人教B版高中数学必修五第一章12应用举例课件共15张
高中数学人教B版必修5第1章《解三角形》(1.2 第1课时)同步课件
∴AE=2csoisn1350°°=
2×12 6+
= 2
6-
2.
4
在△ABC 中,已知 A=45°,cosB=45. (1)求 cosC 的值; (2)若 BC=10,D 为 AB 的中点,求 CD 的长.
[解析]
(1)∵A=45°,∴cosA=
22,sinA=
2 2.
又∵cosB=45,∴sinB=35.
第一章 解三角形
第一章 1.2 应用举例 第1课时 距离问题
1
课前自主预习
3
易错疑难辨析
2
课堂典例讲练
4
课时作业
课前自主预习
• 碧波万顷的大海上,“蓝天号”渔轮在A处进行海上
作业,“白云号”货轮在“蓝天号”正南方向距
“蓝天号”20n mile的B处.现在“白云号”以10n
mile/h的速度向正北方向行驶,而“蓝天号”同时
小岛A周围38 n mile内有暗
礁,一船正向南航行,在B处
测得小岛A在船的南偏东30°,
航行30 n mile后,在C处测
得小岛在船的南偏东45°,
如果此船不改变航向,继续
向南航行,有无触礁的危险?
• [分析] 船继续向南航行,有无触礁的危险,取决
于A到直线BC的距离与38 n mile的大小,于是我们 只要先求出AC或AB的大小,再计算出A到BC的距离,
∴x=503 6 n mile.
• 4.在相距2 km的A、B两点处测量目标点C,若∠CAB =75°,∠CBA=60°,则A、C两点之间的距离为
______ km.
[答案] 6
[解析] 如图所示,由题意知∠C=45°, 由正弦定理,得siAn6C0°=sinA4B5°,∴AC= 22·23= 6. 2
高中数学新人教B版必修5课件:第一章解三角形1.2应用举例
面内),求两目标A,B之间的距离.
分析:要求出A,B之间的距离,可在△ABC(或△ADB)中去找关系,
但不管在哪个三角形中,AC,BC这些量都是未知的,需要在三角形中
找出合适的关系式,求出它们的值,然后解斜三角形即可.
Z 知识梳理 Z 重难聚焦
目标导航
题型一
题型二
题型三
题型四
HISHISHULI
HONGNANJUJIAO
,
,
∴a=CD=BC-BD=tan ∠ − tan ∠ .
目标导航
Z 知识梳理 Z 重难聚焦
HISHISHULI
D典例透析 S随堂演练
HONGNANJUJIAO
IANLITOUXI
UITANGLIANXI
∴a=CD=BC-BD=tan ∠ − tan ∠ .
∵AC=BC,
∴∠A=∠ABC=
180°-80°
2
=50°.
∴∠ABG=180°-∠CBH-∠CBA=180°-120°-50°=10°.故选B.
答案:B
Z 知识梳理 Z 重难聚焦
目标导航
HISHISHULI
HONGNANJUJIAO
2.三角形中的有关公式和结论
(1)直角三角形中各元素间的关系.
在△ABC中,若∠C=90°,AB=c,AC=b,BC=a,则有:
HISHISHULI
D典例透析 S随堂演练
HONGNANJUJIAO
IANLITOUXI
UITANGLIANXI
(2)斜三角形中各元素间的关系.
