统计学第三版第5章 参数估计
统计学课件第5-7章概率分布、抽样分布及参数估计剖析.
概率分布、抽样分布及参数估计
Probability Distributions & Sampling Distributions
& Parameter Estimation
Wednesday, January 16, 2019
Statistical Research Office
1
本部分主要研究的问题有:
● 遵循随机性原则 --- 体现在在每一层抽选中;
● 每一层内应包含足够多的个体;
● 在同等条件下,抽样误差要小于简单随机抽 样和系统抽样的抽样误差。
Wednesday, January 16, 2019 Statistical Research Office 12
Wednesday, January 16, 2019
Statistical Research Office
7
●
常用的随机抽样组织方式
► 简单随机抽样(Simple random sampling)
►分层随机抽样(Stratified sampling)
►系统随机抽样(Systematic sampling)
►整群随机抽样 (Cluster sampling) 常用的随机抽样方法: ►重复抽样 (Sampling with replacement) ►不重复抽样(Sampling without replacement)
8
Wednesday, January 16, 2019
Statistical Research Office
★ 简单随机抽样 -定义:从总体中,按照随机的原则,使得总体 中每个个体都有同等被选中的机会,而先后抽 出的n个个体作为一个容量为n的样本。
参数估计与非参数估计的联系与区别
参数估计与非参数估计的联系与区别参数估计要求明确参数服从什么分布,明确模型的具体形式,然后给出参数的估计值。
根据从总体中抽取的样本估计总体分布中包含的未知参数。
和参数估计不同,非参数估计并不加入任何先验知识,而是根据数据本身的特点、性质来拟合分布,这样能比参数估计方法得出更好的模型。
非参数估计对解释变量的分布状况与模型的具体形式不做具体规定,运用核密度函数与窗宽去逐步逼近,找出相应的模型。
统计学中常见的一些典型分布形式不总是能够拟合实际中的分布。
此外,在许多实际问题中经常遇到多峰分布的情况,这就迫使必须用样本来推断总体分布,常见的总体类条件概率密度估计方法有Parzen窗法和Kn 近邻法两种。
非参数估计也有人将其称之为无参密度估计,它是一种对先验知识要求最少,完全依靠训练数据进行估计,而且可以用于任意形状密度估计的方法。
最简单的直方图估计,把所有可能取值的范围分成间隔相等的区间,然后看每个区间内有多少个数据?这样就定义出了直方图,因此直方图就是概率密度估计的最原始的模型。
直方图用的是矩形来表示纵轴,当样本在某个小区间被观测到,纵轴就加上一个小矩形。
非参数估计更适合对原函数关系进行模拟,但不能预测;而参数估计则可以预测。
统计学参数估计
统计学参数估计参数估计是统计学中的一个重要概念,它是指在推断统计问题中,通过样本数据对总体参数进行估计的过程。
这一过程是通过样本数据来推断总体参数的未知值,从而进行总体的描述和推断。
在统计学中,参数是指总体的其中一种特征的度量,比如总体均值、总体方差等。
而样本则是从总体中获取的一部分观测值。
参数估计的目标就是基于样本数据来估计总体参数,并给出估计的精确程度,即估计的可信区间或置信区间。
常见的参数估计方法包括点估计和区间估计。
点估计是一种通过单个数值来估计总体参数的方法。
点估计的核心是选择合适的统计量作为估计量,并使用样本数据计算出该统计量的具体值。
常见的点估计方法包括最大似然估计和矩估计。
最大似然估计是一种寻找参数值,使得样本数据出现的概率最大的方法。
矩估计则是通过样本矩的函数来估计总体矩的方法。
然而,点估计只能提供一个参数的具体值,无法提供该估计值的精确程度。
为了解决这个问题,区间估计被引入。
区间估计是指通过一个区间来估计总体参数的方法。
该区间被称为置信区间或可信区间。
