相关关系练习题答案
第七章 相关回归分析 思考题及练习题
实用价值越小。
13、在相关分析中,要求相关的两个变量( )
A、都是随机变量
B、都不是随机变量
C、其中因变量是随机变量 D、其中自变量是随机变量
14、在简单回归直线
中,
表示( ) A、当
增加一个单位时,
增加
的数量 B、当
增加一个单位时,
增加
的数量 C、当
增加一个单位时,
的平均增加值 D、当
增加一个单位时,
按一定数额变化时,变量
也随之近似地按固定的数额变化,那么,这时变量
和
之间存在着( )
A、正相关关系
B、负相关关系
C、直线相关关系 D、曲线相关关系
18、两个变量间的相关关系称为( )
A、单相关
B、无相关
C、复相关
D、多相关
19、如果两个变量之间的相关系数
,说明这两个变量之间存在( )。 A、低度相关关系 B、高度相关关系 C、完全相关关系 D、显著相关关系 20、已知
第七章 思考题及练习题
(一) 填空题
1、 1、 在相关关系中,把具有因果关系相互联系的两个变
量中起影响作用的变量称为_______,把另一个说明观察结果的
变量称为________。
2、 2、 现象之间的相关关系按相关的程度分有________相
关、________相关和_______相关;按相关的方向分有________
E、 E、回归方程实用价值大小的指标 10、现象之间相互联系的类型有( )
A、函数关系 B、回归关系 C、相关关系 D、随机关系 E、结构关系 11、相关关系种类( ) A、从相关方向分为正相关和负相关 B、从相关形态分为线性相关和非线性相关 C、从相关程度分为完全相关、不完全相关和零相关
第七章回归与相关分析练习及答案
第七章回归与相关分析一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。
2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。
3.相关系数的取值X围是。
4.完全相关即是关系,其相关系数为。
5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。
6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。
7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。
8.回归方程y=a+bx中的参数a是,b是。
在统计中估计待定参数的常用方法是。
9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。
10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。
11.用来说明回归方程代表性大小的统计分析指标是。
12.判断一条回归直线与样本观测值拟合程度好坏的指标是。
二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系 B圆周的长度决定于它的半径C家庭的收入和消费的关系 D数学成绩与统计学成绩的关系2.相关系数r的取值X围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元 B减少70元 C增加80元 D减少80元4.若要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关 B正相关还是负相关C完全相关还是不完全相关 D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建=a+b x。
(完整版)第十二章相关和回归分析练习试题
第十二章相关与回归分析一、填空1.如果两变量的相关系数为0,说明这两变量之间_____________。
2.相关关系按方向不同,可分为__________和__________。
3.相关关系按相关变量的多少,分为______和复相关。
4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。
自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。
5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。
6.变量间的相关程度,可以用不知Y与X有关系时预测Y的全部误差E1,减去知道Y与X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。
7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个假定:(1)实际观察值Y围绕每个估计值cY是服从();(2)分布中围绕每个可能的cY值的()是相同的。
7.已知:工资(元)倚劳动生产率(千元)的回归方程为xyc8010+=,因此,当劳动生产率每增长1千元,工资就平均增加 80 元。
8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。
这种分析方法,通常又称为(回归分析)。
9.积差系数r是(协方差)与X和Y的标准差的乘积之比。
二、单项选择1.欲以图形显示两变量X和Y的关系,最好创建(D )。
A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是( A )。
A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3. 相关关系的种类按其涉及变量多少可分为( )。
A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是( B )。
《统计学概论》第八章课后练习题答案
《统计学概论》第八章课后练习答案一、思考题1.什么是相关系数?它与函数关系有什么不同?P237- P2382.什么是正相关、负相关、无线性相关?试举例说明。
P238- P2393.相关系数r的意义是什么?如何根据相关系数来判定变量之间的相关系数?P245 4.简述等级相关系数的含义及其作用?P2505.配合回归直线方程有什么要求?回归方程中参数a、b的经济含义是什么?P2566.回归系数b与相关系数r之间有何关系?P2587.回归分析与相关分析有什么联系与区别?P2548.什么是估计标准误差?这个指标有什么作用?P2619.估计标准误差与相关系数的关系如何?P258-P26410.解释判定系数的意义和作用。
P261二、单项选择题1.从变量之间相互关系的方向来看,相关关系可以分为()。
A.正相关和负相关B.直线关系与曲线关系C.单相关和复相关D.完全相关和不完全相关2.相关分析和回归分析相比较,对变量的要求是不同的。
回归分析中要求()。
A.因变量是随机的,自变量是给定的B.两个变量都是随机的C.两个变量都不是随机的D.以上三个答案都不对3.如果变量x与变量y之间的相关系数为-1,这说明两个变量之间是()。
A.低度相关关系B.完全相关关系C.高度相关关系D.完全不相关4.初学打字时练习的次数越多,出现错误的量就越少,这里“练习次数”与“错误量”之间的相关关系为()。
A.正相关B.高相关C.负相关D.低相关5.假设两变量呈线性关系,且两变量均为顺序变量,那么表现两变量相关关系时应选用()。
A.简单相关系数r B.等级相关系数r sC.回归系数b D.估计标准误差S yx6.变量之间的相关程度越低,则相关系数的数值()。
A.越大B.越接近0C.越接近-1 D.越接近17.下列各组中,两个变量之间的相关程度最高的是()。
A.商品销售额和商品销售量的相关系数是0.9B.商品销售额和商品利润率的相关系数是0.84C.产量与单位成本之间的相关系数为-0.94D.商品销售价格与销售量的相关系数为-0.918.相关系数r的取值范围是()。
两变量间的相关关系与统计案例练习题
174
176
176
176
178
儿子身高y(cm)
177
则y对x的线性回归方程为()
A:y=x-1
B:y=x+1
C:y=88+
D:y=176
考点三:
1.计算下面2×2列联表的K2的值等于。
B
B
合计
A
39
157
196
A
29
167
196
合计
68
342
392
方法突破一:
能力测试点54:两变量间的相关关系与统计案例
考点一:
1.某商品销售量y(件)与销售价格x(元/件)负相关,则其回归方程可能是()
A:y=-10x+200 B:y=10x+200
C:y=-10x-200 D:y=10x-200
考点二:
1.为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:
1.为调查某地区老年人是否需要志愿者提供帮助,用简单随机抽样方法从该地区调查了500位老年人,结果如下:
男
女
需要
40
30
不需要
160
270
(1)估计该地区老年人中,需要志愿者提供帮助的老年人的比例
(2)能否有99%的把握认为该地区的老年人是否需要志愿者提供帮助与性别有关?
关系数据理论练习题及答案详细
第一部分:一、求最小依赖集例:设有依赖集:F={AB-C, C-A, BC—D, ACD-B, D—EG, BE—C, CG—BD, CE f AG},计算与其等价的最小依赖集。
解:1、将依赖右边属性单一化,结果为:F1={AB—C, C—A, BC—D, ACD—B, D—E, D—G, BE—C, CG—B, CG—D CE―A, CE—G}2、在F1中去掉依赖左部多余的属性。
对于CE—A,由于C—A成立,故E是多余的;对于ACD—B,由于(CD) +=48。
£»6,故A是多余的。
删除依赖左部多余的依赖后:F2={AB—C, C—A, BC—D, CD—B, D—E, D—G, BE—C, CG—B, CG—D, CE—G }3、在F2中去掉多余的依赖。
对于CG—B,由于(CG) +=ABCEDG,故CG—B是多余的。
删除依赖左部多余的依赖后:F3={AB—C, C—A, BC—D, CD—B, D—E, D—G, BE—C, CG—D, CE—G }CG—B与CD—B不能同时存在,但去掉任何一个都可以,说明最小依赖集不唯一。
二、求闭包例:关系模式R (U, F),其中U={A, B, C, D, E, I}, F={A—D, AB—E, BI—E, CD—I, E—C},计算(AE) +。
解:令X={AE}, X (0) =AE;计算X(1);逐一扫描F集合中各个函数依赖,在F中找出左边是AE子集的函数依赖,其结果是:A—D, E—C。
于是X (1) =AE U DC=ACDE;因为X (0)W X (1),且X (1)WU,所以在F中找出左边是ACDE子集的函数依赖,其结果是:CD—I。
于是X (2) =ACDE UI=ACDEI。
虽然X (2)W X (1),但在F中未用过的函数依赖的左边属性已没有X (2) 的子集,所以不必再计算下去,即(AE) +=ACDEI。
习题-变量间的相关关系、统计案例