在△ABC中,若∠A,∠B,∠C为其内角,a,b,c分别表示∠A, ∠B,
最新人教版高三数学必修5(B版)电子课本课件【全册】
1.1.2 余弦定理
最新人教版高三数学必修5(B版)电 子课本课件【全册】
1.2 应用举例
最新人教版高三数学必修5(B版)电 子课本课件【全册】
2.2.2 等差数列的前n项和
ห้องสมุดไป่ตู้
2.3.2 等比数列的前n项和
阅读与欣赏
级数趣题
第三章 不等式
3.1.2 不等式的性质
3.3 一元二次不等式及其解法
3.5 二元一次不等式(组)与简单的线性规划问题
本章小结
后记
第一章 解三角形
最新人教版高三数学必修5(B版)电 子课本课件【全册】
1.1 正弦定理和余弦定理 1.1.1 正弦定理
最新人教版高三数学必修5(B版) 电子课本课件【全册】目录
0002页 0057页 0111页 0131页 0145页 0192页 0237页 0283页 0285页 0321页 0390页 0461页 0500页 0557页
第一章 解三角形
1.1.2 余弦定理
本章小结
第二章 数列
2.1.2 数列的递推公式(选学)
本章小结
最新人教版高三数学必修5(B版)电 子课本课件【全册】
阅读与欣赏
亚历山大
时期的三角测量
最新人教版高三数学必修5(B版)电 子课本课件【全册】
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_30
第一课时 1.2 应用举例(一)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关测量距离的实际问题,了解常用的测量相关术语.教学重点:熟练运用正弦定理、余弦定理解答有关三角形的测量实际问题.教学难点:根据题意建立解三角形的数学模型.教学过程:一、复习准备:1.在△ABC 中,∠C =60°,a +b =+1),c =,则∠A 为 .2.在△ABC 中,sin A =sin sin cos cos B C B C++,判断三角形的形状. 解法:利用正弦定理、余弦定理化为边的关系,再进行化简二、讲授新课:1. 教学距离测量问题:① 出示例1:如图,设A 、B 两点在河的两岸,要测量两点之间的距离,测量者在A 的同侧,在所在的河岸边选定一点C ,测出AC 的距离是55m ,∠BAC =51︒,∠ACB =75︒. 求A 、B 两点的距离(精确到0.1m ).分析:实际问题中已知的边与角? 选用什么定理比较合适?→ 师生共同完成解答. →讨论:如何测量从一个可到达的点到一个不可到达的点之间的距离? ③ 出示例2:如图,A 、B 两点都在河的对岸(不可到达),设计一种测量A 、B 两点间距离的方法.分析得出方法:测量者可以在河岸边选定两点C 、D ,测得CD =a ,并且在C 、D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.讨论:依次抓住哪几个三角形进行计算?→ 写出各步计算的符号所表示的结论. 具体如下:在∆ADC 和∆BDC 中,应用正弦定理得AC =sin()sin[180()]a γδβγδ+︒-++ =sin()sin()a γδβγδ+++, BC =sin sin[180()]a γαβγ︒-++=sin sin()a γαβγ++. 计算出AC 和BC 后,再在∆ABC 中,应用余弦定理计算出AB 两点间的距离AB =④ 练习:若在河岸选取相距40米的C 、D 两点,测得∠BCA =60︒,∠ACD =30︒,∠CDB =45︒,∠BDA =60︒. (答案:AB .2. 小结:解斜三角形应用题的一般步骤:(1)分析:理解题意,分清已知与未知,画出示意图(2)建模:根据已知条件与求解目标,把已知量与求解量尽量集中在有关的三角形中,建立一个解斜三角形的数学模型;(3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模型的解(4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题的解.三、巩固练习:1. 的C 、D 两点,并测得∠ACB =75°,∠BCD =45°,∠ADC =30°,∠ADB =45°. A 、B 、C 、D 在同一个平面,求两目标A 、B 间的距离. ()2. 