2020年北京市房山区初三二模数学试卷及参考答案2020.6
北京市房山区初三二模数学试卷及参考答案2020.6
北京市房山区初三二模数学试题及参考答案2020.6学校班级姓名考号考生须知1.本试卷共11页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1. 在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为()A. 8.2 ×109B. 0.82 ×109C. 8.2 ×108D. 82 ×1072. 如图是某个几何体的三视图,该几何体是()A.长方体B.三棱柱C.正方体D.圆柱3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|b|<a B.﹣a<b C.a+b>0 D.|a|>b4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是()A B C D5. 李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如下统计表:在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.6,1.5 B .1.7,1.6 C .1.7,1.7 D .1.7,1.55 6. 如图,在□ABCD 中,延长AD 至点E ,使AD=2DE ,连接BE 交CD 于点F ,交AC 于点G ,则AGCG的值是()A .32B .31C .21D .437. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:抛掷次数“正面向上”的频率100.450.550100150200250300350400下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;GFDAE③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. 其中合理的是( ) A .①B .②C .①②D .①③8.2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通信套餐 类型 月费(元/月) 套餐内包含内容套餐外资费 国内数据流量(GB ) 国内主叫(分钟) 国内流量 国内主叫 套餐1 12830200每5元1GB ,用满3GB 后每3元1GB ,不足部分按照0.03元/MB 收取0.19 元/分钟套餐2 158 40 300 套餐3 198 60 500 套餐423880600小武每月大约使用国内数据流量49GB ,国内主叫350分钟,若想使每月付费最少,则他应预定的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐4二、填空题(本题共16分,每小题2分) 9. 若分式1-1+x x 值为0,则x 的值是 .10.如图,扇形AOB ,通过测量、计算,得弧AB 的长约为 cm. (π取3.14 ,结果保留一位小数)11. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于 点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐 标为 .AB O已知:平面内一点A . 求作:∠A ,使得∠A =30°.作法:如图,(1)作射线AB ;(2)在射线AB 上取一点O ,以O 为圆心,OA 为半径作圆,与射线AB 相交于点C ; (3)以C 为圆心,OC 为半径作弧,与⊙O 交于点D ,作射线AD . 则∠DAB 即为所求的角.12. 如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据 图形,写出一个含有a ,b 的正确的等式______________________.13. 如果4=+n m ,那么代数式nm mn m n m +2•)2++(22的值为 . 14. 已知一组数据1x ,2x ,3x ,…,n x 的方差是2S ,那么另一组数据3-1x ,3-2x ,3-3x ,…,3-n x 的方差是 .15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文:“有一根竹子,原高二丈(1丈=10尺),现被风折断,竹梢触地面处与竹根的距离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点A ,B ,C 分别表示竹梢,竹根和折断处,设折断处离地面的高度BC 为x 尺,则可列方程为_________________ . 16. 下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是_______________________________________ .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,,第27-28题,每小题7分)17. 计算:1-2+30sin 4+51-18°1-)(18. 解不等式组:19. 如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,DE ∥AB 交BC 于点E ,F 是BD 中点. 求证:EF 平分∠BED .20.已知关于x 的一元二次方程0=3+4-2x kx 有两个不相等的实数根. (1)当k =1时,求此方程的根;(2)若此方程有两个不相等的实数根,求k 的取值范围.21. 如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD .(1)求证:四边形DBEF 是矩形;(2)若AB =5,53=∠cos ABD ,求DF 的长.2x<1)+(3x .2+<21-x x FEACBACFD22. 在平面直角坐标系xOy 中,反比例函数)0(>=x xky 的图象与直线1-=x y 交于点 A (3,m ) (1)求k 的值(2)已知点P (n ,0)(n > 0),过点P 作垂直于x 轴的直线,交直线1-=x y 于点B ,交函数)0(>=x xky 图象于点C . ①当n = 4时,判断线段PC 与BC 的数量关系,并说明理由;②若PC ≤BC ,结合图象,直接写出n 的取值范围.23. 如图,在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 中点, 连接DE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)设CD 与OE 的交点为F ,若AB =10,BC =6,求OF 的长.24. GDP 是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标. 截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP 的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP 数据的频数分布直方图,如图24-1(数据分成6组,各组是,,,,,):EDCOAxy–1123456–1123456AOb.2020年第一季度GDP 数据在8≤<4x 这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8c.30个省区市2020年第一季度及2019年GDP 增速排名统计图,如图24-2:d.北京2020年第一季度GDP 数据约为7.5千亿,GDP 增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP 的数据排名第_______.(2)在30个省区市2020年第一季度及2019年GDP 增速排名统计图中,请在图中用“○”图24-1图24-2圈出代表北京的点.(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第_______.(4)下列推断合理的是_______.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.②A、B、C分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段AB = 6cm,点M是线段AB上一动点,以AB为直径作⊙O,点C是圆周上一点且AC = 4cm,连接CM,过点A做直线CM的垂线,交⊙O于点N,连接CN,设AM的长为xcm,线段AN 的长为cm,线段CN 的长为cmNO BAMC小华同学根据学习函数的经验,,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小华同学的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x(cm)0 1 2 3 4 5 6 (cm) 4.47 5.24 5.86 5.96 4.72 4.00 (cm) 6.00 5.86 5.23 3.98 2.46 1.06 0 请你补全表格的相关数值,保留两位小数.(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数 y 1,y 2的图象(函数y 2的图象如图,请你画出y 1的图象)(3)结合画出的函数图象,解决问题:当ΔCAN 是等腰三角形时时,AM 的长度约为______________cm .(保留两位小数)26.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点A 、B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个交点,求a 的取值范围.27. 点C 为线段AB 上一点,以AC 为斜边作等腰ADC Rt Δ,连接BD ,在ABD Δ外侧,以BD 为斜边作等腰Rt BED △,连接EC . (1)如图1,当30DBA =︒∠时: ① 求证:AC BD =;② 判断线段EC 与EB 的数量关系,并证明;A图1(2) 如图2,当°45<∠<°0DBA 时,EC 与EB 的数量关系是否保持不变? 对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1: 尝试将点D 为旋转中心. 过点D 作线段BD 的垂线,交BE 延长线于点G ,连接CG ;通过证明三角形ADB Δ≌CDG Δ全等解决以上问题;想法2: 尝试将点D 为旋转中心. 过点D 作线段AB 的垂线,垂足为点G ,连接EG .通过证明ADB Δ∽GDE Δ解决以上问题;想法3:尝试利用四点共圆. 过点D 作AB 垂线段DF ,连接EF ,通过证明D 、F 、B 、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC =EB (一种方法即可)图2EA C28. 过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC △中,90A =︒∠,2AB AC ==. ① 在下图中画出一条Rt ABC △的形内弧;② 在Rt ABC △中,其形内弧的长度最长为____________.ABC(2)在平面直角坐标系中,点()2,0D -,()2,0E ,()0,1F ,点M 为DEF △形内弧所在圆的圆心. 求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(2,M ,点G 为x 轴上一点. 点P 为OMG △最长形内弧所在圆的圆心,求点P 纵坐标P y 的取值范围.北京市房山区初三二模数学试题及参考答案 2020.6一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)9.1- ; 10.1.3 ; 11.),(15-; 12. 222+2+=b +a b ab a )(;13.8; 14.2S ; 15.222-20=6+)(x x ; 16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是60°,一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角函数值)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28,每小题7分) 17.解:1-2+30sin 4+51-18°1-)(1-2+21×4+5-23= ………………………………………………4分4-24=……………………………………………………… 5分18. 解不等式①: ……………………………………………………1分 得-3<x ……………………………………………………2分解不等式②: ……………………………………………………3分 得-5>x ……………………………………………………4分不等式组的解集是 3-<<5-x ………………………………………………5分19.证明:∵BD平分∠ABC∴∠ABD =∠CBD ………………………………………………1分 ∵DE ∥AB∴∠ABD =∠BDE ………………………………………………2分 ∴∠CBD =∠BDE ………………………………………………3分 ∴EB = ED ………………………………………………4分 ∵F 是BD 中点∴EF 平分∠BED ………………………………………………5分 20.x x 2<3+34+2<1-x x AC(1) 当k =1时,此方程为0=3+4-2x x ……………………………………1分0=3)-(1)-(x x3= 1=21x x ,……………………………………2分 (2) 由题意得0≠k , ……………………………………3分0>12-16=Δk ……………………………………4分∴34<k ∴34<k 且 0≠k …………………………………5分21.(1)证明:∵CE =CD ,CF =CB∴四边形DBEF 是平行四边形 ………………………………………………1分 DE =2CD ,BF =2BC ∵菱形ABCD 中, CD = CB∴ DE = BF ………………………………………………2分 ∴四边形DBEF 是矩形 ………………………………………………3分 (2)∵AB =5∴BF =10∵菱形ABCD 中, 53=∠cos ABD ,∠DBF =∠ABD ∴53=∠cos DBF ∵∠BDF =90°∴DB =6 ………………………………………………4分 ∴DF = 8 ………………………………………………5分22. (1)把3=x 代入1-=x y 得2=y ∴),(23A又)0(>=x xky 图象过点),(23A 解得6=k ……………………………………………1分 (2)① PC = BC ……………………………………………2分当n = 4时, ),(34B ),(234C 23=PC ,23=BC ………………………………………3分 ② 1≤<0n 或 4≥n ………………………………5分23. (1)DE 与⊙O 相切 ………………………………1分连接OD 、CD 、OE∵ BC 为⊙O 的直径∴∠CDA =∠CDB =90° ∵E 是AC 中点 ∴ED =EC ∵OC =O D ,OE =O E ∴ΔOCE ≌ΔO DE∴∠O DE =∠OCE =90°………………………………2分 ∴O D ⊥DE∴DE 与⊙O 相切 ………………………………3分 (2)∵∠ACB =90°,AB =10,BC =6∴AC =8,CE =4, OC =3 ………………………………4分 ∵DE 、CE 与⊙O 相切 ∴DE=CE ,∠CEO =∠DEO∴O E ⊥CD ………………………………5分 ∴ OE =5∵CF OE CE OC •=•∴512=CF ∴59=OF ………………………………6分24. (1) 11 ………………………………2分(2) 如图 ………………………………3分(3) 8 ………………………………4分 (4) ①② ………………………………6分 25. (1) (cm)x12 3 4 5 6 (cm) 4.475.245.865.965.484.72 4.00 (cm)6.005.865.233.982.461.06………………………………2分(2)………………………………4分(3)AM 的长度约为 2.98cm 或1.50cm ………………………………6分 26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB =A (-3,0),B (1,0) ……………………………………2分 把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分 ∴C (0,-3a )∴ D (0,-3a+1), 31D y a =-+ …………………………4分(3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点 …………………5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.27.(1)① 过点D 作DF ⊥AC 于F ……………………………………1分 ∵30DBA =︒∠ ∴BD DF 21=∵以AC 为斜边作等腰ADC Rt Δ ∴FC AF =∴AC DF 21= ∴AC BD = ……………………………………2分② ∵ 等腰ADC Rt Δ与等腰Rt BED △中AC BD =∴DE DC =,ο45=∠=∠CDE FDC ∵30DBA =︒∠∴ο60=∠FDB ,ο15=∠CDB ∴ο60=∠CDE∴CDE Δ是等边三角形 ……………………………………3分 ∵DE EB =∴EB EC = ……………………………………4分(2)法1. 添加辅助线 ……………………………5分证出ADB Δ≌CDG Δ ……………………………6分 ∴ο45=∠=∠A DCG∴ο90=∠GCB ∵EB EG =∴ EB EC = ………………………………7分法2. 添加辅助线 ……………………………5分证出ADB Δ⁓GDE Δ …………………………6分 ∴ο45=∠=∠A DGE∴GE 平分DGC ∠ ∴GE 是DC 的中垂线∴ EB EC ED == ………………………………7分法3. 添加辅助线 ……………………………5分证出ο45=∠EDB =∠EFB ……………………6分∴FE 是DC 的中垂线∴ EB EC ED == ……………………7分 28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分.………………………………2分②当2OB =时,Rt ABC △的形内弧最长,此时弧长=π=.(学生不必画出图象)………………………………3分(2)当圆心在x 轴下方时,此时最长形内弧与线段DF ,EF 相切∵1DOF DOM △∽△∴21OF OM OD ⋅=∴14OM = ∴4M y ≤- ………………………………4分当圆心在x 轴上方时,此时最长形内弧与x 轴相切∵2EGM HEG △∽△∴22HG HM HE ⋅=∴52 EH=∴252EM=∴52My≥………………………………5分综上所述,4My≤-或52My≥(3)当4Gx≤-时,此时最长形内弧与x轴相切∵1GOP GHO△∽△∴143GP=∴143Py≥当40Gx-<<时,此时最长形内弧与线段OM相切解得243Py≥21 当04G x <<时,此时最长形内弧与线段MG 相切解得343P y ≥ ………………………………6分 当4G x ≥时,此时最长形内弧与线段MG 相切解得433P y ≤- ………………………………7分综上所述,43P y ≥23P y ≤。
2020届北京中考数学二模试卷(房山区)
