Labile carbon fraction Recalcitrant carbon fraction Organic amendment
三亚甲基碳酸酯_己内酯可生物降解共聚物的热性能分析
三亚甲基碳酸酯/己内酯可生物降解共聚物的热性能分析*杨立群,杨 丹,关艳敏,李建新,李 淼(辽宁省计划生育科学研究院,沈阳110031)摘要 以辛酸亚锡为催化剂,通过开环聚合制备了三亚甲基碳酸酯(TMC)与己内酯(CL)的共聚物P(TMC-co-CL),并利用差示扫描量热仪(DSC)和热重分析仪(TGA)研究了P(TMC-co-CL)的热力学性能。
结果表明,制备的P(TMC-co-CL)为无规共聚物,其玻璃化温度值随着TMC含量的增加而升高,符合Fox方程;当CL含量达到80%(物质的量分数,下同)时,共聚物出现熔点且随CL含量的增加而升高;此外,制备的P(TMC-co-CL)具有良好的热稳定性能,热分解温度在280℃以上。
关键词 三亚甲基碳酸酯 己内酯 共聚物 热力学性能中图分类号:O631.3;R318.08 文献标识码:AThe Thermal Analysis of the Degradable Copolymers Based on TrimethylenenCarbonate andε-CaprolactoneYANG Liqun,YANG Dan,GUAN Yanmin,LI Jianxin,LI Miao(Liaoning Research Institute of Family Planning,Shenyang 110031)Abstract The thermal properties of the copolymers of trimethylene carbonate andε-caprolactone were analyzedby DSC and TGA.The DSC results show that the copolymers prepared by ring-opening polymerization are random be-cause of only one glass transition temperature(Tg),and the values of Tgincreased with the increase of the content oftrimethylenen carbonate,which is consistent with the Fox equation.The copolymers have the melting point(Tm)when the content of CL is up to 80%and the thermal degradation temperature of the copolymers is higher than 280℃determined by TGA,and increased with the increase of the content ofε-caprolactone.Key words trimethylene carbonate,caprolactone,copolymers,thermal properties *国家科技支撑计划项目(2006BAI03B05) 杨立群:男,1982年生,博士,从事功能高分子材料研究 E-mail:yangliqun21@163.com 李建新:通讯作者 E-mail:jxinl@vip.sina.com0 引言近年来,基于三亚甲基碳酸酯(TMC)、丙交酯、ε-己内酯(CL)等环酯的生物降解材料已成为国内外研究热点,并在生物可降解吸收缝合线[1]、药物传输体系[2-4]、神经传导体系[5,6]以及组织工程[7]等领域得到一定程度的应用。
土壤有机碳 激发效应
土壤有机碳激发效应英文回答:Soil organic carbon (SOC) plays a crucial role in maintaining the productivity and health of terrestrial ecosystems. Enhancing SOC content has emerged as a promising strategy to improve soil quality and mitigate the effects of climate change. This phenomenon, known as the "priming effect," involves the acceleration of decomposition of native soil organic matter (SOM) upon the addition of fresh organic matter inputs.The priming effect is driven by the microbial response to the increased availability of labile carbon from the fresh organic matter. Microbes utilize this labile carbon as an energy source, releasing enzymes that degrade both the fresh organic matter and native SOM. The extent of the priming effect varies depending on the quality of the added organic matter, the soil microbial community composition, and environmental conditions.Several mechanisms have been proposed to explain the priming effect. One theory suggests that the addition of fresh organic matter stimulates the growth of microbial populations, leading to increased enzyme production and decomposition of both the fresh and native SOM. Another mechanism involves the selective utilization of labile carbon by microbes, leaving behind more recalcitrant compounds that are more resistant to decomposition. This process can result in the accumulation of recalcitrant organic matter, which can have long-term effects on soil carbon dynamics.The priming effect can have both positive and negative implications for soil health and ecosystem functioning. On the one hand, it can accelerate the release of nutrients from SOM, making them available for plant uptake. This increased nutrient availability can boost plant growth and productivity. On the other hand, the priming effect can also lead to the loss of stable SOC, which is an important component of soil carbon storage and a major contributor to the global carbon cycle.Managing the priming effect is crucial for sustainable soil management practices. One approach involves the use of organic matter amendments that are high in labile carbonand low in recalcitrant compounds. This can help tominimize the loss of stable SOC while still stimulating microbial activity and nutrient release. Additionally, maintaining a diverse soil microbial community can promote the balanced decomposition of organic matter and reduce the risk of excessive priming.中文回答:土壤有机碳(SOC)在维持陆地生态系统的生产力和健康方面发挥着至关重要的作用。
酸解有机碳的提取
酸解有机碳的提取目的:秸秆还田及长期连作条件下棉田土壤有机碳组分含量对其稳定性影响测定项目:酸解有机碳组分意义:利用化学酸解法分离不同有机碳活性组分并测定其组分含量,以硫酸水解有机碳的化学分组方法进行有机碳稳定性的评价,探讨秸秆还田对长期连作棉田土壤有机碳化学稳定性的影响;方法:H2SO4水解法在Rovira and Vallejo(2002)的基础上稍作修改,具体步骤如下:1)称1.009左右过0.15mm筛子的土样于消煮管内,加20ml 2.5mol/L H2SO4,在105℃回流条件下加热30min,然后转移至50ml离心管,在4500rpm下离心20min,上清液倒出。
离心管内土样加20ml蒸馏水继续清洗离心,将两次的上清液合在一起过0.4um滤膜。
上述水解产物为活性组分I (labile fraction I),这部分活性碳组分主要包括淀粉,半纤维素,可溶性糖类等碳水化合物。
2)离心管内的残留土样加蒸馏水离心清洗数次后,在60℃下烘干后,再加2mL的13M H2SO4转移到三角瓶,在室温下持续振荡过夜(10h),然后再加水将酸稀释为1 M,转移至上述的消煮管内,在105℃下加热回流3h,用手间歇振荡,然后再转移至离心管,再加20ml 蒸馏水至离心管内继续清洗离心,将两次的上清液合在一起过0.4um滤膜。
此水解产物为活性组分Ⅱ(labile fraction ll)。
这部分活性碳组分主要包括纤维素等碳水化合物。
3)最后离心管内的土样同样加蒸馏水离心清洗干净后,分别转移到塑料瓶内在60℃下烘干,此残留物为难降解组分(recalcitrant fraction)。
这部分酸解残余碳组分主要包括木质素等。
活性组分I和Ⅱ用鲁如坤的重铬酸钾容量法测定:重铬酸钾容量法:吸取滤液10mL于50ml消煮管内,加5ml 0.8 mol·L-1 1/6 K2Cr2O7溶液,然后再加入5 ml 浓H2SO4,摇匀后置于可容纳8-10个消煮管的铁丝笼内(每次消煮需做2个空白),随后将铁丝笼放入已加热至185-190℃的石蜡油浴锅内加热,温度控制在170-180℃,当消煮管内液体开始沸腾时计时,煮沸5min后冷却,将管内液体转移至150ml 三角瓶内,并用蒸馏水少量多次洗净试管内部后将洗涤液冲入三角瓶,至总体积为60-70ml。
岩溶区河流水化学昼夜变化与生物地球化学过程
岩溶区河流水化学昼夜变化与生物地球化学过程章程【摘要】河流水化学昼夜动态变化的研究有助于揭示水体中相对快速的生物地球化学过程(河流内过程),同时也有助于判别上游补给区流域过程。
已有的研究表明生物过程(光合作用与呼吸作用)、地球化学过程(碳酸盐平衡、碳酸钙沉积)是控制河流 pH、SpC、Ca2+和 HCO -3含量昼夜变化的主要因素。
不同级别、类型及河床微环境均会对水化学昼夜变化产生影响,与气温密切相关的光合作用是产生河水 pH 值和 DO 昼夜变化的主控因素。
在偏碱性与富含钙离子的岩溶河流,有机体的钙化作用与酸分泌可能对光合作用具有重要作用,从而导致水体中 Ca2+和HCO -3出现白天下降-夜间回升的昼夜动态变化,下降幅度达20%~30%。
水生植物通过光合作用产生DIC(主要为HCO -3)的原位沉降,是真正意义上的净碳汇。
昼夜生物地球化学循环及效应研究有助于全面认识岩溶区碳循环特征及岩溶含水层源汇关系,尤其是岩溶碳汇稳定性与净碳汇估算;同时对长时间尺度河流监测计划的制定具有重要意义。
%Study on diel cycling of stream hydrochemistry can help to reveal relatively rapid biogeochemical processes in natural water (processes of in stream flows)and discriminate drainage basin processes in re-charge areas.Existing research shows that biologicalprocesses(photosynthesis and respiration),geochemicalprocesses(bicarbonate equilibrium,and calcite precipitation)are the main controlling factors on diel varia-tions of pH values,specificconductivity(SpC),concentrations of Ca2 + and HCO -3 instreams.Furthermore, stream orders and types and even microenvironments of the riverbed all have remarkable influence on diel a-queous chemistry.The pH value and dissolved oxygen(DO)are mainly controlled by photosynthesis which is closely related to air temperature.In high-alkalinity and calcium-rich streams,representing carbonate-rich basins,calcification and acid secretion of organisms may play an important role in aquatic plant photosynthe-sis,thus resulting in diel hydrochemical cycling with daytime decrease(up to a 20% to 30% decline)and nighttime increase of concentrations of Ca2 + and HCO -3 .Diel DIC cycling downstream caused by photosyn-thesis and its changes along the stream flow indicate that the stream is losing inorganic carbon along its flow path.It converts to organic carbon,such that inorganic C storage in streambeds will be an important net DIC sink in small productive streams.The effect of diel cycling of biogeochemistry on interpretation of carbon cy-cling,sink and source,especially on clarification of karst carbon sink stability and net carbon sink estimation trends becomes increasingly important in karst aquifer systems.Diel variability has implications for the de-sign of long-term surface water monitoring programs and interpretation of water quality trends.【期刊名称】《中国岩溶》【年(卷),期】2015(000)001【总页数】8页(P1-8)【关键词】河流;水化学昼夜变化;生物地球化学过程;岩溶;碳汇效应【作者】章程【作者单位】中国地质科学院岩溶地质研究所/联合国教科文组织国际岩溶研究中心,国土资源部、广西壮族自治区岩溶动力学重点实验室,广西桂林 541004【正文语种】中文【中图分类】P642.25作为地球关键带的三大过程之一[1],生物地球化学过程将生物过程与非生物过程联系在一起,它与水文过程相互耦合,推动了生态过程的持续进行,又共同决定了关键带的整体形态与功能[2],在全球变化与岩溶碳循环研究领域,了解生物地球化学过程、影响因素与机制,对解决岩溶作用时间尺度与碳汇稳定性问题具有至关重要的作用[3]。
天然气常用英文词汇[整理版]
oil field 油田wildcat 盲目开掘的油井percussive drilling 冲击钻探rotary drilling 旋转钻探offshore drilling 海底钻探well 井,油井derrick 井架Christmas tree 采油树crown block 定滑轮travelling block 动滑轮drill pipe, drill stem 钻杆drill bit 钻头roller bit 牙轮钻头diamond bit 钻石钻头swivel 泥浆喷嘴turntable, rotary table 轮盘pumping station 泵站sampling 取样sample 样品,样本core sample 矿样storage tank 储油罐pipeline 油管pipe laying 输油管线oil tanker 油轮tank car, tanker (铁路)罐车,槽车tank truck, tanker (汽车)运油罐车,油罐车refining 炼油refinery 炼油厂cracking 裂化separation 分离fractionating tower 分馏塔fractional distillation 分馏distillation column 分裂蒸馏塔polymerizing, polymerization 聚合reforming 重整purification 净化hydrocarbon 烃,碳氢化合物crude oil, crude 原油petrol 汽油(美作:gasoline)LPG, liquefied petroleum gas 液化石油气LNG, liquefied natural gas 谷物Grains种质Germ plasm真菌Fungi薪柴Fuel wood淡水FRESHWATER林学Forestry食品Food飞灰Fly ash洪水Floods防洪Flood control渔轮Fishing vessels鱼类Fish外部Externalities展示Exhibit能源Energy sources电力Electric power地震Earthquakes旱作Dry farming干洗Dry cleaning抗旱Drought control干旱Drought疏浚Dredging挽畜Draught animals灾难DISASTERS防灾Disasterprevention脱盐Desalination水坝Dams旋风Cyclones原油Crude oil堆肥Composts通勤Commuting气候Climate分类Classification烟囱Chimneys木炭Charcoal洞穴Caves桥梁Bridges边界Boundaries高炉Blast furnaces鸟类Birds沼气Biogas细菌Bacteria雪崩Avalanches属性Attributes大气ATMOSPHERE石棉Asbestos群岛Archipelagoes碱地Alkali lands藻花Algal bloom消费品Consumer goods针叶林Coniferous forests内燃机Combustionengines煤液化Coal liquefaction煤气化Coal gasification气候学Climatology气候带Climatic zones氯氟碳Chlorofluorocarbons纤维素Cellulose集水区Catchment areas制图学Cartography致癌物Carcinogens碳循环Carbon cycle镉污染Cadmiumcontamination建成区Built-up areas建筑物Buildings酿造业Brewing industry植物学Botany植物园Botanical gardens生物量Biomass生物学Biology自行车Bicycles细菌学Bacteriology建筑学Architecture养蜂业Apiculture畜产品Animal products畜牧学Animal husbandry氧化铝Alumina过敏素Allergens农工业Agro-industry学术的Academic工作环境Workingenvironment木材废料Wood waste木材保存Woodpreservation妇女地位Women status野生生物Wildlife天气预报Weatherprediction天气监测Weathermonitoring水边开发Watersidedevelopment流域管理Watershedmanagement水上运输Water法规控制Regulatory control区域规划Regional planning查阅服务Reference service铁路运输Railway transport广播节目Radio programme辐射防护Radiationprotection辐射监测Radiationmonitoring辐射效应Radiation effects种族关系Race relations质量控制Quality control纸浆工业Pulp industry公用事业Public utilities公共服务Public services公共关系Public relations公共信息Public information公共卫生Public health公共花园Public gardens原生生物Protozoa专业团体Professionalsociety产品标签Product labelling印刷工业Printing industry施压集团Pressure groups新闻发布Press release降水增加Precipitationenhancement家禽饲养Poultry farming池塘尾渣Ponds tailings多氯联苯Polychlorinatedbiphenyls污染风险Pollution risk污染标准Pollution norms污染监测Pollutionmonitoring污染责任Pollution liabilities污染基准Pollution criteria污染治理Pollutionabatement政策规划Policy planning塑料废物Plastic wastes植物病害Plant diseases试验项目Pilot projects自然改变Physicalalterations光合作用Photosynthesis医药废物Pharmaceuticalwastes石油提炼Petroleum refining液化天然气octane number 辛烷数,辛烷值vaseline 凡士林paraffin 石蜡kerosene, karaffin oil 煤油gas oil 柴油lubricating oil 润滑油asphalt 沥青benzene 苯fuel 燃料natural gas 天然气olefin 烯烃high-grade petrol, high-octane petrol ,高辛烷值汽油plastic 塑料chemical fiber 合成橡胶solvent 溶剂氡Radon点Point酚Phenols线Lines冰Ice烃Hydrocarbons雾Fog酶Enzymes能ENERGY煤Coal氯Chlorine酸Acids社会-经济因素Socio-economic factors成本-效益分析Cost-benefit analysis酵母Yeasts风蚀Wind erosion风能Wind energy杂草Weeds水禽Waterfowl水井Water wells水盾Water quality水泵Water pumps水蚀Water erosion废物Wastes废热Waste heat火山Volcanoes病毒Viruses 藻类Algae机场Airports飞机Aircraft空运Air transportation空调Air conditioning农业AGRICULTURE声学Acoustics隔音Acoustic insulation酸化Acidification酸雨Acid rain通道Access roads动物学Zoology动物园Zoologicalgardens万维网World Wide Web木产品Wood products广域网Wide areanetwork波浪能Wave energy水涝地Waterloggedlands水处理Water treatment水污染Water pollution凤眼蓝Water hyacinth病毒学Virology兽医学Veterinarymedicine植物油Vegetable oils联合国United Nations紫外线Ultraviolet毒理学Toxicology潮汐能Tidal energy同义词Thesaurus热污染Thermalpollution致畸剂Teratogens分类学Taxonomy焦油砂Tar sands地表水Surface