时间序列分析基础及模型
时间序列分析与ARIMA模型建模研究
时间序列分析与ARIMA模型建模研究第一章:引言时间序列是统计学中一个重要的研究对象,具有广泛的应用。
时间序列分析是利用已有的时间序列数据,探索其内在规律,以便在未来进行预测和决策。
ARIMA模型(自回归滑动平均模型)是时间序列分析的常用方法之一,可用于揭示时间序列的内在模式和规律。
第二章:时间序列分析基础时间序列是一列按时间顺序排列的数据,通常包括趋势、季节性、循环性和随机误差等多个成分。
时间序列分析可分为描述和推断两个层面。
描述时间序列通常采用图形和统计指标等方法,例如折线图、箱线图、ACF(自相关函数)和PACF(偏自相关函数)等。
推断时间序列通常采用平稳性检验、白噪声检验、建模和预测等方法。
第三章:ARIMA模型原理ARIMA模型包括自回归(AR)模型、滑动平均(MA)模型和差分(I)模型。
自回归模型是指基于已知的过去值,预测未来值的线性回归模型。
滑动平均模型是指基于过去预测未来的移动平均模型。
差分模型是指基于对时间序列进行差分,使其变为平稳序列的过程。
ARIMA模型的关键步骤包括选型、建模、估计、诊断和预测等。
第四章:ARIMA模型建模研究ARIMA模型的建模研究包括选型和建模两个过程。
选型是指根据ACF和PACF的结果,确定ARIMA模型的阶数。
建模是指根据选型的结果,确定ARIMA模型的参数,利用样本数据进行模型估计和诊断,最终得到可行的模型。
ARIMA模型的建模中还需考虑季节性和异常值等问题。
建模中过程需符合ARIMA模型的前提条件,如平稳性和白噪声。
第五章:ARIMA模型预测ARIMA模型预测是指基于历史时间序列,预测未来的时间序列值。
预测方法主要包括单步预测和多步预测两种。
单步预测是指根据已有数据预测下一个时间点的值;多步预测是指根据已有数据预测未来多个时间点的值。
ARIMA模型的预测方法可采用点预测和置信区间预测两种。
置信区间预测有助于了解预测误差范围和不确定性程度。
第六章:实例分析本章以某地2014-2020年每月空气质量指数为例,对时间序列分析和ARIMA建模进行实际分析。
计量经济学试题时间序列模型与ARIMA模型
计量经济学试题时间序列模型与ARIMA模型时间序列是指按照时间顺序排列的一组数据。
在计量经济学中,时间序列分析是一种重要的研究方法,它可以帮助我们理解和预测经济现象的发展趋势。
本文将介绍时间序列模型以及其中的一种常用模型——自回归滑动平均移动平均自回归(ARIMA)模型。
一、时间序列模型的基本概念时间序列模型是根据时间序列数据的特点建立的数学模型。
它假设时间序列的变动是由多个因素引起的,这些因素可以是趋势、季节性、周期性等。
时间序列模型可以帮助我们从数据中分离出这些因素,以便更好地理解和预测未来的变动。
二、自回归滑动平均移动平均自回归(ARIMA)模型ARIMA模型是一种广泛应用于时间序列分析的模型,它结合了自回归(AR)模型、滑动平均(MA)模型和差分运算的方法。
ARIMA模型可以描述时间序列的自相关性、滞后差分的影响以及移动平均误差的影响。
ARIMA模型可以从以下三个方面描述一个时间序列:1. 自回归(AR)部分:用于描述过去时间点的观测值对当前值的影响,通过延迟观测值来预测当前值。
2. 差分(I)部分:通过对时间序列进行差分运算,可以消除其非平稳性,提高模型的拟合度和预测准确性。
3. 滑动平均(MA)部分:用于描述序列中随机波动的影响,通过滞后误差预测当前值。
ARIMA模型的表示方式为ARIMA(p, d, q),其中p表示自回归阶数,d表示差分阶数,q表示滑动平均阶数。
通过对历史数据的拟合,我们可以得到模型的参数估计,从而进行未来值的预测。
三、ARIMA模型的应用ARIMA模型在经济领域有广泛的应用,其中包括销售预测、股票价格预测、宏观经济指标预测等。
它通过分析历史数据中的规律性和趋势性,将其应用于未来的预测中。
ARIMA模型的建立和应用过程可以分为以下几个步骤:1. 数据收集和准备:收集相关的时间序列数据,并对其进行清洗和格式化,以便于后续的分析和建模。
2. 模型选择和拟合:通过计算模型选择准则(AIC、BIC等)来确定模型的阶数,并使用最小二乘法或极大似然法对模型进行参数估计。
ARMA模型
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0
时间序列分析
第九章 时间序列分析第三节 趋势变动分析一、时间序列构成要素与模型时间序列的形成是各种不同的因素对事物的发展变化共同起作用的结果。
这些因素概括起来可以归纳为四类:长期趋势因素、季节变动因素、循环变动因素和不规则变动因素。
由此造成客观事物的变动呈现出四种不同的状态:第一,长期趋势变动。
长期趋势因素是在事物的发展过程中起着主要的、决定性作用的因素,这类因素使得事物的发展水平长期沿着一定的方向发展,使事物的变化呈现出某种长期的变化趋势。
例如,中国改革开放以来,经济是持续增长的,表现为国内生产总值逐年增长的态势。
第二,季节变动。
季节变动或称季节波动,是指某些现象由于受自然条件和经济条件的变动影响,而形成在一年中随季节变动而发生的有规律的变动。
如羽绒服装的销售量由于季节的影响而呈现出淡、旺交替变化的周期性变动;某些农产品加工企业,由于受原材料生长季节的影响,其生产也出现周期性变动等等。
第三,循环变动。
循环变动是指一年以上的周期性变化,其波动是从低到高再从高到低的周而复始的一种有规律的变动。
循环波动不同于趋势变动,它不是沿着单一的方向持续运动,而是升降相间、涨落交替的变动;它也不同于季节变动,季节变动有比较固定的规律,且变动周期长度在一年以内,而循环变动则无固定规律,变动周期多在一年以上,且周期长短不一。
第四,不规则变动。
不规则变动也有人称之为随机漂移,属于序列中无法确切解释、往往也无须解释的那些剩余波动。
引起事物发生不规则变动的因素多是一些偶然因素,由于它们的影响使事物的发展变化呈现出无规律的、不规则的状态。