2020届北京中考数学二模试卷(房山区)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为( ) A.98.210⨯B.90.8210⨯C.88.210⨯D.78210⨯2.如图是某个几何体的三视图,该几何体是( )A.长方体 C.正方体B.三棱柱 D.圆柱3.实数,a b 在数轴上的对应点的位置如图所示,则正确的结论是( )A. b a <B. a b -<C. 0a b +>D. a b >4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是( )5.李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如右统计表: 在每天所走的步数这组数据中,众数和中位数分别是( ) A.1.6,1.5B.1.7,1.6C.1.7,1.7D.1.7,1.556.如图,在ABCD Y 中,延长AD 至点E ,使2AD DE ,连接BE 交CD 于点F ,交AC 于点G ,则CGAG的值是() A. 23B.13C.12D.347.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.其中合理的是( ) A.①B.②C.①②D.①③8. 2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通信公司实行的5G 畅想套餐,部分套餐资费标准如下:套餐类型 月费(元/月)套餐内包含内容 套餐外资费 国内数据流量(GB ) 国内主叫(分钟) 国内流量国内主叫 套餐1 128 30 200 每5元1GB ,用满3GB 后每3元1GB ,不足部分按照0.03元/MB 收取0.19元/分钟套餐2 158 40 300 套餐3 198 60 500 套餐423880600他应预定的套餐是( ) A.套餐1 B.套餐2 C.套餐3D.套餐4二、填空题(本题共16分,每小题2分) 9. 若分式11x x +-值为0,则x 的值是 .10. 如图,扇形AOB ,通过测量、计算,得»AB 的长约为.cm (π取3.14,结果保留一位小数)11.如图,若在象棋棋盘上建立直角坐标系,使“帅”位于点(32)--,,“炮”位于点()2,0-,则“兵”位于的点的坐标为.12.如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据图形,写出一个含有a b ,的正确的等式.13.如果4m n +=,那么代数式222(2)m n m n m m n+++g 的值为14.已知一组数据123,,,n x x x x gg g ,的方差是2S ,那么另一组数据1233,3,3,3n x x x x ----gg g ,的方差是 .15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”尺),现被风折断,竹梢触地面处与竹根的距译文:“有一根竹子,原高二丈(1丈10A B C分别表示竹梢,离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点,,竹根和折断处,设折断处离地面的高度BC为x尺,则可列方程为16.下面是“作一个30︒角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°作法:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.该尺规作图的依据是三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17.114sin3015-+o()18.解不等式组:3(1)2,12.2x xxx+<⎧⎪⎨-<+⎪⎩19.如图,在ABCV中,BD平分ABC∠交AC于点,//D DE AB交BC于点,E F是BD 中点.求证:EF平分BED∠.20.已知关于x的一元二次方程2430kx x-+=.(1)当1k=时,求此方程的根;(2)若此方程有两个不相等的实数根,求k的取值范围.21.如图,菱形ABCD 中,分别延长,DC BC 至点,E F ,使,CE CD CF CB ==,连接,,,.DB BE EF FD(1)求证:四边形DBEF 是矩形; (2)若355AB cos ABD =∠=,,求DF 的长.22.在平面直角坐标系xOy 中,反比例函数()0ky x x=>的图象与直线1y x =-交于点()3A m ,(1)求k 的值(2)已知点()(),00P n n >,过点P 作垂直于x 轴的直线,交直线1y x =-于点B ,交函数()0ky x x=>于点C . ①当4n =时,判断线段PC 与BC 的数量关系,并说明理由; ②若PC BC ≤,结合图象,直接写出n 的取值范围.23.如图,在90ABC ACB ∠=︒V 中,,以BC 为直径的O e 交AB 于点,D E 是AC 中点,连接DE .(1)判断DE 与O e 的位置关系并说明理由;(2)设CD 与OE 的交点为F ,若10,6AB BC ==,求OF 的长.24.GDP 是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标.截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP 的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP 数据的频数分布直方图,如图24-1(数据分成6组,各组是04,488121216,1620,2024x x x x x x <≤<≤<≤<≤<≤<≤,,):b.2020年第一季度GDP 数据在这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8 c.30个省区市2020年第一季度及2019年GDP 增速排名统计图,如图24-2: d.北京2020年第一季度GDP 数据约为7.5千亿,GDP 增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP的数据排名第.(2)在30个省区市2020年第一季度及2019年GDP增速排名统计图中,请在图中用“O”圈出代表北京的点(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第.(4)下列推断合理的是.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.、、分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流②A B C入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段6AB cm =,点M 是线段AB 上一动点,以AB 为直径作O e ,点C 是圆周上一点且4AC cm =,连接CM ,过点A 做直线CM 的垂线,交O e 于点N ,连接CN ,设线段AM 的长为xcm ,线段AN 的长为1y cm ,线段CN 的长为2y cm .小华同学根据学习函数的经验,分别对函数12,y y ,随自变量x 的变化而变化的规律进行了探究.下面是该同学的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了12,y y 与x 的几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点()()12,,x y x y ,,并画出函数12,y y的图象(函数2y 的图象如图,请你画出1y 的图象)V是等腰三角形时,AM的长度约为(3)结合画出的函数图象,解决问题:当CANcm.26.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点,A B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个公共点,求a 的取值范围.27.点C 为线段AB 上一点,以AC 为斜边作等腰Rt ADC V ,连接BD ,在Rt ABD V 外侧,以BD 为斜边作等腰Rt BED V ,连接EC . (I)如图1,当30DBA ∠=︒时: ①求证:AC BD =;②判断线段EC 与EB 的数量关系,并证明;(2)如图2,当045DBA ︒<∠<︒时,EC 与EB 的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D 为旋转中心,过点D 作线段BD 垂线,交BE 延长线于点G , 连接CG ;通过证明ADB CDG V V ≌解决以上问题;想法2:尝试将点D 为旋转中心,过点D 作线段AB 垂线,垂足为点G ,连接EG .通过证明ADB GDE V V ∽ 解决以上问题;想法3:尝试利用四点共圆,过点D 作AB 垂线段DF ,连接EF ,通过证明D F BE 、、、四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC EB =(一种方法即可)28.过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC V 中,902A AB AC ∠=︒==,. ①在下图中画出一条Rt ABC V 的形内弧; ②在Rt ABC V 中,其形内弧的长度最长为.(2)在平面直角坐标系中,点()()()2,02001D E F -,,,,.点M 为DEF V 形内弧所在圆的圆心.求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(M ,点G 为x 轴上一点点P 为OMG V 最长形内弧所在圆的圆心,求点P 纵坐标p y 的取值范围.。
2020年北京市房山区九年级二模数学试题
2020北京房山初三二模数学 2020.6考生须知1.本试卷共12页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
1.在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为( )A.98.210⨯ B.90.8210⨯C.88.210⨯ D.78210⨯2.如图是某个几何体的三视图,该几何体是( )A.长方体C.正方体B.三棱柱D.圆柱3.实数,a b在数轴上的对应点的位置如图所示,则正确的结论是( )A. b a<B. a b-< C. 0a b+> D. a b>4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是( )5.李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如右统计表: 在每天所走的步数这组数据中,众数和中位数分别是( ) A.1.6,1.5 B.1.7,1.6 C.1.7,1.7D.1.7,1.556.如图,在ABCD Y 中,延长AD 至点E ,使2AD DE ,连接BE 交CD 于点F ,交AC 于点G ,则CGAG的值是() A. 23B. 13C.12 D.347.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. 其中合理的是( ) A.①B.②C.①②D.①③8. 2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通信公司实行的5G 畅想套餐,部分套餐资费标准如下: 套餐类型月费(元/月)套餐内包含内容 套餐外资费 国内数据流量(GB ) 国内主叫(分钟) 国内流量国内主叫 套餐1 128 30 200 每5元1GB ,用满3GB 后每3元1GB ,不足部分按照0.03元/MB 收取0.19元/分钟套餐2 158 40 300 套餐3 198 60 500 套餐423880600A.套餐1B.套餐2C.套餐3D.套餐4二、填空题(本题共16分,每小题2分) 9. 若分式11x x +-值为0,则x 的值是 .10. 如图,扇形AOB ,通过测量、计算,得»AB 的长约为.cm (π取3.14,结果保留一位小数)11.如图,若在象棋棋盘上建立直角坐标系,使“帅”位于点(32)--,,“炮”位于点()2,0-,则“兵”位于的点的坐标为.12.如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据图形,写出一个含有a b ,的正确的等式.13.如果4m n +=,那么代数式222(2)m n mn m m n +++g 的值为14.已知一组数据123,,,n x x x x gg g ,的方差是2S ,那么另一组数据1233,3,3,3n x x x x ----g g g ,的方差是.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文:“有一根竹子,原高二丈(1丈10=尺),现被风折断,竹梢触地面处与竹根的距离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点,,A B C 分别表示竹梢,竹根和折断处,设折断处离地面的高度BC 为x 尺,则可列方程为16.下面是“作一个30︒角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°作法:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.该尺规作图的依据是三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17.114sin3015-++o()18.解不等式组:3(1)2,12.2x xxx+<⎧⎪⎨-<+⎪⎩19.如图,在ABCV中,BD平分ABC∠交AC于点,//D DE AB交BC于点,E F是BD中点.求证:EF平分BED∠.20.已知关于x的一元二次方程2430kx x-+=.(1)当1k=时,求此方程的根;(2)若此方程有两个不相等的实数根,求k的取值范围.21.如图,菱形ABCD 中,分别延长,DC BC 至点,E F ,使,CE CD CF CB ==,连接,,,.DB BE EF FD(1)求证:四边形DBEF 是矩形; (2)若355AB cos ABD =∠=,,求DF 的长.22.在平面直角坐标系xOy 中,反比例函数()0ky x x=>的图象与直线1y x =-交于点()3A m , (1)求k 的值(2)已知点()(),00P n n >,过点P 作垂直于x 轴的直线,交直线1y x =-于点B ,交函数()0ky x x=>于点C .①当4n =时,判断线段PC 与BC 的数量关系,并说明理由; ②若PC BC ≤,结合图象,直接写出n 的取值范围.23.如图,在90ABC ACB ∠=︒V 中,,以BC 为直径的O e 交AB 于点,D E 是AC 中点,连接DE .(1)判断DE 与O e 的位置关系并说明理由;(2)设CD 与OE 的交点为F ,若10,6AB BC ==,求OF 的长.24.GDP 是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标.截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP 的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP 数据的频数分布直方图,如图24-1(数据分成6组,各组是04,488121216,1620,2024x x x x x x <≤<≤<≤<≤<≤<≤,,):b.2020年第一季度GDP 数据在这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8c.30个省区市2020年第一季度及2019年GDP 增速排名统计图,如图24-2:d.北京2020年第一季度GDP 数据约为7.5千亿,GDP 增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP的数据排名第.(2)在30个省区市2020年第一季度及2019年GDP增速排名统计图中,请在图中用“O”圈出代表北京的点(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第.(4)下列推断合理的是.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.、、分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠②A B C本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段6AB cm =,点M 是线段AB 上一动点,以AB 为直径作O e ,点C 是圆周上一点且4AC cm =,连接CM ,过点A 做直线CM 的垂线,交O e 于点N ,连接CN ,设线段AM 的长为xcm ,线段AN 的长为1y cm ,线段CN 的长为2y cm .小华同学根据学习函数的经验,分别对函数12,y y ,随自变量x 的变化而变化的规律进行了探究. 下面是该同学的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了12,y y 与x 的几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点()()12,,x y x y ,,并画出函数12,y y 的图象(函数2y 的图象如图,请你画出1y 的图象)V是等腰三角形时,AM的长度约为cm.(3)结合画出的函数图象,解决问题:当CAN26.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点,A B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D .(1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个公共点,求a 的取值范围.27.点C 为线段AB 上一点,以AC 为斜边作等腰Rt ADC V ,连接BD ,在Rt ABD V 外侧,以BD 为斜边作等腰Rt BED V ,连接EC .(I)如图1,当30DBA ∠=︒时:①求证:AC BD =;②判断线段EC 与EB 的数量关系,并证明;(2)如图2,当045DBA ︒<∠<︒时,EC 与EB 的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D 为旋转中心,过点D 作线段BD 垂线,交BE 延长线于点G ,连接CG ;通过证明ADB CDG V V ≌解决以上问题;想法2:尝试将点D 为旋转中心,过点D 作线段AB 垂线,垂足为点G ,连接EG .通过证明ADB GDE V V ∽ 解决以上问题;想法3:尝试利用四点共圆,过点D 作AB 垂线段DF ,连接EF ,通过证明D F B E 、、、四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC EB =(一种方法即可)28.过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC V 中,902A AB AC ∠=︒==,.①在下图中画出一条Rt ABC V 的形内弧;②在Rt ABC V 中,其形内弧的长度最长为 .(2)在平面直角坐标系中,点()()()2,02001D E F -,,,,.点M 为DEF V 形内弧所在圆的圆心.求点M 纵坐标 M y 的取值范围;(3)在平面直角坐标系中,点(M ,点G 为x 轴上一点点P 为OMG V 最长形内弧所在圆的圆心,求点P 纵坐标p y 的取值范围.。
2020年北京市房山区初三二模数学试卷及参考答案2020.6
