人教版八年级数学上第十四章《整式乘法与因式分解》全章教案
人教初中数学八上《第十四章整式的乘法与因式分解》教案
《第十四章整式的乘法与因式分解》一.教学目标1.理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.2.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊到般再到特殊的认知规律二.教学重点,难点:正确理解同底数幂的乘法法则以及适用范围三.教学过程:(一)板书标题,呈现教学目标:1.理解同底数幂的乘法法则,2.运用同底数幂的乘法法则解决一些实际问题.(二)引导学生自学:阅读P141-142练习并思考以上问题:1.an 表示的意义是什么?其中a、n、an分别叫做什么?2.同底数幂的乘法法则是什么?如何用式子表示?对于三个以上的同底数幂相乘,这个法则仍适用吗?3.完成P142练习6分钟后,检查自学效果(三)学生自学,教师巡视:学生认真自学,并完成P142练习(四)检查自学效果:1.学生回答老师所提出的问题2.学生回答P142练习(五)引导学生更正,归纳:1.更正学生错误;2. 同底数幂的乘法: a m·a n=a m+n(m、n都是正整数),即为:同底数幂相乘,底数不变,指数相加注意:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加三是对于三个以上的同底数幂相乘,这个法则仍适用3.底数不变,指数要降一级运算,变为相加.底数不相同时,不能用此法则.4.底数互为相反数时,要先化为底数相同再计算。
当底数为一个多项式的时候,我们可以把这个多项式看成一个整体(六)课堂练习1.课本P142练习2.计算:1)(-a )2×a4 2)(-21)3×21 6 3)(a+b )2×(a+b)4×[-(a+b)]74)(m-n )3×(m-n)4×(n-m)7 5)a 2×a ×a 5+a 3×a 2×a2作业:.<感悟>P103教学反思:。
部编版人教数学八年级上册《第十四章(整式的乘法与因式分解)全章每课备课资料教案》精品
最新精品部编版人教初中八年级数学上册第十四章整式的乘法与因式分解优秀备课资料教案(全章完整版)前言:该备课资料教案由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的备课资料教案是高效课堂的前提和保障。
(最新精品备课资料教案)第十四章 14.1.1同底数幂的乘法知识点:同底数幂的乘法法则同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m,n都是正整数).关键提醒:(1)同底数幂是指相同的底数,如23与24,(ab)2与(ab)5,(x-y)5,(x-y)3与(x-y)2.底数可以是任意的有理数,也可以是单项式、多项式.(2)运用同底数幂的乘法法则计算的关键是:①底数相同,可直接运用公式计算;②若底数不同又可化为相同的底数,必须先变异底为同底,再用此法则运算;③三个或三个以上同底数幂相乘时,也是有同一性质,如a m·a n·a p=a m+n+p(m,n,p都是正整数);④逆用这个性质,可以把一个幂分解成两个同底数幂的积,其中它们的底数与原来的底数相同.它们的指数之和等于原来的幂的指数,如35=32·33,a3=a·a2.考点1:逆用同底数幂的乘法法则解决问题【例1】已知x a=5,x b=7,求x a+b的值.解:x a+b=x a·x b=5×7=35.点拨:因为a m·a n=a m+n,所以a m+n=a m·a n,本题逆用同底数幂的乘法法则求解.考点2:底数为多项式的同底数幂相乘【例2】计算:(1)(a+b)3(a+b)4;(2)(m-n)2(n-m)3.解:(1)(a+b)3(a+b)4=(a+b)7.(2)(m-n)2(n-m)3=(n-m)2(n-m)3=(n-m)5.点拨:当底数为多项式时,我们可将其看作一个整体,利用同底数幂的乘法法则求解.第十四章 14.1.2幂的乘方知识点:幂的乘方幂的乘方,底数不变,指数相乘,即(a m)n=a mn(m,n为正整数).关键提醒:(1)幂的乘方法则是根据乘方的定义及同底数幂的乘法法则得到的结论:(a m)n= ==a mn.(2)不要把幂的乘方性质与同底数幂的乘法性质混淆.幂的乘方运算,转化为指数乘方运算(底数不变);同底数幂的乘法,是转化成指数的加法运算(底数不变).(3)公式的逆运用:a mn=(a m)n=(a n)m.考点1:逆用幂的乘方法则解决问题【例1】(1)若=a9,求n;(2)已知5m=8,求25m.解:(1)因为(a n)3=a3n,所以由3n=9得n=3;(2)25m=(52)m=(5m)2=82=64.点拨:对于“5的几次方等于8”的问题,我们将在高中阶段学习,本题利用数学中的整体思想,将5m看作整体进行代换.考点2:幂的乘方与同底数幂相乘的混合运算【例2】计算:(1)y··;(2)2m3·m5-(m2)4.解:(1)y··=y·y6·y6=y13;(2)2m3·m5-=2m8-m8=m8.点拨:本题运算顺序是先乘方,再乘法,最后加减.第十四章 14.1.3积的乘方知识点:积的乘方积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘,即(ab)n=a n b n(n为正整数).关键提醒:(1)积的乘方法则是用乘方的意义推理得到的.如:(ab)n= =·=a n b n.(2)此性质可以逆运用a n b n=(ab)n.(3)三个或三个以上因式的积的乘方,也有这一性质,如(abc)n=a n b n c n.考点1:逆用积的乘方巧解题【例1】计算:(1) 0.125299×(-8)299;(2)×.。
初中数学人教版八年级上册:第14章《整式的乘除与因式分解》全章教案(22页)
初中数学人教版八年级上册实用资料第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.重点正确理解同底数幂的乘法法则.难点正确理解和应用同底数幂的乘法法则.一、提出问题,创设情境复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.(出示投影片)提出问题:(出示投影片)问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?[师]能否用我们学过的知识来解决这个问题呢?[生]运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.[师]1015×103如何计算呢?[生]根据乘方的意义可知1015×103=(10×10×…×10)15个10×(10×10×10)=(10×10×…×10)18个10=1018.[师]很好,通过观察大家可以发现1015、103这两个因数是同底数幂的形式,所以我们把像1015,103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.二、探究新知1.做一做(出示投影片)计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n.(m,n都是正整数)你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.[师]根据乘方的意义,同学们可以独立解决上述问题.[生](1)25×22=(2×2×2×2×2)×(2×2)=27=25+2.因为25表示5个2相乘,22表示2个2相乘,根据乘方的意义,同样道理可得a3·a2=(a·a·a)(a·a)=a5=a3+2.5m·5n=(5×5·…·5),\s\do4(m个5))×(5×5·…·5),\s\do4(n个5))=5m+n.[生]我们可以发现下列规律:a m·a n等于什么(m,n都是正整数)?为什么?(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.2.议一议(出示投影片)[师生共析]a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a×a·…·a)m个a·(a×a·…·a)n个a=a·a·…·a(m+n)个a=a m+n于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[师]请同学们用自己的语言解释“同底数幂相乘,底数不变,指数相加”的道理,深刻理解同底数幂的乘法法则.[生]a m表示m个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.[师]也就是说同底数幂相乘,底数不变,指数要降一级运算,变为相加.3.例题讲解出示投影片[例1]计算:(1)x2·x5; (2)a·a6;(3)2×24×23; (4)x m·x3m+1.[例2]计算a m·a n·a p后,能找到什么规律?[师]我们先来看例1,是不是可以用同底数幂的乘法法则呢?[生1](1),(2),(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.[生2](3)也可以,先算两个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.[师]同学们分析得很好.请自己做一遍.每组出一名同学板演,看谁算得又准又快.生板演:(1)解:x2·x5=x2+5=x7;(2)解:a·a6=a1·a6=a1+6=a7;(3)解:2×24×23=21+4·23=25·23=25+3=28;(4)解:x m·x3m+1=x m+(3m+1)=x4m+1.[师]接下来我们来看例2.受(3)的启发,能自己解决吗?与同伴交流一下解题方法.解法一:a m·a n·a p=(a m·a n)·a p=a m+n·a p=a m+n+p;解法二::a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p;解法三:a m·a n·a p=(a·a…a)m个a·(a·a…a)n个a·(a·a…a)p个a=a m+n+p归纳:解法一与解法二都直接应用了运算法则,同时还运用了乘法的结合律;解法三是直接应用乘方的意义.三种解法得出了同一结果.我们需要这种开拓思维的创新精神.[生]那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加.[师]是的,能不能用符号表示出来呢?[生]am1·am2·am3·…am n=am1+m2+m3+…m n.[师]鼓励学生.那么例1中的第(3)题我们就可以直接应用法则运算了.2×24×23=21+4+3=28.三、随堂练习1.m14可以写成()A.m7+m7B.m7·m7C.m2·m7D.m·m142.若x m=2,x n=5,则x m+n的值为()A.7 B.10 C.25D.523.计算:-22×(-2)2=________;(-x)(-x2)(-x3)(-x4)=________.4.计算:(1)(-3)2×(-3)5;(2)106·105·10;(3)x2·(-x)5;(4)(a+b)2·(a+b)6.四、课堂小结[师]这节课我们学习了同底数幂的乘法的运算性质,请同学们谈一下有何新的收获和体会呢?[生]在探索同底数幂乘法的性质时,进一步体会了幂的意义,了解了同底数幂乘法的运算性质.[生]同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,我觉得应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n是正整数).五、课后作业教材第96页练习.本课的主要教学任务是“同底数幂乘法的运算性质”:同底数幂相乘,底数不变,指数相加. 在课堂教学时,通过幂的意义引导学生得出这一性质,接着再引导学生深入探讨同底数幂运算,幂的底数可以是“任意有理数、单项式、多项式”,训练学生的整体思想.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.重点会进行幂的乘方的运算.难点幂的乘方法则的总结及运用.一、复习引入(1)叙述同底数幂乘法法则,并用字母表示:(2)计算:①a2·a5·a n;②a4·a4·a4.二、自主探究1.思考:根据乘方的意义及同底数幂的乘法填空,看看计算结果有什么规律:(1)(32)3=32×32×32=3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a().(m是正整数)2.小组讨论对正整数n,你认识(a m)n等于什么?能对你的猜想给出验证过程吗?幂的乘方(a m)n=a m·a m·a m…a m n个=am+m+m+…m,\s\up6(n个m))=a mn字母表示:(a m)n=a mn(m,n都是正整数)语言叙述:幂的乘方,底数不变,指数相乘.注意:幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2的结果错误地写成a7,也不能把a5·a2的计算结果写成a10.三、巩固练习1.下列各式的计算中,正确的是()A.(x3)2=x5B.(x3)2=x6C.(x n+1)2=x2n+1D.x3·x2=x62.计算:(1)(103)5; (2)(a4)4;(3)(a m)2; (4)-(x4)3.四、归纳小结幂的乘方的意义:(a m)n=a mn.(m,n都是正整数)五、布置作业教材第97页练习.运用类比方法,得到了幂的乘方法则.这样的设计起点低,学生学起来更自然,对新知识更容易接受.类比是一种重要的数学思想方法,值得引起注意.14.1.3积的乘方1.经历探索积的乘方和运算法则的过程,进一步体会幂的意义.2.理解积的乘方运算法则,能解决一些实际问题.重点积的乘方运算法则及其应用.难点幂的运算法则的灵活运用.一、问题导入[师]提出的问题:若已知一个正方体的棱长为1.1×103cm,你能计算出它的体积是多少吗?[生]它的体积应是V=(1.1×103)3cm3.[师]这个结果是幂的乘方形式吗?[生]不是,底数是1.1与103的乘积,虽然103是幂,但总体来看,我认为应是积的乘方才有道理.[师]积的乘方如何运算呢?能不能找到一个运算法则?用前两节课的探究经验,请同学们自己探索,发现其中的奥妙.二、探索新知老师列出自学提纲,引导学生自主探究、讨论、尝试、归纳.(出示投影片)1.填空,看看运算过程用到哪些运算律,从运算结果看能发现什么规律?(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a()b();(2)(ab)3=________=________=a()b();(3)(ab)n=________=________=a()b().(n是正整数)2.把你发现的规律先用文字语言表述,再用符号语言表达.3.解决前面提到的正方体体积计算问题.4.积的乘方的运算法则能否进行逆运算呢?请验证你的想法.5.完成教材第97页例3.学生探究的经过:1.(1)(ab)2=(ab)·(ab)=(a·a)·(b·b)=a2b2,其中第①步是用乘方的意义;第②步是用乘法的交换律和结合律;第③步是用同底数幂的乘法法则.同样的方法可以算出(2),(3)题;(2)(ab)3=(ab)·(ab)·(ab)=(a·a·a)·(b·b·b)=a3b3;(3)(ab)n=(ab)·(ab)·…·(ab)n个ab=a·a·…·an个a·b·b·…·bn个b=a n b n.2.积的乘方的结果是把积的每一个因式分别乘方,再把所得的幂相乘,也就是说积的乘方等于幂的乘积.用符号语言叙述便是:(ab)n=a n·b n.(n是正整数)3.正方体的V=(1.1×103)3它不是最简形式,根据发现的规律可作如下运算:V=(1.1×103)3=1.13×(103)3=1.13×103×3=1.13×109=1.331×109(cm3).通过上述探究,我们可以发现积的乘方的运算法则:(ab)n=a n·b n.(n为正整数)积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.再考虑如下问题:(abc)n如何计算?是不是也有类似的规律?3个以上的因式呢?学生讨论后得出结论:三个或三个以上因式的积的乘方也具有这一性质,即(abc)n=a n·b n·c n.(n为正整数) 4.积的乘方法则可以进行逆运算.即a n·b n=(ab)n.(n为正整数)分析这个等式:左边是幂的乘积,而且幂指数相同,右边是积的乘方,且指数与左边指数相等,那么可以总结为:同指数幂相乘,底数相乘,指数不变.看来这也是降级运算了,即将幂的乘积转化为底数的乘法运算.对于a n·b n=(a·b)n(n为正整数)的证明如下:a n·b n=(a×a×…×a)n个a(b×b×…×b)n个b——幂的意义=(ab)(ab)(ab)(ab)…(ab)n个(ab)——乘法交换律、结合律=(a·b)n——乘方的意义5.[例3](1)(2a)3=23·a3=8a3;(2)(-5b)3=(-5)3·b3=-125b3;(3)(xy2)2=x2·(y2)2=x2·y2×2=x2·y4=x2y4;(4)(-2x3)4=(-2)4·(x3)4=16·x3×4=16x12.(学生活动时,老师深入到学生中,发现问题,及时启发引导,使各个层面的学生都能学有所获)[师]通过自己的努力,发现了积的乘方的运算法则,并能做简单的应用.可以作如下归纳总结:(1)积的乘方法则:积的乘方等于每一个因式乘方的积.即(ab)n=a n·b n.(n为正整数)(2)三个或三个以上的因式的积的乘方也是具有这一性质.如(abc)n=a n·b n·c n;(n为正整数)(3)积的乘方法则也可以逆用.即a n·b n=(ab)n,a n·b n·c n=(abc)n.(n为正整数)三、随堂练习1.教材第98页练习.(由学生板演或口答)四、课堂小结(1)通过本节课的学习,你有什么新的体会和收获?(2)在应用积的运算性质计算时,你觉得应该注意哪些问题?五、布置作业(1)(-2xy)3;(2)(5x3y)2;(3)[(x+y)2]3;(4)(0.5am3n4)2.本节课属于典型的公式法则课,从实际问题猜想——主动推导探究——理解公式——应用公式——公式拓展,整堂课体现以学生为本的思想。
人教版八年级数学第十四章《整式的乘法与因式分解》教案
第十四章整式的乘法与因式分解1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算,能根据幂的各种运算性质解决数学问题和简单的实际问题.2.了解零指数幂的意义;探索整式乘除法的法则,会进行简单的乘除法运算.3.要求学生说出平方差公式和完全平方式的特点,能正确地利用平方差公式和完全平方式进行多项式的乘法.4.了解因式分解的意义及其与整式乘法之间的关系,从中体会事物之间可以相互转化的思想,学会用提公因式法、公式法(直接用公式不超过两次)进行因式分解(指数是正整数).让学生主动参与到一些探索过程中来,逐步形成独立思考、主动探索的习惯,培养思维的批判性、严密性和初步解决问题的能力.通过本章中一些生活实例的学习,体会数学与生活之间的密切联系,在一定程度上了解数学的应用价值,提高学生学习的兴趣.本章是整式的加减的后续学习,首先,从幂的运算开始入手,逐步展开整式的乘除法运算;接着,在整式的乘法中提炼出两种特殊的乘法运算,即两个乘法公式;最后,从整式乘法的逆过程出发,引入因式分解的相关知识.本章主要有如下特点:1.注重知识形成的探索过程,让学生在探索过程中领悟知识,在领悟的过程中建构体系,从而更好地实现知识体系的更新和知识的正向迁移.2.知识内容的呈现方式力求与学生已有的知识结构相联系,同时兼顾学生的思维水平和心理特征.3.让学生掌握基本的数学事实与数学活动经验,减轻不必要的记忆负担.4.注意从生活中选取素材,给学生提供一些交流、讨论的空间,让学生从中体会数学的应用价值,逐步养成谈数学、想数学、做数学的良好习惯.5.教材的安排、例题的讲解与习题的处理都给教师留有较大的余地与足够的空间,教师能根据各地学生的实际情况,充分发挥自己的教学主动性和积极性,创造性地进行教学.【重点】1.理解和掌握幂的运算性质.2.掌握整式的乘除运算方法,理解乘法公式,能对多项式进行因式分解.【难点】1.整式的乘除运算.2.利用乘法公式进行计算,利用提公因式法和因式分解法对多项式进行因式分解.1.幂的运算是整式乘除的基础,在教学幂的运算性质时,要让学生经历探索的过程,通过特例计算,自己概括出有关运算法则,理解并掌握这些法则,并能用来进行简单的计算.要注意留给学生探索与交流的空间,让学生在自己的实践中获得运算法则.在教学中要注意渗透化归的思想.对于整式的乘除法要让学生通过适当的尝试,获得一些直接体验,体验单项式与单项式相乘的运算规律,在此基础上总结出整式乘除法的一些运算法则,对于一些法则的获得要注意结合图形,让学生体会特点,从而加深对知识的理解和掌握.2.对于乘法公式的教学,要留出更多的时间和空间让学生自主探索,发现规律,体验乘法公式的来源,理解公式的意义和作用,降低对公式的记忆要求.教学时可以让学生直接计算较为简单的情况,在此基础上指出这一乘法结果的普遍性.教师要注意从已有的整式乘法的知识中提炼出这一乘法公式,让学生明确公式来源于整式的乘法,又应用于整式乘法的辩证性.3.对于因式分解这部分内容,要注意留给学生讨论的时间,引导学生进行归纳、概括.注意教给学生因式分解的方法和步骤,强化提公因式法和公式法的结构特点,让学生在不断练习中得以巩固和提高.总之,在本章的教学中,教师要创造性地使用教材,充分发挥自己在教学中的组织、引导、合作的作用,通过创设一定的问题情境,帮助学生在做一做、探索、交流与讨论中,主动地去获取知识.本章的教学中,教师不要人为地增加学生的记忆负担,提高对学生的要求,也不要人为地补充一些繁、难、偏、旧的内容,根据学生的具体情况,可以在某些具体问题上,让一部分学有余力的学生得到更好的发展,体现教材的弹性.14.1整式的乘法1.了解幂的意义,并学会简单的同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法的运算.2.从幂的运算入手,逐步展开整式的乘法,要了解单项式与单项式、单项式与多项式、多项式与多项式相乘的法则,会进行简单的整式乘法的计算.3.通过计算,提高学生独立思考、主动探索的能力.1.在推理的过程中,让学生学会类比的方法,培养学生的观察、抽象、概括的能力.2.在观察的过程中,让学生掌握整式乘法的一些计算方法,并能运用这些方法进行计算.1.让学生体验从特殊到一般的过程,能自己在实践中总结概括法则.2.培养学生学习数学的积极性,让学生树立热爱数学的情感.【重点】1.同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法法则.2.整式的乘法法则.【难点】1.能正确进行同底数幂的乘法、幂的乘方、积的乘方及同底数幂的除法计算.2.整式的乘法的一些计算.14.1.1同底数幂的乘法1.理解同底数幂的乘法法则.2.能运用同底数幂的乘法法则解决一些实际问题.1.在进一步体会幂的意义时,发展推理能力和有条理的表达能力.2.通过“同底数幂的乘法法则”的推导和应用,使学生初步理解特殊到一般,一般到特殊的认知规律.体会科学的思想方法,激发学生探索创新的精神.【重点】正确理解同底数幂的乘法法则.【难点】正确理解和应用同底数幂的乘法法则.【教师准备】多媒体课件(1,2,3).【学生准备】复习幂的意义.导入一:复习a n的意义:a n表示n个a相乘,我们把这种运算叫做乘方,乘方的结果叫做幂;a叫做底数,n是指数.提出问题:一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103秒可进行多少次运算?【师】能否用我们学过的知识来解决这个问题呢?【生】运算次数=运算速度×工作时间,所以计算机工作103秒可进行的运算次数为:1015×103.【师】1015×103如何计算呢?【生】根据乘方的意义可知:1015×103=(10× (10)15个10×(10×10×10)=(10×10× (10)18个10=1018.【师】很好,通过观察大家可以发现1015,103这两个因数是同底数幂的形式,所以我们把像1015×103的运算叫做同底数幂的乘法,根据实际需要,我们有必要研究和学习这样的运算——同底数幂的乘法.[设计意图]首先让学生回忆幂的一些知识,然后根据教材中的问题1让学生列式、观察并计算出结果,从而导入到本节课的学习之中.导入二:“盘古开天辟地”的故事:公元前一百万年,没有天没有地,整个宇宙是混沌的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【师】盘古的左眼变成了太阳,那么太阳离我们多远呢?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒,你能计算出地球距离太阳大约有多远吗?【生】可以列出算式:3×105×5×102=15×105×102=15ד?”.(引入课题)[设计意图]从远古到现代,让学生感受传说,极大地激发了学生的学习热情,同时相应问题的提出,也为学习同底数幂的乘法埋下了伏笔.导入三:北京奥运场馆一平方千米的土地上,一年内从太阳得到的能量相当于燃烧108千克煤所产生的能量.那么105平方千米的土地上,一年内从太阳得到的能量相当于燃烧多少千克煤?【师】你们能列式吗?(学生讨论得出108×105)【师】108,105我们称之为什么?(幂)【师】我们再来观察底数有什么特点?【生1】都是10.【生2】是一样的.【师】像这样底数相同的两个幂相乘的运算,我们把它叫做同底数幂的乘法.(揭示课题) [设计意图]利用提问题,一方面可以集中学生注意力,使之较快进入课堂学习状态,另一方面可以对学生进行爱国主义教育,增强学生的环保意识.问题1【课件1】计算下列各式:(1)25×22;(2)a3·a2;(3)5m·5n(m,n都是正整数).你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.【师】根据乘方的意义,同学们可以独立解决上述问题.【生】25×22 =(2×2×2×2×2)×(2×2)=27 =25+2.25表示5个2相乘,22表示2个2相乘,根据乘方的意义:a3·a2=(a·a·a)·(a·a)=a5=a3+2.5m.5n=(5×5× (5)m个5×(5×5× (5)n个5=5m+n.(让学生自主探索,在启发性设问的引导下发现规律,并用自己的语言叙述)【生】我们可以发现下列规律:(1)这三个式子都是底数相同的幂相乘;(2)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.【师生共析】a m·a n表示同底数幂的乘法,根据幂的意义可得:a m·a n=(a×a×…×a)m个a ×(a×a×…×a)n个a=a m+n.于是有a m·a n=a m+n(m,n都是正整数),用语言来描述此法则即为:“同底数幂相乘,底数不变,指数相加”.[知识拓展]同底数幂是具有相同底数的幂.(1)幂可以看做是代数式中的一类,是形如a n的代数式.目前,在我们研究的这类式子中,可以是任何有理数,也可以是整式,而a n中的n只能是正整数.(2)35与155不是同底数幂,因为它们的底数一个是3,一个是15,是不一样的,这说明两个幂是不是同底数幂,与它们的指数是否相同毫无关系.(3)53与515是同底数幂,因为它们的底数相同(都是5).同理,x3与x5,(a+b)2与(a+b)5也都是同底数幂.同底数幂的乘法法则的关键在于底数,底数一定要相同,并且二者是相乘关系,这样指数才能相加,否则不能运用此法则.问题2(针对导入三)1.探索108×105等于多少.(鼓励学生大胆猜想)学生可能会出现以下几种情况:①10013;②1040;③10040;④1013.[设计意图]猜想产生疑问,激发兴趣,为学生推导公式做好情感铺垫.【师】那到底谁的猜想正确呢?小组合作讨论,生回答,师板演:108× 105=(10× 10×…×10) 8个10×(10 × 10× (10)5个10=10×10×…×10 13个10=1013.即108× 105=108+5. [设计意图]师给出适当的提示后,相信学生能在已有的知识基础上,利用集体的智慧,找出猜想中的正确答案,并通过“转化”思想得出结论,也找到了正确的推理过程.2.出示问题:(学生口答,课件显示过程)a 6·a 9=(a ·a ·…·a ) 6个a·(a ·a ·…·a )9个a=a ·a ·…·a 15个a=a 15. 即a 6·a 9=a 6+9.3.观察以上两个式子,你有什么发现? 