰能通过一位初审专家的评审,则再由第三位专家进行复审,若能通过复审专家的评审,则予以录用,否则不予录用.设稿件能通过各初审专家评审的概率均为0.5,复审的稿件能通过评审的概率为0.3.各专家独立评审.(1)求投到该杂志的1篇稿件被录用的概率;(2)求投到该杂志的4篇稿件中,至少有2篇被录用的概率. 解:(1)记A 表示事件:稿件恰能通过两位初审专家的评审; B 表示事件:稿件能通过一位初审专家的评审;C 表示事件:稿件能通过复审专家的评审;D 表示事件:稿件被录用.则D =A +B ·C ,P (A )=0.5×0.5=0.25,P (B )=2×0.5×0.5=0.5,P (C )=0.3, P (D )=P (A +B ·C )=P (A )+P (B ·C )=P (A )+P (B )P (C )=0.25+0.5×0.3=0.40.(2)记A0表示事件:4篇稿件中没有1篇被录用;A1表示事件:4篇稿件中恰有1篇被录用;A2表示事件:4篇稿件中至少有2篇被录用.A2=A0+A1.P(A0)=(1-0.4)4=0.129 6,P(A1)=C14×0.4×(1-0.4)3=0.345 6,P(A2)=P(A0+A1)=P(A0)+P(A1)=0.129 6+0.345 6=0.475 2,P(A2)=1-P(A2)=1-0.475 2=0.524 8.20.(本小题满分12分)如图,四棱锥S-ABCD中,SD⊥底面ABCD,AB∥DC,AD⊥DC,AB=AD=1,DC=SD=2,E为棱SB上的一点,平面EDC⊥平面SBC.(1)证明:SE=2EB;(2)求二面角A-DE-C的大小.解:法一:(1)证明:连结BD,取DC的中点G,连结BG,由此知DG=GC=BG=1,即△DBC为直角三角形,故BC⊥BD.又SD⊥平面ABCD,故BC⊥SD.所以,BC⊥平面BDS,BC⊥DE.作BK⊥EC,K为垂足.因平面EDC⊥平面SBC,故BK⊥平面EDC,BK⊥DE.DE与平面SBC内的两条相交直线BK、BC都垂直.DE ⊥平面SBC ,DE ⊥EC ,DE ⊥SB .SB =SD 2+DB 2=6,DE =SD ·DB SB =23, EB =DB 2-DE 2=63,SE =SB -EB =263, 所以,SE =2EB .(2)由SA =SD 2+AD 2=5,AB =1,SE =2EB ,AB ⊥SA ,知AE =(13SA )2+(23AB )2=1,又AD =1. 故△ADE 为等腰三角形.取ED 中点F ,连结AF ,则AF ⊥DE ,AF =AD 2-DF 2=63. 连结FG ,则FG ∥EC ,FG ⊥DE .所以,∠AFG 是二面角A -DE -C 的平面角. 连结AG ,AG =2,FG =DG 2-DF 2=63, cos ∠AFG =AF 2+FG 2-AG 22·AF ·FG =-12, 所以,二面角A -DE -C 的大小为120°.法二:以D 为坐标原点,射线DA 为x 轴正半轴,建立如图所示的直角坐标系D -xyz .设A (1,0,0),则B (1,1,0),C (0,2,0),S (0,0,2).(1) SC =(0,2,-2),BC =(-1,1,0).设平面SBC 的法向量为n =(a ,b ,c ),由n ⊥SC ,n ⊥BC 得n ·SC =0,n ·BC =0.故2b -2c =0,-a +b =0.令a =1,则b =1,c =1,n =(1,1,1).又设SE =λSB (λ>0),则E (λ1+λ,λ1+λ,21+λ).DE =(λ1+λ,λ1+λ,21+λ),DC =(0,2,0). 设平面CDE 的一个法向量m =(x ,y ,z ),由m ⊥DE ,m ⊥DC ,得m ·DE =0,m ·DC =0.故λx 1+λ+λy 1+λ+2z 1+λ=0,2y =0. 令x =2,则m =(2,0,-λ).由平面DEC ⊥平面SBC 得m ⊥n ,m·n =0,2-λ=0,λ=2. 故SE =2EB .(2)由(1)知E (23,23,23),取DE 中点F ,则 F (13,13,13),FA =(23,-13,-13),故FA ·DE =0,由此得FA ⊥DE .又EC =(-23,43,-23),故EC ·DE =0,由此得EC ⊥DE ,向量FA 与EC 的夹角等于二面角A -DE -C 的平面角.于是cos 〈FA ,EC 〉=FA ·EC |FA | |EC |=-12, 所以,二面角A -DE -C 的大小为120°.21.(本小题满分12分)已知函数f (x )=3ax 4-2(3a +1)x 2+4x .(1)当a =16时,求f (x )的极值; (2)若f (x )在(-1,1)上是增函数,求a 的取值范围.解:(1)f ′(x )=4(x -1)(3ax 2+3ax -1).当a =16时,f ′(x )=2(x +2)(x -1)2,f (x )在(-∞,-2)内单调减,在(-2,+∞)内单调增,在x =-2时,f (x )有极小值.所以f (-2)=-12是f (x )的极小值.(2)在(-1,1)上,f (x )单调增加,当且仅当f ′(x )=4(x -1)(3ax 2+3ax -1)≥0,即3ax 2+3ax -1≤0,①(ⅰ)当a =0时①恒成立;(ⅱ)当a >0时①成立,当且仅当3a ·12+3a ·1-1≤0.解得0<a ≤16. (ⅲ)当a <0时①成立,即3a (x +12)2-3a 4-1≤0成立, 当且仅当-3a 4-1≤0.解得-43≤a <0. 综上,a 的取值范围是[-43,16]. 22.(本小题满分12分)已知抛物线C :y 2=4x 的焦点为F ,过点K (-1,0)的直线l 与C 相交于A 、B 两点,点A 关于x 轴的对称点为D .(1)证明:点F 在直线BD 上;(2)设FA ·FB =89,求△BDK 的内切圆M 的方程.解:设A (x 1,y 1),B (x 2,y 2),D (x 1,-y 1),l 的方程为x =my -1(m ≠0).(1)证明:将x =my -1代入y 2=4x 并整理得y 2-4my +4=0,从而y 1+y 2=4m ,y 1y 2=4. ①直线BD 的方程为y -y 2=y 2+y 1x 2-x 1·(x -x 2), 即y -y 2=4y 2-y 1·(x -y 224). 令y =0,得x =y 1y 24=1. 所以点F (1,0)在直线BD 上.(2)由(1)知,x 1+x 2=(my 1-1)+(my 2-1)=4m 2-2,x 1x 2=(my 1-1)(my 2-1)=1.因为FA =(x 1-1,y 1),FB =(x 2-1,y 2),FA ·FB =(x 1-1)(x 2-1)+y 1y 2=x 1x 2-(x 1+x 2)+1+4=8-4m 2,故8-4 m 2=89,解得m =±43. 所以l 的方程为3x +4y +3=0,或3x -4y +3=0.又由(1)知y 2-y 1=±(4m )2-4×4=±437, 故直线BD 的斜率为4y 2-y 1=±37, 因而直线BD 的方程为3x +7y -3=0,或3x -7y -3=0.因为KF 为∠BKD 的平分线,故可设圆心M (t,0)(-1<t <1),M (t,0)到l 及BD 的距离分别为3|t +1|5,3|t -1|4. 由3|t +1|5=3|t -1|4得t =19,或t =9(舍去), 故圆M 的半径r =3|t +1|5=23. 所以圆M 的方程为(x -19)2+y 2=49.。