北京市房山区初三下学期第二次统一测试数学二模试题及参考答案2020年6月一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有..一个.1. 在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为()A. 8.2 ×109B. 0.82 ×109C. 8.2 ×108D. 82 ×1072. 如图是某个几何体的三视图,该几何体是()A.长方体B.三棱柱C.正方体D.圆柱3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|b|<a B.﹣a<b C.a+b>0 D.|a|>b4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是()A B C D5. 李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如下统计表:在每天所走的步数这组数据中,众数和中位数分别是( ) A .1.6,1.5 B .1.7,1.6 C .1.7,1.7 D .1.7,1.55 6. 如图,在□ABCD 中,延长AD 至点E ,使AD=2DE ,连接BE 交CD 于点F ,交AC 于点G ,则AGCG的值是()A .32B .31C .21D .437. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:抛掷次数“正面向上”的频率100.450.550100150200250300350400下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. 其中合理的是( )GFDAEA .①B .②C .①②D .①③8.2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通套餐 类型 月费(元/月) 套餐内包含内容套餐外资费 国内数据流量(GB ) 国内主叫(分钟) 国内流量 国内主叫套餐1 12830200每5元1GB ,用满3GB 后每3元1GB ,不足部分按照0.03元/MB 收取0.19 元/分钟套餐2 158 40 300 套餐3 198 60 500 套餐423880600小武每月大约使用国内数据流量49GB ,国内主叫350分钟,若想使每月付费最少,则他应预定的套餐是( )A .套餐1B .套餐2C .套餐3D .套餐4二、填空题(本题共16分,每小题2分)9. 若分式1-1+x x 值为0,则x 的值是 .10.如图,扇形AOB ,通过测量、计算,得弧AB 的长约为 cm. (π取3.14 ,结果保留一位小数)11. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于 点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐 标为 .12. 如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据AB O已知:平面内一点A . 求作:∠A ,使得∠A =30°.作法:如图,(1)作射线AB ;(2)在射线AB 上取一点O ,以O 为圆心,OA 为半径作圆,与射线AB 相交于点C ; (3)以C 为圆心,OC 为半径作弧,与⊙O 交于点D ,作射线AD . 则∠DAB 即为所求的角.图形,写出一个含有a ,b 的正确的等式______________________.13. 如果4=+n m ,那么代数式nm mn m n m +2•)2++(22的值为 . 14. 已知一组数据1x ,2x ,3x ,…,n x 的方差是2S ,那么另一组数据3-1x ,3-2x ,3-3x ,…,3-n x 的方差是 .15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文:“有一根竹子,原高二丈(1丈=10尺),现被风折断,竹梢触地面处与竹根的距离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点A ,B ,C 分别表示竹梢,竹根和折断处,设折断处离地面的高度BC 为x 尺,则可列方程为_________________ . 16. 下面是“作一个30°角”的尺规作图过程.请回答:该尺规作图的依据是_______________________________________ .三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,,第27-28题,每小题7分)17. 计算:1-2+30sin 4+51-18°1-)(18. 解不等式组:19. 如图,在△ABC 中,BD 平分∠ABC 交AC 于点D ,DE ∥AB 交BC 于点E ,F 是BD 中点. 求证:EF 平分∠BED .20.已知关于x 的一元二次方程0=3+4-2x kx 有两个不相等的实数根. (1)当k =1时,求此方程的根;(2)若此方程有两个不相等的实数根,求k 的取值范围.21. 如图,菱形ABCD 中, 分别延长DC ,BC 至点E ,F ,使CE =CD ,CF =CB ,联结DB ,BE ,EF ,FD .(1)求证:四边形DBEF 是矩形;(2)若AB =5,53=∠cos ABD ,求DF 的长.2x<1)+(3x .2+<21-x x FEACBACFDE22. 在平面直角坐标系xOy 中,反比例函数)0(>=x xky 的图象与直线1-=x y 交于点 A (3,m ) (1)求k 的值(2)已知点P (n ,0)(n > 0),过点P 作垂直于x 轴的直线,交直线1-=x y 于点B ,交函数)0(>=x xky 图象于点C .①当n = 4时,判断线段PC 与BC 的数量关系,并说明理由;②若PC ≤BC ,结合图象,直接写出n 的取值范围.23. 如图,在△ABC 中,∠ACB =90°,以BC 为直径的⊙O 交AB 于点D ,E 是AC 中点, 连接DE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)设CD 与OE 的交点为F ,若AB =10,BC =6,求OF 的长.24. GDP 是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标. 截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP 的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP 数据的频数分布直方图,如图24-1(数据分成6组,各组是,,,,,):EDCOAxy–1123456–1123456AOb.2020年第一季度GDP 数据在8≤<4x 这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8c.30个省区市2020年第一季度及2019年GDP 增速排名统计图,如图24-2:d.北京2020年第一季度GDP 数据约为7.5千亿,GDP 增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP 的数据排名第_______.(2)在30个省区市2020年第一季度及2019年GDP 增速排名统计图中,请在图中用“○”图24-1图24-2圈出代表北京的点.(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第_______.(4)下列推断合理的是_______.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.②A、B、C分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段AB = 6cm,点M是线段AB上一动点,以AB为直径作⊙O,点C是圆周上一点且AC = 4cm,连接CM,过点A做直线CM的垂线,交⊙O于点N,连接CN,设AM的长为xcm,线段AN 的长为cm,线段CN 的长为cmNO BAMC小华同学根据学习函数的经验,,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小华同学的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x(cm)0 1 2 3 4 5 6 (cm) 4.47 5.24 5.86 5.96 4.72 4.00 (cm) 6.00 5.86 5.23 3.98 2.46 1.06 0 请你补全表格的相关数值,保留两位小数.(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数 y 1,y 2的图象(函数y 2的图象如图,请你画出y 1的图象)(3)结合画出的函数图象,解决问题:当ΔCAN 是等腰三角形时时,AM 的长度约为______________cm .(保留两位小数)26.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点A 、B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个交点,求a 的取值范围.27. 点C 为线段AB 上一点,以AC 为斜边作等腰ADC Rt Δ,连接BD ,在ABD Δ外侧,以BD 为斜边作等腰Rt BED △,连接EC . (1)如图1,当30DBA =︒∠时: ① 求证:AC BD =;② 判断线段EC 与EB 的数量关系,并证明;A图1(2) 如图2,当°45<∠<°0DBA 时,EC 与EB 的数量关系是否保持不变? 对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1: 尝试将点D 为旋转中心. 过点D 作线段BD 的垂线,交BE 延长线于点G ,连接CG ;通过证明三角形ADB Δ≌CDG Δ全等解决以上问题;想法2: 尝试将点D 为旋转中心. 过点D 作线段AB 的垂线,垂足为点G ,连接EG .通过证明ADB Δ∽GDE Δ解决以上问题;想法3:尝试利用四点共圆. 过点D 作AB 垂线段DF ,连接EF ,通过证明D 、F 、B 、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC =EB (一种方法即可)图2EA C28. 过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC △中,90A =︒∠,2AB AC ==. ① 在下图中画出一条Rt ABC △的形内弧;② 在Rt ABC △中,其形内弧的长度最长为____________.ABC(2)在平面直角坐标系中,点()2,0D -,()2,0E ,()0,1F ,点M 为DEF △形内弧所在圆的圆心. 求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(2,M ,点G 为x 轴上一点. 点P 为OMG △最长形内弧所在圆的圆心,求点P 纵坐标P y 的取值范围.北京市房山区初三下学期第二次统一测试数学二模试题及参考答案2020年6月二、填空题(本题共16分,每小题2分)9.1- ; 10.1.3 ; 11.),(15-; 12. 222+2+=b +a b ab a )(; 13.8; 14.2S ; 15.222-20=6+)(x x ; 16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是60°,一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角函数值)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28,每小题7分) 17.解:1-2+30sin 4+51-18°1-)(1-2+21×4+5-23= ………………………………………………4分4-24=……………………………………………………… 5分18. 解不等式①:……………………………………………………1分 得-3<x……………………………………………………2分解不等式②: ……………………………………………………3分得-5>x ……………………………………………………4分不等式组的解集是 3-<<5-x ………………………………………………5分 19.证明:∵BD 平分∠ABC∴∠ABD =∠CBD ………………………………………………1分x x 2<3+34+2<1-x x B∵DE ∥AB∴∠ABD =∠BDE ………………………………………………2分 ∴∠CBD =∠BDE ………………………………………………3分 ∴EB = ED ………………………………………………4分 ∵F 是BD 中点∴EF 平分∠BED ………………………………………………5分 20.(1) 当k =1时,此方程为0=3+4-2x x ……………………………………1分0=3)-(1)-(x x3= 1=21x x ,……………………………………2分 (2) 由题意得0≠k , ……………………………………3分0>12-16=Δk ……………………………………4分∴34<k ∴34<k 且 0≠k …………………………………5分 21.(1)证明:∵CE =CD ,CF =CB∴四边形DBEF 是平行四边形 ………………………………………………1分 DE =2CD ,BF =2BC ∵菱形ABCD 中, CD = CB∴ DE = BF ………………………………………………2分 ∴四边形DBEF 是矩形 ………………………………………………3分 (2)∵AB =5∴BF =10∵菱形ABCD 中, 53=∠cos ABD ,∠DBF =∠ABD ∴53=∠cos DBF ∵∠BDF =90°∴DB =6 ………………………………………………4分 ∴DF = 8 ………………………………………………5分22. (1)把3=x 代入1-=x y 得2=y ∴),(23A 又)0(>=x xky 图象过点),(23A 解得6=k ……………………………………………1分 (2)① PC = BC ……………………………………………2分当n = 4时, ),(34B ),(234C 23=PC ,23=BC ………………………………………3分 ② 1≤<0n 或 4≥n ………………………………5分23. (1)DE 与⊙O 相切 ………………………………1分连接OD 、CD 、OE∵ BC 为⊙O 的直径∴∠CDA =∠CDB =90° ∵E 是AC 中点 ∴ED =EC∵OC =O D ,OE =O E ∴ΔOCE ≌ΔO DE∴∠O DE =∠OCE =90°………………………………2分 ∴O D ⊥DE∴DE 与⊙O 相切 ………………………………3分 (2)∵∠ACB =90°,AB =10,BC =6∴AC =8,CE =4, OC =3 ………………………………4分 ∵DE 、CE 与⊙O 相切 ∴DE=CE ,∠CEO =∠DEO∴O E ⊥CD ………………………………5分 ∴ OE =5∵CF OE CE OC •=•∴512=CF ∴59=OF ………………………………6分24. (1) 11 ………………………………2分(2) 如图 ………………………………3分(3) 8 ………………………………4分 (4) ①② ………………………………6分 25. (1) (cm)x12 3 4 5 6 (cm) 4.475.245.865.965.484.72 4.00 (cm)6.005.865.233.982.461.06………………………………2分(2)………………………………4分(3)AM 的长度约为 2.98cm 或1.50cm ………………………………6分 26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB =A (-3,0),B (1,0) ……………………………………2分把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分∴ C (0,-3a )∴ D (0,-3a+1), 31D y a =-+ …………………………4分(3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点 …………………5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.27.(1)① 过点D 作DF ⊥AC 于F ……………………………………1分 ∵30DBA =︒∠ ∴BD DF 21=∵以AC 为斜边作等腰ADC Rt Δ ∴FC AF =∴AC DF 21= ∴AC BD = ……………………………………2分② ∵ 等腰ADC Rt Δ与等腰Rt BED △中AC BD =∴DE DC =,ο45=∠=∠CDE FDC ∵30DBA =︒∠∴ο60=∠FDB ,ο15=∠CDB ∴ο60=∠CDE∴CDE Δ是等边三角形 ……………………………………3分 ∵DE EB =∴EB EC = ……………………………………4分(2)法1. 添加辅助线 ……………………………5分证出ADB Δ≌CDG Δ ……………………………6分 ∴ο45=∠=∠A DCG∴ο90=∠GCB ∵EB EG =∴ EB EC = ………………………………7分法2. 添加辅助线 ……………………………5分证出ADB Δ⁓GDE Δ …………………………6分 ∴ο45=∠=∠A DGE∴GE 平分DGC ∠ ∴GE 是DC 的中垂线∴ EB EC ED == ………………………………7分法3. 添加辅助线 ……………………………5分证出ο45=∠EDB =∠EFB ……………………6分∴FE 是DC 的中垂线∴ EB EC ED == ……………………7分 28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分.………………………………2分②当2OB =时,Rt ABC △的形内弧最长,此时弧长=π=.(学生不必画出图象)………………………………3分(2)当圆心在x 轴下方时,此时最长形内弧与线段DF ,EF 相切∵1DOF DOM △∽△ ∴21OF OM OD ⋅= ∴14OM = ∴4M y ≤- ………………………………4分当圆心在x 轴上方时,此时最长形内弧与x 轴相切∵2EGM HEG △∽△ ∴22HG HM HE ⋅= ∴52EH =∴252EM =∴52M y ≥………………………………5分综上所述,4M y ≤-或52M y ≥(3)当4G x ≤-时,此时最长形内弧与x 轴相切∵1GOP GHO △∽△ ∴143GP = ∴143P y ≥ 当40G x -<<时,此时最长形内弧与线段OM 相切解得243P y ≥当04G x <<时,此时最长形内弧与线段MG 相切解得3433P y ≥ ………………………………6分 当4G x ≥时,此时最长形内弧与线段MG 相切解得423P y ≤ ………………………………7分综上所述,433P y ≥或33P y ≤-。
2020-2021学年北京市房山区中考数学第二次模拟试题及答案解析
最新北京市房山中考二模数学试卷一、单选题(共10小题)1.小星同学在“百度”搜索引擎中输入“中国梦,我的梦”,可以搜索到与之相关的结果的条数约为61700000,将61700000用科学记数法表示为()A.617×105B.6.17×106C.6.17×107D.0.617×108考点:科学记数法和近似数、有效数字答案:C试题解析:用科学计数法表示较大的正数时,一般形式为a×10n.其中1≤a<10,n为正整数.确定n的值时,要把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,所以a=6.17,n=7.2.实数a,b,c,d在数轴上对应点的位置如图所示,这四个数中,倒数最大的是()A.b B.d C.a D.c考点:实数大小比较答案:D试题解析:由于a<b<0<c<d,则3.下列图形中既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称与中心对称图形答案:B试题解析:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;轴对称图形,是指在平面内沿一条直线折叠,直线两旁的部分能够完全重合的图形,这条直线就叫做对称轴。
而A是轴对称图形,C与D是中心对称图形。
4.小明掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,那么向上一面的点数大于4的概率为()A.B.C.D.考点:概率及计算答案:C试题解析:骰子共有6个点数,其中点数大于4的有5,6两种情况,则5.如果一个正多边形的每个外角为72°,那么这个正多边形的边数为()A.5B.6C.7D.8考点:多边形的内角与外角答案:C试题解析:由正多边形的每个外角为72°,该正多边形的每个内角为180°-72°=108°.故这个多边形的内角和为n×108°,又因为正n边形的内角和为(n-2)×180°,设该多边形的边数为n,则(n-2)×180°=n×108°,解得:n=5.6.如图,AB是⊙O的直径,C、D两点在⊙O上,如果∠C=40°,那么∠ABD的度数为()A.40°B.90°C.80°D.50°考点:圆周角定理及推论答案:D试题解析:根据题意得7.国家气象局监测2015年某日24小时PM2.5的值,其中6个时刻的数值如下表,则这组数据的中位数和平均数分别是()A.331;332.5B.329;332.5C.331;332D.333;332考点:平均数、众数、中位数答案:A试题解析:把六个数从小到大排序:324,325,329,333,342,342,则中位数为(329+333)÷2=331,平均数为(324+325+329+333+342+342)÷6=332.58.直线与双曲线(k≠0)在同一坐标系中的大致图象是()A.B.C.D.考点:反比例函数与一次函数综合答案:C试题解析:根据题意得:当k>0时,双曲线位于一,三象限,而直线位于一,三,四象限;当k<0时,双曲线位于二,四象限,而直线位于一,二,四象限。
2020年北京市房山区中考数学二模试卷
2020年北京市房山区中考数学二模试卷
一、选择题下面1-8题均有四个选项,其中符合题意的选项只有一个.