【师】这是两个特殊的式子,它们的指数分别是8,5;6,9.底数相同的两数的任何次幂相乘,都是底数不变,指数相加吗?能找到一个具有一般性,代表性的式子吗?a m ·a n 怎么计算?[设计意图]a6·a9和a m·a n的推导过程由于108·105打好了坚实的基础,所以用填空的形式简化公式的推导过程,既避免了重复教学过程,也节约时间,同时也能达到让学生经历从具体到一般的推导过程.【板书】a m·a n=a m+n(m,n都是正整数).师补充解释m,n都是正整数的原因,并请学生用自己的语言概括该结论,之后全体学生用精炼的文字概括表述.【板书】同底数幂相乘,底数不变,指数相加.[设计意图]全班学生参与活动,经历从理解法则的含义的概括到用十分准确简练的语言概括过程,从而提高学生的表达能力.问题3【课件2】(教材例1)计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.计算a m·a n·a p后,能找到什么规律?【师】我们先来看例1,是不是可以用同底数幂的乘法法则呢?【生1】(1)(2)(4)可以直接用“同底数幂相乘,底数不变,指数相加”的法则.【生2】(3)也可以,先算2个同底数幂相乘,将其结果再与第三个幂相乘,仍是同底数幂相乘,再用法则运算就可以了.【师】同学们分析得很好.请自己做一遍,每组出一名同学板演,看谁算得又准又快.【生板演】(1)解:x2·x5=x2+5=x7.(2)解:a·a6=a1+6=a7.(3)解:(-2)×(-2)4×(-2)3=(-2)5×(-2)3=(-2)8=256.(4)解:x m·x3m+1=x m+3m+1=x4m+1.【师】接下来我们来看例2.受例1中第(3)题的启发,能自己解决吗?与同伴交流一下解题方法.解法1:a m·a n·a p=(a m·a n)·a p=a m+n·a p =a m+n+p.解法2:a m·a n·a p=a m·(a n·a p)=a m·a n+p=a m+n+p.解法3:a m·a n·a p= (a×a×…×a)m个a ×(a×a×…×a)n个a×(a×a×…×a)p个a=a m+n+p.【归纳】解法1与解法2都直接应用了运算法则,同时还运用了乘法的结合律;解法3是直接应用乘方的意义.三种解法得出了同一结果,我们需要这种开拓思维的创新精神.【生】那我们就可以推断,不管是多少个幂相乘,只要是同底数幂相乘,就一定是底数不变,指数相加呢?【师】是的,能不能用符号表示出来呢?【生】a m1·a m2·a m3·…·a m n=a m1+m2+m3+…+m n.【师】(鼓励学生)那么例1中的第(3)题我们就可以直接应用法则运算了.(-2)×(-2)4×(-2)3=(-2)1+4+3=(-2)8=256.1.同底数幂的乘法的运算性质是底数不变,指数相加.应用这个性质时,应注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m·a n=a m+n(m,n 都是正整数).2.推广:a m·a n·a p=a m+n+p.3.(课件3)注意:在应用同底数幂乘法法则时,注意以下几点:(1)底数必须相同,如23与25,(a2b2)3与(a2b2)4,(x-y)2与(x-y)5等.(2)a可以是单项式,也可以是多项式.(3)按照运算性质,只有相乘时才是底数不变,指数相加.1.计算a6×a3的结果是()A.a9B.a2C.a18D.a3解析:原式=a6+3=a9.故选A.2.下列计算正确的是()A.x·x2=x2B.x2·x2=2x2C.x2+x3=x5D.x2·x=x3解析:A.底数不变,指数相加,故A错误;B.底数不变,指数相加,故B错误;C.不是同底数幂的乘法,指数不能相加,故C错误;D.底数不变,指数相加,故D正确.故选D.3.计算(-a)3·(-a)2的正确结果是()A.a5B.-a5C.a6D.-a6解析:原式=(-a)3+2=(-a)5=-a5.故选B.4.计算.(1)(-5)×(-5)2×(-5)3;(2)(-a)·(-a)3;(3)-a3·(-a)2;(4)(a-b)2·(a-b)3;(5)(a+1)2·(1+a)·(a+1)3.解析:利用同底数幂乘法法则进行计算,底数不同的利用互为相反数的奇偶次幂的性质进行转化.解:(1)(-5)×(-5)2×(-5)3=(-5)6=56.(2)(-a)·(-a)3=(-a)4=a4.(3)-a3·(-a)2=-a3·a2=-a5.(4)(a-b)2·(a-b)3=(a-b)5.(5)(a+1)2·(1+a)·(a+1)3=(a+1)6.14.1.1同底数幂的乘法1.法则2.公式例题讲解例1例2一、教材作业【必做题】教材第96页练习.【选做题】教材第104页习题14.1第9,10题.二、课后作业【基础巩固】1.计算(-x2)·x3的结果是()A.x5B.-x5C.x6D.-x62.下列计算正确的是()A.a3·a2=a6B.b4·b4=2b4C.x5+x5=x10D.y7·y=y83.下列运算正确的是()A.a5·a5=2a5B.a5+a5=a10C.a5·a5=2a10D.a5·a5=a104.a2014可以写成()A.a2010+a4B.a2010·a4C.a2014·aD.a2007·a20075.下列运算错误的是()A.(-a)(-a)=(-a)2B.-32·(-3)4=(-3)6C.(-a)3·(-a)2=(-a)5D.(-a)3·(-a)3=a6【能力提升】6.设a m=8,a n=16,则a m+n等于()A.24B.32C.64D.1287.下列各式成立的是()A.(x-y)2=-(y-x)2B.(x-y)n=-(y-x)n(n为正整数)C.(x-y)2(y-x)2=-(x-y)4D.(x-y)3(y-x)3=-(x-y)6【拓展探究】8.阅读材料:求1+2+22+23+24+…+22013的值.解:设S=1+2+22+23+24+…+22012+22013,将等式两边同时乘以2得:2S=2+22+23+24+25+…+22013+22014,将下式减去上式得2S-S=22014-1,即S=22014-1,即1+2+22+23+24+…+22013=22014-1.请你仿照此法计算:(1)1+2+22+23+24+ (210)(2)1+3+32+33+34+…+3n(其中n为正整数).【答案与解析】1.B(解析:(-x2)·x3=-x2+3=-x5.故选B.)2.D(解析:A.应为a3·a2=a5,故本选项错误;B.应为b4·b4=b8,故本选项错误;C.应为x5+x5=2x5,故本选项错误;D.y7·y=y8,正确.故选D.)3.D(解析:A.应为a5·a5=a10,故本选项错误;B.应为a5+a5=2a5,故本选项错误;C.应为a5·a5=a10,故本选项错误;D.a5·a5=a10,正确.故选D.)4.B(解析:A.a2010+a4不能进行计算;B.a2010·a4 =a2014;C.a2014·a=a2015;D.a2007·a2007=a4014,故选B.)5.B(解析:A.(-a)(-a)=(-a)2,故本选项正确;B.-32·(-3)4=-32·34=-36,故本选项错误;C.(-a)3·(-a)2=(-a)3+2=(-a)5,故本选项正确;D.(-a)3·(-a)3=(-a)3+3=(-a)6=a6,故本选项正确.故选B.)6.D(解析:∵a m=8,a n=16,∴a m+n=a m·a n=8×16=128.故选D.)7.D(解析:A.(x-y)2=(y-x)2,故本选项错误;B.(x-y)n=-(y-x)n(n为奇数),故本选项错误;C.(x-y)2(y-x)2=(x-y)4,故本选项错误;D.(x-y)3(y-x)3=-(x-y)6,故本选项正确.故选D.)8.解:(1)设S=1+2+22+23+24+…+210,将等式两边同时乘以2得2S=2+22+23+24+…+210+211,将两式相减得2S-S=211-1,即S=211-1,则1+2+22+23+24+…+210=211-1.(2)设S=1+3+32+33+34+…+3n①,两边同(3n+1-1),则1+3+32+33+34+…时乘以3得3S=3+32+33+34+…+3n+3n+1②,②-①得3S-S=3n+1-1,即S=12(3n+1-1).+3n=12在教学中教师通过实际问题创设情境,导入新课,激发了学生学习数学的兴趣,通过学生的自主探索,让学生经历观察——类比——抽象——概括等过程,归纳出同底数幂的乘法法则,提高了学生的自主意识和自我解题的能力.在归纳出同底数幂的乘法法则之后,教师通过例1、例2的学习,让学生加深了对同底数幂的乘法法则的理解.整个过程学生对知识的接受和理解较好,突出了学生的主体地位和教师的主导作用,学生学得开心,知识掌握较好.因为本节课的内容较简单,所以在习题的设计上,教师可增加些难度,让学生通过变式训练,使学生的能力得到进一步的提高.另外,对于法则的概括和理解要尽量让学生自己去独立完善,教师要少说,多讲评.教学中要适当增加难度,增加变式训练,如法则的逆应用和底数为负数的习题.法则的逆应用要重点让学生掌握,以提高学生解决问题的能力.同时,一定要让学生分清幂的底数,明确只要在同底数幂相乘的时候才能用法则进行计算,否则不行.另外,对于法则的概括以及延伸的a m·a n·a p=a m+n+p,一定要让学生尽量发挥小组合作的能力,发现计算方法,从而总结出规律.教学过程能让学生独立完成的,教师绝不包办代替,把课堂应尽量还给学生.练习(教材第96页)解:(1)原式=b5+1=b6.(2)原式=-121+2+3=-126=164.(3)原式=a2+6=a8.(4)原式=y2n+n+1=y3n+1.题型1一般的同底数幂的乘法问题计算:(1)x2·x3;(2)(-2)4·(-2)3;(3)(a-1)4·(a-1)2.〔解析〕(1)可以直接得到x5;(2)中将(-2)看作相同的底数,由法则可得(-2)7;(3)中将(a-1)看作一个整体作为相同的底数.解:(1)x2·x3=x5.(2)(-2)4·(-2)3=(-2)7 =-27.(3)(a-1)4·(a-1)2=(a-1)6.题型2间接运用同底数幂的乘法法则计算:(1)-t3·(-t)4·(-t)5;(2)(z-y)3·(z-y)·(y-z)2.〔解析〕虽然底数不同,但仅仅只有符号之差,如z-y与y-z,可以先把底数变为相同的底数,再用法则计算.解:(1)-t3·(-t)4·(-t)5 =-t3·t4·(-t5)=t3·t4·t5=t12.(2)(z-y)3·(z-y)·(y-z)2=(z-y)3·(z-y)·(z-y)2=(z-y)6.〔方法提示〕对于不能直接运用同底数幂乘法法则的问题,通常先将题目中各项进行转化,化为同底数幂再运用法则计算,此过程中注意符号的确定.题型3同底数幂乘法法则的逆用计算:(-2)2007+(-2)2008.〔解析〕若直接计算,则相当麻烦,可以运用同底数幂的逆运算,将(-2)2008化成(-2)2007×(-2),再进行计算,比较简便.解:(-2)2007+(-2)2008=(-2)2007+(-2)2007×(-2)=(-2)2007×(1-2)=(-2)2007×(-1)=22007.(2014·温州中考)计算m 6·m3的结果是()A.m18B.m9C.m3D.m2〔解析〕根据同底数幂的乘法法则,底数不变,指数相加可知m6·m3=m9.故选B.14.1.2幂的乘方1.知道幂的乘方的意义.2.会进行幂的乘方计算.1.经历探索幂的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力.2.了解幂的乘方的运算性质,并能解决一些实际问题.通过分组探究,培养学生合作交流的意识、提高学生勇于探究数学的品质.【重点】会进行幂的乘方的运算.【难点】幂的乘方法则的总结及运用.【教师准备】预设学生学习中容易混淆的知识.【学生准备】复习同底数幂的乘法法则.导入一:(1)叙述同底数幂乘法法则,并用字母表示.(2)计算:①a2·a5·a3;②a4·a4·a4.大家已经会进行同底数幂的乘法运算:a m·a n=a m+n(m,n都是正整数),那么幂的乘方运算又应该如何进行呢?[设计意图]通过复习巩固上节课所学的同底数幂的乘法法则的内容,为探索幂的乘方做好准备.导入二:(1)有甲、乙两个球,如果甲球的半径是乙球半径的n倍,那么甲球的体积是乙球体积的多少倍?学生口答:n3倍.(2)引导学生计算:(102)3=,怎样计算?(102)3=106.方法一:(102)3=102×102×102=102+2+2=106.方法二:(102)3=(100)3=1000000=106.[设计意图]在独立思考的基础上,组织学生交流、讨论,培养学生思维的严密性,让学生体验在交流中获益的乐趣.并在此过程中,引导学生主动反思,回顾解决问题的方法,为进入新课做准备.一、法则的探究1.思考.【课件1】根据乘方的意义及同底数幂的乘法填空,看看计算的结果有什么规律:(1)(32)3=32×32×32 =3();(2)(a2)3=a2·a2·a2=a();(3)(a m)3=a m·a m·a m=a()(m是正整数).【师】教师要加强引导,强调应用中的注意事项.2.小组讨论.对正整数n,你认为(a m)n等于什么?能对你的猜想给出检验过程吗?【生】小组互相探索、交流,积极思考,然后各组派代表回答,相互点评,补充得出关于幂的乘方法则.幂的乘方法则:(a m)n=a m·a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.字母表示:(a m)n=a mn(m,n是正整数).语言叙述:幂的乘方,底数不变,指数相乘.教师说明法则中a可以是一个具体的数,也可以是单项式或多项式.[知识拓展]理解法则注意两点:(1)在形式上,幂的乘方的底数本身就是一个幂;(2)法则可推广到[(a m)n]k=a mnk(m,n,k是正整数);(3)幂的乘方不能和同底数幂的乘法相混淆,例如不能把(a5)2写成a7,也不能把a5·a2的计算结果写成a10;(4)幂的乘方是变乘方为乘法(底数不变,指数相乘),如(a3)2=a3×2=a6;而同底数幂的乘法是变乘法为加法(底数不变,指数相加),如a3·a2=a3+2=a5.[设计意图]在探索幂的乘方法则的过程中,学生经历了由特殊到一般的过程,让学生学会了归纳,同时培养学生的合作意识.思路二探索练习1.32表示个相乘;(32)3表示个相乘;a2表示个相乘;(a2)3表示个相乘.2.(32)3=××=(根据a m·a n=a m+n)=;(a2)3=××=(根据a m·a n=a m+n)=.引导学生观察、猜测(32)3与(a2)3的底数、指数,并用乘方的概念解答问题.3.(a m)3=××=(根据a m·a n=a m+n)=;(a m)n=××…×=(根据a m·a n=a m+n)=.通过上面的探索活动,你发现了什么?【归纳】幂的乘方,底数不变,指数相乘.(a m)n=a mn(m,n是正整数).【说明】 在此过程中教师应当鼓励学生,自己发现幂的乘方的性质特点(如底数、指数发生了怎样的变化),并运用自己的语言进行描述,然后再让学生回顾这一性质的得出过程,进一步体会幂的意义.[设计意图]学生在探索练习的指引下,自主完成有关的练习,并在练习中发现幂的乘方的法则,经历由猜测到探索的过程,从而理解法则的实际意义,在本质上认识、学习幂的乘方的来历.思路三1.x 3表示什么意义?2.如果把x 换成a 4,那么(a 4)3表示什么意义?3.怎样把a 2·a 2·a 2·a 2 =a 2+2+2+2写成比较简单的形式?4.由此你会计算(a 4)5吗?5.根据乘方的意义及同底数幂的乘法填空: (1)(53)2 =53×53=5();(2)(52)3=()×( )×()=5();(3) (a 3)5 =a 3×()×( )×( )×()=a ().6.用同样的方法计算(a 3)4,(a 11)9,(b 3)n (n 为正整数).这几道题学生都不难做出,在处理这类问题时,关键是如何得出3+3+3+3=12,教师应多举几例.(a 11)9=a 11·a 11·…·a 11=a 11+11+11+…+119个11=a 99.(b 3)n =b 3·…·b 3=b 3+3+3+…+3n 个3=b 3n .教师应指出这样处理既麻烦,又容易出错,此时应让学生思考,有没有简捷的方法?引导学生认真思考,并得到:(23)2 =23×2=26;(32)3=32×3 =36;(a 11)9=a 11×9=a 99;(b 3)n =b 3×n = b 3n .观察结果中幂的指数与原式中幂的指数及乘方的指数,猜想它们之间有什么关系?结果中的底数与原式的底数之间有什么关系?怎样说明你的猜想是正确的?(a m )n =a m ·a m ·a m·…·a m n 个a m(乘方的意义)=a m +m +m +…+mn 个m(同底数幂的乘法) =a mn (乘法定义),即(a m )n =a mn (m ,n 是正整数).这就是幂的乘方法则.你能用语言叙述这个法则吗?幂的乘方,底数不变,指数相乘. [设计意图]通过层层导入与渗透,让学生通过类比总结出幂的乘方的计算法则,整个过程由浅入深,体现了循序渐进的原则.二、例题讲解(教材例2)计算: (1)(103)5; (2)(a 4)4; (3)(a m )2;(4)-(x 4)3.〔解析〕要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.启发学生共同完成例题.学生在教师启发下,完成例题的问题,并进一步理解幂的乘方法则.解:(1)(103)5=103×5=1015.(2)(a4)4=a4×4=a16.(3)(a m)2=a m×2=a2m.(4)-(x4)3=-x4×3=-x12.想一想:a mn等于(a m)n(m,n是正整数)吗?学生类比同底数幂的乘法运算得出a mn=(a m)n(m,n是正整数),也就是说对于幂的乘方法则,它的逆应用同样成立.当一个幂的指数是积的形式时,就可以写成幂的乘方的形式.a20=(a4)()=(a5)()=(a2)()=(a10)().已知x m=4,x n=5,试求代数式x3m+2n的值.〔解析〕x3m+2n x3m·x2n(x m)3·(x n)2,整体代入,x m=4,x n=5即可求解.解:x3m+2n=x3m·x2n=(x m)3·(x n)2=43×52=1600.1.(a m)n=a mn(m,n都是正整数)的使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于一个是“指数相乘”,一个是“指数相加”.1.下列运算正确的是()A.2a2+3a=5a3B.a2·a3=a6C.(a3)2=a6D.a3-a3=a解析:A.2a2+3a,不是同类项不能相加,故A选项错误;B.a2·a3=a5,故B选项错误;C.(a3)2=a6,故C选项正确;D.a3-a3=0,故D选项错误.故选C.2.下列运算中,计算结果正确的是()A.3x-2x=1B.2x+2x=x2C.x·x=x2D.(a3)2=a4解析:A.3x-2x=x,所以A选项不正确;B.2x+2x=4x,所以B选项不正确;C.x·x=x2,所以C选项正确;D.(a3)2=a6,所以D选项不正确.故选C.3.计算.(1)x n-2·x n+2;(n是大于2的整数)(2)-(x3)5;(3)[(-2)2]3;(4)[(-a)3]2.解析:(1)根据同底数幂的乘法法则求解;(2)(3)(4)根据幂的乘方的法则求解.解:(1)原式=x n-2+n+2=x2n.(2)原式=-x15.(3)原式=43=64.(4)原式=a6.14.1.2幂的乘方一、法则的探究推理过程:(a m)n=a m·a m·…·a mn个a m =a m+m+m+…+mn个m=a mn.公式:(a m)n=a mn(m,n都是正整数).法则:幂的乘方,底数不变,指数相乘.二、例题讲解一、教材作业【必做题】教材第97页练习.【选做题】教材第104页习题14.1第1题(1)~(4).二、课后作业【基础巩固】1.计算(-a3)2的结果是()A.a6B.-a6C.a8D.-a82.计算:(a3)2·a3=.3.若9x=3x+2,则x=.4.已知2m=3,2n=22,则22m+n=.5.若2·8m=42m,则m=.【能力提升】6.若m,n都是正整数,且a>1,则(a n)m和(a m)n是否一定相等?若一定相等,请给予证明;若不一定相等,请举出反例.7.已知a m=2,a n=3,m,n是正整数且m>n.求下列各式的值:(1)a m+1;(2)a3m+2n.【拓展探究】8.试比较35555,44444,53333三个数的大小.【答案与解析】1.A(解析:(-a3)2=a3×2=a6.故选A.)2.a9(解析:先计算幂的乘方,再计算同底数幂的乘法.所以原式=a6·a3=a9.)3.2(解析:9x=32x=3x+2,2x=2+x,解得x=2,故答案为2.)4.36(解析:∵2m=3,2n=22,∴22m+n=22m·2n=(2m)2·2n=32·22=9×4=36.)5.1(解析:∵2·8m=42m,∴2×23m=24m,∴1+3m=4m,解得m=1.)。
人教版初中数学八年级上册第十四章:整式的乘法与因式分解(全章教案)
第十四章整式的乘法与因式分解本章的内容主要包括:整式的乘法、乘法公式和因式分解.本章我们将在七年级学习整式的加减法的基础上,继续学习整式的乘法和因式分解,它是代数运算以及解决许多数学问题的重要基础.我们可以类比数的运算,以运算律为基础,得到关于整式的乘法运算与因式分解的启发.在中考中,本章是必考内容,主要考查幂的运算、乘法公式、因式分解,特别是因式分解在化简求值中的应用.【本章重点】整式的乘(除)法法则、乘法公式及因式分解.【本章难点】乘法公式的灵活运用、添括号法则及运用提公因式法和公式法进行因式分解.【本章思想方法】1.体会和掌握类比的学习方法.如:通过数的运算,类比归纳得出整式的运算性质.2.体会转化思想.如:将多项式除以单项式转化为单项式除以单项式进行计算.3.体会数形结合思想.如:在整式乘法和乘法公式部分,借助于几何图形对运算法则及公式作了直观解释,体现了数形结合的思想方法.14.1整式的乘法7课时14.2乘法公式3课时14.3因式分解3课时14.1整式的乘法14.1.1同底数幂的乘法(第1课时)一、基本目标【知识与技能】理解并掌握同底数幂的乘法法则,并能进行相关计算.【过程与方法】经历探索同底数幂的乘法法则的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.【情感态度与价值观】在小组合作交流中,培养协作精神、探究精神,增强学习信心.二、重难点目标【教学重点】同底数幂的乘法法则.【教学难点】同底数幂的乘法法则的推导及应用.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P95~P96的内容,完成下面练习. 【3 min 反馈】1.把下列式子化成同底数幂.(-a )2=a 2;(-a )3=-a 3;(x -y )2=(y -x )2;(x -y )3=-(y -x )3. 2.根据乘法的意义填空:(1)52×53=55; 32×34=36;a 3·a 4=(a ·a ·a )·(a ·a ·a ·a )=a 7;(2)总结法则:a m ·a n =a m +n (m 、n 都是正整数),即同底数幂相乘,底数不变,指数相加. (3)推广:a m ·a n ·a p =a m +n +p (m 、n 、p 都是正整数).3.计算:(1)103×104;(2)a ·a 3;(3)⎝⎛⎭⎫-12·⎝⎛⎭⎫-122·⎝⎛⎭⎫-123. 解:(1)=107. (2)a 4. (3)164.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)-a 3·(-a )2·(-a )3; (2)10 000×10m ×10m +3; (3)m n +1·m n ·m 2·m ; (4)(x -y )2·(y -x )5.【互动探索】(引发学生思考)确定各式的底数→利用同底数幂的乘法法则计算. 【解答】(1)原式=-a 3·a 2·(-a 3)=a 3·a 2·a 3=a 8.(2)原式=104×10m ×10m +3=104+m +m +3=107+2m.(3)原式=m n+1+n +2+1=m 2n +4.(4)原式=(y -x )2·(y -x )5=(y -x )7.【互动总结】(学生总结,老师点评)(1)同底数幂的乘法法则只有在底数相同时才能使用;单个字母或数可以看成指数为1的幂,进行运算时,不能忽略了幂指数1;(2)底数互为相反数的幂相乘时,先把底数统一,再进行计算.(a -b )n =⎩⎪⎨⎪⎧(b -a )n (n 为偶数),-(b -a )n (n 为奇数).活动2 巩固练习(学生独学)1.下列算式中,结果等于x 6的是( A ) A .x 2·x 2·x 2 B .x 2+x 2+x 2 C .x 2·x 3D .x 4+x 22.如果32×27=3n ,那么n 的值为( C ) A .6 B .1 C .5D .83.若a m =3,a n =4,则a m +n =12. 教师指导:a m +n =a m ·a n =3×4=12. 4.计算:(1)-a 3·a 4; (2)100·10m +1·10m -3; (3)(-x )4(-x 2)(-x )3. 解:(1)-a 7. (2)102m . (3)x 9. 活动3 拓展延伸(学生对学)【例2】若82a +3·8b -2=810,求2a +b 的值.【互动探索】根据同底数幂的乘法法则,确定等式的左边的计算结果,再对比化简后的等式,确定a 、b 之间的关系.【解答】∵82a +3·8b -2=82a+3+b -2=810,∴2a +3+b -2=10,解得2a +b =9.【互动总结】(学生总结,老师点评)解此类题时,将等式两边化为同底数幂的形式,底数相同,那么指数也相同,由此得出代数式的值.环节3 课堂小结,当堂达标 (学生总结,老师点评)同底数幂的乘法法则⎩⎪⎨⎪⎧内容:同底数幂相乘,底数不变,指数相加字母表示:a m·a n=a m +n(m 、n 都是正整数)推广:a m·a n·…·a p=a m +n +…+p(m 、n 、…、 p 都是正整数)请完成本课时对应练习!14.1.2幂的乘方(第2课时)一、基本目标【知识与技能】理解幂的乘方法则,并能利用幂的乘方法则进行计算.【过程与方法】经历探索幂的乘方法则的过程,发展学生的合情推理能力和有条理的表达能力,培养学生的应用能力.【情感、态度与价值观】培养学生合作交流和探索精神,让学生体会数学的应用价值.二、重难点目标【教学重点】幂的乘方法则.【教学难点】幂的乘方法则的推导及应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P96~P97的内容,完成下面练习.【3 min反馈】1.乘方的意义:32中,底数是3,指数是2,表示2个3相乘;(32)3的意义:3个32相乘.(1)根据幂的意义解答:(32)3=32×32×32(根据幂的意义)=32+2+2(根据同底数幂的乘法法则)=32×3.(a m)2=a m·a m=a2m(根据a m·a n=a m+n).(a m)n=a m·a m·…·a m(幂的意义)=a m+m+…+m(同底数幂相乘的法则)=a mn(乘法的意义).(2)幂的乘方法则:(a m)n=a mn(m、n都是正整数),即幂的乘方,底数不变,指数相乘.2.计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.解:(1)1015.(2)b12.(3)x3n.(4)-x49.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)(-24)3;(2)(x m-1)2;(3)[(24)3]3; (4)(-a5)2+(-a2)5.【互动探索】(引发学生思考)确定各式的底数→利用幂的乘方法则计算.【解答】(1)原式=-212.(2)原式=x2(m-1)=x2m-2.(3)原式==24×3×3=236.(4)原式=a10-a10=0.【互动总结】(学生总结,老师点评)(1)运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆.(2)在幂的乘方中,底数可以是单项式,也可以是多项式.(3)幂的乘方的推广:((a m)n)p=a mnp(m、n、p都是正整数).【例2】若92n=38,求n的值.【互动探索】(引发学生思考)比较等式两边底数的关系→将等式转化为(32)2n=38→建立方程求n值.【解答】依题意,得(32)2n=38,即34n=38.∴4n=8.解得n=2.