时间序列构成分析就是要观察现象在一个相当长的时期内,由于各个影响因素的影响,使事物发展变化中出现的长期趋势、季节变动、循环变动和不规则变动。
形成时间序列变动的四类构成因素,按照它们的影响方式不同,可以设定为不同的组合模型。
其中,最常用的有乘法模型和加法模型。
乘法模型:Y = T·S·C·I (9-20)加法模型:Y = T+S+C+I (9-21)式中:Y:时间序列的指标数值T:长期趋势成分S:季节变动成分C:循环变动成分I:不规则变动成分乘法模型是假定四个因素对现象的发展的影响是相互作用的,以长期趋势成分的绝对量为基础,其余量均以比率表示。
时间序列分析中的ARIMA模型
时间序列分析中的ARIMA模型时间序列分析是一种对时间序列数据进行分析和预测的模型,在现代经济学、金融学、气象学、物理学、工业生产等领域中有着广泛的应用。
ARIMA模型是时间序列分析中最为基础和经典的模型之一,其对于时间序列的平稳性、趋势性及季节性进行分解后,通过自相关函数和偏自相关函数的分析,得出模型的阶数和参数,进而进行模拟、预测和检验等步骤。
一、时间序列分析简介时间序列通常是指在某个时间段内,观测某种现象的数值,如个人月收入、经济指标、气温等。
时间序列的基本特点有趋势性、季节性、周期性、自相关和非平稳性等。
时间序列分析的目的就是对序列进行建模,找出序列中的规律性和非规律性,并对序列进行预测。
时间序列建模的基础是对序列的平稳性进行分析,若序列在时间上呈现平稳性,则可以使用分析预测方法来建模;反之,若序列不满足平稳性的要求,则需要进行差分处理,将其转换为平稳时间序列,再进行建模。
二、ARIMA模型的概述ARIMA模型是自回归移动平均模型的简称,该模型由自回归模型(AR)和移动平均模型(MA)组成,是时间序列分析中最为经典的模型之一。
ARIMA模型是一种线性模型,对于简单的时间序列分析具有良好的解释性,同时模型的表现能力也比较强。
ARIMA模型对于时间序列的建模和预测主要涉及三个方面:趋势项(Trend)、季节项(Seasonal)和误差项(Error)。
趋势项指的是时间序列中的长期趋势,在某一个方向上呈现出来的变化;季节项指的是时间序列中呈现出来的周期性变化;误差项指的是时间序列的随机波动。
ARIMA模型通常用一个(p, d, q)的表示方式描述,其中,p是自回归项数,d是差分次数,q是滑动平均项数。
P 和q 分别定义了线性拟合时窗口函数的大小,模型的复杂度取决于 p,d 和 q 的选择。
ARIMA模型主要分为“定常”和“非定常”模型两大类。
在建模中,首先需要检验时间序列的平稳性,若时间序列不符合平稳性的要求,则需要进行差分操作,将其转化为平稳的时间序列。
时间序列公式指数平滑法ARIMA模型
时间序列公式指数平滑法ARIMA模型时间序列分析是指对一系列按时间顺序排列的数据进行统计分析和预测的方法。
其中,指数平滑法和ARIMA模型是时间序列分析中应用广泛的两种方法。
本文将介绍这两种方法的原理、应用及其比较。
一、指数平滑法指数平滑法是一种简单且有效的时间序列预测方法,适用于数据变动较为平稳的序列。
其基本原理是通过对历史数据进行加权平均,得到未来一段时间的预测值。
1. 简单指数平滑法简单指数平滑法是最基本的指数平滑法。
其公式如下:St = αYt + (1-α)St-1其中,St为预测值,Yt为实际观测值,St-1为前一个周期的预测值,α是平滑系数,取值范围为0到1。
2. 加权指数平滑法加权指数平滑法在简单指数平滑法的基础上,对不同时期的数据进行加权,以减小较早期数据的权重。
其公式如下:St = αYt + (1-α)(α^(t-1))Yt-1 + (1-α)(α^(t-2))Yt-2 + ...其中,α为平滑系数,t为时间周期。
3. 双重指数平滑法双重指数平滑法适用于具有趋势的时间序列数据。
其基本思想是通过指数平滑法预测趋势的影响,进而得到未来的预测值。
二、ARIMA模型ARIMA模型是一种基于时间序列预测的自回归(AR)和滑动平均(MA)模型。
ARIMA模型是一种更为复杂和全面的方法,可以应对更多类型的时间序列数据。
ARIMA模型包括三个参数:AR(p)、I(d)和MA(q),分别表示自回归项、差分项和滑动平均项。
ARIMA模型的一般形式如下:ARIMA(p,d,q):Yt = c + ϕ1Yt-1 + ϕ2Yt-2 + ... + ϕpYt-p + θ1et-1 +θ2et-2 + ... + θqet-q + et其中,Yt为观测值,c为常数,ϕ为自回归系数,θ为滑动平均系数,et为白噪声误差项。
ARIMA模型的建立包括模型识别、估计参数、检验和预测四个步骤。
在实际应用中,还可以通过模型诊断来进一步改进和优化ARIMA模型。
时间序列分析与ARIMA模型
时间序列分析与ARIMA模型时间序列分析是一种研究时间上连续测量所构成的数据的方法。
它可以用来分析数据中的趋势、周期性和随机性,并预测未来的走势。
ARIMA(自回归滑动平均模型)是时间序列分析中常用的模型之一。
本文将介绍时间序列分析的基本概念以及ARIMA模型的原理和应用。
一、时间序列分析的基本概念时间序列是按照时间顺序排列的一组连续观测数据。
在时间序列分析中,我们常常关注序列中的趋势(trend)、季节性(seasonality)和周期性(cycle)等特征。
趋势是指长期上升或下降的走势;季节性是指数据在相同周期内波动的规律性;周期性是指超过一年的时间内出现的规律性波动。
二、ARIMA模型的原理ARIMA模型是由自回归(AR)和滑动平均(MA)模型组成的。
AR模型用过去的观测值来预测未来的值,滑动平均模型则用过去的噪声来预测未来的值。
ARIMA模型是将这两种模型结合起来,对时间序列进行建模和预测。
ARIMA模型包括三个主要部分:自回归阶数(p)、差分阶数(d)和滑动平均阶数(q)。
p表示模型中的自回归项数目,d表示需要进行的差分次数,q表示模型中的滑动平均项数目。