waters硫酸盐Sulphates地下水Subterraneanwater潜水艇Submarines暴风雨Storms太阳能Solar energy土壤学Soil sciences小岛屿Small islands化粪池Septic tanks分离器Separators海平面Sea leveltransportation水的盐化Water salination废物利用Waste use废物回收Waste recovery废物处置Waste disposal报警系统Warningsystems车辆检验Vehicleinspection城市供水Urban watersupply城市交通Urban traffic城区压力Urban stress城区改造Urban renewal城区设计Urban design城市衰败Urban decay城市地区Urban areas贫困阶层Under-privileged people热带森林Tropical forests树木苗圃Tree nurseries运输系统Transportsystems运输计划Transportplanning蒸腾作用Transpiration越境污染Trans-frontierpollution培训中心Training centre交通噪音Traffic noise交通监测Trafficmonitoring传统保健Traditionalhealth care贸易避垒Trade barriers痕量物质Trace materials痕量元素Trace elements毒理测定Toxicologicaltesting有毒废物Toxic waste有毒物质Toxicsubstances旅游设施Tourist facilities海洋热能Thermal seapower进入术语Terms of access临时住房Temporaryhousing温带林地Temperatewoodlands图象识别Patternrecognition寄生生物Parasites过度拥挤Overcrowding有机物质Organicsubstances有机溶剂Organic solvents有机农业Organic farming有机化学Organic chemistry在线服务On-line services石油泄漏Oil spills残油回收Oil residuerecuperation原油开采Oil extraction石油勘探Oil exploration恶臭公害Odour nuisance海洋温度Oceantemperature海洋倾倒Ocean dumping海洋环境Ocean circulation职业安全Occupationalsafety职业健康Occupationalhealth核能利用Nuclear energyuses噪声污染Noise pollution噪声监制Noise monitoring噪音治理Noise abatement氮氧化物Nitrogen oxides亚硝酸盐Nitrites新闻通讯Newsletter自然保护Natureconservation自然资源Natural resources天然纤维Natural fibres天然肥料Natural fertilizers国家公园National parks国内立法Nationallegislation国家边界Nationalboundaries城市废物Municipal waste登山运动Mountaineering机动车辆Motor vehicles镶嵌图案Mosaics监测技术Monitoringtechniques监测系统Monitoringsystems录象Video振动Vibration植被Vegetation矢量Vector台风Typhoons隧道Tunnels滴灌Trickle irrigation树木Trees旅行Travel运输TRANSPORTATION 毒素Toxins毒性Toxicity旅游Tourism烟草Tobacco隔热Thermal insulation 术语Terminology电信Telecommunications 硫酸Sulphuric acid科目Subjects学科SUBJECT DISCIPLINES结构Structures主食Staple foods泄漏Spillage谱学Spectroscopy谱带Spectral bands土壤Soils吸烟Smoking防烟Smoke prevention烟雾Smog模拟Simulation商店Shops污水Sewage渗漏Seepage沉积Sedimentation锯屑Sawdust沙丘Sand dunes径流Run-off道路Roads河流Rivers遥感Remote sensing释放Release难民Refugees赤潮Red tide回收Recycling娱乐Recreation光栅Raster降雨Rainfall雷达Radar采石Quarrying 洗涤器Scrubbers废金属Scrap metals分辨率Resolution居民区Residentialareas再造林Reafforestation放射性Radioactivity辐射病Radiationsickness保护区Protected areas灵长目Primates多边形Polygons污染源Pollutionsources污染物Pollutants运动场Playgrounds磷酸盐Phosphates杀虫剂Pesticides臭氧层Ozone layer油页岩Oil shales办公室Offices海洋学Oceanography营养物Nutrients核武器Nuclearweapons核安全Nuclear safety核电站Nuclear powerplants核燃料Nuclear fuels核事故Nuclearaccidents流浪者Nomads亚硝胺Nitrosamines硝酸盐Nitrates新闻组Newsgroup新社区Newcommunities天然气Natural gas突变体Mutants诱变剂Mutagens摩托车Motorcycles矿产业Mineral industry移栖种Migratoryspecies微生物Microorganisms气象学Meteorology汞污染Mercurycontamination岩石圈LITHOSPHERE液化气Liquefied gas温带森林Temperateforests电视节目Televisionprogramme技术转让Technologytransfer技术评价Technologyassessment技术信息Technicalinformation税收差别Taxdifferentiation焦油使用Tar use焦油生产Tar production露天剥采Strip mining河道观测Streammeasurement炼钢工业Steel industry发展状况Status ofdevelopment统计信息Statisticalinformation体育设施Sports facilities航天运输Spacetransportation固体废物Solid wastes固态地球Solid Earth太阳辐射Solar radiation日照加热Solar heating土壤改良Soilimprovement土壤侵蚀Soil erosion土壤退化Soil degradation土壤污染Soilcontamination土壤保持Soilconservation土壤潜力Soil capabilities软件开发Softwaredevelopment社会调查Social surveys社会指数Social indicators林农轮作Shiftingcultivation污水处置Sewagedisposal自助计划Self-helpprogrammes地震海浪Seismic seawaves监测仪器Monitoringequipment监测数据Monitoring data监测基准Monitoring criteria软体动物Molluscs拖车住房Mobile homes少数民族Minorities采矿废物Mining wastes采矿工程Miningengineering矿产资源Mineral resources矿山回填Mine filling军事活动Military activity流动工人Migrant workers微污染物Micropollutants微气候学Microclimatology微生物学Microbiology金属冶炼Metal smelting金属电镀Metal plating金属加工Metal finishing药用植物Medicinal plants材料科学Materials science海洋污染Marine pollution海洋监测Marine monitoring海洋环境MARINEENVIRONMENTS船舶工程Marineengineering边缘土地Marginal lands红树沼泽Mangroveswamps哺乳动物Mammals营养不良Malnutrition邮寄清单Mailing list低价住房Low-cost housing长期趋势Long-term trends长期预报Long-termforecasting液体废物Liquid wastes生活方式Lifestyles皮革工业Leather industry洗烫衣服Laundering陆地活动Land-basedactivities土地价值Land values陆上运输Landtransportation土地恢复Land restoration土地开垦Land reclamation土地污染Land pollution公园Public parks港口Ports污染POLLUTION毒物Poisons愉猎Poaching像素Pixel管道Pipelines照片Photograph汽油Petrols轨迹Path涂料Paints包装Packaging氧气Oxygen矿床Ore deposits空地Open spaces油类Oils油轮Oil tankers海洋Oceans洋流Ocean currents营养Nutrition核能Nuclear energy固氮Nitrogen fixation监测MONITORING采矿Mining甲烷Methane医疗Medical treatment 海运Maritime transport 疟疾Malaria经度Longitude照明Lighting纬度Latitude山崩Landslides湖泊Lakes灌溉Irrigation内插Interpolation工业INDUSTRY水电Hydroelectric power 盐酸Hydrochloric acid飓风Hurricanes捕猎Hunting湿度Humidity人权Human rights人口Human population 医院Hospitals主页Homepage公路Highways荒地Heath lands保健Health care薄烟Haze沙坑Gravel pits 图书馆Library铅污染Leadcontamination灌溉渠Irrigation canals因特网Internet红外线Infrared工业区Industrial areas免疫学Immunology超文本Hypertext水文学Hydrology硫化氢Hydrogensulphide园艺学Horticulture除草剂Herbicides重金属Heavy metals血液学Haematology布网格Gridding绿化带Greenbelts政府的Governmental冰川学Glaciology地热能Geothermalenergy地貌学Geomorphology地质学Geology遗传学Genetics基因库Gene banks林产品Forest products食物链Food chain过滤器Filters流行病Epidemics环境法ENVIRONMENTALLAW浓缩铀Enricheduranium发电厂Electric powerplants饮用水Drinking water蒸馏业Distillingindustry残疾人Disabledpersons沙漠化Desertification数据库Database危险品Dangerousgoods乳品业Dairy industry细胞学Cytology珊瑚礁Coral reefs冷却水Cooling waters地震监测Seismicmonitoring地震活动Seismic activity沉积盆地Sedimentarybasins部门评价Sectoralassessment海底采矿Sea bed mining海底开发Sea bedexploitation血吸虫病Schistosomiasis景物确认Sceneidentification环境卫生Sanitation卫生填埋Sanitary landfills沙石开采Sand extraction沙丘固定Sand dunefixation采样技术Samplingtechniques农村供水Rural watersupply农村地区Rural areas橡胶废物Rubber waste橡胶加工Rubberprocessing道路运输Road transport道路安全Road safety道路养护Roadmaintenance道路建设Roadconstruction河流污染River pollution河流流域River basins植被恢复Revegetation资源管理Resourcesmanagement资源保护Resourceconservation资源估价Resourceappraisal爬行动物Reptiles繁殖控制Reproductivemanipulation重置成本Replacementcosts租赁房屋Rental housing遥感中心Remote sensingcentre再建房屋Rehousing土地分配Land allotment湖泊流域Lake basins灌溉农业Irrigation farming炼铁工业Iron industry电离辐射Ionizing radiation国际水道Internationalwatercourses国际贸易International trade政府间的Intergovernmental无机物质Inorganicsubstances无机化学Inorganicchemistry内陆水道Inland waterways内河运输Inland watertransport基础设施Infrastructure信息技术Informationtechnology信息系统Informationsystems信息服务Informationservices信息处理Informationprocessing信息网络Informationnetworks信息交换Informationexchange信息中心Information centre工业产品Industrial products工业噪声Industrial noise工业材料Industrialmaterials工业立法Industriallegislation工业烟尘Industrial fumes工业废水Industrial effluents工业建筑Industrialbuildings本地知识Indigenousknowledge本地森林Indigenous forests废物焚烧Incineration ofwaste免疫疾病Immunologicaldiseases影像配准Image registration图象滤光Image filtering图象增强Image enhancement。
英文文献词汇
1.04- fold1000-grain weight (g)300-mesh 筛孔,网状物a tractor drawn plough 拖拉机拉犁耕地a disc harrow 圆盘耙A distinct arid 异常的干旱a forced round-air ovenAbrupt 意外的,突然的acid hydrolysable carbohydrates HCH 酸性水解性的碳水化合物acidic astochrepthsacidification 使发酵Acidification and sub-optimal addition of organic and nitrogen fertilizer to soil 不最适宜的,附加物acidification 使发酸,土壤酸化Acrohyms 首字母缩略词aerated 使充满气体,使暴露在空气中Aerobic composting in heaps 有氧堆肥处理Afforested soil 造林agrarian soil 耕种土壤Agroecosystem 农业生态系统Agronomic 农艺学的Air-dried 风干Air-dried at room temperature ,ground and passed through a 2mm sieve 自然风干,室温,放在地上,过2mm筛aldrin 艾氏剂,一种杀虫剂alkaline 碱的Alley 过道Alluvial sediment 冲积层Ameliorated soil structure 改善土壤结构ameliorated 改善,改进Ameliorated 历史查询Amendment of organic residuesAmendment 修正Aminoacids 氨基酸ammonium sulphate 硝酸铵ammonium 铵Ammonium sulphate 硫酸铵annual precipitation 某地区的降雨量ANOV A 方差分析Anthropogenetically-related 人类发生的Anthropogenic 人为的Anticipate 预期,预料AOC 与FocApart 相隔apparatus 器械Arguably 可以认为Arious pools of SOM 库,集合体As Organic matter associated with soil particles aOM Aspirated onto 抽出,吸出Atmospheric nitrogen 空气中的氮auxin 植物激素,生长素bases 碱Best option 选项,可选方案Bind 绑定Binding agent 粘合剂Biologically fixed N 生物固定NBlock 区组Break down 分解Breakup 破裂完结Buffer zone 缓冲区Bulk density 容积密度bulk density 容重BDBulk soil 土体,无根际土壤bullocks 小公牛C concentration of sandfree aggregateC sequestration C隔离,没收,扣押C:N ratio C/Ncalcium superphosphate 过磷酸钙Calcium 钙canal water 管道水cannal water 沟渠水capital 资本Carbohydrate 碳水化合物Carbon dioxide CO2Carbonate 碳酸盐Cation exchange capacity CEC阳离子交换量cation exchange 阳离子交换Cement 水泥centrifuging 离心法cereal 谷类作物chickpea 雏豆chisel plow 凿式犁CHChloro-form-fumigation extraction method 氯代Clay 黏土Climatic property 气候特点clods 土块,土坷垃5cm increment 增额,定期的加薪CO2 evolution 气体的释放Coarse particulate organic matter CPOM 粗粒有机碳Coarse 粗的Coefficient of variation CV 变异系数coefficients 系数cold homogenized 搅拌至均匀Combustion 燃烧过程Commercial fertilizers 商品肥料Compaction 压实Composite 复合的Concentration 浓度,含量conservation tillage 保护性耕作constsnt mass 加热至恒重contemporarily 摩擦Continuous flow 流动,不断供应Contribution 贡献率convention tillage 常规耕作法converted 转换Cottonseed 棉籽Credit facility 信贷便利Crop residue 作物残茬或秸秆crop residue management 残茬处理Crop stubble 残茬Crown root 冠根crush 压平cut-off 切断截止Debris 残渣碎屑Deionized water 去离子水depletion 耗尽Depth of tillage and the type of tillage tool desalt 除去盐分Detectable change 可检测的Deterioration 变质,恶化dialysis 透析分离dichromate digestion 重铬酸盐蒸煮dichromate oxidation 重铬酸钾Different lowercase letters 小写字母dilute稀释directly returned to the field after harvest discarding 删除,废弃dise harrow 圆盘耙路机Dispersant 分散剂Dispersion 分散dispersion 分散,差量Dispersion 弥散Dissolution 溶解作用Distilled water 蒸馏水Distribution 分配disturbance 紊乱Double corn cropping systemdouble-distilldrill 转孔,打眼dry weight basis 干重基Duplicate 复制品,副本Dynamics 动态Each corn growing season 生育时期earthworm faeces 蚯蚓排泄物Electrical conductivity of soil solution EC 土壤溶液电导率Electrostatic interactions 静电作用Elemental analyzer 元素分析仪Embedded 嵌入enzymatic 酶的Equilibrated 平衡Equivalent 相当的Error bars 误差条线,均值相关区间图ethanol-free 乙醇evince 表明,标示Exclusive 独有的,全部的Exert 正用,发挥exerted 外露的Exponential model 指数模型Extract 吸取Farmyard manure FYMFarmyard manure 厩肥Feand al- oxidesferruginous 铁的含铁的Fertilization regime 肥料制度Fertilizer effect 肥料效应Fertilizer+farmyard manure FYM field experimentation 田间试验filter paper 滤纸,定量滤纸Fine fractions 纤细的,细粒级finely ground 细磨的First corn 大麦fluvi-calcanic cambisol CMcfFluvo-aquic soil 潮土Fodder 草料fodder 饲料Fodder 饲料fold 折Formation and stability of soil aggregation Fractionate 将分成几部分Free organic matter fOMFree silt and clay s+c-fFresh weight basisFresh weight basis 鲜重—fulvic acide 富啡酸fumigate 用化学品熏,消毒,熏制gel filtration chromatography 凝胶过滤色谱法general linear 多元方差分析germinated 发芽Gibberellin –like 赤霉素Glass beads 珠子Glass bullet 玻璃插塞Glutamine synthetase 谷氨酰胺还原酶GS Gradient 梯度,变化率Grain spike-1Gram 克Granulometric 粒度Grassland 草原gravel stratum 砂砾层gravelly 铺有碎石的Green manure GMGreenhouse gas emission 温室气体排放Ground level 地平面,地面层growing season 生长季节,生育期grown cerealGrown cereal 成熟的guard row 保护行harrowing 耙地Hill farmer 斜坡,小山Hormone 荷尔蒙,激素Humic carbon HC 腐殖的humic extract 提取物humic substance HShumification 腐殖化作用hydraulic 水力学的,液压的hydrogen peroxide 过氧化氢hypothermic 低体温的hypothermic 低温的Identification 身份确认,证明illite 伊利石。
土壤有机碳组分化学测定方法及碳指数研究进展
Chemical methods to determine soil organic carbon fractions and carbon indexes:A review
