山西省近三年中考数学试题回顾与总结

合集下载

2009-2019年山西省中考数学试题知识点分布及考查题型小结:阅读材料题

2009-2019年山西省中考数学试题知识点分布及考查题型小结:阅读材料题

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:阅读材料题考查点1.轴对称图形/中心对称图形的应用问题(1)考查次数:11年6考(2)考查题型:选择题/填空题/解答题(3)考查形式:①判断轴对称图形或者中心对称图形②判断轴对称图形的对称轴条数③根据所给基础图形设计轴对称图形或者中心对称图形(4)考查难度:送分题3.(2015山西3题3分)晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A .B .C .D .8.(2013山西8题2分)如图,正方形地砖的图案是轴对称图形,该图形的对称轴有()A.1条 B.2条 C.4条 D.8条20.(2009山西20题6分)已知每个网格中小正方形的边长都是1,图1中的阴影图案是由三段以格点为圆心,半径分别为1和2的圆弧围成.(1)填空:图1中阴影部分的面积是(结果保留π);(2)请你在图2中以图1为基本图案,借助轴对称、平移或旋转设计一个完整的花边图案(要求至少含有两种图形变换).20.(2010山西20题6分)山西民间建筑的门窗图案中,隐含着丰富的数学艺术之美.图1是其中一个代表,该窗格图案是以图2为基本图案经过图形变换得到的,图3是图2放大后的一部分,虚线给出了作图提示,请用圆规和直尺画图.(1)根据图2将图3补充完整;(2)在图4的正方形中,用圆弧和线段设计一个美观的轴对称或中心对称图形.21.(2012山西21题6分)实践与操作:如图1是以正方形两顶点为圆心,边长为半径,画两段相等的圆弧而成的轴对称图形,图2是以图1为基本图案经过图形变换拼成的一个中心对称图形.(1)请你仿照图1,用两段相等圆弧(小于或等于半圆),在图3中重新设计一个不同的轴对称图形.(2)以你在图3中所画的图形为基本图案,经过图形变换在图4中拼成一个中心对称图形.18.(2014山西18题6分)阅读以下材料,并按要求完成相应的任务.如果只研究一般的筝形(不包括菱形),请根据以上材料完成下列任务:(1)请说出筝形和菱形的相同点和不同点各两条;(2)请仿照图1的画法,在图2所示的8×8网格中重新设计一个由四个全等的筝形和四个全等的菱形组成的新图案,具体要求如下:①顶点都在格点上;②所设计的图案既是轴对称图形又是中心对称图形;③将新图案中的四个筝形都涂上阴影(建议用一系列平行斜线表示阴影).考查点2.阅读材料问题(1)考查次数:11年4考(2)考查题型:解答题(3)考查形式:①判断轴对称图形或者中心对称图形②判断轴对称图形的对称轴条数③根据所给基础图形设计轴对称图形或者中心对称图形(4)考查难度:中档题18.(2015山西18题6分)阅读与计算:请阅读以下材料,并完成相应的任务.斐波那契(约1170﹣1250)是意大利数学家,他研究了一列数,这列数非常奇妙,被称为斐波那契数列(按照一定顺序排列着的一列数称为数列).后来人们在研究它的过程中,发现了许多意想不到的结果,在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数.斐波那契数列还有很多有趣的性质,在实际生活中也有广泛的应用.斐波那契数列中的第n 个数可以用[﹣]表示(其中,n≥1).这是用无理数表示有理数的一个范例.任务:请根据以上材料,通过计算求出斐波那契数列中的第1个数和第2个数.19.(2017山西19题7分)请阅读下列材料,并完成相应的任务:阿基米德折弦定理阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al﹣Binmi(973﹣1050年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M 是的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD =AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M 是的中点,∴MA=MC.…任务:(1)请按照上面的证明思路,写出该证明的剩余部分;(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D 为上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是.21.(2018山西21题8分)请阅读下列材料,并完成相应的任务:在数学中,利用图形在变化过程中的不变性质,常常可以找到解决问题的办法.著名美籍匈牙利数学家波利亚在他所著的《数学的发现》一书中有这样一个例子:请问如何在一个三角形ABC的AC和BC两边上分别取一点X和Y,使得AX=BY=XY.(如图)解决这个问题的操作步骤如下:第一步,在CA上作出一点D,使得CD=CB,连接BD.第二步,在CB上取一点Y',作Y'Z'∥CA,交BD于点Z',并在AB上取一点A',使Z'A'=Y'Z'.第三步,过点A作AZ∥A'Z',交BD于点Z.第四步,过点Z作ZY∥AC,交BC于点Y,再过点Y作YX∥ZA,交AC于点X.则有AX=BY=XY.下面是该结论的部分证明:证明:∵AZ∥A'Z',∴∠BA'Z'=∠BAZ,又∵∠A'BZ'=∠ABZ.∴△BA'Z'~△BAZ.∴.同理可得.∴.∵Z'A'=Y'Z',∴ZA=YZ.任务:(1)请根据上面的操作步骤及部分证明过程,判断四边形AXYZ的形状,并加以证明;(2)请再仔细阅读上面的操作步骤,在(1)的基础上完成AX=BY=XY的证明过程;(3)上述解决问题的过程中,通过作平行线把四边形BA'Z'Y'放大得到四边形BAZY,从而确定了点Z,Y的位置,这里运用了下面一种图形的变化是.A.平移B.旋转C.轴对称D.位似21.(2019山西21题8分)阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI .∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,所以∠DBE=90°.∵⊙I与AB相切于点F,所以∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.。

山西省中考数学试题及答案

山西省中考数学试题及答案

山西省中考数学试题及答案一、选择题1. 小明有5枚同样的硬币,他将这5枚硬币摞在一起。

如果顺序不同,摞硬币的方式共有几种?A. 5种B. 10种C. 20种D. 120种答案:D解析:第一枚硬币有5种摞法,第二枚硬币有4种摞法,第三枚硬币有3种摞法,依次类推,共有5 × 4 × 3 × 2 × 1 = 120种。

2. 一张矩形桌子的长是2.5米,宽是1.8米。

给这张桌子围上一个宽度为0.5米的边框,桌子加上边框的面积是多少平方米?A. 7.5平方米B. 8平方米C. 12平方米D. 14平方米答案:C解析:原桌子的面积为2.5 × 1.8 = 4.5平方米,边框的面积为[(2.5 + 0.5) × (1.8 + 0.5)] - 2.5 × 1.8 = 12平方米,桌子加上边框的面积为4.5 + 12 = 16.5平方米。

3. 两个正整数之和为120,差为50,这两个正整数分别是多少?A. 70和50B. 85和35C. 90和30D. 100和20答案:C解析:假设两个正整数分别为x和y,则有x + y = 120,x - y = 50。

通过解方程组可以得到x = 90,y = 30。

4. 一张纸折叠4次,叠起来后有多少层?A. 4层B. 8层C. 16层D. 32层答案:D解析:每次折叠纸张,层数翻倍。

第一次折叠为2层,第二次折叠为4层,第三次折叠为8层,第四次折叠为16层,共32层。

5. 一套图书原价150元,打折后优惠了30元,打折后的价格是原价的几分之几?A. 8/10B. 2/3C. 3/5D. 5/9答案:C解析:打折后的价格为150 - 30 = 120元,打折后的价格是原价的120/150 = 3/5。

二、填空题1. 计算:(3 - √(5 - 2x))² = 10的解为x = __。

答案:1解析:展开等式,得到9 - 6√(5 - 2x) + 5 - 2x = 10,化简后得到-6√(5 - 2x) - 2x - 6 = 0,进一步求解得到x = 1。

2023山西省中考数学考点总结

2023山西省中考数学考点总结

2023山西省中考数学考点总结山西省中考数学考点总结1.1正数与负数①正数:大于0的数叫正数。

(根据需要,有时在正数前面也加上“+”)②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。

与正数具有相反意义。

③0既不是正数也不是负数。

0是正数和负数的分界,是的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。

1.2有理数1.有理数:(1)整数:正整数、0、负整数统称整数;(2)分数:正分数和负分数统称分数;(3)有理数:整数和分数统称有理数。

2.数轴:(1)定义:通常用一条直线上的点表示数,这条直线叫数轴;(2)数轴三要素:原点、正方向、单位长度;(3)原点:在直线上任取一个点表示数0,这个点叫做原点;(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。

3.相反数:只有符号不同的两个数叫做互为相反数。

(例:2的相反数是-2;0的相反数是0)4.绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。

从几何意义上讲,数的绝对值是两点间的距离。

(2)一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3有理数的加减法①有理数加法法则:a.同号两数相加,取相同的符号,并把绝对值相加。

b.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0。

c.一个数同0相加,仍得这个数。

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4有理数的乘除法①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘; 任何数同0相乘,都得0;乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不等于0的数,都得0。

山西中考数学2015-2019考点分析

山西中考数学2015-2019考点分析
考点 计算 计算 计算 计算 计算
考点题型 求负数的绝对值 有理数大小比较 有理数的加法 求负数的相反数 有理数的加法
计算 计算
计算
整式的加法 完全平方公式
同底数幂的乘法
计算
积的乘方
历史思想方法 数学历史
判断图形形状 判定直线平行的条件
不等式 计算 计算 计算
求不等式组的解集 幂的乘方 |a|=|﹣a| 零指数幂
求边
求边
求边 求边 求边 求边
三角形组合图形求未知边长
三角形,圆组合图形求未知边 长
三角形组合图形求未知边长 三角形、平行线组合图形求边 三角形,矩形组合图形求边 正方形折叠求折痕
填空题 填空题 填空题 填空题 填空题
填空题
填空题
填空题 填空题 填空题 填空题
2019填空14 2018填空14 2017填空14 2016填空14 2015填空14
填空题
填空题
填空题 填空题 填空题 填空题
填空题
2018填空12 2017填空12
2016填空12
2015填空12
2019填空13 2018填空13 2017填空13 2016填空13
2015填空13
反比例函数 求反比例函数的K值
求边
三角函数解直角三角形
解直角三角形 三角函数解直角三角形 求概率 列表法表示题设条件 求概率 列表法表示题设条件
2019选择8
Байду номын сангаас求边
计算边的大小
选择题
2018选择8
科学计数法 科学计数法表示数 二次函数 一般式化解顶点式,平移 历史思想方法 考察秦代九章算术
二次函数 二次函数表达式 二次函数 二次函数顶点式 历史思想方法 判定证明方法的选择 圆其它组合图形 考察弧长公式 求概率 概率公式的应用

山西省中考数学真题汇编(近几年) 6 统计与概率

山西省中考数学真题汇编(近几年) 6 统计与概率

山西省中考数学真题汇编(近几年) 6 统计与概率一、单选题1.在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A. 众数B. 平均数C. 中位数D. 方差2.近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A. 319.79万件B. 332.68万件C. 338.87万件D. 416.01万件3.在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A. B. C. D.4.如图是一张矩形纸板,顺次连接各边中点得到菱形,再顺次连接菱形各边中点得到一个小矩形.将一个飞镖随机投掷到大矩形纸板上,则飞镖落在阴影区域的概率是()A. B. C. D.5.每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是()A. 27点,21点B. 21点,27点C. 21点,21点D. 24点,21点二、填空题6.要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是 .7.某校为了选拔一名百米赛跑运动员参加市中学生运动会,组织了次预选赛,其中甲,乙两名运动员较为突出,他们在次预选赛中的成绩(单位:秒)如下表所示:甲乙由于甲,乙两名运动员的成绩的平均数相同,学校决定依据他们成绩的稳定性进行选拔,那么被选中的运动员是________.三、综合题8.中华人民共和国第二届青年运动会(简称二青会)将于2019年8月在山西举行,太原市作为主赛区,将承担多项赛事,现正从某高校的甲、乙两班分别招募10人作为颁奖礼仪志愿者,同学们踊跃报名,甲、乙两班各报了20人,现已对他们进行了基本素质测评,满分10分.各班按测评成绩从高分到低分顺序各录用10人,对这次基本素质测评中甲、乙两班学生的成绩绘制了如图所示的统计图.请解答下列问题:(1).甲班的小华和乙班的小丽基本素质测评成绩都为7分,请你分别判断小华,小丽能否被录用(只写判断结果,不必写理由).(2).请你对甲、乙两班各被录用的10名志愿者的成绩作出评价(从“众数”,“中位数”,或“平均数”中的一个方面评价即可).(3).甲、乙两班被录用的每一位志愿者都将通过抽取卡片的方式决定去以下四个场馆中的两个场馆进行颁奖礼仪服务,四个场馆分别为:太原学院足球场,太原市沙滩排球场,山西省射击射箭训练基地,太原水上运动中心,这四个场馆分别用字母A,B,C,D的四张卡片(除字母外,其余都相同)背面朝上,洗匀放好.志愿者小玲从中随机抽取一张(不放回),再从中随机抽取一张,请你用列表或画树状图的方法求小玲抽到的两张卡片恰好是“A”和“B”的概率.9.从共享单车,共享汽车等共享出行到共享充电宝,共享雨伞等共享物品,各式各样的共享经济模式在各个领域迅速普及应用,越来越多的企业与个人成为参与者与受益者.根据国家信息中心发布的《中国分享经济发展报告2017》显示,2016年我国共享经济市场交易额约为34520亿元,比上年增长103%;超6亿人参与共享经济活动,比上年增加约1亿人.如图是源于该报告中的中国共享经济重点领域市场规模统计图:(1).请根据统计图解答下列问题:①图中涉及的七个重点领域中,2016年交易额的中位数是 1 亿元.②请分别计算图中的“知识技能”和“资金”两个重点领域从2015年到2016年交易额的增长率(精确到1%),并就这两个重点领域中的一个分别从交易额和增长率两个方面,谈谈你的认识. 2(2).小宇和小强分别对共享经济中的“共享出行”和“共享知识”最感兴趣,他们上网查阅了相关资料,顺便收集到四个共享经济领域的图标,并将其制成编号为A,B,C,D的四张卡片(除编号和内容外,其余完全相同)他们将这四张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张,请用列表或画树状图的方法求抽到的两张卡片恰好是“共享出行”和“共享知识”的概率(这四张卡片分别用它们的编号A,B,C,D表示)10.在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:(1).请补全条形统计图和扇形统计图;(2).在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?(3).若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?(4).学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?11.年国家提出并部署了“新基建”项目,主要包含“特高压,城际高速铁路和城市轨道交通,基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩”等.《新基建中高端人才市场就业吸引力报告》重点刻画了“新基建”中五大细分领域(基站建设,工业互联网,大数据中心,人工智能,新能源汽车充电桩)总体的人才与就业机会.下图是其中的一个统计图.请根据图中信息,解答下列问题:(1)填空:图中年“新基建”七大领域预计投资规模的中位数是________亿元;(2)甲,乙两位待业人员,仅根据上面统计图中的数据,从五大细分领域中分别选择了“ 基站建设”和“人工智能”作为自己的就业方向,请简要说明他们选择就业方向的理由各是什么;(3)小勇对“新基建”很感兴趣,他收集到了五大细分领域的图标,依次制成编号为,,,,的五张卡片(除编号和内容外,其余完全相同),将这五张卡片背面朝上,洗匀放好,从中随机抽取一张(不放回),再从中随机抽取一张.请用列表或画树状图的方法求抽到的两张卡片恰好是编号为(基站建设)和(人工智能)的概率.12.近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典通读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为,,,).为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成如下所示的统计图和统计表(均不完整).请根据图表提供的信息,解答下列问题:(1)参与本次问卷调查的总人数为________人,统计表中的百分比为________;(2)请补全统计图;(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示类比赛的扇形圆心角的度数;若不可行,请说明理由;(4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为,,,),由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解.请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.答案解析部分一、单选题1.【答案】D2.【答案】C3.【答案】A4.【答案】B5.【答案】C二、填空题6.【答案】扇形统计图7.【答案】甲三、综合题8.【答案】(1)解:甲班超过7分的人数有4+3+3=10人,因此从高到低录取,小华不能被录取;乙班超过7分的人数有3+1+4=8人,超过6分的人数有2+3+1+4=10人,因此从高到低录取,小丽能被录用(2)解:从众数来看:甲、乙两班各被录用的10名志愿者成绩的众数分别为8分,10分,说明甲班被录用的10 名志愿者中8分最多,乙班被录用的10名志愿者中10分最多;从中位数来看:甲、乙两班各被录用的10名志愿者成绩的中位数分别为9分,8.5分,说明甲班被录用的10名志愿者成绩的中位数大于乙班被录用的10名志愿者成绩的中位数;从平均数来看:甲、乙两班各被录用的10名志愿者成绩的平均数分别为=8.9,=8.7,说明甲班被录用的10名志愿者成绩的平均数大于乙班被录用的10名志愿者成绩的平均数;(从“众数”,“中位数”或“平均数”中的一方面即可)(3)解:画树状图如下:由树状图可知一共有12种可能出现的结果,且每种结果出现的可能性相同,其中抽到“A”和“B”的结果有2种.∴.9.【答案】(1)2038;①“知识技能”的增长率为:×100%=205%,②“资金”的增长率为:≈109%,由此可知,“知识技能”领域交易额较小,当增长率最高,达到200%以上,其发展速度惊人.(2)解:画树状图为:共有12种等可能的结果数,其中抽到“共享出行”和“共享知识”的结果数为2,所以抽到“共享出行”和“共享知识”的概率= =10.【答案】(1)解:由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)解:在参加“剪纸”活动项目的学生中,男生所占的百分比是100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%(3)解:500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)解:.答:正好抽到参加“器乐”活动项目的女生的概率为11.【答案】(1)300(2)解:甲更关注在线职位增长率,在“新基建”五大细分领域中,年第一季度“ 基站建设”在线职位与年同期相比增长率最高;乙更关注预计投资规模,在“新基建”五大细分领域中,“人工智能”在年预计投资规模最大(3)解:列表如下:或画树状图如下:由列表(或画树状图)可知一共有种可能出现的结果,且每种结果出现的可能性都相同,其中抽到“ ”和“ ”的结果有种.所以,(抽到“ ”和“ ”) .12.【答案】(1)120;(2)“诗教中国”诗词讲解的人数为:(人,)补全统计图如下:(3)解:不可行.理由:答案不唯一,如:由统计表可知,.即有意向参与比赛的人数占调查总人数的百分比之和大于1;或,即有意向参与类与类的人数之和大于总人数120等.(4)解:列表如下:乙甲或画树状图如下:由列表(或画树状图)可知,总共有16种结果,每种结果出现的可能性都相同.其中甲,乙两名选手抽到的题目在同一组的结果有4种.所以,.。