【互动总结】(学生总结,老师点评)可将等式两边化成底数或指数相同的数,再比较.【例3】已知a x=3,a y=4(x、y为整数),求a3x+2y的值.【互动总结】(学生总结,老师点评)对a3x+2y变形,得a3x·a2y,再利用幂的乘方进行解答.【解答】a3x+2y=a3x·a2y=(a x)3·(a y)2=33×42=27×16=432.【互动探索】(引发学生思考)利用a mn=(a m)n=(a n)m,可对式子进行灵活变形,从而使问题得到解决.活动2巩固练习(学生独学)1.计算(-a3)2的结果是(A)A.a6B.-a6C.-a5D.a52.下列运算正确的是(B)A.(x3)2=x5B.(-x)5=-x5C.x3·x2=x6D.3x2+2x3=5x53.当n为奇数时,(-a2)n+(-a n)2=0.4.计算:(1)a2·(-a)2·(-a2)3+a10;(2)x4·x5·(-x)7+5(x4)4-(x8)2.解:(1)0.(2)3x16.活动3拓展延伸(学生对学)【例4】请看下面的解题过程:比较2100与375的大小.解:∵2100=(24)25,375=(33)25,而24=16,33=27,16<27, ∴2100<375.请你根据上面的解题过程,比较3100与560的大小.【互动探索】仔细阅读材料,确定例子的解题方法是将指数化为相同,比较底数的大小来比较所求两个数的大小.【解答】∵3100=(35)20,560=(53)20,而35=243,53=125,243>125, ∴35>53,∴3100>560.【互动总结】(学生总结,老师点评)此题考查了幂的乘方法则的应用,根据题意得到3100=(35)20,560=(53)20是解此题的关键.环节3 课堂小结,当堂达标 (学生总结,老师点评)幂的乘方法则⎩⎪⎨⎪⎧内容:幂的乘方,底数不变,指数相乘字母表示:(a m )n =a mn (m 、n 都是正整数)推广:((a m )n )p =a mnp (m 、n 、p 都是正整数)请完成本课时对应练习!14.1.3积的乘方(第3课时)一、基本目标【知识与技能】理解积的乘方法则,利用积的乘方进行计算.【过程与方法】经历探索积的乘方法则的过程,发展学生的合情推理能力和有条理的表达能力,培养学生的应用能力.【情感态度与价值观】培养学生合作交流和探索精神,让学生体会数学的应用价值.二、重难点目标【教学重点】积的乘方法则.【教学难点】积的乘方法则的推导及应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P97~P98的内容,完成下面练习.【3 min反馈】1.下列各式正确的是(D)A.(a5)3=a8B.a2·a3=a6C.x2+x3=x5D.a2·a2=a42.(1)填空:(2×5)3=103,23×53=103;(-2×5)3=-103,(-2)3×53=-103.(2)积的乘方法则:(ab)n=a n b n(n是正整数),即积的乘方等于积的每一个因式分别乘方,再把所得的幂相乘.推广:(abc)n=a n b n c n.(n是正整数)3.计算:(1)(3a2)n;(2)(-2xy)4;(3)(a2)3·(a3)2.解:(1)3n a2n.(2)16x4y4.(3)a12.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算(1)(x4·y2)3;(2)(a n b3n)2+(a2b6)n;(3)[(3a2)3+(3a3)2]2;(4)⎝⎛⎭⎫991002017×⎝⎛⎭⎫100992018; (5)0.12515×(23)15.【互动探索】(引发学生思考)先确定运算顺序,再根据积的乘方法则计算. 【解答】(1)原式=x 12y 6. (2)原式=a 2n b 6n +a 2n b 6n =2a 2n b 6n . (3)原式=(27a 6+9a 6)2=(36a 6)2=1296a 12. (4)原式=⎝⎛⎭⎫99100×100992017×10099=1×10099=10099. (5)原式=⎝⎛⎭⎫1815×(8)15=⎝⎛⎭⎫18×815=1. 【互动总结】(学生总结,老师点评)(1)~(3)先按乘方再乘除后加减的运算顺序;(4)(5)反用(ab )n =a n b n 可使计算简便.活动2 巩固练习(学生独学) 1.(x 2y )2的结果是( B ) A .x 6y B .x 4y 2 C .x 5yD .x 5y 22.(a m )m ·(a m )2不等于( C ) A .(a m +2)m B .(a m ·a 2)m C .am 2+m 2 D .(a m )3·(a m -1)m3.a m =2,a n =3,a 2m +3n=108.4.计算:(1)-4xy 2·⎝⎛⎭⎫12xy 22·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3; (3)⎝⎛⎭⎫232017×⎝⎛⎭⎫322018. 解:(1)8x 9y 6. (2)0. (3)32.活动3 拓展延伸(学生对学)【例2】太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?⎝⎛⎭⎫球的体积公式为V =43πR 3,且π取3【互动探索】已知球的体积公式和其半径,代入数据直接计算. 【解答】∵R =6×105千米,∴V =43πR 3=43×π×(6×105)3=8.64×1017(立方千米).即它的体积大约是8.64×1017立方千米.【互动总结】(学生总结,老师点评)读懂题目信息,理解球的体积公式并熟记积的乘方法则是解此题的关键.环节3课堂小结,当堂达标(学生总结,老师点评)1.在研究问题的结构时,可按整体到部分的顺序去思考和把握.2.公式(ab)n=a n b n(n为正整数)的逆用:a n b n=(ab)n(n为正整数).请完成本课时对应练习!14.1.4整式的乘法第4课时单项式乘单项式一、基本目标【知识与技能】理解并掌握单项式乘单项式的法则.【过程与方法】经历探索单项式乘单项式法则的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.【情感态度与价值观】培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.二、重难点目标【教学重点】单项式乘单项式的法则.【教学难点】单项式乘单项式的法则的推导及应用.环节1 自学提纲,生成问题 【5 min 阅读】阅读教材P98~P99的内容,完成下面练习. 【3 min 反馈】1.乘法的交换律和结合律:(ab )c =(ac )b ; a m ·a n =a m +n (m 、n 都是正整数); (a m )n =a mn (m 、n 都是正整数); (ab )n =a n b n (n 是正整数).2.(1)2a 2-a 2=a 2;a 2·a 2=a 4;(-2a 2)2=4a 4. (2)ac 5·bc 2=(a ·b )·(c 5·c 2)·=abc 5+2=abc 7.(2)单项式乘单项式法则:单项式乘单项式,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.教师点拨:单项式乘单项式运用的乘法的交换律和结合律,将数和同底数幂分别结合在一起.3.计算:(1)(-5a 2b 3)(-3a ); (2)(2x )3(-5x 2y ); (3)23x 3y 2·⎝⎛⎭⎫-32xy 22; (4)(-3ab )·(-ac ). 解:(1)15a 3b 3. (2)-40x 5y . (3)32x 5y 6. (4)3a 2bc .环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算:(1)⎝⎛⎭⎫-12x 2y 3·3xy 2·(2xy 2)2; (2)-6m 2n ·(x -y )3·13mn 2(y -x )2.【互动探索】(引发学生思考)根据单项式乘单项式的法则计算. 【解答】(1)⎝⎛⎭⎫-12x 2y 3·3xy 2·(2xy 2)2=-18x 6y 3·3xy 2·4x 2y 4=-32x 9y 9. (2)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5.【互动总结】(学生总结,老师点评)单项式乘单项式的注意事项:(1)计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)单项式乘单项式的法则对于多个单项式相乘仍然成立;(5)将(x -y )看作一个整体,一般情况选择偶数次幂变形符号简单一些.活动2 巩固练习(学生独学) 1.下列计算正确的是( D ) A .(-3x 3)·(-2x 2)2=-12x 12 B .(-3ab )(-2ab )2=12a 3b 3 C .(-0.1x )·(-10x 2)2=x 5 D .(2×10n )⎝⎛⎭⎫12×10n =102n2.3x 2可以表示为( A ) A .x 2+x 2+x 2 B .x 2·x 2·x 2 C .3x ·3xD .9x3.如果x n y 4与2xy m 相乘的结果是2x 5y 7,那么mn =12. 4.计算:(1)(-2x 2y )3·3(xy 2)2; (2)(-3x 2y )2·⎝⎛⎭⎫-23xyz ·34xz 2. 解:(1)-24x 8y 7. (2)-92x 6y 3z 3.活动3 拓展延伸(学生对学) 【例2】已知-2x 3m +1y 2n 与7x n -6y-3-m 的积与x 4y 是同类项,求m 2+n 的值.【互动探索】根据-2x 3m +1y 2n 与7x n -6y -3-m的积与x 4y 是同类项,可以得到什么?怎样求m 2+n 的值?【解答】∵-2x 3m +1y 2n 与7x n -6y-3-m的积与x 4y 是同类项,∴⎩⎪⎨⎪⎧ 3m +1+n -6=4,2n -3-m =1,解得⎩⎪⎨⎪⎧m =2,n =3,∴m 2+n =7. 【互动总结】(学生总结,老师点评)根据单项式乘单项式的法则,结合同类项,列出关于m 、n 的二元一次方程组,进而求得代数式的值.环节3 课堂小结,当堂达标 (学生总结,老师点评)单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.请完成本课时对应练习!第5课时单项式乘多项式一、基本目标【知识与技能】理解并掌握单项式乘多项式的法则,并能正确计算单项式乘多项式.【过程与方法】经历探索单项式乘多项式法则的过程,体会乘法分配律的作用和转化思想,发展有条理的思考及语言表达能力.【情感态度与价值观】培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.二、重难点目标【教学重点】单项式乘多项式的法则.【教学难点】单项式乘多项式的法则的推导及应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P99~P100的内容,完成下面练习.【3 min反馈】1.乘法的分配律:m(a+b+c)=ma+mb+mc.2.填空:-x(x2-3x+2)=-x·(x2)+(-x)·(-3x)+(-x)·(2)=-x3+3x2-2x.3.单项式乘多项式的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.3.计算:(1)(-2a)·(2a2-3a+1);(2)(-4x)·(2x2+3x-1).解:(1)-4a3+6a2-2a.(2)-8x3-12x2+4x.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】先化简,再求值:3a(2a2-4a+3)-2a2·(3a+4),其中a=-2.【互动探索】(引发学生思考)确定运算顺序→化简式子→将a=-2代入化简结果求值.【解答】原式=6a3-12a2+9a-6a3-8a2=-20a2+9a.当a=-2时,原式=-20×4-9×2=-98.【互动总结】(学生总结,老师点评)解此类题时,先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.活动2巩固练习(学生独学)1.一个长方体的长、宽、高分别是3a -4,2a ,a ,它的体积等于( C ) A .3a 3-4a 2 B .a 2 C .6a 3-8a 2D .6a 2-8a2.已知M 、N 分别表示不同的单项式,且3x ·(M -5x )=6x 2y 3+N ,则( C ) A .M =2xy 3,N =-15x B .M =3xy 3,N =-15x 2 C .M =2xy 3,N =-15x 2D .M =2xy 3,N =15x 23.图中的四边形均为矩形,根据图形,仅用图中出现的字母写出一个正确的等式:m (a +b +c )=ma +mb +mc .4.计算:(1)2ab 2·(3a 2b -2ab -1); (2)(-2xy 2)2·⎝⎛⎭⎫14y 2-12x 2-32xy . 解:(1)6a 3b 3-4a 2b 3-2ab 2. (2)x 2y 6-2x 4y 4-6x 3y 5. 活动3 拓展延伸(学生对学)【例2】如果(-3x )2⎝⎛⎭⎫x 2-2nx +23的展开式中不含x 3项,求n 的值. 【互动探索】由原式的展开式中不含x 3项可以推出什么?由此怎样求出n 的值? 【解答】(-3x )2⎝⎛⎭⎫x 2-2nx +23=9x 2·⎝⎛⎭⎫x 2-2nx +23=9x 4-18nx 3+6x 2. 由展开式中不含x 3项,得n =0.【互动总结】(学生总结,老师点评)单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.环节3 课堂小结,当堂达标(学生总结,老师点评)单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.请完成本课时对应练习!第6课时多项式乘多项式一、基本目标【知识与技能】理解多项式乘多项式的运算法则,运用多项式与多项式的乘法法则进行计算.【过程与方法】经历探索多项式乘多项式的运算法则的推理过程,体会其运算的算理.【情感态度与价值观】通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.二、重难点目标【教学重点】多项式乘多项式的法则的推导及应用.【教学难点】多项式乘多项式的法则的应用.环节1自学提纲,生成问题【5 min阅读】阅读教材P100~P101的内容,完成下面练习.【3 min反馈】1.(1)(-ab)·(-4b2)=4ab3;(2)-2x(x-3y)=-2x2+6xy;(3)(2x2y)3·(-4xy2)=-32x7y5;(4)-2x(2x2-3x+1)=-4x3+6x2-2x.2.看图填空:(1)大长方形的长是a+b,宽是m+n,面积等于(a+b)(m+n).(2)图中四个小长方形的面积分别是am、bm、an、bn,由上述可得(a+b)(m+n)=am+an+bm+bn.3.多项式乘多项式的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.4.计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解:(1)3x2+8x+4.(2)-4y2+21y-5.5.长方形的长是(2a+1),宽是(a+b),求长方形的面积.解:根据题意,得长方形的面积S=(2a+1)(a+b)=2a2+2ab+a+b.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】计算:(1)(x+2y)(5a+3b);(2)(2x-3)(x+4);(3)(x+y)2;(4)(x+y)(x2-xy+y2).【互动探索】(引发学生思考)根据多项式乘多项式的法则进行计算.【解答】(1)原式=x·5a+x·3b+2y·5a+2y·3b=5ax+3bx+10ay+6by.(2)原式=2x2+8x-3x-12=2x2+5x-12.(3)原式=(x+y)(x+y)=x2+xy+xy+y2=x2+2xy+y2.(4)原式=x3-x2y+xy2+x2y-xy2+y3=x3+y3.【互动总结】(学生总结,老师点评)多项式乘多项式,按一定的顺序进行,必须做到不重不漏;所得结果仍是多项式,且在合并同类项之前,积的项数应等于原多项式的项数之积.【例2】先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b =1.【互动探索】(引发学生思考)确定运算顺序→化简代数式→确定当a=-1,b=1时,化简后代数式的值.【解答】(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b)=a3-8b3-(a2-5ab)(a+3b)=a3-8b3-a3-3a2b+5a2b+15ab2=-8b3+2a2b+15ab2.当a=-1,b=1时,原式=-8+2-15=-21.【互动总结】(学生总结,老师点评)化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.活动2巩固练习(学生独学)1.若(y+3)(y-2)=y2+my+n,则m、n的值分别为(B)A.m=5,n=6B.m=1,n=-6C.m=1,n=6D.m=5,n=-62.下列各式中,计算结果是x2+7x-18的是(A)A .(x -2)(x +9)B .(x +2)(x +9)C .(x -3)(x +6)D .(x -1)(x +18)3.如图,正方形卡片A 类、B 类和长方形卡片C 类各若干张,如果要拼一个长为(a +3b ),宽为(2a +b )的大长方形,那么需要A 类、B 类和C 类卡片的张数分别为( A )A .2,3,7B .3,7,2C .2,5,3D .2,5,7教师点拨:(a +3b )(2a +b )=2a 2+7ab +3b 2. 4.已知a 2-a +5=0,则(a -3)(a +2)的值是-11.教师点拨:把所求代数式展开后,利用条件得到a 2-a =-5,再整体代入即可得解. 5.计算:(1)(y +1)(x -y )-x (y -x ); (2)(-7x 2-8y 2)(-x 2+3y 2); (3)(3a +1)(2a -3)-(6a -5)(a -4). 解:(1)x 2-y 2+x -y . (2)7x 4-13x 2y 2-24y 4. (3)22a -23.活动3 拓展延伸(学生对学)【例3】已知ax 2+bx +1(a ≠0)与3x -2的积不含x 2项,也不含x 项,求系数a 、b 的值. 【互动探索】计算ax 2+bx +1与3x -2的乘积.由原式的展开式中不含x 3项,也不含x 的项→建立方程→确定a 、b 的值.【解答】(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2. ∵积不含x 2项,也不含x 项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94.即系数a 、b 的值分别是94,32.【互动总结】(学生总结,老师点评)解此类题时,先根据多项式乘多项式的法则计算出展开式,合并同类项后,再根据不含某一项,得出这一项系数等于零,由此列出方程解答.环节3 课堂小结,当堂达标 (学生总结,老师点评)多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.字母表示:请完成本课时对应练习!第7课时整式的除法一、基本目标【知识与技能】理解并掌握同底数幂的除法法则、单项式除以单项式的运算法则和多项式除以多项式的运算法则,熟练地进行整式除法的计算.【过程与方法】经历探究整式除法的运算法则的过程,进一步体会幂的意义,发展推理能力和有条件的表达能力.【情感态度与价值观】感受数学法则和公式的简洁美、和谐美,培养学生的团结协作精神,使学生获得合作交流的学习方式.二、重难点目标【教学重点】整式的除法法则.【教学难点】整式的除法法则的推导.环节1自学提纲,生成问题【5 min阅读】阅读教材P102~P104的内容,完成下面练习.【3 min反馈】一、同底数幂的除法计算:(1)28·28=216,216÷28=28;(2)52·54=56,56÷54=52;(3)a4·a2=a6,a6÷a4=a2;(4)从(1)~(3)运算中归纳出同底数幂的除法法则:a m÷a n=a m-n(a≠0,n、m为正整数,且m>n),即同底数幂相除,底数不变,指数相减.(5)∵a m÷a m=1,而a m÷a m=a(m-m)=a0,∴a0=1(a≠0),即任何不等于0的数的0次幂都等于1.二、单项式除以单项式计算:(1)a·4a2=4a3,4a3÷4a2=a;(2)3xy·2x2=6x3y,6x3y÷3xy=2x2;(3)3ax2·4ax3=12a2x5,12a2x5÷3ax2=4ax3;(4)从(1)~(3)运算中归纳出单项式除以单项式法则:单项式相除,把同底数幂与系数分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.三、多项式除以单项式1.计算:(1)m·(a+b)=am+bm,(am+bm)÷m=a+b;(2)a ·(a +b )=a 2+ab ,(a 2+ab )÷a =a +b ;(3)2xy ·(3x 2+y )=6x 3y +2xy 2,(6x 3y +2xy 2)÷2xy =3x 2+y ;(4)从上述运算中归纳出多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.2.计算:(1)a 5÷a 3; (2)-5a 5b 3c ÷15a 4b ; (3)(27x 3-18x 2+3x )÷(-3x ).解:(1)a 2. (2)-13ab 2c . (3)-9x 2+6x -1.环节2 合作探究,解决问题 活动1 小组讨论(师生互学) 【例1】计算: (1)(x -2y )3÷(2y -x )2; (2)(a 2+1)6÷(a 2+1)4÷(a 2+1)2; (3)(2a 2b 2c )4z ÷(-2ab 2c 2)2; (4)81x 12y 12z 4÷9x 6y 4z 2÷12x 2y 6z ;(5)(72x 3y 4-36x 2y 3+9xy 2)÷(-9xy 2).【互动探索】(引发学生思考)利用除法的运算法则进行计算. 【解答】(1)原式=(x -2y )3÷(x -2y )2=x -2y . (2)原式=(a 2+1)6-4-2=(a 2+1)0=1.(3)原式=16a 8b 8c 4z ÷4a 2b 4c 4=4a 6b 4z .(4)原式=⎝⎛⎭⎫81÷9÷12·x 12-6-2·y 12-4-6·z 4-2-1=18x 4y 2z . (5)原式=72x 3y 4÷(-9xy 2)+(-36x 2y 3)÷(-9xy 2)+9xy 2÷(-9xy 2)=-8x 2y 2+4xy -1. 【互动总结】(学生总结,老师点评)(1)计算整式除法时,按照相应的运算法则进行计算,有乘方的先算乘方,再算乘除.(2)单项式除以单项式和多项式除以单项式的实质都是有理数的除法和同底数幂的除法.计算时,注意运算顺序和符号的变化.【例2】先化简,后求值:[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y ,其中x =2018,y =2017. 【互动探索】(引发学生思考)确定运算顺序→原式化简→代值计算的结果.【解答】[2x (x 2y -xy 2)+xy (xy -x 2)]÷x 2y =[2x 3y -2x 2y 2+x 2y 2-x 3y ]÷x 2y =[x 3y -x 2y 2]÷x 2y =x -y .把x =2018,y =2017代入上式,得原式=2018-2017=1.【互动总结】(学生总结,老师点评)解此类题的方法是先化简,再把对应的数值代入化简后的式子进行计算即可.活动2 巩固练习(学生独学)1.已知28a 2b m ÷4a n b 2=7b 2,那么m 、n 的值为( A ) A .m =4,n =2 B .m =4,n =1 C .m =1,n =2D .m =2,n =22.已知长方形的面积为18x 3y 4+9xy 2-27x 2y 2,长为9xy ,则宽为( D ) A .2x 2y 3+y +3xy B .2x 2y 2-2y +3xy C .2x 2y 3+2y -3xyD .2x 2y 3+y -3xy3.如果(3x 2y -2xy 2)÷m =-3x +2y ,那么单项式m 为( B ) A .xy B .-xy C .xD .-y4.若等式(6a 3+3a 2)÷(6a )=(a +1)(a +2)成立,则a 的值为-45.5.计算: (1)x 3÷x 2;(2)⎝⎛⎭⎫-25a 2b 4÷⎝⎛⎭⎫-14ab 2÷(-10ab ); (3)(6a 3b -9a 2b 2-12ab 3)÷(-3ab ). 解:(1)x . (2)-425b . (3)-2a 2+3ab +4b 2.活动3 拓展延伸(学生对学)【例3】已知a m =4,a n =2,a =3,求a m -n -1的值.【互动探索】逆向思维法:将a m-n -1转化为a m ÷a n ÷a ,再代入数据计算.【解答】∵a m =4,a n =2,a =3, ∴a m-n -1=a m ÷a n ÷a =4÷2÷3=23.【互动总结】(学生总结,老师点评)解此题的关键是逆用同底数幂的除法得出a m-n -1=a m ÷a n ÷a .环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!14.2乘法公式14.2.1平方差公式(第1课时)一、基本目标【知识与技能】掌握平方差公式,会用平方差公式进行简单计算.【过程与方法】经历探索特殊形式的多项式乘法的过程,发展学生的符号感和推理能力,使学生逐渐掌握平方差公式.【情感态度与价值观】通过合作学习,体会在解决具体问题过程中与他人合作的重合性,体验数学活动充满着探索性和创造性,感受数学知识的实际价值.二、重难点目标【教学重点】平方差公式.【教学难点】理解平方差公式的结构特征,灵活应用平方差公式.环节1自学提纲,生成问题【5 min阅读】阅读教材P107~P108的内容,完成下面练习.【3 min反馈】1.根据条件列代数式:(1)a、b两数的平方差可以表示为a2-b2;(2)a、b两数差的平方可以表示为(a-b)2.2.(1)(x+2)(x-2)=x2-4;(1+3a)(1-3a)=1-9a2;(x+5y)(x-5y)=x2-25y2.观察以上算式及其运算结果填空:上面三个算式中的每个因式都是多项式;等式的左边都是两个数的和与两个数的差的乘积,等式的右边是这两个数的平方的差.(2)平方差公式:(a+b)(a-b)=a2-b2.也就是说,两个数的和与这两个数的差的积,等于这两个数的平方差.3.已知a+b=10,a-b=8,则a2-b2=80.4.计算(3-x)(3+x)的结果是9-x2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】运用平方差公式计算:(1)(3x-5)(3x+5);(2)(-2a-b)(b-2a);(3)(x-2)(x+2)(x2+4).【互动探索】(引发学生思考)观察各式子的特点,确定用什么公式计算?【解答】(1)(3x-5)(3x+5)=(3x)2-52=9x2-25.(2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2. (3)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.【互动总结】(学生总结,老师点评)运用平方差公式计算时,要注意以下几点:(1)左边是两个二项式相乘,并且这两个二项式中一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【例2】计算:10015×9945.【互动探索】(引发学生思考)观察式子特点,直接计算比较难,将原式转化为⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15,用平方差公式计算.【解答】原式=⎝⎛⎭⎫100+15⎝⎛⎭⎫100-15=10 000-125=99992425. 【互动总结】(学生总结,老师点评)可将两个因数写成相同的两个数的和与差,形成平方差公式结构.活动2 巩固练习(学生独学)1.下列运算中,可用平方差公式计算的是( C ) A .