结构设计原理

合集下载

结构设计原理的知识点总结

结构设计原理的知识点总结

结构设计原理的知识点总结结构设计是指在工程建筑、机械设计等领域中,根据特定的要求和目标,通过合理的构思和设计,确定结构体系、材料和尺寸等相关参数,以满足工程的强度、刚度和稳定性等要求。

在结构设计过程中,有一些重要的原理需要掌握和遵循。

本文将对结构设计原理的一些关键知识点进行总结。

以下是结构设计原理的一些重要考虑点:1. 强度原理:强度原理是结构设计中最基本的原理之一,它要求结构在承受外部荷载时能够保持稳定。

常见的强度原理包括材料的强度和断裂性质、构件的受压、受拉和受弯承载能力等。

2. 刚度原理:刚度原理要求结构在受到外部荷载时保持稳定,不发生过度变形。

刚度原理的关键考虑点包括结构的整体刚度和各构件之间的刚度协调等。

3. 稳定性原理:稳定性原理要求结构在承受外部荷载时能够保持平衡和稳定,不发生失稳。

常见的稳定性原理包括结构的整体稳定性、构件的局部稳定性和结构的抗侧扭稳定性等。

4. 材料选择原理:材料选择原理是指在结构设计中选择合适的材料以满足设计要求。

其中考虑的主要因素包括材料的强度、刚度、耐久性、可加工性以及经济性等。

5. 结构组成原理:结构组成原理要求将结构划分为合适的构件,通过构件之间的连接和组合实现结构的整体性能。

结构组成原理涉及到构件的形状、尺寸和连接方式等方面。

6. 可靠性原理:可靠性原理要求结构在设计寿命内能够满足要求的安全性能。

可靠性原理考虑到结构设计中的不确定性因素,如荷载的变化、材料的失效和施工误差等。

7. 施工可行性原理:施工可行性原理要求结构设计考虑到施工过程中的可行性和经济性,并避免施工过程中出现困难或不必要的浪费。

施工可行性原理涉及到结构的施工过程、工艺流程和施工周期等方面。

结构设计原理的总结是结构设计中十分重要的一部分,只有正确应用这些原理,才能够设计出安全可靠、经济合理的结构。

因此,在结构设计的过程中,必须深入学习和理解这些原理,并灵活运用到实际设计中。

同时,不断学习和更新结构设计原理,跟随技术的发展和变化,才能不断提高自身的设计水平。

结构设计原理简介

结构设计原理简介

结构设计原理简介结构设计原理是指在建筑、土木工程等领域中,根据工程要求和结构特点,通过科学的方法和理论,确定结构的形式、尺寸、材料等方面的设计原则。

它是建筑和土木工程的核心内容之一,对于保证工程的安全、稳定和经济性具有重要作用。

本文将简要介绍结构设计原理的基本概念、主要内容和应用。

一、结构设计原理的基本概念结构设计原理是指在建筑和土木工程中,根据结构的力学性能和工程要求,通过合理的设计方法和原则,确定结构的形式、尺寸、材料等方面的基本规定。