近五年山西中考数学真题及答案

近五年山西中考数学真题及答案

2022年山西中考数学试卷及答案一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.﹣6的相反数为()A.6B.C.D.﹣62.2022年4月16日,神舟十三号载人飞船圆满完成全部既定任务,顺利返回地球家园.六个月的飞天之旅展现了中国航天科技的新高度下列航天图标,其文字上方的图案是中心对称图形的是()A.B.C.D.3.粮食是人类赖以生存的重要物质基础.2021年我国粮食总产量再创新高,达68285万吨.该数据可用科学记数法表示为()A.6.8285×104吨B.68285×104吨C.6.8285×107吨D.6.8285×108吨4.神奇的自然界处处蕴含着数学知识.动物学家在鹦鹉螺外壳上发现,其每圈螺纹的直径与相邻螺纹直径的比约为0.618.这体现了数学中的()A.平移B.旋转C.轴对称D.黄金分割5.不等式组的解集是()A.x≥1B.x<2C.1≤x<2D.x<6.如图,Rt△ABC是一块直角三角板,其中∠C=90°,∠BAC=30°. 直尺的一边DE经过顶点A,若DE∥CB,则∠DAB的度数为()A.100°B.120°C.135°D.150°7.化简﹣的结果是()A.B.a﹣3C.a+3D.8.如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°9.“二十四节气”是中华上古农耕文明的智慧结晶,被国际气象界普为“中国第五大发明”,小文购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”“大赛”四张邮票中的两张送给好朋友小乐.小文将它们背面朝上放在桌面上(邮票背面完全相同),让小乐从中随机抽取一张(不放回),再从中随机抽取一张,则小乐抽到的两张邮票恰好是“立春”和“立夏”的概率是()A.B.C.D.10.如图,扇形纸片AOB的半径为3,沿AB折叠扇形纸片,点O恰好落在上的点C处,图中阴影部分的面积为()A.3π﹣3B.3π﹣C.2π﹣3D.6π﹣二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:×的结果为.12.根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图象如图所示,当S=0.25m2时,该物体承受的压强p的值为Pa.13. 生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:μmol•m﹣2•s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).14.某品牌护眼灯的进价为240元,商店以320元的价格出售.“五一节”期间,商店为让利于顾客,计划以利润率不低于20%的价格降价出售,则该护眼灯最多可降价元.15.如图,在正方形ABCD中,点E是边BC上的一点,点F在边CD的延长线上,且BE=DF,连接EF交边AD于点G.过点A作AN⊥EF,垂足为点M,交边CD于点N.若BE=5,CN=8,则线段AN的长为三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(1)计算:(﹣3)2×3﹣1+(﹣5+2)+|﹣2|;(2)解方程组:.17.如图,在矩形ABCD中,AC是对角线.(1)实践与操作:利用尺规作线段AC的垂直平分线,垂足为点O,交边AD于点E,交边BC于点F(要求:尺规作图并保留作图痕迹,不写作法,标明字母),(2)猜想与证明:试猜想线段AE与CF的数量关系,并加以证明.18.2022年我国已成为全球最大的电动汽车市场,电动汽车在保障能源安全,改善空气质量等方面较传统汽车都有明显优势,经过对某款电动汽车和某款燃油车的对比调查发现,电动汽车平均每公里的充电费比燃油车平均每公里的加油费少0.6元.若充电费和加油费均为200元时,电动汽车可行驶的总路程是燃油车的4倍,求这款电动汽车平均每公里的充电费.19.首届全民阅读大会于2022年4月23日在北京开幕,大会主题是“阅读新时代·奋进新征程”.某校“综合与实践”小组为了解全校3600名学生的读书情况,随机抽取部分学生进行问卷调查,形成了如下调查报告(不完整):××中学学生读书情况调查报告调查主题××中学学生读书情况调查方式抽样调查调查对象××中学学生数据的收集、整理与描述第一项您平均每周阅读课外书的时间大约是(只能单选,每项含最小值,不含最大值)A.8小时及以上;B.6~8小时;C.4~6小时;D.0~4小时.第二项您阅读的课外书的主要来源是(可多选)E.自行购买;F.从图书馆借阅;G.免费数字阅读;H.向他人借阅.调查……结论请根据以上调查报告,解答下列问题:(1)求参与本次抽样调查的学生人数及这些学生中选择“从图书馆借阅”的人数;(2)估计该校3600名学生中,平均每周阅读课外书时间在“8小时及以上”的人数;(3)该小组要根据以上调查报告在全班进行交流,假如你是小组成员,请结合以上两项调查数据分别写出一条你获取的信息.20.阅读与思考下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务用函数观点认识一元二次方程根的情况我们知道,一元二次方程ax2+bx+c=0(a≠0)的根就是相应的二次函数y=ax2+bx+c(a≠0)的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点. 与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况下面根据抛物线的顶点坐标(﹣,)和一元二次方程根的判别式Δ=b2﹣4ac,分别分a>0和a<0两种情况进行分析:(1)a>0时,抛物线开口向上.①当Δ=b2﹣4ac>0时,有4ac﹣b2<0.∵a>0,∴顶点纵坐标<0.∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).②当Δ=b2﹣4ac=0时,有4ac﹣b2=0.∵a>0,∴顶点纵坐标=0.∴顶点在x轴上,抛物线与x轴有一个交点(如图2).∴一元二次方程ax2+bx+c=0(a≠0)有两个相等的实数根.③当Δ=b2﹣4ac<0时,……(2)a<0时,抛物线开口向下.……任务:(1)上面小论文中的分析过程,主要运用的数学思想是(从下面选项中选出两个即可);A.数形结合B.统计思想C.分类讨论D.转化思想(2)请参照小论文中当a>0时①②的分析过程,写出③中当a>0,Δ<0时,一元二次方程根的情况的分析过程,并画出相应的示意图;(3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为21.随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,≈1.73).22.综合与实践问题情境:在Rt△ABC中,∠BAC=90°,AB=6,AC=8.直角三角板EDF中∠EDF=90°,将三角板的直角顶点D放在Rt△ABC斜边BC的中点处,并将三角板绕点D旋转,三角板的两边DE,DF分别与边AB,AC交于点M,N,猜想证明:(1)如图①,在三角板旋转过程中,当点M为边AB的中点时,试判断四边形AMDN的形状,并说明理由;问题解决:(2)如图②,在三角板旋转过程中,当∠B=∠MDB时,求线段CN的长;(3)如图③,在三角板旋转过程中,当AM=AN时,直接写出线段AN的长.23.综合与探究如图,二次函数y=﹣x2+x+4的图象与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点P是第一象限内二次函数图象上的一个动点,设点P的横坐标为m.过点P作直线PD⊥x轴于点D,作直线BC交PD于点E(1)求A,B,C三点的坐标,并直接写出直线BC的函数表达式;(2)当△CEP是以PE为底边的等腰三角形时,求点P的坐标;(3)连接AC,过点P作直线l ∥AC,交y轴于点F,连接DF.试探究:在点P运动的过程中,是否存在点P,使得CE=FD,若存在,请直接写出m的值;若不存在,请说明理由.2021年山西中考数学真题及答案第Ⅰ卷 选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1. 计算28-+的结果是( )A. -6B. 6C. -10D. 102. 为推动世界冰雪运动的发展,我国将于2022年举办北京冬奥会.在此之前进行了冬奥会会标的征集活动,以下是部分参选作品,其文字上方的图案既是轴对称图形又是中心对称图形的是( ) A. B.C. D. 3. 下列运算正确的是( )A. ()3263m n m n -=- B. 532m m m -= C. ()2224m m +=+ D. ()4312334m m m m -÷= 4. 《中国核能发展报告2021》蓝皮书显示,2020年我国核能发电量为3662.43亿千瓦时,相当于造林77.14万公顷.已知1公顷410=平方米,则数据77.14万公顷用科学记数法表示为( )A. 477.1410⨯平方米B. 77.71410⨯平方米C. 877.1410⨯平方米D. 97.71410⨯平方米5. 已知反比例函数6y x =,则下列描述不正确的是( )A. 图象位于第一,第三象限B. 图象必经过点34,2⎛⎫ ⎪⎝⎭C. 图象不可能与坐标轴相交D. y 随x 的增大而减小 6. 每天登录“学习强国”App 进行学习,在获得积分的同时,还可获得“点点通”附加奖励,李老师最近一周每日“点点通”收入明细如下表,则这组数据的中位数和众数分别是( )星期一 二 三 四 五 六 日 收入(点) 15 21 27 27 21 30 21A. 27点,21点B. 21点,27点C. 21点,21点D. 24点,21点7. 如图,在O 中,AB 切O 于点A ,连接OB 交O 于点C ,过点A 作//AD OB 交O 于点D ,连接CD .若50B ∠=︒,则OCD ∠为( )A. 15︒B. 20︒C. 25︒D. 30︒8. 在勾股定理的学习过程中,我们已经学会了运用以下图形,验证著名的勾股定理:这种根据图形直观推论或验证数学规律和公式的方法,简称为“无字证明”.实际上它也可用于验证数与代数,图形与几何等领域中的许多数学公式和规律,它体现的数学思想是( )A. 统计思想B. 分类思想C. 数形结合思想D. 函数思想9. 如图,正六边形ABCDEF 的边长为2,以A 为圆心,AC 的长为半径画弧,得EC ,连接AC ,AE ,则图中阴影部分的面积为( )A. 2πB. 4πC. 33D. 233 10. 抛物线的函数表达式为()2321y x =-+,若将x 轴向上平移2个单位长度,将y 轴向左平移3个单位长度,则该抛物线在新的平面直角坐标系中的函数表达式为( )A. ()2313y x =++ B. ()2353y x =-+ C. ()2351y x =-- D. ()2311y x =+-第Ⅱ卷 非选择题(共90分)二、填空题(本大题共5个小题,每小题3分,共15分)11. 1227=__________.12. 如图是一片枫叶标本,其形状呈“掌状五裂型”,裂片具有少数突出的齿.将其放在平面直角坐标系中,表示叶片“顶部”A ,B 两点的坐标分别为()2,2-,()3,0-,则叶杆“底部”点C 的坐标为__________.13. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,8BD =,6AC =,//OE AB ,交BC 于点E ,则OE 的长为__________.14. 太原地铁2号线是山西省第一条开通运营的地铁线路,于2020年12月26日开通.如图是该地铁某站扶梯的示意图,扶梯AB 的坡度5:12i =(i 为铅直高度与水平宽度的比).王老师乘扶梯从扶梯底端A 以0.5米/秒的速度用时40秒到达扶梯顶端B ,则王老师上升的铅直高度BC 为__________米.15. 如图,在ABC △中,点D 是AB 边上的一点,且3AD BD =,连接CD 并取CD 的中点E ,连接BE ,若45ACD BED ∠=∠=︒,且62CD =,则AB 的长为__________.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(本题共2个小题,每小题5分,共10分) (1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->-解:()()2213326x x ->--………………………………第一步42966x x ->--……………………………………………第二步49662x x ->--+…………………………………………第三步510x ->-……………………………………………………第四步2x >…………………………………………………………第五步任务一:填空:①以上解题过程中,第二步是依据____________________(运算律)进行变形的;②第__________步开始出现错误,这一步错误的原因是______________________________;任务二:请直接写出该不等式的正确解集.