1.(2分)在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为()
A.8.2×109B.0.82×109C.8.2×108D.82×107
2.(2分)如图是某个几何体的三视图,该几何体是()
A.长方体B.三棱柱C.正方体D.圆柱
3.(2分)实数a,b在数轴上的对应点的位置如图所示,则正确的结论是(
A.|b|<a B.﹣a<b C.a+b>0D.|a|>b
4.(2分)《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是()
A.B.C.D.
5.(2分)李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如图统计表,在每天所走的步数这组数据中,众数和中位数分别是()。
北京市房山区2019-2020学年中考数学二模考试卷含解析
北京市房山区2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知二次函数2 45y x x =-++的图象如图所示,若()1 3A y -,,()()2301B y C y ,,,是这个函数图象上的三点,则123y y y ,,的大小关系是( )A .123 y y y <<B .213 y y y <<C .312 y y y <<D .132y y y <<2.若实数 a ,b 满足|a|>|b|,则与实数 a ,b 对应的点在数轴上的位置可以是( ) A .B .C .D .3.魏晋时期的数学家刘徽首创割圆术.为计算圆周率建立了严密的理论和完善的算法.作圆内接正多边形,当正多边形的边数不断增加时,其周长就无限接近圆的周长,进而可用正多边形的周长圆的直径来求得较为精确的圆周率.祖冲之在刘徽的基础上继续努力,当正多边形的边数增加24576时,得到了精确到小数点后七位的圆周率,这一成就在当时是领先其他国家一千多年,如图,依据“割圆术”,由圆内接正六边形算得的圆周率的近似值是( )A .0.5B .1C .3D .π42(2)2a a -=-,那么( ) A .2x <B .2x ≤C .2x >D .2x ≥5.如图,一艘海轮位于灯塔P 的南偏东70°方向的M 处, 它以每小时40海里的速度向正北方向航行,2小时后到 达位于灯塔P 的北偏东40°的N 处,则N 处与灯塔P 的 距离为A.40海里B.60海里C.70海里D.80海里6.对于不等式组1561333(1)51x xx x⎧-≤-⎪⎨⎪-<-⎩,下列说法正确的是()A.此不等式组的正整数解为1,2,3B .此不等式组的解集为716x-<≤C.此不等式组有5个整数解D .此不等式组无解7.如图,已知∠1=∠2,要使△ABD≌△ACD,需从下列条件中增加一个,错误的选法是()A.∠ADB=∠ADC B.∠B=∠C C.AB=AC D.DB=DC8.下列生态环保标志中,是中心对称图形的是()A.B.C.D.9.如图,在△ABC中,过点B作PB⊥BC于B,交AC于P,过点C作CQ⊥AB,交AB延长线于Q,则△ABC的高是()A.线段PB B.线段BC C.线段CQ D.线段AQ10.如图,将矩形ABCD 绕点A 顺时针旋转到矩形AB′C′D′的位置,旋转角为α(0°<α<90°).若∠1=112°,则∠α的大小是( )A.68°B.20°C.28°D.22°11.为了解当地气温变化情况,某研究小组记录了寒假期间连续6天的最高气温,结果如下(单位C :﹣6,﹣1,x,2,﹣1,1.若这组数据的中位数是﹣1,则下列结论错误的是()A.方差是8 B.极差是9 C.众数是﹣1 D.平均数是﹣112.如图所示,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C′处,折痕为EF,若∠ABE=20°,那么∠EFC′的度数为()A.115°B.120°C.125°D.130°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在平面直角坐标系中,正方形ABOC和正方形DOFE的顶点B,F在x轴上,顶点C,D在y轴上,且S△ADC=4,反比例函数y=kx(x>0)的图像经过点E,则k=_______ 。
07-房山区初三数学二模答案2020.6 【北京市2020初三二模试卷】(02)
15. x2 + 62 =(20 - x)2 ;
16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是 60°, 一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角 函数值)
三、解答题(本题共 68 分,第 17-22 题,每小题 5 分,第 23-26 题,每小题 6 分,第
∵∠BDF=90° ∴DB=6
………………………………………………4 分
∴DF = 8
………………………………………………5 分
2
22. (1)把 x = 3 代入 y x 1 得 y = 2 ∴ A(3,2)
又 y k (x 0) 图象过点 A(3,2) x
解得 k = 6
……………………………………………1 分
C
1
∴EF 平分∠BED ………………………………………………5 分
20.
(1) 当 k =1 时,此方程为 x2 - 4x + 3 = 0 (x -1)(x - 3) = 0
……………………………………1 分
(2)
x1 = 1 ,x2 = 3
由题意得 k ≠ 0 ,
Δ = 16 -12k > 0 4
∴∠ABD =∠CBD ………………………………………………1 分
∵DE∥AB
A
∴∠ABD =∠BDE ………………………………………………2 分
∴∠CBD =∠BDE ………………………………………………3 分
∴EB = ED
………………………………………………4 分
∵F 是 BD 中点
B E
F
D
房山区九年级数学二模答案 2020.6
北京市房山区2020年九年级衔接诊断测试卷(二)数学试卷评分标准2020.6
房山区九年级数学二模答案 2020.6二、填空题(本题共16分,每小题2分)9.1- ; 10.1.3 ; 11.),(15-; 12. 222+2+=b +a b ab a )(; 13.8; 14.2S ; 15.222-20=6+)(x x ;16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是60°,一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角函数值)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28,每小题7分) 17.解:1-2+30sin 4+51-18°1-)(1-2+21×4+5-23= ………………………………………………4分4-24=……………………………………………………… 5分18. 解不等式①:……………………………………………………1分 得-3<x ……………………………………………………2分解不等式②: ……………………………………………………3分 得-5>x ……………………………………………………4分不等式组的解集是 3-<<5-x ………………………………………………5分19.证明:∵BD 平分∠ABC∴∠ABD =∠CBD ………………………………………………1分 ∵DE ∥AB∴∠ABD =∠BDE ………………………………………………2分 ∴∠CBD =∠BDE ………………………………………………3分 ∴EB = ED ………………………………………………4分 ∵F 是BD 中点∴EF 平分∠BED ………………………………………………5分x x 2<3+34+2<1-x x AC20.(1) 当k =1时,此方程为0=3+4-2x x ……………………………………1分0=3)-(1)-(x x3= 1=21x x ,……………………………………2分 (2) 由题意得0≠k , ……………………………………3分0>12-16=Δk ……………………………………4分∴34<k ∴34<k 且 0≠k …………………………………5分21.(1)证明:∵CE =CD ,CF =CB∴四边形DBEF 是平行四边形 ………………………………………………1分 DE =2CD ,BF =2BC ∵菱形ABCD 中, CD = CB∴ DE = BF ………………………………………………2分 ∴四边形DBEF 是矩形 ………………………………………………3分 (2)∵AB =5∴BF =10∵菱形ABCD 中, 53=∠cos ABD ,∠DBF =∠ABD ∴53=∠cos DBF ∵∠BDF =90°∴DB =6 ………………………………………………4分 ∴DF = 8 ………………………………………………5分22. (1)把3=x 代入1-=x y 得2=y ∴),(23A 又)0(>=x xky 图象过点),(23A 解得6=k ……………………………………………1分 (2)① PC = BC ……………………………………………2分当n = 4时, ),(34B ),(234C 23=PC ,23=BC ………………………………………3分 ② 1≤<0n 或 4≥n ………………………………5分23. (1)DE 与⊙O 相切 ………………………………1分连接OD 、CD 、OE∵ BC 为⊙O 的直径∴∠CDA =∠CDB =90° ∵E 是AC 中点 ∴ED =EC∵OC =O D ,OE =O E ∴ΔOCE ≌ΔO DE∴∠O DE =∠OCE =90°………………………………2分 ∴O D ⊥DE∴DE 与⊙O 相切 ………………………………3分 (2)∵∠ACB =90°,AB =10,BC =6∴AC =8,CE =4, OC =3 ………………………………4分 ∵DE 、CE 与⊙O 相切 ∴DE=CE ,∠CEO =∠DEO∴O E ⊥CD ………………………………5分 ∴ OE =5∵CF OE CE OC •=•∴512=CF ∴59=OF ………………………………6分24. (1)11 ………………………………2分(2)如图………………………………3分(3)8 ………………………………4分(4)①②………………………………6分25. (1)x01 2 3 4 5 6 (cm)(cm) 4.47 5.24 5.86 5.96 5.48 4.72 4.00 (cm) 6.00 5.86 5.23 3.98 2.46 1.06 0………………………………2分(2)………………………………4分(3)AM的长度约为 2.98cm或1.50cm ………………………………6分26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB =A (-3,0),B (1,0) ……………………………………2分 把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分 ∴C (0,-3a )∴ D (0,-3a+1), 31D y a =-+ …………………………4分(3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点 …………………5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.27.(1)① 过点D 作DF ⊥AC 于F ……………………………………1分 ∵30DBA =︒∠ ∴BD DF 21=∵以AC 为斜边作等腰ADC Rt Δ ∴FC AF =∴AC DF 21= ∴AC BD = ……………………………………2分② ∵ 等腰ADC Rt Δ与等腰Rt BED △中AC BD =∴DE DC =,ο45=∠=∠CDE FDC ∵30DBA =︒∠∴ο60=∠FDB ,ο15=∠CDB ∴ο60=∠CDE∴CDE Δ是等边三角形 ……………………………………3分 ∵DE EB =∴EB EC = ……………………………………4分(2)法1. 添加辅助线 ……………………………5分证出ADB Δ≌CDG Δ ……………………………6分 ∴ο45=∠=∠A DCG∴ο90=∠GCB ∵EB EG =∴ EB EC = ………………………………7分法2. 添加辅助线 ……………………………5分证出ADB Δ⁓GDE Δ …………………………6分 ∴ο45=∠=∠A DGE∴GE 平分DGC ∠ ∴GE 是DC 的中垂线∴ EB EC ED == ………………………………7分法3. 添加辅助线 ……………………………5分证出ο45=∠EDB =∠EFB ……………………6分∴FE 是DC 的中垂线∴ EB EC ED == ……………………7分 28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分.………………………………2分②当2OB =时,Rt ABC △的形内弧最长,此时弧长=π=.(学生不必画出图象)………………………………3分(2)当圆心在x 轴下方时,此时最长形内弧与线段DF ,EF 相切∵1DOF DOM △∽△∴21OF OM OD ⋅=∴14OM = ∴4M y ≤- ………………………………4分当圆心在x 轴上方时,此时最长形内弧与x 轴相切∵2EGM HEG △∽△∴22HG HM HE ⋅=∴52 EH=∴252EM=∴52My≥………………………………5分综上所述,4My≤-或52My≥(3)当4Gx≤-时,此时最长形内弧与x轴相切∵1GOP GHO△∽△∴143GP=∴143Py≥当40Gx-<<时,此时最长形内弧与线段OM相切解得243Py≥当04G x <<时,此时最长形内弧与线段MG 相切解得343P y ≥………………………………6分当4G x ≥时,此时最长形内弧与线段MG 相切解得433P y ≤-………………………………7分综上所述,43P y ≥23P y ≤。
房山区2020届初三二模数学试题
百 百 百 百
w w w w
百 百
怼 ",3 ”ww w
百 百 百
w w
百
w w
百
w w
百
怼 ",3 ”ww w w
百 百 百 百
w w w w
百 百
w 怼
百
",3
百
”,
19.如图,在/::,.ABC中,BD平分乙ABC交AC千点D, DE II AB交BC千点E, F是BD 中点. 求证: EF平分乙BED.
AD= 2D, E 连接BE 则 ACGG的值是(
2 A 3-
交CD千点F,交AC千点G,
)
B
1 B . 3_
c.
1 _2
F G
C3 ::D -4
7.如图 显示了用计算机模拟随机抛掷 一枚硬币的 某次实验的结果 “正面向上" 的频率
o I 50 100 150 200 250 300 350 400
4.在答题卡上,选择题、作图题 用 2B铅笔作答,其他试题用黑色字迹签字笔作答。 知 5.考试结束,请将本试卷、 答题卡和草稿纸一 并交回。
.. 下面1-8题均有四个选项,其中符合题意的选项只有一个.