ZHANG Fang-fang1,2, YUE Shan-chao1,2*, LI Shi-qing1,2* (1.College of Resources and Environmental Science, Northwest A&F University, Yangling 712100, China; 2.State Key Laboratory of Soil Erosion and Dryland Farming on Loess Plateau, Northwest A&F University, Yangling 712100, China) Abstract:There are many methods by which to determine the fractions of soil organic carbon, each with specific advantages, disadvantages, and scopes for application. Previous studies were used to comprehensively review the principles, characteristics, and scopes of applying the potassium permanganate, modified Walkley –Black, and acid hydrolysis methods for determining soil organic carbon fractions; these have been used widely in recent years. The advantages and disadvantages of the three methods were emphasized. Improvements in the methods to calculate the carbon management index(CMI)with the development of the organic carbon fraction determination method was described, and the difference in calculating the recalcitrant index(RI) of the recalcitrant soil organic carbon fraction classified by different determination methods was discussed. The citations of the three methods in the recent 19 years(2001—2019)and the citation trend over the recent decade(2010—2019) in CMI and carbon sequestration studies were compared using bibliometric analysis. Given the disadvantages of the three methods and the citation trend in the recent years, the following conclusions can be drawn. First, the potassium permanganate method is suitable for determining the labile soil organic carbon fraction and calculating CMI, and the use of 20 mmol·L-1
可持续土壤发展:谈土壤碳固定的重要性
可持续⼟壤发展:谈⼟壤碳固定的重要性⼟壤碳固定研究是近10 年⼟壤学研究的重要前沿,⽽可持续管理的⼟壤固碳是当前应对⽓候变化和全球⼟壤退化的重⼤需求。
现代⼟壤学已经能从团聚体尺度深⼊研究⼟壤固碳与⽣物活性的⼟壤机制,这将全⾯地揭⽰⼟壤固碳对于⽣态系统过程、功能及服务的影响特质,进⽽为可持续⼟壤固碳和农⽥有机质提升,为固碳减排与农⽥⽣产⼒提升及⼟壤环境服务改善协同发展提供科学依据和管理的政策依据。
⼟壤有机质是⼟壤的最关键属性,是⼟壤质量的核⼼。
⽽以⼟壤有机质形式存在的(有机)碳是岩⽯风化形成⼟壤的关键物质,在⼟壤结构形成与保持、⼟壤养分循环及⼟壤⽣物多样性养育中发挥着核⼼作⽤,是⼈类社会可持续发展的关键⾃然资源,更是可持续农业的关键基础。
因此,⼟壤有机质(碳)研究⼀直是⼟壤学的核⼼领域。
⼟壤有机质既是⼟壤结构的关键物质,⼜是⼟壤⽣物活动的关键能量来源。
⼟壤有机质积累、固定及其与微⽣物利⽤与功能的关系,以及这种关系在⼟壤的微域分布特点和⽣态关系特征,是认识⼟壤功能及⽣态系统服务的重要基础,也是认识⼟壤形成和发育中功能活性演进的基础问题。
因此,认识⼟壤有机质—微⽣物—⼟壤功能活性的关系,成为当前应对全球⽓候变化和提升⼟壤健康和安全的重⼤⼟壤学前沿。
本⽂试图系统地总结相关研究国际动态,梳理⼟壤固碳与⽣态系统功能及服务的研究认识,讨论⼟壤固碳中有机质⽣物活性的演变关系,探讨这种关系所涉及的⼟壤过程特别是团聚体过程,提出今后研究的关键科学问题,希望对未来⼟壤固碳与可持续农业的研究和技术发展以及相关政策制定提供依据。
1 ⼟壤固碳研究应关注⼟壤⽣态系统功能及服务应对⽓候变化必须促进⼟壤固碳。
由于⼈类对⼟壤的不当利⽤导致的⼟壤退化和以全球暖⼲化为主要特征的⽓候变化,⼟壤有机碳损失⽽增加对⼤⽓CO2 温室⽓体释放已经是全球尺度的普遍趋势。
即使在欧洲,⼟壤有机碳损失也成为⼤陆尺度的普遍趋势。
Bellamy 等曾在《⾃然》杂志撰⽂指出,1978—2003 年英格兰和威尔⼠发⽣⼟壤有机碳的普遍和强烈损失。
用碳酸酐酶活化剂治疗抑郁症[发明专利]
专利名称:用碳酸酐酶活化剂治疗抑郁症专利类型:发明专利
发明人:M·-K·孙,D·L·阿尔康
申请号:CN200580016109.3
申请日:20050518
公开号:CN101060885A
公开日:
20071024
专利内容由知识产权出版社提供
摘要:本发明提供碳酸酐酶活化剂;蛋白激酶C活化剂和FGF-18的使用,以治疗抑郁症。
本发明还涉及用于筛选和鉴定治疗抑郁症的化合物的改进的动物模型和方法。
申请人:布朗歇特洛克菲勒神经科学研究所
地址:美国西弗吉尼亚州
国籍:US
代理机构:上海专利商标事务所有限公司
代理人:陈文青
更多信息请下载全文后查看。
轻组有机碳和重组有机碳
轻组有机碳和重组有机碳English Answer:Light Fraction Organic Carbon (LFOC)。
LFOC is a portion of soil organic carbon that is characterized by its smaller molecular size and higher solubility. It is composed of relatively labile organic compounds, such as sugars, amino acids, and organic acids, which are readily decomposed by microorganisms. LFOC plays a significant role in nutrient cycling, soil fertility, and the formation of soil aggregates.Heavy Fraction Organic Carbon (HFOC)。
HFOC is the portion of soil organic carbon that is characterized by its larger molecular size and lower solubility. It is composed of more recalcitrant organic compounds, such as lignin, humic acids, and fulvic acids, which are resistant to decomposition by microorganisms.HFOC contributes to soil stability, water holding capacity, and carbon sequestration.Role of LFOC and HFOC in Soil Health.Both LFOC and HFOC contribute to soil health and ecosystem functioning in different ways:LFOC:Provides readily available nutrients for plants and microorganisms.Promotes soil aggregation and structure.Enhances soil fertility and productivity.Supports microbial activity and decomposition processes.HFOC:Stores carbon and reduces greenhouse gas emissions.Improves soil stability and prevents erosion.Enhances water holding capacity and drought tolerance.Provides habitat and protection for soil organisms.Management of LFOC and HFOC.Maintaining a balance between LFOC and HFOC isessential for optimal soil health. Practices that promotethe accumulation of LFOC include:Adding organic matter (e.g., compost, manure)。
生物炭碳质量分数的英文
生物炭碳质量分数的英文English: "The term 'biochar carbon mass fraction' refers to the proportion of carbon content in biochar, which is a type of charcoal produced from biomass through a process called pyrolysis. Biochar is known for its ability to sequester carbon from the atmosphere and store it in the soil, contributing to climate change mitigation efforts and improving soil health. The carbon mass fraction is a crucial parameter in assessing the quality and effectiveness of biochar as a soil amendment and carbon sequestration tool. It is typically expressed as the percentage of carbon by mass in biochar samples, calculated by dividing the mass of carbon in the biochar by the total mass of the biochar. This metric is essential for evaluating the carbon storage potential of biochar and comparing different biochar products' efficacy in sequestering carbon. Additionally, the carbon mass fraction influences biochar's nutrient retention capacity, its impact on soil pH, and its ability to enhance soil fertility and microbial activity. Therefore, understanding and optimizing the carbon mass fraction of biochar are vital for maximizing its benefits in both agricultural and environmental applications."中文翻译: "生物炭碳质量分数指的是生物炭中碳含量的比例,生物炭是通过一种称为热解的过程从生物质中制成的一种木炭。
化工行业低碳分离新材料及新技术
化工行业低碳分离新材料及新技术In the realm of the chemical industry, the quest for low-carbon separation techniques and innovative materials has never been more urgent. As the world strides towards a sustainable future, the need to reduce carbon emissions and enhance energy efficiency in industrial processes is paramount. The development of new materials and technologies for carbon capture and separation offers a promising path towards this goal.在化工行业中,对低碳分离技术及创新材料的追求比以往任何时候都更加迫切。
随着世界迈向可持续发展的未来,减少工业过程中的碳排放并提高能源效率变得至关重要。
开发用于碳捕获和分离的新材料和技术为实现这一目标提供了充满希望的道路。
One such innovation is the emergence of novel adsorbents, designed specifically for efficient carbon capture. These materials, often porous and with high surface areas, excel at adsorbing carbon dioxide from gas streams, enabling its separation from other components with minimal energy consumption.其中一项创新是新型吸附剂的出现,它们专为高效的碳捕获而设计。
牡蛎礁生境:海岸带可持续发展的潜在碳汇
第44卷第7期2024年4月生态学报ACTAECOLOGICASINICAVol.44,No.7Apr.,2024基金项目:国家自然科学基金项目(42141003,42188102,41861144018)收稿日期:2023⁃05⁃14;㊀㊀网络出版日期:2024⁃01⁃12∗通讯作者Correspondingauthor.E⁃mail:quanweim@163.comDOI:10.20103/j.stxb.202305141008王桃妮,张子莲,全为民.牡蛎礁生境:海岸带可持续发展的潜在碳汇.生态学报,2024,44(7):2706⁃2716.WangTN,ZhangZL,QuanWM.Oysterreefhabitat:apotentialcarbonsinkforsustainabledevelopmentofcoastalzone.ActaEcologicaSinica,2024,44(7):2706⁃2716.牡蛎礁生境:海岸带可持续发展的潜在碳汇王桃妮1,2,3,张子莲1,2,全为民3,∗1厦门大学海洋与地球学院近海海洋环境科学国家重点实验室,厦门㊀3611022厦门大学海洋微型生物与地球圈层研究所福建省海洋碳汇重点实验室,厦门㊀3611023中国水产科学研究院东海水产研究所农业农村部渔业遥感重点实验室,上海㊀200090摘要:牡蛎礁生境是指由聚集的牡蛎和其他生物及环境堆积形成的复合生态系统,其固碳和储碳潜力巨大,在海岸带生态系统中发挥着重要的作用㊂然而,目前对牡蛎礁生境碳源与汇的认识仍存在不足,主要在于牡蛎钙化和呼吸作用都释放CO2,而碳源与汇的评估忽视了钙化㊁同化和沉积过程带来的整体碳汇价值及牡蛎礁生态系统功能带来的碳汇效应㊂因此,有必要重新认识牡蛎礁生境的碳汇价值㊂一方面,牡蛎礁生境的碳源和碳汇需要从牡蛎礁自身的整体碳循环中进行评估,包括牡蛎礁系统中的沉积㊁钙化㊁呼吸作用及侵蚀㊁再悬浮和再矿化作用;另一方面,牡蛎礁生态系统服务引起的碳汇效应需从牡蛎礁的生态系统服务价值角度进行评估,将生态系统服务价值及碳价值进行关联,从而纳入碳汇核算体系㊂从实现海岸带可持续增汇角度出发,综述了牡蛎礁生境中碳的源与汇;阐述了容易被人们忽视的微生物在牡蛎礁生境碳汇中的作用;以保护和生态修复为目的,进一步提出可实现牡蛎礁生境最大潜在碳汇的策略,以期为实现海洋负排放及践行 国家双碳战略 提供理论和技术支撑㊂关键词:牡蛎礁;碳汇;负排放;生态修复;可持续发展Oysterreefhabitat:apotentialcarbonsinkforsustainabledevelopmentofcoastalzone㊀WANGTaoni1,2,3,ZHANGZilian1,2,QUANWeimin3,∗1CollegeofOceanandEarthSciencesandStateKeyLaboratoryofMarineEnvironmentalScience,XiamenUniversity,Xiamen361102,China2InstituteofMarineMicrobesandEcospheres,FujianKeyLaboratoryofMarineCarbonSequestration,XiamenUniversity,Xiamen361102,China3KeyLaboratoryofFisheryRemoteSensing,MinistryofAgriculture,EastChinaSeaFisheriesResearchInstitute,ChineseAcademyofFisherySciences,Shanghai200090,ChinaAbstract:Oysterreefhabitatisacomplexecosystemcomposedofclusteredoysters,otherorganisms,andenvironments,withgreatpotentialofcarbonfixationandstorage,whichmakesoystersreefsystemsplaycriticalrolesincoastalecosystems.However,thereiscurrentlyinsufficientunderstandingofthecarbonsourcesandsinksinoysterreefhabitats.ThemainissueisthatbothoystercalcificationandrespirationreleaseCO2,andtheassessmentofcarbonsourcesandsinksoverlookstheoverallcarbonsinkvaluebroughtaboutbytheprocessesofcalcification,assimilation,anddeposition,aswellasthecarbonsinkeffectsfromoysterreefecosystemfunctions.Therefore,itisnecessarytorecognizethecarbonsinkvalueofoysterreefhabitatagain.Ontheonehand,thecarbonsourceandsinkofoysterreefhabitatsneedtobeevaluatedfromtheoverallcarboncycleoftheoysterreefitself,includingsedimentation,calcification,respiration,erosion,resuspensionandremineralizationintheoysterreefsystem;Ontheotherhand,thecarbonsequestrationeffectcausedbyoysterreefecosystemservicesneedstobeevaluatedfromtheperspectiveoftheecosystemservicevalueofoysterreefs,linkingecosystemservicevalueandcarbonvalue,andthusincorporatingitintothecarbonsequestrationaccountingsystem.Inordertosystematicallyassessthecarbon"source-sink"ofoysterreefhabitatsandeffectivelypromotetheecologicalrestorationofoysterreefs,startingfromtheperspectiveofachievingsustainablecarbonsequestrationincoastalecosystems,thisstudyfirstlyproposesastrategyfortheoverallevaluationofcarbonsourcesandsinks,thenexploresthecouplingeffectsofoysterreefhabitatswithotherbluecarbon,brieflydiscussestheroleofcarbonsequestrationandstoragedrivenbymicroorganisms,andfinallyemphasizesthetechnicalsystemforthesustainabledevelopmentofoysterreefhabitats.Tosumup,asystemstrategyisproposedtoprotecttheecologicalrestorationofoysterreefs,including(1)toclarifythesourceandsinkofcarboninoysterreefhabitatfromtheperspectiveofcombiningthethreepumpsofBP,CCP,andMCPwithecosystemfunctions;(2)establishingthecouplingbetweenoystersandotherbluecarbonsystemstoregulatetheincreaseofcoastalecosystemsfromtheperspectiveofmaterialcirculationandenergyflow;(3)tostudythelivingenvironmenttoincreasethesurvivalrateofoystersandchangetheattachmentbaseofoysterstocompletetheprotectionandrestorationofoysterreefs.Thesemeasurescanprovidetheoreticalandtechnicalsupportforoceannegativecarbonemissionandtheimplementationofthe CarbonPeakingandCarbonNeutralityGoals .KeyWords:oysterreef;carbonsink;negativeemissions;ecologicalrestoration;sustainabledevelopment中国海岸带及近海的固碳能力㊁储碳潜力远大于相同气候带的陆地和大洋生态系统[1 2]㊂其中,海岸带蓝碳生态系统的固持碳量达到全球海洋活体生物的一半㊂然而,由于生态系统改变和被破坏,导致了全球每年多出近20%的CO2排放㊂众多研究表明通过保护和恢复蓝碳生态系统来增加生态碳汇已成为海岸带增汇的主要策略[3 6]㊂因此,为支撑ONCE计划㊁服务国家 双碳 战略和应对由CO2带来的全球变暖问题,中国应该加强海岸带生态系统的保护和修复,并且在增加海岸带整体碳汇的同时提高生态系统服务功能㊂牡蛎(Ostreidae)是软体动物门双壳纲牡蛎科动物的总称㊂牡蛎礁生境是指由聚集的牡蛎和其他生物及环境组成的复合生态系统[7],包括养殖牡蛎㊁牡蛎礁(oysterreef)㊁牡蛎床(oysterbed)和牡蛎聚集体(oysteraggregation)㊂其中,牡蛎礁是牡蛎常见的聚集形式,生命周期大概3年以上(图1)㊂图1㊀牡蛎礁生命周期(改自[8])Fig.1㊀Oysterreeflifecycle牡蛎礁生境广泛分布于全球河口㊁海湾和滨海区域,具有净化水体[9 10]㊁耦合能量[11 12]㊁提供栖息地[11,13 14]㊁防止海岸侵蚀[13,15]和碳汇[16 18]等多种生态系统服务功能㊂研究发现,牡蛎礁的生态系统服务价值(10.6万美元hm-2a-1)远高于永久湿地(2.1万美元hm-2a-1)㊁海草场(3.1万美元hm-2a-1)和红树林(8.2万美元hm-2a-1)(以2017年市价计算)[19]㊂在碳汇方面,牡蛎的钙化过程会固定部分碳,活体牡蛎沉积作用7072㊀7期㊀㊀㊀王桃妮㊀等:牡蛎礁生境:海岸带可持续发展的潜在碳汇㊀会加速有机碳沉降及运输[20]㊂然而,由于人为活动的影响,目前全球85%的牡蛎礁已经消失[19,21 22]㊂研究显示自1700年至今,美国北卡罗莱纳州牡蛎礁被破坏后,氧化作用加强,释放的有机碳(organiccarbon,OC)达到3.71ˑ108Mg[23]㊂因此,保护和修复牡蛎礁生境,有望使其成为大气碳的汇[24]㊂另外,由于牡蛎的钙化和呼吸作用释放碳,使得对牡蛎礁生境碳源与汇的认识存在不足㊂因此,本研究围绕牡蛎礁生境生态系统,通过梳理和归纳国内外对牡蛎礁生境碳源与汇的研究,从其碳赋存形态与循环过程㊁牡蛎礁生境自身的碳汇作用㊁牡蛎礁生境与海洋 蓝碳 的耦合作用㊁碳源与汇需整体评估和微生物对牡蛎礁生境固碳和储碳影响的角度探讨了牡蛎礁生境的可持续发展碳汇价值,最后强调牡蛎礁生境可持续发展的技术体系,以期服务于海岸带增汇策略㊂1㊀牡蛎礁生境中碳的源与汇1.1㊀碳赋存形态及和碳循环过程在牡蛎礁生境中,碳存在于牡蛎(壳㊁组织)㊁海水和沉积物中㊂牡蛎壳由外向里可分为角质层㊁棱柱层(白垩层)和珍珠层;牡蛎壳白垩层主要由比霰石/文石结构稳定的方解石型碳酸钙组成,在生物和非生物矿化下更容易沉积成岩㊂牡蛎壳中无机碳(inorganiccarbon,IC)含量和有机碳含量分别约为11.1%和0.5%(干重)[25],牡蛎软体组织中有机碳含量为44% 