解:__________.17.(本题6分)2021年7日1日建党100周年纪念日,在本月日历表上可以用一个方框圈出4个数(如图所示),若圈出的四个数中,最小数与最大数的乘积为65,求这个最小数(请用方程知识解答).18.(本题7分)太原武宿国际机场简称“太原机场”,是山西省开通的首条定期国际客运航线.游客从太原某景区乘车到太原机场,有两条路线可供选择,路线一:走迎宾路经太输路全程是25千米,但交通比较拥堵;路线二:走太原环城高速全程是30千米,平均速度是路线一的53倍,因此到达太原机场的时间比走路线一少用7分钟,求走路线一到达太原机场需要多长时间.19.(本题10分)近日,教育部印发了《关于举办第三届中华经典诵写讲大赛的通知》,本届大赛以“传承中华经典,庆祝建党百年”为主题,分为“诵读中国”经典通读,“诗教中国”诗词讲解,“笔墨中国”汉字书写,“印记中国”印章篆刻比赛四类(依次记为A ,B ,C ,D ).为了解同学们参与这四类比赛的意向,某校学生会从有意向参与比赛的学生中随机抽取若干名学生进行了问卷调查(调查问卷如图所示),所有问卷全部收回,并将调查结果绘制成如下所示的统计图和统计表(均不完整).请根据图表提供的信息,解答下列问题:(1)参与本次问卷调查的总人数为__________人,统计表中C的百分比m为__________;(2)请补全统计图;(3)小华想用扇形统计图反映有意向参与各类比赛的人数占被调查总人数的百分比,是否可行?若可行,求出表示C类比赛的扇形圆心角的度数;若不可行,请说明理由;(4)学校“诗教中国”诗词讲解大赛初赛的规则是:组委会提供“春”“夏”“秋”“冬”四组题目(依次记为C,X,Q,D),由电脑随机给每位参赛选手派发一组,选手根据题目要求进行诗词讲解.请用列表或画树状图的方法求甲,乙两名选手抽到的题目在同一组的概率.20.(本题8分)阅读与思考图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:9325F C=+得出,当10C=时,50F=.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法. 再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式12111R R R =+求得R 的值,也可以设计一种图算法直接得出结果:我们先来画出一个120︒的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务: (1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式12111R R R =+计算:当17.5R =,25R =时,R 的值为多少; ②如图,在AOB △中,120AOB ∠=︒,OC 是AOB △的角平分线,7.5OA =,5OB =,用你所学的几何知识求线段OC 的长.21.(本题8分)某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌.某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得100cm AB =,80cm BC =,120ABC ∠=︒,75BCD ∠=︒,四边形DEFG 为矩形,且5cm DE =.请帮助该小组求出指示牌最高点A 到地面EF 的距离(结果精确到0.1cm .参考数据:sin750.97︒≈,cos750.26︒≈,tan75 3.73︒≈,2 1.41≈).22.(本题13分)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在ABCD 中,BE AD ⊥,垂足为E ,F 为CD 的中点,连接EF ,BF ,试猜想EF 与BF 的数量关系,并加以证明;独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将ABCD 沿着BF (F 为CD 的中点)所在直线折叠,如图②,点C的对应点为'C 连接'DC 并延长交AB 于点G ,请判断AG 与BG 的数量关系,并加以证明;问题解决:(3)智慧小组突发奇想,将ABCD 沿过点B 的直线折叠,如图③,点A 的对应点为'A ,使'A B CD ⊥于点H ,折痕交AD 于点M ,连接'A M ,交CD 于点N .该小组提出一个问题:若此ABCD 的面积为20,边长5AB =,25BC =,求图中阴影部分(四边形BHNM )的面积.请你思考此问题,直接写出结果.23.(本题13分)综合与探究如图,抛物线21262y x x =+-与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC ,BC .(1)求A ,B ,C 三点的坐标并直接写出直线AC ,BC 的函数表达式;(2)点P 是直线AC 下方抛物线上的一个动点,过点P 作BC 的平行线l ,交线段AC 于点D .①试探究:在直线l 上是否存在点E ,使得以点D ,C ,B ,E 为顶点的四边形为菱形,若存在,求出点E 的坐标;若不存在,请说明理由;②设抛物线的对称轴与直线l 交于点M ,与直线AC 交于点N .当DMN AOC S S =△△时,请直接写出DM 的长.参考答案:一、选择题1-5:BBADD6-10:CBCAC 二、填空题11. 12. ()2,3-13.5214.1001315.三、解答题16.(1)解:原式1 18(8)4 =⨯+-⨯()826=+-=.(2)①乘法分配律(或分配律)②五不等式两边都除以-5,不等号的方向没有改变(或不符合不等式的性质3)2x<17. 解:设这个最小数为x.根据题意,得()865 x x+=.解,得15x=,213x=-(不符合题意,舍去).答:这个最小数为5.18. 解:设走路线一到达太原机场需要x分钟.根据题意,得52530 37x x⨯=-.解,得25x=.经检验,25x=是原方程的解.答:走路线一到达太原机场需要25分钟.19.(1)120 50% (2)(3)解:不可行.理由:答案不唯一,如:由统计表可知,70%30%50%20%1+++>.即有意向参与比赛的人数占调查总人数的百分比之和大于1;或8460120+>,即有意向参与A 类与C 类的人数之和大于总人数120等. (4)解:列表如下:乙 甲C XQDC (),C C (),C X (),C Q (),CD X(),X C (),X X (),X Q (),X DQ(),Q C(),Q X(),Q Q(),Q DD(),D C (),D X (),D Q (),D D或画树状图如下:由列表(或画树状图)可知,总共有16种结果,每种结果出现的可能性都相同.其中甲,乙两名选手抽到的题目在同一组的结果有4种.所以,()41164P ==抽到的题目在同一组.20.(1)解:答案不唯一,如:图算法方便;直观;或不用公式计算即可得出结果等.(2)①解:当17.5R =,25R =时,12111117.5517.557.553R R R +=+=+==⨯.∴3R =.②解:过点A 作//AM CO ,交BO 的延长线于点M .∵OC 平分AOB ∠,∴11121206022AOB ∠=∠=∠=⨯︒=︒.∵//AM CO ,∴3260∠=∠=︒,160M ∠=∠=︒. ∴360M ∠=∠=︒,∴OA OM =. ∴OAM △为等边三角形, ∴7.5OM AM OA ===.∵B B ∠=∠,1M ∠=∠,∴BCO BAM △△.∴OC BOMA BM =.∴57.557.5OC =+,∴3OC =.21. 解:过点A 作AH EF ⊥于点H ,交直线DG 于点M .过点B 作BN DG ⊥于点N ,BP AH ⊥于点P .则四边形BNMP 和四边形DEHM 均为矩形, ∴PM BN =,5cm MH DE ==,∴//BP DG . ∴75CBP BCD ∠=∠=︒.∴1207545ABP ABC CBP ∠=∠-∠=︒-︒=︒.在Rt ABP △中,90APB ∠=︒,sin 45AP AB ︒=,∴2sin 451005022AP AB =⋅︒=⨯=在Rt BCN △中,90BNC ∠=︒,sin 75BNBC ︒=,∴sin75800.9777.6BN BC =⋅︒≈⨯=. ∴77.6PM BN ==.∴50277.6550 1.4177.65153.1AH AP PM MH =++=+≈⨯++=.答:指示牌最高点A 到地面EF 的距离为153.1cm . 22. 解:(1)EF BF =.证法一:如图①,分别延长AD ,BF 相交于点M . ∵四边形ABCD 是平行四边形,∴//AD BC .∴2C ∠=∠,1M ∠=∠. ∵F 为CD 的中点,∴DF CF =,∴MDF BCF ≅△△.∴FM FB =.即F 为BM 的中点,∴12BF BM =.∵BE AD ⊥,∴90BEM ∠=︒,∴在Rt BEM △中,12EF BM =.∴EF BF =.证法二:如图①,过点F 作FM EB ⊥于点M , 则90EMF ∠=︒.∵BE AD ⊥,∴90AEB ∠=︒. ∴AEB EMF ∠=∠,∴//AD FM .∵四边形ABCD 是平行四边形,∴//AD BC .∴////AD FM BC .∴EM DFMB FC =. ∵F 为CD 的中点,∴DF FC =,∴EM MB =. ∵FM EB ⊥,∴FM 垂直平分EB ,∴EF BF =.(2)AG BG =.证法一:如图②,由折叠可知:112'2CFC ∠=∠=∠,'FC FC =. ∵F 为CD 的中点,∴12FC FD CD==.∴'FC FD =.∴34∠=∠.∵'34CFC ∠=∠+∠,∴14'2CFC ∠=∠.∴41∠=∠.∴//DG FB . ∵四边形ABCD 为平行四边形,∴//DC AB,∴四边形DGBF 为平行四边形.∴BG DF =,∴12BG AB =,∴AG BG =.证法二:连接'CC 交FB 于N .由折叠可知:'FC FC =,'CC FB ⊥. ∴'90C NB ∠=︒.∵F 为CD 的中点,∴12FC FD CD==.∴'FC FD =.∴12∠=∠.∵'FC FC =.∴''FC C FCC ∠=∠. 在'DC C △中,1''180DC C DCC ∠+∠+∠=︒,∴12''180FC C FCC ∠+∠=∠+∠=︒.∴222'180FC C ∠+∠=︒. ∴2'90FC C ∠+∠=︒,∴'90DC C ∠=︒. ∴''DC C C NB ∠=∠.∴//DG FC . ∵四边形ABCD 是平行四边形,∴//DC AB.∴四边形DGBF 是平行四边形,∴BG FD =.∴12BG AB =.∴AG BG =.(3)223.23. 解:(1)当0y =时,212602x x +-=,解,得16x =-,22x =.∵点A 在点B 的左侧,∴点A 的坐标为()6,0-.点B 的坐标为()2,0.当0x =时,6y =-.∴点C 的坐标为()0,6-.直线AC 的函数表达式为:6y x =--. 直线BC 的函数表达式为:36y x =-. (2)存在.设点D 的坐标为(),6m m --,其中60m -<<. ∵点B ,点C 的坐标分别为()2,0,()0,6-.∴222(2)(6)BD m m =-++,2222640BC =+=,22222DC m m m =+=.∵//DE BC ,∴当DE BC =时,以D ,C ,B ,E 为顶点的四边形是平行四边形. ①如图①,当BD BC =时,BDEC 是菱形,∴()()222640m m -++=.解,得14m =-,20m =(舍去).∴点D 的坐标为()4,2--.∴点E 的坐标为()6,8--.②如图②,当CD CB =时,CBED 是菱形.∴2240m =.解,得125m =-,225m =(舍去),∴点D 的坐标为()25,256--.∴点E 的坐标为()225,25-.综上所述,存在点E ,使得以D ,B ,C ,E 为顶点的四边形为菱形,且点E 的坐标为()6,8--或()225,25-.(3)3102020年山西中考数学试题及答案第I 卷选择题(共30分)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.计算1(6)3⎛⎫-÷- ⎪⎝⎭的结果是() A .18-B .2C .18D .2-2.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识.下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图形的是()A .B .C .D .3.下列运算正确的是() A .2325a a a +=B .2842a a a -÷=C .()32628aa -=- D .3264312a a a ⋅=4.下列几何体都是由4个大小相同的小正方体组成的,其中主视图与左视图相同的几何体是()A .B .C .D .5.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度。