10.3 变量间的相关关系、统计案例基础篇 固本夯基考点一 变量间的相关关系1.(2022届陕西宝鸡期末,4)下列两个变量具有相关关系的是( ) A.正方体的体积与棱长 B.汽车匀速行驶时的路程与时间 C.人的体重与饭量 D.人的身高与视力 答案 C2.(2021西南名校联盟联考,3)已知甲、乙、丙、丁四组数据变量间对应的线性相关系数分别为0.46,0.79, -0.92,0.85,则( )A.甲组数据变量间的线性相关程度最强B.乙组数据变量间的线性相关程度最弱C.丙组数据变量间的线性相关程度最强D.丁组数据变量间的线性相关程度最强 答案 C3.(2020陕西铜川二模,5)四名同学根据各自的样本数据研究变量x,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y 与x 负相关且y ^=2.347x-6.423; ②y 与x 负相关且y ^=-3.476x+5.648; ③y 与x 正相关且y ^=5.437x+8.493; ④y 与x 正相关且y ^=-4.326x-4.578. 其中不正确的结论的序号是( ) A.①② B.②③ C.③④ D.①④ 答案 D4.(2020陕西榆林三模,3)如图所示,给出了样本容量均为7的A,B 两组样本数据的散点图,已知A 组样本数据的相关系数为r 1,B 组样本数据的相关系数为r 2,则( )A.r 1=r 2B.r 1<r 2C.r 1>r 2D.无法判定 答案 C5.(2022届四川资阳一诊,4)我国在2020年如期完成了新时代脱贫攻坚目标任务,脱贫攻坚战取得全面胜利,历史性地解决了绝对贫困问题,并全面建成了小康社会.现就2013—2019 年年末全国农村贫困人口数进行了统计,制成如下散点图:据此散点图,下面 4个回归方程类型中最适宜作为年末贫困人口数y 和年份代码x 的回归方程类型的是( )A.y=a+bxB.y=a+bx C.y=a+be x D.y=a+bln x 答案 A6.(2022届四川绵阳阶段测试,3)某市物价部门对5家商场的某商品一天的销售量及其价格进行了调查,5家商场的价格x(元)和销售量y(件)之间的一组数据如表所示:价格x(元) 9 9.5 10 10.5 11 销售量y(件)1110865按公式计算,y 与x 的回归直线方程是y ^=-3.2x+a ^,相关系数|r|=0.992,则下列说法错误的是( ) A.变量x,y 线性负相关且相关性较强 B.a ^=40C.当x=8.5时,y 的估计值为12.8D.相应于点(10.5,6)的残差为0.4 答案 D7.(2020兰州一诊,7)近五年来某草场羊只数与草场植被指数两变量间的关系如表所示,绘制相应的散点图,如图所示.年份 1 2 3 4 5 羊只数(万只) 1.4 0.9 0.750.60.3 草场植被指数1.14.315.6 31.349.7根据表及图得到以下判断:①羊只数与草场植被指数成减函数关系;②若利用这五组数据得到的两变量间的相关系数为r 1,去掉第一年数据后得到的相关系数为r 2,则|r 1|<|r 2|; ③可以利用回归直线方程,准确地得到当羊只数为2万只时的草场植被指数. 以上判断中正确的个数是( )A.0B.1C.2D.3 答案 B8.(2020课标Ⅱ,18,12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i=1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑i=120x i =60,∑i=120y i =1 200,∑i=120(x i -x )2=80,∑i=120(y i -y )2=9 000,∑i=120(x i -x)(y i -y)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘地块数);(2)求样本(x i ,y i )(i=1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由. 附:相关系数 r=∑i=1n(x i -x)(y -y)√∑i=1(x i -x)2∑i=1(y i -y)2,√2≈1.414.解析(1)由已知得样本平均数y =120∑i=120y i =60,从而该地区这种野生动物数量的估计值为60×200=12 000.(2)样本(x i ,y i )(i=1,2,…,20)的相关系数 r=∑i=120(x i -x)(y -y)√∑i=1(x i -x)2∑i=1(y i-y)2=√80×9 000=2√23≈0.94.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.考点二 独立性检验1.(2022届黑龙江月考,8)某学校食堂对高三学生偏爱蔬菜还是肉类与性别的关系进行了一次调查,根据独立性检验原理,处理所得数据之后发现,有99%的把握但没有99.9%的把握认为偏爱蔬菜还是肉类与性别有关,则K 2的观测值可能为( )P(K 2≥k 0) 0.10 0.05 0.025 0.010 0.0050.001k0 2.706 3.841 5.024 6.6357.87910.828A.K2=3.206B.K2=6.625C.K2=7.869D.K2=11.208答案C2.(2022届山西运城期中,7)为考察某种药物对预防禽流感的效果,在四个不同的实验室取相同的个体进行动物试验.根据四个实验室得到的列联表画出如下四个等高堆积条形图,最能体现该药物对预防禽流感有显著效果的图形是()答案D3.(2020宁夏石嘴山二模,4)通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到K2的观测值k≈4.892,参照下表,得到的正确结论是()P(K2≥k0)0.100.050.025k0 2.706 3.841 5.024A.有97.5%以上的把握认为“爱好该项运动与性别有关”B.有97.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”答案C4.(2021四川南充阆中中学4月质检,6)若由一个2×2列联表中的数据计算得K2=4.013,那么有的把握认为两个变量有关系.()P(K2≥k0)0.150.100.050.0250.0100.0050.001k0 2.0722.7063.8415.0246.6357.87910.828A.95%B.97.5%C.99%D.99.9%答案A5.(2021安徽黄山二模,7)给出下列命题:①在线性回归模型中,相关指数R2表示解释变量x对于预报变量y的贡献率,R2越接近于0,表示回归效果越好;②两个变量相关性越强,则相关系数的绝对值就越接近于1; ③两个模型中残差平方和越小的模型拟合的效果越好;④对分类变量X 与Y 的随机变量K 2的观测值k 来说,k 越大,“X 与Y 有关系”的把握程度越大. 其中正确命题的个数是( )A.1B.2C.3D.4 答案 C6.(2022届河南焦作模拟,17)第32届夏季奥运会于2021年7月23日至8月8日在日本举行,为了解某校学生对奥运会是否关注,随机调查了该校200名学生,统计结果如表:关注 不关注 合计 女生 34 51 85 男生 66 49 115 合计100100200(1)分别估计该校女生和男生关注奥运会的概率;(2)能否有99%的把握认为该校女生和男生对奥运会的关注度有差异? 参考公式及数据: K2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.P(K 2≥k) 0.050 0.010 0.001k3.8416.635 10.828解析 (1)估计该校女生关注奥运会的概率约为3485=25;男生关注奥运会的概率约为66115. (2)由题表中数据可知K2=200×(34×49-66×51)2100×100×85×115=13623≈5.913. 因为5.913<6.635,故没有99%的把握认为该校女生和男生对奥运会的关注度有差异.7.(2022届昆明质检,17)“微信运动”是手机APP 推出的多款健康运动软件中的一款,某学校140名教师均在微信好友群中参与了“微信运动”,对运动10 000步或以上的教师授予“运动达人”称号,低于10 000步称为“参与者”.为了解教师们的运动情况,选取了教师们在某日的运动数据进行分析,统计结果如下:运动达人 参与者 合计 男教师 60 20 80 女教师 40 20 60 合计10040140(1)根据上表说明,能否在犯错误概率不超过0.05的前提下认为获得“运动达人”称号与性别有关; (2)从获得“运动达人”称号的教师中采用按性别分层抽样的方法选取5人参加全国第四届“万步有约”全国健走激励大赛某赛区的活动,若从选取的5人中随机抽取2人作为代表参加开幕式,求抽取的2人都为女教师的概率. 参考公式:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据:P(K 2≥k 0) 0.050 0.0100.001k 03.8416.635 10.828解析 (1)∵K2=140×(60×20-40×20)280×60×100×40≈1.167<3.841,∴不能在犯错误的概率不超过0.05的前提下认为获得“运动达人”称号与性别有关.(2)根据分层抽样方法得:参赛的男教师有60100×5=3人,参赛的女教师有40100×5=2人,抽取的男教师记为A,B,C;女教师记为a,b.从抽取的这五名教师中随机选取2名,有AB,AC,Aa,Ab,BC,Ba,Bb,Ca,Cb,ab 共10种选法,其中2人都是女教师的选法有ab 一种,故抽取的2人都为女教师的概率P=110.8.(2019课标Ⅰ,17,12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到列联表:满意 不满意 男顾客 40 10 女顾客3020(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异? 附:K2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d).P(K 2≥k)0.050 0.010 0.001 k3.8416.63510.828.解析 (1)由调查数据,男顾客中对该商场服务满意的比率为4050=0.8,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为3050=0.6,因此女顾客对该商场服务满意的概率的估计值为0.6. (2)K2=100×(40×20-10×30)250×50×70×30≈4.762.由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务的评价有差异.综合篇 知能转换考法一 线性回归方程的求解与应用1.(2022届四川模拟,8)已知回归直线的斜率的估计值为1.23,样本点的中心为(5,6),则回归直线方程为( ) A.y ^=-0.15x+1.23 B.y ^=-2.38x+1.23C.y ^=1.23x-2.38 D.y ^=1.23x-0.15 答案 D2.(2022届哈尔滨模拟,10)已知某种商品的广告费支出x(单位:万元)与销售额y(单位:万元)之间具有线性相关关系,利用下表中的五组数据求得回归直线方程为y ^=b ^x+a ^,根据该回归方程,预测当x=8时,y ^=84.8,则b ^=( )x23456y 25 37 50 56 64A.9.4B.9.5C.9.6D.9.8 答案 C3.