两灯塔A 、B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东30︒,灯塔B在观察站C 南偏东60︒,则A 、B a km )3. 作业:教材P14 练习1、2题.第二课时 1.2 应用举例(二)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题.教学重点:结合实际测量工具,解决生活中的测量高度问题.教学难点:能观察较复杂的图形,从中找到解决问题的关键条件.教学过程:一、复习准备:1. 讨论:测量建筑物的高度?怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?2. 讨论:怎样测量底部不可到达的建筑物高度呢?二、讲授新课:1. 教学高度的测量:① 出示例1:AB 是底部B 不可到达的一个建筑物,A 为建筑物的最高点,设计一种测量建筑物高度AB 的方法.分析:测量方法→ 计算方法师生一起用符号表示计算过程与结论.AC =sin sin()a βαβ-,AB = AE +h =AC sin α+h =sin sin sin()a αβαβ-+h . ② 练习:如图,在山顶铁塔上B 处测得地面上一点A 的俯角α=5440︒',在塔底C 处测得A 处的俯角β=501︒'. 已知铁塔BC 部分的高为27.3 m ,求出山高CD (精确到1 m )③ 出示例2:如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D 在东偏南15︒的方向上,行驶5km后到达B 处,测得此山顶在东偏南25︒的方向上,仰角为8︒,求此山的高度CD .分析:已知条件和问题分别在哪几个三角形中? 分别选用什么定理来依次解各三角形? → 师生共同解答.解答:在∆ABC 中, ∠A =15︒,∠C = 25︒-15︒=10︒,根据正弦定理,sin BC A = sin AB C, BC =sin sin AB A C =5sin15sin10︒︒≈7.4524(km ),CD =BC ⨯tan ∠DBC ≈BC ⨯tan8︒≈1047(m ). 2. 练习:某人在山顶观察到地面上有相距2500米的A 、B 两个目标,测得目标A 在南偏西57°,俯角是60°,测得目标B 在南偏东78°,俯角是45°,试求山高.解法:画图分析,标出各三角形的有关数据,再用定理求解. 关键:角度的概念3. 小结:审题;基本概念(方位角、俯角与仰角);选择适合定理解三角形;三种高度测量模型(结合图示分析).三、巩固练习:1. 为测某塔AB 的高度,在一幢与塔AB 相距20m 的楼的楼顶处测得塔顶A 的仰角为30︒,测得塔基B 的俯角为45︒,则塔AB 的高度为多少m ? 答案:(m ) 2. 在平地上有A 、B 两点,A 在山的正东,B 在山的东南,且在A 的南25°西300米的地方,在A 侧山顶的仰角是30°,求山高. (答案:230米)3. 作业:P17 练习1、3题.第三课时 1.2 应用举例(三)教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.教学重点:熟练运用定理.教学难点:掌握解题分析方法.教学过程:一、复习准备:1. 讨论:如何测量一个可到达的点到一个不可到达的点之间的距离?又如何测量两个不可到达点的距离? 如何测量底部不可到达的建筑物高度?与前者有何相通之处?2. 讨论:在实际的航海生活中,如何确定航速和航向?通法:转化已知三角形的一些边和角求其余边的问题二、讲授新课:1. 教学角度的测量问题:① 出示例1:甲、乙两船同时从B 点出发,甲船以每小时10(3+1)km 的速度向正东航行,乙船以每小时20km 的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A 、C 两点,求A 、C 两点的距离,以及在A 点观察C 点的方向角.分析:根据题意,如何画图? →解哪个三角形?用什么定理?如何列式?→ 学生讲述解答过程 (答案:630) → 小结:解决实际问题,首先读懂题意,画出图形→再分析解哪个三角形,如何解?② 练习:已知A 、B 两点的距离为100海里,B 在A 的北偏东30°,甲船自A 以50海里/小时的速度向B 航行,同时乙船自B 以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?