46%(干重)[26]㊂与其他生境相同,海水和沉积物中无机碳由颗粒无机碳(particulateinorganiccarbon,PIC)和溶解无机碳(dissolvedinorganiccarbon,DIC)组成,有机碳则由颗粒有机碳(particulateorganiccarbon,POC)和溶解有机碳(dissolvedorganiccarbon,DOC)组成㊂由牡蛎主导的碳循环过程主要包括钙化过程(calcification)㊁同化过程(assimilation)和生物沉积过程(biodeposition)(图2)㊂钙化过程是指牡蛎利用水体中的HCO2-3和Ca2+形成壳体(CaCO3);生物同化是指牡蛎滤食水体中的POC,加速生物沉降,从而将部分OC同化进软体组织;生物沉积是指牡蛎滤食悬浮颗粒物和POC后通过粪便和假粪便输入海底,同时把部分OC和IC埋藏并储存于沉积物中㊂此外,还包括侵蚀㊁再悬浮和矿化作用等过程㊂图2㊀牡蛎礁生境的碳循环过程(改自[20,23,27])Fig.2㊀CarboncyclingprocessofoysterreefhabitatsBCP:生物碳泵;SP:溶解泵;CCP:碳酸盐泵;MCP:微型生物碳泵;OC:有机碳;IC:无机碳:DOC:溶解有机碳;POC:颗粒有机碳;RDOC:惰性溶解有机碳牡蛎礁生境的储碳机制涉及到溶解 泵 (solubilitypump,SP)㊁碳酸盐 泵 (carbonatepump,CCP)㊁生物碳 泵 (biologicalcarbonpump,BCP)及微型生物碳 泵 (microbialcarbonpump,MCP)㊂其中,SP是指大气8072㊀生㊀态㊀学㊀报㊀㊀㊀44卷㊀CO2溶解在海水中,通过物理化学反应产生CO2-3㊁HCO-3和H+㊂海水中DIC不稳定,部分以CO2形式释放回大气,部分以HCO-3形式参与钙化㊂CCP则是牡蛎利用植物光合作用产生的能量来驱动和固定海水中HCO-3和Ca2+形成牡蛎壳的钙化过程㊂与其他生境相同,钙化过程为光合作用提供了必需的CO2和H+(质子泵)㊂BCP则指在光合作用下,CO2被转化成POC㊁大分子DOC或有机生物体的过程㊂在牡蛎礁生境中,牡蛎通过滤食浮游植物和POC,将呼出的CO2供给BCP以增加光合作用原料,从而加速BCP㊂MCP是指在微型生物(浮游植物㊁细菌㊁古菌㊁病毒㊁原生动物等)介导下,活性溶解有机碳(labiledissolvedorganiccarbon,LDOC)被周转成惰性溶解有机碳(recalcitrantdissolvedorganiccarbon,RDOC)的过程和机制[28 31]㊂MCP机制不仅适用于水体,也可解释牡蛎礁生境中沉积环境的储碳过程[32 34]㊂1.2㊀牡蛎礁生境自身的碳汇作用牡蛎自身属性的碳汇主要来源于钙化㊁同化㊁沉积三种碳循环过程㊂在钙化固碳方面,沈新强等发现长江口牡蛎礁恢复工程的固碳量达2700g/m2,相当于营造1110hm2热带森林,指出固碳潜力巨大[16]㊂公丕海等的研究表明,莱州湾海洋牧场圆管型增殖礁体上附着牡蛎总固碳量约为297.5t,相当于固定封存1071tCO2[35]㊂在同化方面,牡蛎软体组织固定的部分碳是生物和微生物的能量供给,随着牡蛎礁的生长,剩余未被利用的成为有机埋藏碳的一部分[17]㊂Phillip等评估了牡蛎礁沉积物岩心的总碳,发现深水牡蛎礁含碳达2.13%,浅水牡蛎礁达8.92%,而潮下沉积物中含碳为3.09%,并指出牡蛎礁没有提高埋藏率,牡蛎礁栖息地对大气碳的减少可能来自于生物同化[36]㊂在碳沉降和沉积方面,牡蛎介导的生物沉积速度是自然沉积速度的40倍[37]㊂研究还发现,长牡蛎摄入的POC能量仅11%被机体吸收,绝大部分以粪便或假粪的形式排放到沉积物中[38]㊂在沉积速率方面,研究发现新建牡蛎礁体周边沉积物的有机碳含量相对较高[39 40]㊂Lee等从生物沉降和物理沉积过程量化了模拟实验中沉积物的OC与IC,发现活体牡蛎在运输悬浮颗粒物沉积和有机碳沉降速率方面是死亡牡蛎的2.9倍和3倍[20]㊂另外,与其他蓝碳相比,牡蛎礁周边的碳累积速率未低于平均水平,可达131gm-2a-1[41 42]㊂在碳埋藏效率方面,Fodrie指明牡蛎礁埋藏活动带下的有机碳可以脱离上覆水或大气相互作用而实现埋藏[23]㊂此外,牡蛎礁的三维稳定结构,有利于减缓水流㊁波浪和沉积再悬浮,从而促进沉积积累[43]㊂且随着海平面的上升,沿岸沉积物厚度的上升,浅水或潮下带有礁区域都有助于牡蛎礁生境的可持续碳埋藏[44 45]㊂1.3㊀牡蛎礁生境与海洋 蓝碳 的耦合作用牡蛎礁生境除自身碳循环碳汇价值外,对其他蓝碳系统也具有增加固碳和储碳的作用㊂首先,牡蛎礁生境可提高浮游动物㊁底栖生物及鱼类的多样性和丰富度[19,46 49],从而直接增加渔业碳汇㊂另外,牡蛎的粪便和排泄物作为底栖营养物质,可充当有机肥(organicfertilizer,OF)供给其他蓝碳㊂例如,牡蛎可以通过滤食水体悬浮物和稳定沉积物促进水下海草的生长及恢复[50],进而增加海草的固碳和储碳效益㊂其次,牡蛎礁生境也可影响盐沼的生长与存活㊂如Fodrie等发现修复的美洲牡蛎(Crassostreavirginica)礁体附近的盐沼面积正在变大[23]㊂针对这个现象,通常认为牡蛎礁可防护盐沼湿地不受海浪侵蚀[51]㊂但也有另一种解释是牡蛎礁生境附近的沉积物增长到了盐沼的生存潮位[52 53],间接促进了盐沼的生存能力㊁固碳能力及沉积物积累㊂另外,研究发现牡蛎礁的物理沉积作用可以助力盐沼植物碳埋藏[53]㊂此外,其他蓝碳系统也具有促进牡蛎礁生境固碳和储碳的能力㊂研究表明海草生物量的增加可提高牡蛎的生长速率,最高生物量的海草可使牡蛎稚贝的生长速率提高40%[54]㊂类似地,研究还发现在海带养殖区附近牡蛎外壳与软体组织的生长速度明显更快,说明了其他蓝碳通过影响年轻牡蛎的生长,来贡献较多的固碳量及较少的CO2溢出[55]㊂在其他蓝碳对牡蛎礁生境的储碳影响方面,Fodrie的研究结果表明盐沼边缘礁起到了净碳汇作用[23]㊂另外,牡蛎与藻类的协同作用对提高整个系统的生态效益具有显著影响㊂例如,研究发现牡蛎礁群和海底藻林共生态系统的生物量㊁初级生产力和总生产力分别是单系统的44.04倍㊁5.03倍和5.34倍[56]㊂总之牡蛎礁生境与其他蓝碳的有机结合,不仅可以促进其他蓝碳的恢复,还能提高牡蛎礁生境的可持续固碳和储碳潜力,从而可持续增加大气CO2的吸收㊂9072㊀7期㊀㊀㊀王桃妮㊀等:牡蛎礁生境:海岸带可持续发展的潜在碳汇㊀1.4㊀牡蛎礁生境碳源与汇的评估除呼吸作用排放CO2外,受大气CO2分压的影响,钙化过程吸收2molHCO-3,生成1mol碳酸钙壳的同时也会产生0.62mol的CO2并最终排放到大气中[57]㊂从海洋无机碳的循环角度看钙化是固碳过程,而碳源与汇的格局并不能单从钙化作用进行定论,而应该是对整个生境的碳吸收与释放进行评估[58](图2)㊂在牡蛎养殖生境中,国内有很多的研究案例仍然将钙化结果直接视为碳汇[59 65],公式为贝类固碳=软体组织固碳+贝壳固碳,而忽视了钙化与呼吸释碳㊂基于此方法,计算出2016 2021年全国牡蛎养殖固碳可达4.0ˑ105t(图3),但实际上钙化过程释放了超过一半的CO2(图3),所以此方法高估了钙化固碳量㊂唐启升等用能量收支方法[66]评估了近20年来我国养殖贝类的碳汇潜力,可表示为:使用碳=移出碳+储存碳+释放碳,当移除碳和储存碳之和大于呼吸和钙化释放碳,就是碳汇,其结果显示牡蛎的移出和储存碳占使用碳的64.3%[34](图3)㊂但移出碳中的有机碳若没有被完全埋藏,在气候变化的影响下,依然会发生氧化而进行碳释放,视为碳转移㊂在牡蛎礁生境中,Fodrie等纳入了1mol碳酸钙壳生成时释放0.62molCO2的影响,根据公式:储存碳=有机碳-无机碳ˑ0.62,认为有机碳库大于与CO2排放相关的无机碳库时,牡蛎礁生境就是碳汇,反之则是碳源㊂该研究发现近十年的北卡罗莱纳州浅水潮下带牡蛎礁有净碳汇作用,每公顷牡蛎礁的年储碳量可达(1.0ʃ0.4)MgC,而位于潮间带沙地的牡蛎礁则是净碳源,其碳酸盐的沉积量可达(7.1ʃ1.2)MgC[23]㊂此方法未将呼吸释放碳纳入其中,且忽视了已沉积的碳酸盐㊂图3㊀牡蛎礁生境的碳汇评估方法Fig.3㊀Carbonsinkassessmentmethodsforoysterreefhabitats数据来源:2016 2022‘中国渔业统计年鉴“,图中蓝色区域代表埋藏因此,牡蛎礁生境碳源与汇需要从牡蛎礁自身整体碳循环[20]和由牡蛎礁生态系统服务价值引起的碳汇效应进行评估㊂牡蛎礁自身的碳收支:净储存碳=(生物沉降作用+沉积作用+钙化作用)-(呼吸作用CO2+钙化作用CO2)-(侵蚀作用+再悬浮作用+矿化作用)(图1)㊂且牡蛎礁碳的源与汇需因地制宜,当储存的有机和无机埋藏量大于释放碳量,即总储存碳大于0,则为碳汇㊂对于新建牡蛎礁,在建礁周期内总储碳为始末储碳差值,若为正值,则为碳汇[58]㊂另外,在不考虑侵蚀㊁再悬浮和矿化的情况下,2016 2020年的养殖牡蛎被0172㊀生㊀态㊀学㊀报㊀㊀㊀44卷㊀全部埋藏或以牡蛎礁的形式生长,到目前为止是大气碳的汇(图3)㊂之所以如此,是因为牡蛎个体钙化释放碳大于呼吸释放碳[34](图3),且表观IC和OC埋藏碳量4.9ˑ105t远大于释放碳㊂另一方面,牡蛎礁生态系统服务引起的碳汇效应需从牡蛎礁的生态系统服务价值角度进行评估,将生态系统服务价值及碳价值进行关联,从而纳入碳汇核算体系㊂2㊀微生物对牡蛎礁生境碳汇的作用2.1㊀牡蛎改善河口富营养化,促进有机固碳和储碳微生物主导的碳循环过程控制着环境中碳的来源及去向,其对牡蛎礁生境的碳转化和储存效果与牡蛎改善富营养化的作用相关㊂在富营养化河口区域,营养盐浓度相对较高,C:N和C:P比例降低,微生物呼吸作用加强,且活化的溶解有机碳较多,容易将富营养化河口区域变成CO2的源[30,67]㊂牡蛎礁生境主要是通过牡蛎滤食藻类来控制富营养化,牡蛎日滤水量高达189L(我国牡蛎产业发展报告)㊂此外,牡蛎滤食之后的排泄物沉积到海底,刺激底栖微生物发生反硝化作用,将硝酸盐及亚硝酸盐还原为气态氮化物和氮气,也可缓解富营养化并增加碱度[68 70]㊂另外,适宜的牡蛎容纳量不会添加额外的营养物质,因为底栖的营养物质和能量可支持植物的初级生产和系统的有效利用[71 72]㊂同时,牡蛎礁与牡蛎养殖具有相似的生物地球化学功能[72]㊂牡蛎礁生境在河口富营养化区域发挥作用后,微生物主要是通过以下4个过程参与固碳㊁转化和封存碳㊂第一,底栖环境的改善和营养物质的供给可能会提高其周边的植被多样性,影响微生物群落和功能,进而提升微生物的固碳能力[45]㊂第二,营养盐浓度相对降低有助于增加C:N和C:P的比例,使得有机碳的周转明显,可能增加RDOC㊂另外,营养物质降低后,微生物呼吸作用减弱,有机碳积累增加,有利于沉积储碳[30](图4)㊂第三,随着底栖牡蛎的生长,会增加有机埋藏㊂因为底部表层微生物好氧分解有机物会造成底栖环境的厌氧性,而厌氧是硫化物促使碳封存的主要条件[73]㊂第四,底栖微生物的厌氧呼吸代谢可产生较少的CO2和更多的碳酸氢盐,来增加额外的碳汇[70,73]㊂综上所述,牡蛎礁生境不仅扩大了水体净化和渔业碳汇的可持续发展,同时间接促进了微生物对碳的有机转化效率和储存能力㊂图4㊀富营养化河口牡蛎礁生境N2去除对MCP的正反馈及增汇机制Fig.4㊀PositivefeedbackonMCPfromoysterreefhabitatswithN2removalineutrophicestuaries2.2㊀牡蛎发生侵蚀㊁溶解增加碱性和无机固碳牡蛎礁是典型的生物礁碳酸盐岩,在生物及非生物作用下,经过不断的堆积和沉积可形成不同类型石灰岩㊂碳酸盐风化是生物地球化学循环的关键过程,可在千年到数百万年的时间尺度上来调节CO2吸收和释放[74 75]㊂牡蛎礁发生的侵蚀㊁溶解作用与碳酸盐风化过程相似,同样影响着地球的碳循环进程[76]㊂比如,红1172㊀7期㊀㊀㊀王桃妮㊀等:牡蛎礁生境:海岸带可持续发展的潜在碳汇㊀树林区域碳酸盐沉积物溶解是大气CO2的常年汇,是红树林储存有机碳的23倍[77]㊂据Fodrie统计,北卡罗来纳州区域的牡蛎礁若有超过50%的贝壳被溶解,将有助于二氧化碳排放的减少[23]㊂这给从时间尺度上的依靠牡蛎壳溶解增加碳汇提供了证据㊂在非生物作用中,CaCO3与CO2和H2O反应生成的HCO-3离子,由于水解作用大于电离且产生碱性,使得部分CO2被中和,从而减少排放(图5)㊂与微生物相关的风化速率比非生物高几个数量级,包括微生物代谢铁载体或有机酸㊁细菌生长生物膜破坏矿物表面的稳定性,促进风化㊂这些可以提高提高礁体表面及沉积物⁃水界面的酸化并加速CaCO3溶解,从而增加钙离子释放率[78 79],可以给新生碳酸钙的形成提供成核或附着位点[76,80],比如有孔虫㊁贝类㊁颗石藻和珊瑚等的形成㊂另外,微生物分泌的有机基质或胞外聚合物(Extracellularpolymericsubstance,EPS)也可以结合这部分钙离子,产生的CO2以HCO-3的形式溶解在基质中,使得该过程产生碱性,为CaCO3析出创造有利条件,即促进了CaCO3沉淀,此过程叫微生物诱导碳酸盐沉淀(microbiologicalinducedcalciumcarbonateprecipitation,MICP)[66 68](图5)㊂在牡蛎礁生境的沉积环境中,较高浓度的Ca2+会增加微生物诱导形成沉积碳酸盐的机率,而改变土壤的孔隙度和混凝土裂缝㊁压力强度㊁减缓沉积环境被扰动[81 84]㊂总之,牡蛎礁生境下微生物参与的侵蚀㊁溶解作用与局部碱度增加㊁修复基底裂缝和固化沉积环境密切相关,进而增加牡蛎礁生境可持续埋藏效率㊂图5㊀牡蛎礁侵蚀㊁溶解及固化过程Fig.5㊀Erosion,dissolutionandsolidificationprocessesofoysterreefs3㊀研究展望面对牡蛎礁生境被破坏的严峻现状,牡蛎礁生境保护和恢复措施受到广泛关注㊂快速厘清牡蛎礁生境OC和IC埋藏对大气CO2的影响,发展与其他蓝碳生态系统的耦合增汇模式,加强对牡蛎礁生境的保护和修复意识,成为维持海岸带生态系统平衡的重要前提㊂因此,建议未来研究的着力点应重点围绕以下几个方面:3.1㊀厘清牡蛎礁生境碳的源与汇从整体上认识牡蛎礁生境碳 源⁃汇 是正确评估牡蛎礁生境价值的关键,也是推动保护并修复牡蛎礁生境的前提㊂首先,在不同气候纬度下,选择不同地区㊁不同潮区㊁不同牡蛎礁生境类型,建立物质循环和能量传递模型,比较分析碳流途径包括牡蛎自身及食物网和微食物网作用㊁碳收支及与CO2直接相关的有机和无机碳通量㊂其次,应从BP㊁CCP和MCP三泵与生态系统功能相结合角度来建立牡蛎礁生境的碳汇计量体系,并且将微生物作用下的RDOC纳入其中㊂最后,将室内模拟与原位调查相结合,采取多因素调控的方法,研究牡蛎或牡蛎礁生境碳源引入其他蓝碳系统后,微生物对储存和释放碳过程的影响,进一步为牡蛎礁生境增汇的提供理论支撑㊂3.2㊀发展牡蛎礁生境增汇模式实践表明一个独立的生态系统是很难实现可持续增汇㊂研究发现将牡蛎礁生境与其他蓝碳系统耦合,是2172㊀生㊀态㊀学㊀报㊀㊀㊀44卷㊀发挥碳汇倍增有效的途径㊂从物质循环和能量流动角度来看,利用牡蛎与其他蓝碳系统耦合来调节海岸带生态系统增汇,是实现BCP㊁CCP和MCP结合的最佳模式㊂其中,加速BCP的模式主要有两种:一是在适宜海区扩大牡蛎⁃大型海藻型海洋牧场[85 86],可采用挂式和礁石式牡蛎进行搭配;二是在不同潮区或海草床㊁红树林和盐沼区域,分别建立礁石式牡蛎㊁桩式牡蛎养殖㊁挂式牡蛎养殖等,从而实现多系统的协同增汇(图6)㊂同时在不同情景下,评估牡蛎㊁底栖动物㊁鱼类和微生物群落结构及多样性,环境和碳汇效益及通量等方面,打造中国海岸带可持续发展增汇模式,从而进行各国海岸带可持续增汇合作㊂图6㊀中国海岸带牡蛎礁生境增汇的概念图Fig.6㊀ConceptualmapofoysterreefhabitatsenrichmentincoastalzonesofChinaOF:有机肥3.3㊀加强牡蛎礁生境保护与修复为实现牡蛎礁生境的可持续发展,在增汇背景下研究牡蛎礁的保护与修复成为未来的工作重点㊂牡蛎礁生境保护和修复的重点是营造牡蛎可生存及生活环境,从技术层面来讲,既可以增加牡蛎成活率又可以减排的附着基是增汇的关键㊂微生物可修复水泥石块和固化沉积物的特性给研究微生物㊁贝壳粉末和混凝土等材料结合的牡蛎礁基底提供了理论基础㊂其中可诱导碳酸盐沉淀的微生物包括Bacillusmucilaginous,Bacillussubtilis和Cyanobacteria等,代谢过程有反硝化途径,氨基酸途径,脲解途径,光合作用,硫酸盐还原和甲烷氧化[80,87 88]㊂研究还发现由脲酶(urease)和碳酸酐酶(carbonicanhydrase)驱动的脲素水解是生物胶产生的关键,bioMASON公司已经利用野生型芽孢杆这个特性产生了碳排放量少于传统水泥的基底材料[89]㊂因此,迫切需要企业㊁微生物与牡蛎礁专家协同合作探究海洋材料对牡蛎礁生境碳减排和增汇方面的研究,特别是牡蛎稚贝附着效果及环境效应研究㊂参考文献(References):[1]㊀王秀君,章海波,韩广轩.中国海岸带及近海碳循环与蓝碳潜力.中国科学院院刊,2016,31(10):1218⁃1225.[2]㊀焦念志,梁彦韬,张永雨,刘纪化,张瑶,张锐,赵美训,戴民汉,翟惟东,高坤山,宋金明,袁东亮,李超,林光辉,黄小平,严宏强,胡利民,张增虎,王龙,曹纯洁,罗亚威,骆庭伟,王南南,党宏月,王东晓,张偲.中国海及邻近区域碳库与通量综合分析.中国科学:地球科学,2018,48(11):1393⁃1421.[3]㊀唐剑武,叶属峰,陈雪初,杨华蕾,孙晓红,王法明,温泉,陈少波.海岸带蓝碳的科学概念㊁研究方法以及在生态恢复中的应用.中国科学:地球科学,2018,48(6):661⁃670.[4]㊀焦念志.研发海洋 负排放 技术支撑国家 碳中和 需求.中国科学院院刊,2021,36(2):179⁃187.[5]㊀WangFM,SandersCJ,SantosIR,TangJW,SchuerchM,KirwanML,KoppRE,ZhuK,LiXZ,YuanJC,LiuWZ,LiZA.Globalbluecarbonaccumulationintidalwetlandsincreaseswithclimatechange.NationalScienceReview,2021,8(9):nwaa296.[6]㊀焦念志,刘纪化,石拓,张传伦,张永雨,郑强,陈泉睿,汤凯,王誉泽,董海良,唐剑武,叶思源,董双林,高坤山,张继红,薛强,李琦,贺志理,屠奇超,王法明,黄小平,白雁,潘德炉.实施海洋负排放践行碳中和战略.中国科学:地球科学,2021,51(4):632⁃643.[7]㊀FitzsimonsJA,BraniganS,BrumbaughRD,McdonaldT,ErmgassenPSEZ.Restorationguidelinesforshellfishreefs:TheNature3172㊀7期㊀㊀㊀王桃妮㊀等:牡蛎礁生境:海岸带可持续发展的潜在碳汇㊀4172㊀生㊀态㊀学㊀报㊀㊀㊀44卷㊀Conservancy,ArlingtonVA,USA,2019.[8]㊀TheNatureConservancy.EaternOyster(Crassostreavirginica).LoxahatcheeRiverDistrict.2009.http://www.loxahatcheeriver.org.[9]㊀NelsonKA,LeonardLA,PoseyMH,AlphinTD,MallinMA.Usingtransplantedoyster(Crassostreavirginica)bedstoimprovewaterqualityinsmalltidalcreeks:apilotstudy.JournalofExperimentalMarineBiologyandEcology,2004,298(2):347⁃368.[10]㊀全为民,张锦平,平仙隐,施利燕,李培军,陈亚瞿.巨牡蛎对长江口环境的净化功能及其生态服务价值.应用生态学报,2007,18(4):871⁃876.[11]㊀QuanWM,HumphriesAT,ShiLY,ChenYQ.Determinationoftrophictransferatacreatedintertidaloyster(Crassostreaariakensis)reefintheYangtzeRiverEstuaryusingstableisotopeanalyses.EstuariesandCoasts,2012,35(1):109⁃120.[12]㊀全为民,沈新强,罗民波,陈亚瞿.河口地区牡蛎礁的生态功能及恢复措施.生态学杂志,2006,25(10):1234⁃1239.[13]㊀QuanWM,ZhengL,LiBJ,AnCG.Habitatvaluesforartificialoyster(Crassostreaariakensis)reefscomparedwithnaturalshallow⁃waterhabitatsinChangjiangRiverEstuary.ChineseJournalofOceanologyandLimnology,2013,31(5):957⁃969.[14]㊀QuanWM,ZhuJX,NiY,ShiLY,ChenYQ.Faunalutilizationofconstructedintertidaloyster(Crassostrearivularis)reefintheYangtzeRiverEstuary,China.EcologicalEngineering,2009,35(10):1466⁃1475.[15]㊀BrumbaughRD,CoenLD.Contemporaryapproachesforsmall⁃scaleoysterreefrestorationtoaddressSubstrateVersusRecruitmentlimitation:areviewandcommentsrelevantfortheOlympiaoyster,OstrealuridaCarpenter1864.JournalofShellfishResearch,2009,28(1):147⁃161.[16]㊀沈新强,全为民,袁骐.长江口牡蛎礁恢复及碳汇潜力评估.农业环境科学学报,2011,30(10):2119⁃2123.[17]㊀唐启升,刘慧.海洋渔业碳汇及其扩增战略.中国工程科学,2016,18(3):68⁃73.[18]㊀张继红,刘毅,吴文广,王新萌,仲毅.海洋渔业碳汇项目方法学探究.渔业科学进展,2022,43(5):151⁃159.[19]㊀McLeodIM,zuErmgassenPSE,GilliesCL,HancockB,HumphriesA.Canbivalvehabitatrestorationimprovedegradedestuaries?.CoastsandEstuaries.Amsterdam:Elsevier,2019:427⁃442.[20]㊀LeeHZL,DaviesIM,BaxterJM,DieleKR,SandersonWG.Missingthefullstory:firstestimatesofcarbondepositionratesfortheEuropeanflatoyster,Ostreaedulis.AquaticConservation:MarineandFreshwaterEcosystems,2020,30(11):2076⁃2086.[21]㊀JacksonJBC,KirbyMX,BergerWH,BjorndalKA,BotsfordLW,BourqueBJ,BradburyRH,CookeR,ErlandsonJ,EstesJA,HughesTP,KidwellS,LangeCB,LenihanHS,PandolfiJM,PetersonCH,SteneckRS,TegnerMJ,WarnerRR.Historicaloverfishingandtherecentcollapseofcoastalecosystems.Science,2001,293(5530):629⁃637.[22]㊀BeckMW,BrumbaughRD,AiroldiL,CarranzaA,CoenLD,CrawfordC,DefeoO,EdgarGJ,HancockB,KayMC,LenihanHS,LuckenbachMW,ToropovaCL,ZhangGF,GuoXM.Oysterreefsatriskandrecommendationsforconservation,restoration,andmanagement.BioScience,2011,61(2):107⁃116.[23]㊀FodrieFJ,RodriguezAB,GittmanRK,GrabowskiJH,LindquistNL,PetersonCH,PiehlerMF,RidgeJT.Oysterreefsascarbonsourcesandsinks.ProceedingsoftheRoyalSocietyB:BiologicalSciences,2017,284(1859):20170891.[24]㊀奉杰,张涛,马培振,白涛,徐江玲,王海艳,宋浩,赵伟,赵亮,杨美洁,胡志,周骢,石璞,胡朋朋,李海州.牡蛎礁碳源⁃汇功能研究进展与展望.渔业科学进展,2022,43(5):115⁃125.[25]㊀BadmanDG.Quantitativestudiesontrehaloseintheoyster,CrassostreavirginicaGmelin.ComparativeBiochemistryandPhysiology,1967,23(2):621⁃629.[26]㊀陈燕珊,万萌萌,林锟,于贞贞,王睿,谭丽菊,王江涛.渤海湾渔业碳汇分析与预测初探.海洋科学,2022,46(9):77⁃84.[27]㊀蔡阮鸿,郑强,陈晓炜,徐大鹏,王煜,骆庭伟,张锐.微型生物碳泵研究进展.厦门大学学报:自然科学版,2021,60(2):355⁃366.[28]㊀JiaoNZ,HerndlGJ,HansellDA,BennerR,KattnerG,WilhelmSW,KirchmanDL,WeinbauerMG,LuoTW,ChenF,AzamF.Microbialproductionofrecalcitrantdissolvedorganicmatter:long⁃termcarbonstorageintheglobalocean.NatureReviewsMicrobiology,2010,8(8):593⁃599.[29]㊀HansellD,CarlsonC,RepetaD,SchlitzerR.Dissolvedorganicmatterintheocean:acontroversystimulatesnewinsights.Oceanography,2009,22(4):202⁃211.[30]㊀JiaoNZ,RobinsonC,AzamF,ThomasH,BaltarF,DangH,Hardman⁃MountfordNJ,JohnsonM,KirchmanDL,KochBP,LegendreL,LiC,LiuJ,LuoT,LuoYW,MitraA,RomanouA,TangK,WangX,ZhangC,ZhangR.Mechanismsofmicrobialcarbonsequestrationintheocean⁃futureresearchdirections.Biogeosciences,2014,11(19):5285⁃5306.[31]㊀JiaoNZ,HerndlGJ,HansellDA,BennerR,KattnerG,WilhelmSW,KirchmanDL,WeinbauerMG,LuoTW,ChenF,AzamF.Themicrobialcarbonpumpandtheoceanicrecalcitrantdissolvedorganicmatterpool.NatureReviewsMicrobiology,2011,9(7):555.[32]㊀LiangC,SchimelJP,JastrowJD.Theimportanceofanabolisminmicrobialcontroloversoilcarbonstorage.NatureMicrobiology,2017,2:17105.[33]㊀LianJ,ZhengXX,ZhuoXC,ChenYL,HeC,ZhengQ,LinTH,SunJ,GuoWD,ShiQ,JiaoNZ,CaiRH.Microbialtransformationofdistinctexogenoussubstratesintoanalogouscompositionofrecalcitrantdissolvedorganicmatter.EnvironmentalMicrobiology,2021,23(5):2389⁃2403.[34]㊀唐启升,蒋增杰,毛玉泽.渔业碳汇与碳汇渔业定义及其相关问题的辨析.渔业科学进展,2022,43(5):1⁃7.[35]㊀公丕海,李娇,关长涛,李梦杰,刘超.莱州湾增殖礁附着牡蛎的固碳量试验与估算.应用生态学报,2014,25(10):3032⁃3038.[36]㊀WestbrookP,HeffnerL,LaPeyreMK.Measuringcarbonandnitrogenbioassimilation,burial,anddenitrificationcontributionsofoysterreefsinGulfcoastestuaries.MarineBiology,2019,166(1):4.[37]㊀GilesH,PilditchCA.EffectsofdietonsinkingratesanderosionthresholdsofmusselPernacanaliculusbiodeposits.MarineEcologyProgress。