(x +y )(x +y ) B .(-x +y )(x -y ) C .(-x -y )(y -x )D .(x +y )(-x -y )2.如图1,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下部分拼成一个梯形(如图2),利用这两幅图形的面积,可以验证的乘法公式是(a +b )(a -b )=a 2-b 2.3.长方形的长为(2a +3b ),宽为(2a -3b ),则长方形的面积为4a 2-9b 2. 4.若(m +3x )(m -3x )=16-nx 2,则mn 的值为±36. 5.计算:(1)⎝⎛⎭⎫34y +212x ⎝⎛⎭⎫212x -34y ; (2)⎝⎛⎭⎫-56x -0.7a 2b ⎝⎛⎭⎫56x -0.7a 2b ; (3)(2a -3b )(2a +3b )(4a 2+9b 2)(16a 4+81b 4).解:(1)254x 2-916y 2. (2)0.49a 4b 2-2536x 2. (3)256a 8-6561b 8.6.运用平方差公式简算: (1)2013×1923; (2)13.2×12.8.解:(1)原式=⎝⎛⎭⎫20+13×⎝⎛⎭⎫20-13=400-19=39989. (2)原式=(13+0.2)×(13-0.2)=169-0.04=168.96. 活动3 拓展延伸(学生对学)【例3】对于任意的正整数n ,整式(3n +1)(3n -1)-(3-n )(3+n )的值一定是10的倍数吗?【互动探索】要判断整式是否为10的倍数→需化简代数式→化简结果是否是10的倍数→做出判断.【解答】原式=9n 2-1-(9-n 2)=10n 2-10=10(n +1)(n -1). ∵n 为正整数,∴(n -1)(n +1)为整数,即(3n +1)(3n -1)-(3-n )(3+n )的值是10的倍数.【互动总结】(学生总结,老师点评)平方差公式中的a 和b 可以是具体的数,也可以是单项式或多项式,在探究整除性或倍数问题时,要注意这方面的问题.环节3 课堂小结,当堂达标 (学生总结,老师点评)平方差公式:(a +b )(a -b )=a 2-b 2.请完成本课时对应练习!14.2.2完全平方公式第2课时完全平方公式一、基本目标【知识与技能】1.掌握完全平方公式及其结构特征.2.会用完全平方公式进行简单计算.【过程与方法】利用多项式与多项式的乘法以及幂的意义,推导出完全平方公式,感受乘法公式从一般到特殊的认知过程,拓展思维空间.【情感态度与价值观】培养学生观察、类比、发现的能力,体验数学活动充满着探索性和创造性.二、重难点目标【教学重点】完全平方公式及其结构特征.【教学难点】灵活应用完全平方公式进行计算.环节1自学提纲,生成问题【5 min阅读】阅读教材P109~P110的内容,完成下面练习.【3 min反馈】1.按要求列代数式:(1)a、b两数和的平方可以表示为(a+b)2;(2)a、b两数平方的和可以表示为a2+b2.2.计算下列各式:(a+1)2=(a+1)(a+1)=a2+2a+1;(a-1)2=(a-1)(a-1)=a2-2a+1;(m-3)2=(m-3)(m-3)=m2-6m+9.3.完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.也就是说,两个数的和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.4.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.如图1可以用来解释(a+b)2-(a-b)2=4ab,那么通过图2面积的计算,验证了一个恒等式,此等式是(a-b)2=a2-2ab+b2.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】运用完全平方公式计算:(1)(5-a)2;(2)(-3m-4n)2;(3)(-3a+b)2; (4)(a+b+c)2.【互动探索】(引发学生思考)观察式子的特点,怎样运用完全平方公式进行计算?【解答】(1)(5-a)2=52-2·5·a+a2=25-10a+a2.(2)(-3m-4n)2=(-3m)2-2·(-3m)·4n+(4n)2=9m2+24mn+16n2.(3)(-3a+b)2=(-3a)2+2·(-3a)·b+b2=9a2-6ab+b2.(4)(a+b+c)2=(a+b)2+2c(a+b)+c2=a2+2ab+b2+2ac+2bc+c2.【互动总结】(学生总结,老师点评)完全平方公式:(a±b)2=a2±2ab+b2,可巧记为“首平方,尾平方,积的2倍在中央,符号确定看前方”.【例2】计算:(1)9982;(2)(2)20182-2018×4034+20172.【互动探索】(引发学生思考)(1)直接计算9982比较复杂,考虑将998转化为1000-2,再利用完全平方公式计算.(2)逆用完全平方公式即可.【解答】(1)原式=(1000-2)2=1 000 000-4000+4=996 004.(2)原式=20182-2×2018×2017+20172=(2018-2017)2=1.【互动总结】(学生总结,老师点评)(1)中可将该式变形为(1000-2)2,再运用完全平方公式可简便运算.活动2巩固练习(学生独学)1.运算结果是x4y2-2x2y+1的是(C)A.(-1+x2y2)2B.(1+x2y2)2C.(-1+x2y)2D.(-1-x2y)22.若|a -b |=1,则b 2-2ab +a 2的值为( A ) A .1 B .-1 C .±1D .无法确定3.下列关于962的计算方法正确的是( D ) A .962=(100-4)2=1002-42=9984 B .962=(95+1)(95-1)=952-1=9024 C .962=(90+6)2=902+62=8136D .962=(100-4)2=1002-2×4×100+42=9216 4.运用完全平方公式计算:(1)(-3a +2b )2; (2)(a +2b -1)2; (3)50.012; (4)49.92.解:(1)4b 2-12ab +9a 2. (2)a 2+4ab +4b 2-2a -4b +1. (3)2501.0001. (4)2490.01. 活动3 拓展延伸(学生对学)【例3】如果36x 2+(m +1)xy +25y 2是一个完全平方式,求m 的值.【互动探索】根据完全平方公式的结构特点→确定(m +1)xy 的值→建立方程→确定m 的值.【解答】∵36x 2+(m +1)xy +25y 2=(6x )2+(m +1)xy +(5y )2, ∴(m +1)xy =±2·6x ·5y , ∴m +1=±60,∴m =59或-61.【互动总结】(学生总结,老师点评)两数的平方和加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.【例4】已知a +b =4,ab =-5,求下列各式的值. (1)a 2+b 2; (2)(a -b )2.【互动探索】由已知等式联想到什么乘法公式?所求代数式与已知等式有什么关系?怎样求解?【解答】(1)a 2+b 2=(a +b )2-2ab .把a +b =4,ab =-5代入,得a 2+b 2=42-2×(-5)=16+10=26. (2)(a -b )2=(a +b )2-4ab .把a +b =4,ab =-5代入,得(a -b )2=42-4×(-5)=16+20=36. 【互动总结】(学生总结,老师点评)完全平方公式的常用变形: (1)a 2+b 2=(a +b )2-2ab =(a -b )2-2ab ; (2)ab =12[(a +b )2-(a 2+b 2)];(3)(a -b )2+(a +b )2=2(a 2+b 2);。
人教版八年级上册第十四章《整式的乘法与因式分解》14.1.4整式的乘法(教案)
-多项式乘以多项式的分配律综合应用:一个多项式的每一项乘以另一个多项式的每一项,并将结果相加。
-例如:(x + 3) * (x + 4) = x^2 + 4x + 3x + 12,强调每一项都要相乘并相加。
五、教学反思
今天我们在课堂上学习了整式的乘法,回顾整个教学过程,我觉得有几个地方值得反思和改进。
首先,我发现学生在理解整式乘法的基本概念时,对分配律的应用还不够熟练。在单项式乘以多项式的例子中,部分同学容易忽略对常数项的乘法,导致答案出错。针对这个问题,我考虑在下一节课中增加一些基础练习,让学生反复练习分配律的应用,帮助他们更好地掌握这个重点。
-将实际问题转化为整式乘法运算:学生需要掌握如何将实际问题的描述转化为数学表达式,并运用整式乘法进行计算。
-例如:将矩形的面积计算问题转化为(x + 2) * (x + 3)的乘法运算。
在教学过程中,教师应针对这些重点和难点,通过直观的示例、反复的练习和及时的反馈,帮助学生理解并掌握整式乘法的核心知识,确保学生能够透彻理解和正确应用。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了整式乘法的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对整式乘法的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
整式的乘法与因式分解全章教案(最新整理)
十四章整式的乘除与因式分解14.1.1同底数幂的乘法教学目标1.知识与技能在推理判断中得出同底数幂乘法的运算法则,并掌握“法则”的应用.2.过程与方法经历探索同底数幂的乘法运算性质的过程,感受幂的意义,发展推理能力和表达能力,提高计算能力.3.情感、态度与价值观在小组合作交流中,培养协作精神、探究精神,增强学习信心.重、难点与关键1.重点:同底数幂乘法运算性质的推导和应用.2.难点:同底数幂的乘法的法则的应用.3.关键:幂的运算中的同底数幂的乘法教学,要突破这个难点, 必须引导学生,循序渐进,合作交流,获得各种运算的感性认识,进而上各项到理性上来,提醒学生注意-a2与(-a)2的区别.教学方法采用“情境导入──探究提升”的方法,让学生从生活实际出发,认识同底数幂的运算法则.教学过程一、创设情境,故事引入【情境导入】“盘古开天壁地”的故事:公元前一百万年,没有天没有地,整个宇宙是混浊的一团,突然间窜出来一个巨人,他的名字叫盘古,他手握一把巨斧,用力一劈,把混沌的宇宙劈成两半,上面是天,下面是地,从此宇宙有了天地之分,盘古完成了这样一个壮举,累死了,他的左眼变成了太阳,右眼变成了月亮,毛发变成了森林和草原,骨头变成了高山和高原,肌肉变成了平原与谷地,血液变成了河流.【教师提问】盘古的左眼变成了太阳,那么,太阳离我们多远呢?你可以计算一下,太阳到地球的距离是多少?光的速度为3×105千米/秒,太阳光照射到地球大约需要5×102秒, 你能计算出地球距离太阳大约有多远呢?【学生活动】开始动笔计算,大部分学生可以列出算式:3×105×5×102=15 ×105×102=15×?(引入课题)【教师提问】到底105×102=?同学们根据幂的意义自己推导一下,现在分四人小组讨论.【学生活动】分四人小组讨论、交流,举手发言,上台演示. 计算过程:105×102=(10×10×10×10×10)×(10×10) =10×10×10×10×10×10×10=107【教师活动】下面引例.1.请同学们计算并探索规律.(1)23×24=(2×2×2)×(2×2×2×2)=2( );(2)53×54=_____________=5( );(3)(-3)7×(-3)6=___________________=(-3)( );(4)(110)3×(110)=___________=(110)( ); (5)a 3·a 4=________________a ( ).提出问题:①这几道题目有什么共同特点?②请同学们看一看自己的计算结果,想一想,这些结果有什么规律?【学生活动】独立完成,并在黑板上演算.【教师拓展】计算a·a=?请同学们想一想.【学生总结】a·a=()()()()m a a m n aa a a a a a a a a a +=A A A A A A A A A A A A A A个n 个个=a m+n 这样就探究出了同底数幂的乘法法则.二、范例学习,应用所学【例】计算:(1)103×104; (2)a·a 3; (3)a·a 3·a 5; (4)x·x 2+x 2·x【思路点拨】(1)计算结果可以用幂的形式表示.如(1)103×104=103+4=107,但是如果计算较简单时也可以计算出得数.(2)注意a 是a 的一次方, 提醒学生不要漏掉这个指数1,x 3+x 3得2x 3,提醒学生应该用合并同类项.(3)上述例题的探究, 目的是使学生理解法则,运用法则,解题时不要简化计算过程,要让学生反复叙述法则.【教师活动】投影显示例题,指导学生学习.【学生活动】参与教师讲例,应用所学知识解决问题.三、随堂练习,巩固深化课本练习题.【探研时空】据不完全统计,每个人每年最少要用去106立方米的水,1立方米的水中约含有3.34×1019个水分子,那么,每个人每年要用去多少个水分子?四、课堂总结,发展潜能1.同底数幂的乘法,使用范围是两个幂的底数相同,且是相乘关系, 使用方法:乘积中,幂的底数不变,指数相加.2.应用时可以拓展,例如含有三个或三个以上的同底数幂相乘,仍成立, 底数和指数,它既可以取一个或几个具体数,由可取单项式或多项式.3.运用幂的乘法运算性质注意不能与整式的加减混淆.五、布置作业,专题突破1.课本P96习题14.1第1(1),(2),2(1)题.2.选用课时作业设计.板书设计14.1.1同底数幂的乘法1、同底数幂的乘法法则例:练习:教学反思本节课的教学过程是探索发现性学习过程,注意同底数幂的乘法法则的推导过程,而不单单是要求记住结论,在导出的过程中,从具体到抽象,有层次地进行概括,归纳推理,学生不是被动地接受,而是在已有经验的基础上创新,从而培养学生的动手能力和创新意识.14.1.2 幂的乘方教学目标1.知识与技能理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.2.过程与方法经历一系列探索过程,发展学生的合情推理能力和有条理的表达能力,通过情境教学,培养学生应用能力.3.情感、态度与价值观培养学生合作交流意义和探索精神,让学生体会数学的应用价值.重、难点与关键1.重点:幂的乘方法则.2.难点:幂的乘方法则的推导过程及灵活应用.3.关键:要突破这个难点,在引导这个推导过程时,步步深入,层层引导, 要求对性质深入地理解.教学方法采用“探讨、交流、合作”的教学方法,让学生在互动交流中,认识幂的乘方法则.教学过程一、创设情境,导入新知【情境导入】大家知道太阳,木星和月亮的体积的大致比例吗?我可以告诉你, 木星的半径是地球半径的102倍,太阳的半径是地球半径的103倍,假如地球的半径为r,那么, 请同学们计算一下太阳和木星的体积是多少?(球的体积公式为V=43πr3)【学生活动】进行计算,并在黑板上演算.解:设地球的半径为1,则木星的半径就是102,因此,木星的体积为V木星=43π·(102)3=?(引入课题).【教师引导】(102)3=?利用幂的意义来推导.【学生活动】有些同学这时无从下手.【教师启发】请同学们思考一下a3代表什么?(102)3呢?【学生回答】a3=a×a×a,指3个a相乘.(102)3=102×102×102,就变成了同底数幂乘法运算,根据同底数幂乘法运算法则,底数不变,指数相加,102×102×102=102+2+2=106, 因此(102)3=106.【教师活动】下面有问题:利用刚才的推导方法推导下面几个题目:(1)(a2)3;(2)(24)3;(3)(b n)3;(4)-(x2)2.【学生活动】推导上面的问题,个别同学上讲台演示.【教师推进】请同学们根据所推导的几个题目,推导一下(a)的结果是多少?【学生活动】归纳总结并进行小组讨论,最后得出结论:(a m)n== a mn.评析:通过问题的提出,再依据“问题推进”所导出的规律,利用乘方的意义和幂的乘法法则,让学生自己主动建构,获取新知:幂的乘方,底数不变,指数相乘.二、范例学习,应用所学【例】计算:(1)(103)5;(2)(b3)4;(3)(x n)3;(4)-(x7)7.【思路点拨】要充分理解幂的乘方法则,准确地运用幂的乘方法则进行计算.【教师活动】启发学生共同完成例题.【学生活动】在教师启发下,完成例题的问题:并进一步理解幂的乘方法则:解:(1)(103)5=103×5=1015;(3)(x n)3=x n×3=x3n;(2)(b3)4=b3×4=b12;(4)-(x7)7=-x7×7=-x49.三、随堂练习,巩固练习课本P97练习.【探研时空】计算:-x2·x2·(x2)3+x10.【教师活动】巡视、关注中等、中下的学生,媒体显示练习题.【学生活动】书面练习、板演.四、课堂总结,发展潜能1.幂的乘方(a m)n=a mn(m,n都是正整数)使用范围:幂的乘方.方法:底数不变,指数相乘.2.知识拓展:这里的底数、指数可以是数,可以是字母, 也可以是单项式或多项式.3.幂的乘方法则与同底数幂的乘法法则区别在于,一个是“指数相乘”, 一个是“指数相加”.五、布置作业,专题突破课本P104习题14.1第1、2题.板书设计14.1.2 幂的乘方1、幂的乘方的乘法法则例:练习:教学反思由于幂的乘方较抽象,引入课题时也可以从国情教育引入,搜集关于希望工程的图片展示给学生,如:有一个棱长为102cm的正方体,我们计算一下,可以装长为20cm,宽为15cm,厚为2cm的书多少本?14.1.3 积的乘方教学目标1.知识与技能通过探索积的乘方的运算性质,进一步体会和巩固幂的意义,在推理得出积的乘方的运算性质的过程中,领会这个性质.2.过程与方法经历探索积的乘方的过程,发展学生的推理能力和有条理的表达能力,培养学生的综合能力.3.情感、态度与价值观通过小组合作与交流,培养学生团结协作的精神和探索精神,有助于塑造他们挑战困难,挑战生活的勇气和信心.重、难点与关键1.重点:积的乘方的运算.2.难点:积的乘方的推导过程的理解和灵活运用.3.关键:要突破这个难点,教师应该在引导这个推导过程时,步步深入, 层层引导,而不该强硬地死记公式,只有在理解的情况下,才可以对积的乘方的运算性质灵活地应用.教学方法采用“探究──交流──合作”的方法,让学生在互动中掌握知识.教学过程一、回顾交流,导入新知【教师活动】提问学生在前面学过的同底数幂的运算法则;幂的乘方运算法则的内容以及区别.【学生活动】踊跃举手发言,解说老师的提问.【课堂演练】计算:(1)(x4)3(2)a·a5(3)x7·x9(x2)3【学生活动】完成上面的演练题,并从中领会这两个幂的运算法则.【教师活动】巡视,关注学生的练习,并请3位学生上台演示, 然后再提出下面的问题.同学们思考怎样计算(2a3)4,每一步的根据是什么?【学生活动】先独立完成上面的问题,再小组讨论.(2a3)4=(2a3)·(2a3)·(2a3)·(2a3)(乘方的含义)=(2·2·2·2)·(a3·a3·a3·a3)(乘法交换律、结合律)=24·a12(乘方的意义与同底数幂的乘法运算)=16a12【教师活动】提出应用以上分析问题的过程,再计算(ab)4,说出每一步的根据是什么?【学生活动】独立思考之后,再与同学交流.(ab)4=(ab)·(ab)·(ab)·(ab)(乘方的含义)=(aaaa)·(bbbb)(交换律、结合律)=a4·b4(乘方的含义)【教师提问】(1)请同学们通过计算,观察乘方结果之后, 你能得出什么规律?(2)如果设n为正整数,将上式的指数改成n,即:(ab)n,其结果是什么?【学生活动】回答出(ab)n=a n b n.【师生共识】我们得到了积的乘方法则:(ab)n=a n b n(n为正整数),这就是说,积的乘方等于积的每个因式分别乘方,再把所得的幂相乘.(ab)n==a n b n【教师活动】拓展训练:三个或三个以上的积的乘方,如(abc)n,【学生活动】回答出结果是(abc)n =a n b n c n.二、范例学习,应用所学【例】计算:(1)(2b)3;(2)(2×a3)2;(3)(-a)3;(4)(-3x)4.【教师活动】组织、讲例、提问.【学生活动】踊跃抢答.三、随堂练习,巩固深化课本P98练习.【探研时空】计算下列各式:(1)(-35)2·(-35)3;(2)(a-b)3·(a-b)4;(3)(-a5)5;(4)(-2xy)4;(5)(3a2)n;(6)(xy3n)2-[(2x)2] 3;(7)(x4)6-(x3)8;(8)-p·(-p)4;(9)(t m)2·t;(10)(a2)3·(a3)2.四、课堂总结,发展潜能本节课注重课堂引入,激发学生兴趣,“良好开端等于成功一半”.1.积的乘方(ab)n=a n b n(n是正整数),使用范围:底数是积的乘方.方法:把积的每一个因式分别乘方,再把所得的幂相乘.2.在运用幂的运算法则时,注意知识拓展,底数和指数可以是数, 也可以是整式,对三个以上因式的积也适用.3.要注意运算过程,注意每一步依据,还应防止符号上的错误.4.在建构新的法则时应注意前面学过的法则与新法则的区别和联系.五、布置作业,专题突破1.课本P104习题15.1第1、2题.板书设计14.1.3 积的乘方1、积的乘方的乘法法则例:练习:教学反思计算(-2x)3学生易错误得出-2x3,本题错误在于:括号内应看成-2·x两个因式,而上述结论显然结积的乘方意义缺乏理解,-2漏乘方,正确的应是(-2)3·x3=-8x3.14.1.4 单项式乘以单项式教学目标1.知识与技能理解整式运算的算理,会进行简单的整式乘法运算.2.过程与方法经历探索单项式乘以单项式的过程,体会乘法结合律的作用和转化的思想,发展有条理的思考及语言表达能力.3.情感、态度与价值观培养学生推理能力、计算能力,通过小组合作与交流,增强协作精神.重、难点与关键1.重点:单项式乘法运算法则的推导与应用.2.难点:单项式乘法运算法则的推导与应用.3.关键:通过创设一定的问题情境, 推导出单项式与单项式相乘的运算法则,可以采用循序渐进的方法突破难点.教学方法采用“情境──探究”的教学方法,让学生在创设的情境之中自然地领悟知识.教学过程一、创设情境,操作导入【手工比赛】让学生在课前准备一张自己最满意的照片,自己制作一个美丽的像框.上课之后,首先来做游戏,“才艺大献”,把自己的照片加一个美丽的像框,看谁在10分钟之内,可以装饰出美丽的照片,谁的最好,老师就送他个好礼物.【教师活动】组织学生参加“才艺比赛”.【学生活动】完成上述手工制作,与同伴交流.【教师引导】在学生完成之后,教师拿出一张美丽的风景照片,提出问题:你们看这幅美丽的风景图片,如何装饰它会更漂亮?【学生回答】加一个美丽的像框.【引入课题】假如要加一个美丽的像框,需要知道这幅图片的大小,现在告诉你,图片的长为mx,宽为x,你能计算出图片的面积吗?【学生活动】动手列式,图片的面积为mx·x=?【教师提问】对于mx·x=?的问题,前面我们已学习了乘法的运算律以及幂的运算法则,现在请你运用已学知识推导出它的结果.【学生活动】先独立思考,再与同伴交流.实际上mx·x=m(x·x)=m·x2=mx2.【拓展延伸】请同学们继续计算mx·54x=?【学生活动】先独立完成,再与同伴交流,踊跃上台演示.mx·54x=m·54x·x=m·54x2=54mx2.【教师活动】请部分学生上台演示,然后大家共同讨论.【继续探究】计算:(1)x·mx;(2)2a2b·3ab3;(3)(abc)·b2c.【学生活动】独立完成,再与同学交流.【教师活动】总结新知:我们根据自己做的题目的原则,得到单项式与单项式相乘的运算法则:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,放在积的因式中.二、范例学习,应用所学【例1】计算.(1)3x2y·(-2xy3)(2)(-5a2b3)·(-4b2c)【思路点拨】例1的两个小题,可先利用乘法交换律、 结合律变形成数与数相乘,同底数幂与同底数幂相乘的形式,单独一个字母照抄.【例2】卫星绕地球运动的速度(即第一宇宙速度)约为7.9×103米/秒, 则卫星运行3×102秒所走的路程约是多少?【教师活动】:引导学生参与到例1,例2的解决之中.【学生活动】参与到教师的讲例之中,巩固新知.三、问题讨论,加深理解【问题牵引】1.a·a可以看作是边长为a的正方形的面积,a·ab又怎样理解呢?2.想一想,你会说明a·b,3a·2a以及3a·5ab的几何意义吗?【教师活动】问题牵引,引导学生思考,提问个别学生.【学生活动】分四人小组,合作学习.四、随堂练习,巩固深化课本P145练习第1、2题.五、课堂总结,发展潜能本节内容是单项式乘以单项式,重点是放在对运算法则的理解和应用上.提问:(1)请同学们归纳出单项式乘以单项式的运算法则.(2)在应用单项式乘以单项式运算法则时应注意些什么?六、布置作业,专题突破1.课本P149习题15.1第3题.2.选用课时作业设计.板书设计14.1.4 单项式乘以单项式1、单项式乘以单项式的乘法法则例:练习:教学反思【思路点拨】对于单项式与单项式相乘的应用问题,首先要依据题意,列出算式,含10的幂相乘同样用单项式与乘法法则进行计算,还应将所得的结果用科学记数法表示.14.1.5 单项式与多项式相乘教学目标1.知识与技能让学生通过适当尝试,获得一些直接的经验,体验单项式与多项式的乘法运算法则,会进行简单的整式乘法运算.2.过程与方法经历探索单项式与多项式相乘的运算过程,体会乘法分配律的作用和转化思想,发展有条理地思考及语言表达能力.3.情感、态度与价值观培养良好的探究意识与合作交流的能力,体会整式运算的应用价值.重、难点与关键1.重点:单项式与多项式相乘的法则.2.难点:整式乘法法则的推导与应用.3. 关键:应用乘法分配律把单项式与多项式相乘转化到单项式与单项式相乘上来,注意知识迁移.教学方法采用“情境──探究”教学方法,让学生直观地理解单项式与多项式相乘的法则.教学过程一、回顾交流,课堂演练1.口述单项式乘以单项式法则.2.口述乘法分配律.3.课堂演练,计算:(1)(-5x)·(3x)2(2)(-3x)·(-x)(3)1 3xy·23xy2(4)-5m2·(-13mn)(5)-15x4y6-2x2y·(-12x2y5)【教师活动】组织练习,关注中下水平的学生.【学生活动】先独立完成上述“演练题”,再相互交流,部分学生上台演示.二、创设情境,引入新课小明作了一幅水彩画,所用纸的大小如图1,她在纸的左右两边各留了16a米的空白,请同学们列出这幅画的画面面积是多少?【学生活动】小组合作,讨论.【教师活动】在学生讨论的基础上,提问个别学生.【情境问题2】夏天将要来临,有3家超市以相同价格n (单位:元/台)销售A牌空调,他们在一年内的销售量(单位:台)分别是x,y,z, 请你采用不同的方法计算他们在这一年内销售这种空调的总收入.【学生活动】分四人小组,与同伴交流,寻求不同的表示方法.方法一:首先计算出这三家超市销售A牌空调的总量(单位:台), 再计算出总的收入(单位:元).即:n(x+y+z).方法二:采用分别计算出三家超市销售A牌空调的收入, 然后再计算出他们的总收入(单位:元).即:nx+ny+nz.由此可得:n(x+y+z)=nx+ny+nz.【教师活动】引导学生在不同的代数式呈现中,找到规律:单项式与多项式相乘,就是用单项式去乘多项式中的每一项,再把所得的积相加.三、范例学习,应用所学【例1】计算:(-2a2)·(3ab2-5ab3).解:原式=(-2a2)(3ab2)-(-2a2)·(5ab3)=-6a3b2+10a3b3【例2】化简:-3x2·(13xy-y2)-10x·(x2y-xy2)解:原式=-x3y+3x2y2-10x3y+10x2y2=-11x3y+13x2y2【例3】解方程:8x(5-x)=19-2x(4x-3)40x-8x2=19-8x2+6x40x-6x=1934x=19x=1934四、随堂练习,巩固深化课本P146练习.【探研时空】计算:(1)5x2(2x2-3x3+8)(2)-16x(x2-3y)(3)-2a2(12ab2+b4)(4)(23x2y3-16xy)·12xy2【教师活动】巡视,关注中差生.五、课堂总结,发展潜能1.单项式与多项式相乘法则:单项式与多项式相乘, 就是用单项式去乘多项式的每一项,再把所得的积相加.2.单项式与多项式相乘,应注意(1)“不漏乘”;(2)注意“符号”.六、布置作业,专题突破课本P104习题14.1第4、6题.板书设计14.1.5 单项式乘以多项式1、单项式乘以多项式的乘法法则例:练习:教学反思教学中,应紧扣法则,注意多项式的各项是带着前面的符号的.在实施“情境──探究”教学过程中,注重引导学生在课堂活动过程中感悟知识的生成、发展与变化,培养学生主动探索、敢于实践、善于发现的科学精神.14.1.6 多项式与多项式相乘教学目标1.