它是建筑和土木工程设计的基石,对于工程的安全性、可靠性和经济性具有决定性的影响。

二、结构设计原理的主要内容1. 结构的受力分析:结构设计的第一步是进行受力分析,确定结构所受到的外力以及结构内部受力的大小和方向。

通过受力分析,可以确定结构的受力状态,为后续的设计提供依据。

2. 结构的形式选择:根据工程要求和结构特点,选择合适的结构形式。

常见的结构形式包括梁、柱、桁架等,每种结构形式都有其适用的范围和特点。

3. 结构的尺寸设计:确定结构的尺寸,包括截面尺寸、跨度、高度等。

结构的尺寸设计需要考虑结构的受力性能、变形控制和施工要求等因素。

4. 结构的材料选择:选择合适的材料用于结构的建造。

常见的结构材料包括钢材、混凝土、木材等,每种材料都有其特点和适用范围。

5. 结构的连接设计:设计结构的连接方式和连接件,确保结构的稳定性和可靠性。

连接设计需要考虑结构的受力传递、变形控制和施工要求等因素。

三、结构设计原理的应用结构设计原理广泛应用于建筑和土木工程领域。

在建筑设计中,结构设计原理被用于确定建筑物的结构形式、尺寸和材料,确保建筑物的安全和稳定。

在土木工程中,结构设计原理被用于设计桥梁、隧道、水坝等工程结构,确保工程的安全和经济性。

结构设计原理的应用还涉及到结构的优化设计、抗震设计、防火设计等方面。

通过科学的结构设计原理,可以提高工程的安全性、经济性和可持续性,满足人们对于建筑和土木工程的需求。

结构设计基本知识

结构设计基本知识

结构设计基本知识一、引言结构设计是指在满足建筑物使用功能、安全性和经济性的前提下,对建筑物的承重结构进行设计。

结构设计是建筑设计中最为重要的一个环节,直接关系到建筑物的安全性和使用寿命。

二、结构设计基本原理1. 承重原理承重原理是指在建筑物中,所有荷载都必须通过承重结构传递到地基上,以保证建筑物的稳定性和安全性。

承重结构包括柱子、梁、墙体等。

2. 稳定原理稳定原理是指在建筑物中,各个部分必须相互协调,以保证整个建筑物的稳定性。

稳定原理包括了荷载平衡、抗倾覆能力等。

3. 经济原则经济原则是指在保证安全和功能要求的前提下,尽可能地降低建造成本。

经济原则包括了选材、施工工艺等方面。

三、结构设计基本步骤1. 确定荷载标准荷载标准是指根据不同用途的建筑物所受到的各种荷载情况进行计算,以确定建筑物的承重结构。

2. 选择结构形式选择结构形式是指根据荷载标准和建筑物的实际情况,确定建筑物的承重结构类型和布置方式。

常见的结构形式包括框架结构、钢筋混凝土框架结构、砖混结构等。

3. 计算荷载计算荷载是指根据荷载标准和建筑物的实际情况,对各种荷载进行计算,并对承重结构进行力学分析。

4. 设计承重结构设计承重结构是指根据荷载计算结果和力学分析,设计出满足安全、稳定和经济要求的承重结构。

设计过程中需要考虑到材料强度、工艺技术等因素。

5. 完成施工图纸完成施工图纸是指将设计好的承重结构转化为具体的施工图纸,并在图纸中标明各种细节和要求,以便施工人员按照图纸进行施工。

四、常见问题及解决方法1. 荷载估算不准确:在荷载估算时需要考虑到各种因素,如地震、风力等,以确保计算结果准确。

2. 结构形式选择不合理:在选择结构形式时需要考虑到建筑物的实际情况和荷载要求,以确保结构形式合理。

3. 材料选用不当:在选用材料时需要考虑到强度、耐久性等因素,以确保材料质量符合要求。

4. 施工工艺不规范:在施工过程中需要严格按照图纸要求进行施工,以确保施工质量符合要求。

结构设计原理

结构设计原理

1.承载能力极限状态:极限状态是区分结构工作状态的可靠和失效的标志,承载能力极限状态对应于结构和结构构件达到最大承载能力或不适于继续承载的变形或变位的状态。

2.正常使用极限状态:对应于结构和结构构件达到正常使用或耐久性能的某项规定的限值的状态。

3.少筋梁界限破坏。

当配筋率小于最小配筋率时,梁受拉区混凝土一开裂,受拉钢筋达到屈服点、并迅速经历整个流幅而进入强化阶段、裂缝开展快且集中、此时受拉区混凝土还未破坏,而裂缝已经很宽、挠度扩大、钢筋甚至被拉断。

破坏突然属于脆性破坏。

4. 超筋梁界限破坏。

随梁截面配筋率的增大、钢筋应力增加缓慢,而受压区混凝土应力有较快增长,则纵向钢筋屈服时的弯矩My趋近于梁破坏时的弯矩Mu。

当配筋率增大到My=Mu时,受拉钢筋屈服和受压混凝土压碎同时发生的,这种破坏为平衡破坏和界限破坏,这时的配筋即为最大配筋率。

实际配筋率大于最大配筋率即为超筋梁。

5.混凝土轴心抗压强度:按照与立方体抗压试件相同条件下制作和实验方法测得的具有95%保证率的棱柱体试件的抗压强度值,称为混凝土轴心抗压强度标准值,符号:fck。

150,150,300mm为标准试件,养护28d。

6.Hnt立方体抗压强度:150mm的立方体试件,在标准养护条件下养护28d,依照标准试验方法测得的具有95%保证率的抗压强度值(以mpa计),作为混凝土的立方体抗压强度标准值。

Fcuk7.预应力度:由预加应力大小确定的消压弯矩M0与外荷载产生的弯矩M s的比值。

M0——消压弯矩,构件抗裂边缘预压应力抵消到0时的弯矩;M s——按作用(或荷载)短期效应组合计算的弯矩。

所谓消压弯矩Mo,就是使构件控制截面受拉区边缘混凝土的应力抵消到恰好为零时的弯矩。

8.斜压破坏:梁的腹筋配置过多,剪跨比m=M/(V*h0)较小﹤1时,首先荷载作用点和支座之间出现一条斜裂缝,然后出现若干条大体相平行的斜裂缝,梁腹被分割成若干倾斜的小柱体。

随荷载的增大,梁腹发生类型混凝土棱柱体被压坏的情况,破坏时斜裂缝多而密,但没有主裂缝,姑称为斜压破坏。

结构设计原理

结构设计原理

结构设计原理
结构设计原理是指在建筑、桥梁、机械、电子等领域中,为了保证结构的稳定性、可靠性、经济性和安全性,所遵循的一些基本原则。

以下是结构设计原理的几个重要方面:
1.力学原理:根据物理力学的基本原理,计算和分析结构受力情况,确定合理的材料、断面和尺寸,使结构在正常使用条件下具有足够的强度和刚度。

2.材料选用原理:根据材料的物理力学性质和工程使用要求,选择合适的材料。

不同材料的力学性质不同,对结构的强度、刚度、耐久性等都有重要影响。

3.构件连接原理:构件之间的连接方式对结构的强度和稳定性有很大影响。

要选择合适的连接方式,并在设计时考虑接头的强度和刚度等因素。

4.统一性原理:结构设计应当体现统一性,即在整个结构中使用相同的设计原则、构件和材料,以确保结构的一致性和稳定性。

5.简洁性原理:结构设计应尽量简洁,避免设计过于复杂或使用过多的构件和材料,以降低成本和施工难度。

6.安全性原理:结构设计必须具备足够的安全性,确保在正常使用条件下不会发生结构破坏或崩溃等危险情况。

综上所述,结构设计原理是结构设计中必须遵循的基本原则,它们相互关联,共同保证结构的稳定性和安全性。

结构设计原理 叶见曙

结构设计原理 叶见曙

结构设计原理叶见曙
结构设计原理是在建筑设计过程中考虑到建筑物的稳定性、坚固性和功能性等因素,以确保建筑物能够安全有效地承载设计荷载、抵抗外部力和环境影响,同时满足设计要求的一系列原则。