通过对时间序列的观测值进行差分,ARIMA模型可以将非平稳的序列转化为平稳的序列。
然后,可以通过对平稳序列的自回归和滑动平均建模,预测未来的值。
三、ARIMA模型的应用ARIMA模型在实际应用中被广泛使用。
它可以用于经济学、金融学、气象学等领域中的时间序列预测和分析。
以股票市场为例,投资者可以利用ARIMA模型对历史股价进行分析,预测未来股价的走势。
在气象学中,ARIMA模型可以用于预测未来的天气情况。
除了ARIMA模型,时间序列分析还包括其他模型,如季节性分解、移动平均、指数平滑等。
这些模型都有各自的优点和应用领域。
在实际应用中,根据不同的数据特点和研究目的,选择合适的模型进行分析和预测是十分重要的。
总结时间序列分析和ARIMA模型是研究时间数据的重要方法。
时间序列分析模型
时间序列分析模型时间序列分析是一种广泛应用于统计学和经济学领域的建模方法,用于研究随时间变化的数据。
它的目的是揭示和预测数据中隐含的模式和关系,以便更好地理解和解释现象,并做出相应的决策。
时间序列分析模型可以分为统计模型和机器学习模型两类。
一、统计模型1.平稳时间序列模型:平稳时间序列是指在统计学意义上均值和方差都是稳定的序列。
常用的平稳时间序列模型包括:自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)和季节性自回归整合移动平均模型(SARIMA)等。
-自回归移动平均模型(ARMA)是根据时间序列数据的自相关和移动平均性质建立的模型。
它将序列的当前值作为过去值的线性组合来预测未来值。
ARMA(p,q)模型中,p表示自回归项的阶数,q表示移动平均项的阶数。
-自回归整合移动平均模型(ARIMA)在ARMA模型基础上引入差分操作,用于处理非平稳时间序列。
ARIMA(p,d,q)模型中,d表示差分的次数。
-季节性自回归整合移动平均模型(SARIMA)是ARIMA模型的扩展,在存在季节性变化的时间序列数据中应用。
SARIMA(p,d,q)(P,D,Q)s模型中,s表示季节周期。
2.非平稳时间序列模型:非平稳时间序列是指均值和/或方差随时间变化的序列。
常用的非平稳时间序列模型包括:趋势模型、季节性调整模型、自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)等。
- 趋势模型用于描述数据中的趋势变化,例如线性趋势模型(y = ax + b)和指数趋势模型(y = ab^x)等。
-季节性调整模型用于调整季节性变化对数据的影响,常见的方法有季节指数调整和X-12-ARIMA方法。
-自回归积分滑动平均模型(ARIMA)和季节性自回归积分滑动平均模型(SARIMA)在非平稳时间序列中引入差分操作进行模型建立。
二、机器学习模型机器学习模型在时间序列分析中发挥了重要作用,主要应用于非线性和高维数据的建模和预测。
时间序列分析与预测模型
时间序列分析与预测模型时间序列分析是指对按时间顺序排列的观测数据进行分析的一种方法。
该方法可以帮助我们理解和解释数据的时间相关性,并且可以利用这种相关性进行预测。
时间序列分析在很多领域都有广泛的应用,如经济学、金融学、天气预测等。
1.数据收集:收集包含时间顺序的数据。
这些数据可以是连续的,如每天、每月或每年的数据,也可以是离散的,如每小时或每分钟的数据。
2.数据可视化:绘制时间序列图,将收集到的数据可视化。
通过观察时间序列图,我们可以发现数据的趋势、周期性和季节性。
3.数据平稳性检验:对时间序列数据进行平稳性检验。
平稳性是指数据的均值、方差和自协方差不随时间变化。
平稳性是许多时间序列模型的前提条件。
4.模型拟合:根据时间序列数据的特点选择合适的模型。
常见的时间序列模型包括自回归移动平均模型(ARMA)、自回归集成移动平均模型(ARIMA)和季节性自回归集成移动平均模型(SARIMA)等。
5.模型诊断:对拟合的模型进行诊断检验。
诊断检验可以判断模型是否良好地拟合了数据,并确定是否需要进行模型调整。
6.模型预测:利用已经拟合好的模型进行未来值的预测。
预测可以是单点预测,也可以是预测一段时间内的趋势。
时间序列分析的预测模型可以帮助我们预测未来的趋势,并且可以在实际决策中指导我们采取相应的行动。
例如,我们可以利用时间序列分析预测未来销售量,从而帮助我们制定合适的生产计划和库存策略。
在金融领域,时间序列分析可以帮助我们预测股价的涨跌,从而指导我们的投资决策。
总之,时间序列分析是一种重要的数据分析方法,它可以帮助我们理解和预测按时间顺序排列的数据。
在实际应用中,我们可以根据时间序列数据的特点选择合适的模型,并进行模型拟合和预测。
通过时间序列分析,我们可以获得有关未来趋势的信息,从而在实际决策中作出更准确的预测。
时间序列分析中常用的模型
时间序列分析中常用的模型时间序列分析是一种重要的数据分析方法,用于研究随时间变化的数据。
在实际应用中,常常需要使用合适的模型来描述和预测时间序列数据。
本文将介绍时间序列分析中常用的几种模型,并对其原理和应用进行详细的讨论。
一、移动平均模型(MA模型)移动平均模型是时间序列分析中最简单的模型之一。
它基于时间序列在不同时刻的观测值之间存在一定的相关性,并假设当前的观测值是过去一段时间内的观测值的线性组合。
移动平均模型一般用“MA(q)”表示,其中q表示移动平均阶数,即过去q个观测值的影响。
二、自回归模型(AR模型)自回归模型是另一种常用的时间序列模型。
它假设当前的观测值与过去一段时间内的观测值之间存在线性关系,并通过自相关函数来描述观测值之间的相关性。
自回归模型一般用“AR(p)”表示,其中p表示自回归阶数,即过去p个观测值的影响。
三、自回归移动平均模型(ARMA模型)自回归移动平均模型是将移动平均模型和自回归模型相结合得到的一种模型。
它通过同时考虑观测值的移动平均部分和自回归部分来描述时间序列的相关性。
四、季节性模型在一些具有周期性波动的时间序列数据中,常常需要使用季节性模型进行分析。