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:实际应用问题

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:实际应用问题

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:实际应用问题一、选择填空题题型分类讲解(一)列代数式问题(11年8考,近三年未考;考查特点:以考查图形规律探索为主) 类型一.实际应用问题中的列代数式问题 考查次数:11年1考(仅2017年考查) 考查题型:填空题/选择 考查难度:送分题解决关键:找准题中的等量关系1.(2017山西12题3分)某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a 元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为 元.类型二.几何问题中的列代数式问题考查次数:11年1考(仅2009年考查) 考查题型:填空题/选择 考查难度:送分题解决关键:找准几何图形中的等量关系7.(2009山西7题3分)如图(1),把一个长为m ,宽为n 的长方形(m >n )沿虚线剪开,拼接成图(2),成为在一角去掉一个小正方形后的一个大正方形,则去掉的小正方形的边长为( )A .B .m ﹣nC .D .拓展训练:练习1.(2018•河北)用一根长为a (单位:cm )的铁丝,首尾相接围成一个正方形,要将它按如图的方式向外等距扩1(单位:cm )得到新的正方形,则这根铁丝需增加( )A 、4cmB 、8cm C、(a +4)cm D 、(a +8)cm类型三.代数式找规律问题中的列代数式问题 考查次数:11年1考(仅2013年考查) 考查题型:填空题/选择 考查难度:送分题解决关键:分别找对应部分的规律15.(2013山西15题3分)一组按规律排列的式子:a 2,,,,…,则第n 个式子是 (n 为正整数).4.图形找规律问题中的列代数式问题考查次数:11年5考 考查题型:填空题/选择 考查难度:送分题考查形式:结合图形考查等差数列找规律问题(即考查固定增加图形)解决步骤:①找关系:找后一个图形所求元素个数与前一个图形所求元素个数之间的关系,一 般通过作差的形式进行观察;②找规律:若第一个图形所求元素个数为a,第二个图形所求元素个数比第一个图形所求元素个数多b,且此后每一个图形所求元素个数比前一个图形所求元素个数多b,则第n 个图形所求元素个数为a+b(n-1);③验证:代入序号验证所求代数式.④注意:若结果有单位,则加括号原则:多加单不加(即多项式加括号, 单项式不加括号)13.(2016山西13题3分)如图是一组有规律的图案,它们是由边长相同的小正方形组成,其中部分小正方形涂有阴影,依此规律,第n 个图案中有 个涂有阴影的小正方形(用含有n 的代数式表示).12.(2015山西12题3分)如图是一组有规律的图案,它们是由边长相同的正方形和正三角形镶嵌而成,第(1)个图案有4个三角形,第(2)个图案有7个三角形,第(3)个图案有10个三角形,…依此规律,第n 个图案有 个三角形(用含n 的代数式表示)16.(2012山西16题2分)如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n 个图案中阴影小三角形的个数是 .16.(2011山西16题3分)如图是用相同长度的小棒摆成的一组有规律的图案,图案(1)需要4根小棒,图案(2)需要10根小棒…,按此规律摆下去,第n 个图案需要小棒 根(用含有n 的代数式表示).17.(2009山西17题2分)下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n 个图中所贴剪纸“○”的个数为 个.拓展训练:练习1.如图所示是用棋子摆成的“Y ”字图案,则第n 个图案中棋子的数量为 (用含n 的代数式表示).(二)列方程问题:类型一.一元一次方程的应用问题 考查次数:11年3考 考查题型:填空题/选择 考查难度:送分题考查形式:①列一元一次方程问题②解一元一次方程问题考查模型:利息问题/销售(折扣)问题/几何图形面积体积问题解决关键:找准等量关系9.(2013山西9题2分)王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x 元,则下面所列方程正确的是( )A .x +3×4.25%x =33825B .x +4.25%x =33825C .3×4.25%x =33825D .3(x +4.25x )=33825 10.(2011山西10题2分)“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+30%)×80%=2080B .x •30%•80%=2080C .2080×30%×80%=xD .x •30%=2080×80%17.(2012山西17题2分)图1是边长为30cm 的正方形纸板,裁掉阴影部分后将其折叠成如图2所示的长方体盒子,已知该长方体的宽是高的2倍,则它的体积是 cm 3.类型二.一元二次方程的应用问题考查次数:11年2考 考查题型:填空题/选择 考查难度:送分题考查形式:①列一元二次方程问题②解一元儿次方程问题考查模型:增长率问题/几何图形面积体积问题 解决关键:找准等量关系13.(2019山西13题3分)如图,在一块长12m,宽8m 的矩形空地上,修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条平行),剩余部分栽种花草,且栽种花草的面积77m2,设道路的宽为xm,则根据题意,可列方程为.15.(2011山西15题3分)“十二五”时期,山西将建成中西部旅游强省,以旅游业为龙头的服务业将成为推动山西经济发展的主要动力.2010年全省全年旅游总收入大约1000亿元,如果到2012年全省每年旅游总收入要达到1440亿元,那么年平均增长率应为.类型三.分式方程的应用问题考查次数:11年1考考查题型:填空题/选择考查难度:送分题考查形式:列分式方程问题考查模型:行程问题/工程问题/销售问题解决关键:找准等量关系找等量关系技巧:列表格法7.(2016山西7题3分)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A .B .C .D.类型四.一元一次不等式的应用问题考查次数:11年1考考查题型:填空题/选择考查难度:送分题考查形式:解一元一次不等式问题考查模型:行程问题/工程问题/销售问题解决关键:找准不等量关系找不等量关系技巧:找关键词(至多至少等等)13.(2018山西13题3分)2018年国内航空公司规定:旅客乘机时,免费携带行李箱的长,宽,高三者之和不超过115cm.某厂家生产符合该规定的行李箱.已知行李箱的宽为20cm,长与高的比为8:11,则符合此规定的行李箱的高的最大值为cm.类型五.二次函数的应用问题考查次数:11年2考考查题型:填空题/选择考查难度:送分题考查形式:①列二次函数解析式问题②用二次函数解析式解决求边长问题考查模型:拱桥问题解决关键:建系(即根据题中条件建立恰当的平面直角坐标系,进而求其解析式)9.(2019山西9题3分)(求二次函数解析式问题)北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉索与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象﹣抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点.拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为x轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为()A.y=x 2 B.y=﹣x2C.y=x2 D.y=﹣x218.(2013山西18题3分)如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为9m,AB=36m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB的距离为7m,则DE的长为m.二、解答题题型分类讲解(一)函数类的应用问题考查形式1.一次函数的应用问题:类型一.方案选择问题考查次数:11年3考考查题型:解答题考查形式:①求解析式(注意:解决步骤不可少:设→列→解→下)②给y的大小求x的范围(解决关键:列不等式,解不等式)③给y的值求x的值(解决关键:列一元一次方程,解一元一次方程)考查难度:中档题考查模型:方案选择问题(文字/图形)19.(2019山西19题8分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.20.(2016山西20题7分)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在2000kg﹣5000kg(含2000kg和5000kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.24.(2013山西24题8分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y (元)与印刷份数x (份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是 .乙种收费的函数关系式是 . (2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?类型二.一次函数求最值问题考查次数:11年1考(仅20010年考查) 考查题型:解答题考查形式:求一次函数解析式+最值 考查难度:中档题考查模型:方案设计问题解决步骤:①求解析式→即求出一次函数的解析式y=kx+b(k ≠0)②定增减性→即由k 的正负,确定所求一次函数解析式的增减性③定范围→即确定所求一次函数解析式中自变量x 的范围④求最值→即由一次函数的增减性和自变量的范围,求函数的最值例如:所求的解析式是y=2x+200,x 的范围是10≤x ≤20则求函数值的最大值过程解答如下: “∵2>0 ∴y=2x+200是增函数 ∵2010≤≤x∴当x 取到最大值20时,y 取到最大值240”24.(2010山西24题8分)(一元一次不等式组+一次函数求最值问题+方案选择问题)某服装店欲购甲、乙两种新款运动服,甲款每套进价350元,乙款每套进价200元,该店计划用不低于7600元且不高于8000元的资金订购30套甲、乙两款运动服.(1)该店订购这两款运动服,共有哪几种方案? (2)若该店以甲款每套400元,乙款每套300元的价格全部出售,哪种方案获利最大?考查形式2.二次函数的应用问题:考查次数:11年1考(仅2009年考查) 考查题型:解答题考查形式:求二次函数解析式+最值 考查难度:中档题考查模型:销售(利润)问题 解决步骤:①求解析式→即求出二次函数的解析式(注意:所求二次函数解析式必须 要配成顶点式.)②定范围→即根据题中条件确定所求解析式中自变量x 的范围.③求最值→即由所求二次函数的解析性和自变量的范围,结合二次函数的草图求二次函数的最值.24.(2009山西24题8分)某批发市场批发甲、乙两种水果,根据以往经验和市场行情,预计夏季某一段时间内,甲种水果的销售利润y 甲(万元)与进货量x (吨)近似满足函数关系y 甲=0.3x ;乙种水果的销售利润y 乙(万元)与进货量x (吨)近似满足函数关系y 乙=ax 2+bx (其中a ≠0,a ,b 为常数),且进货量x 为1吨时,销售利润y 乙为1.4万元;进货量x 为2吨时,销售利润y 乙为2.6万元.(1)求y 乙(万元)与x (吨)之间的函数关系式. (2)如果市场准备进甲、乙两种水果共10吨,设乙种水果的进货量为t 吨,请你写出这两种水果所获得的销售利润之和W (万元)与t (吨)之间的函数关系式.并求出这两种水果各进多少吨时获得的销售利润之和最大,最大利润是多少?(二)方程+不等式的应用问题考查次数:11年5考(仅2009年考查) 考查题型:解答题 考查难度:中档题考查模型:销售(利润)问题/行程问题/工程问题/几何图形面积问题考查形式.①一元一次方程②分式方程③分式方程+一元一次不等式④二元一次方程组+一元一次不等式 ⑤分式方程+一元二次方程解决关键:(1)列方程(一元一次方程/分式方程/一元二次方程/一元一次方程)问题①解决关键:找准等量关系②找等量关系方法:表格法(适用于:行程问题/工程问题/销售(利润)问题)③注意:分式方程必检验分式方程检验模板:检验:当x=a 时,原方程成立 ∴x=a 时,是原方程的解(2)列不等式(一元一次不等式)问题 ①解决关键:找准不等量关系②找不等量关系方法:找准关键词(之多至少等等) ③注意:x>a(当a 为分数时,必须说明“∵x 为正整数∴x 取某数(某数为所求范围内距离a 最近的整数”)例如:所解的不等式结果是x>1160,必须说明 “∵x 为正整数 ∴x 取6”24.(2012山西24题10分)(一元二次方程+销售问题)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?20.(2018山西20题8分)(分式方程+行程问题)2018年1月20日,山西迎来了“复兴号”列车,与“和谐号”相比,“复兴号”列车时速更快,安全性更好.已知“太原南﹣北京西”全程大约500千米,“复兴号”G92次列车平均每小时比某列“和谐号”列车多行驶40千米,其行驶时间是该列“和谐号”列车行驶时间的(两列车中途停留时间均除外).经查询,“复兴号”G92次列车从太原南到北京西,中途只有石家庄一站,停留10分钟.求乘坐“复兴号”G92次列车从太原南到北京西需要多长时间.19.(2017山西19题7分)(二元一次方程组+一元一次不等式)“春种一粒粟,秋收万颗子”,唐代诗人李绅这句诗中的“粟”即谷子(去皮后则称为“小米”),被誉为中华民族的哺育作物.我省有着“小杂粮王国”的美誉,谷子作为我省杂粮谷物中的大类,其种植面积已连续三年全国第一.2016年全国谷子种植面积为2000万亩,年总产量为150万吨,我省谷子平均亩产量为160kg,国内其他地区谷子的平均亩产量为60kg,请解答下列问题:(1)求我省2016年谷子的种植面积是多少万亩.(2)2017年,若我省谷子的平均亩产量仍保持160kg不变,要使我省谷子的年总产量不低于52万吨,那么,今年我省至少应再多种植多少万亩的谷子?22.(2015山西22题7分)(二元一次方程组+一元一次不等式)某蔬菜经营户从蔬菜批发市场批发蔬菜进行零售,部分蔬菜批发价格与零售价格如表:请解答下列问题:(1)第一天,该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元钱,这两种蔬菜当天全部售完一共能赚多少元钱?(2)第二天,该经营户用1520元钱仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发西红柿多少kg?22.(2014山西22题9分)(分式方程+一元二次方程+工程问题+几何图形面积问题)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的 1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?。

山西省近几年中考数学试题分析

山西省近几年中考数学试题分析
基础知识、基本技能和基本思想方法是学生 继续学习数学和进一步发展的重要基石,是 学生基本数学素养的重要方面。本套试卷中 基础题较多,其中大多数来源于教材,是由 教材中的例题、习题改编而成,有利于引导 教师重视教材、研究教材、创造性地使用教 材。
3.强调应用,密切联系社会生活,考查数学应 用意识和应用数学知识解决实际问题的能力
二、科目设置与考试形式
考试 科目
语文
理科综合
文科综合
数学 英语
物理 化学 思想品德 历史
试卷 满分
120
120 120
80
70
考试 时间
150
120 120
150
75
75
150
三、命题依据
山西省2013年初中毕业生学业考试科 目命题,以教育部颁发的各学科《全日制 义务教育课程标准(实验稿)》为主要依据 (化学学科以2011版新课标为命题依 据);同时,各学科可根据本学科具体情 况,适当体现2011版新课标的理念及精 神。
《国家中长期教育改革和发展规划纲要 (2010-2020年)》
优先发展,
育人为本,
改革创新,
促进公平,
提高质量。
命题应坚持三个“有利于”:
(一)有利于全面贯彻国家教育方针,推进实施 素质教育;要体现义务教育的性质,坚持面向全体 学生,使不同层次、不同发展程度的学生的学习水 平都能得到客观、公正、全面、准确的评价。
五、命题原则及基本要求
(三)强化研究性学习,并在以后放到 愈加重要的位置。
当然,研究性学习反映在纸笔考试中更 多为探究性学习。要设计一定数量的探究性、 开放性的题目,此类试题设计要灵活开放, 有助于学生拓宽思维空间,引导培养学生的 创新意识和能力。开放题要特别注意确定清 晰的评分标准,以保证评分的一致性。

2024年山西省中考数学试卷(附答案)

2024年山西省中考数学试卷(附答案)