以下是一些常见的结构设计原则:
1. 统一性原则:在结构设计中,采用统一的设计模式和构造方法,以确保整体结构的稳定性和协调性。

2. 材料适应性原则:根据建筑物的使用环境和需求,选择适合的结构材料,以满足设计要求和功能性。

3. 建筑物的静力学平衡原则:通过合理的结构布置和强度设计,使建筑物在正常工作状态下达到静力学平衡,确保结构稳定。

4. 整体构造合理性原则:建筑结构应该合理布置和设计,以确保各个结构部件之间的协调性和平衡性,从而提高整体结构的稳定性。

5. 疲劳强度设计原则:在结构设计中,考虑到材料的疲劳强度和寿命,以确保结构在长期使用中的安全性和可靠性。

6. 灵活性设计原则:考虑到结构的变形和可调性等因素,在结构设计中尽可能减小约束,提高结构的灵活性和适应性。

7. 简约性原则:在结构设计中,力求降低结构的复杂性和冗余性,以简化施工和维护过程,提高结构的可靠性和经济性。

8. 安全性设计原则:在结构设计中,考虑到建筑物的抗震、防火和抗风等安全性能要求,以确保结构在自然灾害和事故情况下的安全性。

9. 可持续性设计原则:在结构设计中,考虑到资源利用和环境保护等因素,以实现建筑物的可持续发展和环境友好性。

以上是结构设计原理的一些基本原则,设计师在实际工作中需要根据具体情况综合考虑,灵活运用这些原则,以确保结构设计的质量和效果。

结构设计原理解读

结构设计原理解读

结构设计原理解读结构设计是建筑领域中至关重要的一环,它涉及到建筑物的稳定性、安全性和美观性等方面。

本文将从结构设计的原理出发,对其进行深入解读。

一、结构设计的基本原理结构设计的基本原理包括力学平衡原理、材料力学原理和结构力学原理。

1. 力学平衡原理力学平衡原理是结构设计的基石。

根据这一原理,一个结构在静力平衡时,受力的合力和合力矩均为零。

设计师需要根据建筑物的形状、荷载和支座条件等因素,合理分析和计算受力情况,确保结构的平衡。

2. 材料力学原理材料力学原理是指材料在外力作用下产生变形和破坏的规律。

结构设计师需要了解不同材料的力学性能,如强度、刚度和稳定性等,以及材料的应力-应变关系,从而选择合适的材料并合理设计结构。

3. 结构力学原理结构力学原理是指通过力学分析和计算,确定结构内力和变形的原理。

结构设计师需要运用结构力学原理,进行受力分析、内力计算和变形控制,确保结构的安全性和稳定性。

二、结构设计的优化原则结构设计的优化原则包括最小重量原则、最小材料消耗原则和最小成本原则。

1. 最小重量原则最小重量原则是指在满足结构强度和刚度要求的前提下,尽量减小结构的自重。

通过合理选择材料和优化结构形式,可以实现结构的轻量化设计,提高资源利用效率。

2. 最小材料消耗原则最小材料消耗原则是指在满足结构安全性和稳定性要求的前提下,尽量减少材料的使用量。

通过合理布置结构材料和优化截面形状,可以降低材料成本,减少资源消耗。

3. 最小成本原则最小成本原则是指在满足结构强度、稳定性和经济性要求的前提下,尽量降低结构的建造和维护成本。

结构设计师需要综合考虑材料成本、施工工艺和维护费用等因素,选择最经济的结构方案。

三、结构设计的创新原则结构设计的创新原则包括形式创新原则、材料创新原则和施工工艺创新原则。

1. 形式创新原则形式创新原则是指通过创新的结构形式,实现建筑物的独特性和美观性。

设计师可以运用现代建筑技术,采用新颖的结构形式,如悬挑结构、拱形结构和网壳结构等,赋予建筑物独特的外观和空间感。

结构设计原理知识点总复习

结构设计原理知识点总复习

结构设计原理知识点总复习一、力学基础力学是结构设计的基础,了解力学的基本概念对于结构设计至关重要。

这包括静力学、动力学和弹性力学等方面的知识。

静力学是研究在静止状态下物体之间相互作用力的平衡关系,动力学是研究物体在运动状态下受到的力和加速度的关系,弹性力学是研究物体在受外力作用下发生形变和位移时所产生的内力关系。

对于结构设计来说,需要熟悉力学的基本原理和公式,并能够应用于实际的结构计算中。

二、结构稳定性结构稳定性是指结构在受到外力作用下仍能保持平衡和安全的能力。

在结构设计中,需要考虑各种稳定性问题,包括整体稳定性、局部稳定性和稳定性分析等。

整体稳定性是指结构整体的稳定性,例如房屋的整体抗倾覆能力;局部稳定性是指结构各个部件的稳定性,例如柱子或梁的抗弯矩能力;稳定性分析是指通过计算和分析结构的承载能力和位移变形来评估结构的稳定性。