画出图形,并标记已知和要求的 →解哪个三角形?用什么定理解?如何列式? ③ 出示例2:某巡逻艇在A 处发现北偏东45︒相距9海里的C 处有一艘走私船,正沿南偏东75︒的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?分析:如何画出方位图? → 寻找三角形中的已知条件和问题? →如何解三角形.→ 师生共同解答. (答案:北偏东8331'︒方向;1.4小时)④ 练习:某渔轮在A 处测得在北45°的C 处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上渔群?2. 小结:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之. (2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.三、巩固练习:1. 我舰在敌岛A 南偏西︒50相距12海里的B 处,发现敌舰正由岛沿北偏西︒10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2. 某时刻A 点西400千米的B 处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心,300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A 进入台风圈?A 处在台风圈中的时间有多长?3. 作业:教材P22 习题1.2 A 组 2、3题.第四课时 1.2 应用举例(四)教学要求:能够运用正弦定理、余弦定理等知识和方法进一步解决有关三角形的问题, 掌握三角形的面积公式的简单推导和应用,能证明三角形中的简单的恒等式.教学重点:三角形面积公式的利用及三角形中简单恒等式的证明. 教学难点:利用正弦定理、余弦定理来求证简单的证明题.教学过程:一、复习准备:1. 提问:接触过哪些三角形的面积公式?2. 讨论:已知两边及夹角如何求三角形面积?二、讲授新课:1. 教学面积公式:①讨论:∆ABC中,边BC、CA、AB上的高分别记为ha 、hb、h c,那么它们如何用已知边和角表示?→如何计算三角形面积?②结论:三角形面积公式,S=12absin C,S=1bcsin A,S=12acsinB③练习:已知在∆ABC中,∠B=30︒,b=6,c求a及∆ABC的面积S.(解有关已知两边和其中一边对角的问题,注重分情况讨论解的个数)④出示例1:在某市进行城市环境建设中,要把一个三角形的区域改造成室内公园,经过测量得到这个三角形区域的三条边长分别为68m,88m,127m,这个区域的面积是多少?(精确到0.1cm2)?分析:由已知条件可得到什么结论?根据三角形面积公式如何求一个角的正弦?→师生共同解答. →小结:余弦定理,诱导公式,面积公式.→讨论:由三边如何直接求面积?(海仑公式)2. 教学恒等式证明:①讨论:射影定理:a = b cos C + c cos B;b = a cos C + c cos A;c = a cos B + b cos A.分析:如何证明第一个式子?证一:右边=22222222222a b c a c b ab c aab ac a+-+-+=== 左边证二:右边= 2R sin B cos C + 2R sin C cos B=2R sin(B+C)=2R sin A= a = 左边→学生试证后面两个.②出示例2:在∆ABC中,求证:(1)222222sin sin;sina b A Bc C++=(2)2a+2b+2c=2(bc cos A+ca cos B+abcosC)分析:观察式子特点,讨论选用什么定理?3. 小结:利用正弦定理或余弦定理,“化边为角”或“化角为边”.三、巩固练习:1. 在△ABC中,若22tantanA aB b=,判断△ABC的形状. (两种方法)2. 某人在M汽车站的北偏西20︒的方向上的A处,观察到点C处有一辆汽车沿公路向M站行驶. 公路的走向是M站的北偏东40︒. 开始时,汽车到A的距离为31千米,汽车前进20千米后,到A的距离缩短了10千米. 问汽车还需行驶多远,才能到达M汽车站?(15千米)3. 作业:教材P24 14、15题.。
人教B版高中数学必修五《第一章 解三角形 1.2 应用举例》_2