知识与技能让学生理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.2.过程与方法经历探索多项式与多项式相乘的运算法则的推理过程,体会其运算的算理.3.情感、态度与价值观通过推理,培养学生计算能力,发展有条理的思考,逐步形成主动探索的习惯.重、难点与关键1.重点:多项式与多项式的乘法法则的理解及应用.2.难点:多项式与多项式的乘法法则的应用.3. 关键:多项式的乘法应先转化为单项式与多项式相乘而后再应用已学过的运算法则解决.教学方法采用“情境──探索”教学方法,让学生在设置的情境中,通过操作感知多项式与多项式乘法的内涵.教学过程一、创设情境,操作感知【动手操作】首先,在你的硬纸板上用直尺画出一个矩形,并且分成如下图1 所示的四部分,标上字母.【学生活动】拿出准备好的硬纸板,画出上图1,并标上字母.【教师活动】要求学生根据图中的数据,求一下这个矩形的面积.【学生活动】与同伴交流,计算出它的面积为:(m+b)×(n+a).【教师引导】请同学们将纸板上的矩形沿你所画竖着的线段将它剪开,分成如下图两部分,如图2.剪开之后,分别求一下这两部分的面积,再求一下它们的和.【学生活动】分四人小组,合作探究,求出第一块的面积为m (n+a),第二块的面积为b(n+a),它们的和为m(n+a)+b(n+a).【教师活动】组织学生继续沿着横的线段剪开,将图形分成四部分,如图3, 然后再求这四块长方形的面积.【学生活动】分四人小组合作学习,求出S1=mn;S2=nb;S3=am;S4=ab, 它们的和为S=mn+nb+am+ab.【教师提问】依据上面的操作,求得的图形面积,探索(m+b)(n+a)应该等于什么?【学生活动】分四人小组讨论,并交流自己的看法.(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab,因为我们三次计算是按照不同的方法对同一个矩形的面积进行了计算,那么,两次的计算结果应该是相同的,所以(m+b)×(n+a)=m(n+a)+b(n+a)=mn+nb+am+ab.【师生共识】多项式与多项式相乘,用第一个多项式的每一项乘以另一个多项式的每一项,再把所得的结果相加.字母呈现:=ma+mb+na+nb.二、范例学习,应用所学【例1】计算:(1)(x+2)(x-3)(2)(3x-1)(2x+1)【例2】计算:(1)(x-3y)(x+7y)(2)(2x+5y)(3x-2y)【例3】先化简,再求值:(a-3b)2+(3a+b)2-(a+5b)2+(a-5b)2,其中a=-8,b=-6.【教师活动】例1~例3,启发学生参与到例题所设置的计算问题中去.【学生活动】参与其中,领会多项式乘法的运用方法以及注意的问题.三、随堂练习,巩固新知课本P148练习第1、2题.【探究时空】一块长m米,宽n米的玻璃,长宽各裁掉a 米后恰好能铺盖一张办公桌台面(玻璃与台面一样大小),问台面面积是多少?四、课堂总结,发展潜能1.多项式与多项式相乘, 应充分结合导图中的问题来理解多项式与多项式相乘的结果,利用乘法分配律来理解(m+n)与(a+b)相乘的结果,导出多项式乘法的法则.2.多项式与多项式相乘,第一步要先进行整理, 在用一个多项式的每一项去乘另一个多项式的每一项时,要“依次”进行,不重复,不遗漏,且各个多项式中的项不能自乘,多项式是几个单项式的和,每一项都包括前面的符号,在计算时要正确确定积中各项的符号.五、布置作业,专题突破课本P104习题14.1第5、6、7(2)、9、10题.板书设计14.1.6 多项式乘以多项式1、多项式乘以多项式的乘法法则例:练习:教学反思在实施情境探究教学过程中,应注意让学生感知问题的生成、发展与变化,培养学生善于发现的科学精神以及合作交流的精神和创新意识.14.2.1平方差公式(二)教学目标1.知识与技能探究平方差公式的应用,熟练地应用于多项式乘法之中.2.过程与方法经历平方差公式的运用过程,体会平方差公式的内涵.3.情感、态度与价值观培养良好的运算能力,以及观察事物的特征的能力,感受到学习数学知识的实际价值.重、难点与关键1.重点:运用平方差公式进行整式计算.2.难点:准确把握运用平方差公式的特征.3.关键:弄清平方差公式的结构特点,左边:(1)两个二项式的积;(2) 两个二项式中一项相同,另一项互为相反数.右边:(1)二项式;(2)两个因式中相同项平方减去互为相反数的项的平方.教学方法采用“精讲.精练”分层递推的教学方法,让学生在训练中,熟练掌握平方差的特征.教学过程一、回顾交流,课堂演练1.用平方差公式计算:(1)(-9x-2y)(-9x+2y)(2)(-0.5y+0.3x)(0.5y+0.3x)(3)(8a2b-1)(1+8a2b)(4)20082-2009×20072.计算:(a+12b)(a-12b)-(3a-2b)(3a+2b)【教师活动】请部分学生上讲台“板演”,然后组织学生交流.【学生活动】先独立完成课堂演练,再与同学交流.二、范例学习,巩固深化【例1】计算:(1)(34y+212x)(212x-34y);(2)(-56x-0.7a2b)(56x-0.7a2b);(3)(2a-3b)(2a+3b)(4a2+9b2)(16a4+81b4).解:(1)原式=(52x+34y)(52x-34y)=2259416x y2(2)原式=(-0.7a2b-56x)(-0.7a2b+56x)=(-0.7a 2b )2-(56x )2=0.4 9a 4b 2-2536x 2 (3)原式=(4a 2-9b 2)(4a 2+9b 2)(16a 4+81b 4)=(16a 4-81b 4)(16a 4+81b 4)=256a 8-6561b 8【例2】运用乘法公式计算:734×814 【思路点拨】因为734可改写为8-14,814可改写成8+14,这样可用平方差公式计算.解:734×814=(8-14)(8+14)=82-(14)2=64-116=631516. 【教师活动】边讲例边引导学生学会应用平方差公式.【学生活动】参与到例1~2的学习中去.三、课堂演练,拓展思维【演练题1】想一想:(1)计算下列各组算式,并观察它们的共同特征.68?1315?6163?5961?77?1414?6262?6060?⨯=⨯=⨯=⨯=⎧⎧⎧⎧⎨⎨⎨⎨⨯=⨯=⨯=⨯=⎩⎩⎩⎩(2)从以上的过程中,你能寻找出什么规律?(3)请你用字母表现你所发现的规律,并得出结论.【演练题2】1.计算:(1)118×122 (2)105×95 (3)1007×9932.求(2-1)(2+1)(22+1)(24+1)…(232+1)+1的个位数字.【教师活动】组织学生进行课堂演练,并适时归纳.【学生活动】先独立完成上面的演练题,再与同伴交流.四、随堂练习,巩固提升【探研时空】1.计算:[2a 2-(a+b )(a -b )][(-a -b )(-a+b )+2b 2];2.解不等式:(3x+4)(3x -4)<9(x -2)(x+3);3.利用平方差公式计算:1.97×2.03;4.化简求值:x 4-(1-x )(1+x )(1+x 2)其中x=-2.【教师活动】引导学生通过探究,领会平方差公式的真正意义. 【学生活动】分四人小组合作学习,互相交流.。
人教版八年级数学上第十四章《整式乘法与因式分解》全章教案
人教版八年级数学上第十四章《整式乘法与因式分解》全章教案第一篇:人教版八年级数学上第十四章《整式乘法与因式分解》全章教案东兴市京族学校八年级数学上教案备课人:第十四章整式的乘法与因式分解14.1.1 同底数幂的乘法教学目标1.理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算.2.体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用.教学重、难点同底数幂的乘法运算法则及其应用.教学过程设计一、创设问题,激发兴趣问题一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s可进行多少次运算?(1)如何列出算式?(2)1015的意义是什么?(3)怎样根据乘方的意义进行计算?根据乘方的意义填空,观察计算结果,你能发现什么规律?(1)2(2)a(3)535)⨯22=2(;)⋅a2=a(;)⨯5n=5(.m你能将上面发现的规律推导出来吗?=(14aa244⋅Λ⋅3a)(⋅14a⋅4a244⋅Λ⋅3a)am⋅an ⋅4m个an个a=a⋅4a ⋅Λ⋅3a 14244(m+n)个a m+ n教师板演: 同底数幂相乘,底数不变,指数相加.即:am×an=am+n(m、n都是正整数).二、知识应用,巩固提高=a am⋅an=am+n(m,n 都是正整数)表述了两个同底数幂相乘的结果,那么,三个、四个…多个同底数幂相乘,结果会怎样?这一性质可以推广到多个同底数幂相乘的情况:am⋅an⋅Λ⋅ap=am+n+Λ+p(m,n,p都是正整数).例1(教科书第96页)三、应用提高、拓展创新课本96页练习/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)同底数幂的乘法的运算性质是怎么探究并推导出来的?在运用时要注意什么?五、布置作业:习题14.1第1(1)、(2)题教后反思:14.1.2 幂的乘方 14.1.3 积的乘方教学目标1.理解幂的乘方与积的乘方性质的推导根据.2.会运用幂的乘方与积的乘方性质进行计算.3.在类比同底数幂的乘法性质学习幂的乘方与积的乘方性质时,体会三者的联系和区别及类比、归纳的思想方法.教学重、难点幂的乘方与积的乘方的性质.教学过程设计一、创设问题,激发兴趣问题1 有一个边长为a2 的正方体铁盒,这个铁盒的容积是多少?问题2 根据乘方的意义及同底数幂的乘法填空: 23()(1)3)(=32⨯32⨯32=3;3()(2)a2)(=a2⋅a2⋅a2=a;(a(3)m3())=am⋅am⋅am=a(m是正整数).在解决问题后,引导学生归纳同底数幂的乘法法则:幂的乘方,底数不变,指数相乘.即:(am)n=amn(m、n 都是正整数).多重乘方可以重复运用上述法则:pmn⎡⎤ a)=amnp(⎣⎦二、知识应用,巩固提高计算(1)(102)3;(2)(b5)5;(3)(an)3;(4)-(x2)m;(5)(y2)3·y;(6)2(a2)6-(a3)4.问题4 根据乘方的意义和乘法的运算律,计算:你能发现有何运算规律吗?能用文字语言概述你发现的积的乘方运算规律吗?(n是正整数)/ 15 东兴市京族学校八年级数学上教案备课人:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.当n 是正整数时,三个或三个以上因式的积的乘方,也具有这一性质吗?四、归纳小结(1)本节课学习了哪些主要内容?(2)幂的三个运算性质是什么?它们有什么区别和联系?五、布置作业:教材第102页第1、2题.教后反思:14.1.4整式的乘法(1)教学目标1.理解单项式乘法的法则,会用单项式乘法法则进行运算.2.经历单项式乘法法则的形成过程,发展学生的运算能力,体会类比思想.教学重、难点单项式的乘法法则的概括过程和运用.教学过程设计一、创设情境,激发兴趣问题1:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?二、知识应用,巩固提高问题2 观察这三个算式有何共同的特点?请你用自己的语言概括单项式乘以单项式的法则.单项式乘以单项式的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式./ 15 东兴市京族学校八年级数学上教案备课人:三、应用提高、拓展创新第99页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)运用单项式的乘法法则时,应该注意哪些问题?(3)结合探索单项式乘法法则的过程,你认为体现了哪些思想方法?五、布置作业:教科书习题14.1第3、9、10题.教后反思:14.1.4整式的乘法(2)教学目标1.理解单项式与多项式相乘的法则,能运用单项式与多项式相乘的法则进行计算.2.理解算理,发展学生的运算能力和“几何直观”观念,体会转化、数形结合和程序化思想.教学重、难点单项式与多项式相乘的法则的运用.教学过程设计一、创设情境,激发兴趣问题我们来回顾引言中提出的问题:为了扩大绿地的面积,要把街心花园的一块长p 米,宽b 米的长方形绿地,向两边分别加宽a 米和c 米,你能用几种方法表示扩大后的绿地的面积?不同的表示方法:(pa+b+c)pa+pb+pc你认为这两个代数式之间有着怎样的关系呢?二、知识应用,巩固提高请你用自己的语言概括单项式乘以多项式的法则.单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.三、应用提高、拓展创新完成课本100页练习1、练习2/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用单项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)探索单项式与多项式相乘的法则的过程,体现了哪些思想方法?五、布置作业:教材第103页第4、7题教后反思:14.1.4整式的乘法(3)教学目标1.理解多项式与多项式相乘的法则,并能运用法则进行计算.2.理解算理,发展学生的运算能力和几何直观,体会转化、数形结合和程序化思想.教学重、难点多项式与多项式相乘的法则的概括与运用.教学过程设计一、创设情境,激发兴趣问题1 已知某街心花园有一块长方形绿地,长为a m,宽为p m.则它的面积是多少?若将这块长方形绿地的长增加b m,则扩大后的绿地面积是多少?问题2 若将原长方形绿地的长增加b m、宽增加q m,你能用几种方法求出扩大后的长方形绿地的面积呢?不同的表示方法:二、知识应用,巩固提高根据上节课积累的探究经验,你能得到什么结论呢?(a+b)(p+q)=ap+aq+bp+bq你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗?多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.你认为在运用法则计算时,应该注意什么问题?/ 15 东兴市京族学校八年级数学上教案备课人:根据上述求解过程,观察计算结果的各项系数与原式中的系数有怎样的关系?三、应用提高、拓展创新教科书第102页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用多项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)举例说明在探索多项式与多项式相乘的法则的过程中,体现了哪些思想方法?五、布置作业:教材习题14.1第5、8题教后反思:14.1.4整式的除法(1)教学目标1.理解同底数幂除法的性质和单项式除以单项式的法则,并会应用法则计算.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值;体会转化思想在单项式除法中的作用.教学重、难点探究同底数幂除法的性质和单项式除以单项式的法则,并会用它们进行运算.教学过程设计一、创设情境,激发兴趣问题1 一种数码照片的文件大小是28 K,一个存储量为26 M(1 M=210 K)的移动存储器能存储多少张这样的数码照片?二、知识应用,巩固提高问题2 填空:⨯(1)∵()()⨯(2)∵()⋅(3)∵23=25 ∴25÷23=();103=107 ∴107÷103=();a3=a7 ∴a7÷a3=().问1 你在解决问题2时,用到了什么知识?你能叙述这一知识吗?/ 15 东兴市京族学校八年级数学上教案备课人:问2 25÷23,107÷103,a7÷am 这三个算式属于哪种运算?你能概括一下它3们是怎样计算出来的吗?问3 你能用上述方法计算 a÷an吗?问4 你能用语言概括这一性质吗?同底数幂除法的性质:同底数幂相除,底数不变,指数相减.思考与讨论为什么a≠0?问题3 当被除式的指数等于除式的指数时:(1)如果根据这条性质计算am÷an结果是多少?÷an结果是多少?(2)如果根据除法意义计算 am即任何不等于0的数的0次幂都等于1.三、应用提高、拓展创新例1 计算:474(xy)÷xy;a÷a;(1)(2)326(-y)÷y.(-x)÷(-x);(3)(4)问题4 计算下列各题:423323228xy÷7xy;(1)(2)12abx÷3ab.例2 计算:(1)-8a22教科书104页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)探究同底数幂除法性质和单项式除法?(3)运用同底数幂除法性质和单项式除法的法则时,你认为应该注意什么?五、布置作业:教材习题14.1第6题(1)(2)(3)(4).教后反思:12b÷6ab2;(2)(-12x8y6)÷(-x2y3).2 7 / 15 东兴市京族学校八年级数学上教案备课人:14.1.4整式的除法(2)教学目标1.理解多项式除以单项式的法则.2.体会知识间的内在联系、互逆关系等逻辑关系在研究问题时的价值;体会类比和转化的数学思想在多项式除以单项式中的作用.教学重、难点探究多项式除以单项式的法则,会运用法则进行计算.教学过程设计一、创设情境,激发兴趣问题1 请同学们观察下列算式,它是我们学过的除法算式吗?如果不是,说说它与我们上节课学习的算式有什么不一样的特点.⑴.(m+bm)÷m;-12x2+4x)÷4x.(8x⑵3你能尝试计算(1)吗?说说你是怎样算出来的?二、知识应用,巩固提高利用除法是乘法的逆运算,求(am +bm)÷m 的值,就是要求一个多项式,使它与m 的积是(am +bm).你知道这个多项式是什么吗?完成引例:8x3-12x2+4x)÷4x(思考上述两个算式的运算,它们的相同之处是什么?通过以上两个例子,我们在计算一个多项式除以单项式时,是将它如何转化的呢?你能用字母的形式来表示吗?多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.或例1 计算:(6ab(1)+5a÷a);22(15xy-10xy÷5xy);(2)(8a(3)2-4ab)÷(-4a);3(4)(12a-6a2+3a)÷3a.三、应用提高、拓展创新教科书104页练习3/ 15 东兴市京族学校八年级数学上教案备课人:四、归纳小结(1)本节课学习了哪些主要内容?(2)运用多项式除以单项式法则计算的基本步骤是什么?应注意的地方是什么?(3)探究多项式除以单项式的方法是什么?五、布置作业:教材习题14.1第6(5)(6)题教后反思:14.2.1 乘法公式--平方差公式教学目标1.理解平方差公式,能运用公式进行计算.2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.教学重、难点平方差公式教学过程设计一、创设情境,激发兴趣在14.1节中,我们学习了整式的乘法,知道了多项式与多项式相乘的法则.根据所学知识,计算下列多项式的积,你能发现什么规律?(1)=;(2)=;(3)=.二、知识应用,巩固提高上述问题中相乘的两个多项式有什么共同点?相乘的两个多项式的各项与它们的积中的各项有什么关系?你能将发现的规律用式子表示出来吗?你能对发现的规律进行推导吗?(a+b)(a-b)=a前面探究所得的式子2-b2为乘法的平方差公式,你能用文字语言表述平方差公式吗?两个数的和与这两个数的差的积,等于这两个数的平方差.你能根据图中图形的面积说明平方差公式吗?/ 15 东兴市京族学校八年级数学上教案备课人:例1 运用平方差公式计算:(-x+2y)(-x-2y)(3x-2)(1)(3x+2);(2)从例题1和练习1中,你认为运用公式解决问题时应注意什么?(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a,哪个数或式相当于公式中的b;(3)总结规律:一般地,“第一个数”a 的符号相同,“第二个数”b 的符号相反;(4)公式中的字母a ,b 可以是具体的数、单项式、多项式等;(5)不能忘记写公式中的“平方”.例2 计算:(-y+2)(-y-2)-(y-1)(y+5)(1);(2)102×98.三、应用提高、拓展创新教科书108页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)平方差公式的结构特征是什么?(3)应用平方差公式时要注意什么五、布置作业:教科书习题14.2第1题.教后反思:14.2.2乘法公式--完全平方公式教学目标1.理解完全平方公式,能用公式进行计算.2.经历探索完全平方公式的过程,进而感受特殊到一般、数形结合思想,发展符号意识和几何直观观念.教学重、难点完全平方公式./ 15 东兴市京族学校八年级数学上教案备课人:教学过程设计一、创设情境,激发兴趣问题1 计算下列各式:22(p+1)=______;(m+2)=______;(1)22(p-1)=______;(m-2)=______.(2)你能发现什么规律?二、知识应用,巩固提高问题2 你能用式子表示发现的规律吗?完全平方公式:问题3 你能用文字语言表述完全平方公式吗?两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.公式特点:(1)积为二次三项式;(2)积中两项为两数的平方和;(3)另一项是两数积的2倍,且与乘式中间的符号相同;(4)公式中的字母a,b 可以表示数,单项式和多项式.问题4 能根据图1和图2中的面积说明完全平方公式吗?三、应用提高、拓展创新例1 运用完全平方公式计算:212(4m+n)(1);(2).(y-)2例2 运用完全平方公式计算:(1)102;(2)99.问题5 思考: 22(a+b)与(-a-b)相等吗?(1)22(a-b)与(b-a)相等吗?(2)(a-b)与 a(3)2222-b2相等吗?为什么?/ 15 东兴市京族学校八年级数学上教案备课人:问题6 添括号法则去括号a+(b+c)= a+b+c;a-(b+c)= a-b-c.a+b+c =a+(b+c);a-b-c = a-(b + c).添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.四、归纳小结(1)本节课学习了哪些主要内容?(2)完全平方公式结构有什么特点?五、布置作业:教材习题14.2第2、4、6、7题.教后反思:14.3.1因式分解--提公因式法教学目标1.了解因式分解的概念.2.了解公因式的概念,能用提公因式法进行因式分解.教学重、难点运用提公因式法分解因式.教学过程设计一、创设情境,激发兴趣上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.请把下列多项式写成整式的乘积的形式:二、知识应用,巩固提高在多项式的变形中,有时需要将一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.你认为因式分解与整式乘法有什么关系?因式分解与整式乘法是互逆变形关系.你能试着将多项式pa+pb+pc因式分解吗?(1)这个多项式有什么特点?(2)因式分解的依据是什么?(3)分解后的各因式与原多项式有何关系?一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式.这种分解因式的方法叫做提公因式法./ 15 东兴市京族学校八年级数学上教案备课人:例1 把8a32b+12ab3c分解因式.通过对例1的解答,你有什么收获?(1)公因式是多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的乘积;(2)提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;(3)用提公因式分解因式后,应保证含有多项式的因式中再无公因式.ab+c)(-3b+c)例2 把2(分解因式.通过对例2的解答,你有什么收获?公因式可以是单项式,也可以是多项式.三、应用提高、拓展创新教科书115页练习1、2、3四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的目的是什么?因式分解与整式乘法有什么区别和联系?(3)提公因式法的一般步骤是什么?应用提公因式法分解因式时要注意什么?五、布置作业:教科书习题14.3第1、4(1)题.教后反思:14.3.2因式分解--公式法(1)教学目标1.探索并运用平方差公式进行因式分解,体会转化思想.2.会综合运用提公因式法和平方差公式对多项式进行因式分解.教学重、难点运用平方差公式来分解因式.教学过程设计一、创设情境,激发兴趣你能将多项式y2-25与多项式x2-4分解因式吗?(1)本题你能用提公因式法分解因式吗?(2)这两个多项式有什么共同的特点?(a-b)(a+b)=a(3)你能利用整式的乘法公式——平方差公式吗?二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试着概括你的发现.2-b2来解决这个问题(a-b)=a把整式的乘法公式——平方差公式(a+b)13 / 152-b2反过来就得到因式分解的平方东兴市京族学校八年级数学上教案备课人:差公式:(1)平方差公式的结构特征是什么?(2)两个平方项的符号有什么特点?适用于平方差公式因式分解的多项式必须是二项式,每一项都为平方项,并且两个平方项的符号相反.例1 分解因式:222(x+p)-(x+q)4x-9(1);(2).三、应用提高、拓展创新例2 分解因式:44x-y;a)ba-3abx-b-.ab.(1)y ;(2通过对例2的学习,你有什么收获?(1)分解因式必须进行到每一个多项式都不能再分解为止;(2)对具体问题选准方法加以解决四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的平方差公式的结构特征是什么?(3)综合运用提公因式法和平方差公式进行因式分解时要注意什么?五、布置作业:教材习题14.3第2、4(2)题教后反思:14.3.2因式分解--公式法(2)教学目标1.了解完全平方式及公式法的概念,会用完全平方公式进行因式分解.2.综合运用提公因式法和完全平方公式对多项式进行因式分解.教学重、难点运用完全平方公式分解因式.教学过程设计一、创设情境,激发兴趣你能将多项式a2+2ab+b2与多项式a2-2ab+b2分解因式吗?追问1 你能用提公因式法或平方差公式来分解因式吗?追问2 这两个多项式有什么共同的特点?(a追问3 你能利用整式的乘法公式——完全平方公式来解决这个问题吗?2±b)=a2±2ab+b14 / 15 东兴市京族学校八年级数学上教案备课人:二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试概括你的发现.把整式的乘法公式——完全平方公式(a的完全平方公式:我们把a22±b)=a2±2ab+b2反过来就得到因式分解+2ab+b2和a2-2ab+b2这样的式子叫做完全平方式.利用完全平方公式可以把形如完全平方式的多项式因式分解.完全平方式必须是三项式,其中两项为平方项,并且两个平方项的符号同为正,中间项是首尾两项乘积的二倍,符号不限.例1 分解因式:22216x+2416xx+9+ 24x+9-x+4 xy-x-4+y4xy-4y(1);(2).三、应用提高、拓展创新例2 分解因式:223ax+6axy+3ay +(a2+b)-12(a++36b)+3631ax(ab)-12(a+b)()+6axy+3ay ;(2).把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的完全平方公式在应用时应注意什么?五、布置作业:教材习题14.3第3、5(1)(3)题教后反思:/ 15第二篇:整式的乘法与因式分解复习教案《整式的乘法与因式分解》复习(一)教案教学目标:知识与技能:记住整式乘除的计算法则;平方差公式和完全平方公式;掌握因式分解的方法和则过程与方法:会运用法则进行整式的乘除运算,会对一个多项式分解因式情感态度与价值观:培养学生的独立思考能力和合作交流意识教学重点:记住公式及法则教学难点:会运用法则进行整式乘除运算,会对一个多项式进行因式分解教学方法与手段:讲练结合教学过程:一.本章知识梳理:幂的运算:(1)同底数幂的乘法(2)同底数幂的除法(3)幂的乘方(4)积的乘方整式的乘除:(1)单项式乘单项式(2)单项式乘多项式(3)多项式乘多项式(4)单项式除以单项式(5)多项式除以单项式乘法公式:(1)平方差公式(2)完全平方公式因式分解:(1)提公因式法(2)公式法二.合作探究:(1)化简:a3·a2b=.(2)计算:4x2+4x2=(3)计算:4x2·(-2xy)=.(4)分解因式:a2-25=三、当堂检测1.am=2,an=3则a2m+n =___________,am-2n =____________ 2.若A÷5ab2=-7ab2c3,则A=_________, 若4x2yz3÷B=-8x,则B=_________.2(ax+b)(x+2)=x-4,则ab=_________________.3.若4.若a-2+b2-2b+1=0,则a=a+,b=5.已知11a2+2=3aa的值是.,则6.已知被除式是x3+2x2-1,商式是x,余式是-1,则除式是()A、x2+3x-1B、x2+2xC、x2-1D、x2-3x+1 7.如(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.–3B.3C.0D.1 8.一个正方形的边长增加了2cm,面积相应增加了32cm,则这个正方形的边长为()A、6cmB、5cmC、8cmD、7cm 9.下列各式是完全平方式的是()2A、x2-x+14 B、1+x2 C、x+xy+12D、x+2x-110.下列多项式中,含有因式(y+1)的多项式是(y 2 - 2 y + 1)A.22222(y+1)-(y-1)(y+1)-(y-1)(y+1)+2(y+1)+1B.C.D.三.课堂小结:今天这节课,你学到了哪些知识?有哪些收获与感受?说出来大家分享。