在结构设计中,需要采取一系列措施来保证结构的稳定性,例如增加结构的抗倾覆能力和抗弯能力,并进行合理的稳定性分析。

三、荷载分析荷载分析是指研究结构受到的各种外荷载的作用和影响。

在结构设计中,需要考虑静力荷载和动力荷载等。

静力荷载是指结构受到的恒定荷载和可变荷载的作用,恒定荷载是指不会发生明显变化的荷载,例如自重和永久荷载;可变荷载是指会有明显变化的荷载,例如雪荷载和风荷载。

动力荷载是指结构受到的地震荷载和振动荷载的作用。

在荷载分析中,需要根据规范和实际情况来确定荷载的大小和作用方式,并进行相应的计算和分析。

四、材料力学材料力学是指研究材料在受力作用下的强度和变形性能。

在结构设计中,需要研究结构所使用的材料的强度和刚度等特性,例如钢材的屈服强度和混凝土的抗压强度。

同时,还需要了解材料的应力应变关系,根据材料的力学性能来进行结构设计和材料选择。

五、结构设计原则结构设计原则是指在进行结构设计时需要遵循的一些基本原则。

这包括力学平衡原理、能量最小原理和经济性原则等。

力学平衡原理是指结构在受到外力作用下需要保持力学平衡,力的合力为零,力的和力矩为零;能量最小原理是指结构需要在满足力学平衡的前提下,通过调整结构的形状和材料的使用来使结构的能量最小化;经济性原则是指在结构设计中需要尽量减少材料和劳动力的使用,使结构的成本最低,效益最大。

结构设计原理总结

结构设计原理总结

结构设计原理总结结构设计原理是指在进行结构设计时所遵循的一些基本原则和规则。

这些原理可以帮助工程师在设计过程中确保结构的安全性、稳定性和经济性。

下面将对结构设计原理进行总结,内容大致包括以下几方面:第一,安全性原理。

结构设计首要考虑的是结构的安全性,即结构在受到外力作用时能否保持稳定,并且不会发生破坏。

为了确保结构的安全性,设计中需要考虑结构的强度、稳定性、承载能力、刚度以及抗震能力等因素。

此外,还需要考虑到结构的使用寿命和防火性能等方面的安全因素。

第二,经济性原理。

结构设计需要在保证安全性的基础上尽可能地降低成本和资源消耗。

在进行结构设计时,需要考虑材料成本、施工工艺、维护成本等因素,并在不影响结构安全的前提下寻找最经济的设计方案。

第三,可靠性原理。

结构设计应追求结构的可靠性,即结构在设计寿命内能够满足设计要求并保持稳定。

为了确保结构的可靠性,设计中需要考虑结构的可靠性指标和可靠性分析方法,并采取相应的设计措施。

第四,合理性原理。

合理性是结构设计的一个重要原则,即设计应符合实际工程条件和使用要求,并且能够满足工程师在设计中的要求。

合理性原则涉及到结构形式、结构布置、材料选择、工艺安排等方面的问题,只有在满足实际要求的情况下,才能够得到一个合理的设计方案。

第五,灵活性原理。

结构设计应具有一定的灵活性,即在满足功能和安全要求的前提下,能够适应不同的场地和使用要求。

灵活性原则涉及到结构的可调性和可改造性等方面的问题,设计中需要考虑到结构的可调整性和可扩展性,以适应未来可能的变化和调整。

第六,美观性原理。

结构设计不仅仅是为了满足功能和经济要求,还应考虑结构的美观性。

美观性原则涉及到结构形式、比例、纹理、颜色等方面的问题,设计中需要注重表达设计意图,并追求结构的整体美感。

综上所述,结构设计原理是一系列基本原则和规则,它们在结构设计中发挥着重要的作用。

安全性原理、经济性原理、可靠性原理、合理性原理、灵活性原理和美观性原理是结构设计原理的主要内容。

结构设计原理

结构设计原理

1,钢筋与混凝土之所以能共同工作,主要是由于:两者间有良好的粘结力、相近的温度线膨胀系数和混凝土对钢筋的保护作用。

2,我国国家标准中规定的混凝土立方体抗压强度试验条件是:边长为150mm立方体试件、在20℃±2℃的温度、相对湿度在95%以上的潮湿空气中、养护28天、按标准制作方法和试验方法测得。

3,在实际工程中,边长为200mm和边长为100mm的混凝土立方体试件,应分别乘以换算系数1.05和0.95,以考虑试件和试验机之间的接触摩阻力的影响。

试件的养护环境、加载速率、试件尺寸和试件与加载板之间是否有润滑剂都将会影响试件的测试结果。

4,混凝土的强度指标有混凝土的立方体强度,混凝土轴心抗压强度和混凝土抗拉强度。

5,复杂应力作用下混凝土强度的变化特点:当双向受压时,一向的混凝土强度随着另一向压应力的增加而增加,当双向受拉时,双向受拉的混凝土抗拉强度均接近于单向抗拉强度,当一向受拉、一向受压时,混凝土的强度均低于单向(受拉或受压时)时强度。