第1课时解三角形应用举例—距离问题一、教材分析本课是人教B版数学必修5第一章解三角形中1.2的应用举例中测量距离(高度)问题。
主要介绍正弦定理、余弦定理在实际测量(距离、高度)中的应用。
因为在本节课前,同学们已经学习了正弦定理、余弦定理的公式及基本应用。
本节课的设计,意在复习前面所学两个定理的同时,加深对其的了解,以便能达到在实际问题中熟练应用的效果。
对加深学生数学源于生活,用于生活的意识做贡献。
二、学情分析距离测量问题是基本的测量问题,在初中,学生已经学习了应用全等三角形、相似三角形和解直角三角形的知识进行距离测量。
这里涉及的测量问题则是不可到达的测量问题,在教学中要让学生认识问题的差异,进而寻求解决问题的方法。
在某些问题中只要求得到能够实施的测量方法。
学生学习本课之前,已经有了一定的知识储备和解题经验,所以本节课只要带领学生勤思考多练习,学生理解起来困难不大。
三、教学目标(一)知识与技能能够运用正弦定理、余弦定理等知识和方法解决一些与测量(距离、高度)有关的实际问题。
(二)过程与方法通过应用举例的学习,经历探究、解决问题的过程,让学生学会用正、余弦定理灵活解题,从而获得解三角形应用问题的一般思路。
(三)情感、态度与价值观提高数学学习兴趣,感知数学源于生活,应用于生活。
四、教学重难点重点:分析测量问题的实际情景,从而找到测量和计算的方法。
难点:测量方法的寻找与计算。
五、教学手段计算机,PPT,黑板板书。
六、教学过程(设计)情景展示,引入问题情景一:比萨斜塔(展示图片)师:比萨斜塔是意大利的著名建筑,它每年都会按照一定度数倾斜,但斜而不倒,同学们想一想,如果我们不能直接测量这个塔的高度,该怎么知道它的高度呢?情景二:河流、梵净山(展示图片)师:如果我们不能直接测量,该怎么得出河流的宽度和梵净山的高度呢?引入课题:我们今天就是来思考怎么通过计算,得到无法测量的距离(高度)问题。
知识扩展:简单介绍测量工具(展示图片)1 经纬仪:测量度数2卷尺:测量距离长.[分析]由余弦定理得cos∠=100+36-1962×10×6=-∴∠ADC=120°,∠在△ABD中,由正弦定理得sin∠ADB、如图,要测底部不能到达的烟囱的高AB,从[分析]如图,因为B A AA AB 11+=,又[分析] 分别在△BCD 出BD 和AD ,然后在△ADBBCD中用余弦定理求得BC.如下图,为了测量河宽,在岸的一边选定两点ACAB=45°,∠CBA=75°,________米.[分析]在△ABC中,∵∠CAB=45°,∠ABC=75°,ACB=60°,由正弦定理可得AC=AB·sin∠ABCsin∠ACB=120×sin75°sin60°=20(32+,设C到AB的距离为CD,则CD=AC·sin∠CAB=2+6)sin45°=20(3+3),∴河的宽度为20(3+3)米.五个量中,a,两个小岛相距10 n mile,从岛望C岛和A岛成岛之间的距离为________n=45°,由正弦定理.如图,为了测量某障碍物两侧A、B间的距离,给定下列四组数据,测量时应当用数据( )[解析] 要测γ.2.某观察站C和500米,测得灯塔在观察站C正西方向,A.500米 BC.700米 D[解析]如图,由题意知,∠3002+5002+2×300七、板书设计八、教学反思1.本教案为解三角形应用举例,是对解三角形的较高的应用,难度相应的也有提高;例题选择典型,涵盖了解三角形的常考题型,突出了重点方法,并且通过同类型的练习进行巩固;课后通过基本题、模拟题和高考题对学生的知识掌握进行考查,使本节内容充分落实.教师要积极引导学生对这些应用问题进行探索,鼓励学生进行独立思考,并在此基础上大胆提出新问题.2.对于学生不知道如何处理的应用问题,教师通过转化,使学生能够理解,需要在练习中加强.。
人教B版高中数学必修5全一册课件
������
=
5 . 11
(2)在通项公式an=3n+2n中,依次取n=1,2,3,4,5,得到数列的前5项 分别为a1=3×1+21=5,a2=3×2+22=10,a3=3×3+23=17, a4=3×4+24=28,a5=3×5+25=47.
-13-
1.1.1
探究一
正弦定理
探究二 探究三 探究四 探究五
课堂篇 合作学习
(1)将本例3(2)④中的数列变为1,11,111,1 111,…结果如何? (2)变为5,55,555,5 555,…结果又如何?