1.在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的 时间
□ 坐标过去40年, 中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人
y 6 5 4 3 2 l
-1
1
2
3
4
5
6
x
c
E
A
24. GDP是指 一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是 衡量经济状况的最佳指标截止2020年4月27日,对除西藏外的30个省区市第 一季度有关GDP的数据进行收集、整理、描述和分析下面给出了部分信息:
7房山答案
房山区九年级数学二模答案 2020.6二、填空题(本题共16分,每小题2分)9.1- ; 10.1.3 ; 11.),(15-; 12. 222+2+=b +a b ab a )(; 13.8; 14.2S ; 15.222-20=6+)(x x ;16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是60°,一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角函数值)三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28,每小题7分)17.解: 1-2+30sin 4+51-18°1-)(1-2+21×4+5-23= ………………………………………………4分4-24=……………………………………………………… 5分18. 解不等式①:……………………………………………………1分 得-3<x ……………………………………………………2分解不等式②: ……………………………………………………3分 得-5>x ……………………………………………………4分不等式组的解集是 3-<<5-x ………………………………………………5分19.证明:∵BD 平分∠ABC∴∠ABD =∠CBD ………………………………………………1分 ∵DE ∥AB∴∠ABD =∠BDE ………………………………………………2分 ∴∠CBD =∠BDE ………………………………………………3分 ∴EB = ED ………………………………………………4分 ∵F 是BD 中点∴EF 平分∠BED ………………………………………………5分 20.x x 2<3+34+2<1-x x ACB0=3)-(1)-(x x3= 1=21x x ,……………………………………2分 (2) 由题意得0≠k , ……………………………………3分0>12-16=Δk ……………………………………4分∴34<k ∴34<k 且 0≠k …………………………………5分21.(1)证明:∵CE =CD ,CF =CB∴四边形DBEF 是平行四边形 ………………………………………………1分 DE =2CD ,BF =2BC ∵菱形ABCD 中, CD = CB∴ DE = BF ………………………………………………2分 ∴四边形DBEF 是矩形 ………………………………………………3分 (2)∵AB =5∴BF =10∵菱形ABCD 中, 53=∠cos ABD ,∠DBF =∠ABD ∴53=∠cos DBF∵∠BDF =90°∴DB =6 ………………………………………………4分 ∴DF = 8 ………………………………………………5分22. (1)把3=x 代入1-=x y 得2=y ∴),(23A 又)0(>=x xky 图象过点),(23A 解得6=k ……………………………………………1分当n = 4时, ),(34B ),(234C 23=PC ,23=BC ………………………………………3分 ② 1≤<0n 或 4≥n ………………………………5分23. (1)DE 与⊙O 相切 ………………………………1分连接OD 、CD 、OE∵ BC 为⊙O 的直径∴∠CDA =∠CDB =90° ∵E 是AC 中点 ∴ED =EC∵OC =O D ,OE =O E ∴ΔOCE ≌ΔO DE∴∠O DE =∠OCE =90°………………………………2分 ∴O D ⊥DE∴DE 与⊙O 相切 ………………………………3分 (2)∵∠ACB =90°,AB =10,BC =6∴AC =8,CE =4, OC =3 ………………………………4分 ∵DE 、CE 与⊙O 相切 ∴DE=CE ,∠CEO =∠DEO∴O E ⊥CD ………………………………5分 ∴ OE =5∵CF OE CE OC •=•∴512=CF ∴59=OF ………………………………6分24. (1) 11 ………………………………2分(2) 如图 ………………………………3分(3) 8 ………………………………4分 (4) ①② ………………………………6分 25. (1) (cm)x12 3 4 5 6 (cm) 4.475.245.865.965.484.72 4.00 (cm)6.005.865.233.982.461.06………………………………2分(2)………………………………4分(3)AM 的长度约为 2.98cm 或1.50cm ………………………………6分 26.(1)对称轴-1=22-=aax ……………………………………1分(2)∵4AB把(1,0)代入表达式:0=c +2a +a 得:a 3-=c ……………3分 ∴ C (0,-3a ) ∴ D (0,-3a+1), 31D y a =-+ …………………………4分(3)当0a >时将点()4,4P -代入抛物线223y ax ax a =+-得:41683a a a =--, 45a =∴当45a ≥时,抛物线与线段PD 只有一个交点 …………………5分当0a <时抛物线的顶点为()1,4a -- 当44a -=时1a =- …………………6分综上所述,当45a ≥或1a =-时,抛物线与线段PD 只有一个交点.27.(1)① 过点D 作DF ⊥AC 于F ……………………………………1分 ∵30DBA =︒∠ ∴BD DF 21=∵以AC 为斜边作等腰ADC Rt Δ ∴FC AF =∴AC DF 21= ∴AC BD = ……………………………………2分② ∵ 等腰ADC Rt Δ与等腰Rt BED △中AC BD =∴DE DC =, 45=∠=∠CDE FDC ∵30DBA =︒∠∴ 60=∠FDB , 15=∠CDB ∴ 60=∠CDE∴CDE Δ是等边三角形 ……………………………………3分 ∵DE EB =∴EB EC = ……………………………………4分(2)法1. 添加辅助线 ……………………………5分证出ADB Δ≌CDG Δ ……………………………6分 ∴ 45=∠=∠A DCG∴ 90=∠GCB ∵EB EG =∴ EB EC = ………………………………7分法2. 添加辅助线 ……………………………5分证出ADB Δ⁓GDE Δ …………………………6分 ∴ 45=∠=∠A DGE∴GE 平分DGC ∠∴GE 是DC 的中垂线∴ EB EC ED == ………………………………7分法3. 添加辅助线 ……………………………5分证出 45=∠EDB =∠EFB ……………………6分∴FE 是DC 的中垂线∴ EB EC ED == ……………………7分 28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分.………………………………2分②当2OB =时,Rt ABC △的形内弧最长,此时弧长=π=.(学生不必画出图象)………………………………3分(2)当圆心在x 轴下方时,此时最长形内弧与线段DF ,EF 相切∵1DOF DOM △∽△∴21OF OM OD ⋅=∴14OM = ∴4M y ≤- ………………………………4分当圆心在x 轴上方时,此时最长形内弧与x 轴相切∵2EGM HEG △∽△∴22HG HM HE ⋅=∴52EH =∴252EM =∴52M y ≥………………………………5分综上所述,4M y ≤-或52M y ≥(3)当4G x ≤-时,此时最长形内弧与x 轴相切∵1GOP GHO △∽△ ∴143GP = ∴143P y ≥当40G x -<<时,此时最长形内弧与线段OM 相切解得243P y ≥当04G x <<时,此时最长形内弧与线段MG 相切解得3433P y ≥………………………………6分当4G x ≥时,此时最长形内弧与线段MG 相切解得433P y ≤-………………………………7分综上所述,43P y ≥23P y ≤。
2020年北京市房山区九年级二模数学试题
2020北京房山初三二模数学 2020.6考生须知1.本试卷共12页,共三道大题,28道小题,满分100分。
考试时间120分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和准考证号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
1.在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为( )A.98.210⨯ B.90.8210⨯C.88.210⨯ D.78210⨯2.如图是某个几何体的三视图,该几何体是( )A.长方体C.正方体B.三棱柱D.圆柱3.实数,a b在数轴上的对应点的位置如图所示,则正确的结论是( )A. b a< B. a b-< C. 0a b+> D. a b>4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是( )5.李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如右统计表:在每天所走的步数这组数据中,众数和中位数分别是( ) A.1.6,1.5 B.1.7,1.6 C.1.7,1.7D.1.7,1.556.如图,在ABCD Y 中,延长AD 至点E ,使2AD DE ,连接BE 交CD 于点F ,交AC 于点G,则CGAG的值是() A.23B.13C.12 D.347.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47; ②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45. 其中合理的是( ) A.①B.②C.①②D.①③8. 2020年是5G 爆发元年,三大运营商都在政策的支持下,加快着5G 建设的步伐.某通信公司实行的5G 畅想套餐,部分套餐资费标准如下: 套餐类型 月费(元/月)套餐内包含内容 套餐外资费 国内数据流量(GB )国内主叫(分钟)国内流量国内主叫套餐1 128 30 200 每5元1GB ,用满3GB 后每3元1GB ,不足部分按照0.03元/MB 收取0.19元/分钟套餐2 158 40 300 套餐3 198 60 500 套餐423880600A.套餐1B.套餐2C.套餐3D.套餐4二、填空题(本题共16分,每小题2分) 9. 若分式11x x +-值为0,则x 的值是 .10. 如图,扇形AOB ,通过测量、计算,得»AB 的长约为.cm (π取3.14,结果保留一位小数)11.如图,若在象棋棋盘上建立直角坐标系,使“帅”位于点(32)--,,“炮”位于点()2,0-,则“兵”位于的点的坐标为.12.如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据图形,写出一个含有a b ,的正确的等式.13.如果4m n +=,那么代数式222(2)m n m n m m n +++g 的值为14.已知一组数据123,,,n x x x x gg g ,的方差是2S ,那么另一组数据1233,3,3,3n x x x x ----g g g ,的方差是.15.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文:“有一根竹子,原高二丈(1丈10=尺),现被风折断,竹梢触地面处与竹根的距离为6尺,问折断处离地面的高度为多少尺?”如图,我们用点,,A B C 分别表示竹梢,竹根和折断处,设折断处离地面的高度BC 为x 尺,则可列方程为16.下面是“作一个30︒角”的尺规作图过程.已知:平面内一点A.求作:∠A,使得∠A=30°作法:如图,(1)作射线AB;(2)在射线AB上取一点O,以O为圆心,OA为半径作圆,与射线AB相交于点C;(3)以C为圆心,OC为半径作弧,与⊙O交于点D,作射线AD.则∠DAB即为所求的角.该尺规作图的依据是三、解答题(本题共68分,第17-22题,每小题5分,第23-26题,每小题6分,第27-28题,每小题7分)17.114sin3015-+o()18.解不等式组:3(1)2,12.2x xxx+<⎧⎪⎨-<+⎪⎩19.如图,在ABCV中,BD平分ABC∠交AC于点,//D DE AB交BC于点,E F是BD中点.求证:EF平分BED∠.20.已知关于x的一元二次方程2430kx x-+=.(1)当1k=时,求此方程的根;(2)若此方程有两个不相等的实数根,求k的取值范围.21.如图,菱形ABCD 中,分别延长,DC BC 至点,E F ,使,CE CD CF CB ==,连接,,,.DB BE EF FD(1)求证:四边形DBEF 是矩形; (2)若355AB cos ABD =∠=,,求DF 的长.22.在平面直角坐标系xOy 中,反比例函数()0ky x x=>的图象与直线1y x =-交于点()3A m , (1)求k 的值(2)已知点()(),00P n n >,过点P 作垂直于x 轴的直线,交直线1y x =-于点B ,交函数()0ky x x=>于点C .①当4n =时,判断线段PC 与BC 的数量关系,并说明理由; ②若PC BC ≤,结合图象,直接写出n 的取值范围.23.如图,在90ABC ACB ∠=︒V 中,,以BC 为直径的O e 交AB 于点,D E 是AC 中点,连接DE .(1)判断DE 与O e 的位置关系并说明理由;(2)设CD 与OE 的交点为F ,若10,6AB BC ==,求OF 的长.24.GDP 是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标.截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP 的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP 数据的频数分布直方图,如图24-1(数据分成6组,各组是04,488121216,1620,2024x x x x x x <≤<≤<≤<≤<≤<≤,,):b.2020年第一季度GDP 数据在这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.4 7.5 7.8 7.8 c.30个省区市2020年第一季度及2019年GDP 增速排名统计图,如图24-2: d.北京2020年第一季度GDP 数据约为7.5千亿,GDP 增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP的数据排名第.(2)在30个省区市2020年第一季度及2019年GDP增速排名统计图中,请在图中用“O”圈出代表北京的点(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第.(4)下列推断合理的是.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D 代表的湖北排名下滑最多.、、分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠②A B C本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段6AB cm =,点M 是线段AB 上一动点,以AB 为直径作O e ,点C 是圆周上一点且4AC cm =,连接CM ,过点A 做直线CM 的垂线,交O e 于点N ,连接CN ,设线段AM 的长为xcm ,线段AN 的长为1y cm ,线段CN 的长为2y cm .小华同学根据学习函数的经验,分别对函数12,y y ,随自变量x 的变化而变化的规律进行了探究. 下面是该同学的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了12,y y 与x 的几组对应值:(2)在同一平面直角坐标系xOy 中,描出补全后的表中各组数值所对应的点()()12,,x y x y ,,并画出函数12,y y 的图象(函数2y 的图象如图,请你画出1y 的图象)(3)结合画出的函数图象,解决问题:当CAN V 是等腰三角形时,AM 的长度约为 cm .26.在平面直角坐标系中,已知抛物线22y ax ax c =++与x 轴交于点,A B ,且4AB =.抛物线与y 轴交于点C ,将点C 向上移动1个单位得到点D . (1)求抛物线对称轴;(2)求点D 纵坐标(用含有a 的代数式表示);(3)已知点()4,4P -,若抛物线与线段PD 只有一个公共点,求a 的取值范围.27.点C 为线段AB 上一点,以AC 为斜边作等腰Rt ADC V ,连接BD ,在Rt ABD V 外侧,以BD 为斜边作等腰Rt BED V ,连接EC . (I)如图1,当30DBA ∠=︒时: ①求证:AC BD =;②判断线段EC 与EB 的数量关系,并证明;(2)如图2,当045DBA ︒<∠<︒时,EC 与EB 的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法1:尝试将点D 为旋转中心,过点D 作线段BD 垂线,交BE 延长线于点G , 连接CG ;通过证明ADB CDG V V ≌解决以上问题;想法2:尝试将点D 为旋转中心,过点D 作线段AB 垂线,垂足为点G ,连接EG .通过证明ADB GDE V V ∽ 解决以上问题;想法3:尝试利用四点共圆,过点D 作AB 垂线段DF ,连接EF ,通过证明D F B E 、、、四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明EC EB =(一种方法即可)28.过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称该弧为三角形的“形内弧”.(1)如图,在等腰Rt ABC V 中,902A AB AC ∠=︒==,. ①在下图中画出一条Rt ABC V 的形内弧; ②在Rt ABC V 中,其形内弧的长度最长为.(2)在平面直角坐标系中,点()()()2,02001D E F -,,,,.点M 为DEF V 形内弧所在圆的圆心.求点M 纵坐标M y 的取值范围;(3)在平面直角坐标系中,点(M ,点G 为x 轴上一点点P 为OMG V 最长形内弧所在圆的圆心,求点P 纵坐标p y 的取值范围.。