2024年人教版八年级数学上册教案及教学反思全册第14章 整式的乘法与因式分解公式法(第2课时)教案
第十四章整式的乘法与因式分解14.3因式分解14.3.2公式法第2课时一、教学目标【知识与技能】1.在掌握了因式分解意义的基础上,会运用平方差公式和完全平方公式对比较简单的多项式进行因式分解.【过程与方法】1.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.2.在运用公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.【情感、态度与价值观】1.培养学生逆向思维的意识,同时培养学生团队合作、互帮互助的精神.2.进一步体验“整体”的思想,培养“换元”的意识.二、课型新授课三、课时第2课时,共2课时。
四、教学重难点【教学重点】运用完全平方公式法进行因式分解.【教学难点】观察多项式的特点,判断是否符合公式的特征和综合运用分解的方法,并完整地进行分解.五、课前准备教师:课件、直尺、矩形图片等。
学生:三角尺、练习本、铅笔、钢笔。
六、教学过程(一)导入新课我们知道,因式分解与整式乘法是反方向的变形,我们学习了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?(出示课件2)(二)探索新知1.创设情境,探究运用完全平方公式分解因式教师问1:什么叫因式分解?(出示课件4)学生回答:把一个多项式化成几个整式的积的形式的变形叫做把这个多项式因式分解,也叫把这个多项式分解因式.教师问2:我们已经学过哪些因式分解的方法?学生回答:提公因式法、平方差公式:a2–b2=(a+b)(a–b)教师问3:把下列各式分解因式:(1)ax4-a;(2)16m4-n4.学生回答:(1)ax4-a=a(x2+1)(x+1)(x-1);(2)16m4-n4=(4m2+n)(2m+n)(2m-n).教师问4:结合上题思考因式分解要注意什么问题?学生回答:①一提二看三检查;②分解要彻底.教师问5:我们学过的乘法公式除了平方差公式之外,还有哪些公式?请写出来.学生回答:完全平方公式:(a±b)2=a2±2ab+b2教师讲解:这节课我们就来讨论如何运用完全平方公式把多项式因式分解.教师问6:你能把下面4个图形拼成一个正方形并求出你拼成的图形的面积吗?(出示课件5)学生讨论后拼出下图:教师问7:这个大正方形的面积可以怎么求?学生回答:(a+b)2=a2+2ab+b2教师问8:将上面的等式倒过来看,能得到什么呢?学生回答:a2+2ab+b2=(a+b)2(出示课件6)教师问:观察这两个多项式:a2+2ab+b2;a2–2ab+b2,请回答下列各题:(出示课件7)(1)每个多项式有几项?学生回答:三项(2)每个多项式的第一项和第三项有什么特征?学生回答:这两项都是数或式的平方,并且符号相同.(3)中间项和第一项,第三项有什么关系?学生回答:是第一项和第三项底数的积的±2倍.教师讲解:我们把a²+2ab+b²和a²–2ab+b²这样的式子叫做完全平方式.教师问9:把下列各式分解因式:(1)a2+2ab+b2;(2)a2-2ab+b2.学生回答:(1)a2+2ab+b2=(a+b)2;(2)a2-2ab+b2=(a-b)2.教师问10:将整式乘法的平方差公式反过来写即是分解因式的平方差公式.同样道理,把整式乘法的完全平方公式反过来写即分解因式的完全平方公式.能不能用语言叙述呢?学生回答后,师生共同讨论后解答如下:两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.即a2+2ab+b2=(a+b)2,a2-2ab+b2=(a-b)2.教师问11:下列各式是不是完全平方式?如果是,请分解因式.(1)a2-4a+4;(2)x2+4x+4y2;(3)4a2+2ab+14b2;(4)a2-ab+b2;(5)x2-6x-9;(6)a2+a+0.25.学生讨论后回答如下:(1)a2-4a+4;是,原式=(a-2)2 (2)x2+4x+4y2;不是(3)4a2+2ab+14b2;是,原式=(2a+12b)2(4)a2-ab+b2;不是(5)x2-6x-9;不是(6)a2+a+0.25.是,原式=(a+0.5)2教师问12:根据学习用平方差公式分解因式的经验和方法,分析和推测什么叫做运用完全平方公式分解因式?能够用完全平方公式分解因式的多项式具有什么特点?学生讨论后回答,师生共同归纳如下:①三项式;②两项为两个数的平方和的形式;③第三项为加(或减)这两个数的积的2倍.总结点拨:(出示课件8)完全平方式:a²±2ab+b²完全平方式的特点:1.必须是三项式(或可以看成三项的);2.有两个同号的数或式的平方;3.中间有两底数之积的±2倍.简记口诀:首平方,尾平方,首尾两倍在中央.(出示课件9)凡具备这些特点的三项式,就是完全平方式,将它写成完全平方形式,便实现了因式分解.两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.例1:分解因式:(出示课件12)(1)16x2+24x+9;(2)–x2+4xy–4y2.师生共同解答如下:(1)分析:(1)中,16x2=(4x)2,9=3²,24x=2·4x·3,所以16x2+24x+9是一个完全平方式,即16x2+24x+9=(4x)2+2·4x·3+32.解:(1)16x2+24x+9=(4x)2+2·4x·3+32=(4x+3)2;(2)中首项有负号,一般先利用添括号法则,将其变形为–(x2–4xy+4y2),然后再利用公式分解因式.(2)–x2+4xy–4y2=–(x2–4xy+4y2)=–(x–2y)2.例2:如果x2–6x+N是一个完全平方式,那么N是()(出示课件15)A.11B.9C.–11D.–9师生共同解答如下:解析:根据完全平方式的特征,中间项–6x=2x×(–3),故可知N=(–3)2=9.答案:B总结点拨:(出示课件16)本题要熟练掌握完全平方公式的结构特征,根据参数所在位置,结合公式,找出参数与已知项之间的数量关系,从而求出参数的值.计算过程中,要注意积的2倍的符号,避免漏解.例3:把下列各式分解因式:(出示课件18)(1)3ax2+6axy+3ay2;(2)(a+b)2–12(a+b)+36.师生共同解答如下:分析:(1)中有公因式3a,应先提出公因式,再进一步分解因式;(2)中将a+b 看成一个整体,设a+b=m,则原式化为m2–12m+36.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2;(2)原式=(a+b)2–2·(a+b)·6+62=(a+b–6)2.总结点拨:利用公式把某些具有特殊形式(如平方差式,完全平方式等)的多项式分解因式,这种分解因式的方法叫做公式法.(出示课件19)例4:把下列完全平方式分解因式:(出示课件21)(1)1002–2×100×99+99²;(2)342+34×32+162.师生共同解答如下:解:(1)原式=(100–99)²=1(2)原式=(34+16)2=2500.总结点拨:本题利用完全平方公式分解因式,可以简化计算.例5:已知:a 2+b 2+2a–4b+5=0,求2a 2+4b–3的值.(出示课件23)师生共同解答如下:分析:从已知条件可以看出,a 2+b 2+2a–4b+5与完全平方式有很大的相似性(颜色相同的项),因此可通过“凑”成完全平方式的方法,将已知条件转化成非负数之和等于0的形式,从而利用非负数的性质来求解.(出示课件24)解:由已知可得(a 2+2a+1)+(b 2–4b+4)=0即(a+1)2+(b–2)2=01020a b +=⎧∴⎨-=⎩12a b =-⎧∴⎨=⎩∴2a 2+4b–3=2×(–1)2+4×2–3=7总结点拨:遇到多项式的值等于0、求另一个多项式的值,常常通过变形为完全平方公式和(非负数的和)的形式,然后利用非负数性质来解答.(三)课堂练习(出示课件27-31)1.下列四个多项式中,能因式分解的是()A.a 2+1B.a 2–6a+9C.x 2+5yD.x 2–5y 2.把多项式4x 2y–4xy 2–x 3分解因式的结果是()A.4xy(x–y)–x 3B.–x(x–2y)2C.x(4xy–4y 2–x 2)D.–x(–4xy+4y 2+x 2)3.若m=2n+1,则m 2–4mn+4n 2的值是________.4.若关于x 的多项式x 2–8x+m 2是完全平方式,则m 的值为_________.5.把下列多项式因式分解.(1)x 2–12x+36;(2)4(2a+b)2–4(2a+b)+1;(3)y 2+2y+1–x 2;6.计算:(1)38.92–2×38.9×48.9+48.92.(2)20142-2014×4026+201327.分解因式:(1)4x 2+4x+1;(2)13x 2–2x+3.小聪和小明的解答过程如下:他们做对了吗?若错误,请你帮忙纠正过来.8.(1)已知a–b=3,求a(a–2b)+b 2的值;(2)已知ab=2,a+b=5,求a 3b+2a 2b 2+ab 3的值.小聪:小明:参考答案:1.B2.B3.14.±45.解:(1)原式=x2–2·x·6+62=(x–6)2;(2)原式=[2(2a+b)]²–2·2(2a+b)·1+1²=(4a+2b–1)2;(3)原式=(y+1)²–x²=(y+1+x)(y+1–x).6.解:(1)原式=(38.9–48.9)2=100.(2)原式=20142-2×2014×2013+20132=(2014-2013)2=17.解:(1)原式=(2x)2+2•2x•1+1=(2x+1)2 (2)原式=13(x2–6x+9)=13(x–3)28.解:(1)原式=a2–2ab+b2=(a–b)2.当a–b=3时,原式=32=9.(2)原式=ab(a2+2ab+b2)=ab(a+b)2.当ab=2,a+b=5时,原式=2×52=50.(四)课堂小结今天我们学了哪些内容:a2±2ab+b2=(a±b)2一提,二看,三检查。
全新人教八年级数学上册第十四章:整式的乘法与因式分解教案
第十四章 整式的乘法与因式分解课题:14.1.1同底数幂的乘法教学目标:理解同底数幂的乘法法则,运用同底数幂的乘法法则解决一些实际问题.通过“同底数幂的乘法法则”的推导和应用,•使学生初步理解特殊到般再到特殊的认知规律。
教学重点:正确理解同底数幂的乘法法则以及适用范围。
教学难点:正确理解同底数幂的乘法法则以及适用范围。
教学过程:一、回顾幂的相关知识:a n 的意义:a n 表示n 个a 相乘,我们把这种运算叫做乘方.乘方的结果叫幂;a 叫做底数,•n 是指数.二、导入新知:1.问题:一种电子计算机每秒可进行1012次运算,它工作103秒可进行多少次运算?2.学生分析:总次数=运算速度×时间3.得到结果:1012×103=121010)⨯⨯个(10×(10×10×10)=15101010)⨯⨯⨯个(10=1015.4.通过观察可以发现1012、103这两个因数是同底数幂的形式,所以我们把像1012×103的运算叫做同底数幂的乘法.根据实际需要,我们有必要研究和学习这样的运算──同底数幂的乘法.5.观察式子:1012×103=1015,看底数和指数有什么变化?三、学生动手:1.计算下列各式:(1)25×22 (2)a 3·a 2 (3)5m ·5n (m 、n 都是正整数)2.得到结论:(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.3.a m ·a n 表示同底数幂的乘法.根据幂的意义可得:a m ·a n =()a a a m 个a ·()a a a n 个a =a a a (m+n)个a=a m+n a m ·a n =a m+n (m 、n 都是正整数),即为:同底数幂相乘,底数不变,指数相加四、学以致用:1.计算:(1)x 2·x 5 (2)a·a 6 (3)x m ·x 3m+12.计算:(1)2×24×23 (2) a m ·a n ·a p3.计算:(1)(-a )2×a 6 (2)(-a )2×a 4 (3)(-21)3×21 6 4.计算:(1)(a+b )2×(a+b)4×[-(a+b)]7(2)(m-n )3×(m-n)4×(n-m)7(3)a 2×a ×a 5+a 3×a 2×a 2五、小结:1.同底数幂的乘法的运算性质,进一步体会了幂的意义.了解了同底数幂乘法的运算性质.同底数幂的乘法的运算性质是底数不变,指数相加.2.注意两点:一是必须是同底数幂的乘法才能运用这个性质;二是运用这个性质计算时一定是底数不变,指数相加,即a m ·a n =a m+n (m 、n 是正整数).六、作业课本96页练习1,2题课题:14.1.2幂的乘方教学目标:经历探索幂的乘方与积的乘方的运算性质的过程,进一步体会幂的意义,发展推理能力和有条理的表达能力。
人教版八年级上册数学-14章《整式的乘法与因式分解》教案
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与整式的乘法与因式分解相关的实际问题。
-公式法:运用平方差公式、完全平方公式等进行因式分解。
-分组分解法:将多项式分组,使组内项有公因式,然后分别提取公因式并分解。
2.教学难点
(1)整式乘法的运算过程:对于多项式乘多项式的运算,学生容易在分配律的运用、合并同类项等方面出现错误。
-举例:(x+2)(x+3),学生可能会忽略括号展开时,将每一项分别相乘,导致运算错误。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解整式的乘法与因式分解的基本概念。整式的乘法是指将两个或多个整式相乘,它是代数运算的基础,广泛应用于各种数学问题中。因式分解是将一个多项式分解成几个整式的乘积,这个过程有助于简化复杂的表达式,解决实际问题。
2.案例分析:接下来,我们来看一个具体的案例。比如,我们要计算(x+2)(x+3)的结果。这个案例展示了整式乘法在实际中的应用,以及如何通过因式分解简化表达式。
2.逻辑推理:培养学生运用数学原理和逻辑思维进行整式乘法与因式分解的推理能力,增强解决问题的逻辑性。
3.数学建模:使学生能够运用整式的乘法与因式分解解决实际问题,建立数学模型,提高数学应用能力。
4.数学运算:训练学生熟练进行整式乘法与因式分解的运算,提高运算速度和准确性。
5.数据分析:培养学生通过整式乘法与因式分解对数据进行处理和分析,从数学角度发现问题的能力。
人教版八年级数学上册第十四章整式的乘除与因式分解单元教材分析优秀教学案例
在导入新课时,我会通过一个生活实例引起学生的兴趣。例如,我会提出一个问题:“如果商店举行打折活动,原价100元的商品打8折后售价是多少?”让学生尝试计算。这样,学生可以直观地感受到整式乘法的实际应用,激发他们对新知识的学习兴趣。
(二)讲授新知
在讲授新知时,我会结合多媒体课件和实际例子,系统地讲解整式乘法、除法和因式分解的概念、方法和技巧。我会强调整式乘法中的分配律、结合律等运算法则,并通过例题展示整式乘法的步骤和注意事项。同时,我还会介绍整式除法的基本概念和步骤,以及因式分解的几种常用方法,如提公因式法、公式法等。
(四)反思与评价
在教学过程中,我鼓励学生进行反思和评价,帮助他们发现自己的优点和不足,提高他们的自我认知能力。例如,在课后,我可以让学生对自己的学习情况进行总结,找出自己在学习中的困难和问题,并提出相应的解决方法。同时,我还会对学生的学习情况进行评价,给予他们鼓励和指导,帮助他们提高学习能力。
四、教学内容与过程
2.问题导向与小组合作:提出具有启发性的问题,引导学生进行思考和探究,并通过小组合作解决问题,培养学生的团队协作能力和解决问题的能力。
3.反思与评价:鼓励学生进行反思和评价,帮助他们发现自己的优点和不足,提高自我认知能力,同时,教师对学生的学习情况进行评价,给予鼓励和指导,帮助他们提高学习能力。
4.系统化的教学内容:对整式乘法、除法和因式分解的知识进行系统归纳,帮助学生形成知识体系,提高学生的理解能力和运用能力。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论,让学生运用所学知识解决一些实际问题。例如,我会给出几道不同难度的练习题,让学生分组讨论、合作解题。这样,学生可以在讨论中互相学习、互相帮助,提高他们的合作能力和解决问题的能力。
部编版人教数学八上《第十四章(整式的乘法与因式分解)全章教学设计及教学反思(表格版)》
最新精品部编版人教初中八年级数学上册第十四章整式的乘法与因式分解优秀教学设计(全章完整版含教学反思)前言:该教学设计(教案)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的教学设计(教案)是高效课堂的前提和保障。
(最新精品教学设计)14.1 整式的乘法教师引导学生用图示的直观形式指出底数、指数、幂.(2)怎样根据乘方的意义进行计算?学生思考,尝试,小组内交流,最后班内展示.问题2:计算:(1)25×22;(2)a3·a2;(3)5m·5n.师生活动:学生独立计算,三位同学在黑板上板书,要求每个步骤都写出运算的依据.师生共同分析板书结果.如学生有困难,教师可引导学生回顾问题1的解答过程,再进行计算.追问1:上面三个式子有什么共同的特点?追问2:请根据观察再举一个例子,使之具有上面三个式子的共同特征,并直接写出结果.追问3:你能用符号表示你发现的规律吗?追问4:你能将这一规律推导出来吗?追问5:你能用语言描述这一规律吗?教师引导学生注意观察计算前后底数和指数的关系,并能用自己的语言描述,得到结论:(1)特点:这三个式子都是底数相同的幂相乘.相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.(2)一般性结论:a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=·==a m+n,即a m·a n=a m+n(m,n都是正整数).(3)同底数幂相乘,底数不变,指数相加.追问6:a m·a n=a m+n(m,n都是正整数)表述了两个同底数幂相乘的结果,那么三个、四个同底数幂相乘,结果会怎样?通过设计三个层次的题目,从具体到抽象,为下一步概括出一般的结论奠定基础,同时让学生进一步明确算理,得出正确结论.通过设计5个追问,层层递进,让学生在观察、比较、抽象、概括中总结出同底数幂的乘法的运算法则,并培养学生分析、归纳、概括的能力,发展学生的数感、符号感.通过同底数幂乘法法则的推广,促进学生对公式结构特征的深层理解.三、运用新知,解决问题计算:(1)x2·x5;(2)a·a6;(3)(-2)×(-2)4×(-2)3;(4)x m·x3m+1.学生独立完成,要求书写完整的解答步骤.让学生运用性质进行计算,在注意解题细节,积累解题经验的同时,体会将同底数幂的乘法运算转化为指数相加运算的思想.四、课堂小结,提炼观点通过本节课的学习,你有何收获和体会?还有哪些困惑?五、布置作业,巩固提升教材第96页练习14.1.3 积的乘方┃教学过程设计┃。
人教版八年级数学上第十四章《整式乘法与因式展开》全章教案
人教版八年级数学上第十四章《整式乘法与因式展开》全章教案
一、教学目标
1. 理解整式的乘法法则;
2. 掌握整式的乘法运算;
3. 熟练运用分配律进行整式的乘法;
4. 掌握因式展开的基本方法;
5. 运用因式展开解决实际问题。
二、教学重点
1. 整式的乘法法则;
2. 分配律的运用;
3. 因式展开的基本方法。
三、教学难点
1. 掌握因式展开的基本方法;
2. 运用因式展开解决实际问题。
四、教学过程
第一节整式的乘法法则
1. 教师通过示例向学生介绍整式的乘法法则;
2. 学生进行课堂练,巩固乘法法则的掌握程度。
第二节整式的乘法运算
1. 教师讲解整式的乘法运算步骤;
2. 学生进行练,加深对整式乘法运算的理解。
第三节分配律的运用
1. 教师解释分配律的概念和运用方法;
2. 学生通过练,在实际问题中灵活运用分配律。
第四节因式展开的基本方法
1. 教师介绍因式展开的基本方法;
2. 学生进行因式展开的练,提升解题能力。
第五节因式展开解决实际问题
1. 教师引导学生通过因式展开解决实际问题的例子;
2. 学生在小组活动中解决相关实际问题。
五、教学评价
教师通过课堂练、小组活动以及个人表现等方式,对学生的乘法和因式展开的掌握情况进行评价。
六、教学延伸
1. 布置相关练作业,巩固学生的知识;
2. 鼓励学生进行更多的因式展开实践,提高解题能力。
七、教学反思
本课通过引导学生掌握整式的乘法法则、分配律的运用以及因式展开的基本方法,提高了学生的数学运算能力和解决实际问题的能力。
人教版 初二八年级数学上册第一学期(教学设计 教案)第十四章 整式的乘法与因式分解(全章分课时含反思)
第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.理解并掌握同底数幂的乘法法则.(重点)2.运用同底数幂的乘法法则进行相关运算.(难点)一、情境导入问题:2014年9月,一个国际空间站研究小组发现了太阳系以外的第100颗行星,距离地球约100光年.1光年是光经过一年所行的距离,光的速度大约是3×105km/s.问:这颗行星距离地球多远?(1年=3.1536×107s)3×105×3.1536×107×100=3×3.1536×107×105×102=9.4608×105×107×102.问题:“107×105×102”等于多少呢?二、合作探究探究点一:同底数幂的乘法的计算【类型一】底数为单项式的同底数幂的乘法计算:(1)2×2×2;(2)-a3·(-a)2·(-a)3;(3)m n+1·m n·m2·m.解析:(1)根据同底数幂的乘法法则进行计算即可;(2)先算乘方,再根据同底数幂的乘法法则进行计算即可;(3)根据同底数幂的乘法法则进行计算即可.解:(1)原式=23+4+1=28;(2)原式=-a3·a2·(-a3)=a3·a2·a3=a8;(3)原式=m n+1+n+2+1=m2n+4.方法总结:同底数幂的乘法法则只有在底数相同时才能使用;单个字母或数可以看成指数为1的幂,进行运算时,不能忽略了幂指数1.【类型二】底数为多项式的同底数幂的乘法计算:(1)(2a+b)2n+1·(2a+b)3·(2a+b)n-4;(2)(x -y )2·(y -x )5.解析:将底数看成一个整体进行计算.解:(1)原式=(2a +b )(2n +1)+3+(n -4)=(2a +b )3n;(2)原式=-(x -y )2·(x -y )5=-(x -y )7.方法总结:底数互为相反数的幂相乘时,先把底数统一,再进行计算.(a -b )n=⎩⎪⎨⎪⎧(b -a )n(n 为偶数),-(b -a )n (n 为奇数).探究点二:同底数幂的乘法法则的运用【类型一】运用同底数幂的乘法,求代数式的值若82a +·8=8,求2a +b 的值.解析:根据同底数幂的乘法,底数不变指数相加,可得a 、b 的关系,根据a 、b 的关系求解.解:∵82a +3·8b -2=82a +3+b -2=810,∴2a +3+b -2=10,解得2a +b =9. 方法总结:将等式两边化为同底数幂的形式,底数相同,那么指数也相同.【类型二】同底数幂的乘法的实际应用经济发展和消费需求的增长促进了房地产的发展,使得房价持续上涨,2015年前5个月,某市共销售商品房8.31×104平方米.据监测,商品房平均售价为每平方米4.7×103元,2015年前5个月该市的商品房销售总额是多少元?解析:先根据题意列出算式计算即可.解:8.31×104×4.7×103=(8.31×4.7)×(104×103)=3.9057×108(元).答:2015年前5个月该市的商品房销售总额是3.9057×108(元).方法总结:本题考查了同底数幂的乘法的应用,关键是根据题意得出算式,注意结果要用科学记数法表示.【类型三】利用同底数幂的乘法探究指数的关系已知2=3,2=6,2=18,试问a 、b 、c 之间有怎样的关系?请说明理由. 解析:观察题目的已知可以发现3×6=18,利用同底数幂相乘,底数不变指数相加解答.解:∵3×6=18,∴2a ·2b =2a +b =2c,∴a +b =c . 方法总结:解答此类问题就是利用同底数幂的乘法,将等式两边转化为底数相同的形式,然后让指数相等解答.探究点三:同底数幂的乘法法则的逆用已知a m =3,a n =21,求a m +n的值.解析:把a m +n 变成a m ×a n,代入求值即可.解:∵a m =3,a n =21,∴a m +n =a m ×a n=3×21=63.方法总结:逆用同底数幂的乘法法则把a m +n 变成a m ×a n.三、板书设计同底数幂的乘法同底数幂相乘,底数不变,指数相加,即a m·a n=a m+n(m、n都是正整数).条件:(1)同底数幂;(2)乘法.结果:(1)底数不变;(2)指数相加.在同底数幂乘法公式的探究过程中,学生表现出观察角度的差异:有的学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系起来;有些学生则既观察入微,又统揽全局,表现出了较强的观察力.教师要善于抓住这个契机,适当对学生进行指导,培养他们“既见树木,又见森林”的优良观察品质.对于公式使用的条件既要把握好“度”,又要把握好“方向”.14.1.2幂的乘方1.理解幂的乘方的运算性质,进一步体会和巩固幂的意义;通过推理得出幂的乘方的运算性质,并且掌握这个性质.(重点)2.掌握幂的乘方法则的推导过程并灵活应用.(难点)一、情境导入1.填空:(1)同底数幂相乘________不变,指数________;(2)a2×a3=________;10m×10n=________;(3)(-3)7×(-3)6=________;(4)a·a2·a3=________;(5)(23)2=2( );(x4)5=x( );(2100)3=2( ).2.计算(22)3;(24)3;(102)3.问题:(1)上述几道题目有什么共同特点?(2)观察计算结果,你能发现什么规律?(3)你能推导一下(a m)n的结果吗?请试一试.二、合作探究探究点一:幂的乘方【类型一】直接应用幂的乘方法则进行计算计算: (1)(a 3)4; (2)(x m -1)2;(3)[(24)3]3; (4)[(m -n )3]4.解析:直接运用(a m )n =a mn计算即可.解:(1)(a 3)4=a 3×4=a 12;(2)(x m -1)2=x 2(m -1)=x 2m -2;(3)[(24)3]3=24×3×3=236;(4)[(m -n )3]4=(m -n )12. 方法总结:运用幂的乘方法则进行计算时,一定不要将幂的乘方与同底数幂的乘法混淆,在幂的乘方中,底数可以是单项式,也可以是多项式.【类型二】含幂的乘方的混合运算计算:a (-a )(-a )+a .解析:根据幂的乘方和同底数幂的乘法法则运算求解.解:a 2(-a )2(-a 2)3+a 10=-a 2·a 2·a 6+a 10=-a 10+a 10=0.方法总结:先算幂的乘方,再算同底数幂的乘法,最后算加减,然后合并同类项. 探究点二:幂的乘方法则的逆运算【类型一】运用幂的乘方法则比较数的大小请看下面的解题过程:“比较2100与375的大小,解:∵2100=(24)25,375=(33)25,又∵24=16,33=27,16<27,∴2100<375”.