9 99 999 9 999 解: (1)可将数列各项都乘 9, 再除以 9, 即改写为 , , , ,… 9 9 9 9 10������ - 1 n 分子可以用 10 -1 表示, 数列通项公式为 an = . 9
-5-
2
2 1
2
2
2
(3)先将原数列变形为 1+2,2+4,(
1 2
1
1
),4+16 , ……, 应填 3+8, 即 8 ,
1
1
25
1.1.1
一
正弦定理
二 三 四
首页
课前篇 课前篇 自主预习 自主预习
课堂篇 合作学习
三、数列与函数的关系 【问题思考】 1.填空: 在数列{an}中,对于每一个正整数n(或n∈{1,2,…,k}),都有一个数 an与之对应,因此,数列可以看成以正整数N+(或它的有限子集 {1,2,…,k})为定义域的函数an=f(n),即当自变量按照从小到大的顺 序依次取值时,所对应的一列函数值.反过来,对于函数y=f(x),如果 f(i)(i=1,2,3,…)有意义,那么我们可以得到一个数列 f(1),f(2),f(3),…,f(n),…,其图象是一系列孤立的点.
人教版2017高中数学(必修五)第一章 §1.2 应用举例 (二)PPT课件
思考
如图,一辆汽车在一条水平的公路上向
正西行驶,到A处时测得公路北侧远处一
山顶D在西偏北15°的方向上,行驶5 km 后到达B 处,测得此山顶在西偏北25°的方向上,仰角为8°, 怎样求此山的高度CD?
答案
5sin 15° 先在△ABC 中,用正弦定理求 BC= sin 10°,
再在Rt△DBC中求DC=BCtan 8°.
第一章 解三角形
§1.2 应用举例(二)
学习目标
1.会运用测仰角( 或俯角) 解决一些有关底部不可到达的物体
高度测量的问题.
2.会用测方位角解决立体几何中求高度问题.
3.进一步培养学习数学、应用数学的意识.
内容索引
问题导学
题型探究
当堂训练
问题导学
知识点一
测量仰角(或俯角)求高度问题
思考
如图, AB 是底部 B 不可到达的一个建筑 物, A 为建筑物的最高点,如果能测出 点C,D间的距离m和由C点,D点观察A 的仰角,怎样求建筑物高度 AB ? ( 已知 测角仪器的高是h) 答案
答案 解析
甲楼的高为 20tan 60° =20× 3=20 3(米),
3 40 3 乙楼的高为 20 3-20tan 30° =20 3-20× = (米). 3 3
1
2
3
3. 为测量某塔的高度,在 A , B 两点进行测量 的数据如图所示,求塔的高度. 解答
在△ABT中,
∠ATB=21.4°-18.6°=2.8°,
AC m 解题思路是:在△ACD 中,sin β= sinα-β. msin β 所以 AC= , sinα-β 在Rt△AEC中,AE=ACsin α,AB=AE+h.
2020最新人教版高三数学必修5(B版)电子课本课件【全册】
0002页 0018页 0060页 0102页 0178页 0209页 0254页 0317页 0319页 0389页 0405页 0441页 0521页 0.2 余弦定理
本章小结
第二章 数列
2.1.2 数列的递推公式(选学)
2020最新人教版高三数学必修5(B 版)电子课本课件【全册】
2.2.2 等差数列的前n项和
2.3.2 等比数列的前n项和
阅读与欣赏
级数趣题
第三章 不等式
3.1.2 不等式的性质
3.3 一元二次不等式及其解法
3.5 二元一次不等式(组)与简单的线性规划问题
本章小结
后记
第一章 解三角形
2020最新人教版高三数学必修5(B 版)电子课本课件【全册】
1.1 正弦定理和余弦定理 1.1.1 正弦定理
人教B版高中数学必修五第一章归纳与总结课件共24张
a
所以
4? sin? 6
?
2,
33
sin
a? A?
b sin
? B
3? 4 1? 2
?
6.
23
温故知新
题型二:正、余弦定理的实际应用 【例2】如图,渔船甲位于岛屿A的南偏西60°方向 的B处,且与岛屿A相距12海里,渔船乙以10海里/ 小时的速度从岛屿A出发沿正北方向航行,若渔船 甲同时从B处出发沿北偏东α 的方向追赶渔船乙, 刚好用2小时追上. (1)求渔船甲的速度; (2)求sin α的值.
【特别提醒】应用正弦定理时,一定要注意解的个数.