一种环保型聚合物抗高温抗复合盐降滤失剂及其制备方法与流程
一种环保型聚合物抗高温抗复合盐降滤失剂及其制备方法与流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!本发明提供了一种环保型聚合物抗高温抗复合盐降滤失剂及其制备方法与流程。
基于剩余曲线分析和变压精馏分离氯仿-乙腈-乙醇三元体系
第5期陈彪,等:基于剩余曲线分析和变压精> 分离氯仿-乙q-乙醇三元体系-51 -基 曲线分 变压精-分离仿-乙月青-陈彪,陈金芳,王岩(武汉工程大学化工与制药学院,湖北武汉430000)摘要: 剩余曲线初步分析氯仿、乙q 和乙醇三元混合物的分离过程。
在分离过程中, 氯仿作 步分离的共沸剂, 剩余曲 线分析计 额外加入氯仿与原料 最佳质量比为054, 混合 步分离过程中,塔顶产 氯仿-乙醇共 ,塔底产 乙月青。
再 压精>分离氯仿和乙醇共 ,高压塔和低压塔压强分别为600 kPa 和101525 kPa o 最后Ay/i Plus 对工艺化, 最 作 ’明,氯仿、乙青和乙醇的质量含量均大于99%,符合设计要求°关键词:剩余曲线;共 #变压精>;A S pen plus #优化中图分类号:TQ0285 文献标识码:A 文章编号:1008-021X ( X0X1) 05-0051-03Se/a^ation Procest of Methyl TUchloUde-AcetonihCe-Ethanol System by the Analysit to ResiCual Curve and Pressure Swing DistillationChee Biao , Chee Jinfang , Wang Yan(School of Chemical Engineering and Pharmacy , Wuhan Institute of Technology , Wuhan 430000, China )Abstract :The separation process of the ternary mixture of Methyl trichloride ( chloroform) - acetonioilv-ethanoi was analyzed bythe residual curve. Chloroform was selected as the azeotropic agent for the pre/minary separation. According to the analysis of theremaining curve , the best mass ratio of the addi/onal chloroform to the raw material liquid was calculated to bo 0.64. The topproduct was chloroform - ethanol azeotrope and the bottom product is acetonitrile in the pre/minary separation process of the mixture under this condition. The azeotrope of chloroform and ethanol was separated by. The pressure-wing disti/ation of thehigh-pressure tower is 600 kPa and the pressure of the low-pressure tower is 101.325 kPa. The optimal operating conditions werethen obtained by using Aspen Plus to simulate and optimize the process. The results showed that the mass content of chloroform , acetonitrile and ethanol are all more than 99% which meets the design requirements.Key words :residual curve ;ternary mixture ;pressure -swing disti/ation ;Aspen plus ;optimization氯仿、乙q 和乙醇作为重要有机溶剂广泛应用于化学、医; 量子点公司,提纯量子点粗产 氯仿-乙q-乙醇的纯化体系,造成纯化端有大量 成,其中氯仿占71P%、乙q 占18.8% 乙醇占9.7%,又乙醇分别与氯仿和 乙q 形成两种二元最低共 〔一2*, 通 >难有效分离。
单词背诵的8字原则
单词背诵的8字原则单词背诵的“8字”原则今天我将以这篇短文给各位同学介绍一下背GRE单词的一些最常用的方法。
其中背大量单词有一条“8字”原则是非常重要的:集中短期大量重复其实GRE是整个出国考试中对单词要求最高的一门考试,所以如果能用以下方法把红宝书、蓝宝书、黑宝书、绿宝书以及巴朗词表中的绝大多数单词都用最短的时间、最多的遍数进行记忆的话将无疑是顺利通过所有出国考试的捷径!大家可以从网上下载TOEFL、GRE、GMAT、LSAT、SAT的真题,把其中你认为最难部分的对应翻译作为考试题代替英文,你会发现GRE1600、GMAT800、LSAT180、TOEFL677/120、SAT1600都将变的如此清晰。
所以,如何解决GRE18,000单词就显得相当有意义。
下面我将罗列背记单词的一般方法:我相信无论你有没有上过我的GRE词汇课都会从中找到最适合自己快速突破英语词汇的方法,要坚信充足的词汇量是任何与外语相关考试、工作、学习、生活成功的基石。
1. 词根词缀:claim-叫喊1) declaim高谈阔论2) disclaim否认3) proclaim声明4) exclaim大喊5) acclaim欢呼、称赞6) claim要求、声称7) acclaimed受欢呼的、受称赞的8) reclaim要求归还、矫正、开垦it-走1) itinerant流动的,巡回的2) itinerary行程表、旅行路线3) itinerate巡回dict/dic-说1) indicate显示、象征2) indicative暗示的3) indict起诉4) dictator独裁者5) dictation听写6) abdicate退位、辞职、放弃fect-做1) affectation做作、虚假2) affection爱3) affecting感人的4) affected不自然的、假装的gnost-知道1) agnostic不可之论的2) diagnostic诊断的3) ignorance无知2. 拆分联想:1) Morose:没有玫瑰——阴郁的2) Canine:一只藏敖可以咬死9只狼——(类似)犬的3) Sanguine:陈圆圆看到三桂面色红润——充满希望的4) Charisma:中国东方生起了毛主席——领袖魅力5) Camouflage:拿着白旗出来——伪装掩饰6) Euthanasia:欧洲比亚洲早实行安乐死——安乐死7) Meander:我和她在蜿蜒的小河边散步——蜿蜒地流;漫步8) Tenant:十只蚂蚁找家——房客9) Adamant:亚当和蚂蚁——固执的10) Hermit:何处觅她——隐士11) Saturnine:坐在九个骨灰盒子上——忧郁的、严肃的12) Caveat:因为在岩洞偷吃东西而被警告——警告、告诫3. 谐音法:1) Barter:中国第2个登陆NBA的球员巴特尔——以物换物2) Ambition:俺必胜——野心、雄心3) Frugal:豆腐卤就够了——节俭的、少量的4) Parsimonious:怕使用钱财——吝啬的5) Obtuse:我不会吐丝,而别的蚕都吐——笨的、钝角的6) Squander:(口袋)是光的——浪费、挥霍7) Meticulous:因为每题失去了就得死,所以要细心、谨慎——小心翼翼的8) Lout:老土——笨人9) Bauble:随便抱吧——美观而无价值的东西10) Reluctant:驴拉坦克——不情愿的11) Bale:点背啊——不幸、灾祸12) Dolt:逗他——傻瓜13) Cacophony:卡壳——刺耳的声音14) Asthma:阿诗玛——气管炎15) Torrid:太热的——酷热的16) Belle:贝勒/格格——美女17) Dart:打他——飞标18) Appall:我怕——吓人19) Obstinate:我不是听你的——固执的20) Lynch:凌迟——私刑处死21) May:美——少女22) Carnival:嘉年华——狂欢节4. 分类:“七仙姑”:daunt使胆怯flaunt炫耀gaunt憔悴的、荒凉的haunt常到某地、萦绕心头、鬼魂出没jaunt短途旅游taunt嘲笑、辱骂vaunt炫耀、自夸“演讲、论文”:Tractate/treatis e/thesis/discourse/disquisition/dissertation “学科”:astrology 占星术dermatology 皮肤病学gerontology 老人医学homiletics 说教术neurology 神经学pathology 病理学petrology 岩石学philology语言学meteorology 气象学“哲学术语”:agnosticism 不可知论cosmology宇宙论cynicism犬儒主义dichotomy 二分法epistemology认识论metaphysics形而上学methodology方法论ontology本体论skepticism怀疑论chauvinism沙文主义5. 形近词:1) Clergy牧师 cleric牧师 clerk秘书、店员2) Venal****的 vernal青春的 venial可宽恕的3) Fleck斑点 flake薄片 flak高射炮、怒斥4) Pod豆荚 plod重步走 prod戳5) Tarry逗留 tally与一致 harry骚扰 parry挡开6) Blade刀锋blasé厌倦的 blaze 火焰7) Glade林中空地 glaze上釉彩 glabrous光滑的8) Pendent吊着的 pedant书呆子 pendant悬挂物9) Adapt使适应、改编 adept熟练的 adopt收养、采纳10) ordinance大炮ordinance法令11) ingenious有发明天分的ingenuous天真的12) limber柔软的lumber伐木13) catastrophe/cataclysm/calamity灾难14) desperate/despairing/despondent 绝望的15) alloy合金alley 跑道ally联盟16) beach/breach/bleach 沙滩/破坏/漂白17) condole/condone/console 吊唁/宽恕/安慰18) delicate/deliberate/debilitate 精巧的/深思熟虑的/削弱19) discretion/discrete/discrepancy 判断力/分散的/不同20) ellipsis/ellipse/eclipse 省略/椭圆/日食,衰落21) fortuitous/futile/fatuity/fatuous 偶然,幸运/无用的/愚昧,昏庸/愚昧的22) gust/gush/gash 狂风/涌出/砍的很深的伤口23) hash/hush/harsh 磨碎/安静/粗糙的,苛刻的24) impassion/impassive/passive 激情/冷漠的/被动的25) indigence/indigenous/diligence 贫穷/本土的/勤奋的26) incarcerate/incarnation/incinerate 监禁/化身/把……烧成灰27) libel/labile/label 诽谤/易发生变化的/标签28) precocious/precarious/prevaricate 早熟的/不稳定的/支吾搪塞29) statuary/statue/statute/saturate 雕像/雕像/法令,法规/湿透,饱和30) tangible/tangle/tangent/tangy 切实的/混乱/切线的,离题的/强烈盐味的31) varnish/vanish/vanquish 上漆,修饰/消失/征服6. 意群法:1) 动静:commotion/disturbance/perturbation/turbulence/action/ag itation/din/ferment/fracas/havoc/pandemonium turmoil/upheaval——equanimity/hush/quiet/quiescence/serenity/silence/tranquil/ tranquility/pacific2) 合分:diverge/detach/disperse/dissipate/isolate/separate/break/s catter/breach/rend /sunder——accumulate/aggregate/agglomerate/amalgamate/collect/coales ece /concatenate/ compound/gather /group/nucleate/unify/unite/solder/nexus3) 多少:profuse/abundant/affluent/copious/plenty/prodigal/rife/ple thora/slewscant/scanty/limited/penurious/sparse/dearth/iota/pau city/pinch4) 批评、指责、谴责、辱骂、斥责对称赞、歌颂:(轻)admonish/chide/criticize/reproach/reproof/reprove/flak;(重) berate/castigate/censure/chastise/condemn/denounce/diatribe/excoriate/fulminate/impeach/impugn/invective/inveigh/lambaste/rail/rebuke/reprehend/reprimand/reprobate/revile/scold/upbraid/vituperate/pan——acclaim/applaud/commend/eulogize/exalt/extol/glorify/laud/rave/ tout/accolade/en comium/approbation/orchid/plaudit/tribute; (诽谤)slander/calumniate/libel/defame5) 顺从、顽固:amenble/amiable/complaisant/compliant/docile/obedient/r esponsive/submissive/tolerant/ tractable/alacrity-incorrigible/bigoted/contumacious/headstrong/hidebound/indocile/intractable/intransigent/obdur ate/obstinate /rebellious/recalcitrant/refractory/stubborn/tenacious6) 肯定、否定:affirm/assert/attest/aver/avow/posit/proclaim——deny/disclaim/gainsay /negate/repudiate(包含证据)corroborate/prove/substantiate/verify——disprove/refute/controvert7) 忧郁对快乐:morose/saturnine/downcast/crestfallen/dispririted/gloomy/ melancholy/doleful/ /lugubrious——heerful/ecstatic/exhilarating/facetious/jocund/jaunty/sanguine8) 促进、抑制:abet/aid/assist/catalyze/encourage/facilitate/foment/foster /goad/ignite/impel/incite/incubate/instigate/permit/precipitate/prod/provoke/pro mote/ rouse/spur/ stimulate/trigger/ vitalize——arrest/ban/check/curb/extinguish/forbid/forestall/frustrate/hamper/hinder/impede/inhibit/obstruct/quell/rein /repress/restrain/scotch/squelch/stymie/subdue/stifle/thwart9) 清晰、模糊:clear/limpid/lucid/pellucid/translucent/transparent/clarity——murky/opaque/obscure/turbid/vague/obfuscate10) 扩大、缩小:aggrandize/amplify/broaden/dilate/distend/expand/inflate/ swell——constrict/contract/ condense/compress/deflate/shrink11) 健康、不健康:healthful/hygienic/innocuous/salubrious/salutary/wholeso me——debilitating/deleterious/detrimental/injurious/nocuous/noxi ous/mischievous/ lethal/pernicious/virulent12) 持续、短暂:chronic/constant/enduring/gradual/lasting/incessant/peren nial/permanent/ perpetual/persistent——evanescent/ephemeral/fleeting/fugacious/fugitive/interim/intermittent/meteoric/sporadic/transient/transitory13) 得体、无礼:amiable/civil/congenial/decent/decorous/deferent/irreproa chable/seemly——/insolentbawdy/blatant/brazen/effrontery/impertinent/impude nt/indecorous/opprobrious/rude/scurrilous/scurvy/unseemly/asp erity/impropriety14) 序言、结尾:beginning/commencement/foreword/greeting/introduction /outset/overture/preface /prelude/preamble/prologue——conclude/coda/cessation/epilogue/finale/termination/valediction15) 大小:bull/colossal/elephantine/enormous/gargantuan/gigantic/huge /immense/mammoth/ prodigious/tremendous/titanic——diminutive/microscopic/minuscule/minute/piddling/paltry/slight/trivial/tiny16) 相关、无关:apposite/appropriate/apropos/apt/cognate/felicitous/germ ane/intrinsic/pertinent/related/relevant——alien/extraneous/extrinsic/foreign/impertinent/irrelevant17) 脱水、补水:desiccate/dehydrate/deplete/drain/dry/evaporate/parch/se ar——drench/douse/hydrate/ inundate/reconstitute/saturate/souse/steep18) 真假:apocryphal/bogus/deceptive/dissembling/fraudulent/feigned/fi ctitious/mendacious /prevaricated/pseudo/spurious——authenticated/candid/genuine/truthful/unfeigned /valid19) 平息抚慰、刺激激怒:allay/alleviate/appease/assuage/conciliate/lull/mitigate/mo derate/mollify/pacify/placate/propitiate/reconcile/relieve/soothe——agitate/annoy/antagonize/bother/disturb/grate/harass/harrow/irk/nag/p ester/perturb/pique/ rankle20) 尊敬、嘲笑/亵渎:deference/veneration/revere/respect/awe——irreverence/contempt/ derision/deride/profane7. “四大”总结:1) 四大挥霍 prodigal profligate wastrel spendthrift2) 四大无力 torpid lethargic dull listless3) 四大好斗 belligerent bellicose aggressive scrappy4) 四大污蔑 vilify slander malign stigmatize5) 四大颂歌 panegyric ode encomium eulogy6) 四大安慰 mollify assuage placate pacify7) 四大预言 portend prophesy presage prefigure8) 四大世俗 worldly earthly temporal secular9) 四大先驱 precursor harbinger herald forerunner10) 四大粗人 lout yokel boor churl11) 四大隐士 anchorite recluse hermit solitary12) 四大新人 novice rookie neophyte tyro13) 四大陈词banality bromide clichéplatitude14) 四大傻瓜 fatuous asinine oafish lunatic15) 四大陈腐 banal commonplace trite hackneyed8. 日常生活:1) 奔腾pent→微软Microsoft→联想legend→方正founder;2) Carnation康乃馨/violet紫罗兰/yogurt/yoghurt/yoghourt 酸奶3) 电影:Titanic/Tornado/Poseidon/The Da Vinci Code/Basic Instinct/Crash总结:从以上8种方法可以看出,实际上随处都是GRE单词,我个人认为所谓“GRE单词只可能是你一辈子在GRE考试中才会碰到”的理论随着世界的快速发展以及各国对外语水平要求的提高,几乎已经不太适用,当然,GRE中的确有很多单词还是不需要完全会运用的,但还有一条真理“人无我有,人有我优”我相信会更加适合当今日益激烈的社会竞争。
物料代号和缩写
管道仪表流程图物料代号和缩写词2.0.1分类物料代号用于管道编号,分为工艺物料代号及化学品、辅助物料和公用物料代号两类。