请你根据上面的解题过程,比较3100与560的大小,并总结本题的解题方法.解析:首先理解题意,然后可得3100=(35)20,560=(53)20,再比较35与53的大小,即可求得答案.解:∵3100=(35)20,560=(53)20,又∵35=243,53=125,243>125,即35>53,∴3100>560.方法总结:此题考查了幂的乘方的性质的应用.注意理解题意,根据题意得到3100=(35)20,560=(53)20是解此题的关键.【类型二】方程与幂的乘方的应用已知2x +5y -3=0,求4·32的值.解析:由2x +5y -3=0得2x +5y =3,再把4x ·32y统一为底数为2的乘方的形式,最后根据同底数幂的乘法法则即可得到结果.解:∵2x +5y -3=0,∴2x +5y =3,∴4x ·32y =22x ·25y =22x +5y =23=8.方法总结:本题考查了幂的乘方的逆用及同底数幂的乘法,整体代入求解也比较关键.【类型三】根据幂的乘方的关系,求代数式的值已知2x=8y +1,9y =3x -9,则代数式13x +12y 的值为________.解析:由2x =8y +1,9y=3x -9得2x=23(y +1),32y =3x -9,则x =3(y +1),2y =x -9,解得x=21,y =6,故代数式13x +12y =7+3=10.方法总结:根据幂的乘方与积的乘方公式转化得到x 和y 的方程组,求出x 、y ,再计算代数式.三、板书设计幂的乘方幂的乘方的运算公式:(a m )n =a mn(m ,n 为正整数).即幂的乘方,底数不变,指数相乘.幂的乘方公式的探究方式和前节类似,因此在教学中可以利用该优势展开教学,在探究过程中可以进一步发挥学生的主动性,尽可能地让学生在已有知识的基础上,通过自主探究,获得幂的乘方运算的感性认识,进而理解运算法则.14.1.3 积的乘方1.掌握积的乘方的运算法则.(重点)2.掌握积的乘方的推导过程,并能灵活运用.(难点)一、情境导入1.教师提问:同底数幂的乘法公式和幂的乘方公式是什么? 学生积极举手回答:同底数幂的乘法公式:同底数幂相乘,底数不变,指数相加. 幂的乘方公式:幂的乘方,底数不变,指数相乘.2.肯定学生的发言,引入新课:今天学习幂的运算的第三种形式——积的乘方.二、合作探究探究点一:积的乘方【类型一】直接利用积的乘方法则进行计算计算:(1)(-5ab );(2)-(3x y ); (3)(-43ab 2c 3)3;(4)(-x m y 3m )2.解析:直接应用积的乘方法则计算即可.解:(1)(-5ab )3=(-5)3a 3b 3=-125a 3b 3;(2)-(3x 2y )2=-32x 4y 2=-9x 4y 2; (3)(-43ab 2c 3)3=(-43)3a 3b 6c 9=-6427a 3b 6c 9;(4)(-x m y 3m )2=(-1)2x 2m y 6m=x 2m y 6m.方法总结:运用积的乘方法则进行计算时,注意每个因式都要乘方,尤其是字母的系数不要漏乘方.【类型二】积的乘方在实际中的应用太阳可以近似地看作是球体,如果用V 、R 分别代表球的体积和半径,那么V =43πR 3,太阳的半径约为6×105千米,它的体积大约是多少立方千米?(π取3)解析:将R =6×105千米代入V =43πR 3,即可求得答案.解:∵R =6×105千米,∴V =43πR 3=43×π×(6×105)3=8.64×1017(立方千米).答:它的体积大约是8.64×1017立方千米.方法总结:读懂题目信息,理解球的体积公式并熟记积的乘方的性质是解题的关键. 【类型三】含积的乘方的混合运算计算:(1)-4xy 2·(12xy 2)2·(-2x 2)3;(2)(-a 3b 6)2+(-a 2b 4)3.解析:(1)先进行积的乘方,然后根据同底数幂的乘法法则求解;(2)先进行积的乘方和幂的乘方,然后合并.解:(1)原式=4xy 2·14x 2y 4·8x 6=8x 9y 6;(2)原式=a 6b 12-a 6b 12=0.方法总结:先算积的乘方,再算乘法,最后算加减,然后合并同类项.探究点二:积的乘方的逆运算【类型一】利用积的乘方的逆运算进行简便运算计算:(23)2015×(32)2016.解析:将(32)2016转化为(32)2015×32,再逆用积的乘方公式进行计算.解:原式=(23)2015×(32)2015×32=(23×32)2015×32=32.方法总结:对公式a n·b n=(ab )n,要灵活运用,对于不符合公式的形式,要通过恒等变形,转化为公式的形式.运用此公式可进行简便运算.【类型二】利用积的乘方比较数的大小试比较大小:2×3与2×3.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,23<32,∴213×310<210×312.方法总结:利用积的乘方,转化成同底数的同指数的幂是解答此类问题的关键.三、板书设计积的乘方积的乘方公式:(ab)n=a n b n(n为正整数).即积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.在本节的教学过程中教师可以采用与前面相同的方式展开教学.教师在讲解积的乘方公式的应用时,再补充讲解积的乘方公式的逆运算:a n·b n=(ab)n,同时教师为了提高学生的运算速度和应用能力,也可以补充讲解:当n为奇数时,(-a)n=-a n(n为正整数);当n 为偶数时,(-a)n=a n(n为正整数).第2课时多项式与多项式相乘1.理解多项式乘以多项式的运算法则,能够按多项式乘法步骤进行简单的乘法运算.(重点)2.掌握多项式与多项式的乘法法则的应用.(难点)一、情境导入某地区在退耕还林期间,将一块长m米、宽a米的长方形林区的长、宽分别增加n米和b米.用两种方法表示这块林区现在的面积.学生积极思考,教师引导学生分析,学生发现:这块林区现在长为(m+n)米,宽为(a+b)米,因而面积为(m+n)(a+b)平方米.另外:如图,这块地由四小块组成,它们的面积分别为ma平方米,mb平方米、na平方米,nb平方米,故这块地的面积为(ma+mb+na+nb)平方米.由此可得:(m+n)(a+b)=ma+mb+na+nb.今天我们就学习多项式乘以多项式.二、合作探究探究点一:多项式乘以多项式【类型一】直接利用多项式乘多项式进行计算计算:(1)(3x+2)(x+2);(2)(4y-1)(5-y).解析:利用多项式乘多项式法则计算,即可得到结果.解:(1)原式=3x2+6x+2x+4=3x2+8x+4;(2)原式=20y-4y2-5+y=-4y2+21y-5.方法总结:多项式乘以多项式,按一定的顺序进行,必须做到不重不漏;多项式与多项式相乘,仍得多项式,在合并同类项之前,积的项数应等于原多项式的项数之积.【类型二】混合运算计算:(3a+1)(2a-3)-(6a-5)(a-4).解析:根据整式混合运算的顺序和法则分别进行计算,再把所得结果合并即可.解:(3a+1)(2a-3)-(6a-5)(a-4)=6a2-9a+2a-3-6a2+24a+5a-20=22a-23. 方法总结:在计算时要注意混合运算的顺序和法则以及运算结果的符号.探究点二:多项式乘多项式的化简求值及应用【类型一】化简求值先化简,再求值:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b),其中a=-1,b=1.解析:先将式子利用整式乘法展开,合并同类项化简,再代入计算.解:(a-2b)(a2+2ab+4b2)-a(a-5b)(a+3b)=a3-8b3-(a2-5ab)(a+3b)=a3-8b3-a3-3a2b+5a2b+15ab2=-8b3+2a2b+15ab2.当a=-1,b=1时,原式=-8+2-15=-21.方法总结:化简求值是整式运算中常见的题型,一定要注意先化简,再求值,不能先代值,再计算.【类型二】多项式乘以多项式与方程的综合解方程:(x-3)(x-2)=(x+9)(x+1)+4.解析:方程两边利用多项式乘以多项式法则计算,移项合并同类项,将x系数化为1,即可求出解.解:去括号后得:x2-5x+6=x2+10x+9+4,移项合并同类项得:-15x=7,解得x=-715.方法总结:解答本题就是利用多项式的乘法,将原方程转化为已学过的方程解答.【类型三】多项式乘以多项式的实际应用千年古镇杨家滩的某小区的内坝是一块长为(3a +b )米,宽为(2a +b )米的长方形地块,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的正方形),则绿化的面积是多少平方米?并求出当a =3,b =2时的绿化面积.解析:根据长方形的面积公式,可得内坝、景点的面积,根据面积的和差,可得答案.解:由题意,得(3a +b )(2a +b )-(a +b )2=6a 2+5ab +b 2-a 2-2ab -b 2=5a 2+3ab ,当a =3,b =2时,5a 2+3ab =5×32+3×3×2=63,故绿化的面积是63m 2.方法总结:用代数式表示图形的长和宽,再利用面积(或体积)公式求面积(或体积)是解决问题的关键.【类型四】多项式乘以单项式后,不含某一项,求字母系数的值已知ax +bx +1(a ≠0)与3x -2的积不含x 项,也不含x 项,求系数a 、b 的值.解析:首先利用多项式乘法法则计算出(ax 2+bx +1)(3x -2),再根据积不含x 2的项,也不含x 的项,可得含x 2的项和含x 的项的系数等于零,即可求出a 与b 的值.解:(ax 2+bx +1)(3x -2)=3ax 3-2ax 2+3bx 2-2bx +3x -2,∵积不含x 2的项,也不含x 的项,∴-2a +3b =0,-2b +3=0,解得b =32,a =94.∴系数a 、b 的值分别是94,32.方法总结:解决此类问题首先要利用多项式乘法法则计算出展开式,合并同类项后,再根据不含某一项,可得这一项系数等于零,再列出方程解答.三、板书设计多项式与多项式相乘多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.本节知识的综合性较强,要求学生熟练掌握前面所学的单项式与单项式相乘及单项式与多项式相乘的知识,同时为了让学生理解并掌握多项式与多项式相乘的法则,教学中一定要精讲精练,让学生从练习中再次体会法则的内容,为以后的学习奠定基础.第3课时 整式的除法1.掌握同底数幂的除法法则与运用.(重点)2.掌握单项式除以单项式和多项式除以单项式的运算法则.(重点) 3.熟练地进行整式除法的计算.(难点)一、情境导入1.教师提问:同底数幂的乘法法则是什么? 2.多媒体展示问题:一种液体每升含有1012个有害细菌,为了试验某种杀菌剂的效果,科学家们进行了实验,发现1滴杀菌剂可以杀死109个此种细菌.要将1升液体中的有害细菌全部杀死,需要这种杀菌剂多少滴?学生认真分析后完成计算:需要滴数:1012÷109.3.教师讲解:以前我们只学过同底数幂的乘法的计算方法,那么像这种同底数幂的除法该怎样计算呢?二、合作探究探究点一:同底数幂的除法【类型一】 直接用同底数幂的除法进行运算计算:(1)(-xy )13÷(-xy )8;(2)(x -2y )3÷(2y -x )2;(3)(a 2+1)6÷(a 2+1)4÷(a 2+1)2.解析:利用同底数幂的除法法则即可进行计算,其中(1)应把(-xy )看作一个整体;(2)把(x -2y )看作一个整体,2y -x =-(x -2y );(3)注意(a 2+1)0=1.解:(1)(-xy )13÷(-xy )8=(-xy )13-8=(-xy )5=-x 5y 5;(2)(x -2y )3÷(2y -x )2=(x -2y )3÷(x -2y )2=x -2y ;(3)(a 2+1)6÷(a 2+1)4÷(a 2+1)2=(a 2+1)6-4-2=(a 2+1)0=1.方法总结:计算同底数幂的除法时,先判断底数是否相同或变形为相同,再根据法则计算.【类型二】 逆用同底数幂的除法进行计算已知a m=4,a n=2,a=3,求a m-n-1的值.解析:先逆用同底数幂的除法,对a m-n-1进行变形,再代入数值进行计算.解:∵a m=4,a n=2,a=3,∴a m-n-1=a m÷a n÷a=4÷2÷3=23.方法总结:解此题的关键是逆用同底数幂的除法得出a m-n-1=a m÷a n÷a.【类型三】已知整式除法的恒等式,求字母的值若a(x y)÷(3x y)=4x y,求a、m、n的值.解析:利用积的乘方的计算法则以及整式的除法运算得出即可.解:∵a(x m y4)3÷(3x2y n)2=4x2y2,∴ax3m y12÷9x4y2n=4x2y2,∴a÷9=4,3m-4=2,12-2n=2,解得a=36,m=2,n=5.方法总结:熟练掌握积的乘方的计算法则以及整式的除法运算是解题关键.【类型四】整式除法的实际应用一颗人造地球卫星的速度为 2.88×107m/h,一架喷气式飞机的速度为1.8×106m/h,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?解析:求人造地球卫星的速度是这架喷气式飞机的速度的多少倍,用人造地球卫星的速度除以喷气式飞机的速度,列出式子:(2.88×107)÷(1.8×106),再利用同底数幂的除法计算.解:(2.88×107)÷(1.8×106)=(2.88÷1.8)×(107÷106)=1.6×10=16.则这颗人造地球卫星的速度是这架喷气式飞机的速度的16倍.方法总结:用科学记数法表示的数的运算可以利用单项式的相关运算法则计算.探究点二:零指数幂若(x-6)0=1成立,则x的取值范围是( )A.x≥6 B.x≤6C.x≠6 D.x=6解析:∵(x-6)0=1成立,∴x-6≠0,解得x≠6.故选C.方法总结:本题考查的是0指数幂,非0数的0次幂等于1,注意0指数幂的底数不能为0.探究点三:单项式除以单项式计算.(1)(2a2b2c)4z÷(-2ab2c2)2;(2)(3x3y3z)4÷(3x3y2z)2÷(12x2y6z).解析:先算乘方,再根据单项式除单项式的法则进行计算即可.解:(1)(2a2b2c)4z÷(-2ab2c2)2=16a8b8c4z÷4a2b4c4=4a6b4z;(2)(3x3y3z)4÷(3x3y2z)2÷(12x2y6z)=81x12y12z4÷9x6y4z2÷12x2y6z=18x4y2z.方法总结:掌握整式的除法的运算法则是解题的关键,有乘方的先算乘方,再算乘除.探究点四:多项式除以单项式【类型一】直接利用多项式除以单项式进行计算计算:(72x y-36x y+9xy)÷(-9xy).解析:根据多项式除单项式,先用多项式的每一项分别除以这个单项式,然后再把所得的商相加.解:原式=72x3y4÷(-9xy2)+(-36x2y3)÷(-9xy2)+9xy2÷(-9xy2)=-8x2y2+4xy-1.方法总结:多项式除以单项式,先把多项式的每一项都分别除以这个单项式,然后再把所得的商相加.【类型二】被除式、商式和除式的关系已知一个多项式除以2x,所得的商是2x2+1,余式是3x-2,请求出这个多项式.解析:根据被除式、除式、商式、余式之间的关系解答.解:根据题意得:2x2(2x2+1)+3x-2=4x4+2x2+3x-2,则这个多项式为4x4+2x2+3x-2.方法总结:“被除式=商×除式+余式”是解题的关键.【类型三】化简求值先化简,后求值:[2x(x2y-xy2)+xy(xy-x2)]÷x2y,其中x=2015,y=2014.解析:利用去括号法则先去括号,再合并同类项,然后根据除法法则进行化简,最后把x与y的值代入计算,即可求出答案.解:[2x(x2y-xy2)+xy(xy-x2)]÷x2y=[2x3y-2x2y2+x2y2-x3y]÷x2y=x-y,把x=2015,y=2014代入上式得:原式=x-y=2015-2014=1.方法总结:熟练掌握去括号,合并同类项,整式的除法的法则.三、板书设计同底数幂的除法1.同底数幂的除法法则:a m÷a n=a m-n(m,n为正整数,m>n,a≠0).2.同底数幂的除法法则逆用:a m-n=a m÷a n(m,n为正整数,m>n,a≠0).从计算具体的同底数幂的除法,逐步归纳出同底数幂除法的一般性质.讲课时要多举几个具体的例子,让学生计算出结果.最后,让学生自己归纳出同底数幂的除法法则.性质归纳出后,应注意:(1)要强调底数a不等于零,若a为零,则除数为零,除法就没有意义了;(2)本节不讲零指数与负指数的概念,所以性质中必须规定指数m、n都是正整数,并且,要让学生运用时予以注意.14.1.4 整式的乘法第1课时 单项式与单项式、多项式相乘1.探索并了解单项式与单项式、单项式与多项式相乘的法则,并运用它们进行运算.(重点)2.熟练应用运算法则进行计算.(难点)一、情境导入1.教师引导学生回忆幂的运算公式.学生积极举手回答:同底数幂的乘法公式:a m ·a n =a m +n(m ,n 为正整数).幂的乘方公式:(a m )n =a mn(m ,n 为正整数).积的乘方公式:(ab )n =a n b n(n 为正整数).2.教师肯定学生的回答,并引入课题——单项式与单项式、多项式相乘.二、合作探究探究点一:单项式乘以单项式【类型一】直接利用单项式乘以单项式法则进行计算计算: (1)(-23a 2b )·(56ac 2);(2)(-12x 2y )3·3xy 2·(2xy 2)2;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2.解析:运用幂的运算法则和单项式乘以单项式的法则计算即可. 解:(1)(-23a 2b )·(56ac 2)=-23×56a 3bc 2=-59a 3bc 2;(2)(-12x 2y )3·3xy 2·(2xy 2)2=-18x 6y 3×3xy 2×4x 2y 4=-32x 9y 9;(3)-6m 2n ·(x -y )3·13mn 2(y -x )2=-6×13m 3n 3(x -y )5=-2m 3n 3(x -y )5.方法总结:(1)在计算时,应先进行符号运算,积的系数等于各因式系数的积;(2)注意按顺序运算;(3)不要丢掉只在一个单项式里含有的字母因式;(4)此性质对于多个单项式相乘仍然成立.【类型二】单项式乘以单项式与同类项的综合已知-2x y 与7x y 的积与x y 是同类项,求m 2+n 的值.解析:根据-2x 3m +1y 2n 与7x n -6y -3-m 的积与x 4y 是同类项可得出关于m ,n 的方程组,进而求出m ,n 的值,即可得出答案.解:∵-2x3m +1y 2n与7x n -6y -3-m 的积与x 4y 是同类项,∴⎩⎪⎨⎪⎧3m +1+n -6=4,2n -3-m =1,解得:⎩⎪⎨⎪⎧m =2,n =3,∴m 2+n =7.方法总结:单项式乘以单项式就是把它们的系数和同底数幂分别相乘,结合同类项,列出二元一次方程组.【类型三】单项式乘以单项式的实际应用有一块长为x m ,宽为y m 的矩形空地,现在要在这块地中规划一块长35x m ,宽34y m的矩形空地用于绿化,求绿化的面积和剩下的面积.解析:先求出长方形的面积,再求出矩形绿化的面积,两者相减即可求出剩下的面积.解:长方形的面积是xy m 2,矩形空地绿化的面积是35x ×34y =920xy (m)2,则剩下的面积是xy -920xy =1120xy (m 2).方法总结:掌握长方形的面积公式和单项式乘单项式法则是解题的关键.探究点二:单项式乘以多项式【类型一】直接利用单项式乘以多项式法则进行计算计算: (1)(23ab 2-2ab )·12ab ;(2)-2x ·(12x 2y +3y -1).解析:先去括号,然后计算乘法,再合并同类项即可.解:(1)(23ab 2-2ab )·12ab =23ab 2·12ab -2ab ·12ab =13a 2b 3-a 2b 2;(2)-2x ·(12x 2y +3y -1)=-2x ·12x 2y +(-2x )·3y -(-2x )·1=-x 3y +(-6xy )-(-2x )=-x 3y -6xy +2x .方法总结:单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.【类型二】单项式乘以多项式乘法的实际应用一条防洪堤坝,其横断面是梯形,上底宽a 米,下底宽(a +2b )米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米?解析:(1)根据梯形的面积公式,然后利用单项式乘多项式的法则计算;(2)防洪堤坝的体积=梯形面积×坝长.解:(1)防洪堤坝的横断面积S =12[a +(a +2b )]×12a =14a (2a +2b )=12a 2+12ab .故防洪堤坝的横断面积为(12a 2+12ab )平方米;(2)堤坝的体积V =Sh =(12a 2+12ab )×100=50a 2+50ab .故这段防洪堤坝的体积是(50a2+50ab )立方米.方法总结:通过本题要知道梯形的面积公式及堤坝的体积(堤坝体积=梯形面积×长度)的计算方法,同时掌握单项式乘多项式的运算法则是解题的关键.【类型三】化简求值先化简,再求值:3a (2a 2-4a +3)-2a 2(3a +4),其中a =-2.解析:首先根据单项式与多项式相乘的法则去掉括号,然后合并同类项,最后代入已知的数值计算即可.解:3a (2a 2-4a +3)-2a 2(3a +4)=6a 3-12a 2+9a -6a 3-8a 2=-20a 2+9a ,当a =-2时,原式=-20×4-9×2=-98.方法总结:在做乘法计算时,一定要注意单项式的符号和多项式中每一项的符号,不要搞错.【类型四】单项式乘多项式,利用展开式中不含某一项求未知系数的值如果(-3x )2(x 2-2nx +23)的展开式中不含x 3项,求n 的值.解析:原式先算乘方,再利用单项式乘多项式法则计算,根据结果不含x 3项,求出n 的值即可.解:(-3x )2(x 2-2nx +23)=(9x 2)(x 2-2nx +23)=9x 4-18nx 3+6x 2,由展开式中不含x3项,得到n =0.方法总结:单项式与多项式相乘,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.三、板书设计单项式与单项式、多项式相乘1.单项式与单项式相乘法则:单项式与单项式相乘就是它们的系数、相同字母的幂分别相乘,对于只在一个单项式中出现的字母,则连同它的指数一起作为积的一个因式.2.单项式与多项式相乘的法则:单项式与多项式相乘,只要将单项式分别乘以多项式的每一项,再将所得的积相加.本节知识的重点是让学生理解单项式与单项式、多项式相乘的法则,并能应用.这就必须要求学生对乘法的分配律以及幂的运算法则有一定的基础,因此课前可以要求学生先复习该部分的知识,同时在上新课前也可以通过练习题让学生回忆知识.对于运算法则的得出,教师通过“试一试”逐步解题,通过计算演示法则的内容,更有利于学生理解运算法则.14.2乘法公式14.2.1平方差公式1.掌握平方差公式的推导和运用,以及对平方差公式的几何背景的理解.(重点)2.掌握平方差公式的应用.(重点)一、情境导入1.教师引导学生回忆多项式与多项式相乘的法则.学生积极举手回答.多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘以另一个多项式的每一项,再把所得的积相加.2.教师肯定学生的表现,并讲解一种特殊形式的多项式与多项式相乘——平方差公式.二、合作探究探究点:平方差公式【类型一】判断能否应用平方差公式进行计算下列运算中,可用平方差公式计算的是( )A.(x+y)(x+y)B.(-x+y)(x-y)C.(-x-y)(y-x)D.(x+y)(-x-y)解析:A中含x、y的项符号相同,不能用平方差公式计算,错误;B中(-x+y)(x-y)=-(x-y)(x-y),含x、y的项符号相同,不能用平方差公式计算,错误;C中(-x-y)(y -x)=(x+y)(x-y),含x的项符号相同,含y的项符号相反,能用平方差公式计算,正确;D中(x+y)(-x-y)=-(x+y)(x+y),含x、y的项符号相同,不能用平方差公式计算,错误;故选C.方法总结:对于平方差公式,注意两个多项式均为二项式且两个二项式中有一项完全相同,另一项互为相反数.【类型二】直接应用平方差公式进行计算利用平方差公式计算: (1)(3x -5)(3x +5); (2)(-2a -b )(b -2a ); (3)(-7m +8n )(-8n -7m );(4)(x -2)(x +2)(x 2+4).解析:直接利用平方差公式进行计算即可.解:(1)(3x -5)(3x +5)=(3x )2-52=9x 2-25;(2)(-2a -b )(b -2a )=(-2a )2-b 2=4a 2-b 2;(3)(-7m +8n )(-8n -7m )=(-7m )2-(8n )2=49m 2-64n 2;(4)(x -2)(x +2)(x 2+4)=(x 2-4)(x 2+4)=x 4-16.方法总结:应用平方差公式计算时,应注意以下几个问题:(1)左边是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数;(2)右边是相同项的平方减去相反项的平方;(3)公式中的a 和b 可以是具体数,也可以是单项式或多项式.【类型三】平方差公式的连续使用求2(3+1)(3+1)(3+1)(3+1)的值.解析:根据平方差公式,可把2看成是(3-1),再根据平方差公式即可算出结果.解:2(3+1)(32+1)(34+1)(38+1)=(3-1)(3+1)(32+1)(34+1)(38+1)=(32-1)(32+1)(34+1)(38+1)=(34-1)(34+1)(38+1)=(38-1)(38+1)=316-1.方法总结:连续使用平方差公式,直到不能使用为止.【类型四】应用平方差公式进行简便运算利用平方差公式简算:(1)2013×1923;(2)13.2×12.8.解析:(1)把2013×1923写成(20+13)×(20-13),然后利用平方差公式进行计算;(2)把13.2×12.8写成(13+0.2)×(13-0.2),然后利用平方差公式进行计算.解:(1)2013×1923=(20+13)×(20-13)=400-19=39989;(2)13.2×12.8=(13+0.2)×(13-0.2)=169-0.04=168.96.方法总结:熟记平方差公式的结构并构造出公式结构是解题的关键.【类型五】化简求值先化简,再求值:(2x -y )(y +2x )-(2y +x )(2y -x ),其中x =1,y =2.解析:利用平方差公式展开并合并同类项,然后把x 、y 的值代入进行计算即可得解.解:(2x -y )(y +2x )-(2y +x )(2y -x )=4x 2-y 2-(4y 2-x 2)=4x 2-y 2-4y 2+x 2=5x 2-5y 2.当x =1,y =2时,原式=5×12-5×22=-15.。
人教版八年级上册第十四章整式的乘法与因式分解课程设计
人教版八年级上册第十四章整式的乘法与因式分解课程设计一、课程目标通过本课程的学习,学生将能够:1.掌握整式的乘法运算方法;2.熟悉和了解整式的因式分解方法;3.掌握应用整式的乘法和因式分解解决实际问题的能力。
二、教学内容2.1 整式的乘法1.同底数幂的乘法原理;2.不同底数幂的乘法原理;3.单项式的乘法原理;4.多项式的乘法原理。
2.2 整式的因式分解1.拆分因式法;2.分组分解法;3.公因式分解法;4.提公因式法;5.全公式法。
2.3 应用题1.解决实际问题中出现的整式乘法问题;2.解决实际问题中出现的整式因式分解问题。
三、教学重点和难点3.1 教学重点1.整式的乘法原理;2.在解决实际问题中应用整式乘法;3.整式的因式分解方法;4.在解决实际问题中应用整式因式分解。
3.2 教学难点1.多项式的乘法;2.应用题的解决思路。
四、教学过程4.1 导入教师呈现一份关于两个家庭网购衣服费用的表格,引导学生思考如何计算两家的总费用。
4.2 知识讲解和训练4.2.1 整式的乘法1.同底数幂的乘法原理:$$a^m \\times a^n = a^{m+n} $$2.不同底数幂的乘法原理:$$a^m \\times b^n = ab^{m+n} $$3.单项式的乘法原理:(ax m)(by n)=abx m+n y m+n4.多项式的乘法原理:(a+b)(c+d)=ac+ad+bc+bd在讲解过程中,教师可结合例题进行讲解,并要求学生通过练习题巩固练习技能。