季节性模型一般是在上述模型的基础上加入季节因素,以更准确地描述和预测数据的季节性变化。
五、自回归积分移动平均模型(ARIMA模型)自回归积分移动平均模型是时间序列分析中最常用的模型之一。
它通过引入差分运算来处理非平稳时间序列,并结合自回归模型和移动平均模型来描述残差项之间的相关性。
六、指数平滑模型指数平滑模型是一种常用的时间序列预测方法。
它假设未来的观测值与过去的观测值之间存在指数级的衰减关系,并通过平滑系数来反映不同观测值之间的权重。
七、ARCH模型和GARCH模型ARCH模型和GARCH模型是用于处理时间序列波动性的模型。
它们基于过去的方差序列来描述未来的波动性,并用于金融市场等领域的风险管理和波动率预测。
总结来说,时间序列分析中常用的模型包括移动平均模型、自回归模型、自回归移动平均模型、季节性模型、自回归积分移动平均模型、指数平滑模型、ARCH模型和GARCH模型等。
时间序列分析法
时间序列分析法时间序列分析是一种广泛应用于统计学和经济学领域的方法,它专门用于处理具有时间依赖性的数据。
时间序列数据是按时间顺序排列的一组观测值,例如股票价格、气温变化、经济指标等。
时间序列分析的目标是从历史数据中提取模式、趋势和周期以及预测未来的数据走势。
时间序列分析包括了多种方法和技术,下面将介绍其中几种常用的方法:1. 均值模型均值模型是最简单的时间序列模型之一,它假设时间序列的未来值将等于过去几期的平均值。
均值模型最常用的是移动平均模型(MA)和指数平滑模型(ES)。
移动平均模型根据过去几期的观测值对未来值进行预测,而指数平滑模型则给予较大权重给近期的观测值。
2. 趋势分析趋势分析用于识别时间序列中的长期趋势。
常用的趋势分析方法包括线性趋势分析、多项式回归分析以及指数平滑趋势分析。
这些方法主要是通过拟合一个数学模型来描述时间序列的趋势,然后根据模型对未来走势进行预测。
3. 季节性分析季节性分析用于识别和预测时间序列中的季节性模式。
常用的季节性分析方法包括季节性平均法、回归分析以及季节性指数平滑法。
这些方法可以通过拟合一个季节性模型来描述时间序列的季节性变动,并进行未来的预测。
4. 自回归移动平均模型(ARMA)ARMA模型是一种将自回归模型(AR)和移动平均模型(MA)结合起来的时间序列模型。
AR模型通过过去的观测值对未来值进行预测,而MA模型则根据过去的误差对未来值进行预测。
ARMA模型可以通过估计AR和MA参数来对时间序列进行预测。
5. 自回归积分移动平均模型(ARIMA)ARIMA模型是一种将自回归模型(AR)和移动平均模型(MA)与差分运算结合起来的时间序列模型。
ARIMA模型可以通过求解差分参数来对非平稳时间序列进行预测。
差分运算可以减少时间序列的趋势和季节性,使其更具平稳性。
以上是常用的时间序列分析方法,每种方法都有其适用性和局限性。
在实际应用中,根据具体情况选择合适的方法进行分析和预测。
时间序列分析模型
时间序列分析模型时间序列分析模型是一种通过对时间序列数据进行建模和分析的方法,旨在揭示数据中的趋势、季节性、周期和不规则波动等特征,并进行预测和决策。
时间序列分析模型在经济、金融、市场、气象、医学等领域都有广泛的应用。
本文将介绍几种常见的时间序列分析模型。
1. 移动平均模型(MA)移动平均模型是时间序列分析中最简单的模型之一。
它基于一个基本假设,即观察到的时间序列数据是对随机误差的线性组合。
该模型表示为:y_t = c + e_t + θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,θ₁,θ₂,…,θ_q 是移动平均项的参数,q 是移动平均项的阶数。
2. 自回归模型(AR)自回归模型是基于一个基本假设,即观察到的时间序列数据是过去若干时间点的线性组合。
自回归模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,p 是自回归项的阶数。
3. 自回归移动平均模型(ARMA)自回归移动平均模型将自回归模型和移动平均模型结合在一起,用于处理同时具有自相关和移动平均性质的时间序列数据。
自回归移动平均模型表示为:y_t = c + ϕ₁y_(t-1) + ϕ₂y_(t-2) + … + ϕ_p y_(t-p) + e_t +θ₁e_(t-1) + θ₂e_(t-2) + … + θ_qe_(t-q)其中,y_t 是观察到的数据,c 是常数,e_t 是随机误差,ϕ₁,ϕ₂,…,ϕ_p 是自回归项的参数,θ₁,θ₂,…,θ_q 是移动平均项的参数,p 是自回归项的阶数,q 是移动平均项的阶数。
4. 季节性自回归移动平均模型(SARIMA)季节性自回归移动平均模型是自回归移动平均模型的扩展,用于处理具有季节性和趋势变化的时间序列数据。
学习使用Excel进行时间序列分析和预测建模
学习使用Excel进行时间序列分析和预测建模时间序列分析和预测建模是一项重要的统计分析技术,在各个领域都得到了广泛应用。
本文将详细介绍如何使用Excel进行时间序列分析和预测建模。
第一章:时间序列分析基础时间序列是一系列按照时间顺序排列的数据点组成的序列。
时间序列分析的目标是找出数据中隐含的各种模式和趋势,并借此进行预测。
在Excel中,我们可以使用以下几种方法进行时间序列分析。
1.1 绘制时间序列图首先,我们需要将时间序列数据导入Excel,并将其按照时间顺序排列。
然后,选中数据并在插入菜单中选择“散点图”或“折线图”来绘制时间序列图。
通过观察时间序列图,我们可以初步了解数据的趋势和季节性变化。
1.2 计算平均值和标准差平均值和标准差是时间序列分析中常用的描述性统计量,可帮助我们了解数据的集中趋势和变异程度。
在Excel中,可以使用“AVERAGE”函数和“STDEV”函数来计算平均值和标准差。
第二章:时间序列分析方法在时间序列分析中,我们通常使用移动平均法和指数平滑法来找出数据中的趋势和季节性变化。