(2021甘肃二模,7)某地以“绿水青山就是金山银山”理念为引导,推进绿色发展,现要订购一批苗木,苗木长度与售价如下表:苗木长度x(厘米) 38 485868 7888 售价y(元)16.8 18.8 20.8 22.8 2425.8由表可知,苗木长度x(厘米)与售价y(元)之间存在线性相关关系,回归方程为y ^=0.2x+a ^,则当苗木长度为150厘米时,售价大约为( ) A.33.3元 B.35.5元 C.38.9元 D.41.5元 答案 C4.(2021西安中学二模,4)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n),用最小二乘法建立的回归方程为y ^=0.85x-85.71. ①y 与x 具有正的线性相关关系; ②回归直线过样本点的中心(x ,y );③若该大学某女生身高增加1 cm,则其体重约增加0.85 kg; ④若该大学某女生身高为170 cm,则其体重必为58.79 kg. 则上述判断不正确的个数是( ) A.1 B.2 C.3 D.4 答案 A5.(2020中原名校质量考评,7)根据最小二乘法,由一组样本数据(x i ,y i )(其中i=1,2,…,300)求得的回归方程是y ^=b ^x+a ^,则下列说法正确的是( )A.至少有一个样本点落在回归直线y ^=b ^x+a ^上B.若所有样本点都在回归直线y ^=b ^x+a ^上,则变量间的相关系数为1 C.对所有的解释变量x i (i=1,2,…,300),b ^x i +a ^的值一定与y i 有误差 D.若回归直线y ^=b ^x+a ^的斜率b ^>0,则变量x 与y 正相关 答案 D6.(2021江西八校4月联考,14)如图,根据已知的散点图得到y 关于x 的线性回归方程为y ^=b ^x+0.2,则b ^= .答案 1.67.(2022届江西顶级名校调研,18)根据国际疫情形势以及传染病防控的经验,加快新冠病毒疫苗接种是当前有力的防控手段,我国正在安全、有序加快推进疫苗接种工作.某乡村采取通知公告、微信推送、广播播放、条幅宣传等形式,积极开展疫苗接种社会宣传工作,消除群众疑虑,提高新冠疫苗接种率,让群众充分地认识到了疫苗接种的重要作用.自宣传开始后村干部统计了本村200名居民(未接种)5天内每天新接种新冠疫苗的情况如下表:第x 天 1 2 3 4 5 新接种人数y1015192328(1)建立y 关于x 的线性回归方程;(2)假设全村共计2 000名居民(均未接种过新冠疫苗),用样本估计总体来预测该村80%居民接种新冠疫苗需要几天.参考公式:回归方程y ^=b ^x+a ^中斜率和截距的最小二乘估计公式分别为b ^=∑i=1nx i y i -nxy ∑i=1nx i 2-nx2,a ^=y -b ^x .解析 (1)x =1+2+3+4+55=3,y =10+15+19+23+285=19,则b ^=10+30+57+92+140-5×3×1912+22+32+42+52-5×32=225,a ^=19-225×3=295,故y 关于x 的线性回归方程为y ^=225x+295.(2)设a n =225n+295,数列{a n }的前n 项和为S n ,易知数列{a n }是等差数列, 则S n =n(a 1+a n )2=n (225+295+225n+295)2=115n 2+8n,因为S 6=127.2,S 7=163.8,所以10S 6=1 272,10S 7=1 638,又2 000×80%=1 600(人),所以预测该村80%居民接种新冠疫苗需要7天.8.(2021广西贵港港北模拟,17)某个体服装店经营各种服装,在某周内获纯利润y(元)与该周每天销售这种服装件数x 之间的一组数据关系如下表:x 3456789y66 69 73 81 89 90 91(1)求x ,y ;(2)若y 与x 线性相关,请求纯利润y(元)与每天销售件数x 的回归直线方程. 参考数据及公式:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2=∑i=1nx i y i -nx y ∑i=1nx i2-nx 2,a ^=y -b ^x ,∑i=17x i 2=280,∑i=17x i y i =3 487. 解析 (1)x =17×(3+4+5+6+7+8+9)=6,y =17×(66+69+73+81+89+90+91)=5597. (2)设回归直线方程为y ^=b ^x+a ^.∵∑i=17x i 2=280,∑i=17x i y i =3 487,∴b ^=3 487-7×6×5597280-7×36=13328=4.75,a ^=5597-6×4.75≈51.36.∴回归直线方程为y ^=4.75x+51.36.9.(2021成都郫都模拟,18)某人统计了近5年某网站“双11”当天的交易额,统计结果如下表:年份 2015 2016 2017 2018 2019 年份代码x 1 2 3 4 5 交易额y/百亿元912172126(1)请根据上表提供的数据,用相关系数r 说明y 与x 的线性关系的强弱(线性相关系数保留三位小数);(统计中用相关系数r 来衡量两个变量之间线性关系的强弱.若相应于变量x 的取值x i ,变量y 的观测值为y i (1≤i ≤n),则两个变量的相关系数的计算公式为r=∑i=1n(x i -x)(y -y)√∑i=1(x i -x)2∑i=1(y i -y)2.统计学认为,对于变量x,y,如果r ∈[-1,-0.75],那么负相关很强;如果r ∈[0.75,1],那么正相关很强;如果r ∈(-0.75,-0.30]或r ∈[0.30,0.75),那么相关性一般;如果r ∈[-0.25,0.25],那么相关性较弱)(2)求出y 关于x 的线性回归方程,并预测2020年该网站“双11”当天的交易额. 参考公式:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y -b ^x ,参考数据:√1 860≈43.1.解析 (1)根据题表中的数据,可得x =15×(1+2+3+4+5)=3,y =15×(9+12+17+21+26)=17, 则∑i=15(x i -x )(y i -y )=(1-3)×(9-17)+…+(5-3)×(26-17)=43;√∑i=15(x i -x)2∑i=15(y i -y)2=√10×186≈43.1,所以r=∑i=15(x i -x)(y -y)√∑i=15(x i -x)2∑i=15(y i-y)2=4343.1≈0.998,所以变量y 与x 的线性相关性很强. (2)由(1)可得x =3,y =17,∑i=15(x i -x )(y i -y )=43,∑i=15(x i -x )2=(1-3)2+(2-3)2+(3-3)2+(4-3)2+(5-3)2=10,所以b ^=∑i=15(x i -x)(y i -y)∑i=15(x i -x)2=4310=4.3,则a ^=y -b ^x =17-4.3×3=4.1.所以y 关于x 的线性回归方程为y ^=4.3x+4.1.令x=6,可得y ^=4.3×6+4.1=29.9,故预测2020年该网站“双11”当天的交易额为29.9百亿元.思路分析 (1)利用已知条件求解相关系数,判断即可;(2)根据公式求出回归直线方程的系数,得回归直线方程,然后把x=6代入,求出结果进行预测即可.考法二 独立性检验的应用1.(2022届河南月考,9)某外语学校要学生从德语和日语中选择一种作为“第二外语”进行学习,为了解选择第二外语的倾向与性别的关系,随机抽取100名学生,得到下面的数据表:选择德语 选择日语 男生 15 35 女生3020根据表中提供的数据可知( ) 附:K2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.P(K 2≥k) 0.100 0.050 0.010 0.005 0.001 k2.7063.841 6.635 7.87910.828A.在犯错误的概率不超过0.1%的前提下,认为选择第二外语的倾向与性别无关B.在犯错误的概率不超过0.1%的前提下,认为选择第二外语的倾向与性别有关C.有99.5%的把握认为选择第二外语的倾向与性别无关D.有99.5%的把握认为选择第二外语的倾向与性别有关答案D2.(2020江西吉安、抚州、赣州一模,5)千百年来,我国劳动人民在生产实践中根据云的形状、走向、速度、厚度、颜色等变化,总结了丰富的“看云识天气”的经验,并将这些经验编成谚语,如“天上钩钩云,地上雨淋淋”“日落云里走,雨在半夜后”……小波同学为了验证“日落云里走,雨在半夜后”,观察了所在地区A 的100天日落和夜晚天气,得到如下2×2列联表:夜晚天气下雨未下雨日落云里走出现255未出现2545临界值表P(K2≥k0)0.100.050.0100.001k0 2.706 3.841 6.63510.828并计算得到K2≈19.05,下列小波对地区A天气的判断不正确的是()A.夜晚下雨的概率约为12B.未出现“日落云里走”,夜晚下雨的概率约为514C.有99.9%的把握认为“‘日落云里走’是否出现”与“当晚是否下雨”有关D.出现“日落云里走”,有99.9%的把握认为夜晚会下雨答案D3.(2020湖南衡阳八中月考,5)某高校为调查学生喜欢“应用统计”课程是否与性别有关,随机抽取了选修课程的55名学生,得到数据如下表:喜欢应用统计课程不喜欢应用统计课程男生205女生1020附表:P(K2≥k)0.100.050.0250.0100.0050.001k 2.706 3.841 5.024 6.6357.87910.828参考公式:K2=n(ad-bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)参照附表,得到的正确结论是()A.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别有关B.在犯错误的概率不超过0.1%的前提下,认为喜欢“应用统计”课程与性别无关C.有99.99%以上的把握认为喜欢“应用统计”课程与性别有关D.有99.99%以上的把握认为喜欢“应用统计”课程与性别无关答案A4.(2020安徽蚌埠三模,15)某企业为了调查其产品在国内和国际市场的发展情况,随机抽取国内、国外各100名客户代表,了解他们对该企业产品的发展前景所持的态度,得到如图所示的等高条形图,则有99%以上的把握认为是否持乐观态度与国内外差异有关(填“能”或“不能”).P(K2≥k)0.0500.0100.0050.001k 3.841 6.6357.87910.828附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).答案能5.(2021山东青岛一模,15)某驾驶员培训学校为对比了解“科目二”的培训过程采用大密度集中培训与周末分散培训两种方式的效果,调查了105名学员,统计结果为接受大密度集中培训的55名学员中有45名学员一次考试通过,接受周末分散培训的学员一次考试通过的有30名.根据统计结果,认为“能否一次考试通过与是否集中培训有关”犯错误的概率不超过.附:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d).P(K2≥k)0.050.0250.0100.001k 3.841 5.024 6.63510.828答案0.0256.