置信区间是在一定置信水平下,总体参数的真值落在该区间内的概率。
置信区间的计算通常涉及到抽样分布、标准误差和分位数等概念。
在实际应用中,参数估计经常用于统计推断、统计检验和决策等环节。
例如,在医学研究中,研究人员可以通过对患者进行抽样调查来估计其中一种药物的有效性和不良反应的发生率。
在市场调研中,市场研究人员可以通过抽取部分样本来估计一些产品的市场份额或宣传效果。
参数估计的准确性和可靠性是统计分析的关键问题。
估计量的方差和偏倚是影响估计准确性的主要因素,通常被称为估计量的精确度和偏倚性。
经典的参数估计要求估计量是无偏且有效的,即估计量的期望值等于真值,并且方差最小。
总之,参数估计是统计学中的一个重要概念,它通过样本数据对总体参数进行估计,并给出估计值的精确程度。
参数估计在统计推断、统计检验和决策等领域具有广泛的应用。
估计量的准确性和可靠性是参数估计的关键问题,通常通过方差和偏倚的分析来评价估计量的性质。
应用统计学 第五章 参数估计
二、点估计与区间估计
参
数 估
(一)
点估计
计
点估计是指用样本估计量的某个取值直接作为总体参数的估计值。例如,用样本均
值直接作为总体均值的估计,用两个样本均值之差直接作为总体均值之差的估计等。虽
然在重复抽样的情况下,点估计均值的期望等于总体真值,但由于样本是随机的,抽出
一个具体的样本得到的估计值很可能不同于总体真值。一个点估计量的可靠性是用抽样
两个:FDIST用于计算给定F值和自由度时F分布的概率;FINV用于计算给定概率
和自由度时的相应F值。
16
第一节 参数估计的基本原理
第 五 章 参 数 估 计
17
CONTENTS PAGE
参数估计的 基本原理
一个总体参 数的区间估
计
两个总体参 数的区间估
计
样本量的确 定
第一节
第二节
第三节
第四节
目
出的,后来由海尔墨特(Hermert)和卡•皮尔逊(Karl Pearson)分别于1875
年和1900年推导出来。在总体方差的估计和非参数检验中,会用到 2 分布。图
5-2是不同容量样本的 2 分布,从图中可以看出, 2 分布的变量值始终为正,
分布的形状取决于其自由度n的大小,通常为不对称的正偏分布,但随着自由度
n
(5-6)
22
第二节 一个总体参数的区间估计
第 五 章
三、总体方差的区间估计
参
数
估 计
若总体服从正态分布,根据样本方差的抽样分布可知,样本方差服从自由度为 n 1
的 2 分布,因此可用 2 分布构造总体方差的置信区间。若给定一个显著性水平 ,用
2 分布构造的总体方差 2 的置信区间可用图5-5表示。总体方差 2 在1 置信水平
统计学 第五章
第五章 抽样推断抽样推断定义:是一种非全面调查,是按随机原则,从总体中抽取一部分单位进行调查,并以其结果对总体某一数量特征作出估计和推断的一种统计方法。
(一) 总体和样本在抽样推断中面临两个不同的总体,即全及总体和样本总体,全及总体也叫母体,简称总体。
全及总体的单位数用N 表示全及总体⎪⎩⎪⎨⎧⎩⎨⎧属性总体有限总体无限总体变量总体样本总体又叫抽样总体、子样,简称样本,样本总体的单位数称样本容量,用n 表示。
(二) 参数和统计量参数亦称全及指标,由于全及总体是唯一确定的,故根据全及总体计算的参数也是个定值 对于属性总体,可以有如下参数,全及总体成数p ,全及总体标准差)(2p p σσ方差 属性总体标准差:()p p p-=1σ统计量即样本指标设样本总体有n 个变量:n x x x x ,...,,,321 则:样本平均数 nx x ∑=(三) 样本容量与样本个数样本容量是指一个样本所包含的单位数,用n 来表示,一般地,样本单位数达到或超过30个的样本称为大样本,而在30个以下称为小样本。
社会经济统计的抽样推断多属于大样本,而科学实验的抽样观察则多取小样本。
样本个数又称样本可能数目,是指从全及总体中可能抽取的样本的个数。
一个总体可能抽取多少样本,与样本容量大小有关,也与抽样的方法有关。
在样本容量确定之后,样本的可能数目便完全取决于抽样方法。
抽样误差是抽样调查自身所固有的,不可避免的误差,虽然不能消除这种误差,但有办法进行计算,并能对其加以控制。