2.0.2工艺物料代号编写代号英文中文词义P Process stream 工艺物料(通用代号)PG Process gas 工艺气体PL Process liquid 工艺液体PS Process solid 工艺固体2.0.3化学品、辅助物料和公用物料代号缩写代号英文中文词义A Air 气AC Acid 酸、酸液ACG Acidi1y gas 酸性气体ACL Acidi1y liquid 酸性液体ACS Acidi1y sewage 酸性污水AD Additive 添加剂AM Ammonia 氨AMG Gaseous ammonia 氨气(作制冷剂)AML Liquid ammonia 液氨(作制冷剂)AMW Ammonia water 氨水BD B1owdown 排污BR Brine 盐卤水BW BOi1er feed water 锅炉给水C steamy condensate 水蒸汽凝液CA Caustic 碱,碱液CAG Caustic gas 碱性气体CAL Caustic liquid 碱性液体CAS Caustic sewage 碱性污水CAT Cata1yst 催化剂CHW Chilled water 冷冻冷水(指0℃以上)CL Chlorine 氯CM Chemicals 化学品CNS Clean sewage 清净下水CO Cooling oil 冷油(冷却油)COO Carbon dioxide 二氧化碳CRS Contaminated rain and sewage 污染下水(指污染的雨水、冲洗水、放净水、排水)CSW Chilled salt water 冷冻盐水(指0℃以下)CTMCTM Cooling transfer material 冷载体CW Cooling water 冷却水CWR Cooling water return 冷却水口水CWS Cooling water supp1y 冷却水供水DAW Dealkalized water 脱碱水(用于除盐水系统)DEW Demineralized water 除盐水(脱盐水)DR Drain 排水、排液DW Domestic water 生活用水、饮用水EA Exhaust air 排出空气ER Ethane(or ethylene)refrigerant 乙烷(或乙烯)冷冻剂Es Exhaust steam 排出蒸汽F Flare exhaust 火炬排放气FG Fuel gas 燃料气FLG Flue gas 烟道气FLW Filtrated water 过滤水FO Fuel oil 燃料油FOS Foaming solution 泡沫液FR Freon refrigerant 氟里昂冷冻剂FT Fused salt 熔盐FW Fire water 消防水GO Gland oil 填料油GW Gassed water 加气水、溶气水H Hydrogen 氢气HA Hydrochloric acid 盐酸HC High pressure condensate 高压蒸汽凝液HO Heating oi!热油、加热油、热载油HS High pressure steam 高压蒸汽HTM Heat transfer material 热载体HW Hot water 热水HWR Hot water return 热水回水(用于采暖、加热、空调等)HWS Hot water supp1y 热水给水(用于采暖、加热、空调等)HYL Hydraulic liquid 液压液体HYO Hydraulic oil 液压油HYW Hydraulic water 液压水IA Instrument air 仪表空气ICW Intermediate cooling water 冷却水二次用水IDW Industrial and domestic water 生产和生活用水IG Inert Gas 惰性气体IS Industrial sewage 生产污水(泛指工艺过程产生的污水)IW Industrial water 生产用水LC Low pressure condensate 低压蒸汽凝液LD Liquid drain 排液(泛指工艺排液)LO Lubricating oil 润滑油LS Low pressure steam 低压蒸汽MC Medium pressure condensate 中压蒸汽凝液MR Methane refrigerant 甲烷冷冻剂MS Medium pressure steam 中压蒸汽N Nitrogen 氮气NG Natura1 gas 天然气OL Oil 油(泛指除原料外的油)OS Oi1y sewage 含油污水OX Oxygen 氧气PA P1ant air 工厂空气PR Propane(or propylene)refrigerant 丙烷(或丙烯)冷冻剂PW Polished water 精制水R Refrigerant 冷冻剂、冷媒、制冷剂RAW Raw water 原水RCS Rain water and clean sewage 雨水及清净下水(指清净的雨水、冲洗水、放净水、排水)RW Raw water 雨水S Steam 蒸汽SA Sulfuric acid 硫酸SEW Sea water 海水SFW Soft water 软水(软化水)SL Sealing liquid 密封液SO Sealing oil 密封油SS Sanitary sewage 生活污水SU Sludge,slurry 污泥、泥浆SW Sealing water 密封水TW Treated waste water 处理后的废(污)水VE Vacuum exhaust 真空排放气VG Vent Gas 放(排)空气体W Water 水WAC waste acid 废酸WCA waste caustic 废碱WG waste gas 废气WL Waste liquid 废液WO waste oil 废油WS Waste solid 废渣WW Waste water 废水(各种污水统称)。
轮胎行业术语中英文对照
轮胎行业术语中英文对照目录1.轮胎基本用语12.轮胎安全63.制品检查、制品试验274.原材料315.材料试验/中间制品试验366.制造工程用语421.轮胎基本用语2.轮胎安全Practice (轿车、轻卡、卡客车轮胎之滚动阻力量测程序)American Society forTesting and Materials(ASTM)工程设计参考数据Engineering DesignInformationTRA、ETRTO胎边标示LabelingRequirements轿车胎、备胎或10000磅以下Light Vehicle用辐射层轮胎须以永久模印方式固定在两侧胎边者:●规格(标称尺度)●最大允许充气压力●最大荷重●胎边部帘布及胎面部之帘布、环带、束带等所使用之cord材质●胎边部帘布及胎面部之帘布、环带、束带等之所使用实际层数。
●依实际适用而标示”TUBELESS”或”TUBE TYPE”●如为辐射层轮胎须标示”RADIAL”●如为泥雪地适用需标示”M+S”或”M&S”或”M/S”以上除特定者外所有字高>2mm、字深>0.38mm,且至少一侧位置须在最大断宽~胎唇之间,并不得被轮圈凸缘所遮盖住。
●制造厂或商标●轮胎识别代号TIN:如轮胎有特定装着位置者(如白边或单导向轮胎)于装着之外侧边须标示全部之TIN(轮胎识别码:工厂代号、规格代号、轮胎型式代号、制造年周序号),而另一侧可标示全部或局部之TIN(但两侧皆须有制造年周序号)。
如无特定装着位置者,一侧须标示全部之TIN,而另一侧可标示全部或局部之TIN(但两侧皆须有制造年周序号)。
TIN字高>6.5mm字深0.6~1.0mm字高大小及位置如图四:图四●TWI胎面磨耗指示记号及平台1.6mm,全圆周约等间配置至少6处。
●如为备胎则标示”TEMORARY TIRE USE ONLY”;且字高>13mm ●如最大充气压力为420kPa或60psi则标示”INFALTED TO 420kPa(60PSI)”;且字高>13mm●安全警语(Safety Warning )----非强制性●转动方向或装胎位置(如为单导向或非对称花纹时)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Changes in soil organic carbon pools after10years of continuous manuring combined with chemical fertilizer in a Mollisol in ChinaXueli Ding,Xiaozeng Han*,Yao Liang,Yunfa Qiao,Lujun Li,Na LiKey Laboratory of Mollisols Agroecology,Northeast Institute of Geography and Agroecology,Chinese Academy of Sciences,Harbin150081,PR China1.IntroductionMaintaining soil organic carbon(SOC)is particularly importantfor sustaining the productivity of agroecosystems,because SOCplays a central role in soil quality and functioning throughinfluencing soil physical,chemical,and biological properties(Lalet al.,1999;Carter,2002).SOC levels are governed by the balancebetween carbon(C)input and output,and strongly influenced bysoil management practices(Paustian et al.,2000).Studies haveshown that maintenance of SOC at optimum level can be managedthrough crop rotation,reduced tillage,and fertilization practices(Six and Jastrow,2002;Verma and Sharma,2007;Gong et al.,2009).Most research indicated that the application of organicmanure in combination with inorganic fertilizer linearly increasedSoil&Tillage Research122(2012)36–41A R T I C L E I N F OArticle history:Received29December2011Received in revised form14February2012Accepted16February2012Keywords:Labile carbon fractionRecalcitrant carbon fractionOrganic amendmentLong-term fertilization experimentSoil carbon sequestrationA B S T R A C TIt is still unclear that whether substantial amounts of organic manure amendment could increase soilorganic carbon(SOC)sequestration in a Chinese Mollisol with relatively high organic C content.Further,changes accompanied by different organic carbon(C)fractions are not well understood based on long-term experiment.The knowledge of this kind is important for assessing the potential for C sequestrationof a high SOC soil and selecting effective management practices for increasing soil C sequestration andproductivity in agroecosystem of northeastern China.This study was aimed to assess the effects of10years’organic manuring at various rates combined with chemical fertilizer on organic C sequestration intopsoil(0–20cm)and to identify changes in different SOC(total,labile,and recalcitrant)pools.Fivefertilization treatments were included:(1)CK,unfertilized control;(2)OM0,only chemical fertilizer,nomanure added;(3)OM1,organic manure added at7.5Mg haÀ1yearÀ1plus chemical fertilizer;(4)OM2,organic manure added at15Mg haÀ1yearÀ1plus chemical fertilizer;and(5)OM3,organic manure addedat22.5Mg haÀ1yearÀ1plus chemical fertilizer.Chemical fertilizer was supplied with the same rate ineach fertilized treatment.We found that the application of graded rates of manure from OM1to OM3significantly enhanced total SOC,labile C pools,and recalcitrant C pool as compared with OM0and CK.The C storage(in top20cm)in the OM0,OM1,OM2,and OM3was increased by3.19%,12.5%,14.5%,and18.2%,respectively,over the CK treatment,suggesting that the chemical fertilizer addition had less effectson C-sequestration in topsoil compared to manure plus mineral fertilizer amendment.Moreover,topsoilC-sequestration increased with organic manure addition rates with an order of OM3(10.5Mg haÀ1)>OM2(8.4Mg haÀ1)>OM1(7.2Mg haÀ1).A positive relationship between C sequestra-tion and organic manure input indicates that the soil has not reached its maximum capacity of Csequestration.Application of organic manure with chemical fertilizer was found to produce greater sizeof both labile and recalcitrant pools than application of mineral fertilizers alone.In most cases,theincreases in these C fractions were greater when organic manure was supplied at higher rates.Moreover,increase in recalcitrant C(10.5–29.5%)was significantly higher than labile C(5.6–10.2%)in manuretreated plots as compared with no amendment plot.This indicated that a majority of organic Csequestered due to C inputs was accumulated and stabilized in recalcitrant C pool.In general,organicmanure combined with inorganic fertilizer exerted greater influence on topsoil C storage and crop yieldthan chemical fertilizer alone.Based on crop yield and soil C storage,applying organic manure at the rateof22.5Mg haÀ1yearÀ1was the most effective way to improve soil productivity and C sequestration in theagroecosystem of northeastern China.However,taking use efficiency of organic inputs andenvironmental factors into consideration,application of manure at moderate rate(about15Mg haÀ1yearÀ1)may be more feasible in this region.ß2012Elsevier B.V.All rights reserved.*Corresponding author.Tel.:+86045186602940.E-mail address:xzhan@(X.Han).Contents lists available at SciVerse ScienceDirectSoil&Tillage Researchj ou r n a l h o m e p a ge:w w w.e l s e v i e r.co m/l o c a t e/s t i l l0167-1987/$–see front matterß2012Elsevier B.V.All rights reserved.doi:10.1016/j.still.2012.02.002SOC levels(Paul et al.,1997;Bo¨hme et al.,2005;Rudrappa et al., 2006;Li et al.,2010).Nevertheless,some experiments showed little or no increase in SOC levels for a high C soil even with two or three fold increases in extraneous C inputs(Campbell et al.,1991; Paustian et al.,1992).Six and Jastrow(2002)ascribed this to C saturation phenomenon in these soils,i.e.,once the capacity for a soil to protect C is reached,excessive C inputs will not be sequestered as SOC.Therefore,to gauge the potential for C sequestration of a soil,it is of great importance for assessing the C status in relation to C saturation(Kong et al.,2005).Generally,changes in SOC induced by management practices occur slowly;these changes are relatively small as compared to the vast SOC pool size and also vary both spatially and temporally (Paustian et al.,1992;Salinas-Garcia et al.,1997).SOC fractions with different stabilities and turnover rates are important variables to detect the influence of agricultural management on soil quality(Silveira et al.,2008).Therefore,SOC dynamics are usually described by compartmentalizing SOC into different pools with various function and bioavailability(Campbell et al.,1997; Silveira et al.,2008).Acid hydrolysis has been demonstrated as an effective technique to separate and estimate different C fractions or pools with various degradabilities(Paul et al.,1997;McLauchlan and Hobbie,2004;Belay-Tedla et al.,2009).The acid-hydrolyzable C fraction,defined as labile C pool,is largely comprised of polysaccharides,proteins,nucleic acid,and some carboxyl C (Rovira and Vallejo,2002).Changes in this fraction could provide an earlier indicator of soil management effects on soil organic matter(SOM)than changes in total C alone(Franzluebbers and Stuedemann,2002;Banger et al.,2009).The non-hydrolyzable fraction,defined as recalcitrant C pool,is typically comprised of lignin and related compounds as well as fats,waxes,and resins, which could provide clues regarding the potential of SOC sequestration over the long term(Paul et al.,1997;McLauchlan and Hobbie,2004;Lima et al.,2009).The alteration in the size of labile and recalcitrant pools would influence the timeframe and longevity of soil C sequestration(Paul et al.,2003).Therefore, fractionating and quantifying the labile and recalcitrant C pools could provide valuable information for better understanding SOC changes and the underlying mechanisms(Belay-Tedla et al.,2009).Mollisol was once very fertile,noted for its high SOC content and crop productivity(Liang et al.,2009).It is often called‘The king of soils’in China and serves as a key base of grain production. Mollisol is mainly distributed in northeastern China and has a total area of 5.9Â106ha.However,about 4.4Â106ha of it was cultivated(National Soil Survey Office,1998).A significant depletion of C stocks in the soil occurred during the last decades because of active agricultural utilization,low organic return,and intensive tillage.It was estimated that about50%of the initial C content has been lost in this region due to intensive cultivation(Liu et al.,2003).The serious losses of SOC have deteriorated the soil quality and sustainable crop productivity,which spurred scientist to explore the ways to restore SOC status(Liu et al.,2010;Ding et al.,2011).Long-term fertilizer