北京市房山区2019-2020学年中考第二次质量检测数学试题含解析
北京市房山区2019-2020学年中考第二次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,则k的取值范围为()A.k>﹣1 B.k≥﹣1 C.k>﹣1且k≠0D.k≥﹣1且k≠02.下列运算正确的是()A.5a+2b=5(a+b)B.a+a2=a3C.2a3•3a2=6a5D.(a3)2=a53.如图所示,如果将一副三角板按如图方式叠放,那么∠1 等于( )A.120︒B.105︒C.60︒D.45︒4.若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0D.抛物线的对称轴是直线x=3 25.某中学篮球队12名队员的年龄如下表:年龄:(岁)13 14 15 16人数 1 5 4 2关于这12名队员的年龄,下列说法错误的是( )A.众数是14岁B.极差是3岁C.中位数是14.5岁D.平均数是14.8岁6.下列运算中,正确的是()A.(ab2)2=a2b4B.a2+a2=2a4C.a2•a3=a6D.a6÷a3=a27.如图所示,把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB 上,如果折叠后得等腰△EBA,那么结论中:①∠A=30°;②点C与AB的中点重合;③点E到AB的距离等于CE的长,正确的个数是()A.0 B.1 C.2 D.38.如图,有5个相同的小立方体搭成的几何体如图所示,则它的左视图是()A.B.C.D.9.如图,已知△ABC,按以下步骤作图:①分别以B,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M,N;②作直线MN 交AB 于点D,连接CD.若CD=AC,∠A=50°,则∠ACB 的度数为()A.90°B.95°C.105°D.110°10.不等式2x﹣1<1的解集在数轴上表示正确的是()A.B.C.D.11.计算(﹣12)﹣1的结果是()A.﹣12B.12C.2 D.﹣212.如图,有一张三角形纸片ABC,已知∠B=∠C=x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.14.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.15.某校为了了解学生双休日参加社会实践活动的情况,随机抽取了100名学生进行调查,并绘成如图所示的频数分布直方图.已知该校共有1000名学生,据此估计,该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的________(填百分数).16.如图,D、E分别为△ABC的边BA、CA延长线上的点,且DE∥BC.如果35DEBC,CE=16,那么AE的长为_______17.若关于x的二次函数y=ax2+a2的最小值为4,则a的值为______.18.如图,已知点A(a,b),0是原点,OA=OA1,OA⊥OA1,则点A1的坐标是.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,ABC △是等腰三角形,AB AC =,36A ∠=o .(1)尺规作图:作B Ð的角平分线BD ,交AC 于点D (保留作图痕迹,不写作法);(2)判断BCD V 是否为等腰三角形,并说明理由.20.(6分)某农场急需铵肥8吨,在该农场南北方向分别有一家化肥公司A 、B ,A 公司有铵肥3吨,每吨售价750元;B 公司有铵肥7吨,每吨售价700元,汽车每千米的运输费用b (单位:元/千米)与运输重量a (单位:吨)的关系如图所示.(1)根据图象求出b 关于a 的函数解析式(包括自变量的取值范围);(2)若农场到B 公司的路程是农场到A 公司路程的2倍,农场到A 公司的路程为m 千米,设农场从A 公司购买x 吨铵肥,购买8吨铵肥的总费用为y 元(总费用=购买铵肥费用+运输费用),求出y 关于x 的函数解析式(m 为常数),并向农场建议总费用最低的购买方案.21.(6分)在“优秀传统文化进校园”活动中,学校计划每周二下午第三节课时间开展此项活动,拟开展活动项目为:剪纸,武术,书法,器乐,要求七年级学生人人参加,并且每人只能参加其中一项活动.教务处在该校七年级学生中随机抽取了100名学生进行调查,并对此进行统计,绘制了如图所示的条形统计图和扇形统计图(均不完整).请解答下列问题:请补全条形统计图和扇形统计图;在参加“剪纸”活动项目的学生中,男生所占的百分比是多少?若该校七年级学生共有500人,请估计其中参加“书法”项目活动的有多少人?学校教务处要从这些被调查的女生中,随机抽取一人了解具体情况,那么正好抽到参加“器乐”活动项目的女生的概率是多少?22.(8分)在Rt△ABC中,∠C=90°,∠B=30°,AB=10,点D是射线CB上的一个动点,△ADE是等边三角形,点F是AB的中点,连接EF.(1)如图,点D在线段CB上时,①求证:△AEF≌△ADC;②连接BE,设线段CD=x,BE=y,求y2﹣x2的值;(2)当∠DAB=15°时,求△ADE的面积.23.(8分)在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=110°,连接AD,求∠ADB的度数.(不必解答)小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图1),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三角形;∠ADB 的度数为.在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=1.请直接写出线段BE的长为.24.(10分)列方程解应用题:某市今年进行水网升级,1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月的水费是15元,而今年5月的水费则是30元.已知小丽家今年5月的用水量比去年12月的用水量多5m3,求该市今年居民用水的价格.25.(10分)某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为W元.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克多少元?(2)如果物价部门规定这种农产品的销售价不高于每千克28元,销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?26.(12分)随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次统计共抽查了_____名学生,最喜欢用电话沟通的所对应扇形的圆心角是____°;(2)将条形统计图补充完整;(3)运用这次的调查结果估计1200名学生中最喜欢用QQ进行沟通的学生有多少名?(4)甲、乙两名同学从微信,QQ,电话三种沟通方式中随机选了一种方式与对方联系,请用列表或画树状图的方法求出甲乙两名同学恰好选中同一种沟通方式的概率.27.(12分)6月14日是“世界献血日”,某市采取自愿报名的方式组织市民义务献血.献血时要对献血者的血型进行检测,检测结果有“A型”、“B型”、“AB型”、“O型”4种类型.在献血者人群中,随机抽取了部分献血者的血型结果进行统计,并根据这个统计结果制作了两幅不完整的图表:血型 A B AB O人数10 5(1)这次随机抽取的献血者人数为人,m=;补全上表中的数据;若这次活动中该市有3000人义务献血,请你根据抽样结果回答:从献血者人群中任抽取一人,其血型是A型的概率是多少?并估计这3000人中大约有多少人是A型血?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据抛物线y=kx2﹣2x﹣1与x轴有两个不同的交点,得出b2﹣4ac>0,进而求出k的取值范围.【详解】∵二次函数y=kx2﹣2x﹣1的图象与x轴有两个交点,∴b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>0,∴k>﹣1,∵抛物线y=kx2﹣2x﹣1为二次函数,∴k≠0,则k的取值范围为k>﹣1且k≠0,故选C.【点睛】本题考查了二次函数y=ax2+bx+c的图象与x轴交点的个数的判断,熟练掌握抛物线与x轴交点的个数与b2-4ac的关系是解题的关键.注意二次项系数不等于0.2.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.3.B【解析】解:如图,∠2=90°﹣45°=45°,由三角形的外角性质得,∠1=∠2+60°=45°+60°=105°.故选B.点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.4.D【解析】【分析】A、由a=1>0,可得出抛物线开口向上,A选项错误;B、由抛物线与y轴的交点坐标可得出c值,进而可得出抛物线的解析式,令y=0求出x值,由此可得出抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、由抛物线开口向上,可得出y无最大值,C选项错误;D、由抛物线的解析式利用二次函数的性质,即可求出抛物线的对称轴为直线x=-32,D选项正确.综上即可得出结论.【详解】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x1-3x+c与y轴的交点为(0,1),∴c=1,∴抛物线的解析式为y=x1-3x+1.当y=0时,有x1-3x+1=0,解得:x1=1,x1=1,∴抛物线与x轴的交点为(1,0)、(1,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x1-3x+1,∴抛物线的对称轴为直线x=-b2a=-321=32,D选项正确.故选D.【点睛】本题考查了抛物线与x轴的交点、二次函数的性质、二次函数的最值以及二次函数图象上点的坐标特征,利用二次函数的性质及二次函数图象上点的坐标特征逐一分析四个选项的正误是解题的关键.5.D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选D.“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.6.A【解析】【分析】直接利用积的乘方运算法则以及合并同类项法则和同底数幂的乘除运算法则分别分析得出答案.【详解】解:A、(ab2)2=a2b4,故此选项正确;B、a2+a2=2a2,故此选项错误;C、a2•a3=a5,故此选项错误;D、a6÷a3=a3,故此选项错误;故选:A.【点睛】此题主要考查了积的乘方运算以及合并同类项和同底数幂的乘除运算,正确掌握运算法则是解题关键.7.D【解析】【分析】根据翻折变换的性质分别得出对应角相等以及利用等腰三角形的性质判断得出即可.【详解】∵把直角三角形纸片沿过顶点B的直线(BE交CA于E)折叠,直角顶点C落在斜边AB上,折叠后得等腰△EBA,∴∠A=∠EBA,∠CBE=∠EBA,∴∠A=∠CBE=∠EBA,∵∠C=90°,∴∠A+∠CBE+∠EBA=90°,∴∠A=∠CBE=∠EBA=30°,故①选项正确;∵∠A=∠EBA,∠EDB=90°,∴AD=BD,故②选项正确;∵∠C=∠EDB=90°,∠CBE=∠EBD=30°,∴EC=ED(角平分线上的点到角的两边距离相等),∴点E到AB的距离等于CE的长,故③选项正确,故正确的有3个.故选D.【点睛】此题主要考查了翻折变换的性质以及角平分线的性质和等腰三角形的性质等知识,利用折叠前后对应角相等是解题关键.8.C【解析】试题解析:左视图如图所示:故选C.9.C【解析】【分析】根据等腰三角形的性质得到∠CDA=∠A=50°,根据三角形内角和定理可得∠DCA=80°,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到∠B=∠BCD,根据三角形外角性质可知∠B+∠BCD=∠CDA,进而求得∠BCD=25°,根据图形可知∠ACB=∠ACD+∠BCD,即可解决问题.【详解】∵CD=AC,∠A=50°∴∠CDA=∠A=50°∵∠CDA+∠A+∠DCA=180°∴∠DCA=80°根据作图步骤可知,MN垂直平分线段BC∴BD=CD∴∠B=∠BCD∵∠B+∠BCD=∠CDA∴2∠BCD=50°∴∠BCD=25°∴∠ACB=∠ACD+∠BCD=80°+25°=105°故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.10.D【解析】【分析】先求出不等式的解集,再在数轴上表示出来即可.【详解】移项得,2x<1+1,合并同类项得,2x<2,x的系数化为1得,x<1.在数轴上表示为:.故选D.【点睛】本题考查了解一元一次不等式,熟练掌握运算法则是解题的关键.11.D【解析】【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【详解】解:1 112122-⎛⎫-==-⎪⎝⎭-,故选D.【点睛】本题考查了负整数指数幂,负整数指数幂与正整数指数幂互为倒数.12.C【解析】【分析】根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.【详解】∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.14.【解析】试题分析:根据题意和图示,可知所有的等可能性为18种,然后可知落在黑色区域的可能有4种,因此可求得小球停留在黑色区域的概率为:.15.28%.【解析】【分析】用被抽查的100名学生中参加社会实践活动时间在2~2.5小时之间的学生除以抽查的学生总人数,即可得解.【详解】由频数分布直方图知,2~2.5小时的人数为100﹣(8+24+30+10)=28,则该校双休日参加社会实践活动时间在2~2.5小时之间的学生数大约是全体学生数的百分比为28100⨯100%=28%.故答案为:28%.【点睛】本题考查了频数分布直方图以及用样本估计总体,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.16.1【解析】【分析】根据DE∥BC,得到35DE EABC AC==,再代入AC=11-AE,则可求AE长.【详解】∵DE∥BC,∴DE EA BC AC=.∵35DEBC=,CE=11,∴3165AEAE-=,解得AE=1.故答案为1.【点睛】本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.17.1.