2024年山西省中考数学试卷(附答案)一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.(3分)中国空间站位于距离地面约400km的太空环境中.由于没有大气层保护,在太阳光线直射下,空间站表面温度可高于零上150℃,其背阳面温度可低于零下100℃.若零上150℃记作+150℃,则零下100℃记作()A.+100℃B.﹣100℃C.+50℃D.﹣50℃【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,若零上150℃记作+150℃,则零下100℃记作﹣100℃.故选:B.【点评】此题主要考查了正负数的意义,解题关键是理解“正”和“负”的相对性,明确什么是一对具有相反意义的量.2.(3分)1949年,伴随着新中国的诞生,中国科学院(简称“中科院”)成立.下列是中科院部分研究所的图标,其文字上方的图案是中心对称图形的是()A.山西煤炭化学研究所B.东北地理与农业生态研究所C.西安光学精密机械研究所D.生态环境研究中心【分析】根据中心对称图形的定义解答即可.【解答】解:A中的图形是中心对称图形,符合题意;B、C、D中的图形不是中心对称图形,不符合题意.故选:A.【点评】本题考查的是中心对称图形,熟知把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形是解题的关键.3.(3分)下列运算正确的是()A.2m+n=2mn B.m6÷m2=m3C.(﹣mn)2=﹣m2n2D.m2•m3=m5【分析】根据合并同类项的法则,同底数幂的乘法与除法法则,幂的乘方与积的乘方法则对各选项进行逐一计算即可.【解答】解:A、2m与n不是同类项,不能合并,原计算错误,不符合题意;B、m6÷m2=m4,原计算错误,不符合题意;C、(﹣mn)2=m2n2,原计算错误,不符合题意;D、m2•m3=m5,正确,符合题意.故选:D.【点评】本题考查的是合并同类项,同底数幂的乘法与除法,幂的乘方与积的乘方,熟知以上运算法则是解题的关键.4.(3分)斗拱是中国古典建筑上的重要部件.如图是一种斗形构件“三才升”的示意图及其主视图,则它的左视图为()A.B.C.D.【分析】左视图是从物体左面看所得到的图形.【解答】解:从左面看,上面部分是矩形,下面部分是梯形,矩形部分有一条看不见的线,应该画虚线,故选:C.【点评】本题考查了三视图的概念,要注意看不见的线应当画虚线.5.(3分)一只杯子静止在斜面上,其受力分析如图所示,重力G的方向竖直向下,支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行.若斜面的坡角α=25°,则摩擦力F2与重力G方向的夹角β的度数为()A.155°B.125°C.115°D.65°【分析】根据平行线的性质得到∠3=90°,根据三角形的内角和定理得到∠α+∠1=90°,求得∠2=∠1=90°﹣25°=65°,根据平行线的性质即可得到结论.【解答】解:如图,∵支持力F1的方向与斜面垂直,摩擦力F2的方向与斜面平行,∴∠3=90°,∵重力G的方向竖直向下,∴∠α+∠1=90°,∴∠2=∠1=90°﹣25°=65°,∵摩擦力F2的方向与斜面平行,∴∠β+∠2=180°,∴∠β=180°﹣∠2=180°﹣65°=115°,故选:C.【点评】本题考查了平行线的性质,正确地识别图形是解题的关键.6.(3分)已知点A(x1,y1),B(x2,y2)都在正比例函数y=3x的图象上,若x1<x2,则y1与y2的大小关系是()A.y1>y2B.y1<y2C.y1=y2D.y1≥y2【分析】根据一次函数的图象和性质即可解决问题.【解答】解:因为正比例函数y=3x的比例系数是3>0,所以y随x的增大而增大.又因为x1<x2,所以y1<y2.故选:B.【点评】本题主要考查了一次函数图象上点的坐标特征,熟知一次函数的图象和性质是解题的关键.7.(3分)如图,已知△ABC,以AB为直径的⊙O交BC于点D,与AC相切于点A,连接OD.若∠AOD =80°,则∠C的度数为()A.30°B.40°C.45°D.50°【分析】先根据圆周角定理得出∠B的度数,再由⊙O与AC相切,得出∠BAC=90°,据此可解决问题.【解答】解:∵,∴∠B=.∵以AB为直径的⊙O与AC相切于点A,∴∠BAC=90°,∴∠C=90°﹣40°=50°.故选:D.【点评】本题主要考查了切线的性质及圆周角定理,熟知圆周角定理及切线的性质是解题的关键.8.(3分)一个不透明的盒子里装有一个红球、一个白球和一个绿球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球,则两次摸到的球恰好有一个红球的概率是()A.B.C.D.【分析】列表可得出所有等可能的结果数以及两次摸到的球恰好有一个红球的结果数,再利用概率公式可得出答案.【解答】解:列表如下:红白绿红(红,白)(红,绿)白(白,红)(白,绿)绿(绿,红)(绿,白)共有6种等可能的结果,其中两次摸到的球恰好有一个红球的结果有:(红,白),(红,绿),(白,红),(绿,红),共4种,∴两次摸到的球恰好有一个红球的概率为.故选:B.【点评】本题考查列表法与树状图法和概率公式,熟练掌握列表法与树状图法以及概率公式是解答本题的关键.9.(3分)生物学研究表明,某种蛇在一定生长阶段,其体长y(cm)是尾长x(cm)的一次函数,部分数据如下表所示,则y与x之间的关系式为()尾长(cm)6810体长y(cm)45.560.575.5A.y=7.5x+0.5B.y=7.5x﹣0.5C.y=15x D.y=15x+45.5【分析】根据题意可设y=kx+b,利用待定系数法求出k,b即得x、y之间的函数关系式.【解答】解:蛇的长度y(cm)是其尾长x(cm)的一次函数,设y=kx+b,把x=6时,y=45.5;x=8时,y=60.5代入得,解得,∴y与x之间的关系式为y=7.5x+0.5.故选:A.【点评】本题主要考查用待定系数法求一次函数关系式,一次函数图象上点的坐标特征,熟练掌握待定系数法是解题的关键.10.(3分)在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,EG,FH交于点O.若四边形ABCD的对角线相等,则线段EG与FH一定满足的关系为()A.互相垂直平分B.互相平分且相等C.互相垂直且相等D.互相垂直平分且相等【分析】根据题意画出示意图,得出中点四边形的形状与原四边形对角线之间的关系即可解决问题.【解答】解:如图所示,连接BD,AC,∵点H和点E分别是AD和AB的中点,∴HE是△ABD的中位线,∴HE=.同理可得,GF=,∴HE=GF,HE∥GF,∴四边形HEFG是平行四边形.∵HE=,HG=,且AC=BD,∴HE=HG,∴平行四边形HEFG是菱形,∴EG与HF互相垂直平分.故选:A.【点评】本题主要考查了中点四边形、菱形的判定与性质及三角形的中位线定理,能根据三角形的中位线定理得出四边形ABCD的中点四边形是平行四边形及熟知菱形的判定与性质是解题的关键.二、填空题(本大题共5个小题,每小题3分,共15分)11.(3分)比较大小:>2(填“>”、“<”或“=”).【分析】根据>即可推出>2.【解答】解:∵>,∴>2,故答案为:>.【点评】本题考查了实数的大小比较的应用,主要考查学生的比较能力.12.(3分)黄金分割是汉字结构最基本的规律.借助如图的正方形习字格书写的汉字“晋”端庄稳重、舒展美观.已知一条分割线的端点A,B分别在习字格的边MN,PQ上,且AB∥NP,“晋”字的笔画“、”的位置在AB的黄金分割点C处,且,若NP=2cm,则BC的长为()cm(结果保留根号).【分析】根据题意可得出四边形ANPB是矩形,进而得出AB的长,再根据BC与AB的比值即可解决问题.【解答】解:∵四边形MNPQ是正方形,∴∠N=∠P=90°,又∵AB∥NP,∴∠BAN+∠N=180°,∴∠BAN=90°,∴四边形ABPN是矩形,∴AB=NP=2cm.又∵,∴BC=()cm.故答案为:().【点评】本题主要考查了黄金分割及平行线的性质,熟知黄金分割的定义及平行线的性质是解题的关键.13.(3分)机器狗是一种模拟真实犬只形态和部分行为的机器装置,其最快移动速度v(m/s)是载重后总质量m(kg)的反比例函数.已知一款机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;当其载重后总质量m=90kg时,它的最快移动速度v=4m/s.【分析】利用待定系数法求出反比例函数解析式,后再将m=90代入计算即可.【解答】解:设反比例函数解析式为v=,∵机器狗载重后总质量m=60kg时,它的最快移动速度v=6m/s;∴k=60×6=360,∴反比例函数解析式为v=,当m=90kg时,v==4(m/s),答:当其载重后总质量m=90kg时,它的最快移动速度v=4m/s.故答案为:4.【点评】本题考查了反比例函数的应用,待定系数法求反比例函数解析式是关键.14.(3分)如图1是小区围墙上的花窗,其形状是扇形的一部分,图2是其几何示意图(阴影部分为花窗).通过测量得到扇形AOB的圆心角为90°,OA=1m,点C,D分别为OA,OB的中点,则花窗的面积为m2.【分析】用扇形的面积减去△COD的面积即可解决问题.【解答】解:由题知,(m2),∵点C,D分别是OA,OB的中点,∴OC=OD=(m),∴(m2),∴花窗的面积为()m2故答案为:().【点评】本题主要考查了扇形面积的计算,熟知扇形的面积公式是解题的关键.15.(3分)如图,在▱ABCD中,AC为对角线,AE⊥BC于点E,点F是AE延长线上一点,且∠ACF=∠CAF,线段AB,CF的延长线交于点G.若AB=,AD=4,tan∠ABC=2,则BG的长为.【分析】方法一:过点F作FH⊥AC于H,延长AD与GC的延长线交于K,由tan∠ABC==2得AE=2BE,进而得BE=1,AE=2,则CE=3,AC=,再由∠ACF=∠CAF得FA=FC,则AH=CH=,由S△F AC=AC•FH=AF•CE,得FH=,在Rt△AFH中由勾股定理得AF=,则EF=AF﹣AE=,证明△FCE∽△FKA得AK=,则DK=AK﹣AD=,再证明△KDC ∽△KAG得AG=,由此可得BG的长.方法二:过点G作GH⊥BC,交CB的延长线于H,先求出BE=1,AE=2,CE=3,设EF=a,则AF =CF=2+a,由勾股定理求出a=,根据∠GBH=∠ABC得GH=2HB,设HB=b,则GH=2b,CH=BC+HB=4+b,GB=,证明△CEF∽△CHG得b=,由此可得GH的长.【解答】解法一:过点F作FH⊥AC于H,延长AD与GC的延长线交于K,如下图所示:∵四边形ABCD为平行四边形,∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD,又∵AE⊥BC,在Rt△ABE中,tan∠ABC==2,∴AE=2BE,由勾股定理得:AE2+BE2=AB2,即(2BE)2+BE2=()2,∴BE=1,∴AE=2BE=2,∴CE=BC﹣BE=3,在Rt△ACE中,由勾股定理得:AC==,∵∠ACF=∠CAF,∴FA=FC,∵FH⊥AC,∴AH=CH=AC=,=AC•FH=AF•CE,∵S△F AC∴FH=,在Rt△AFH中,由勾股定理得:AF2﹣FH2=AH2,即,∴AF=,∴EF=AF﹣AE=,∵BC∥AD,∴△FCE∽△FKA,∴EF:AF=CE:AK,即,∴AK=,∴DK=AK﹣AD=,∵AB∥CD,∴△KDC∽△KAG,∴DK:AK=CD:AG,即,∴AG=,∴BG=AG﹣AB=.故答案为:.解法二:过点G作GH⊥BC,交CB的延长线于H,如下图所示:∵四边形ABCD为平行四边形,∴AB=CD=,BC=AD=4,AB∥CD,BC∥AD,又∵AE⊥BC在Rt△ABE中,tan∠ABC==,∴AE=2BE,由勾股定理得:AE2+BE2=AB2,即(2BE)2+BE2=()2,∴BE=1,∴AE=2BE=2,∴CE=BC﹣BE=3,设EF=a,则AF=AE+EF=2+a,∵∠ACF=∠CAF,∴AF=CF=2+a,在Rt△CEF中,由勾股定理得:CF2=CE2+EF2,即(2+a)2=32+a2,解得:a=,∵∠GBH=∠ABC,∴在Rt△GBH中,tan∠GBH=,∴GH=2HB,设HB=b,则GH=2b,CH=BC+HB=4+b,在Rt△GBH中,由勾股定理得:GB=,∵GH⊥BC,AF⊥BC,∴EF∥GH,∴△CEF∽△CHG,∴CE:CH=EF:GH,即3:(4+b)=:2b,解得:b=,∴GH==,故答案为:.【点评】此题主要考查了平行四边形的性质,解直角三角形的应用,相似三角形的判定和性质,熟练掌握平行四边形的性质,锐角三角函数的定义是解决问题的关键,正确地添加辅助线构造相似三角形,并利用相似三角形的性质进行计算是解决问题的难点.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1)计算:(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)];(2)化简(+)÷.【分析】(1)先算括号里面的,再算乘法,负整数指数幂,最后算加减即可;(2)先算括号里面的,再把除法化为乘法,最后约分即可.