2.1 移动平均法移动平均法是一种简单的平滑方法,可以帮助我们过滤掉数据中的随机波动,突出数据的趋势。
在Excel中,可以使用“AVERAGE”函数和“OFFSET”函数来计算移动平均值,并将其绘制在时间序列图上。
2.2 指数平滑法指数平滑法通过对过去观察到的数据进行加权平均来预测未来的趋势。
在Excel中,可以使用“EXPONENTIAL”函数进行指数平滑,并将平滑后的趋势线与原始数据绘制在时间序列图上。
第三章:时间序列预测建模时间序列预测建模是基于历史数据来预测未来的趋势和模式。
在Excel中,我们可以使用线性回归模型和ARIMA模型进行时间序列预测建模。
3.1 线性回归模型线性回归模型通过拟合历史数据的线性趋势来进行未来的预测。
在Excel中,我们可以使用“TREND”函数来计算线性趋势,并将其绘制在时间序列图上。
时间序列分析教学大纲
时间序列分析教学大纲1. 简介- 时间序列分析的定义和背景- 时间序列分析的应用领域和重要性2. 基础概念- 时间序列的定义和特征- 平稳性和非平稳性时间序列的区别- 自相关和偏自相关函数的概念- 白噪声序列和随机游走的特征3. 时间序列模型- 移动平均模型(MA)- MA(q)模型的定义和特征- MA(q)模型的参数估计方法- 自回归模型(AR)- AR(p)模型的定义和特征- AR(p)模型的参数估计方法- 自回归移动平均模型(ARMA)- ARMA(p,q)模型的定义和特征- ARMA(p,q)模型的参数估计方法- 季节性时间序列模型- 季节性时间序列的特点和检验方法- 季节性ARIMA模型的应用4. 时间序列分析的应用- 预测和预测准确性评估- 均方误差(MSE)和平均绝对误差(MAE)的计算方法 - 预测误差的可视化及分析- 时间序列的平滑方法- 移动平均方法和指数平滑方法- 平均平滑和趋势平滑的原理和应用- 时间序列的季节性分解- 季节性分解模型的定义和原理- 季节性指数和季节性调整方法- 时间序列的异常检测- 异常值和离群点的定义和检测方法- 异常检测在时间序列分析中的应用5. 实践案例分析- 利用时间序列分析方法进行股票价格预测- 利用时间序列分析方法进行销售量预测- 利用时间序列分析方法进行气象数据分析6. 总结与展望- 时间序列分析的应用前景- 学习时间序列分析的重点和方法- 引导学生进行实际数据的应用与分析通过以上教学大纲的详细学习,学生将能够全面了解时间序列分析的基本理论和方法,能够应用时间序列模型进行数据预测和分析。
同时,通过实践案例的学习,学生将能够将时间序列分析方法应用于实际问题,提高数据分析和预测的能力。
希望本课程能够为学生提供一个系统、全面的时间序列分析学习平台,使他们在未来的研究和工作中能够灵活运用时间序列分析方法,做出准确可靠的数据分析和预测。
时间序列分析模型
时间序列分析模型时间序列分析是一种用来处理时间变化数据的统计分析方法。
它将观测数据按照时间顺序进行排列,并利用过去的数据来预测未来的发展趋势。
在时间序列分析中,通常会使用一些常见的模型,如自回归(AR)、移动平均(MA)和自回归移动平均(ARMA)模型。
自回归模型(AR)是时间序列分析中最基本的模型之一。
它假设未来的观测值可以通过当前和过去的观测值来预测。
AR 模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,ε_t表示误差项。
通过对AR模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。
移动平均模型(MA)是另一种常见的时间序列分析模型。
它假设未来的观测值可以通过当前和过去的误差项来预测。
MA 模型的数学表达式为:Y_t = μ + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,μ表示均值,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。
通过对MA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。
自回归移动平均模型(ARMA)是将AR模型和MA模型结合起来的一种复合模型。
它假设未来的观测值可以通过当前观测值、滞后观测值和误差项来预测。
ARMA模型的数学表达式为:Y_t = c + ∑(φ_i * Y_t-i) + ∑(θ_i * ε_t-i) + ε_t其中,Y_t表示第t个观测值,c表示常数,φ_i表示第i个滞后的自回归系数,θ_i表示第i个滞后的移动平均系数,ε_t表示误差项。
通过对ARMA模型进行参数估计,可以得到最优的系数估计值,从而进行未来观测值的预测。
总之,时间序列分析模型是一种通过利用过去数据来预测未来数据的统计分析方法。
其中,自回归模型、移动平均模型和自回归移动平均模型是一些常见的时间序列分析模型。
通过对这些模型进行参数估计,可以得到最优的预测结果。
时间序列分析
时间序列分析时间序列分析是一种用来研究时间相关数据的统计方法。
它可以帮助我们了解时间序列的趋势、周期性和季节性,以及预测未来的发展趋势。
在此,我将介绍时间序列分析的基本原理、常用模型和实际应用。
时间序列分析的基本原理可以总结为以下几个步骤:收集时间序列数据、检验序列的平稳性、拟合适当的模型、进行模型诊断、进行预测和模型评估。
首先,收集时间序列数据是进行时间序列分析的前提。
时间序列数据是按照时间顺序排列的一组观测值,例如经济指标、股票价格或气温记录等。
接下来,我们需要检验时间序列的平稳性。
平稳性是指时间序列在统计特征上不随时间变化而变化的性质。
平稳时间序列的均值和方差是恒定的,并且自相关系数不随时间而变化。
然后,我们可以选择适当的时间序列模型来拟合数据。
常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)和季节性自回归积分移动平均模型(SARIMA)等。