6,徐变:在应力不变的情况下,混凝土的应变随时间继续增长的现象。

徐变的影响因素有:长期花载作用下产生的应力大小、加载时混凝土的龄期、混凝土的组成成分和配合比、养护及使用条件下的温度与湿度。

发生徐变的原因在于长期花载作用下,混凝土凝胶体中的水份逐渐压出,水泥石逐渐粘性流动,微细空隙逐渐闭合,细晶体内部逐渐滑动,微细裂缝逐渐发生等各种因素的综合结果。

7,收缩:在混凝土凝结和硬化的物理化学过程中体积随时间而减小的现象。

收缩引起的原因:初期是水泥石在水化凝固结硬过程中产生的体积变化;后期主要是混凝土内自由水分蒸化引起干缩。

8,光面钢筋与混凝土之间的粘结力由:化学胶着力、摩擦力和机械咬合力组成。

9,结构的可靠度:结构在规定的时间内,在规定条件下,写成预定功能的概率。

结构的安全性、适用性和耐久性总称为结构的可靠性。

10,极限状态是指当整个结构或结构的一部分超过某一特定状态而不能满足设计规定的某一功能要求时,则此特定状态称这该功能的极限状态。

结构设计原理详解

结构设计原理详解

结构设计原理详解结构设计原理是指在建筑、工程或产品设计中,根据力学原理和材料特性,合理地确定结构的形式、尺寸、材料和连接方式的一系列理论和方法。

它是工程设计中至关重要的一环,直接关系到结构的安全性、稳定性和经济性。

本文将详细探讨结构设计原理的相关内容。

1. 强度设计原理强度设计原理是结构设计的基础,它要求结构在承受荷载时不发生破坏或失效。

根据材料的强度特性和荷载的作用方式,通过计算和分析确定结构的尺寸和材料,以满足强度要求。

常用的强度设计原理有极限状态设计和工作状态设计。

2. 刚度设计原理刚度设计原理是指结构在受力过程中的变形控制。

在设计中,需要考虑结构的刚度,以确保结构在荷载作用下变形不过大,不影响正常使用。

刚度设计原理主要包括弹性刚度和塑性刚度两个方面,通过合理的材料选择和截面设计,控制结构的刚度。

3. 稳定性设计原理稳定性设计原理是指结构在受力过程中的稳定性控制。

当结构受到外力作用时,需要保证结构不会发生失稳或倾覆。

稳定性设计原理主要包括整体稳定和局部稳定两个方面,通过合理的结构形式和截面设计,确保结构的稳定性。

4. 疲劳设计原理疲劳设计原理是指结构在长期循环荷载下的抗疲劳性能。

结构在使用过程中会受到反复的荷载作用,如果设计不合理,可能会导致结构的疲劳破坏。

通过疲劳寿命分析和疲劳强度计算,确定结构的寿命和安全系数,以保证结构的可靠性。

5. 抗震设计原理抗震设计原理是指结构在地震作用下的抗震性能。

地震是一种破坏性荷载,对结构的安全性和稳定性提出了严峻挑战。

通过地震荷载计算和结构响应分析,确定结构的抗震设计参数,以提高结构的抗震能力。

6. 经济性设计原理经济性设计原理是指在满足结构功能和安全性的前提下,尽可能降低结构的成本。

通过合理的材料选择、截面设计和连接方式,优化结构的成本效益,提高工程的经济性。

综上所述,结构设计原理是工程设计中不可或缺的一部分。

它涉及到强度、刚度、稳定性、疲劳性、抗震性和经济性等多个方面。

结构设计原理的认识及理解

结构设计原理的认识及理解

结构设计原理的认识及理解结构设计原理是指在建筑、机械、航空航天等领域中,通过对结构力学、材料力学等相关理论的应用,以及结合设计目标和约束条件,使用科学的方法和原则对结构系统进行设计的过程。

结构设计原理的核心任务是保证结构的安全、经济和可行性,同时尽可能地满足设计要求。

结构设计原理的基本理解是从力学原理和材料力学角度出发,将力学规律和材料性能应用于实际的结构设计中。

具体来说,结构设计原理涉及以下几个方面的内容:1. 载荷分析和设计要求:结构设计原理的第一步是确定结构要承受的载荷,包括静荷载、动荷载、地震荷载等。

通过载荷分析,确定设计要求,如结构的承载能力、刚度要求、振动要求等。

2. 结构模型的选择和建立:结构设计原理根据实际情况,选择适合的结构模型,可以是一维杆模型、二维平面框架模型或三维空间框架模型等。

结构模型的建立是结构设计的基础,决定了对结构的力学行为进行分析的方法。

3. 结构内力分析:结构设计原理通过力学原理和相关计算方法,对结构的内力进行分析。

内力分析是结构设计的重要环节,通过计算各个构件的内力大小和分布情况,可以评估结构的强度和稳定性,并进行结构优化。

4. 材料选型和强度计算:结构设计原理需要根据结构的载荷和设计要求,选择合适的材料,并进行强度计算。

强度计算包括确定材料的抗拉强度、抗扭强度、抗弯强度等,并与设计要求进行对比,确保结构在使用过程中不会发生破坏和失效。

5. 结构设计与构造处理:结构设计原理结合结构形式和材料特性,进行结构构造的布置和处理。

结构的布置包括结构单元的组合和形式,以及梁、柱、墙等构件的位置和排布。

构造处理包括结构连接方式的设计和施工方法的选择等。

6. 结构优化和合理性评价:结构设计原理在设计过程中需要进行结构优化和合理性评价。

结构优化是指通过改变结构的几何形态、材料参数或截面尺寸等,使结构在满足设计要求的前提下达到最优的设计效果。

合理性评价是对结构设计方案的合理性进行判断,包括结构的经济性、安全性、可行性等方面。

结构设计原理

结构设计原理
结构设计原理
总论
《结构设计原理》主要讨论各种工 程结构的基本构件的受力性能、计算方 法和构造设计原理, 它是学习和掌握桥 梁工程和其它道路人工构造物设计的基 础。
.
主要内容
1) 选择结构的材料类型; 2) 选择截面形式; 3) 拟定截面尺寸; 4) 进行各项验算(强度条件、刚度、稳
定性、抗裂性)
主要任务
研究掌握基本构件的受力性能、 构造设计、 计算方法。
(一)基本构件分类:
1.按受力分 : 受弯构件(梁、板) 受压构件(墩、台、拱、压杆
等)无纯受扭构件)
2按构件材料类型分: 钢筋混凝土结构 预应力混凝土结构 砖石、素混凝土结构(自重大) 钢结构(跨径大的桥) 木结构
骨架的作用。
1990湖南凤凰县的乌巢河桥 ( L=120m)
世界上跨径最大的石拱桥。桥宽8m,双肋石拱桥,腹拱为9孔13m, 南岸引桥3孔13m,北岸引桥1孔15m。主拱圈由两条分离式矩形石肋和8 条钢筋混凝土横系梁组成。拱轴线为悬链线(m=1.543) ,拱矢度1/5, 拱肋为等高变宽度。
图 4 1932澳大利亚503m悉尼钢拱桥
耐久性、耐火性好; 适应性好。
自重大;施工受季节
影响大;有裂缝存在; 不适合用高强材料。
(三)预应力混凝土结构:
1.使用范围: 梁
2.优缺点:
优点
跨径>50m的桥
缺点
使用高强材料;重量
轻;跨径大;刚度大; 耐久性、耐火性好。
工艺复杂、需要 备
多(设计、计算、施 工)。
(四)砌体结构:
1.使用范围: 以受压为主的构件(墩台、护 坡)。
2.优缺点优点:
缺点
材料来源广泛; 施工简便。
自重大(自重); 费工费时。