抽样平均误差越大,表示样本的代表性越低;抽样平均误差越小,表示样本的代表性越高。
在重复简单随机抽样时,样本平均数的抽样分布有数学期望值E(a)=a(a代表全及总体平均数,即X)X⇔。
样本平均数的平均数=总体平均数抽样平均误差=抽样标准误差=样本平均数的标准差(它反映抽样平均数与总体平均数的平均误差程度)例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用重复简单随机抽样的方法从全及总体中抽选出容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(15501700160015001400元=+++=X全及总体标准差()4500002=-=∑NX Xσ抽样平均误差x μ=nnσσ=2=)(0569.792*450000元=例题:某班组4个工人的月工资(N=4)分别是:1400元,1500元,1600元,1700元,现用不重复简单随机抽样的方法从全部总体中抽选容量大小为2的样本(n=2),求抽样平均误差?解:全及总体平均工资)(155041700160015001400元=+++==∑NXX全及总体标准差()4500002=-=∑NX Xσx μ=⎪⎭⎫ ⎝⎛--∙12N n N n σ=)(55.6414244*250000元=--∙例题:某电子元件厂,生产某型号晶体管,按正常生产试验,产品中属于一级品的占70%,现在从10000件晶体管中,抽取100件进行抽查检验,求一级品率的抽样平均误差? 解:已知:P=0.7 , P(1-P)=0.21在重复抽样的情况下,抽样平均误差为:()np p p -=1μ=%58.410021.0=在不重复抽样的情况下,抽样平均误差为:()⎪⎭⎫⎝⎛-∙-=N n n p p p 11μ=%56.410000*********.0=⎪⎭⎫ ⎝⎛-∙参数估计()()⎪⎪⎩⎪⎪⎨⎧→-==+≤≤是概率度是置信度,极限误差)样本指标总体指标极限误差—(样本指标区间估计:求不高的情况准确程度与可靠程度要点估计:适用于推断的t t F t F P α1例题:已知某车间某产品的合格率在某个置信度下的估计区间是(85%,95%),还已知样本容量为100,求置信度?解:显然p p ∆-=85%,p p ∆+=95%,即p=90%,p ∆=5%p ∆=μ⋅t μpt ∆=⇒=()()67.1100%901%90%51=-∙=-∆np p p ()t F =0.9052即置信度为90.51% ★求置信度,只需要求出t影响抽样数目的因素⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧∆样本单位不重置抽样可以少抽些单位,抽样需要多抽一些样本、在同等条件下,重置单位,则反之值越大,则多抽些样本、概率度则反之单位,的值大可以少抽些样本)、允许误差(极限误差越多,则反之值越大,必要抽样数目、总体标准差4321t x σ例题:某城市组织职工家庭生活抽样调查,职工家庭平均每户每月收入的标准差为11.50元,要求把握程度为95.45%,允许误差为1元,问需抽选多少户? 解:()t F =0.95452=⇒t , 元元,150.11=∆=x σxt n 222∆=σ=()户529150.1142=∙。
管理统计学第5参数估计
现在我们来阐明极大似然法的基本原理。
25
f (x, ) 设总体X的概率密度为 ,它只含一个未知参数 (若X是离散型 ,表示概 率 ),X1,X2,X3,……,Xn是取自X的样本,x1, x2, x3, ……,xn为样本 观察值。X1,X2,X3,……,Xn的联合密度等于 f ( x,,显然) ,对于样本的
X
11
【例3.1】试用矩估计法对总体 X~N( )的参数μ,σ2作出估计。
, 2
12
13
解: 因E(X)=μ,D(X)=σ2 设X1,X2,……,Xn为X的一个样本,其 样本均值为,样本方差为S2。 令E(X)= ,D(X)=S2,即得的估计量为 , 。
X ˆ X ˆ 2 S 2
14
【例5.2】设X1,X2,……,Xn是取自总 体X的样本,已知X的概率密度为:
)2
n
0
40
解此方程组,即得 及 的极大似然估计值为:
1 n
n i 1
xi
x
ˆ
1 n
n
( xi
i1
x)2
S
41
【例3.8】设总体X服从均匀分布 ,求参数 与 的极大似然估计量
1 2
U[1,2 ]
42
解 设X1,X2,…,Xn是X的样本,则
∴
L(1,2 )
(
2
1
1 ) n
,1
xi
2,i
48
显然,如果说一个估计量是无偏的,并不是保证用于单独一次估计中没有随机性 误差,只是没有系统性的偏差而已。若以代表被估计的总体参数,代表的无 偏估计量,则用数学式表示为:
E (ˆ)
49
我们知道,总体参数中最重要的一个参数是总体平均数 ,样本平均数 是它的 一个无偏估计量,即 。另外,样本方差也是总体方差的无偏估计量。
统计学习题05
2.下面哪些是影响必要样本容量的因素()。
A.总体各单位标志变异程度B.允许的极限误差大小
C.推断的可靠程度D.抽样方法和抽样组织方式
E.样本均值和样本统计量
答案:ABCD
3.评价估计量是否优良的常用标准有( )。
A.无偏性B.有效性
C.准确性D.一致性
E.随机性
答案:ABC
4.点估计( )。
[参考答案]
28.306
2.现有一大批种子,为了估计其发芽率,随机抽取400粒进行发芽试验。结果有15粒每发芽。试以90%的置信度估计这批种子的发芽率。
[参考答案]
[ 0.95 , 0.97 ]
3.设总体X服从参数 的泊松分布,其概率分布率为 ,
x=0,1,2,……试求参数 的极大似然估计量及矩估计量。
A.求每晚睡眠时间总体均值的点估计。
B.假定总体是正态分布,求总体均值的点估计的95%置信区间。
[参考答案]
A.6.86,B.[6.54 , 7.18]
5.在某地方选举进行以前展开的民意测验表明,在随机抽取的121名居民中有65名支持某候选人,试求该候选人支持率的信赖区间。( =5%)
[参考答案]
0.54-0.089=0.451
答案:C
21.已知σ2的1-α置信区间为,该区间也可表示为()。
(D)以上答案都不正确
答案:B
二、多项选择题
1.在区间估计中,如果其他条件保持不变,置信度与精确度之间存在下列关系( )。
A.前者愈低,后者也愈低B. 前者愈高,后者也愈高
C. 前者愈低,后者愈高D.前者愈高,后者愈低
E. 两者呈相反方向变化
3.在进行参数估计时,我们并不是直接用一个个的具体样本之来估计、推断总体参数,而是根据样本构造出一些特定的量,用这些特定量来估计总体参数,这些根据样本构造的特定量就称为样本统计量。在估计过程中,我们把用来推估总体参数的样本统计量称为估计量。
统计学第五章
2-分布
(性质和特点)
• 1. 期望为:E(2)=n,
•
方差为:D(2)=2n(n为自由度)
• 2. 可加性:
•
若U和V为两个独立的2分布随机变量,
U~2(n1),V~2(n2),则U+V这一随机变量服从 自由度为n1+n2的2分布
• 3. 当 n 时, 2分布的极限分布是正态
分布
不同自由度的2-分布
(central limit theorem)
从均值为,方差为 2的一个任意总体中抽取容量
为n的样本,当n充分大时,样本均值的抽样分布近 似服从均值为μ、方差为σ2/n的正态分布
一个任意分 布的总体
x
n
当样本容量足够 大时(n 30) , 样本均值的抽样 分布逐渐趋于正 态分布
x
x
中心极限定理
(2)系统抽样的评价 ——操作上简便易行 ——如果总体是按有关标志进行排列的话,可以提 高样本的代表性,改进抽样精度 ——对估计量方差的估计比较困难
4、整群抽样(cluster random sampling) (1)整群抽样的概念
整群抽样是指将总体分成群,从中随机抽取 若干群,群中的所有单位构成样本
E(x)
2 x
2
n
样本比例的分布
(proportion)
1. 总体(或样本)中具有某种属性的单位与全部单位 总数之比
– 不同性别的人与全部人数之比
– 合格品(或不合格品) 与全部产品总数之比
2. 总体比例可表示为
N0 或 1 N1
N
N
3. 样本比例可表示为
4.