跟踪训练
1.在△ABC中,角A,B,C的对边分别为a,b,c.若
A= ? ,a=3,b=4,则 a? b = ( C )
6
sin A?sin B
A.3 3
B.6 3
C.6
D.18
【解析】 由正弦定理 a ? b 可得sinB= bsin A
sin A sin B
∴
cosA? ?
1?
sin2
A
?
?
4 ,
5
又 a ? 3 5,b=5 ,由a2=b2+c2-2bccosA ,得 (3 5)2 ? 52 ? c2 ? 2?5? c? (? 4),
5
整理得,c2+8c-20=0,解得,c=2或c=-10(舍), ∴c=2.
总结升华
正、余弦定理体现了三角形中的边角关系,能实现 边角的互化,应用这两个定理可解决以下几类问题:
? 1 bc sin A 2
? 1 ac sin B 2
解决已知两边及其夹角求三角形面积
典例解析
题型一:利用正、余弦定理解三角形
(人教B版)高中数学必修五:1.2《应用举例(2)》ppt课件
新人教B版必修五1.2《应用举例》ppt课件1
在等腰Rt△ACD中,故
CD 2 AC 2 16 8 2 16( 3 1)
2
2 sin15 sin15
∴山的高度为16( 3 1) 米。
例3 杆OA、OB所受的 力(精确到0.1)。
700 500
例4如图在海滨某城市附近海面有一台风。 据监测,台风中心位于城市A的南偏东300方 向、距城市300km的海面P处,并以20km/h的 速度向北偏西4500方向移动。如果台风侵袭 的范围为圆形区域,半径为120km。问几小
所求A、B两地间的距离为100 5 米。
测量垂直高度
1、底部可以到达的;
测量出角C和BC的长度,解直 角三角形即可求出AB的长。
2、底部不能到达的 测 量 边 CD , 测 量 ∠ C 和 ∠ ADB ,
AB
CD
cot C cot ADB
例题2:在山顶铁塔上B 处测得地面上一点 A的俯 角 60 ,在塔底 C处测得点 A的俯角 45 , 已知铁塔BC部分高 32 米,求山高CD。
解:在△ABC中,∠ABC=30°, ∠ACB =135°, ∴∠CAB =180°-(∠ACB+∠ABC) =180°-(135°+30°)=15° 又BC=32, 由正弦定理 BC AC ,
sin BAC sin ABC
得 AC BC sin ABC 32sin 30 16
sin BAC sin15 sin15
时后该城市开始受到台风的侵袭(精确到 0.1h)?
解应用题的一般步骤是:
1、分析:理解题意,画出示意图 2、建模:把已知量与求解量集中在一个三角形中 3、求解:运用正弦定理和余弦定理,有顺序地解这 些三子角形,求得数学模型的解。 4、检验:检验所求的解是否符合实际意义,从而 得出实际问题的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:选择一条水平基线 HG,使 H,G,B三点在同一条直线上。 由在H,G两点用测角仪器测得 A的仰角分别是 α,β,CD=a, 测 角仪器的高是 h. 那么,在 ⊿ACD中,根据正弦定理可得
AC ? a sin ? , sin(? ? ? )
a sin ? sin ?
AB ? AE ? h ? AC sin ? ? h ?
sin[180?
?
(30?
?
45?
?
? 60?)]
40 sin 105?? sin 45?
20(
3 ? 1),
BC
?
40sin 45? sin[180? ? (60? ? 30? ?
? 45?)]
40sin 45? ?
sin 45?
40.
不可到达点 A
?
B
可到达点
60? 45?
D
60? 30?
C
这样在⊿ABC中,∠BCA=60°, AC ? 20( 3 ? 1), BC ? 40. 由余弦定理得: AB ? AC2 ? BC2 ? 2AC? BC cos?
分析:由于建筑物的底部 B 是不可到达的,所以不能直 接测量出建筑物的高 . 由解 直角三角形的知识,只要能 测出一点 C到建筑物的顶部 A的距离CA,并测出由点 C观 察A的仰角,就可以计算出建 筑物的高。所以应该设法借 助解三角形的知识测出 CA 的长。
例3. AB是底部B不可到达的一个建筑物, A为 建筑物的最高点,设计一种测量建筑物高度 AB的方法.