结构设计原理

结构设计原理

1.结构:一般把构造物的承重骨架组成部分统称为结构2.常用的结构一般分为:(1)混凝土结构(2)钢结构(3)圬工结构(4)木结构3.混凝土的三个标准:(1)标准试件(2)标准养护条件(3)标准试验方法4.混凝土徐变:在荷载的长期作用下,混凝土的变形将随时间而增加,即在应力不变的情况下,混凝土的应变随时间持续增长,这种现象称为混凝土的徐变。

5.混凝土徐变的原因:是在荷载长期作用下,混凝土凝胶体中的水分逐渐压出,水泥石逐渐发生粘性流动,微细空隙逐渐闭合,结晶体内部逐渐滑动,微细裂缝逐渐发生各种因素的综合结果。

6.混凝土的收缩:在混凝土凝结和硬化的物理化学过程中体积随时间推移而减小的现象称为混凝土收缩。

7.混凝体收缩的原因:主要是硬化初期水泥石在水化凝固结硬过程中产生的体积变化,后期主要是混凝土内自由水分蒸发而引起的干缩。

8.影响粘结强度的因素:(1)光圆钢筋及变形钢筋的粘结强度均随混凝土强度等级的提高而提高,但并不与立方体轻度fcu成正比(2)粘结强度与浇筑混凝土时钢筋所处的位置有明显关系(3)钢筋混凝土构件截面上有多根钢筋并列一排时,钢筋之间净距对粘结强度有重要影响(4)混凝土保护层厚度对粘结强度有着重要影响(5)带肋钢筋与混凝土的粘结强度比用光圆钢筋时大9.结构的功能要求:(1)结构应能承受各种荷载作用—安全性(2)结构在正常使用条件下具有良好的工作性能—适用性(3)结构在正常使用和正常维护条件下,在规定时间内具有足够的耐性—耐久性(4)结构在偶然荷载作用下,能够保持整体稳定不到—稳定性10.结构的极限状态分为三类:(1)承载能力极限状态(2)正常使用极限状态(3)“破坏—安全”极限状态(填空题)11.混凝土强度标准值的分类:《公路桥规》根据混凝土立方体抗压强度标准值进行了强度等级的划分,称为混凝土强度等级,并冠以符号C来表示,规定公路桥梁受力构件的混凝土强度等级有13级,即C20~C80,中间5MP进级。

结构设计原理

结构设计原理

4.2 建筑物的重要度与基准期
结构的安全等级 建筑结构设计时,应根据结构破坏可能产生的后果(危 及人的生命、造成经济损失、产生社会影响等)的严重性, 采用不同的安全等级。
根据建筑物的重要性的不同、一旦发生破坏对人民生命财产的危害程度 以及对社会的影响的不同,《建筑结构可靠度设计统一标准》 (GB50068-2001)将建筑结构分为三级。 ◆一级建筑 破坏后果很严重的重要建筑物 γ0 =1.1 ◆二级建筑 破坏后果严重的一般建筑物 γ0 =1.0 ◆三级建筑 破坏后果不严重的次要建筑物: γ0 =0.9 见《建筑结构可靠度设计统一标准》1.0.9条
• 结构的荷载最不利分布与组合举例
• 结构的可靠性:即结构在规定的时间内, 在规定的条件下,完成预定功能的能力。
(结构的安全性、适用性和耐久性)
• 可靠度:“结构在规定的时间内,在规 定的条件下,完成预定功能的概率。” 故结构可靠度是可靠性的概率度量。
结构的可靠度是结构可靠性的概率度量,即对结构可靠 性的定量描述。
注意1:结构可靠度与结构使用年限长短有关。《统一
i 2
n
结构重要性系数 1.1(一级)、 1.0(二级)、 0.9(三级). γG:恒荷载分项系数1.2,γQ:活荷载分项 系数1.4. SGk:恒载效应标准值, SQ1k :最大的活载的 效应标准值. ψ: 其他活荷载的组合系数. SQik:其他活载效应标准值. γG SGk::恒载效应设计值. γQ SQ1k:活载的效应设计值. γ
类别 设 计 使 用 年限(年) 示 例
1
2 3 4
5
25 50 100
临时性结构
易于替换的结构构件 普通房屋和构筑物 纪念性建筑和特别重要的建筑结构
• 结构的设计使用年限