4.2.2 整式的因式分解1.拆分因式法:将多项式按一定的法则拆分成两个式子,一个公因式和一个括号中的因式。
2.分组分解法:将多项式按一定的法则分组,并在每一组中提取公共的因式。
3.公因式分解法:找出多项式中的公因子,并将公因子提取出来。
4.提公因式法:将多项式的每一项都提取公共因子,并将公共因子提取出来。
5.全公式法:将多项式按照特定的公式进行因式分解。
最新人教版八年级上册第14章《整式的乘法与因式分解》全章教案(共11份)
一、课前导学:(学生自学课本95-96页内容,并完成下列问题) 1. 【探究1】:下面有四个整式,从中任选两个构造乘法运算: 2a ,3a , 3a ab +,a ab + (1)你能写出哪些算式(只需列式,不需计算)(2)试着将你写的算式分类,你认为整式的乘法有哪几种类型?2. 【探究2】:根据乘方的意义计算:(1)3222⨯=( )×( )=( )=()2(2)32a a ⨯=( )×( )=( )=()a(3)55mn⨯=( )×( )=( )=5( )思考:观察以上计算过程,你能发现什么规律吗?你能用一个式子来表达这个规律吗? 猜想: a m ·a n=_______(m 、n 都是正整数). 3. 【探究3】:你能证明上面发现的规律吗?m n a a ⨯=( )×( )=( )=a()4. 【探究4】:计算下列各题:(1)25x x ⨯ (2)5a a ⨯ (3)23111()()()222-⨯-⨯- (4)21n n y y +⨯教 学 过 程 设 计二、合作、交流、展示: 1.【交流展示1】: 理解同底数幂的乘法法则(1)公式 : a m ·a n=_______(m 、n 都是正整数).(2)文字叙述:同底数幂相乘,底数 ,指数 . (3)公式推广:a m ·a n ·a p=_______(m 、n 、p 都是正整数) (4) 【点拨】:指数做降级运算:乘法2.【交流展示2】:下面的计算对吗?如果不对,怎样改正?(1)3332a a a ⨯=; (2)236a a a ⨯=; (3)66a a a ⨯=;(4)4593(3)3⨯-=; (5)235a a a +=; (6)4610()()()ab a b a b +⨯+=+. 3. 【交流展示3】:计算下列各式,结果用幂的形式表示. (1) 435(3)(3)3-⨯-⨯; (2)23()()a b b a -⨯-讨论:底数互为相反数的幂的乘法如何计算?三、巩固与应用 1. 计算:(1)437()()()y y y -⨯-⨯-; (2)221()()n n b a a b +-⨯-2.光年是长度单位,1光年是指光经过一年所行的距离.光的速度大约是5310/km s ⨯,一颗行星与地球之间的距离为100光年,若取一年大约为7310⨯秒,则这颗行星与地球之间的距离大约为多少?3.拓展提高:已知a m=2,a n=3,求a m+n的值.四、小结:1.同底数幂的乘法法则: 2.运用法则计算要注意什么问题?. 五、作业:作业本27页. 六、课后反思:一、课前导学:(学生自学课本96-97页内容,并完成下列问题) 1.回顾同底数幂的乘法法则:a m·a n=_______(m 、n 都是_______). 同底数幂相乘,底数 ,指数 .2. 4a 表示_____个a 相乘,用式子表示:4a =___________________⨯⨯⨯ ______________)_________)(34434=a a a (相乘,用式子表示为:个表示相乘个(相乘,用式子表示为:个表示m a mm m n m m n m a a a a a a ______...............)______)(∙=3. 根据乘方的意义及同底数幂的乘法性质填空: (1)()()()()()()23222(3)333333++⨯=⨯⨯===(2)()()()()()()()()()23()a a a a ++⨯=⨯⨯=== (3)()()()()()()()()()3()m a a a a ++⨯=⨯⨯===4.通过上面的练习,你的发现了什么计算规律?猜想:()()m n a a =5.你能根据乘方的意义及同底数幂的乘法性质证明上述猜想吗? 证明:6.计算: (1)35(10); (2)44()a ; (3)2()m a (4)43()x -教 学 过 程 设 计二、合作、交流、展示:1.归纳幂的乘方法则:(a m )n =a mn (m 、n 都是正整数).文字叙述:幂的乘方,底数 ,指数 . 【点拨】:乘法2.例题1:计算:(1) 74(10) (2)23()a -; (3)32()a - (4)235()a a ⋅ 解: (1)74(10)=()()()1010⨯= (2)23()a -=(3)32()a -= (4)235()a a ⋅= 【点拨】:注意符号和运算顺序.3.例题2: 计算(1)2322425222()()()()a a a a -⋅-⋅; (2) 231232()()()()m n m n a a a a a -⋅-⋅⋅.4.幂的乘方法则的逆用 :m n n m m n a a a )()(==(1)12x =[]3()x =[]3()x =[][]()x =[][]()x ; (2)2m x =[]()m x =[]()m x (m 为正整数)三、巩固与应用:1.判断对错,错误的予以改正:① (a 3)2=a 5( ) ②(a 3)2=a 9( ) ③(x n+1)3=x3n+1( )④ a 5+a 5=a 10( ) ⑤a 4·a 4=a 16( ) ⑥()()42360a b a b ⎡⎤⎡⎤---=⎣⎦⎣⎦( )2.计算:①(-x 3)4; ②()34x -; ③( x 3)4·x 2 ; ④(-x )4·(-x 4)3·(-x )⑤(a2n-2)2·(a2m+1)3; ⑥a 3·a 5+a 3·(-a 5)+(-a 2)3+(-a 2)43. 拓展应用(1) 如果mx =4,则3mx=_____; (2)a 2n =3, 求(a 3n )4;(3) 已知a m=2,a n=3,求a 2m+3n的值.四、小结:1.(a m )n =a mn (m 、n 都是正整数)的顺用和逆用. 2.(a m )n =a mn (m 、n 都是正整数)与mnm na a a +⋅=(m 、n 都是正整数)的区别.五、作业:《作业本》第28页. 六、课后反思:一、课前导学:(学生自学课本97页内容,并完成下列问题) 1.回顾同底数幂的乘法法则:a m ·a n=_______(m 、n 都是_______). 同底数幂相乘,底数 ,指数 .2.回顾幂的乘方法则: (a m )n = (m 、n 都是 ) 幂的乘方,底数 ,指数 . 3. 根据乘方的意义填空:(1)2()ab =(ab )·(ab )=(a ·a )·(b ·b )=a ( )b ( ) (2)3()ab =______________=____________=a ( )b ( ) 猜想:()nab = .(n 是正整数) 4.你能根据乘方的意义证明上述猜想吗? 证明:5.计算: (1)4()ab ; (2)31()2xy -; (3)24(310)-⨯ (4)23(2)ab二、合作、交流、展示:1.理解积的乘方法则:()nab = .(n 是正整数)文字叙述:积的乘方,等于把积的 分别乘方,再把所得的幂 . 【拓展】:()nabc = .(n 是正整数) 【逆用】:n na b = .(n 是正整数)教 学 过 程 设 计2.例题1:下列计算是否有错,错在那里?请改正. ①()623xy xy = ②()22233y x xy = ③()623147x x =- ④33234327x x -=⎪⎭⎫⎝⎛- ⑤2045x x x =⋅ ⑥()923x x =3.例题2: 计算(1)3232733(3)(4)(5)a a a a a -⋅+-⋅-; (2)32333272()(3)(5)x x x x x -⋅-+⋅.【温馨提醒】:运算顺序:先乘方,再乘除,最后加减. 三、巩固与应用:1.课本第104页习题第1、2题. 2.下列计算正确的是( ). (A )()422ab ab =(B )()42222a a -=-(C )()333y x xy =- (D )()3632273y x y x = 3.与()[]2323a-的值相等的是( )(A )1254a (B )12243a (C )12729a (D )12729a - 4. 拓展应用(1) 20082008818⎪⎭⎫⎝⎛⨯= ; (2)()()20132012425.0-⨯-= ;(3) 已知:52=m求:m 32和m +32的值.四、小结:1.幂的三条运算性质:(a m )n = (m 、n 都是正整数),(a m )n = (m 、n 都是正整数),()nab = .(n 是正整数) 2.理解公式特征,灵活运用公式计算.五、作业:《作业本》第29页. 六、课后反思:一、课前导学: 1.回顾幂的运算性质:(1)nma a =_____(m 、n 都是正整数)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十四章 整式的乘法与因式分解14.1.1 同底数幂的乘法教学目标1. 理解同底数幂的乘法,会用这一性质进行同底数幂的乘法运算.2. 体会数式通性和从具体到抽象的思想方法在研究数学问题中的作用. 教学重、难点同底数幂的乘法运算法则及其应用. 教学过程设计一、创设问题,激发兴趣问题 一种电子计算机每秒可进行1千万亿(1015)次运算,它工作103 s 可进行多少次运算?(1) 如何列出算式?(2) 1015的意义是什么?(3) 怎样根据乘方的意义进行计算?根据乘方的意义填空,观察计算结果,你能发现什么规律?(1) 52222()⨯= ;(2)32()a a a ⋅= ;(3)555()mn ⨯= .你能将上面发现的规律推导出来吗?教师板演:同底数幂相乘,底数不变,指数相加. 即:a m ×a n =a m+n (m 、n 都是正整数). 二、知识应用,巩固提高m n m n a a a +⋅=(m ,n 都是正整数)表述了两个同底数幂相乘的结果,那么,三个、四个…多个同底数幂相乘,结果会怎样?这一性质可以推广到多个同底数幂相乘的情况:mn p m n paa a a +++⋅⋅⋅= (m ,n ,p 都是正整数).例1(教科书第96页)三、应用提高、拓展创新 课本96页 练习m n a a ⋅ m n a a a a +=⋅⋅⋅()个 m n a += m an aa a a a a a =⋅⋅⋅⋅⋅⋅⋅个个 ()()四、归纳小结(1)本节课学习了哪些主要内容?(2)同底数幂的乘法的运算性质是怎么探究并推导出来的?在运用时要注意什么? 五、布置作业: 练习册14.1.2 幂的乘方 14.1.3 积的乘方教学目标1.理解幂的乘方与积的乘方性质的推导根据. 2.会运用幂的乘方与积的乘方性质进行计算.3.在类比同底数幂的乘法性质学习幂的乘方与积的乘方性质时,体会三者的联系和区别及类比、归纳的思想方法.教学重、难点幂的乘方与积的乘方的性质. 教学过程设计 一、 创设问题,激发兴趣问题1 有一个边长为a 2 的正方体铁盒,这个铁盒的容积是多少? 问题2 根据乘方的意义及同底数幂的乘法填空:(1) (2) (3)3m m m m a a a a a ⋅⋅( )()==(m 是正整数).在解决问题后,引导学生归纳同底数幂的乘法法则:幂的乘方,底数不变,指数相乘. 即:(a m )n =a mn (m 、n 都是正整数). 多重乘方可以重复运用上述法则:二、知识应用,巩固提高 计算 (1)(102)3; (2)(b 5)5; (3)(a n )3; (4)-(x 2)m ; (5)(y 2)3·y ; (6)2(a 2)6-(a 3)4. 问题4 根据乘方的意义和乘法的运算律,计算:(n 是正整数)你能发现有何运算规律吗?能用文字语言概述你发现的积的乘方运算规律吗?积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘.2322233333⨯⨯( )()==;23222a a a a a ⋅⋅( )()==;=p m nmnp a a ⎡⎤⎣⎦()当n 是正整数时,三个或三个以上因式的积的乘方,也具有这一性质吗?四、归纳小结(1)本节课学习了哪些主要内容?(2)幂的三个运算性质是什么?它们有什么区别和联系?五、布置作业:练习册14.1.4整式的乘法(1)教学目标1.理解单项式乘法的法则,会用单项式乘法法则进行运算.2.经历单项式乘法法则的形成过程,发展学生的运算能力,体会类比思想.教学重、难点单项式的乘法法则的概括过程和运用.教学过程设计一、创设情境,激发兴趣问题1:光的速度约为3×105千米/秒,太阳光照射到地球上需要的时间大约是5×102秒,你知道地球与太阳的距离约是多少千米吗?二、知识应用,巩固提高问题2 观察这三个算式有何共同的特点?请你用自己的语言概括单项式乘以单项式的法则.单项式乘以单项式的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.三、应用提高、拓展创新第99页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)运用单项式的乘法法则时,应该注意哪些问题?(3)结合探索单项式乘法法则的过程,你认为体现了哪些思想方法? 五、布置作业: 练习册14.1.4整式的乘法(2)教学目标1.理解单项式与多项式相乘的法则,能运用单项式与多项式相乘的法则进行计算.2.理解算理,发展学生的运算能力和“几何直观”观念,体会转化、数形结合和程序化思想.教学重、难点单项式与多项式相乘的法则的运用. 教学过程设计一 、创设情境,激发兴趣问题 我们来回顾引言中提出的问题:为了扩大绿地的面积,要把街心花园的一块长p 米,宽b 米的长方形绿地,向两边分别加宽a 米和c 米,你能用几种方法表示扩大后的绿地的面积?不同的表示方法:你认为这两个代数式之间有着怎样的关系呢? 二、知识应用,巩固提高请你用自己的语言概括单项式乘以多项式的法则. 单项式乘以多项式的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.三、应用提高、拓展创新完成课本100页练习1、练习2四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用单项式与多项式相乘的法则时,你认为应该注意哪些问题?++p a b c ()++pa pbpc(3)探索单项式与多项式相乘的法则的过程,体现了哪些思想方法? 五、布置作业: 练习册14.1.4整式的乘法(3)教学目标1.理解多项式与多项式相乘的法则,并能运用法则进行计算.2.理解算理,发展学生的运算能力和几何直观,体会转化、数形结合和程序化思想. 教学重、难点多项式与多项式相乘的法则的概括与运用. 教学过程设计一 、创设情境,激发兴趣问题1 已知某街心花园有一块长方形绿地,长为a m ,宽为p m .则它的面积是多少?若将这块长方形绿地的长增加b m ,则扩大后的绿 地面积是多少?问题2 若将原长方形绿地的长增加b m 、宽增加q m ,你能用几种方法求出扩大后的长方形绿地的面积呢?不同的表示方法:二、知识应用,巩固提高根据上节课积累的探究经验,你能得到什么结论 呢?你能类比单项式与多项式相乘的法则,叙述多项式与多项式相乘的法则吗? 多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.你认为在运用法则计算时,应该注意什么问题?=a b p q ap aq bp bq+++++()()根据上述求解过程,观察计算结果的各项系数与原式中的系数有怎样的关系?三、应用提高、拓展创新 教科书第102页练习1、2 四、归纳小结(1)本节课学习了哪些主要内容?(2)在运用多项式与多项式相乘的法则时,你认为应该注意哪些问题?(3)举例说明在探索多项式与多项式相乘的法则的过程中,体现了哪些思想方法? 五、布置作业: 练习册14.1.4整式的除法(1)教学目标1.理解同底数幂除法的性质和单项式除以单项式的法则,并会应用法则计算.2.体会知识间逻辑关系、类比探究在研究除法问题时的价值;体会转化思想在单项式除法中的作用.教学重、难点探究同底数幂除法的性质和单项式除以单项式的法则,并会用它们进行运算. 教学过程设计一 、创设情境,激发兴趣问题1 一种数码照片的文件大小是28 K ,一个存储量为26 M (1 M=210 K )的移动存储器能存储多少张这样的数码照片?二、知识应用,巩固提高 问题2 填空:(1)∵ 3522=⨯( ) ∴5322=÷( ) ;(2)∵371010=⨯( ) ∴731010=÷( ) ; (3)∵37=a a ⋅( ) ∴73=a a ÷( ) .问1 你在解决问题2时,用到了什么知识?你能叙述这一知识吗?问2 537373221010a a÷÷÷, , 这三个算式属于哪种运算?你能概括一下它们是怎样计算出来的吗?问3 你能用上述方法计算 mn aa ÷吗?问4 你能用语言概括这一性质吗? 同底数幂除法的性质:同底数幂相除,底数不变,指数相减. 思考与讨论 为什么a ≠0?问题3 当被除式的指数等于除式的指数时: (1)如果根据这条性质计算mn aa ÷结果是多少? (2)如果根据除法意义计算 mn aa ÷结果是多少?即任何不等于0的数的0次幂都等于1. 三、应用提高、拓展创新 例1 计算:(1)74a a ÷; (2)4xy xy ÷();(3)6x x ÷(-)(-); (4)32.y y ÷(-) 问题4 计算下列各题:(1)423287x y x y ÷; (2)3232123.a b x ab ÷例2 计算: (1)22286-ab ab ÷; (2) 教科书104页练习1、2四、归纳小结(1)本节课学习了哪些主要内容?(2)探究同底数幂除法性质和单项式除法?(3)运用同底数幂除法性质和单项式除法的法则时,你认为应该注意什么? 五、布置作业: 练习册14.1.4整式的除法(2)教学目标1.理解多项式除以单项式的法则.2.体会知识间的内在联系、互逆关系等逻辑关系在研究问题时的价值;体会类比和转化的数学思想在多项式除以单项式中的作用.862321122--.x y x y ÷()()教学重、难点探究多项式除以单项式的法则,会运用法则进行计算. 教学过程设计一 、创设情境,激发兴趣问题1 请同学们观察下列算式,它是我们学过的除法算式吗?如果不是,说说它与我们上节课学习的算式有什么不一样的特点.⑴. mbm m +÷(); ⑵3281244.x x x x -+÷()你能尝试计算(1)吗?说说你是怎样算出来的? 二、知识应用,巩固提高利用除法是乘法的逆运算,求(am +bm )÷m 的值,就是要求一个多项式,使它与m 的积是(am +bm ).你知道这个多项式是什么吗?完成引例:思考 上述两个算式的运算,它们的相同之处是什么?通过以上两个例子,我们在计算一个多项式除以单项式时,是将它如何转化的呢?你能用字母的形式来表示吗? 多项式除以单项式法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.或例1 计算:(1)65ab a a +÷();(2)2215105x y xy xy -÷();(3)2844a ab a -÷-()();(4) 3212633.aa a a -+÷()三、应用提高、拓展创新 教科书104页练习3 四、归纳小结(1)本节课学习了哪些主要内容?(2)运用多项式除以单项式法则计算的基本步骤是什么?应注意的地方是什么? (3)探究多项式除以单项式的方法是什么? 五、布置作业 练习册3281244x x x x -+÷()14.2.1 乘法公式--平方差公式教学目标1.理解平方差公式,能运用公式进行计算.2.在探索平方差公式的过程中,感悟从具体到抽象地研究问题的方法,在验证平方差公式的过程中,感知数形结合思想.教学重、难点 平方差公式 教学过程设计一 、创设情境,激发兴趣 在14.1节中,我们学习了整式的乘法,知道了多项式与多项式相乘的法则.根据所学知识,计算下列多项式的积,你能发现什么规律?(1) = ;(2) = ; (3) = . 二、知识应用,巩固提高上述问题中相乘的两个多项式有什么共同点?相乘的两个多项式的各项与它们的积中的各项有什么关系?你能将发现的规律用式子表示出来吗?你能对发现的规律进行推导吗?前面探究所得的式子22+-=-a b a b a b ()()为乘法的平方差公式,你能用文字语言表述平方差公式吗?两个数的和与这两个数的差的积,等于这两个数的平方差. 你能根据图中图形的面积说明平方差公式吗?例1 运用平方差公式计算:(1) 3232+-x x ()(); (2)22-+--x y x y ()() 从例题1和练习1中,你认为运用公式解决问题时应注意什么?(1)在运用平方差公式之前,一定要看是否具备公式的结构特征;(2)一定要找准哪个数或式相当于公式中的a ,哪个 数或式相当于公式中的b ; (3)总结规律:一般地,“第一个数”a 的符号相同,“第二个数”b 的符号相反; (4)公式中的字母a ,b 可以是具体的数、单项式、多项式等; (5)不能忘记写公式中的“平方”. 例2 计算:(1)2215-+----+y y y y ()()())(;(2)102×98.三、应用提高、拓展创新 教科书108页练习1、2 四、归纳小结(1)本节课学习了哪些主要内容? (2)平方差公式的结构特征是什么? (3)应用平方差公式时要注意什么 五、布置作业: 练习册14.2.2乘法公式--完全平方公式教学目标1.理解完全平方公式,能用公式进行计算.2.经历探索完全平方公式的过程,进而感受特殊到一般、数形结合思想,发展符号意识和几何直观观念.教学重、难点 完全平方公式.教学过程设计一 、创设情境,激发兴趣 问题1 计算下列各式:(1)2212+=+p m ()______;()=______; (2) 2212-=-=.p m ()______;()______ 你能发现什么规律? 二、知识应用,巩固提高问题2 你能用式子表示发现的规律吗? 完全平方公式:问题3 你能用文字语言表述完全平方公式吗?两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍. 公式特点:(1)积为二次三项式;(2)积中两项为两数的平方和;(3)另一项是两数积的2倍,且与乘式中间的符号相同;(4)公式中的字母a ,b 可以表示数,单项式和多项式.问题4 能根据图1和图2中的面积说明完全平方公式吗?三、应用提高、拓展创新例1 运用完全平方公式计算:(1)24+m n (); (2). 例2 运用完全平方公式计算:(1)2102 ; (2)299 .问题5 思考: (1)2+a b ()与2--a b ()相等吗? (2)2-a b ()与2-b a ()相等吗? (3)2-a b ()与 22-a b 相等吗?为什么?问题6 添括号法则去括号 a +(b +c )= a +b +c ; a -(b +c )= a -b -c .a +b +c =a +(b +c ); a -b - c = a -(b + c ).添括号时,如果括号前面是正号,括到括号里的各项都不变号;如果括号前面是负号,括到括号里的各项都改变符号.四、归纳小结(1)本节课学习了哪些主要内容?(2)完全平方公式结构有什么特点?五、布置作业:212-y ()练习册14.3.1因式分解--提公因式法教学目标1.了解因式分解的概念.2.了解公因式的概念,能用提公因式法进行因式分解.教学重、难点运用提公因式法分解因式.教学过程设计一 、创设情境,激发兴趣上一节我们已经学习了整式的乘法,知道可以将几个整式的乘积化为一个多项式的形式.反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.请把下列多项式写成整式的乘积的形式:二、知识应用,巩固提高在多项式的变形中,有时需要将一个多项式化成几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.你认为因式分解与整式乘法有什么关系?因式分解与整式乘法是互逆变形关系.你能试着将多项式++pa pb pc 因式分解吗?(1)这个多项式有什么特点?(2)因式分解的依据是什么?(3)分解后的各因式与原多项式有何关系?一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式.这种分解因式的方法叫做提公因式法.例1 把323812+a b ab c 分解因式.通过对例1的解答,你有什么收获?(1)公因式是多项式各项系数的最大公约数和各项都含有的字母及多项式的最低次幂的乘积;(2)提公因式法就是把多项式分解成两个因式乘积的形式,其中一个因式是各项的公因式,另一个因式是由多项式除以公因式得到的;(3)用提公因式分解因式后,应保证含有多项式的因式中再无公因式.例2 把23+-+a b c b c ()()分解因式.通过对例2的解答,你有什么收获?公因式可以是单项式,也可以是多项式.三、应用提高、拓展创新教科书115页练习1、2、3四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的目的是什么?因式分解与整式乘法有什么区别和联系?(3)提公因式法的一般步骤是什么?应用提公因式法分解因式时要注意什么?五、布置作业:练习册14.3.2因式分解--公式法(1)教学目标1.探索并运用平方差公式进行因式分解,体会转化思想.2.会综合运用提公因式法和平方差公式对多项式进行因式分解.教学重、难点运用平方差公式来分解因式.教学过程设计一 、创设情境,激发兴趣你能将多项式225-y 与多项式24-x 分解因式吗?(1)本题你能用提公因式法分解因式吗?(2)这两个多项式有什么共同的特点?(3)你能利用整式的乘法公式——平方差公式22+-=-a b a b a b ()()来解决这个问题吗?二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试着概括你的发现. 把整式的乘法公式——平方差公式 22+-=-a b a b a b ()()反过来就得到因式分解的平方差公式: (1)平方差公式的结构特征是什么?(2)两个平方项的符号有什么特点?适用于平方差公式因式分解的多项式必须是二项式,每一项都为平方项,并且两个平方项的符号相反.例1 分解因式:(1)249-x ;(2)22+-+x p x q ()().三、应用提高、拓展创新例2 分解因式:(1)44--.x y a b ab ; (2)3--.x y a b ab ;通过对例2的学习,你有什么收获?(1)分解因式必须进行到每一个多项式都不能再分解为止;(2)对具体问题选准方法加以解决四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的平方差公式的结构特征是什么?(3)综合运用提公因式法和平方差公式进行因式分解时要注意什么?五、布置作业:练习册14.3.2因式分解--公式法(2)教学目标1.了解完全平方式及公式法的概念,会用完全平方公式进行因式分解.2.综合运用提公因式法和完全平方公式对多项式进行因式分解.教学重、难点运用完全平方公式分解因式.教学过程设计一 、创设情境,激发兴趣你能将多项式 222++a ab b 与多项式222-+a ab b 分解因式吗?追问1 你能用提公因式法或平方差公式来分解因式吗?追问2 这两个多项式有什么共同的特点?追问3 你能利用整式的乘法公式——完全平方公式2222=+a b a ab b ±±()来解决这个问题吗?二、知识应用,巩固提高你对因式分解的方法有什么新的发现?请尝试概括你的发现.把整式的乘法公式——完全平方公式 2222=+ab a ab b ±±()反过来就得到因式分解的完全平方公式:我们把222++a ab b 和222-+a ab b 这样的式子叫做完全平方式.利用完全平方公式可以把形如完全平方式的多项式因式分解.完全平方式必须是三项式,其中两项为平方项,并且两个平方项的符号同为正,中间项是首尾两项乘积的二倍,符号不限.例1 分解因式:(1)21624944++-+-x x x xy y ; (2)221624944++-+-x x x xy y .三、应用提高、拓展创新例2 分解因式:(1)223631236+++-++ax axy ay a b a b ()();(2)23631236+++-++ax axy ay a b a b ()().把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.四、归纳小结(1)本节课学习了哪些主要内容?(2)因式分解的完全平方公式在应用时应注意什么?五、布置作业:练习册。