例2. 如图A、B两点都在河的对岸(不可到达),设
计一种测量两点间的距离的方法。
不可到达点 A
?
B
可到达点
点在河的两
60? 45?
60? 30?
D 40m C
想一想:还有没有别的测量方法 .
学做思二 测量角度
导学:
导做: AB是底部B不可到达的一个建筑物, A为建 筑物的最高点,设计一种测量建筑物高度 AB的方法.
不可到达点 A
?
B
可到达点
60? 45?
60? 30?
D 40m C
解:测量者可以在河岸边选定两点 C、D,测得CD=40m,
并且在C、D两点分别测得∠ BCA=60°, ∠ACD=30°,
∠CDB=45°, ∠BDA=60°. 在⊿ADC和⊿BDC中,应用
正弦定理得
AC ?
40sin(45? ? 60?)
1.2 应用举例
学做思一 测量距离
导学:设A、B两点在河的两岸,要测量两
点之间的距离 .
测量者在 A的同测,在所在的河岸边选定一点 C, 测出AC的距离是 55cm,∠BAC=51o, ∠ACB=
75o,求A、B两点间的距离(精确到 0.1m)
B
A
基线
C
分析:已知两角一边,可以用正弦定理解三角形
D
C
这样在⊿ABD中,∠BDA=60°, AD ? 20 2, BD ? 40 2.
由余弦定理得:
AB ? AD2 ? BD2 ? 2AD? BD cos?
? (20 2)2 ? (40 2 )2 ? 2? 20 2 ? 40 2 cos 60?? 20 6.
答:A,B 两点间的距离为 20 6米.
B
51?
75?
C
55
导做: 如图A、B两点都在河的对岸(不
可到达),设计一种测量两点间的距离的方法。
不可到达点 A
?
B
可到达点
60? 45?
60? 30?
D 40m C
分析:用例1的方法,可以计算出河的这一岸的一
点C到对岸两点的距离,再测出∠ BCA的大小,借
助于余弦定理可以计算出 A、B两点间的距离。
∠CDB=45°, ∠BDA=60°. 在⊿ADC和⊿BDC中,应用
正弦定理得
40sin 30?
40sin 30?
AD ?
sin[180??
(30? ?
45? ?
? 60?)]
? 20 2, sin 45?
BD ? 40 ? 40 2.
sin 45?
不可到达点 A
?
B
可到达点
60? 45?
60? 30?
? h.
sin(? ? ? )
小 结:
解斜三角形应用问题的一般步骤: (1)分析:理解题意,分清已知与未知,画出示意图。 (2)建模:根据已知条件与求解目标,把已知量与求解 量尽量集中在有关三角形中,建立一个解斜三角形的数学 模型。 (3)求解:利用正弦定理或余弦定理有序地解这些三角 形,求得数学模型的解。 (4)检验:检验上述所求的解是否符合实际意义,从而 得出实际问题的解。 还应注意: (1)应根据题中对精确度的要求,合理选择近似值。 (2)为避免误差的积累,解题过程中应尽可能使用原始 数据,少用间接求出的量。
AB = AC sin C sin B
解:根据正弦定理,得
AB ? AC , sin C sin B
AB ? ACsin C ? 55sin C sin B sin B
55sin 75?
A
? sin(180? ? 51? ? 75?)
?
55sin 75? sin 54?
?
65.7(m ).
答:A,B两点间的距离为 65.7米.
? 202 ( 3 ? 1)2 ? 402 ? 2? 20( 3 ? 1)? 40cos60? ? 20 6. 答:A,B 两点间的距离为 20 6米.
不可到达点 A
?
B
可到达点
60? 45?
60? 30?
D 40m C
解2:测量者可以在河岸边选定两点 C、D,测得CD=40m,
并且在C、D两点分别测得∠ BCA=60°, ∠ACD=30°,