(2022届吉林重点高中月考,19)新能源汽车是指除汽油、柴油发动机之外所有的其他能源汽车,被认为能减少空气污染和缓解能源短缺.在当今提倡全球环保的前提下,新能源汽车产业必将成为未来汽车产业发展的导向与目标.新能源汽车也越来越受到消费者的青睐.某机构调查了某地区近期购车的200位车主的性别与购车种类情况,得到数据如下:购置新能源汽车购置传统燃油汽车合计男性10020120女性503080合计15050200 (1)根据表中数据,判断是否有99.9%的把握认为购置新能源汽车与性别有关;(2)用分层抽样的方法按性别从被调查的购置新能源汽车的车主中选出6位,参加关于“新能源汽车驾驶体验”的问卷调查,并从这6位车主中随机抽取2位车主赠送一份小礼物,求这2位获赠礼品的车主中至少有1位女性车主的概率. 参考公式:K 2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.参考数据:P(K 2≥k 0) 0.10 0.05 0.010 0.001 k 02.7063.8416.63510.828解析 (1)由题表得K2=200×(100×30-20×50)2120×80×150×50=1009≈11.111>10.828.所以有99.9%的把握认为购置新能源汽车与性别有关.(2)用分层抽样的方法按性别从被调查的购置新能源汽车的车主中选出6位,其中男性车主有100150×6=4人,记为a,b,c,d;女性车主有50150×6=2人,记为E,F.从这6位车主中随机抽取2位车主包含的基本事件有:ab,ac,ad,aE,aF,bc,bd,bE,bF,cd,cE,cF,dE,dF,EF,共15种. 至少有1位女性车主包含的基本事件有:aE,aF,bE,bF,cE,cF,dE,dF,EF,共9种.故所求概率P=915=35. 7.(2022届山西长治质检,17)为了了解某种新型药物对治疗某种疾病的疗效,某机构日前联合医院进行了小规模的调查.结果显示,相当多的受访者担心使用新药后会有副作用.为了了解使用该种新型药品后是否会引起疲乏症状,该机构随机抽取了某地患有这种疾病的275人进行调查,得到统计数据如下表:无疲乏症状有疲乏症状总计 未使用新药 150 25 t 使用新药 x y 100 总计225m275(1)求2×2列联表中的数据x,y,m,t 的值,并确定能否有95%的把握认为有疲乏症状与使用该新药有关; (2)从使用该新药的100人中按是否有疲乏症状,采用分层抽样的方法抽出4人,再从这4人中随机抽取2人作进一步调查,求这2人中恰有1人有疲乏症状的概率. 附:K2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.P(K 2≥k) 0.150 0.100 0.050 0.025 0.010 k2.072 2.7063.841 5.0246.635解析 (1)t=150+25=175,x=225-150=75,y=100-75=25,m=25+25=50,所以K 2的观测值k=275×(150×25-75×25)2225×50×100×175≈4.910 7>3.841,故有95%的把握认为有疲乏症状与使用新药有关.(2)从使用该新药的100人中按是否有疲乏症状,采用分层抽样的方法抽出4人,其中无疲乏症状的有75100×4=3人,记为a,b,c;有疲乏症状的有25100×4=1人,记为D,则从这4人中随机抽取2人的情况有ab,ac,aD,bc,bD,cD,共6种,这2人中恰有1人有疲乏症状的情况有aD,bD,cD,共3种.故所求概率P=36=12. 8.(2021安徽五校联盟联考(二),18)网购是当前人们购物的新方式,某公司为了改进营销方式,随机调查了100名市民,统计了不同年龄的人群网购的人数如下表:年龄段(岁) (0,20) [20,40) [40,60) [60,100) 网购人数 26 32 34 8 男性人数1510105(1)若把年龄在[20,60)的人称为“网购迷”,否则称为“非网购迷”,请完成下面的2×2列联表,并判断能否有99%的把握认为网购与性别有关;网购迷非网购迷总计男性 女性 总计(2)若从年龄小于40岁的网购男性中用分层抽样的方法抽取5人,再从中抽取两人,求两人年龄都小于20岁的概率. 附:K2=n(ad -bc)2(a+b)(c+d)(a+c)(b+d),n=a+b+c+d.P(K 2≥k) 0.10 0.05 0.01 0.001k2.7063.841 6.635 10.828解析 (1)由题中信息完善2×2列联表如下表所示:网购迷 非网购迷 总计 男性 20 20 40 女性 46 14 60 总计6634100∴K2=100×(20×14-46×20)266×34×40×60≈7.605>6.635,故有99%的把握认为网购与性别有关.(2)年龄在(0,20)、[20,40)的网购男性分别有15人、10人.按分层抽样的方法随机抽取5人,从年龄段(0,20)内抽取3人,分别记为1、2、3;从年龄段[20,40)内抽取2人,分别记为a 、b,从中随机抽取2人的可能结果有(1,2)、(1,3)、(1,a)、(1,b)、(2,3)、(2,a)、(2,b)、(3,a)、(3,b)、(a,b),共10个.用A表示“两人年龄都小于20岁”这一事件,则事件A包含的结果为(1,2)、(1,3)、(2,3),共3个.故事件A发生的概率P(A)=310.9.(2021安徽黄山二模,17)2021年3月5日,人社部和全国两会政府工作报告中针对延迟退休给出了最新消息,人社部表示正在研究延迟退休改革方案,两会上指出十四五期间要逐步延迟法定退休年龄.现对某市工薪阶层关于延迟退休政策的态度进行调查,随机调查了50人,他们月收入的频数分布及对延迟退休政策赞成的人数如下表.月收入(单位:百元)[15,25)[25,35)[35,45)[45,55)[55,65)[65,75]频数510151055赞成人数123534(1)根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有99%的把握认为“月收入以55百元为分界点”对延迟退休政策的态度有差异;月收入不低于55百元月收入低于55百元合计赞成不赞成合计(2)若采用分层抽样法从月收入在[25,35)和[65,75]的被调查人中选取6人进行跟踪调查,并随机给其中3人发放奖励,求获得奖励的3人中至少有1人月收入在[65,75]的概率.参考公式:K2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.P(K2≥k)0.0500.0100.001k 3.841 6.63510.828解析(1)2×2列联表如下:月收入不低于55百元月收入低于55百元合计赞成71118不赞成32932合计104050则K2=50×(7×29-3×11)210×40×32×18≈6.27<6.635,所以没有99%的把握认为“月收入以55百元为分界点”对延迟退休政策的态度有差异.(2)按照分层抽样的方法可知,月收入在[25,35)的抽取4人,记为a,b,c,d,月收入在[65,75]的抽取2人,记为A,B,则从6人中任取3人的所有情况为{A,B,a}、{A,B,b}、{A,B,c}、{A,B,d}、{A,a,b}、{A,a,c}、{A,a,d}、{A,b,c}、{A,b,d}、{A,c,d}、{B,a,b}、{B,a,c}、{B,a,d}、{B,b,c}、{B,b,d}、{B,c,d}、{a,b,c}、{a,b,d}、{a,c,d}、{b,c,d},共20种, 其中至少有1人月收入在[65,75]的情况有16种, 所以3人中至少有1人月收入在[65,75]的概率为1620=45.应用篇 知行合一应用 回归模型的应用1.(2020课标Ⅰ,5,5分探索创新情境)某校一个课外学习小组为研究某作物种子的发芽率y 和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(x i ,y i )(i=1,2,…,20)得到下面的散点图:由此散点图,在10 ℃至40 ℃之间,下面四个回归方程类型中最适宜作为发芽率y 和温度x 的回归方程类型的是( )A.y=a+bxB.y=a+bx 2C.y=a+be xD.y=a+bln x 答案 D2.(2022届宁夏顶级名校月考,20实际生活)“金山银山不如绿水青山;绿水青山就是金山银山.”复兴村借力“乡村振兴”国策,依托得天独厚的自然资源开展乡村旅游,乡村旅游事业蓬勃发展.复兴村旅游协会记录了近八年的游客人数,见下表.年份2013 年 2014 年 2015 年 2016 年 2017 年 2018 年 2019 年2020 年 年份代码x 1 2 345678 游客人数y (百人)4816 32 51 71 97122为了分析复兴村未来的游客人数变化趋势,公司总监分别用两种模型对变量y 和x 进行拟合,得到了相应的回归方程,绘制了残差图.残差图如下(注:残差e ^i =y i -y ^i ):模型①y ^=bx 2+a;模型②y ^=dx+c.(1)根据残差图,比较模型①,②的拟合效果,应该选择哪个模型?并简要说明理由; (2)根据(1)中选定的模型求出相应的回归方程(系数均保留两位小数); (3)根据(2)中求出的回归方程来预测2021年的游客人数(结果保留整数). 其中,z=x2,z =18∑i=18z i .参考数据:∑i=18(x i -x )·(y i -y )=728∑i=18(x i -x )2=42∑i=18(z i -z )·(y i -y )=6 868∑i=18(z i -z )2=3 570∑i=18z i =204∑i=18y i =400附:回归直线的斜率和截距的最小二乘估计公式分别为b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y -b ^x .解析 (1)选择模型①.理由:根据残差图可以看出, 模型①的估计值和真实值相对比较接近;模型②的残差相对比较大,所以模型①的拟合效果相对较好.(2)由(1)可知y 关于x 的回归方程为y ^=bx 2+a.令z=x 2,则y ^=bz+a,由题中所给数据得b ^=6 8683 570≈1.92,又z =18∑i=18z i =2048=25.5,y =4008=50,所以a ^=50-1.92×25.5=1.04,所以y 关于x 的回归方程为y ^=1.92x 2+1.04. (3)将x=9代入回归方程,可得y ^=1.92×92+1.04≈157, 则2021年游客人数大约为157百人. 3.(2021哈尔滨三中一模,19实际生活)宁夏西海固地区,在1972年被联合国粮食开发署确定为最不适宜人类生存的地区之一.为改善这一地区人民生活的贫困状态,20世纪90年代,党中央和自治区政府决定开始吊庄移民,将西海固地区的人口成批地迁移到更加适合生活的地区.为了帮助移民人口尽快脱贫,党中央作出推进东西部对口协作的战略部署,其中确定福建对口帮扶宁夏,在福建人民的帮助下,原西海固人民实现了快速脱贫,下表是对2016年以来近5年某移民村庄100位移民的年人均收入的统计:年份 2016 2017 2018 2019 2020 年份代码x12 3 4 5 人均年收入y(千元) 1.32.85.78.913.8现要建立y 关于x 的回归方程,有两个不同回归模型可供选择,模型一y^(1)=b ^x+a ^;模型二y ^(2)=c ^x 2+d ^,即使画出y 关于x 的散点图,也无法确定哪个模型拟合效果更好,现用最小二乘法原理,已经求得模型一的方程为y ^=3.1x-2.8.