experiments in southern China showed that applying chemical fertilizer in combination with farmyard manure significantly increased SOC content more than using chemical fertilizer alone in subtropical cropping system(Li et al.,2010).However,organic inputs(crop residues or farmyard manure)at normal level(2–4.5Mg haÀ1)in northeastern China did not have significant effects on restoring SOC level in temperate Mollisol(Li et al.,2002).It is still unclear whether higher level of organic inputs could lead to a corresponding increase in soil C sequestration in a high SOC soil.Further,the responses of various SOC fractions to increased organic manure are not well docu-mented in the Mollisol based on long-term experiments.The present study aimed to:(1)evaluate the changes in topsoil C storage and sequestration in a Mollisol in China under chemical fertilization and organic manuring at various rates;and(2) quantify the responses of different organic C pools(total,labile, and recalcitrant)to different fertilization treatments.We hypoth-esized that C storage and the accumulation of different SOC pools might be affected by fertilization treatments for the Mollisol in a temperate agroecosystem.Here,we paid special attention to the changes in SOC and its fractions.The information would help us understand the processes involved in soil C sequestration and the accumulation patterns of labile-and recalcitrant-C fractions in relation to different manuring rates in the Mollisol.2.Materials and methods2.1.Study siteThe study site was set up in2001at Hailun National Field Station,Chinese Academy of Sciences,located in Hailun,Heilong-jiang province(478260N,1268380E).The region has a typical temperate continental monsoon climate,characterized by hot summers and cold winters.The mean annual rainfall is550mm, with about65%occurring from June to August.Mean annual temperature(MAT)is1.58C,and mean monthly air temperature varies fromÀ238C in January to218C in July.The soil,derived from loamy loess,is classified as Udolls according to the USDA Soil Taxonomy System(Soil Survey Staff, 1998).The soil texture is25.7%sand,32.4%silt,and40.8%clay.The soil at the start of the experiment had a pH of 6.2(soil:-water=1:2.5)and contained26.9g C kgÀ1soil and2.0g N kgÀ1 soil.The soil bulk density was1.03g cmÀ3,Bulk determined by hand with a known volume steel cylinder(5cm inner diameter and 20cm height)driven into0–20cm soil layer.Soil cores were oven-dried at1058C for48h.The bulk density was calculated by dividing the weight of the dried soil by the volume of the soil.More detailed information about the soil properties and management can be obtained from Liu et al.(2003).2.2.Experimental designThe treatments selected for the present study are:(1)CK, unfertilized control;(2)OM0,only chemical fertilizer,no manure added;(3)OM1,organic manure added at7.5Mg haÀ1yearÀ1plus chemical fertilizer;(4)OM2,organic manure added at 15Mg haÀ1yearÀ1plus chemical fertilizer;and(5)OM3,organic manure added at22.5Mg haÀ1yearÀ1plus chemical fertilizer.The treatments were arranged in a randomized block design with three replicates.Each plot was12mÂ5.6m.There was a buffer zone of 0.7m between each plot.Chemical fertilizer was supplied annually with the same application rate within the treatments(Table1). Urea was the nitrogen(N)source and was applied at rates of 30kg haÀ1yearÀ1for soybean and150kg haÀ1yearÀ1for maize. Ammonium hydrogen phosphate was the phosphorus(P)and potassium(K)sources and was applied at rates of36and 32kg haÀ1yearÀ1for soybean and maize,respectively.The pig manure was collected from the same source every year and analyzed for C,N,P,and K contents before application.The manure had an average composition of265Æ15.1g C kgÀ1, 21Æ1.8g N kgÀ1, 2.6Æ0.2g P kgÀ1,and 2.4Æ0.3g K kgÀ1on a dry-weight basis(Liang et al.,2011).The annual application rates of manure and chemical fertilizer in the different treatments are listed in Table1.Cropping systems had been soybean[Glycine max (Merrill.)L.]and maize(Zea mays L.)rotation since2001.Intensive tillage is a common soil management practice used in the farming ly,all plots were ridged by rotary tillage in October after harvest,and all above-ground crop residues were removed from field plots.In the next spring,crop was planted on the top of ridgesX.Ding et al./Soil&Tillage Research122(2012)36–4137with a conventional planter in early May.The second ridge was carried out at about half a month after planting.2.3.SamplingSoil samples were collected from surface layers (0–20cm soil depth)of each plot in April posite soil samples (more than five random subsamples)in the same plot were pooled together,placed in polyethylene bags,and transported to the laboratory immediately.In the laboratory,visible roots and plant fragments were removed.The composite samples were passed through a 2-mm sieve.One part of processed sample was air-dried for analysis of various C fractions.The remaining soil was oven-dried at 508C and ground to pass a 0.25-mm sieve for total C analysis.At crop maturity,10individuals in each plot were selected randomly for measuring grain anic matter input to soil was through crop root biomass and organic manure.Annual biomass of crop roots was estimated in proportion by the average annual soybean and maize yields from 2001to 2011.Generally,proportion of grain yield to root biomass in the top 20cm is 1:0.13for maize and 1:0.19for soybean,respectively,in northeastern China (Zhang and Zhu,1990).2.4.Total soil organic C analysisTotal soil C of bulk soils was analyzed with a VarioEL CHN elemental analyzer (Heraeus Elementar Vario EL,Hanau,Germany).Because the soils were free of carbonates,the total C content was equivalent to SOC content.C storage (Mg C ha À1)of soil at the 0–20cm depth was calculated from horizon thickness and soil bulk density value.The amount of sequestered organic C due to manuring (Mg C ha À1)in 0–20cm soil depth was determined after deducting the C storage in control from other treatments.bile and recalcitrant C poolsIn the present study,a two-step acid hydrolysis method was used to determine labile and recalcitrant C pools (Rovira and Vallejo,2002).Briefly,500mg air-dried soil was hydrolyzed with 20mL of 2.5M H 2SO 4at 1058C in sealed Pyrex tubes for 30min.The residue after hydrolysis was separated from supernatant by centrifugation (15min at 6037Âg )and then decantation,washed with 20mL deionized water.The combined supernatant and washings were pooled together;which was taken as labile pool I carbon (LPI-C).The remaining residue was washed three times with deionized water and dried at 508C.Then,the dried residue was hydrolyzed with 2mL of 13M H 2SO 4at room temperature under continuous shaking overnight.After this,the acid concen-tration was diluted to 1M with deionized water and then thesample was hydrolyzed for 3h at 1058C with shaking per 30min.The hydrolysate was also recovered by centrifugation and was taken as labile pool II carbon (LPII-C).The residue fraction was washed again with deionized water,dried at 508C,being taken as recalcitrant pool carbon (RP-C).Organic C in both hydrolysates (LPI and LPII)was analyzed using Elementar liquid TOC II analyzer (Elementar Analysensysteme Hanau,Germany)and total C in the residue fraction was measured using VarioEL CHN elemental analyzer (Heraeus Elementar Vario EL,Hanau,Germany).2.6.Statistical analysisOne-way analysis of variance (ANOVA)procedures,with Tukey’s honestly significant difference (HSD)as a post hoc,were used to test for significant differences in variables among treatments.Correlations between variables were calculated with the Pearson correlation coefficients.Statistical analysis was performed using the software package SPSS 13.0for Windows (SPSS Inc.,Chicago,USA).Figures were generated using Sigmaplot 10.0(Systat Software Inc.).3.Results3.1.SOC storage and sequestrationDifferent fertilization treatments had a significant influence on both SOC storage and sequestration.Topsoil (0–20cm)C storage was significantly higher in the manure applied treatments (OM 1,OM 2,OM 3)compared with the CK and OM 0treatments (P <0.05,Fig.1).The plots under OM 3treatment stored 14.5%higher (P <0.05)organic C than the plots under OM 0treatments in topsoil.No differences were found in organic C storage between OM 2and either OM 1or OM 3treatments (Fig.1).SOC concentra-tions varied in the same way as organic C storage,with a range of 25.6–30.3g kg À1(Table 2).The amount of sequestered organic C was highest under OM 3treatment (10.5Mg ha À1),followed by OM 2(8.4Mg ha À1)and OM 1(7.2Mg ha À1)treatments,and lowest under OM 0treatment (1.8Mg ha À1)at 0–20cm soil depth (Fig.1).bile and recalcitrant C poolsDifferent fertilization treatments resulted in significant differ-ences in the stock of both labile and recalcitrant C (Table 2).On average,organic fertilized treatments increased LPI-C,LPII-C,and RP-C by 7.8,12.9,and 19.4%,respectively,as compared to CK.OM 3soils contained the highest labile (considering both pools)and recalcitrant C pools.OM 1and OM 2treatments resulted in different LPI-C and LPII-C pools (P <0.05),but similar RP-C pool (P >0.05).No differences were found in those three pools between OM 2and OM 3treatments.RP-C pool accounted for a larger proportion in total SOC (54.0–59.3%)than both LPI-C (18.0–19.2%)and LPII-CTable 1Experiment design and addition rates of organic manure and mineral fertilizer in different treatments.Treatment aSoybeanMaizeManure (kg ha À1)Mineral fertilizerManure (kg ha À1)Mineral fertilizerUrea (kg N ha À1)Ammonium hydrogen phosphate (kg P ha À1)Urea (kg N ha À1)Ammonium hydrogen phosphate (kg P ha À1)CK 000000OM 003036015032OM 175003036750015032OM 215,000303615,00015032OM 322,500303622,50015032aCK,unfertilized control;OM 0,only chemical fertilizer,no manure added;OM 1,organic manure added at 7.5Mg ha À1year À1plus chemical fertilizer;OM 2,organic manure added at 15Mg ha À1year À1plus chemical fertilizer;OM 3,organic manure added at 22.5Mg ha À1year À1plus chemical fertilizer.X.Ding et al./Soil &Tillage Research 122(2012)36–4138(24.4–25.2%)pools.Moreover,increase in recalcitrant C (9.3–29.5%)was significantly higher than labile C (2.8–10.2%)due to fertilization,as compared with CK.Significant correlations were found among SOC,LPI-C,LPII-C,and RP-C (P <0.05,Table 3).4.DiscussionOur results clearly support the hypothesis that organic fertilization has greatly positive impact on soil C storage and sequestration.In the present study,the above-ground biomass was removed from field plots and there was no crop residue incorporation into the soil.Thus the input of organic matter was mainly through root biomass and organic manure.The increase in C storage and sequestration in organically fertilized treatments can be attributed to greater C inputs through organic manure and root biomass due to better crop growth (Table 4).Similar results have been reported from other long-term experiments with low SOC content (Potter et al.,1998;Rudrappa et al.,2006;Gong et al.,2009;Li et al.,2010).For example,Sanchez et al.(2004)observed a significant increase in SOC when low rate of dairy manure (4Mg ha À1)applied annually in arable soils (SOC <7g kg À1)of SW Michigan.Nevertheless,Campbell et al.