p n0 或 1 p n1
2. 一种理论概率分布
统计学课件05第5章抽样与参数估计
反映样本数据的集中趋势和平均水平。
样本方差
定义
样本方差是每个样本数据与样本均值差的平方和的平均值,即 $s^2 = frac{1}{n} sum_{i=1}^{n} (x_i - overline{x})^2$。
计算方法
先计算每个样本数据与样本均值的差,然后将差平方,最后求和平 均。
作用
反映样本数据的离散程度和波动情况。
样本量的确定
根据调查目的和精度要求确定样 本量:精度要求越高,需要的样
本量越大。
根据总体规模和抽样方法确定样 本量:总体规模越大,需要的样 本量越大;分层或整群抽样较简 单随机抽样需要的样本量更大。
根据调查资源确定样本量:资源 有限时,需要在满足调查目的和 精度要求的前提下,合理确定样
本量。
02 参数估计
大数定律的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布函数F(x),则对于任意正实数ε,有 lim(n->∞)P(|X1+X2+...+Xn/n-E(X))/ε)=0,其中E(X)是随机变量X的期望值。
大数定律的实例
在抛硬币实验中,随着实验次数的增加,正面朝上的频率将趋近于0.5。
中心极限定理
中心极限定理定义
中心极限定理是指在大量独立同分布的随机变量中,不论 这些随机变量的分布是什么,它们的平均值的分布总是趋 近于正态分布。
中心极限定理的数学表达
设随机变量X1,X2,...,Xn是相互独立的,且具有相同的分布 函数F(x),则对于任意实数x,有lim(n->∞)P(∑Xi≤x)=∫(∞->x)F(t)dt。
样本分布的性质
无偏性
如果样本统计量的数学期 望等于总体参数,则该统 计量是无偏的。
suyu统计学原理第五章 统计推断1(参数估计)
一个总体参数的区间估计
总体参数
均值
符号表示
样本统计量
x
方差
2
s
2
二、总体参数的点估计
• 点估计:总体均数的点估计(point estimation)就 是用样本均数来直接地估计总体均数,这种方 法比较简单,由于没有考虑到抽样误差,只适 合大样本资料的统计推断。 • 优点在于能够提供总体参数的具体估计值,可 以作为行动决策的数量依据。 • 不足之处在于任何点估计不是对就是错,并不 能提供误差情况如何,误差程度有多大的信息。
一致性 (consistency)
• 一致性:随着样本容量的增大,估计量的值越来 越接近被估计的总体参数
lim P( ) 1
n
P( ˆ )
较大的样本容量
B A
较小的样本容量
ˆ
有效性 (efficiency) • 有效性:对同一总体参数的两个无偏点估计量, 有更小标准差的估计量更有效
B
ˆ
如果 是被估计的参数, 是估计 的样本 统计量,则当 E ( ) 时,就称 为 的 无偏估计量。就是说,虽然每一次抽样, 所决定的统计量取值和总体参数的真值可 能有误差,误差可正可负,可大可小,但 在多次反复的估计中,所有样本统计量取 值的平均数应该等于总体参数本身。亦即 说样本统计量的估计平均说来是没有偏误 的。
2
自由度为n-1的2分布
总体方差的区间估计 (例题分析)
【例】一家食品生产企业以生产袋装食品为主,现从某 天生产的一批食品中随机抽取了25袋,测得每袋重量如 下表所示。已知产品重量的分布服从正态分布。以95% 的置信水平建立该种食品重量方差的置信区间
统计学(第三版课后习题答案
Hah 和网速是无形的|1:各章练习题答案2.1(1)属于顺序数据。
(2)频数分布表如下:服务质量等级评价的频数分布服务质量等级家庭数(频率)*频率%A1414B2121C3232;D1818E1515合计100100(3)条形图(略)2.2)2.3(1)频数分布表如下:(2)某管理局下属40个企分组表按销售收入分组(万元)企业数(个)频率(%)\先进企业良好企业一般企业落后企业111199^合计402.4频数分布表如下:某百货公司日商品销售额分组表按销售额分组(万元)频数(天)频率(%)…25~30 30~35 35~40 40~45 45~50461596~合计40直方图(略)。
2.5(1)排序略。
((2)频数分布表如下:100只灯泡使用寿命非频数分布按使用寿命分组(小时)灯泡个数(只)频率(%)650~66022660~6705》5670~68066680~6901414690~7002626《700~7101818710~7201313720~7301010730~740《33740~750 3 3 合计100100直方图(略)。