在拟合模型之后,我们需要进行模型诊断来检验模型的拟合优度。
模型诊断的目标是检查模型的残差是否符合模型假设。
常用的诊断方法包括检查残差的自相关性、偏自相关性和正态性等。
最后,我们可以利用拟合好的模型进行预测。
预测是时间序列分析中最常用的应用之一,可以帮助我们预测未来的发展趋势。
常用的预测方法包括滚动预测和动态预测等。
时间序列分析具有广泛的应用领域。
在经济学中,时间序列分析被广泛应用于金融市场的预测、货币政策的研究以及宏观经济的分析等。
在气象学中,时间序列分析可以帮助我们预测天气的变化和气候的长期趋势。
在医学领域,时间序列分析可以用来研究疾病的发展趋势和预测疾病的传播范围。
总之,时间序列分析是一种强大的工具,可以帮助我们理解时间序列数据的特征,预测未来的发展趋势,并从中获得有用的信息。
在实际应用中,研究人员需要根据具体问题选择合适的模型和方法,并进行模型诊断和评估。
通过深入研究时间序列分析,我们将能够更好地理解时间序列的本质,为实际问题提供更准确的预测和决策支持。
时间序列分析模型汇总
时间序列分析模型汇总时间序列分析是一种广泛应用于各个领域的统计分析方法,它用来研究一组随时间而变化的数据。
时间序列数据通常具有趋势、季节性和随机性等特征,时间序列分析的目的是通过建立适当的模型来描述和预测这些特征。
本文将汇总一些常用的时间序列分析模型,包括AR、MA、ARIMA、GARCH和VAR等。
1.AR模型(自回归模型):AR模型是根据过去的观测值来预测未来的观测值。
它假设未来的观测值与过去的一系列观测值有关,且与其他因素无关。
AR模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+ε_t,其中Y_t表示时间t的观测值,c 为常数,φ_i为系数,ε_t为误差项。
2.MA模型(移动平均模型):MA模型是根据过去的误差项来预测未来的观测值。
它假设未来的观测值与过去的一系列误差项有关,且与其他因素无关。
MA模型的一般形式为:Y_t=μ+ε_t+Σ(θ_i*ε_t-i),其中Y_t表示时间t的观测值,μ为平均值,θ_i为系数,ε_t为误差项。
3.ARIMA模型(自回归积分移动平均模型):ARIMA模型是AR和MA模型的组合,它结合了时间序列数据的趋势和随机性特征。
ARIMA模型的一般形式为:Y_t=c+Σ(φ_i*Y_t-i)+Σ(θ_i*ε_t-i)+ε_t,其中Y_t表示时间t的观测值,c为常数,φ_i和θ_i为系数,ε_t为误差项。
4.GARCH模型(广义自回归条件异方差模型):GARCH模型用于建模并预测时间序列数据的波动性。
它假设波动性是由过去观测值的平方误差和波动性的自相关引起的。
GARCH模型的一般形式为:σ_t^2=ω+Σ(α_i*ε^2_t-i)+Σ(β_i*σ^2_t-i),其中σ_t^2为时间t的波动性,ω为常数,α_i和β_i为系数,ε_t为误差项。
5.VAR模型(向量自回归模型):VAR模型用于建模并预测多个时间序列变量之间的相互关系。
它假设多个变量之间存在相互依赖的关系,即一个变量的变动会对其他变量产生影响。
时间序列分析的基础知识
时间序列分析的基础知识什么是时间序列分析时间序列是按时间顺序排列的一组数据。
时间序列分析是指对这些数据进行统计、建模和预测的方法。
它在很多领域都有着广泛的应用,比如经济学、金融学、气象学、交通规划等。
通过时间序列分析,我们可以揭示数据随时间变化的规律,为未来的预测和决策提供依据。
时间序列分析的基本概念1. 平稳性平稳性是时间序列分析的一个重要概念。
一个强平稳的时间序列具有恒定的均值和方差,以及与时间无关的自相关性。
在进行时间序列分析时,我们通常会首先对时间序列的平稳性进行检验,如果时间序列不是平稳的,我们可以通过差分等方法将其转化为平稳序列。
2. 自回归(AR)模型和移动平均(MA)模型自回归模型是一种以自身滞后值作为自变量的线性模型,通常用AR(p)表示,其中p代表滞后阶数。
移动平均模型是一种以白噪声作为自变量的线性模型,通常用MA(q)表示,其中q代表滞后阶数。
这两种模型可以用来描述时间序列数据内在的规律和特点。
3. 自回归移动平均(ARMA)模型和自回归积分移动平均(ARIMA)模型ARMA模型是自回归模型和移动平均模型的组合,它考虑了时间序列数据中自相关和滞后项之间的关系。
ARIMA模型在ARMA模型的基础上添加了差分操作,可以处理非平稳时间序列。
ARIMA模型通常用于处理没有季节性因素的时间序列数据。
时间序列分析的应用1. 经济学领域在经济学领域,时间序列分析被广泛应用于宏观经济预测、金融市场走势预测、货币政策制定等方面。
通过对历史经济数据进行分析,可以揭示出经济发展的周期性变化、趋势走向以及影响因素。
2. 气象学领域气象学家利用时间序列分析方法对气象数据进行处理,可以更好地理解天气变化规律,提高天气预报准确率,并为气象灾害预警提供依据。
3. 股票市场股票市场也是时间序列分析方法得到广泛应用的领域。
投资者可以通过对股票价格、成交量等指标进行时间序列分析,来判断股票走势并进行投资决策。
时间序列分析工具与软件1. Python中的pandas库Pandas是Python中一个专门用于数据处理和分析的库,在处理时间序列数据方面具有很大优势。
第七章-时间序列分析
第一节 时间序列分析的基本概念 第二节 平稳性检验 第三节 协整 第四节 误差修正模型
第一节 时间序列分析的基本概念
一、平稳性的定义 二、几种有用的时间序列模型 三、单整的时间序列
经济分析通常假定所研究的经济理论中涉及的
变量之间存在着长期均衡关系。按照这一假定,在 估计这些长期关系时,计量经济分析假定所涉及的 变量的均值和方差是常数,不随时间而变。
△x t=α+δx t-1+εt (7.14) 和 △x t=α+βt+δx t-1+εt (7.15)
二者的τ临界值分别记为τμ和τT。尽管三种 方程的τ临界值有所不同,但有关时间序列平 稳性的检验依赖的是Xt-1的系数δ,而与α、β无 关。