【解析】【分析】根据二次函数的性质列出不等式和等式,计算即可.【详解】解:∵关于x的二次函数y=ax1+a1的最小值为4,∴a1=4,a>0,解得,a=1,故答案为1.【点睛】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.18.(﹣b,a)【解析】解:如图,从A、A1向x轴作垂线,设A1的坐标为(x,y),设∠AOX=α,∠A1OD=β,A1坐标(x,y)则α+β="90°sinα=cosβ" cosα="sinβ" sinα==cosβ=同理cos α==sinβ=所以x=﹣b,y=a,故A1坐标为(﹣b,a).【点评】重点理解三角函数的定义和求解方法,主要应用公式sinα=cosβ,cosα=sinβ.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.V为等腰三角形19.(1)作图见解析(2)BCD【解析】【分析】(1)作角平分线,以B点为圆心,任意长为半径,画圆弧;交直线AB于1点,直线BC于2点,再以2点为圆心,任意长为半径,画圆弧,再以1点为圆心,任意长为半径,画圆弧,相交于3点,连接3点和O点,直线3O即是已知角AOB的对称中心线.V的三个角,看是否有两个角相等,进而判断是否为等腰三角形.(2)分别求出BCD【详解】(1)具体如下:(2)在等腰ABC △中,36A ∠=o ,BD 为∠ABC 的平分线,故72ABC C ∠=∠=︒,36DBC ∠=︒,那么在DBC △中,72BDC ∠=︒∵72BDC C ∠=∠=︒∴BCD V 是否为等腰三角形.【点睛】本题考查角平分线的作法,以及判定等腰三角形的方法.熟悉了解角平分线的定义以及等腰三角形的判定方法是解题的关键所在.20.(1)b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)();(2)详见解析. 【解析】【分析】(1)分别设两段函数图象的解析式,代入图象上点的坐标求解即可;(2)先求出农场从A 、B 公司购买铵肥的费用,再求出农场从A 、B 公司购买铵肥的运输费用,两者之和即为总费用,可以求出总费用关于x 的解析式是一次函数,根据m 的取值范围不同分两类讨论,可得出结论.【详解】(1)有图象可得,函数图象分为两部分,设第一段函数图象为y =k 1x ,代入点(4,12),即12=k 1×4,可得k 1=3,设第二段函数图象为y =k 2x +c ,代入点(4,12)、(8,32)可列出二元一次方程组224k +c=128k +c=32⎧⎨⎩,解得:k 2=5,c =-8,所以函数解析式为:b =3a 0a 45a-84a ≤⎧⎨≤⎩(<)(); (2)农场从A 公司购买铵肥的费用为750x 元,因为B 公司有铵肥7吨,1≤x≤3,故农场从B 公司购买铵肥的重量(8-x )肯定大于5吨,农场从B 公司购买铵肥的费用为700(8-x )元,所以购买铵肥的总费用=750x +700(8-x )=50x +5600(0≤x≤3);农场从A 公司购买铵肥的运输费用为3xm 元,且满足1≤x≤3,农场从B 公司购买铵肥的运输费用为[5(8-x )-8]×2m 元,所以购买铵肥的总运输费用为3xm +[5(8-x)-8]×2m=-7mx+64m元,因此农场购买铵肥的总费用y=50x+5600-7mx+64m=(50-7m)x +5600+64m(1≤x≤3),分一下两种情况进行讨论;①当50-7m≥0即m≤507时,y随x的增加而增加,则x=1使得y取得最小值即总费用最低,此时农场铵肥的购买方案为:从A公司购买1吨,从B公司购买7吨,②当50-7m<0即m>507时,y随x的增加而减少,则x=3使得y取得最小值即总费用最低,此时农场铵肥的购买方案为:从A公司购买3吨,从B公司购买5吨.【点睛】本题主要考查了方案比较以及函数解析式的求解,解本题的要点在于根据题意列出相关方程式.21.(1)详见解析;(2)40%;(3)105;(4)5 16.【解析】【分析】(1)先求出参加活动的女生人数,进而求出参加武术的女生人数,即可补全条形统计图,再分别求出参加武术的人数和参加器乐的人数,即可求出百分比;(2)用参加剪纸中男生人数除以剪纸的总人数即可得出结论;(3)根据样本估计总体的方法计算即可;(4)利用概率公式即可得出结论.【详解】(1)由条形图知,男生共有:10+20+13+9=52人,∴女生人数为100-52=48人,∴参加武术的女生为48-15-8-15=10人,∴参加武术的人数为20+10=30人,∴30÷100=30%,参加器乐的人数为9+15=24人,∴24÷100=24%,补全条形统计图和扇形统计图如图所示:(2)在参加“剪纸”活动项目的学生中,男生所占的百分比是1010+15100%=40%.答:在参加“剪纸”活动项目的学生中,男生所占的百分比为40%.(3)500×21%=105(人).答:估计其中参加“书法”项目活动的有105人.(4)15155 151******** +++==.答:正好抽到参加“器乐”活动项目的女生的概率为5 16.【点睛】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(1)①证明见解析;②25;(2)为2532或503+1.【解析】【分析】(1)①在直角三角形ABC中,由30°所对的直角边等于斜边的一半求出AC的长,再由F为AB中点,得到AC=AF=5,确定出三角形ADE为等边三角形,利用等式的性质得到一对角相等,再由AD=AE,利用SAS即可得证;②由全等三角形对应角相等得到∠AEF为直角,EF=CD=x,在三角形AEF中,利用勾股定理即可列出y关于x的函数解析式;(2)分两种情况考虑:①当点在线段CB上时;②当点在线段CB的延长线上时,分别求出三角形ADE面积即可.【详解】(1)、①证明:在Rt△ABC中,∵∠B=30°,AB=10,∴∠CAB=60°,AC=12AB=5,∵点F是AB的中点,∴AF=12AB=5,∴AC=AF,∵△ADE是等边三角形,∴AD=AE,∠EAD=60°,∵∠CAB=∠EAD,即∠CAD+∠DAB=∠FAE+∠DAB,∴∠CAD=∠FAE,∴△AEF≌△ADC(SAS);②∵△AEF ≌△ADC ,∴∠AEF=∠C=90°,EF=CD=x ,又∵点F 是AB 的中点,∴AE=BE=y ,在Rt △AEF 中,勾股定理可得:y 2=25+x 2,∴y 2﹣x 2=25.(2)①当点在线段CB 上时, 由∠DAB=15°,可得∠CAD=45°,△ADC 是等腰直角三角形, ∴AD 2=50,△ADE 的面积为21253sin 602ADE S AD ∆=⋅⋅︒=; ②当点在线段CB 的延长线上时, 由∠DAB=15°,可得∠ADB=15°,BD=BA=10,∴在Rt △ACD 中,勾股定理可得AD 23 21sin 60503752ADE S AD ∆=⋅⋅︒= 综上所述,△ADE 的面积为2532或50375. 【点睛】 此题考查了勾股定理,全等三角形的判定与性质,以及等边三角形的性质,熟练掌握勾股定理是解本题的关键. 23.(1)①△D′BC 是等边三角形,②∠ADB=30°(1)∠ADB=30°;(3)373【解析】【分析】(1)①如图1中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′,由△ABD ≌△ABD′,推出△D′BC 是等边三角形;②借助①的结论,再判断出△AD′B ≌△AD′C ,得∠A D′B =∠AD′C ,由此即可解决问题.(1)当60°<α≤110°时,如图3中,作∠AB D′=∠ABD ,B D′=BD ,连接CD′,AD′,证明方法类似(1).(3)第①种情况:当60°<α≤110°时,如图3中,作∠AB D′=∠ABD ,B D′=BD ,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.【详解】(1)①如图1中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC=30°,∴∠ABD=∠ABC﹣∠DBC=15°,在△ABD和△ABD′中,AB ABABD ABD BD BD'=⎧⎪∠=∠⎨='⎪⎩∴△ABD≌△ABD′,∴∠ABD=∠ABD′=15°,∠ADB=∠AD′B,∴∠D′BC=∠ABD′+∠ABC=60°,∵BD=BD′,BD=BC,∴BD′=BC,∴△D′BC是等边三角形,②∵△D′BC是等边三角形,∴D′B=D′C,∠BD′C=60°,在△AD′B和△AD′C中,AD AD D B D C AB AC=⎧⎪=⎨⎪=''⎩'∴△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(1)∵∠DBC<∠ABC,∴60°<α≤110°,如图3中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∴∠ABC=∠ACB,∵∠BAC=α,∴∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠ABC﹣∠DBC=90°﹣12α﹣β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°﹣12α﹣β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°﹣12α﹣β+90°﹣12α=180°﹣(α+β),∵α+β=110°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.(3)第①情况:当60°<α<110°时,如图3﹣1,由(1)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=1,∴DE=3,∵△BCD'是等边三角形,∴BD'=BC=7,∴BD=BD'=7,∴BE=BD﹣DE=7﹣3;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°﹣α)=90°﹣12α,∴∠ABD=∠DBC﹣∠ABC=β﹣(90°﹣12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β﹣(90°﹣12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC﹣∠ABD′=90°﹣12α﹣[β﹣(90°﹣12α)]=180°﹣(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=1,∴3∴3故答案为:373【点睛】此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.24.2.4元/米3【解析】【分析】利用总水费÷单价=用水量,结合小丽家今年5月的用水量比去年12月的用水量多5m3,进而得出等式即可.【详解】解:设去年用水的价格每立方米x元,则今年用水价格为每立方米1.2x元由题意列方程得:30155 1.2x x-=解得x2=经检验,x2=是原方程的解1.2x2.4=(元/立方米)答:今年居民用水的价格为每立方米2.4元.【点睛】此题主要考查了分式方程的应用,正确表示出用水量是解题关键.25.(1)该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)192元. 【解析】【分析】(1)直接利用每件利润×销量=总利润进而得出等式求出答案;(2)直接利用每件利润×销量=总利润进而得出函数关系式,利用二次函数增减性求出答案.【详解】(1)根据题意得:(x﹣20)(﹣2x+1)=150,解得:x1=25,x2=35,答:该农户想要每天获得150元得销售利润,销售价应定为每千克25元或35元;(2)由题意得:W=(x﹣20)(﹣2x+1)=﹣2(x﹣30)2+200,∵a=﹣2,∴抛物线开口向下,当x<30时,y随x的增大而增大,又由于这种农产品的销售价不高于每千克28元∴当x=28时,W最大=﹣2×(28﹣30)2+200=192(元).∴销售价定为每千克28元时,每天的销售利润最大,最大利润是192元.【点睛】此题主要考查了一元二次方程的应用以及二次函数的应用,正确应用二次函数增减性是解题关键.26.(1)120,54;(2)补图见解析;(3)660名;(4)1 3 .【解析】【分析】(1)用喜欢使用微信的人数除以它所占的百分比得到调查的总人数,再用360°乘以样本中电话人数所占比例;(2)先计算出喜欢使用短信的人数,然后补全条形统计图;(3)利用样本估计总体,用1200乘以样本中最喜欢用QQ进行沟通的学生所占的百分比即可;(4)画树状图展示所有9种等可能的结果数,再找出甲乙两名同学恰好选中同一种沟通方式的结果数,然后根据概率公式求解.【详解】解:(1)这次统计共抽查学生24÷20%=120(人),其中最喜欢用电话沟通的所对应扇形的圆心角是360°×18120=54°,故答案为120、54;(2)喜欢使用短信的人数为120﹣18﹣24﹣66﹣2=10(人),条形统计图为:(3)1200×66120=660,所以估计1200名学生中最喜欢用QQ进行沟通的学生有660名;(4)画树状图为:共有9种等可能的结果数,甲乙两名同学恰好选中同一种沟通方式的结果数为3,所以甲乙两名同学恰好选中同一种沟通方式的概率13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A 或B的结果数目m,然后利用概率公式求事件A或B的概率.也考查了统计图和用样本估计总体.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
..北京市房山区初三下学期第二次统一测试数学二模试题及参考答案2020年6月一、选择题(本题共16分,每小题2分)下面1-8题均有四个选项,其中符合题意的选项只有一个.1.在迎来庆祝新中国成立70周年之后,对于中国而言,2020年又将是一个新的时间坐标.过去40年,中国完成了卓越的经济转型,八亿两千万人成功脱贫,这是人类发展史上具有里程碑意义的重大成就.将820000000用科学记数法表示为()A.8.2×109B.0.82×109C.8.2×108D.82×1072.如图是某个几何体的三视图,该几何体是()A.长方体B.三棱柱C.正方体D.圆柱3.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.|b|<a B.﹣a<b C.a+b>0D.|a|>b4.《北京市生活垃圾管理条例》对生活垃圾分类提出更高要求,于2020年5月1日起施行,施行的目的在于加强生活垃圾管理,改善城乡环境,保障人体健康.下列垃圾分类标志,是中心对称图形的是()A B C D5.李老师是一位运动达人,他通过佩戴智能手环来记录自己一个月(30天)每天所走的步数,并绘制成如下统计表:AG 3 3 2 4“在每天所走的步数这组数据中,众数和中位数分别是()A .1.6,1.5B .1.7,1.6C .1.7,1.7D .1.7,1.556. 如图,在□ A BCD 中,延长 AD 至点 E ,使 AD=2DE ,连接CGBE 交 CD 于点 F ,交 AC 于点 G ,则 的值是( )2 1 13 A . B . C . D .BAGCFDE7. 如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果:“正面向上”的频率10.5 0.450 50 100 150 200 250 300 350 400抛掷次数下面有三个推断:①当抛掷次数是 100 时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是 0.47;②随着试验次数的增加,“正面向上”的频率总在 0.5 附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是 0.5;③若再次用计算机模拟此实验,则当抛掷次数为 150 时, 正面向上”的频率一定是 0.45.其中合理的是()x -1A .①B .②C .①②D .①③8.2020 年是 5G 爆发元年,三大运营商都在政策的支持下,加快着 5G 建设的步伐.某通信公司实行的 5G 畅想套餐,部分套餐资费标准如下:套餐 月费 套餐内包含内容 套餐外资费类型套餐 1 (元/月) 国内数据流量(GB ) 国内主叫(分钟)128 30 200 国内流量每 5 元 1GB , 国内主叫套餐 2套餐 3158198 4060 300500 用满 3GB 后每 3 元 1GB ,不足部分按0.19元/分钟照 0.03 元套餐 423880600/MB 收取小武每月大约使用国内数据流量 49GB ,国内主叫 350 分钟,若想使每月付费最少,则他应预定的套餐是()A .套餐 1B .套餐 2C .套餐 3D .