2.6 % 2.7 (1)属于数值型数据。
(2)分组结果如下:分组 天数(天)-25~-20 6 -20~-15 8 -15~-10 10 ~-10~-5 13 -5~0 12 0~5 4 5~107 合计60@(3)直方图(略)。
2.8 (1)直方图(略)。
(2)自学考试人员年龄的分布为右偏。
2.9 (1(2)A 班考试成绩的分布比较集中,且平均分数较高;B 班考试成绩的分布比A 班分散,且平均成绩较A 班低。
2.102.11 L U (2)17.21=s (万元)。
2.12 (1)甲企业平均成本=(元),乙企业平均成本=(元);原因:尽管两个企业的单位成本相同,但单位成本较低的产品在乙企业的产量中所占比重较大,因此拉低了总平均成本。
2.13 x =(万元);48.116=s (万元)。
《统计学》课后练习题答案
3.4统计图的规范
3.5如何用Excel做统计图
习题
一、单项选择题
1.统计表的结构从形式上看包括()、横行标题、纵栏标题、数字资料四个部分。(知识点3.1答案:D)
A.计量单位B.附录C.指标注释D.总标题
2.如果统计表中数据的单位都一致,我们可以把单位填写在()。(知识点3.1答案:C)
A.指标B.标志C.变量D.标志值
8.以一、二、三等品来衡量产品质地的优劣,那么该产品等级是()。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
9.()表示事物的质的特征,是不能以数值表示的。(知识点:1.7答案:A)
A.品质标志B.数量标志C.质量指标D.数量指标
10.在出勤率、废品量、劳动生产率、商品流通费用额和人均粮食生产量五个指标中,属于数量指标的有几个()。(知识点:1.7答案:B)
1.统计调查方案的主要内容是( )( )( )( )( )。(知识点2.2答案:ABCDE)
A.调查的目的B.调查对象C.调查单位D.调查时间E.调查项目
2.全国工业普查中( )( )( )( )( )。(知识点2.2答案:ABCE)
A.所有工业企业是调查对象B.每一个工业企业是调查单位C.每一个工业企业是报告单位
频数f
(棵)
频率
(%)
向上累积
向下累积
频数(棵)
频率(%)
频数(棵)
频率(%)
80-90
8
7.3
8
7.3
110
100.0
90-100
9
8.2
17
15.5
102
92.7
100-110
统计学第五章 参数估计作业
ˆq ˆ ˆq ˆ p p ˆ Z ,p ] 2 n n
0.2 0.8 0.2 0.8 [0.2- 1.96 ,0.2 1.96 ] 400 400 [0.2- 0.0392,0.2 0.0392] [0.16,0.24 ]
3、 解 : 1 0.95,
2
2 ( Z ) 1 0.025 0.975 Z 1.96
2
0.025
代入置信区间公式: S S [ x - Z , x Z ] 2 2 n n 5 5 [4.5 - 1.96 ,4.5 1.96 ] 100 100 [4.5 0.98,4.5 0.98] [3.52,5.48]
作业:
1、设x1,x2,x3为简单随机抽样的3个观测值.如果采用如下不等权的平均值:
2 2 1 x ' x1 x2 x3 5 5 5
作为总体均值的点估计值,试说明它将比采用等权的平均值:
1 1 1 x x1 x2 x3 3 3 3
作为总体均值的点估计值要差.(提示:用点估计值衡量标准来讨论) 2、某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成 的一个随机样本,他们到单位的距离(单位:km)分别是:10,3,14,8,6,9,12,11, 7,5,10,15,9,16,13,2.求职工上班 从家里到单位平均距离在95%的置信区间? 3、根据某大学100名学生的抽样调查,每月平均用于购买书籍的费用为4.5元, 标准差为5元,求大学生每月用于购买书籍费用的区间估计(置信度为95%)?
2 2 1 1、 解:D ( x ' ) D ( x1 x2 x3 ) 5 5 5 4 4 1 D( x1 ) D ( x2 ) D( x3 ) 25 25 25 9 D( x) 25 1 1 1 D ( x ) D ( x1 x2 x3 ) 3 3 3 1 1 1 D ( x1 ) D ( x2 ) D ( x3 ) 9 9 9 1 D( x) 3 D ( x ' ) D ( x ),即以等权的平均值作为 总体均值 的点估计值效果要好于 不等权的平均值 .