【解答】解:(1)(﹣6)×﹣()﹣2+[(﹣3)+(﹣1)]=(﹣6)×﹣()﹣2+(﹣3﹣1)=(﹣6)×﹣()﹣2﹣4=﹣2﹣4﹣4=﹣10;(2)(+)÷==•=.【点评】本题考查的是分式的混合运算,有理数的混合运算及负整数指数幂,熟知运算法则是解题的关键.17.(7分)为加强校园消防安全,学校计划购买某种型号的水基灭火器和干粉灭火器共50个.其中水基灭火器的单价为540元/个,干粉灭火器的单价为380元/个.若学校购买这两种灭火器的总价不超过21000元,则最多可购买这种型号的水基灭火器多少个?【分析】设可购买这种型号的水基灭火器x个,则购买干粉灭火器(50﹣x)个,根据学校购买这两种灭火器的总价不超过21000元,列出一元一次不等,解不等式即可.【解答】解:设可购买这种型号的水基灭火器x个,则购买干粉灭火器(50﹣x)个,根据题意得:540x+380(50﹣x)≤21000,解得:x≤12.5,∵x为整数,∴x取最大值为12,答:最多可购买这种型号的水基灭火器12个.【点评】本题考查了一元一次不等式的应用,找出数量关系,正确列出一元一次不等式是解题的关键.18.(10分)为激发青少年崇尚科学、探索未知的热情,学校开展“科学小博士”知识竞赛.各班以小组为单位组织初赛,规定满分为10分,9分及以上为优秀.数据整理:小夏将本班甲、乙两组同学(每组8人)初赛的成绩整理成如下的统计图.数据分析:小夏对这两个小组的成绩进行了如下分析:平均数(分)中位数(分)众数(分)方差优秀率甲组7.625a7 4.4837.5%乙组7.6257b0.73c请认真阅读上述信息,回答下列问题:(1)填空:a=7.5,b=7,c=25%;(2)小祺认为甲、乙两组成绩的平均数相等,因此两个组成绩一样好.小夏认为小祺的观点比较片面,请结合上表中的信息帮小夏说明理由(写出两条即可).【分析】(1)根据中位数,众数和优秀率的定义和计算公式计算即可;(2)从优秀率,中位数,众数和方差等角度中选出两个进行分析即可.【解答】解:(1)a==7.5(分),b=7(分),c=×100%=25%,故答案为:7.5;7;25%.(2)小祺的观点比较片面.理由不唯一,例如:①甲组成绩的优秀率为37.5%,高于乙组成绩的优秀率25%,∴从优秀率的角度看,甲组成绩比乙组好;②甲组成绩的中位数为7.5,高于乙组成绩的中位数,∴从中位数的角度看,甲组成绩比乙组好;因此不能仅从平均数的角度说明两组成绩一样好,可见,小祺的观点比较片面.【点评】本题考查的是方差,加权平均数,中位数和众数,熟练掌握上述知识点是解题的关键.19.(7分)当下电子产品更新换代速度加快,废旧智能手机数量不断增加.科学处理废旧智能手机,既可减少环境污染,还可回收其中的可利用资源.据研究,从每吨废旧智能手机中能提炼出的白银比黄金多760克.已知从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.求从每吨废旧智能手机中能提炼出黄金与白银各多少克.【分析】设从每吨废旧智能手机中能提炼出黄金x克,白银y克,根据从每吨废旧智能手机中能提炼出的白银比黄金多760克.从2.5吨废旧智能手机中提炼出的黄金,与从0.6吨废旧智能手机中提炼出的白银克数相等.列出二元一次方程组,解方程组即可.【解答】解:设从每吨废旧智能手机中能提炼出黄金x克,白银y克,根据题意得:,解得:,即从每吨废旧智能手机中能提炼出黄金240克,白银1000克.答:从每吨废旧智能手机中能提炼出黄金240克,白银1000克.【点评】本题主要考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(7分)研学实践:为重温解放军东渡黄河“红色记忆”,学校组织研学活动.同学们来到毛主席东渡黄河纪念碑所在地,在了解相关历史背景后,利用航模搭载的3D扫描仪采集纪念碑的相关数据.数据采集:如图,点A是纪念碑顶部一点,AB的长表示点A到水平地面的距离.航模从纪念碑前水平地面的点M处竖直上升,飞行至距离地面20米的点C处时,测得点A的仰角∠ACD=18.4°;然后沿CN方向继续飞行,飞行方向与水平线的夹角∠NCD=37°,当到达点A正上方的点E处时,测得AE =9米;…数据应用:已知图中各点均在同一竖直平面内,E,A,B三点在同一直线上.请根据上述数据,计算纪念碑顶部点A到地面的距离AB的长(结果精确到1米.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin18.4°≈0.32,cos18.4°≈0.95,tan18.4°≈0.33).【分析】延长CD交AB于点H,根据矩形的性质得到CM=HB=20,解直角三角形即可得到结论.【解答】解:延长CD交AB于点H,由题意得,四边形CMBH为矩形,∴CM=HB=20,在Rt△ACH中,∠AHC=90°,∠ACH=18.4°,∴,∴,在Rt△ECH中,∠EHC=90°,∠ECH=37°,∴,∴,设AH=x.∵AE=9,∴EH=x+9,∴,解得x≈7.1,∴AB=AH+HB≈7.1+20=27.1≈27(米)答:点A到地面的距离AB的长约为27米.【点评】本题考查解直角三角形的应用—仰角俯角问题、锐角三角函数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(9分)阅读与思考下面是博学小组研究性学习报告的部分内容,请认真阅读,并完成相应任务.关于“等边半正多边形”的研究报告博学小组研究对象:等边半正多边形研究思路:类比三角形、四边形,按“概念﹣性质﹣判定”的路径,由一般到特殊进行研究.研究方法:观察(测量、实验)﹣猜想﹣推理证明研究内容:【一般概念】对于一个凸多边形(边数为偶数),若其各边都相等,且相间的角相等、相邻的角不相等,我们称这个凸多边形为等边半正多边形.如图1,我们学习过的菱形(正方形除外)就是等边半正四边形,类似地,还有等边半正六边形、等边半正八边形…【特例研究】根据等边半正多边形的定义,对等边半正六边形研究如下:概念理解:如图2,如果六边形ABCDEF是等边半正六边形,那么AB=BC=CD=DE=EF=FA,∠A=∠C=∠E,∠B=∠D=∠F,且∠A≠∠B.性质探索:根据定义,探索等边半正六边形的性质,得到如下结论:内角:等边半正六边形相邻两个内角的和为▲°.对角线:…任务:(1)直接写出研究报告中“▲”处空缺的内容:240.(2)如图3,六边形ABCDEF是等边半正六边形.连接对角线AD,猜想∠BAD与∠FAD的数量关系,并说明理由;(3)如图4,已知△ACE是正三角形,⊙O是它的外接圆.请在图4中作一个等边半正六边形ABCDEF (要求:尺规作图,保留作图痕迹,不写作法).【分析】(1)六边形内角和为720°,由等边半正六边形的定义即可得出相邻两内角和为240°;(2)连接BD,FD,通过全等很容易证出∠BAD=∠FAD;(3)作AC、CE、AE的垂直平分线,在圆内线上取一点或者圆外取一点都行,切记不能取圆上,否则就是正六边形了.【解答】解:(2)∠BAD=∠FAD.理由如下:连接BD,FD.∵六边形ABCDEF是等边半正六边形.∴AB=BC=CD=DE=EF=FA,∠C=∠E.∴△BCD≌△FED.∴BD=FD.在△ABD与△AFD中,∴△BAD≌△FAD.∴∠BAD=∠FAD.(3)答案不唯一,作法一:作法二:如图,六边形ABCDEF即为所求.【点评】本题主要考查圆综合题,以等边半正六边形为背景,理解题意以及掌握圆和多边形的相关性质是解题关键.22.(12分)综合与实践问题情境:如图1,矩形MNKL是学校花园的示意图,其中一个花坛的轮廓可近似看成由抛物线的一部分与线段AB组成的封闭图形,点A,B在矩形的边MN上.现要对该花坛内种植区域进行划分,以种植不同花卉,学校面向全体同学征集设计方案.方案设计:如图2,AB=6米,AB的垂直平分线与抛物线交于点P,与AB交于点O,点P是抛物线的顶点,且PO=9米.欣欣设计的方案如下:第一步:在线段OP上确定点C,使∠ACB=90°,用篱笆沿线段AC,BC分隔出△ABC区域,种植串串红;第二步:在线段CP上取点F(不与C,P重合),过点F作AB的平行线,交抛物线于点D,E.用篱笆沿DE,CF将线段AC,BC与抛物线围成的区域分隔成三部分,分别种植不同花色的月季.方案实施:学校采用了欣欣的方案,在完成第一步△ABC区域的分隔后,发现仅剩6米篱笆材料.若要在第二步分隔中恰好用完6米材料,需确定DE与CF的长.为此,欣欣在图2中以AB所在直线为x 轴,OP所在直线为y轴建立平面直角坐标系.请按照她的方法解决问题:(1)在图2中画出坐标系,并求抛物线的函数表达式;(2)求6米材料恰好用完时DE与CF的长;(3)种植区域分隔完成后,欣欣又想用灯带对该花坛进行装饰,计划将灯带围成一个矩形.她尝试借助图2设计矩形四个顶点的位置,其中两个顶点在抛物线上,另外两个顶点分别在线段AC,BC上.直接写出符合设计要求的矩形周长的最大值.【分析】(1)由待定系数法即可求解;(2)在Rt△ABC中,∠ACB=90°,OA=OB,则,得到CF=OF﹣OC=﹣m2+9﹣3=﹣m2+6,即可求解;(3)由矩形周长=2(GH+GL)=2(﹣2m﹣m2+9﹣m﹣3)=﹣(m+1.5)2+≤,即可求解.【解答】解:(1)建立如图所示的平面直角坐标系,∵OP所在直线是AB的垂直平分线,且AB=6,∴.∴点B的坐标为(3,0),∵OP=9,∴点P的坐标为(0,9),∵点P是抛物线的顶点,∴设抛物线的函数表达式为y=ax2+9,∵点B(3,0)在抛物线y=ax2+9上,∴9a+9=0,解得:a=﹣1.∴抛物线的函数表达式为y=﹣x2+9(﹣3≤x≤3);(2)点D,E在抛物线y=﹣x2+9上,∴设点E的坐标为(m,﹣m2+9),∵DE∥AB,交y轴于点F,∴DF=EF=m,OF=﹣m2+9,∴DE=2m.∵在Rt△ABC中,∠ACB=90°,OA=OB,∴.∴CF=OF﹣OC=﹣m2+9﹣3=﹣m2+6,根据题息,得DE+CF=6,∴﹣m2+6+2m=6,解得:m1=2,m=0(不符合题意,舍去),∴m=2.∴DE=2m=4,CF=﹣m2+6=2答:DE的长为4米,CF的长为2米;(3)如图矩形灯带为GHML,由点A、B、C的坐标得,直线AC和BC的表达式分别为:y=x+3,y=﹣x+3,设点G(m,﹣m2+9)、H(﹣m,﹣m2+9)、L(m,m+3)、M(﹣m,m+3),则矩形周长=2(GH+GL)=2(﹣2m﹣m2+9﹣m﹣3)=﹣(m+1.5)2+≤,故矩形周长的最大值为米.【点评】本题考查的是二次函数综合运用,主要涉及到二次函数的图象和性质、矩形的性质,理解题意,建立适当坐标系求出函数表达式是解题的关键.23.(13分)综合与探究问题情境:如图1,四边形ABCD是菱形,过点A作AE⊥BC于点E,过点C作CF⊥AD于点F.猜想证明:(1)判断四边形AECF的形状,并说明理由;深入探究:(2)将图1中的△ABE绕点A逆时针旋转,得到△AHG,点E,B的对应点分别为点G,H.①如图2,当线段AH经过点C时,GH所在直线分别与线段AD,CD交于点M,N.猜想线段CH与MD的数量关系,并说明理由;②当直线GH与直线CD垂直时,直线GH分别与直线AD,CD交于点M,N,直线AH与线段CD交于点Q.若AB=5,BE=4,直接写出四边形AMNQ的面积.【分析】(1)根据矩形的判定方法(有三个角是直角的四边形是矩形)很容易证出;(2)①方法一可先证△HAM≌△DAC,得出AM=AC,减去公共边得出CH=MD.方法二证△CDH ≌△MHD,可直接得出CH=MD;②对于旋转的存在性问题,首先分类讨论,根据情况画出草图,再利用旋转的性质以及锐角三角函数或相似进行计算即可,需要主要的是四边形AMNQ的面积是不规则,需要用去用三角形面积的和差解决.【解答】解:(1)四边形AECF为矩形.理由如下:∵AE⊥BC,CF⊥AD,∴∠AEC=90°,∠AFC=90°,∵四边形ABCD为菱形,∴AD∥BC,∴∠AFC+∠ECF=180°,∠ECF=180°﹣∠AFC=90°∴四边形AECF为矩形.(2)①CH=MD.理由如下:证法一:∵四边形ABCD为菱形,∴AB=AD,∠B=∠D.∵△ABE旋转得到△AHG,∴AB=AH,∠B=∠H.∴AH=AD,∠H=∠D.∵∠HAM=∠DAC,∴△HAM≌△DAC,∴AM=AC,∴AH﹣AC=AD﹣AM,∴CH=MD.证法二:如图,连接HD.∵四边形ABCD为菱形,∴AB=AD,∠B=∠ADC,∵△ABE旋转得到△AHG,∴AB=AH,∠B=∠AHM,∴AH=AD,∠AHM=∠ADC,∴∠AHD=∠ADH,∴∠AHD﹣∠AHM=∠ADH﹣∠ADC,∴∠MHD=∠CDH,∵DH=HD,∴△CDH≌△MHD,∴CH=MD.②情况一:如图,当点G旋转至BA的延长线上时,GH⊥CD,此时S四边形AMNQ=.∵AB=5,BE=4,∴由勾股定理可得AE=3,∵△ABE旋转到△AHG,∴AG=AE=3,GH=BE=4,∠H=∠B,∵GN⊥CD,∴GN=AE=3,∴NH=1,∵AD∥BC,∴∠GAM=∠B,∴tan∠GAM=tan∠B,即,解得GM=,则MH=,∵tan∠H=tan∠B,∴在Rt△QNH中,QN=,=S△AMH﹣S△QNH=MH•AG﹣NH•QN=.∴S四边形AMNQ=.情况二:如图,当点G旋转至BA上时,GH⊥CD,此时S四边形AMNQ同第一种情况的计算思路可得:NH=7,QN=,AG=3,MH=,=S△QNH﹣S△AMH=NH•QN﹣MH•AG=.∴S四边形AMNQ综上,四边形AMNQ的面积为或.。