结构设计原理总结

结构设计原理总结

结构设计原理总结引言:结构设计是一门复杂而重要的学科,它涉及到建筑、工程、机械等领域。

设计一个稳定、耐久的结构不仅需要专业知识,还需要对原理和理论有深入的了解。

本文将总结一些结构设计的基本原理,希望能为读者提供一些参考。

1. 荷载与强度原理:结构的设计首先需要考虑到所承受的荷载,这包括静态荷载和动态荷载。

静态荷载是指与结构常态相关的荷载,比如自重、载荷等。

动态荷载则是指与结构运行相关的荷载,比如风荷载、地震荷载等。

结构设计需要根据这些荷载来确定结构的强度,确保其能够承受和稳定地传递荷载。

强度原理要求结构的受力部位强度要充足,能够满足荷载条件。

2. 刚度与变形原理:结构的刚度决定了其在受力时的变形程度。

刚度高的结构会有较小的变形,反之则会有较大的变形。

设计时需要根据结构的使用要求和场所要求来确定结构的刚度。

同时,还需要考虑结构的变形是否满足安全要求和审美要求。

刚度和变形原理一起考虑,可以实现结构在不超限的情况下满足使用要求。

3. 稳定与可靠性原理:结构的稳定性是指结构在受力时能够保持平衡和稳定,不发生倒塌、破坏等情况。

稳定与可靠性原理要求结构的几何形状和材料性能能够保证结构的稳定。

在设计时需要加强结构的支撑和加固,以提高结构的稳定性和可靠性。

同时,还需要合理选择材料和配筋,确保结构在使用寿命内不会发生严重破坏。

4. 经济与可施工性原理:结构设计除了考虑到强度、刚度、稳定性等要求外,还需要考虑到经济和可施工性。

经济原理要求结构的设计成本尽可能低,材料的使用量和施工难度要适中。

可施工性原理则要求结构的施工过程合理简便,不容易出现问题。

结构设计时需要平衡这些要求,既要满足功能和安全要求,又要尽量节约成本和提高施工效率。

结论:结构设计是一门综合性的学科,需要综合运用力学、材料学、工程经济学等知识。

本文总结了结构设计的一些基本原理,包括荷载与强度原理、刚度与变形原理、稳定与可靠性原理、经济与可施工性原理。

设计师在实践中应该综合考虑这些原理,以提供稳定、耐久、经济和美观的结构设计方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
混凝土与钢筋之间的胶合力; 机械咬合力:钢筋表面凹凸不平与混凝土之间产生
的局部粘结应力,变形钢筋粘结力的主要来源。 端部锚固力:钢筋端部在混凝土内的锚固作用
•粘结应力测量:
T u dl
锚固设计的基本原则是必须保证足够的锚固
粘结强度以使钢筋强度得以充分利用,即
dl u
d
4
2.1.4 钢筋的冷加工的性能
• 冷加工的方法:冷拉、冷拔、冷轧。
• 冷加工的目的:改变钢材内部结构,提高 钢材强度,节约钢筋。 • 冷加工对钢材性能的影响。 •热处理是对某些特定型号的热轧钢进行 淬火和回火处理。
冷拉经时效
(N/mm2)
d'
d
c' c
冷拉控制应力
a
b
冷拉无时效
o
残余 变形
o'
用立方体强度反映:
f 0.76 f
c
cu
(C50以下)
考虑实际情况(施工状况、养护条件等)
f 0.88 c1 c 2 f
c
cu
2. 轴心抗拉强度 ft
混凝土的抗拉强度比抗压强度小得多,
1 1 为抗压强度 ~ 。 9 18 直接测试方法
间接测试方法(弯折,劈裂)
2P ft dl
的立方体试块,在20±3℃的温度和相对湿度在90%以
上的潮湿空气中养护28天,用标准试验方法测得具有
95%保证率的抗压强度。 常用等级:C15,C20, C25,C30, C35, C40, C45,C55, C60,C65 ,
C70, C75, C80
(2). 轴心抗压强度 fc
真实反映以受压为主的混凝土结构构件的抗 压强度。 150mm×150mm×300mm 棱柱体
hot rolled ribbed bar remained heat treatment ribbed bar
HRB335
RRB400
1.1
钢筋的物理力学性能
2.1.2 钢筋的强度与变形
• 钢筋的- 曲线
P
A
l
P A l l
P
(N/mm2)
ft
流幅 极限强度
(N/mm2)
热处理钢筋
对某些特定钢号的热轧钢筋进行加热、淬火和回 火等调质工艺得到。
• 热轧钢筋按其强度由低到高分为HPB235、HPB300,
HRB335、HRB400和RRB400, HRB500
光面钢筋
螺纹钢筋
人字纹钢筋
月牙纹钢筋
热轧钢筋的屈服强度
种类 HPB 300
符号

fy 270
f'y 270
HRB 335(20MnSi)
混凝土强度的影响
强度等级越高,线弹性段越长,峰值应变也有所增大。但高强混凝土 中,砂浆与骨料的粘结很强,密实性好,微裂缝很少,最后的破坏往往 是骨料破坏,破坏时脆性越显著,下降段越陡。
单轴受压时的应力-应变关系的数学模型
c
fc
c f c 1 0.15


c 0 u 0
徐变的影响因素:
混凝土的级配、水灰比、初始加载龄期、初应 力大小,养护使用条件等。 线性徐变 初应力 c0.5fc 徐变性质: 徐变与初应力呈正比 非线性徐变
c > 0.5fc
当c > 0.8fc ,徐变发展最终导致破坏 0.8fc 作为混凝土的长期抗压强度。
徐变对结构的影响:
使构件的变形增加; 在截面中引起应力重分布; 在预应力混凝土结构中引起预应力损失。
u=0.0038
o
美国Hognestad模型
德国Rü sch模型
混凝土的弹性模量
c
ce cp
k
h