统计学参数估计
统计学参数估计统计学参数估计是统计学中一种重要的方法,它通过观察样本数据来估计总体参数的值。
参数是描述总体特征的数值,例如总体均值、总体比例等。
参数估计的目的是根据样本信息对总体参数进行推断,从而得到总体特征的近似值。
参数估计的过程通常分为点估计和区间估计两种方法。
点估计是指根据样本数据求出总体参数的一个数值估计量,例如样本均值、样本比例等。
点估计的基本思想是用样本统计量作为总体参数的估计值,它是参数的无偏估计量时,表示点估计是一个良好的估计。
区间估计是指根据样本数据求出一个区间,这个区间包含总体参数的真值的概率较高,通常用置信区间表示。
区间估计的基本思想是总体参数位于一个区间中的可能性,而不是一个确定的值。
置信区间的构造依赖于样本统计量的分布以及总体参数的估计量的抽样分布。
点估计和区间估计的方法有很多,其中最常用的是最大似然估计和矩估计。
最大似然估计是指根据已知样本观测值,选择使样本观测值出现的概率最大的总体参数作为估计值。
最大似然估计的基本思想是找到一个参数值,使得已观测到的样本结果出现的概率尽可能大。
矩估计是指根据样本矩的观测值,选择使样本矩的偏差与总体矩的偏差最小的总体参数作为估计值。
矩估计的基本思想是利用样本矩估计总体矩,从而近似估计总体参数。
参数估计在实际应用中具有广泛的应用价值。
例如,在医学研究中,需要对患者的疾病概率进行估计,以帮助医生做出正确的诊断和治疗决策。
在经济学研究中,需要对经济指标(如GDP、通胀率等)进行估计,以帮助政府制定宏观经济政策。
在市场调研中,需要对消费者行为进行估计,以帮助企业确定产品定价和市场策略。
然而,参数估计也存在一些局限性。
首先,参数估计的结果仅仅是对总体参数的估计,并不是总体参数的确切值。
其次,参数估计的结果受到样本容量的影响,样本容量越大,估计结果越可靠。
另外,参数估计还需要满足一些假设条件,如总体分布的形式、样本的独立性等,如果这些假设条件不满足,估计结果可能会失效。
统计学第三版答案
统计学第三版答案第1章统计和统计数据第2章 1.1 指出下⾯的变量类型。
(1)年龄。
(2)性别。
(3)汽车产量。
(4)员⼯对企业某项改⾰措施的态度(赞成、中⽴、反对)。
(5)购买商品时的⽀付⽅式(现⾦、信⽤卡、⽀票)。
详细答案:(1)数值变量。
(2)分类变量。
(3)数值变量。
(4)顺序变量。
(5)分类变量。
1.2 ⼀家研究机构从IT从业者中随机抽取1000⼈作为样本进⾏调查,其中60%回答他们的⽉收⼊在5000元以上,50%的⼈回答他们的消费⽀付⽅式是⽤信⽤卡。
(1)这⼀研究的总体是什么?样本是什么?样本量是多少?(2)“⽉收⼊”是分类变量、顺序变量还是数值变量?(3)“消费⽀付⽅式”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有IT从业者”,样本是“所抽取的1000名IT从业者”,样本量是1000。
(2)数值变量。
(3)分类变量。
1.3 ⼀项调查表明,消费者每⽉在⽹上购物的平均花费是200元,他们选择在⽹上购物的主要原因是“价格便宜”。
(1)这⼀研究的总体是什么?(2)“消费者在⽹上购物的原因”是分类变量、顺序变量还是数值变量?详细答案:(1)总体是“所有的⽹上购物者”。
(2)分类变量。
1.4 某⼤学的商学院为了解毕业⽣的就业倾向,分别在会计专业抽取50⼈、市场营销专业抽取30、企业管理20⼈进⾏调查。
(1)这种抽样⽅式是分层抽样、系统抽样还是整群抽样?(2)样本量是多少?详细答案:(1)分层抽样。
(2)100。
第2章⽤图表展⽰数据(4)饼图如下:(2 )雷达图如下:箱线图如下:第3章⽤统计量描述数据3.1 随机抽取25个⽹络⽤户,得到他们的年龄数据如下(单位:周岁):计算⽹民年龄的描述统计量,并对⽹民年龄的分布特征进⾏综合分析。
详细答案:⽹民年龄的描述统计量如下:从集中度来看,⽹民平均年龄为24岁,中位数为23岁。
从离散度来看,标准差在为6.65岁,极差达到26岁,说明离散程度较⼤。
统计学第五章课后题及答案解析