3.增项的单位根检验(ADF检验)
ADF 检 验 的 全 称 是 扩 展 的 迪 奇 - 福 勒 检 验 (Augmented Dickey-Fuller test),它是 DF检验的扩 展AD,F适与用DF于检扰验动的项区εt别是服在从(平7稳.12的)A式R(中P)增过加程若的干情形个。 △要回x t 归的的滞方后程项变△为x t-j(j=1,2,…,p)作为解释变量,即
一、 平稳性(Stationarity)
1. 严格平稳性
如果一个时间序列Xt的联合概率分布不随时 间而变,即对于任何n和k,X1,X2,…,Xn的联 合概率分布与X1+k,X2+k,…Xn+k 的联合分布相同, 则称该时间序列是严格平稳的。
2. 弱平稳性(宽平稳)
由于在实践中上述联合概率分布很难确定,我 们用随机变量Xt(t=1,2,…)的均值、方差和协方 差代替之。 如果一个时间序列满足下列条件:
时间序列 理论与方法
时间序列理论与方法时间序列分析是一种经济学和统计学领域常用的研究方法,旨在研究随时间推移而发生变化的现象,如经济指标、股票价格、天气变化等。
时间序列分析可以帮助我们揭示变量之间的关系、预测未来趋势、评估政策效果等。
时间序列分析的理论基础主要包括三个方面:时间序列的分解、自回归模型和移动平均模型。
首先,时间序列的分解指的是将时间序列数据分解为趋势、季节和随机成分三个部分。
趋势成分反映了时间序列长期变化的趋势,季节成分表示了时间序列在固定周期内的重复模式,而随机成分则体现了不可预测的随机波动。
其次,自回归模型是一种基于过去观测值预测未来观测值的模型,它假设未来观测值是过去观测值的线性组合。
最后,移动平均模型是一种用平均值预测未来观测值的模型,它假设未来观测值是过去一段时间内观测值的加权平均。
在时间序列分析中,常用的方法包括平滑法、回归法、ARIMA模型等。
平滑法是一种常用的时间序列预测方法,其基本思想是通过对时间序列数据进行平滑处理,去除季节和随机成分,从而揭示出趋势。
常见的平滑方法有移动平均法和指数平滑法。
回归法是通过建立时间序列与其他变量之间的关系模型进行预测。
ARIMA模型是一种常用的统计模型,它综合了自回归模型和移动平均模型的优点,可以较好地描述时间序列的变化规律,并进行未来的预测。
时间序列分析在实际应用中具有广泛的应用领域。
首先,时间序列分析在经济学领域中被广泛用于对宏观经济指标(如GDP、CPI等)进行预测和分析。
其次,时间序列分析在金融领域中被广泛用于股票价格的预测和交易策略的制定。
此外,时间序列分析在气象学、医学、环境科学等多个领域都有应用,如气象预测、疫情预测等。
在进行时间序列分析时,需要注意一些常见的问题和挑战。
首先,时间序列数据可能存在趋势、季节和随机成分之间的交互作用,需要根据具体情况选择合适的模型进行分析。
其次,时间序列数据可能存在非常性和异方差性,这会对模型的拟合和预测结果产生影响,需要进行适当的处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
时间序列分析基础及模型
平均发展速度
(要点)
1. 观察期内各环比发展速度的平均数 2. 说明现象在整个观察期内平均发展变化的程度 3. 通常采用几何法(水平法)计算 4. 计算公式为
时间序列分析基础及模型
平均发展速度与平均增长速度
(算例)
【例6】 根据表11.4中的有关数据,计算1994~1998 年间我国第三产业国内生产总值的年平均发展速度 和年平均增长率 平均发展速度
平均增率
时间序列分析基础及模型
平均发展速度
(几何法的特点)
1. 从最初水平Y0出发,每期按平均发展速度发 展,经过n期后将达到最末期水平Yn
2. 按平均发展速度推算的最后一期的数值与最 后一期的实际观察值一致
3. 只与序列的最初观察值Y0和最末观察值Yn有 关
4. 如果关心现象在最后一期应达到的水平,采 用水平法计算平均发展速度比较合适
时间序列分析基础及模型
时间序列的构成要素与模型
(构成要素与测定方法)
时间序列的构成要素
长期趋势
季节变动
循环波动 不规则波动
线性趋势 非线性趋势
按月(季)平均法
移动平均法
二次曲线 指数曲线
趋势剔出法
移动中位数法
修正指数曲线
线性模型法
Gompertz曲线 Logistic曲线
剩余法
18547.9 21617.8 26638.1 34634.4 46759.4 58478.1 67884.6 74772.4 79552.8
114333 115823 117171 118517 119850 121121 122389 123626 124810
14.39 12.98 11.60 11.45 11.21 10.55 10.42 10.06 9.53
时间序列分析基础及模型
年度化增长率
(要点)
1. 增长率以年来表示时,称为年度化增长率或年率 2. 可将月度增长率或季度增长率转换为年度增长率 3. 计算公式为
▪ m 为一年中的时期个数;n 为所跨的时期总数 ▪ 季度增长率被年度化时,m =4 ▪ 月增长率被年度化时,m =12 ▪ 当m = n 时,上述公式就是年增长率
时间序列分析基础及模型
增长速度
(要点)
1. 增长量与基期水平之比 2. 又称增长率 3. 说明现象的相对增长程度 4. 有环比增长速度与定期增长速度之分 5. 计算公式为
时间序列分析基础及模型
环比增长速度与定基增长速度
(要点)
1. 环比增长速度基
n 报告期水平与前一时期水平之比
2. 定基增长速度
时间序列分析基础及模型
年度化增长率
(计算结果)
解: 4) m=4,从1997年四季度到2000年四季度所
跨的季度总数为12,所以 n=12 年度化增长率为
即根据1998年四季度到2000年四季度的数据计 算,工业增加值的年增长率为7.72%,这实际 上就是工业增加值的年平均增长速度
时间序列分析基础及模型
时间序列分析基础及模 型
2020/11/16