(1)请你用最小二乘法原理,结合下面的参考数据及参考公式求出模型二的方程(计算结果保留到小数点后一位);(2)用计算残差平方和的方法比较哪个模型拟合效果更好(已经计算出模型一的残差平方和为∑i=15(y i -y ^i )2=3.7).参考数据:∑i=15t i y i -5ty ∑i=15t i2-5t 2≈0.52,其中t i =x i 2,i=1,2,3,4,5.参考公式:对于一组数据(u 1,v 1),(u 2,v 2),…,(u n ,v n ),其回归直线v ^=α^+β^u 的斜率和截距的最小二乘估计公式分别为β^=∑i=1nu i v i -nuv ∑i=1nu i 2-nu 2,α^=v -β^u .解析 (1)令t=x 2,则模型二可化为y 关于t 的线性回归问题, t =1+4+9+16+255=11,y =1.3+2.8+5.7+8.9+13.85=6.5, 则由参考数据可得c ^=∑i=15t i y i -5ty ∑i=15t i2-5t 2≈0.52≈0.5,d ^=y -c ^t =6.5-0.52×11≈0.8, 则模型二的方程为y ^(2)=0.5x 2+0.8. (2)由模型二的回归方程可得,y ^1(2)=0.5×1+0.8=1.3,y ^2(2)=0.5×4+0.8=2.8,y ^3(2)=0.5×9+0.8=5.3,y ^4(2)=0.5×16+0.8=8.8,y ^5(2)=0.5×25+0.8=13.3,∴∑i=15(y i -y ^i (2))2=02+02+0.42+0.12+0.52=0.42<3.7,故模型二的拟合效果更好.创新篇 守正出奇创新 统计与统计案例的综合应用。
平行垂直练习题及答案
平行垂直练习题及答案在数学学科中,平行和垂直是基本的几何概念。
理解和掌握平行和垂直的性质对于解决几何问题至关重要,因此平行和垂直的练习题是学习过程中必不可少的。
本文将提供一些平行和垂直的练习题,并附上详细的解答。
练习题一:判断平行关系1. 已知线段AB和线段CD的中点分别为E和F,若AE=CF且BE=DF,试判断AB和CD的关系。
2. ∠ABC = ∠PQR,∠BCD = ∠QRS,若线段AB和线段PQ平行,试判断线段CD和线段RS的关系。
3. 已知线段AB平行于线段CD,∠EAC = 70°,若∠ACD = x°,试判断∠ECA和∠ADC的大小关系。
答案一:1. 根据条件可知AE=CF,BE=DF,又根据中点划分线段的性质,且E和F分别是线段AB和线段CD的中点,所以EF=EF。
根据SAS准则可得△AEB≌△CFD,根据三角形的等边性质可知线段AB和线段CD平行。
2. 根据条件可知∠ABC = ∠PQR,∠BCD = ∠QRS,又根据等角定理可得△ABC ≌△PQR。
根据三角形的等边性质可知线段AB和线段PQ平行,所以线段CD和线段RS平行。
3. 已知线段AB平行于线段CD,所以利用平行线性质可得∠ECA = ∠ACD。
又根据答案一的证明可知线段AB和线段CD平行,所以△EAC ≌△ACD。
根据三角形的等边性质可知∠ECA = ∠ADC。
练习题二:判断垂直关系1. 线段AB与线段CD相交于点O,若∠AOB = 70°,∠COB = 110°,试判断线段AB和线段CD的关系。
2. 直线l与平面P相交于点A,若直线l垂直于线段AB,试判断直线l与平面P的关系。
3. 已知直线l垂直于平面P,线段AB在平面P内且与直线l相交于点C,试判断线段AB与平面P的关系。
答案二:1. ∠AOB = 70°,∠COB = 110°,根据角和定理可知∠AOB +∠COB = 180°。
小学数学行程问题之相遇与追击练习题含答案
小学数学《行程问题之相遇与追击》练习题(含答案)内容概括我们把研究路程、速度、时间以及这三者之间关系的一类问题,总称为行程问题.在对小学数学的学习中,我们已经接触过一些简单的行程应用题,行程问题主要涉及时间(t)、速度(V)和路程岳)这三个基本量,它们之间的关系如下:(1)速度X时间;路程可简记为:s = Vt(2)路程+速度:时间可简记为:t = s + v(3)路程+时间:速度可简记为:V = s + t显然,知道其中的两个量就可以求出第三个量.涉及到两个或两个以上物体运动的问题,其中最常见的是相遇问题和追及问题.相遇问题:速度和X相遇时间=路程和S和二v和t追及问题:速度差X追及时间=路程差S差二v差t对于上面的公式大家已经不陌生了,在下面的学习中我们将和小朋友们一起复习回顾以前的相关知识,而后拓展提高!相遇问题【例1】两地相距400千米,两辆汽车同时从两地相对开出,甲车每小时行40千米,乙车每小时比甲车多行5千米,4小时后两车相遇了吗?【例2】大头儿子的家距离学校3000米,小头爸爸从家去学校,大头儿子从学校回家,他们同时出发, 小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【例3】甲乙两车同时从A、B两地出发相向而行,6小时相遇.相遇后甲车继续行驶4小时到达B地.乙车每小时行30千米,A、B两地相距多少千米?【例4】南辕与北辙两位先生对于自己的目的地S城的方向各执一词,于是两人都按照自己的想法驾车同时分别往南和往北驶去,二人的速度分别为50千米/时,60千米/时,那么北辙先生出发5小时他们相距多少千米?【例5】夏夏和冬冬同时从两地相向而行,夏夏每分钟行50米,冬冬每分钟行60米,两人在距两地中点50米处相遇,求两地的距离是多少米?【例6】甲、乙两列火车同时从东西两镇之间的A地出发向东西两镇反向而行,它们分别到达东西两镇后, 再以同样的速度返回,已知甲每小时行60千米,乙每小时行70千米,相遇时甲比乙少行120千米,东西两镇之间的路程是多少千米?【例7】甲、乙两车分别同时从A、B两地相对开出,第一次在离A地95千米处相遇.相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇.求A、B两地间的距离.追击问题【例8】龟兔赛跑同时出发,全程7000米,乌龟以每分30米的速度爬行,兔子每分钟跑330米.兔子跑了10分钟就停下来睡了200分钟,醒来后立即以原速往前跑.当兔子追上乌龟时,离终点的距离是多少千米?【例9】小明步行上学,每分钟行70米.离家12分钟后,爸爸发现小明的文具盒忘在家中,爸爸带着文具盒,立即骑自行车以每分钟280米的速度去追小明.问爸爸出发几分钟后追上小明?【例10】小新和正南在操场上比赛跑步,小新每分钟跑250米,正南每分钟跑210米,一圈跑道长800米,他们同时从起跑点出发,那么小新第一次超过正南需要多少分钟?第三次超过正南需要多少分钟?【例11】两名运动员在湖的周围环形道上练习长跑。
统计学基础练习题库及参考答案
:第一章定量资料的统计描述1第一部分一、单选题1、甲乙丙三位研究者评价人们对四种方便面的喜好程度。
甲让评定者先挑选出最喜欢的品牌,然后挑出剩余三种最喜欢的,最后挑出剩余两种比较喜欢的。
研究者乙让评定者把四种品牌分别给予1~5的等级评定(1表示最不,5表示最喜欢),研究者丙只是让评定者挑出自己最喜欢的品牌。
三位研究者所使用的数据类型是:BA.称名数据-顺序数据-计数数据B.顺序数据-等距数据-称名数据C.顺序数据-等距数据-顺序数据D.顺序数据-等比数据-计数数据2、调查200名不同年龄组的被试对手表的偏好程度如下:表1 200名不同年龄组的被试对手表的偏好程度该题自变量和因变量的数据类型是:DA.称名数据-顺序数据B.计数数据-等比数据¥C.顺序数据-等距数据 D.顺序数据-称名数据3、的实上限是:CA.B.157.65 C.D.4、随机现象的数量化表示称为:BA.自变量B.随机变量C.因变量 D.相关变量5、实验或研究对象的全体称为:AA.总体B.样本点C.个体D.元素6、下列数据中,哪个数据是顺序变量:C【A.父亲月收入2400元B.迈克的语文成绩是80分C.约翰100米短跑得第2名D.玛丽某项技能测试得了5分。
二、概念题数据类型、变量、观测值、随机变量、总体、样本、个体、次数、比率、概率、参数、统计量、μ、ρ、r、σ、S、β、n。
第一章定量资料的统计描述2一、单选题1、一批数据中各个不同数据值出现的次数情况是:AA.次数分布B.概率密度C.累积概率密度D.概率】2、以下各种图形中,表示连续数据频次分布的是:CA.条图B.圆图C.直方图D.散点图3、特别适用于描述具有百分比结构的分类数据的统计图:BA.散点图B.圆图C.条图D.线图5、以下各种统计图中,表示离散数据频次分布的:AA.圆图B.直方图C.散点图D.线形图6、相关变量的统计图是:AA.散点图B.圆图C.条图D.线图.7、适用于描述某种事物在时间上的变化趋势,以及一事物随另外一事物的发展变化的趋势,还适用于比较不同人物群体在心理或教育现象上的变化特征以及相互联系的统计图是:D A.散点图B.圆图C.条图D.线图二、多选题1、频次分布可以为:ABCDA.简单次数分布B.分组次数分布C.相对次数分布D.累积次数分布2、以下各种图形中,表示连续数据频次分布的是:BDA.圆图B.直方图C.条图D.线图3、累加曲线的形状大约有:ABD,A.正偏态B.负偏态C.F分布D.正态分布4、统计图按照形状划分为:ABCDA.直方图B.曲线图 C.圆图D.散点图三、简答题1、简述条图、直方图、圆图、线图、散点图的用途。
(完整版)第十二章相关和回归分析练习试题
第十二章相关与回归分析一、填空1. 如果两变量的相关系数为0,说明这两变量之间__ 。
2.相关关系按方向不同,可分为_____ 和________ 。
3. 相关关系按相关变量的多少,分为和复相关。
4.在数量上表现为现象依存关系的两个变量,通常称为自变量和因变量。
自变量是作为(变化根据)的变量,因变量是随(自变量)的变化而发生相应变化的变量。
5.对于表现为因果关系的相关关系来说,自变量一般都是确定性变量,因变量则一般是(随机性)变量。
6.变量间的相关程度,可以用不知Y与 X有关系时预测 Y的全部误差 E1,减去知道 Y与 X有关系时预测Y的联系误差E2,再将其化为比例来度量,这就是(削减误差比例)。
7.依据数理统计原理,在样本容量较大的情况下,可以作出以下两个1)实际观察值 Y 围绕每个估计值 Y c是服假定:从();(2)分布中围绕每个可能的 Y c 值的()是相同的。
7. 已知:工资(元)倚劳动生产率(千元)的回归方程为yc 10 80x,因此,当劳动生产率每增长 1 千元,工资就平均增加 80 元。
8.根据资料,分析现象之间是否存在相关关系,其表现形式或类型如何,并对具有相关关系的现象之间数量变化的议案关系进行测定,即建立一个相关的数学表达式,称为(回归方程),并据以进行估计和预测。
这种分析方法,通常又称为(回归分析)。
9.积差系数 r 是(协方差)与 X 和 Y 的标准差的乘积之比。
二、单项选择1.欲以图形显示两变量 X 和 Y 的关系,最好创建( D )。
A 直方图 B 圆形图 C 柱形图 D 散点图2.在相关分析中,对两个变量的要求是(A )。
A 都是随机变量B 都不是随机变量C 其中一个是随机变量,一个是常数D 都是常数3.相关关系的种类按其涉及变量多少可分为()。