第五章一、单项选择题1.抽样推断的目的在于( )A.对样本进行全面调查 B.了解样本的基本情况C.了解总体的基本情况 D.推断总体指标2.在重复抽样条件下纯随机抽样的平均误差取决于( )A.样本单位数 B.总体方差C.抽样比例 D.样本单位数和总体方差3.根据重复抽样的资料,一年级优秀生比重为10%,二年级为20%,若抽样人数相等时,优秀生比重的抽样误差( )A.一年级较大 B.二年级较大C.误差相同 D.无法判断4.用重复抽样的抽样平均误差公式计算不重复抽样的抽样平均误差结果将( )A.高估误差 B.低估误差C.恰好相等 D.高估或低估5.在其他条件不变的情况下,如果允许误差缩小为原来的1/2,则样本容量( )A.扩大到原来的2倍 B.扩大到原来的4倍C.缩小到原来的1/4 D.缩小到原来的1/26.当总体单位不很多且差异较小时宜采用( )A.整群抽样 B.纯随机抽样C.分层抽样 D.等距抽样7.在分层抽样中影响抽样平均误差的方差是()A.层间方差 B.层内方差C.总方差 D.允许误差二、多项选择题1.抽样推断的特点有()A.建立在随机抽样原则基础上 B.深入研究复杂的专门问题C.用样本指标来推断总体指标 D.抽样误差可以事先计算E.抽样误差可以事先控制2.影响抽样误差的因素有( )A.样本容量的大小 B.是有限总体还是无限总体C.总体单位的标志变动度 D.抽样方法E.抽样组织方式3.抽样方法根据取样的方式不同分为( )A.重复抽样 B.等距抽样 C.整群抽样D.分层抽样 E.不重复抽样4.抽样推断的优良标准是( )A.无偏性 B.同质性 C.一致性D.随机性 E.有效性5.影响必要样本容量的主要因素有( )A.总体方差的大小 B.抽样方法C.抽样组织方式 D.允许误差范围大小E.要求的概率保证程度6.参数估计的三项基本要素有()A.估计值 B.极限误差C.估计的优良标准 D.概率保证程度E.显著性水平7.分层抽样中分层的原则是( )A.尽量缩小层内方差 B.尽量扩大层内方差C.层量扩大层间方差 D.尽量缩小层间方差E.便于样本单位的抽取三、填空题1.抽样推断和全面调查结合运用,既实现了调查资料的_______性,又保证于调查资料的_______性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第5章 参数估计
练习:
5.1 从一个标准差为5的总体中抽出一个容量为40的样本,样本均值为25。
(1) 样本均值的抽样标准差x σ等于多少?
(2) 在95%的置信水平下,允许误差是多少?
5.2 某快餐店想要估计每位顾客午餐的平均花费金额,在为期3周的时间里选取49名顾客组成了一个简单随机样本。
(1) 假定总体标准差为15元,求样本均值的抽样标准误差;
(2) 在95%的置信水平下,求允许误差;
(3) 如果样本均值为120元,求总体均值95%的置信区间。
5.3 某大学为了解学生每天上网的时间,在全校7500名学生中采取不重复抽样方法随机抽取36人,调查他们每天上网的时间,得到下面的数据(单位:小时):
3.3
3.1 6.2 5.8 2.3
4.1
5.4 4.5 3.2 4.4
2.0 5.4 2.6 6.4 1.8
3.5 5.7 2.3 2.1 1.9 1.2 5.1
4.3 4.2 3.6 0.8 1.5
4.7 1.4 1.2 2.9 3.5 2.4 0.5 3.6 2.5
求该校大学生平均上网时间的置信区间,置信水平分别为90%、95%和99%。
5.4 从一个正态总体中随机抽取容量为8 的样本,各样本值分别为:10,8,12,15,6,13,5,11。
求总体均值95%的置信区间。
5.5 某居民小区为研究职工上班从家里到单位的距离,抽取了由16个人组成的一个随机样本,他们到单位的距离(公里)分别是:
10 3 14 8 6 9 12 11 7 5 10 15 9 16 13 2
求职工上班从家里到单位平均距离95%的置信区间。
5.6 在一项家电市场调查中,随机抽取了200个居民户,调查他们是否拥有某一品牌的电视机。
其中拥有该品牌电视机的家庭占23%。
求总体比率的置信区间,置信水平分别为90%和95%。
5.7 某居民小区共有居民500户,小区管理者准备采取一向新的供水设施,想了解居民是否赞成。
采取重复抽样方法随机抽取了50户,其中有32户赞成,18户反对。
(1) 求总体中赞成该项改革的户数比率的置信区间,置信水平为95%;
(2) 如果小区管理者预计赞成的比率能达到80%,应抽取多少户进行调查?
答案
5.1 (1)79.0=x σ
;(2)E =1.55。
5.2 (1)14.2=x
σ;(2)E =4.2;(3)(115.8,124.2)。
5.3 (2.88,3.76);(2.80,3.84);(2.63,4.01)。
5.4 (7.1,12.9)。
5.5 (7.18,11.57)。
5.6 (18.11%,27.89%);(17.17%,22.835)。
5.7 (1)(51.37%,7
6.63%);(2)36。