0
0
c

弹性模量:
10 5 Ec ( N/mm 2 ) 34.7 2.2 f cu,k
剪切模量:
G = 0.4Ec
(4) 混凝土的徐变
徐变:
混凝土在受到荷载作用后,在荷载(应力) 不变 的情况下,变形(应变)随时间而不断增长的现象。
第二章
钢筋混凝土材料的 物理力学性能
(N/mm2) (N/mm2)
o

o

2.1 钢筋 2.1.1 钢筋的品种与级别
热轧钢筋
为低碳钢和普通低合金钢在高温状态下轧制而成。
冷加工钢筋 建筑中常 用钢筋分 为四类
通过对某些等级的热轧钢筋进行冷加工处理。 分为:冷拉钢筋和冷拔钢筋;(已淘汰)
钢丝
将钢筋冷拔后,校直,经中温回火处理消除应力 后得到
1.混凝土的受力变形 (1) 混凝土一次短期加载的应力-应变关系
OA––– 弹性阶段 AB––– 弹塑性阶段
A : 0.3fc
: 0.3fc~ 0.8fc 裂缝稳定阶段
BC––– 裂缝不稳定阶段 : 0.8 fc~ 1.0 fc
特征点: fc ––– 轴心抗压强度
0 ––– 对应于峰值点应变 《规 范》0 = 0.002 cu ––– 混凝土极限压应变《规 范》cu = 0.0033
工程应用:约束混凝土 钢管砼 密配螺旋箍筋
4 复杂受力状态下混凝土的强度 剪压或剪拉复合应力状态 ①随着拉应力的增大 , 混凝土的抗剪强度降低。 ②随着压应力的增大 , 混凝土的抗剪强度逐渐增大;当压应 力超过某一数值后,抗剪强度随压应力增大而减小。
混凝土的剪压复合强度
2.2.2 混凝土的变形性能
f t f tk / c
γc=1.4
3. 复合应力状态下混凝土强度(重点)
双向正应力作用
1, 2 (压-压) 强度增加 1, 2 (拉-压) 强度降低 1, 2 (拉-拉) 强度基本不变
1 / fc
0 .1 1 .2 1 .0
0 . 8 0 .6 0 .4 0 .2 0 0 .2
2 混凝土的体积变形
(1) 混凝土的收缩和膨胀 收缩:混凝土在空气中结硬体积减小的现象。
0.4 0.3 蒸汽养护 0.2 常温养护
0.1
0 5 10 时间 (月) 15 20
膨胀:混凝土在水中或饱和湿度情况下,结硬时体积增大的现象
自由收缩 收缩的性质 约束收缩 来自内部的钢筋约束
来自支座的外部约束
收缩对结构的影响
自由收缩一般不会引起拉 应力,故不会开裂 约束收缩产生收缩应力甚 至开裂
(2)混凝土温度变形
热胀冷缩,线膨胀系数:(1.2-1.5)*10-5
2.3 钢筋与混凝土间的粘结
产生钢筋和混凝土粘结强度的主要原因: 摩擦力:混凝土收缩将钢筋紧紧握固而产生 的摩擦力; 化学胶合力:混凝土颗料的化学作用产生的
热轧钢筋 HRB 400(20MnSiV、 20MnSiNb、20MnTi) RRB 400(K20MnSi) HRB500
300
360
R
300
360
360
435
360
410
注意:当用作受剪、受扭和受冲击承载力计算时,上述数值 大于360MPa时应取360MPa.
1.1 钢筋的物理力学性能
热轧钢筋的符号说明
冷弯要求
l2 l1 100 % l1
3.可焊性 4.与砼的粘结力
2.2 混凝土
混凝土的组份: 水泥、石、砂、水按一定的配合比制成不 同等级的砼。 骨料 水泥结晶体 弹性变形的基础 塑性变形的基础
水泥凝胶体
混凝土的强度及变形随时间、随环境的变化而变化。
2.2.1 混凝土的强度 1. 抗压强度
f 0.26(f )
t cu
2 3
考虑施工因素,取
f t ,k 0.88 c 2 0.395 f
0.55 cu , k
1 1.645
0.45
设计值与标准值

钢筋
f y f yk / s
混凝土
γs=1.1(软钢) γs=1.2(硬钢)
f c f ck / c
(1). 立方体的抗压强度 fcu
• 影响立方体强度的因素:内因:如强度与水 泥标号、骨料品种、配合比等 • 外因:试验方法(箍套)、温度、湿度、试 件尺寸。 由于尺寸效应的影响: fcu(150) = 0.95 fcu(100)
fcu(150) = 1.05 fcu(200)
混凝土强度等级: 用标准制作方式制成的150mm×150mm×150mm
2 / fc
1
0 .4
2 1.27 f c 2 2c 1
2
1
2
0 .6
0 .8
ห้องสมุดไป่ตู้
2 2c 1 1.5 f c
1 .0
1 .2
max 1 1.27 f c
1 0.5 f c
三轴受压
抗压强度提高: f cc f c 4.1 2
对于无明显屈服台阶的硬钢取条件屈服
强度 0.2作为强度设计依据。
0.2的定义:
取相应于残余应变 = 0.2%时的应力 0.2作 为名义屈服点。常取 0.2=0.8 fsu。 伸长率:
l2 l1 100 % l1
5 10 l1 5d l1 10 d
…1-1
0.15fc
c
fc
2 c f c 1 1 c 0
2 c f c 1 1 c 0
c
o
c 0=0.002 u=0.0035
0=0.002
冷拉率

(b)
(a)
d1 d1
P
d2
d2
(a) 为冷拉,可采用冷拉控制应力和冷拉率控制。
相关文档
最新文档