A. 正相关和负相关B. 单相关和复相关C. 线性相关和非线性相关D. 不相关、不完全相关、完全相关4.关于相关系数,下面不正确的描述是(B )。
客户关系管理实务》练习题参考答案练习题参考答案
《客户关系管理实务》练习题参考答案(20111104 Ver1.0 S版)第1章客户关系管理基础知识一、填空题1.消费者企业渠道内部客户(说明:题目中说是5个,其实是4个,请读者自行更正)2.非客户潜在客户目标客户现实客户流失客户3.客户需求信息收集各方人员的业务需求买卖双方地位的变化现代信息技术的发展4.提高效率拓展市场保留客户5.客户关系数量的增加客户关系寿命的延长客户关系质量的提高二、判断题1.错误2.正确3.错误4.正确5.错误三、名词解释1.客户:客户是指购买企业产品或服务的个人或组织;同时也泛指企业的内部员工、代理商和分销商等合作伙伴,以及企业价值链中的上、下游伙伴,甚至竞争对手等。
2.潜在客户:是指对企业的产品或服务有需求和欲望,并有购买动机和购买能力,但还没有产生购买行为的人群。
3.目标客户:是指经过企业挑选后确定的力图开发为现实客户的人群。
4.客户关系:是一种在企业的日常商务运作中时时、处处都存在的一种市场行为和联系状态,贯穿于商务活动的始终,对企业的运作和市场的发展有着巨大的影响。
5.客户关系管理:是通过采用信息技术,使企业市场营销、销售管理、客户服务和支持等经营流程信息化,实现客户资源有效利用的一套应用软件系统,其核心思想是以“客户为中心”,提高客户满意度,改善客户关系,从而提高企业的竞争力。
四、简答题1.P3 2.P4 3.P3图1-1 4.P6 5.P7-86.P9-11 7.P12-13 8.P13-15 9.P15-16 10.P16-19五、案例用用分析(略)第2章客户生命周期及其价值管理一、填空题1.考察期形成期稳定期退化期2.早期流产型中途夭折型提前退出型长久保持型3.潜在客户新客户老客户新业务的新客户4.整体客户价值整体客户成本5.价值资产品牌资产关系资产二、判断题1.正确2.正确3.正确4.错误5.错误三、名词解释1.客户让渡价值:是指整体客户价值与整体客户成本之间的差额部分。
统计案例练习题(附答案)
统计案例练习题(附答案)一、选择题1.对具有线性相关关系的两个变量建立的线性回归方程y=a+bx中,回归系数b()A.可以小于0B.只能大于0C.可能等于0D.只能小于0【解析】b可能大于0,也可能小于0,但当b=0时,x,y不具有线性相关关系.【答案】A2.下列两个变量间的关系不是函数关系的是()A.正方体的棱长与体积B.角的弧度数与它的正弦值C.单产为常数时,土地面积与粮食总产量D.日照时间与水稻亩产量【解析】∵A、B、C都可以得出一个函数关系式,而D不能写出确定的函数关系式,它只是一个不确定关系.【答案】D3.某产品的广告费用x与销售额y的统计数据如下表:广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程y=bx+a中的b为9.4,据此模型预报广告费用为6万元时销售额为()A.63.36万元B.65.5万元C.67.7万元D.72.0万元【解析】x=4+2+3+54=3.5,y=49+26+39+544=42,∴a=y-bx=42-9.4×3.5=9.1,∴回归方程为y=9.4x+9.1,∴当x=6时,y=9.4×6+9.1=65.5,故选B.【答案】B4.由一组样本数据(x1,y1),(x2,y2),…,(xn,yn)得到回归直线方程y=bx+a,那么下列说法中不正确的是()A.直线y=bx+a必经过点(x,y)B.直线y=bx+a至少经过点(x1,y1)(x2,y2),…,(xn,bn)中的一个点C.直线y=bx+a的斜率为∑ni=1xiyi-nx•y∑ni=1x2i-nx2D.直线y=bx+a的纵截距为y-bx【解析】回归直线可以不经过任何一个点.其中A:由a=y-bx代入回归直线方程y=bx+y-ax,即y=b(x-x)+y过点(x,y).∴B错误.【答案】B5.已知两个变量x和y之间具有线性相关性,甲、乙两个同学各自独立地做了10次和15次试验,并且利用线性回归的方法求得回归直线分别为l1和l2,已知两个人在试验中发现对变量x的观测数据的平均数都为s,对变量y的观测数据的平均数都是t,则下列说法正确的是()A.l1与l2一定有公共点(s,t)B.l1与l2相交,但交点一定不是(s,t)C.l1与l2必定平行D.l1与l2必定重合【解析】由于回归直线y=bx+a恒过(x,y)点,又两人对变量x的观测数据的平均值为s,对变量y的观测数据的平均值为t,所以l1和l2恒过点(s,t).【答案】A二、填空题6.从某大学随机选取8名女大学生,其身高x(cm)和体重y(kg)的线性回归方程为y=0.849x-85.712,则身高172cm的女大学生,由线性回归方程可以预测其体重约为________.【解析】将x=172代入线性回归方程y=0.849x-85.712,有y=0.849×172-85.712=60.316(kg).【答案】60.316kg7.面对竞争日益激烈的消费市场,众多商家不断扩大自己的销售市场,以降低生产成本.某白酒酿造企业市场部对该企业9月份的产品销量(单位:千箱)与单位成本的资料进行线性回归分析,结果如下:x=72,y=71,∑6i=1x2i=79,∑6i=1xiyi=1481.b=1481-6×72×7179-6× 72 2≈-1.8182,a=71-(-1.8182)×72≈77.36,则销量每增加1000箱,单位成本下降________元.【解析】由上表可得,y=-1.8182x+77.36,销量每增加1千箱,则单位成本下降1.8182元.【答案】1.81828.调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:y=0.254x+0.321.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.【解析】由题意知0.254(x+1)+0.321]-(0.254x+0.321)=0.254.【答案】0.254三、解答题9.某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:推销员编号12345工作年限x/年35679推销金额y/万元23345(1)求年推销金额y关于工作年限x的线性回归方程;(2)若第6名推销员的工作年限为11年,试估计他的年推销金额.【解】(1)设所求的线性回归方程为y=bx+a,则b=i=15 xi-x yi-y i=15 xi-x 2=1020=0.5,a=y-bx=0.4.所以年推销金额y关于工作年限x的线性回归方程为y=0.5x+0.4. (2)当x=11时,y=0.5x+0.4=0.5×11+0.4=5.9(万元).所以可以估计第6名推销员的年推销金额为5.9万元.10.一种机器可以按各种不同速度运转,其生产物件中有一些含有缺点,每小时生产有缺点物件的多少随机器运转速度而变化,用x表示转速(单位:转/秒),用y表示每小时生产的有缺点物件个数.现观测得到(x,y)的4组值为(8,5),(12,8),(14,9),(16,11).(1)假设y与x之间存在线性相关关系,求y与x之间的线性回归方程.(2)若实际生产中所容许的每小时最大有缺点物件数为10,则机器的速度不得超过多少转/秒?(精确到1)【解】(1)设回归方程为y=a+bx,则x=8+12+14+164=12.5,y=5+8+9+114=8.25,∑4i=1x2i=660,∑4i=1xiyi=438,b=∑4i=1xiyi-4xy∑4i=1x2i-4x2=438-4×12.5×8.25660-4×12.52≈0.73,a=y-bx=8.25-0.73×12.5=-0.875,所以所求回归方程为y=-0.875+0.73x.(2)由y≤10,即-0.875+0.73x≤10,得x≤10.8750.73≈15,即机器速度不得超过15转/秒.11.高二(3)班学生每周用于数学学习的时间x(单位:小时)与数学成绩y(单位:分)之间有如下数据:x24152319161120161713y92799789644783687159若某同学每周用于数学学习的时间为18小时,试预测该同学的数学成绩.【解】显然学习时间与学习成绩间具有相关关系,可以列出下表,并用科学计算器进行计算.i12345678910xi24152319161120161713yi92799789644783687159xiyi22081185223116911024517166010881207767∑10i=1x2i=3182,∑10i=1xiyi=13578于是可得b=∑10i=1xiyi-10xy∑10i=1x2i-10x2=545.4154.4≈3.53,a=y-bx=74.9-3.53×17.4≈13.5.因此可求得回归直线方程为y=3.53x+13.5.当x=18时,y=3.53×18+13.5≈77.故该同学预计可得77分左右.。
人际关系沟通练习题及答案
人际关系沟通练习题及答案一、选择题1. 以下哪种情况不利于良好的人际关系建立?A. 相互尊重和包容B. 相互合作和分享C. 相互猜忌和厌恶D. 相互倾听和理解2. 在人际沟通中,以下哪种语言使用最为明晰有效?A. 使用大量的迂回修饰语句B. 使用模糊和含糊不清的词汇C. 使用简洁明了的语言D. 使用复杂晦涩的措辞3. 对于冲突处理,以下哪种方式是错误的?A. 积极主动解决问题B. 开放坦诚的沟通C. 采取缺乏合作精神的竞争态度D. 寻求双赢的解决方案4. 在人际关系中,以下哪种行为更可能引发冲突?A. 充分理解对方的观点B. 不合理的抱怨和指责C. 相互赞美和支持D. 共同制定明确的目标5. 以下哪种技巧可以有效提升人际沟通的质量?A. 多说少听B. 不考虑对方的感受和需求C. 主动倾听和关注对方D. 忽略对方的非语言表达二、问答题1. 请简要介绍良好的人际关系建立所需的基本要素。
良好的人际关系建立需要相互尊重和包容,相互合作和分享,相互倾听和理解等基本要素。
这些要素能够促进双方之间的互信和互动,建立起良好的沟通基础。
2. 什么是有效的沟通?请列举一些实用的技巧。
有效的沟通是指信息的成功传达和理解。
一些实用的技巧包括:使用简明清晰的语言,确保表达的准确性;倾听对方的观点和感受,展现出尊重和关注;保持良好的非语言表达,如眼神接触和肢体语言;提出有针对性的问题,促进更深入的交流等。
3. 冲突在人际关系中常见,如何处理冲突才能保持良好的关系?处理冲突时,应采取开放坦诚的沟通方式,积极主动寻求解决问题的方案,避免抱怨和指责对方,而是集中在问题的解决上。
双方应互相尊重和理解,寻求双赢的解决方式,并共同制定明确的目标。
4. 为什么倾听是良好人际关系中的重要技巧?如何提升自己的倾听能力?倾听是良好人际关系的重要技巧,因为它能够显示出对对方的尊重和关注。
倾听可以帮助我们更好地理解对方的观点和感受,减少误解和冲突的产生。
中考数学正比例函数相关练习题及答案解析
中考数学正比例函数相关练习题及答案解析1.如图,在矩形ABCD中,AB=8cm,AD=6cm,点F是CD延长线上一点,且DF=2cm。
点P、Q分别从A、C同时出发,以1cm/s的速度分别沿边AB、CB向终点B运动,当一点运动到终点B时,另一点也停止运动。