时间序列分析基础及模型
时间序列分析
第一节 时间序列的对比分析 第二节 长期趋势分析 第三节 季节变动分析 第四节 循环波动分析
时间序列分析基础及模型
学习目标
1. 掌握时间序列对比分析的方法 2. 掌握长期趋势分析的方法及应用 3. 掌握季节变动分析的原理与方法 4. 掌握循环波动的分析方法
年度化增长率
(计算结果)
解: 2) m =12,n = 27
年度化增长率为
该地区财政收入的年增长率为10.43%
时间序列分析基础及模型
年度化增长率
(计算结果)
解: 3) 由于是季度数据,所以 m = 4,从一季度到
二季度所跨的时期总数为1,所以 n=1 年度化增长率为
即根据第一季度和第二季度数据计算的国内 生产总值年增长率为8.24%
速度的分析与应用
(需要注意的问题)
1. 当时间序列中的观察值出现0或负数时,不宜 计算速度
2. 例如:假定某企业连续五年的利润额分别为5 、2、0、-3、2万元,对这一序列计算速度, 要么不符合数学公理,要么无法解释其实际 意义。在这种情况下,适宜直接用绝对数进 行分析
3. 在有些情况下,不能单纯就速度论速度,要 注意速度与绝对水平的结合分析
n 现象在不同时间上的观察值 n 说明现象在某一时间上所达到的水平 n 表示为Y1 ,Y2,… ,Yn 或 Y0 ,Y1 ,Y2 ,… ,Yn
2. 平均发展水平
n 现象在不同时间上取值的平均数,又称序时平均数 n 说明现象在一段时期内所达到的一般水平 n 不同类型的时间序列有不同的计算方法
时间序列分析基础及模型
时间序列分析基础及模型
速度的分析与应用
(一个例子)
【例8】 假定有两个生产条件基本相同的企业, 各年的利润额及有关的速度值如表5
年份
1996
表11- 5 甲、乙两个企业的有关资料
甲企业
乙企业
利润额(万元) 增长率(%) 利润额(万元) 增长率(%)
500
—
60
—
1997
600
20
84
40
时间序列分析基础及模型
(实例)
【例2】设某种股票1999年各统计时点的收盘价 如表2,计算该股票1999年的年平均价格
表12 某种股票1999年各统计时点的收盘价
统计时点 1月1日 3月1日 7月1日 10月1日 12月31日
收盘价(元) 15.2 14.2 17.6
16.3
15.8
时间序列分析基础及模型
绝对数序列的序时平均数
时间序列分析基础及模型
第一节 时间序列的对比分析
一. 时间序列及其分类 二. 时间序列的水平分析 三. 时间序列的速度分析
时间序列分析基础及模型
时间序列及其分类
时间序列分析基础及模型
时间序列
(概念要点)
1. 同一现象在不同时间上的相继观察值排列 而成的数列
2. 形式上由现象所属的时间和现象在不同时 间上的观察值两部分组成
3. 各逐期增长量之和等于最末期的累积增长量
时间序列分析基础及模型
平均增长量
(概念要点)
1. 观察期内各逐期增长量的平均数 2. 描述现象在观察期内平均增长的数量 3. 计算公式为
时间序列分析基础及模型
时间序列的速度分析
时间序列分析基础及模型
发展速度
(要点)
1. 报告期水平与基期水平之比 2. 说明现象在观察期内相对的发展变化程度 3. 有环比发展速度与定期发展速度之分
时间序列分析基础及模型
年度化增长率
(实例)
【例7】已知某地区的如下数据,计算年度化增化增 长率 1) 1999年1月份的社会商品零售总额为25亿元, 2000 年1月份在零售总额为30亿元 2) 1998年3月份财政收入总额为240亿元,2000年6月 份的财政收入总额为为300亿元 3) 2000年1季度完成的国内生产总值为500亿元,2季 度完成的国内生产总值为510亿元 4) 1997年1季度完成的国内生产总值为500亿元,2季 度完成的国内生产总值为510亿元
速度的分析与应用
(增长1%绝对值)
1. 速度每增长一个百分点而增加的绝对量 2. 用于弥补速度分析中的局限性 3. 计算公式为
甲企业增长1%绝对值=500/100=5万元 乙企业增长1%绝对值=60/100=0.6万元
时间序列分析基础及模型
第二节 长期趋势分析
一.时间序列的构成要素与模型 二.线性趋势 三.非线性趋势 四.趋势线的选择
(实例)
【例3】 根据表1中年末总人口数序列,计 算1991~1998年间的年平均人口数
时间序列分析基础及模型
相对数序列的序时平均数
(计算方法)
1. 先分别求出构成相对数或平均数的分子ai 和分母 bi 的平均数
2. 再进行对比,即得相对数或平均数序列的 序时平均数
3. 基本公式为
时间序列分析基础及模型
• 时期序列:现象在一段时期内总量的排序 • 时点序列:现象在某一瞬间时点上总量的排序
2. 相对数时间序列
▪ 一系列相对数按时间顺序排列而成
3. 平均数时间序列
n 一系列平均数按时间顺序排列而成
时间序列分析基础及模型
时间序列的水平分析
时间序列分析基础及模型
发展水平与平均发展水平
(概念要点)
1. 发展水平
绝对数序列的序时平均数
(计算方法)
时期序列
计算公式:
【例1】 根据表1中的国内生产总值序列, 计算各年度的平均国内生产总值
时间序列分析基础及模型
绝对数序列的序时平均数
(计算方法)
时点序列— 间隔不相等
Y1 Y2
Y3 Y4
T1
T2
T3
Yn-1
Yn
Tn-1
时间序列分析基础及模型
绝对数序列的序时平均数
▪ 报告期水平与某一固定时期水平之比
时间序列分析基础及模型
发展速度与增长速度的计算
(实例)
【例5】 根据表3中第三产业国内生产总值序列, 计算各年的环比发展速度和增长速度,及以1994年 为基期的定基发展速度和增长速度
表4 第三产业国内生产总值速度计算表
年份
1994 1995 1996 1997 1998
803 896 1070 1331 1781 2311 2726 2944 3094
时间序列分析基础及模型
时间序列的分类
时间序列
绝对数序列 相对数序列 平均数序列
时期序列 时点序列
时间序列分析基础及模型