套餐 4二、填空题(本题共 16 分,每小题 2 分)x +19. 若分式 值为 0,则 x 的值是.BO10.如图,扇形 AOB ,通过测量、计算,得弧 AB 的长约为cm.(π取 3.14 ,结果保留一位小数)A11. 如图,若在象棋棋盘上建立直角坐标系,使“帥”位于 点(-3,-2),“炮”位于点(-2.0),则“兵”位于的点的坐 标为 .12. 如图,一个大正方形被分成两个正方形和两个一样的矩形,请根据+ 2n )x “图形,写出一个含有 a ,b 的正确的等式______________________.m 2 + n 22m 13. 如果 m + n = 4 ,那么代数式 (的值为 .mm + n14. 已知一组数据 x ,x ,x ,…,的方差是 S 2,那么另一组数据 x - 3 ,x - 3 ,x - 3 ,…, 123n123x - 3 的方差是.n15. 《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.其中记载了一个“折竹抵地”问题:“今有竹高二丈,末折抵地,去本六尺,问折者高几何?”译文: 有一根竹子,原高二丈(1 丈=10 尺),现被风折断,竹梢触地面处与竹根的距离为 6 尺,问折断处离地面的高度为多少尺?”如图,我们用点 A ,B ,C 分别表示竹梢,竹根和折断处,设折断处离地面的高度 BC 为 x 尺,则可列方程为_________________.16. 下面是“作一个 30°角”的尺规作图过程.已知:平面内一点 A .求作:∠A ,使得∠A =30°.作法:如图,(1)作射线 AB ;(2)在射线 AB 上取一点 O ,以 O 为圆心,OA 为半径作圆,与射线 AB 相交于点 C ;(3)以 C 为圆心,OC 为半径作弧,与⊙O 交于点 D ,作射线 AD .则∠DAB 即为所求的角.请回答:该尺规作图的依据是_______________________________________.17. 计算: 18 (1 ) + 4 sin 30° + (2)若 AB =5, cos ∠ABD = ,求 DF 的长.三、解答题(本题共 68 分,第 17-22 题,每小题 5 分,第 23-26 题,每小题 6 分,,第 27-28题,每小题 7 分)5 2 -13 ( x + 1) < 2x18. 解不等式组:x -12 < x + 2.19. 如图,在△ABC 中,BD 平分∠ABC 交 AC 于点 D ,DE ∥AB交 BC 于点 E ,F 是 BD 中点.求证:EF 平分∠BED .BFEAD C20.已知关于 x 的一元二次方程 kx 2 - 4 x + 3 = 0 有两个不相等的实数根.(1)当 k =1 时,求此方程的根;(2)若此方程有两个不相等的实数根,求 k 的取值范围.21. 如图,菱形 ABCD 中, 分别延长 DC ,BC 至点 E ,F ,使 CE =CD ,CF =CB ,联结 DB ,BE ,EF ,FD.(1)求证:四边形 DBEF 是矩形;DF3 5ACBE22.在平面直角坐标系xOy中,反比例函数y=k xA(3,m)(x>0)的图象与直线y=x-1交于点(1)求k的值(2)已知点P(n,0)(n>0),过点P作垂直于x轴的直线,k交直线y=x-1于点B,交函数y=(x>0)图象于点xC.①当n=4时,判断线段PC与BC的数量关系,并说明理由;②若PC≤BC,结合图象,直接写出n的取值范围.y654321–1OA123456x –123.如图,在△ABC中,∠ACB=90°,以BC为直径的⊙O交AB于点D,E是AC中点,连接DE.(1)判断DE与⊙O的位置关系并说明理由;(2)设CD与OE的交点为F,若AB=10,BC=6,求OF的长.C E AODB24.GDP是指一个国家(或地区)在一定时期内生产活动的最终成果,常被公认为是衡量经济状况的最佳指标.截止2020年4月27日,对除西藏外的30个省区市第一季度有关GDP的数据进行收集、整理、描述和分析.下面给出了部分信息:a.各省区市GDP数据的频数分布直方图,如图24-1(数据分成6组,各组是,,,,,):图24-1b.2020年第一季度GDP数据在4<x≤8这一组的是:4.6 4.95.0 5.1 5.3 5.46.37.47.57.87.8c.30个省区市2020年第一季度及2019年GDP增速排名统计图,如图24-2:图24-2d.北京2020年第一季度GDP数据约为7.5千亿,GDP增速排名为第22.根据以上信息,回答下列问题:(1)在30个省区市中,北京2020年第一季度GDP的数据排名第_______.(2)在30个省区市2020年第一季度及2019年GDP增速排名统计图中,请在图中用“○”圈出代表北京的点.(3)2020年第一季度GDP增速排名位于北京之后的几个省份中,2019年GDP增速排名的最好成绩是第_______.(4)下列推断合理的是_______.①与2019年GDP增速排名相比,在疫情冲击下,2020年全国第一季度增速排名,部分省市有较大下滑,如D代表的湖北排名下滑最多.②A、B、C分别代表的新疆、广西、青海位于西部地区,多为人口净流出或少量净流入,经济发展主要依靠本地劳动力供给,疫后复工复产效率相对较高,相对于2019年GDP增速排名位置靠前.25.已知线段AB=6c m,点M是线段AB上一动点,以AB为直径作⊙O,点C是圆周上一点且AC=4cm,连接CM,过点A做直线CM的垂线,交⊙O于点N,连接CN,设AM的长为x cm,线段AN的长为cm,线段CN的长为cmCNAO MB小华同学根据学习函数的经验,分别对函数y1,y2,随自变量x的变化而变化的规律进行了探究.下面是小华同学的探究过程,请补充完整:(1)按照下表中自变量x的值进行取点、画图、测量,分别得到了y1,y2与x的几组对应值:x(cm)0123456(cm) (cm)4.476.005.245.865.865.235.963.98 2.464.721.064.00请你补全表格的相关数值,保留两位小数.(2)在同一平面直角坐标系 xOy 中,描出补全后的表中各组数值所对应的点(x ,y 1),(x ,y 2),并画出函数 y 1,y 2 的图象(函数 y 2 的图象如图,请你画出 y 1 的图象)(3)结合画出的函数图象,解决问题:当ΔCAN 是等腰三角形时时, AM 的长度约为______________cm .(保留两位小数)26.在平面直角坐标系中,已知抛物线 y = ax 2 + 2ax + c 与 x 轴交于点 A 、 B ,且 AB = 4 . 抛物线与 y 轴交于点 C ,将点 C 向上移动 1 个单位得到点 D .(1)求抛物线对称轴;(2)求点 D 纵坐标(用含有 a 的代数式表示);(3)已知点 P (-4,4 ) ,若抛物线与线段 PD 只有一个交点,求 a 的取值范围.AB27. 点 C 为线段 AB 上一点,以 AC 为斜边作等腰 Rt ΔADC ,连接 BD ,在 ΔABD 外侧,以 BD 为斜边作等腰 Rt △BED ,连接 EC .(1)如图 1,当∠DBA = 30︒ 时: ① 求证: AC = BD ;② 判断线段 EC 与 EB 的数量关系,并证明;EDAC B图1(2) 如图 2,当 0° < ∠DBA < 45° 时, EC 与 EB 的数量关系是否保持不变?对于以上问题,小牧同学通过观察、实验,形成了解决该问题的几种思路:想法 1: 尝试将点 D 为旋转中心. 过点 D 作线段 BD 的垂线,交 BE 延长线于点 G ,连接CG ;通过证明三角形 ΔADB ≌ ΔCDG 全等解决以上问题;想法 2: 尝试将点 D 为旋转中心. 过点 D 作线段 AB 的垂线,垂足为点G ,连接 E G .通过证明 ΔADB ∽ ΔGDE 解决以上问题;想法 3:尝试利用四点共圆. 过点 D 作 AB 垂线段 DF ,连接 EF ,通过证明 D 、F 、B 、E 四点共圆,利用圆的相关知识解决以上问题.请你参考上面的想法,证明 EC = EB (一种方法即可)EDC图2( )28. 过三角形的任意两个顶点画一条弧,若弧上的所有点都在该三角形的内部或边上,则称 该弧为三角形的“形内弧”.(1)如图,在等腰 Rt △ABC 中,∠A = 90︒ , AB = AC = 2 .① 在下图中画出一条 Rt △ABC 的形内弧;② 在 Rt △ABC 中,其形内弧的长度最长为____________.ABC(2)在平面直角坐标系中,点D (-2,0 ), E (2,0 ) , F (0,1),点 M 为 △DEF 形内弧所在圆的圆心. 求点 M 纵坐标 y M 的取值范围;(3)在平面直角坐标系中,点 M 2, 2 3 ,点 G 为 x 轴上一点. 点 P 为 △OMG 最长形内弧所在圆的圆心,求点 P 纵坐标 y P 的取值范围.( 21 =2 5 2 -1= 3 2 - 5 + 4× + 2 -1………………………………………………4 分- -1北京市房山区初三下学期第二次统一测试数学二模试题及参考答案2020 年 6 月一、选择题(本题共 16 分,每小题 2 分)题号答案1C 2B 3D 4C 5B 6A 7B 8C二、填空题(本题共 16 分,每小题 2 分)9.-1 ;10.3.1 ; 11. - 5,); 12.(a + b ) = a 2 + 2ab + b 2 ;13.8;14. S 2 ;15. x 2 + 62 (20 - x ) ;16.同圆或等圆半径相等,三边相等的三角形是等边三角形,等边三角形的内角是60°, 一条弧所对的圆周角是它所对圆心角的一半.(直径所对的圆周角是直角,正弦定义,三角 函数值)三、解答题(本题共 68 分,第 17-22 题,每小题 5 分,第 23-26 题,每小题 6 分,第 27-28,每小题 7 分)17.解:118 ( ) + 4 sin 30° +12= 4 2 -4 ……………………………………………………… 5 分18. 解不等式①:3 x + 3 < 2 x……………………………………………………1 分得 x < -3……………………………………………………2 分解不等式②: x -1 < 2 x + 4 ……………………………………………………3 分得 x > -5……………………………………………………4 分不等式组的解集是 - 5 < x < -3………………………………………………5 分19.证明:∵BD 平分∠ABC∴∠ABD =∠CBD ………………………………………………1 分BF Ex ∴ k < 且 k ≠0∵DE ∥AB∴∠ABD =∠BDE ………………………………………………2 分∴∠CBD =∠BDE ………………………………………………3 分∴EB = ED………………………………………………4 分∵F 是 BD 中点∴EF 平分∠BED………………………………………………5 分20.(1) 当 k =1 时,此方程为 x 2 - 4 x + 3 = 0……………………………………1 分( x -1)( x - 3) = 0x = 1 , = 312……………………………………2 分(2)由题意得 k ≠0 ,……………………………………3 分Δ= 16 -12k > 0……………………………………4 分∴ k <4343…………………………………5 分DF21.AC(1)证明:∵CE =CD ,CF =CBBE∴四边形 DBEF 是平行四边形 ………………………………………………1 分DE =2CD ,BF =2BC∵菱形 ABCD 中, CD = CB∴ DE = BF………………………………………………2 分 ∴四边形 DBEF 是矩形………………………………………………3 分(2)∵AB =5∴BF =10x (x>0)图象过点A(3,)23PC=3∵菱形ABCD中,cos∠ABD=35,∠DBF=∠ABD∴cos∠DBF=3 5∵∠BDF=90°∴DB=6………………………………………………4分∴DF=8………………………………………………5分22.(1)把x=3代入y=x-1得y=2∴A(3,)又y=k2解得k=6……………………………………………1分(2)①PC=BC……………………………………………2分3当n=4时,B(4,)C(4,)22,BC=32………………………………………3分②0<n≤1或n≥4………………………………5分23.(1)DE与⊙O相切………………………………1分连接OD、CD、OE∵BC为⊙O的直径∴∠CDA=∠CDB=90°∵E是AC中点∴ED=EC∵OC=OD,OE=OE∴ΔOCE≌ΔODE∴∠ODE=∠OCE=90°………………………………2分∴OD⊥DE∴DE与⊙O相切………………………………3分(2)∵∠ACB=90°,AB=10,BC=6∴AC=8,CE=4,OC=3………………………………4分∵DE、CE与⊙O相切∴DE=CE,∠CEO=∠DEO∴ OF =………………………………6 分∴OE ⊥CD………………………………5 分∴ OE =5∵ OC • CE = OE • CF∴ CF =1259524. (1) 11………………………………2 分(2) 如图………………………………3 分(3) 8………………………………4 分(4) ①②………………………………6 分25. (1)x(cm) 0 1 2 3 4 5 6(cm)(cm)4.476.005.245.86 5.865.23 5.963.985.482.464.721.06 4.00………………………………2 分26.(1)对称轴 x = - 2a ∴ D (0,-3a+1), y = -3a +1…………………………4 分(2)………………………………4 分(3)AM 的长度约为2.98cm 或 1.50cm ………………………………6 分2a = -1 ……………………………………1 分(2)∵ AB = 4A (-3,0),B (1,0) ……………………………………2 分把(1,0)代入表达式: a + 2a + c = 0 得: c = -3a ……………3 分 ∴ C (0,-3a )D(3)当 a > 0 时将点 P (-4,4 ) 代入抛物线 y = ax 2 + 2ax - 3a 得:4 = 16a - 8a - 3a , a = 45∴当 a ≥ 4 5时,抛物线与线段 PD 只有一个交点 …………………5 分当 a < 0 时抛物线的顶点为 (-1,-4a )当 -4a = 4 时a = -1…………………6 分综上所述,当 a ≥ 4 5或 a = -1时,抛物线与线段 PD 只有一个交点.27.(1)① 过点 D 作 DF ⊥ AC 于 F ……………………………………1 分∵∠DBA = 30︒∴ DF = 12BD∵以 AC 为斜边作等腰 Rt ΔADC ∴ AF = FC∴ DF = 1 2AC∴ AC = BD……………………………………2 分② ∵ 等腰 Rt ΔADC 与等腰 Rt △BED 中 AC = BD∴DC=DE,∠FDC=∠CDE=45ο∵∠DBA=30︒∴∠FDB=60ο,∠CDB=15ο∴∠CDE=60ο∴ΔCDE是等边三角形……………………………………3分∵EB=DE∴EC=EB……………………………………4分(2)法1.添加辅助线……………………………5分证出ΔADB≌ΔCDG……………………………6分∴∠DCG=∠A=45ο∴∠GCB=90ο∵EG=EB∴EC=EB………………………………7分法2.添加辅助线……………………………5分证出ΔADBΔGDE…………………………6分∴∠DGE=∠A=45ο∴GE平分∠DGC∴GE是DC的中垂线∴ED=EC=EB………………………………7分法3.添加辅助线……………………………5分证出∠EFB=∠EDB=45ο……………………6分∴FE是DC的中垂线∴ED=EC=EB……………………7分28.(1)①类似以上作答,只要弧上所有点都出现在三角形内部,均给分.………………………………2分②当OB=2时,Rt△ABC的形内弧最长,此时弧长==π.(学生不必画出图象)………………………………3分(2)当圆心在x轴下方时,此时最长形内弧与线段DF,EF相切22∵ △DOF ∽△DOM∴ OF ⋅ OM = OD 21∴ O M = 411∴ y M ≤ -4………………………………4 分当圆心在 x 轴上方时,此时最长形内弧与 x 轴相切∵ △EGM ∽△HEG2∴ HG ⋅ HM = HE 22∴ EH =52∴ EM =52∴y ≥ 5M………………………………5 分综上所述,yM≤-4或y≥M52(3)当x≤-4时,此时最长形内弧与x轴相切G∵△GOP∽△GHO1∴GP=431∴y P1≥43当-4<x<0时,此时最长形内弧与线段O M相切G解得y P2≥43当0<x<4时,此时最长形内弧与线段MG相切G当x≥4时,此时最长形内弧与线段MG相切综上所述,y≥43或y≤-33解得yP3≥433………………………………6分G解得yP4≤-233………………………………7分23P P。