FP、FQ分别交AD于E、M两点,连结PQ、AC,设运动时间为t (s)。
(1)用含有t的代数式表示DM的长;(2)设△FCQ的面积为y (cm2),求y与t之间的函数关系式;(3)线段FQ能否经过线段AC的中点,若能,请求出此时t的值,若不能,请说明理由;(4)设△FPQ的面积为S (cm2),求S与t之间的函数关系式,并回答,在t 的取值范围内,S是如何随t的变化而变化的。
022.写出下列函数关系式。
①速度60千米的匀速运动中,路程S与时间t的关系()。
②等腰三角形顶角y与底角x之间的关系()。
③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系()。
④矩形周长30,则面积y与一条边长x之间的关系()。
在上述各式中,()是一次函数,()是正比例函数(只填序号)033.下列说法正确的是()。
(填序号)①正比例函数一定是一次函数;②一次函数一定是正比例函数;③若y-1与x成正比例,则y是x的一次函数;④若y=kx+b,则y是x的一次函数.024.下列各题中是正比例关系的有();是反比例关系的有();是二次函数关系的有()。
A. 正方形的周长P和边长aB. 正方形的面积S和边长aC. 圆的面积S和直径的平方D. 同圆中的弦和弦心距dE. 匀速直线运动中,路程s一定,速度v和时间t5.已知函数y=(k-2) x|k|-1为正比例函数,则k=()。
026.函数y=(m-2)x-m+n,当m=(),n=()时为正比例函数;当m=(),n=()时为一次函数。
027.一次函数的一般形式为:______(k、b是常数,且______),特别地,当______时,一次函数就成为正比例函数028.已知正比例函数y=kx(k≠0)的图象经过第二、四象限,则()A.y随x的增大而减小B.y随x的增大而增大C.当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小D.无论x如何变化,y不变029.已知y与x成正比例,z与y成反比例,则z与x之间的关系为()A.成正比例B.成反比例C.既成正比例又成反比例D.既不成正比例也不成反比例0210.已知正比例函数和反比例函数的图象都经过点A(3,3)(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)在(2)中的一次函数图象与x轴、y轴分别交于C、D,求四边形OABC的面积。
自相关性习题集与答案解析
⾃相关性习题集与答案解析⾃相关性⼀、名词解释1 序列相关性2 虚假序列相关3 差分法4 ⼴义差分法5 ⾃回归模型6 ⼴义最⼩⼆乘法7 DW 检验8 科克伦-奥克特跌代法9 Durbin 两步法 10 相关系数⼆、单项选择题1、如果模型y t =b 0+b 1x t +u t 存在序列相关,则()(x t , u t )=0 (u t , u s )=0(t ≠s) C. cov(x t , u t )≠0 D. cov(u t , u s ) ≠0(t ≠s) 2、DW 检验的零假设是(ρ为随机误差项的⼀阶相关系数) A 、DW =0 B 、ρ=0 C 、DW =1 D 、ρ=13、下列哪个序列相关可⽤DW 检验(v t 为具有零均值,常数⽅差且不存在序列相关的随机变量)A .u t =ρu t -1+v tB .u t =ρu t -1+ρ2u t -2+…+v tC .u t =ρv tD .u t =ρv t +ρ2v t-1 +… 4、DW 的取值范围是()A 、-1≤DW ≤0B 、-1≤DW ≤1C 、-2≤DW ≤2D 、0≤DW ≤4 5、当DW =4时,说明()A 、不存在序列相关B 、不能判断是否存在⼀阶⾃相关C 、存在完全的正的⼀阶⾃相关D 、存在完全的负的⼀阶⾃相关6、根据20个观测值估计的结果,⼀元线性回归模型的DW =。
在样本容量n=20,解释变量k=1,显著性⽔平为时,查得dl=1,du=,则可以决断() A 、不存在⼀阶⾃相关 B 、存在正的⼀阶⾃相关 C 、存在负的⼀阶⾃ D 、⽆法确定7、当模型存在序列相关现象时,适宜的参数估计⽅法是()A 、加权最⼩⼆乘法B 、间接最⼩⼆乘法C 、⼴义差分法D 、⼯具变量法 8、对于原模型y t =b 0+b 1x t +u t ,⼴义差分模型是指()0t 1t t t 01t t t t-101t t-1t t-1b B. y =b x u C. y =b +b x uD. y y =b (1-)+b (x x )(u u )ρρρρ++++--+-9、采⽤⼀阶差分模型⼀阶线性⾃相关问题适⽤于下列哪种情况() A 、ρ≈0 B 、ρ≈1 C 、-1<ρ<0 D 、0<ρ<110、假定某企业的⽣产决策是由模型S t =b 0+b 1P t +u t 描述的(其中S t 为产量,P t 为价格),⼜知:如果该企业在t-1期⽣产过剩,经营⼈员会削减t 期的产量。
高考数学专题复习十一-11.5变量间的相关关系、统计案例-高考真题练习(附答案)
11.5变量间的相关关系、统计案例考点一变量间的相关关系1.(2015湖北文,4,5分)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关.下列结论中正确的是()A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关答案C由y=-0.1x+1,知x与y负相关,即y随x的增大而减小,又y与z正相关,所以z随y的增大而增大,减小而减小,所以z随x的增大而减小,x与z负相关,故选C.2.(2015课标Ⅰ,理19,文19,12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费x i和年销售量(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计量的值.yi表中==18∑J18.(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y-x.根据(2)的结果回答下列问题:(i)年宣传费x=49时,年销售量及年利润的预报值是多少?(ii)年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为^=∑J1(-p(-p∑J1(-p 2,^=-^.解析(1)由散点图可以判断,y=c+d 适宜作为年销售量y 关于年宣传费x 的回归方程类型.(2分)(2)令w=,先建立y 关于w 的线性回归方程.由于^=∑J18(-p(-p ∑J18(-p2=108.81.6=68,^=-^=563-68×6.8=100.6,所以y 关于w 的线性回归方程为^=100.6+68w,因此y 关于x 的回归方程为^=100.6+68.(6分)(3)(i)由(2)知,当x=49时,年销售量y 的预报值^=100.6+6849=576.6,年利润z 的预报值^=576.6×0.2-49=66.32.(9分)(ii)根据(2)的结果知,年利润z 的预报值^=0.2(100.6+68)-x=-x+13.6+20.12.所以当=13.62=6.8,即x=46.24时,^取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.(12分)3.(2015重庆文,17,13分)随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:年份20102011201220132014时间代号t 12345储蓄存款y(千亿元)567810(1)求y 关于t 的回归方程^=^t+^;(2)用所求回归方程预测该地区2015年(t=6)的人民币储蓄存款.附:回归方程^=^t+^中,^=∑J1-nB∑J12-n2,^=-^.解析(1)列表计算如下:i t i y i t i2t i y i 11515226412337921448163255102550∑153655120这里n=5,=1∑J1t i =155=3,=1∑J1y i =365=7.2.又l tt =∑J12-n 2=55-5×32=10,l ty =∑J1t i y i -n=120-5×3×7.2=12,从而^=B B=1210=1.2,^=-^=7.2-1.2×3=3.6,故所求回归方程为^=1.2t+3.6.(2)将t=6代入回归方程可预测该地区2015年的人民币储蓄存款为^=1.2×6+3.6=10.8(千亿元).4.(2014课标Ⅱ理,19,12分)某地区2007年至2013年农村居民家庭人均纯收入y(单位:千元)的数据如下表:年份2007200820092010201120122013年份代号t 1234567人均纯收入y2.93.33.64.44.85.25.9(1)求y 关于t 的线性回归方程;(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:^=∑J1(-p(-p∑J1(-p 2,^=-^.解析(1)由所给数据计算得=17×(1+2+3+4+5+6+7)=4,=17×(2.9+3.3+3.6+4.4+4.8+5.2+5.9)=4.3,∑J17(t i -)2=9+4+1+0+1+4+9=28,∑J17(t i -)(y i -)=(-3)×(-1.4)+(-2)×(-1)+(-1)×(-0.7)+0×0.1+1×0.5+2×0.9+3×1.6=14,^=∑J17(-p(-p ∑J17(-p2=1428=0.5,^=-^=4.3-0.5×4=2.3,所求回归方程为^=0.5t+2.3.(2)由(1)知,^=0.5>0,故2007年至2013年该地区农村居民家庭人均纯收入逐年增加,平均每年增加0.5千元.将2015年的年份代号t=9代入(1)中的回归方程,得^=0.5×9+2.3=6.8,故预测该地区2015年农村居民家庭人均纯收入为6.8千元.评析本题考查了回归直线方程的求解,注意回归直线恒过点(,)是关键,考查了回归系数^的几何意义.考查了学生的计算求解能力.5.(2016课标Ⅲ,18,12分)下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附:参考数据:∑J17y i =9.32,∑J17t i y i J1=0.55,7≈2.646.参考公式:相关系数∑-p(-p回归方程^=^+^t 中斜率和截距的最小二乘估计公式分别为^=∑J1(-p(-p∑J1(-p 2,^=-^.解析(1)由折线图中数据和附注中参考数据得=4,∑J17(t i -)2(∑J17(t i -)(y i -)=∑J17t i y i -∑J17y i =40.17-4×9.32=2.89,r≈ 2.890.55×2×2.646≈0.99.(4分)因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当高,从而可以用线性回归模型拟合y 与t 的关系.(6分)(2)由=9.327≈1.331及(1)得^=∑J17(-p(-p ∑J17(-p2=2.8928≈0.10,^=-^=1.331-0.10×4≈0.93.所以,y 关于t 的回归方程为^=0.93+0.10t.(10分)将2016年对应的t=9代入回归方程得^=0.93+0.10×9=1.83.所以预测2016年我国生活垃圾无害化处理量约为1.83亿吨.