(1991)suggested that varying C inputs showed no effect on topsoil organic C levels at Melfort,Saskatchewan.They speculated that the lack of SOC response was attributed to its high organic matter content in soil (about 64Mg C ha À1in the top 15cm).Significant increase in C storage was still observed in treatments of higher organic manure addition in the current study (Fig.1),suggesting that soil C sequestration could improve after substantial organic matter inputs even in high C soils (62.1Mg C ha À1in top 20cm).The discrepancies between trials may be caused by differences inS o i l o r g a n i c C (M g h a -1)CK OM 0OM 1OM 2OM 3Fig.1.Soil carbon storage and sequestration in soils after 10years of different fertilization treatments.CK,unfertilized control;OM 0,only chemical fertilizer,no manureadded;OM 1,organic manure added at 7.5Mg ha À1year À1plus chemical fertilizer;OM 2,organic manure added at 15Mg ha À1year À1plus chemical fertilizer;OM 3,organic manure added at 22.5Mg ha À1year À1plus chemical fertilizer.Values reported as means Æstandard deviations,n =3.Bars with different letters show a significant difference at P <0.05(HSD).Table 2Soil organic carbon (SOC),labile pool I carbon (LPI-C),labile pool II carbon (LPII-C),recalcitrant pool carbon (RP-C)and their proportion in SOC (%)in soils after 10years’different fertilization treatments.Treatment a SOC (g kg À1)LPI-C (g kg À1)LPII-C (g kg À1)RP-C (g kg À1)LPI-C (%of SOC)LPII-C (%of SOC)RP-C (%of SOC)CK 25.63Æ0.22c b 4.93Æ0.11d 6.35Æ0.08d 13.84Æ0.46c 19.21Æ0.4524.76Æ0.3554.00Æ2.26OM 026.45Æ0.24c 5.07Æ0.03cd 6.56Æ0.05d 15.13Æ0.39c 19.15Æ0.2724.78Æ0.1557.19Æ1.24OM 128.83Æ1.73b 5.11Æ0.09c 6.91Æ0.13c 15.40Æ0.27b 18.61Æ0.3924.71Æ0.5657.41Æ1.21OM 229.36Æ1.40ab 5.30Æ0.05ab 7.21Æ0.04ab 16.34Æ1.03ab 18.48Æ0.6525.18Æ1.1556.92Æ1.73OM 330.25Æ1.88a5.43Æ0.09a7.39Æ0.26a17.94Æ0.87a17.95Æ0.9924.42Æ0.6859.26Æ1.76aCK,unfertilized control;OM 0,only chemical fertilizer,no manure added;OM 1,organic manure added at 7.5Mg ha À1year À1plus chemical fertilizer;OM 2,organic manure added at 15Mg ha À1year À1plus chemical fertilizer;OM 3,organic manure added at 22.5Mg ha À1year À1plus chemical fertilizer.bValues reported as means Æstandard deviations,n =3.Different letters within each column show significant differences at P <0.05.Table 3Linear correlation coefficient (r )between soil organic carbon (SOC),labile pool I carbon (LPI-C),labile pool II carbon (LPII-C),and recalcitrant pool carbon (RP-C).SOCLPI-CLPII-CRP-CSOC 1LPI-C 0.993**1LPII-C 0.985**0.991**1RP-C0.966**0.965**0.943*1*Correlation is significant at the 0.05level (2-tailed).**Correlation is significant at the 0.01level (2-tailed).Table 4Mean crop yield and estimated input of root biomass over 10years’different fertilization treatments.Treatment aMaize yield (kg ha À1year À1)Soybean yield (kg ha À1year À1)Estimated inputs of root biomass (kg ha À1year À1)CK 5351Æ495.6d b 1793Æ45.0d 562.6OM 07085Æ547.9c 1968Æ86.3c 704.4OM 17593Æ151.9b 2254Æ101.9b 769.3OM 27824Æ142.9ab 2343Æ42.2ab 784.7OM 38132Æ372.2a2417Æ140.6a824.3aCK,unfertilized control;OM 0,only chemical fertilizer,no manure added;OM 1,organic manure added at 7.5Mg ha À1year À1plus chemical fertilizer;OM 2,organic manure added at 15Mg ha À1year À1plus chemical fertilizer;OM 3,organic manure added at 22.5Mg ha À1year À1plus chemical fertilizer.bValues reported as means Æstandard deviation,n =3.Different letters within each column show significant differences at P <0.05(HSD).X.Ding et al./Soil &Tillage Research 122(2012)36–4139climatic factors,topographic position,soil types,textures,and spatial variability in soil(Salinas-Garcia et al.,1997;Hassink,1997; Datta et al.,2010;Li et al.,2010).It is worthy to note that in our case increasing annual addition rates of organic manure from OM1to OM2did not produce significant increase in the amounts of sequestrated organic C(Fig.1).This could be attributed,in part,to the relatively small SOC changes induced by lower extraneous C addition as compared to the vast background of total SOC.Another reason for this observation may be due to the opposing effect of continuous tillage,i.e.,larger manure applications would be offset by the effects of annual tillage,which led to acceleration of SOC mineralization(Blair et al.,2006).The increases in SOC concentration from OM1to OM3were significant,addressing the significance of the considerable C supply for building up SOC pool (Table2).Interestingly,compared with the OM2treatment,extra manure in OM3treatment did not result in significant increase in SOC. Meanwhile,nonlinear regression indicated a significant positive relationship between soil C sequestration and manure input (R2=0.955,P<0.05).The positive relationship implies that the soil has not reached an upper threshold of C sequestration(i.e.,not saturated).Six and Jastrow(2002)suggested that every soil has its own maximum protective capacity of SOC,which is defined by soil inherent physicochemical properties.High clay content in the Mollisol(>40%)could be an important reason contributing to this high potential of C sequestration(Liu et al.,2003).This aspect requires further research into composition and distribution of soil aggregate and particle-size fractions and their association with organic C in this region.The higher organic C sequestration in manure treated plots than mineral treated plot has greater implications in regional level, particularly in temperate northeastern China.Generally,combination of organic and chemical fertilizers could improve crop yields and biomass production(Carter,2002; Banger et al.,2009;Gong et al.,2009).Similar result was observed in our study as shown in Table4.The organically fertilized plots produced significantly higher crop yield as compared with the CK and OM0plots,reflecting the positive interaction of integrating organic and inorganic fertilizers on crop yield and residue input. This could be interpreted as a physically/biologically favorable soil environment created by organic manure application(Pura-kayastha et al.,2008).In contrast,Edmeades(2003)stated that relative to the same amounts of nutrients application as chemical fertilizers,applying organic manures(farmyard manure,green manure,slurry)had no obvious advantages to soil productivity, measured as crop yields,despite the positive effects of these organic manures on soil physical and biological properties.The discrepancies between trials may be caused collectively by climatic factors,experiment duration,soil inherent fertility(Li et al.,2010),and different quality and quantity of added organic materials.Further,significant increases in crop yield and soil C sequestration were observed with increasing manure addition rates from7.5Mg haÀ1to22.5Mg haÀ1,addressing the importance of manure inputs at higher rate for improving soil productivity and C storage even in high organic matter soils.Thus,based on crop yield and SOC,applying organic manure at the rate of22.5Mg haÀ1 to soil seems to be effective in the studied agroecosystem. However,we should keep in mind that application of high rates of manure could lead to potentially greater greenhouse gas emissions and runoff or leaching of nutrients and increase environmental risks(Brouwer and Powell,1995;Hao and Chang,2003;Blair et al., 2006).Rochette and Gregorich(1998)reported that CO2emissions from surface soil were more than doubled in high-level manure addition treatment(100Mg haÀ1based on wet weight)compared with fertilizer treatment.In the current study,the gains of SOC with increasing manure addition rate from15Mg haÀ1to 22.5Mg haÀ1were not significantly(Table2),suggesting less effectiveness of higher rate of manure addition in further improving SOC level.Therefore,taking use efficiency of organic inputs and concerns for environmental effects into consideration, manure addition at moderate rate about15Mg haÀ1yearÀ1may be more feasible in this region.This is yet to be evaluated in future study.We are currently conducting a study to further investigate greenhouse gas emissions.SOC fractions with different stabilities and turnover rates are important variables to detect the influence of agricultural manage-ment on organic matter quality(Silveira et al.,2008).Manure application had beneficial effects on SOC sequestration in the labile pools(LPI-C and LPII-C)and to a greater extent in the recalcitrant pool(Table2).This result suggests a markable change in SOM quality between the different fertilization treatments after an experimental period of10years.The observed increase in labile C pool size in higher organic input systems could be attributable to differences in inputs of external organic matter.Ourfinding was in conformity with the observations made by Cambardella and Elliott(1992)and Janzen et al.(1992),who found that labile C levels were high in high substrate input systems and low in those with low substrate input. In addition,chemical fertilization combined with organic manuring at intermediate rate(OM2)did not change total SOC levels,but produced significant higher levels of labile C as compared with OM1. This validates that the labile C can be used as a sensitive indicator for SOC dynamics as affected by management practices(Rovira and Vallejo,2002).Meanwhile,a majority of the SOC storage due to extraneous C inputs was more sequestered in recalcitrant C pool (10.5–29.5%)than in both labile C pools(5.6–10.2%).Thesefindings indicate that large amounts of C inputs from manure became gradually stabilized in the soil,i.e.,a great portion of recalcitrant C may be formed within thefirst several years of experiment establishment.However,on average,unhydrolyzable C in many ecosystems is older than bulk soil C(Paul et al.,1997).Further investigation into the changes of this recalcitrant C pool in longer period is necessary in order to clarify its stable characteristics.The increase in recalcitrant C in manuring treatments could be related to biochemical resistance of organic-C compounds contained either in organic manure or plant materials(McLauchlan et al.,2006; Yan et al.,2007).Studies had shown that farmyard manure application resulted in an increase in lignin and lignin-like products, which are major components of the resistant C pool(Paul et al., 1997;Rovira and Vallejo,2002;Belay-Tedla et al.,2009).Therefore, the significant increases in recalcitrant C and its proportion in SOC for manure added soils(Table2)suggest that adding manure is of great importance for improving the SOM stabilization in the long term.Besides the higher organics inputs,the greater increase in amounts of recalcitrant C than that of labile C could partially be attributed to preferential degradation of labile compounds and accumulation of recalcitrant materials over time(Lopez-Capel et al., 2008).The soils under study were subjected to annual plowing, which could cause prevalent mineralization of labile fractions of SOC.In this regard,continuous cultivation could lead to decrease in the labile C pools,while it has little influence on the recalcitrant pool due to its relatively high stability(Shrestha et al.,2008).The significantly positive relationship between labile and recalcitrant C pools with total SOC(Table3)indicates that changes in SOM caused by agricultural management can be better understood by alterations in the different C fractions separated by acid hydrolysis;and also a transfer of compounds between different C fractions was expectable.5.ConclusionUse of organic manure with chemical fertilizer had positive effects on sequestering organic C in0–20cm layer of a Mollisol, cultivated intensively in a temperate agroecosystem in China. Moreover,higher addition rates of organic manure benefited more prominent increase in the total SOC and its various C fractions.X.Ding et al./Soil&Tillage Research122(2012)36–41 40。