2013-2019年山西省中考数学试题汇编(含参考答案与解析)

2013-2019年山西省中考数学试题汇编(含参考答案与解析)

【中考数学试题汇编】2013—2019年山西省中考数学试题汇编(含参考答案与解析)1、2013年山西省中考数学试题及参考答案与解析 (2)2、2014年山西省中考数学试题及参考答案与解析 (32)3、2015年山西省中考数学试题及参考答案与解析 (58)4、2016年山西省中考数学试题及参考答案与解析 (83)5、2017年山西省中考数学试题及参考答案与解析 (109)6、2018年山西省中考数学试题及参考答案与解析 (133)7、2019年山西省中考数学试题及参考答案与解析 (159)2013年山西省中考数学试题及参考答案与解析一、选择题(本大题共12小题,每小题2分,共24分) 1.计算:2×(﹣3)的结果是( ) A .6B .﹣6C .﹣1D .52.不等式组35215x x +⎧⎨+⎩≥<的解集在数轴上表示为( )A .B .C .D .3.如图是一个长方体包装盒,则它的平面展开图是( )A .B .C .D .4.某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是2s 甲=36,2s 乙=30,则两组成绩的稳定性( ) A .甲组比乙组的成绩稳定 B .乙组比甲组的成绩稳定C .甲、乙两组的成绩一样稳定D .无法确定5.下列算式计算错误的是( )A .x 3+x 3=2x 3B .a 6÷a 3=a 2 C= D .1133-⎛⎫= ⎪⎝⎭6.解分式方程22311x x x++=--时,去分母后变形为( ) A .2+(x+2)=3(x ﹣1) B .2﹣x+2=3(x ﹣1) C .2﹣(x+2)=3(1﹣x ) D .2﹣(x+2)=3(x ﹣1) 7.如表是我省11个地市5月份某日最高气温(℃)的统计结果: 太原 大同 朔州 忻州 阳泉 晋中 吕梁 长治 晋城 临汾 运城 2727282827292828303031该日最高气温的众数和中位数分别是( ) A .27℃,28℃B .28℃,28℃C .27℃,27℃D .28℃,29℃8.如图,正方形地砖的图案是轴对称图形,该图形的对称轴有( )A .1条B .2条C .4条D .8条9.王先生到银行存了一笔三年期的定期存款,年利率是4.25%.若到期后取出得到本息(本金+利息)33825元.设王先生存入的本金为x 元,则下面所列方程正确的是( )A .x+3×4.25%x=33825B .x+4.25%x=33825C .3×4.25%x=33825D .3(x+4.25x )=33825 10.如图,某地修建高速公路,要从B 地向C 地修一座隧道(B 、C 在同一水平面上).为了测量B 、C 两地之间的距离,某工程师乘坐热气球从C 地出发,垂直上升100m 到达A 处,在A 处观察B 地的俯角为30°,则B 、C 两地之间的距离为( )A .B .C .D .3m 11.起重机将质量为6.5t 的货物沿竖直方向提升了2m ,则起重机提升货物所做的功用科学记数法表示为(g=10N/kg )( )A .1.3×106JB .13×105JC .13×104JD .1.3×105J12.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .232π- B .23π C .2π- D .π-二、填空题(本大题共6小题,每小题3分,满分18分) 13.因式分解:a 2﹣2a= .14.四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)15.一组按规律排列的式子:a2,43a,65a,87a,…,则第n个式子是(n为正整数).16.如图,矩形ABCD在第一象限,AB在x轴正半轴上,AB=3,BC=1,直线y=12x﹣1经过点C交x轴于点E,双曲线kyx经过点D,则k的值为.17.如图,在矩形纸片ABCD中,AB=12,BC=5,点E在AB上,将△DAE沿DE折叠,使点A 落在对角线BD上的点A′处,则AE的长为.18.如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A、B两点,拱桥最高点C到AB的距离为9m,AB=36m,D、E为拱桥底部的两点,且DE∥AB,点E到直线AB 的距离为7m,则DE的长为m.三、解答题(本大题共8小题,满分78分)19.(10分)(11453⎛⎫︒- ⎪⎝⎭;(2)下面是小明化简分式的过程,请仔细阅读,并解答所提出的问题.解:()()()()()222266242222xx xx x x x x x----=-+-+-+-…第一步=2(x﹣2)﹣x+6…第二步=2x﹣4﹣x﹣6…第三步=x+2…第四步小明的解法从第步开始出现错误,正确的化简结果是.20.(7分)解方程:(2x﹣1)2=x(3x+2)﹣7.21.(8分)如图,在△ABC中,AB=AC,D是BA延长线上的一点,点E是AC的中点.(1)实践与操作:利用尺规按下列要求作图,并在图中标明相应字母(保留作图痕迹,不写作法);①作∠DAC的平分线AM;②连接BE并延长交AM于点F;(2)猜想与证明:试猜想AF与BC有怎样的位置关系和数量关系,并说明理由.22.(9分)小勇收集了我省四张著名的旅游景点图片(大小、形状及背面完全相同):太原以南的壶口瀑布和平遥古城,太原以北的云冈石窟和五台山.他与爸爸玩游戏:把这四张图片背面朝上洗匀后,随机抽取一张(不放回),再抽取一张,若抽到的两个景点都在太原以南或都在太原以北,则爸爸同意带他到这两个景点旅游,否则,只能去一个景点旅游.请你用列表或画树状图的方法求小勇能去两个景点旅游的概率(四张图片分别用H,P,Y,W表示).23.(9分)如图,AB为⊙O的直径,点C在⊙O上,点P是直径AB上的一点(不与A重合),过点P作AB的垂线交BC于点Q.(1)在线段PQ上取一点D,使DQ=DC,连接DC,试判断CD与⊙O的位置关系,并说明理由.(2)若cosB=35,BP=6,AP=1,求QC的长.24.(8分)某校实行学案式教学,需印制若干份数学学案,印刷厂有甲、乙两种收费方式,除按印数收取印刷费外,甲种方式还需收取制版费而乙种不需要.两种印刷方式的费用y(元)与印刷份数x(份)之间的关系如图所示:(1)填空:甲种收费的函数关系式是.乙种收费的函数关系式是.(2)该校某年级每次需印制100~450(含100和450)份学案,选择哪种印刷方式较合算?25.(13分)数学活动﹣﹣﹣求重叠部分的面积.问题情境:数学活动课上,老师出示了一个问题:如图1,将两块全等的直角三角形纸片△ABC和△DEF叠放在一起,其中∠ACB=∠E=90°,BC=DE=6,AC=FE=8,顶点D与边AB的中点重合,DE经过点C,DF交AC于点G.求重叠部分(△DCG)的面积.(1)独立思考:请回答老师提出的问题.(2)合作交流:“希望”小组受此问题的启发,将△DEF 绕点D 旋转,使DE ⊥AB 交AC 于点H ,DF 交AC 于点G ,如图2,你能求出重叠部分(△DGH )的面积吗?请写出解答过程.(3)提出问题:老师要求各小组向“希望”小组学习,将△DEF 绕点D 旋转,再提出一个求重叠部分面积的问题.“爱心”小组提出的问题是:如图3,将△DEF 绕点D 旋转,DE ,DF 分别交AC 于点M ,N ,使DM=MN ,求重叠部分(△DMN )的面积.任务:①请解决“爱心”小组提出的问题,直接写出△DMN 的面积是 .②请你仿照以上两个小组,大胆提出一个符合老师要求的问题,并在图4中画出图形,标明字母,不必解答(注:也可在图1的基础上按顺时针旋转).26.(14分)综合与探究: 如图,抛物线213442y x x =--与x 轴交与A ,B 两点(点B 在点A 的右侧),与y 轴交于点C ,连接BC ,以BC 为一边,点O 为对称中心作菱形BDEC ,点P 是x 轴上的一个动点,设点P 的坐标为(m ,0),过点P 作x 轴的垂线l 交抛物线于点Q . (1)求点A ,B ,C 的坐标.(2)当点P 在线段OB 上运动时,直线l 分别交BD ,BC 于点M ,N .试探究m 为何值时,四边形CQMD 是平行四边形,此时,请判断四边形CQBM 的形状,并说明理由.(3)当点P 在线段EB 上运动时,是否存在点Q ,使△BDQ 为直角三角形?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.参考答案与解析一、选择题(本大题共12小题,每小题2分,共24分)1.计算:2×(﹣3)的结果是()A.6 B.﹣6 C.﹣1 D.5【知识考点】有理数的乘法.【思路分析】根据有理数乘法法则进行计算即可.【解题过程】解:2×(﹣3)=﹣6;故选B.【总结归纳】此题考查了有理数的乘法,掌握有理数的乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘是解题的关键.2.不等式组35215xx+⎧⎨+⎩≥<的解集在数轴上表示为()A.B.C.D.【知识考点】在数轴上表示不等式的解集;解一元一次不等式组.【思路分析】分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可.【解题过程】解:35215xx+⎧⎨+⎩≥①<②,解不等式①得,x≥2,。

山西省中考数学历年真题分析(填空和选择答题方法)

山西省中考数学历年真题分析(填空和选择答题方法)
A.0.16×106平方千米 B.16×104平方千米 C.1.6×104平方千米 D.1.6×105平方千米
6.(2011•陕西)我国第六次人口普 查显示,全国人口为1370536875人,
将这个总人口数(保留三个有效数 字)用科学记数法表示为( )
A、1.37×109
B、
1.37×107
C、1.37×108

分析:运用完全平方公式,得
(a b)2 (bc)2 (ca)2 2(a2 b2 c2)2(abbc ac)
得ab bc ca 23
50
六、构造法
例 已知反比例函数的图象经过点
(m,2)和(-2,3)则m的值


造分反析比y:例 采kx函用数构的造解法析求式解.由题,意因,为构它 过(-2,3)所以把x=-2,y=3代入得 k=-6. 解析式为而另一点(m,2)也在反 比例函数的图像上,所以把 x=m,y= 2代入得m=-3.
(B)
X< X3 < X2
(C) X3 < X2 <X (D) X2 < X3 <X
四、数形结合法
有的选择题可通过命题条件的函数关系或 几何意义,作出函数的图象或几何图形,借助 于图象或图形的直观性从中找出正确答案.
已知抛物线y=ax2+bx+c(a>0) 的对称轴为x=-1,与x轴的一个交 点结为 论(:x①1,9a0-)3,b+且c0><0x;1<②1b,<下a;列③ 3a+c>0。其中正确结论的个数是 ()
(2011•河北)如图,在矩形中截取两个 相同的圆作为圆柱的上、下底面,剩余的 矩形作为圆柱的侧面,刚好能组合成圆 柱.设矩形的长和宽分别为y和x,则y与x 的函数图象大致是( )
A.
B
C.

山西数学试题及答案中考

山西数学试题及答案中考

山西数学试题及答案中考首先,让我们来看一下山西省中考数学试题以及对应的答案。

以下是几道典型的数学试题及其解析。

试题一:已知正方形ABCD的周长为12cm,以边AB为底边向上截取1cm,得到四边形ABMN(M、N在AC的延长线上),连接DN,并延长至交点E。

则四边形ABCD与三角形DEN的面积之比是多少?解析:首先计算正方形的边长,周长除以4即可得到每条边长为3cm。

因此,我们可以得到点A(-1, 1),点B(-1, 4),点C(2, 4),点D(2, 1)。

根据题目中的信息,我们可以得到点M(-1, 5),点N(8, 4)。

连接DN并延长至交点E,根据图形可知DN与x轴平行,所以DN的斜率为0。

根据两点式的公式,我们可以得到DN的方程为y = 4。

因此,DN与x轴的交点E的坐标为(0, 4)。

接下来,我们可以计算四边形ABCD的面积,使用矩形的面积公式,即底乘高,得到面积为3cm * 3cm = 9平方厘米。

而三角形DEN的面积可以通过计算DN与x轴之间的距离乘以DN的长度的一半来得到,即1cm * 4cm = 4平方厘米。

所以,四边形ABCD与三角形DEN的面积之比为9平方厘米:4平方厘米,约简为9:4。

试题二:如图,在三角形ABC中,AO是角A的平分线,BO是角B的平分线,角A、B分别为44°,33°。

已知BO的延长线与AC相交于点D。

则∠AOB = 〔〕°。

解析:首先,根据题目中的信息,我们可以推导出∠C = 180° - 44° - 33° = 180° - 77° = 103°。

由于AO是角A的平分线,所以∠BAO = ∠CAO = 22°。

同理,由于BO是角B的平分线,所以∠ABO = ∠BCO = 16.5°。

根据三角形内角和定理,∠B = 180° - ∠A - ∠C = 180° - 44° - 103°= 33°。

山西省近三年中考数学试题回顾与总结

山西省近三年中考数学试题回顾与总结

题号
3
8
解析:本题是基础题,考查直角三角形斜边上的中线等于 斜边的一半。难度系数:0.93
2008年
解直角三角形
题号
16
2009年
相似直角三角形 计算
题号
18
1 3
解析:本题是基础题,考查求随机事件的概率。 难度系数:0.97
2008年 题 号
用树状图或列表 22
法求概率
(1)
2009年
概率知识 计算
图形的运动变化观点
26 (3)
学生在答卷中存在的问题汇总
1.概念不清,基础不扎实
2.运算能力差,不理解算理
3.不重视审题与解后反思
4.解题过程不规范,逻辑推理不严密
5.思维能力差,方法不灵活
二、试题特点
1.考查基础知识、基本技能和数 学的核心内容
试题着重考查基本知识和基本技能,体 现了数学课程的基础性。
……
2008年


由已知点求一次函数解析 26
式(4分)
(1)
求三角形面积S与运动时间 26 t之间的函数关系式(4分) (2)
根据两动点变化情况确定 等腰三角形的个数(6分)
主要考查一次函数、相似 计算、三角形面积、等腰 三角形的性质等知识。同 时考查分类讨论思想、数 形结合思想、转化思想和 点的运动变化观点
26 (3)
2009年


通过求两直线交点坐标, 26 计算三角形面积(4分) (1)
利用点的坐标求矩形 26
的边长(3分)
(2)
通过矩形的运动变化 情况,计算重叠部分 的面积(7分)
主要考查一次函数、 相似计算、三角形面 积、梯形面积、平移 等知识。同时考查分 类讨论思想、数形结 合思想、转化思想和

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:概率统计

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:概率统计

2020年山西中考专题分析——2009-2019年山西省中考数学试题知识点分布及考查题型小结:概率统计一、选择题/填空题考查点1.调查方式的选择问题(1)考查次数:11年1考(2)考查题型:选择题(3)考查形式:针对具体实例选择适当的调查方式(4)考查难度:送分题1.(2016山西3题3分)以下问题不适合全面调查的是()A.调查某班学生每周课前预习的时间B.调查某中学在职教师的身体健康状况C.调查全国中小学生课外阅读情况D.调查某校篮球队员的身高考查点2.用样本估计总体问题(1)考查次数:11年1考(2)考查题型:填空题(3)考查难度:送分题2.(2009山西13题2分)李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨)结果如下:7,8,8,7,6,6,根据这些数据,估计四月份本单位用(1)考查次数:11年1考(2)考查题型:选择题(3)考查难度:送分题3.(2014山西7题3分)在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是()A.频率就是概率B.频率与试验次数无关C.概率是随机的,与频率无关D.随着试验次数的增加,频率一般会越来越接近概率考查点4.三类统计图的应用问题(1)考查次数:11年2考(2)考查题型:选择题/填空题(3)考查形式:①三类统计图的选择②对统计图表做分析获取信息(4)考查难度:送分题4.(2019山西12题3分)要表示一个家庭一年用于“教育”,“服装”,“食品”,“其他”这四项的支出各占家庭本年总支出的百分比,从“扇形统计图”,“条形统计图”,“折线统计图”中选择一种统计图,最适合的统计图是.5.(2013山西14题3分)四川雅安发生地震后,某校九(1)班学生开展献爱心活动,积极向灾区捐款.如图是该班同学捐款的条形统计图.写出一条你从图中所获得的信息:.(只要与统计图中所提供的信息相符即可得分)考查点5.四个特征数据的应用问题(1)考查次数:11年3考(2)考查题型:选择题/填空题/解答题(3)考查形式:①四个特征数据的选择(解决关键:掌握四个特征数据的适用范围)②四个特征数据的求法(考查特点:考查求表格中的特征数据)(4)考查难度:送分题6.(2017山西3题3分)在体育课上,甲、乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的()A.众数 B.平均数 C.中位数 D.方差7.(2013山西4题2分)某班实行每周量化考核制,学期末对考核成绩进行统计.结果甲、乙两组的平均成绩相同.方差分别是=36,=30,则两组成绩的稳定性()A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定8.(2013山西5题3分)近年来快递业发展迅速,下表是2018年1~3月份我省部分地市邮政快递业务量的统计结果(单位:万件):1~3月份我省这七个地市邮政快递业务量的中位数是()A.319.79万件B.332.68万件C.338.87万件D.416.01万件9.(2013山西7题2分)如表是我省11个地市5月份某日最高气温(℃)的统计结果:该日最高气温的众数和中位数分别是()A.27℃,28℃B.28℃,28℃C.27℃,27℃D.28℃,29℃考查点6.求概率问题(1)考查次数:11年3考(2)考查题型:选择题/填空题/解答题(3)考查形式:①摸球(卡片)问题②转转盘问题③几何概型问题④游戏(手心手背)中的求概率问题⑤用频率估计概率问题(4)考查难度:送分题10.(2018山西7题3分)在一个不透明的袋子里装有两个黄球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球.两次都摸到黄球的概率是()A.B.C.D.11.(2012山西6题2分)在一个不透明的袋子里装有一个黑球和一个白球,它们除颜色外都相同,随机从中摸出一个球,记下颜色后放回袋子中,充分摇匀后,再随机摸出一个球,两次都摸到黑球的概率是()A. B.C. D.12.(2010山西7题2分)在一个不透明的袋中,装有若干个除颜色不同外其余都相同的球,如果袋中有3个红球且摸到红球的概率为,那么袋中球的总个数为()A.15个 B.12个C.9个 D.3个13.(2015山西14题3分)现有两个不透明的盒子,其中一个装有标号分别为1,2的两张卡片,另一个装有标号分别为1,2,3的三张卡片,卡片除标号外其他均相同.若从两个盒子中各随机抽取一张卡片,则两张卡片标号恰好相同的概率是.14.(2010山西16题3分)哥哥与弟弟玩一个游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,将标有数字的一面朝下,哥哥从中任意抽取一张,记下数字后放回洗匀,然后弟弟从中任意抽取一张,计算抽得的两个数字之和,如果和为奇数,则弟弟胜;和为偶数,则哥哥胜,该游戏对双方(填“公平”或“不公平”).反思:摸球(卡片)问题注意:摸取方式①有放回摸去−−→−特点两次能够摸到同一个球(卡片)②无放回摸去−−→−特点两次不能摸到同一个球(卡片)注意:一次摸取两个球−−→←相当于每次摸一个球无放回的摸取了两次15.(2016山西14题3分)如图是一个能自由转动的正六边形转盘,这个转盘被三条分割线分成形状相同,面积相等的三部分,且分别标有“1”、“2”、“3”三个数字,指针的位置固定不动,让转盘自由转动两次,当每次转盘停止后,记录指针指向的数(当指针指向分割线时,视其指向分割线左边的区域),则两次指针指向的数都是奇数的概率为.16.(2010山西13题3分)随意地抛一粒豆子,恰好落在图中的方格中(每个方格除颜色外完全一样),那么这粒豆子停在黑色方格中的概率是.17.(2012山西8题2分)小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD 的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞镖落在阴影部分的概率是()A .B .C .D .18.(2015山西9题3分)某校举行春季运动会,需要在初一年级选取一名志愿者.初一(1)班、初一(2)班、初一(3)班各有2名同学报名参加.现从这6名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一(3)班同学的概率是()A .B .C .D .19.(2014山西14题3分)甲、乙、丙三位同学打乒乓球,想通过“手心手背”游戏来决定其中哪两个人先打,规则如下:三个人同时各用一只手随机出示手心或手背,若只有两个人手势相同(都是手心或都是手背),则这两人先打,若三人手势相同,则重新决定.那么通过一次“手心手背”游戏能决定甲打乒乓球的概率是.20.(2012山西15题3分)某市民政部门举行“即开式福利彩票”销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:如果花2元钱购买1张彩票,那么所得奖金不少于1000元的概率是.二、解答题1.考查次数:11年11考(必考)2.考查特点:(1)11年山西中考试题题量:(2)2009-2015山西中考概率统计问题考查特点:①结合生活实际进行考查,题量较小②统计概率分开考查(只考一个)(3)2016-2019山西中考概率统计问题考查特点:①结合贴近生活的实际问题进行考查,阅读量较大。

备战山西中考数学2020:山西数学2015-2019考情分析

备战山西中考数学2020:山西数学2015-2019考情分析

山西数学2015‐2019考情分析题中,主要考查方差的应用、特征量的计算、频率概率关系。

7.分式化简37.根据实际问题列分式方程37.分式化简37.概率求解:两个量37.科学记数法+运算38.数学常识:《九章算术》38.求抛物线平移后的表达式38.科学计数法(带单位):实际问题背景38.旋转+直角△+全等38.一元二次方程配方39.概率计算(一个变量)39.求弧长;切线的性质39.数学方法(证明方法):无理数的证明39.一元二次函数配方39.抛物线型问题:求解析式310.勾股定理及其逆定理;正切的概念310.新定义(黄金矩形的判断)310.求阴影部分的面积(扇形面积计算;矩形的性质与判定)310.求阴影部分面积:圆+正方形+扇形310.与圆有关的阴影面积计算311.解一元一次不等式组311.求格点坐标:点的坐标的确定311.根式运算311.应用平方差公式计算311.分式化简3填空题的试题结构有所调整,15年为6道题,16-19年均为5道题,分值均为每小题3分特殊题型:1.数学思想和数学文化考查频率较高.2.注重与实际结合考查,项目性学习理念逐步渗透;跨学科整合。

多道题以实际问题为背景。

解直角三角形的实际应用一般需建立实际模型求解。

3.几何问题考查较深,难度较大。

4.最后两道解答题:综合与实践;综合与探究12.找规律(图形变化类)312.结合反比例函数比较大小(反比例函数的增减性312.列代数式312.多边形外角和:给出图求角的和312.统计图的选择313.圆周角定理;圆内接多边形性质;弦与弧关系313.找规律(图形归纳问题)313.图形的平移、旋转;格点问题313.一次方程的实际应用313.二次函数的实际应用:面积问题314.概率计算(两个变量)314.求概率(两个元素)314.解直角三角形的实际应用314.尺规作图(角平分线)+直角△(含60°角)+求线段长314.反比例函数+菱形,求k 值315.勾股定理的应用;相似三角形的判定和性质315.求线段的长(勾股定理;相似的判定;平行线的性质等)315.求线段的长(中位线;三角函数;勾股定理等)315.直角△相似+直径所对的圆周角是直角315.旋转三角形,求长度316.折叠问题(求线段的长):全等、相似的判定与性质316.实数运算(幂,根式);分式化简求值1016.实数运算(幂、三角函数);分解因式1016.实数运算(幂+绝对值);分式化简1016.实数的运算+解方程组1017.实数混合运算:负整数指数幂;解分式方程1017.解一元二次方程717.证明线段相等(全等三角形的判定;平行四边形的性质)617.一次函数与反比例函数结合:求解析式+数形结合解不等式817.全等三角形的判定与性质7解答题总结下来有下面几个特点:1.第一道一般是实数运算+分式化简(解分式方程)或分解因式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

难度系数:0.58
2008年
确定反比例函数 解析式
题号
17
2009年Leabharlann 反比例函数中求 k的取值题号
12
不公平 解析:本题是基础题,主要考查根据随机事件的概率大小
判断游戏的公平性。难度系数:0.97
2008年
根据概率判断游 戏公平性
题号
22 (2)
2009年
计算抽奖概率
题号
22 (2)

解析:本题考查平移后弧长的计算、动手实践能力以及分析问题 和解决问题的能力。学生的主要错误为结果不精确,表示为3.14. 难度系数:0.43
2008年
根据勾股定理,由 圆锥侧面积求高
题号
18
2009年
与圆有关的直角 三角形相似计算
题号
16
解析:本题是基础题,考查了实数的运算,其中涉及根式运算, 负指数、零指数运算和特殊锐角的三角函数值。 难度系数:0.84
2008年
根式、负指数、 零指数运算
题号
7
2009年
整式乘法、 去括号运算
题号
19 (1)
3
8
解析:本题是基础题,考查直角三角形斜边上的中线等于 斜边的一半。难度系数:0.93
2008年
解直角三角形
题号
16
2009年
相似直角三角形 计算
题号
18
1 3
解析:本题是基础题,考查求随机事件的概率。 难度系数:0.97
2008年
用树状图或列表 法求概率
题号
22 (1)
2009年
概率知识 计算
4.加强对空间观念与几何事实证明,以 及合情推理与演绎推理能力的考查
合情推理—由特殊到一般的过程。 演绎推理—由一般到特殊的过程。
5.注重学习过程,如动手实践能 力和自主探究能力的考查


设置具有探究性的问题情境,引导学生观察、 实验、猜想、证明,考查学生的综合思维能力, 有利于引导教学注重自主探索、合作交流等学 习方式实施,促进教学方式的改革. 26题,在探索解法的过程中,要求学生能运用 分类讨论思想,将运动的图形转化成相对静止 情形去分析,体现了“动”与“静”可相互转 换的辨证唯物主义观点.
通过矩形的运动变化 情况,计算重叠部分 的面积(7分) 主要考查一次函数、 相似计算、三角形面 积、梯形面积、平移 等知识。同时考查分 类讨论思想、数形结 合思想、转化思想和 图形的运动变化观点
学生在答卷中存在的问题汇总
1.概念不清,基础不扎实
2.运算能力差,不理解算理
3.不重视审题与解后反思
当OD=DM=MN=NO=5时,四边形ODMN为菱形
当OD=DN=MN=MO=5时,四边形ODNM为菱形
当OM=DM=DN=NO时,四边形OMDN为菱形
难度系数:(1)0.74;(2)0.42;
(3)0.10
学生的主要问题是:1、综合能力差,尤其是第(3)题,不少 学生放着备用图不用,探索N点的存在,没有思路. 2、一部分学生在解答中分类不准,缺少第三种情况(即 以OD为菱形一对角线的情况); 3、用已有的字母标出新点,出现指代不明,导致错误;
2009年
通过求两直线交点坐标, 计算三角形面积(4分)
题 号
26 (1) 26 (2) 26 (3)
利用点的坐标求矩形 的边长(3分)
根据两动点变化情况确定 等腰三角形的个数(6分) 主要考查一次函数、相似 计算、三角形面积、等腰 三角形的性质等知识。同 26 时考查分类讨论思想、数 形结合思想、转化思想和 (3) 点的运动变化观点
4、证明过程和求解过程不够严谨和规范,落笔无据, 理由不充分;
5、在第(2)问求解析式时,点E坐标的求解过程正 确,但把E(2,4)写成E(4,2),导致后面解析式求错。 ……
2008年
由已知点求一次函数解析 式(4分) 求三角形面积S与运动时间 t之间的函数关系式(4分)
题 号
26 (1) 26 (2)
2008年
图形旋转求坐标
题号
8
2009年
位似图形求坐标
题号
7
60 13
解析:本题是一道小综合题,主要考查等腰三角形“三线合 一”,勾股定理和三角形的面积(或相似三角形,解直角三 角形),以及条件之间的相互转化能力。学生主要错误是应 用三角形面积公式时没有除以2,导致出错;部分学生结果表 示不精确,表示为4.62. 难度系数:0.19
2008年
科学记数法
题号
2
2009年
科学记数法
题号
2
B
解析:本题是基础题,考查了整式的运算,检查整式的运算法则 的掌握情况。学生错选D的较多,原因是整式运算法则混淆。 难度系数:0.85
2008年
整式运算
题号
3
2009年
整式运算
题号
11
D
解析:本题在考查图形变换的同时考查了锐角三角函数,学生的 错误主要是选择A或C。难度系数:0.86
题号
22 (1)
X=5
解析:本题是基础题,考查求可化为一元一次方程的分式 方程的解,体现了转化思想。 难度系数:0.77
2008年
解一元二次方程
题号
11
2009年
题号
解一元二次方程 19(3)
y
4 x
解析:本题是一道中等题,主要考查根据已知条件确定反比例函 数的表达式,学生解题的主要问题是思维不灵活,如果图中出现 的是直角三角形,学生可能会做,变式为斜三角形就不会了。
2008年
题号
2009年
构建一次函数和 二次函数模型解 答最大利润问题
题号
24
分式方程应用题, 通过计算解决盈 24 利问题
解析:本题考查学生的空间观念,考查平 面内对两条直线位置关系的猜想与证明; 正方形的性质;三角形全等的判定和性质; 图形的变换(旋转);图形变换后不变性 质的探究与证明。本题解法具有多样性, 许多考生证明方法独特,奇巧,呈现学生 思维的多样性。 难度系数:(1)0.35 ;(2)0.36
难度系数:(1)0.71 ;(2)0.42
2008年 题号 2009年
解直角三角形, 梯形计算
题号
23
直径所对的圆周 角,切线的判定, 23 等腰三角形的性 质
解析:本题考查求二次函数与坐标轴的交 点坐标和抛物线的顶点坐标;用描点法画 二次函数的图象;根据二次函数图象的性 质,由抛物线解析式的变换,确定抛物线 的平移过程;根据图形与坐标求格点四边 形的面积,是一道典型的数形结合的试题。
用树状图或列表 法求概率
题号
22 (1)
2009年
概率知识 计算
题号
22 (1)
A
解析:本题是基础题,考查了判断简单物体的三视图。 难度系数:0.94
2008年
判断主视图
题号
13
2009年
由三视图求正方 体个数
题号
15
C
解析:本题是中等题,主要考查运用三角形三边关系定理判 断三条线段是否构成三角形。难度系数:0.73
2008年
题号
2009年
等腰三角形旋转变 换,全等三角形证 明线段相等
题号
25(1) 25(2) 25(3)
等边三角形、三角形 25(1) 全等证明 平行四边形的判定 25(2)
菱形的判定 利用三角函数求 线段长度
梯形判定,面积计算 25(3)
解析:本题是综合性大题,考查的内容有四边 形(梯形、矩形、菱形);三角形相似;图形 与坐标;确定一次函数解析式;勾股定理等知 识,还考查了分类思想、函数思想、方程思想、 数形结合思想,运动变化观点和待定系数法。 其中第(1)(2)问属于基础题,第(3)问关 键在于审清题意,准确分类,首先分清定点是 O、D,不确定的点是点M和点N,其中点M 是 (2)中直线DE上的一个动点,点N在x轴上方 的平面内; 其次要明确使以O、D、M、N为顶 点的四边形是菱形,结合菱形的判定,可能出 现不同的情况;最后通过探索分析可以分为以 下三种情况。
3.联系社会生活实际,考查 解决实际问题的能力



有8道应用题(第3、7、9、13、16、20、21、 24题),5小 3大,分值36分,约占30%。 第20题,以山西民间建筑艺术为题材,引导 学生用数学眼光了解生活; 第21、24题以现实生活为背景,旨在让学生 领悟数学来源于现实生活,又应用于社会实践 的真谛.
山西省近三年中考数学试题 回顾与总结
曹川中学 赵李红
一、山西省2010年初中毕业生学业考试 数学试卷分析 二、2010年中考试卷试题特点
三、对今后教学的建议
一、山西省2010年初中毕业生学
业考试数学试卷分析及近三年中 考试题比较
B 解析:本题是基础题,考查了实数(负数)的绝对值。 难度系数:0.94
解析:本题考查分式的运算和求代数式的值,其中 涉及到利用分式的基本性质通分和约分,分式的四 则运算以及因式分解。学生的错误表现在把分式化 简与解分式方程混淆,不少学生第一步就去分母, 出现了去分母和检验的步骤。
难度系数:0.75
2008年
分式化简求值
题号
19
2009年
分式化简
题号
19(2)
解析:本题考查图形的变换,尺规作图。题目以我 省民间建筑的门窗图案为背景,设计开放性作图, 亲切自然,不仅灵活地考查了对称的有关知识,而 且较好地考查了学生创造性思维能力。学生的主要 错误是:1、不用尺规,徒手画图;2、只用线段或 只用圆弧设计图案;3、为了美观,设计图案复杂, 出现不对称,反映了学生审题不清,不细,不全面。 难度系数:(1)0.60;(2)0.95 2008年
学生出现的主要问题:审题不清,不少学生没看清问题,“试 猜想AE与GC有怎样的位置关系,并证明你的结论”,只把 AE,GC当成线段,把位置关系答成相等(数量关系),导致答 非所问,徒劳无功;还有许多学生证明推理的严密性,以及书 写的规范性欠缺,有的甚至在第(2)问中C、G字母不分,造 成证明过程混乱。
相关文档
最新文档