(12分)6.(2017课标Ⅰ文,19,12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:抽取次序12345678零件尺寸9.9510.129.969.9610.019.929.9810.04抽取次序910111213141516零件尺寸10.269.9110.1310.029.2210.0410.059.95经计算得=116∑J116x i≈0.212,∑J116(t8.5)2≈18.439,∑J116(x i -)(i-8.5)=-2.78,其中x i 为抽取的第i 个零件的尺寸,i=1,2, (16)(1)求(x i ,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(-3s,+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.(i)从这一天抽检的结果看,是否需对当天的生产过程进行检查?(ii)在(-3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(x i ,y i )(i=1,2,…,n)的相关系数∑-p(-pJ1(0.008≈0.09.解析本题考查统计问题中的相关系数及样本数据的均值与方差.(1)由样本数据得(x i ,i)(i=1,2,…,16)的相关系数为∑-p(i-8.5)由于|r|<0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)(i)由于=9.97,s≈0.212,由样本数据可以看出抽取的第13个零件的尺寸在(-3s,+3s)以外,因此需对当天的生产过程进行检查.(ii)剔除离群值,即第13个数据,剩下数据的平均数为115×(16×9.97-9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.∑J1162=16×0.2122+16×9.972≈1591.134,剔除第13个数据,剩下数据的样本方差为115×(1591.134-9.222-15×10.022)≈0.008,这条生产线当天生产的零件尺寸的标准差的估计值为0.008≈0.09.方法总结样本的数字特征.(1)样本数据的相关系数r,∑-p(-p反映样本数据的相关程度,|r|越大,则相关性越强.(2)样本数据的均值反映样本数据的平均水平;样本数据的方差反映样本数据的稳定性,方差越小,数据越稳定;样本数据的标准差为方差的算术平方根.7.(2020课标Ⅱ理,18,12分)某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(x i ,y i )(i =1,2,…,20),其中x i 和y i 分别表示第i 个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得∑=201i x i =60,∑=201i y i =1200,∑=201i (x i -)2=80,∑=201i (y i -)2=9000,∑=201i (x i -)(y i -)=800.(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);(2)求样本(x i ,y i )(i =1,2,…,20)的相关系数(精确到0.01);(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.附:相关系数=∑n−p(−p,2≈1.414.解析(1)由已知得样本平均数=120∑=201i y i =60,从而该地区这种野生动物数量的估计值为60×200=12000.(2)样本(x i ,y i )(i =1,2,…,20)的相关系数∑20−p(−p=.94.(3)分层抽样:根据植物覆盖面积的大小对地块分层,再对200个地块进行分层抽样.理由如下:由(2)知各样区的这种野生动物数量与植物覆盖面积有很强的正相关.由于各地块间植物覆盖面积差异很大,从而各地块间这种野生动物数量差异也很大,采用分层抽样的方法较好地保持了样本结构与总体结构的一致性,提高了样本的代表性,从而可以获得该地区这种野生动物数量更准确的估计.考点二独立性检验1.(2017课标Ⅱ文,19,12分)海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A表示事件“旧养殖法的箱产量低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关;箱产量<50kg箱产量≥50kg 旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.附:P(K2≥k)0.0500.0100.001k 3.841 6.63510.828,K2=oB-B)2(rp(rp(rp(rp.解析本题考查了频率分布直方图及独立性检验.(1)旧养殖法的箱产量低于50kg的频率为(0.012+0.014+0.024+0.034+0.040)×5=0.62.因此,事件A的概率估计值为0.62.(2)根据箱产量的频率分布直方图得列联表:箱产量<50kg箱产量≥50kg旧养殖法6238新养殖法3466K2=200×(62×66−34×38)2100×100×96×104≈15.705.由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图表明:新养殖法的箱产量平均值(或中位数)在50kg到55kg之间,旧养殖法的箱产量平均值(或中位数)在45kg到50kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.解后反思解独立性检验问题的关注点:(1)两个明确:①明确两类主体;②明确研究的两个问题.(2)两个关键:①准确画出2×2列联表;②准确求解K2.2.(2021全国甲理,17,12分)甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:一级品二级品合计甲机床15050200乙机床12080200合计270130400(1)甲机床、乙机床生产的产品中一级品的频率分别是多少?(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异?附:K 2=oB−B)2(rp(rp(rp(rp ,P (K 2≥k )0.0500.0100.001k3.8416.63510.828.解题指导:(1)根据表中数据分别计算甲、乙两台机床所生产的产品中一级品的数量,进而得出结论;(2)根据2×2列联表中的数据计算K 2,然后对照临界值表作出判断.解析(1)因为甲机床生产的200件产品中有150件一级品,所以甲机床生产的产品中一级品的频率为150200=34,因为乙机床生产的200件产品中有120件一级品,所以乙机床生产的产品中一级品的频率为120200=35.(2)根据2×2列联表中的数据,得K 2=oB−B)2(rp(rp(rp(rp =400×(150×80−120×50)2270×130×200×200=40039≈10.256,因为10.256>6.635,所以有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异.方法总结解决独立性检验问题的一般步骤:3.(2020新高考Ⅰ,19,12分)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了100天空气中的PM2.5和SO 2浓度(单位:μg/m 3),得下表:SO 2PM2.5[0,50](50,150](150,475][0,35]32184(35,75]6812(75,115]3710(1)估计事件“该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150”的概率;(2)根据所给数据,完成下面的2×2列联表:SO2PM2.5[0,150](150,475][0,75](75,115](3)根据(2)中的列联表,判断是否有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.附:K2=oB−B)2(rp(rp(rp(rp,P(K2≥k)0.0500.0100.001k3.8416.63510.828.答案解题思路:(1)根据抽查数据,该市100天的空气中PM2.5浓度不超过75,且SO2浓度不超过150的天数为32+18+6+8=64,因此,该市一天空气中PM2.5浓度不超过75,且SO2浓度不超过150的概率的估计值为64100=0.64.(4分) (2)根据抽查数据,可得2×2列联表:SO2PM2.5[0,150](150,475][0,75]6416(75,115]1010(8分) (3)根据(2)的列联表得K2=100×(64×10−16×10)280×20×74×26≈7.484.由于7.484>6.635,故有99%的把握认为该市一天空气中PM2.5浓度与SO2浓度有关.(12分) 17.(2022全国甲文,17,12分,应用性)甲、乙两城之间的长途客车均由A和B两家公司运营.为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:K2=oB−B)2(rp(rp(rp(rp,P(K2≥k)0.1000.0500.010k2.7063.8416.635解析(1)由题意可得A公司长途客车准点的概率P1=240260=1213,B公司长途客车准点的概率P2=210240=78.(2)因为K2=500×(240×30−20×210)2450×50×240×260≈3.205>2.706,所以有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.。
统计学基础练习题库及参考答案
第一章定量资料的统计描绘1第一部分一、单项选择题1、甲乙丙三位研究者评价人们对四种方便面的爱好程度。
甲让评定者先挑选出最喜欢的品牌,然后挑出剩余三种最喜欢的,最后挑出剩余两种比较喜欢的。
研究者乙让评定者把四种品牌分别给予1~5的等级评定(1表示最不,5表示最喜欢),研究者丙只是让评定者挑出自己最喜欢的品牌。
三位研究者所使用的数据类型是:BA.称名数据-顺序数据-计数数据B.顺序数据-等距数据-称名数据C.顺序数据-等距数据-顺序数据D.顺序数据-等比数据-计数数据2、调查200名不同年龄组的被试对手表的偏好程度如下:表1 200名不同年龄组的被试对手表的偏好程度该题自变量和因变量的数据类型是:DA.称名数据-顺序数据B.计数数据-等比数据C.顺序数据-等距数据D.顺序数据-称名数据3、的实上限是:CA.B.C.D.4、随机现象的数量化表示称为:BA.自变量B.随机变量C.因变量 D.相关变量5、实验或研究对象的全体称为:AA.总体B.样本点C.个体D.元素6、以下数据中,哪个数据是顺序变量:CA.父亲月收入2400元B.迈克的语文成绩是80分C.约翰100米短跑得第2名D.玛丽某项技能测试得了5分。
二、概念题数据类型、变量、观测值、随机变量、总体、样本、个体、次数、比率、概率、参数、统计量、μ、ρ、r、σ、S、β、n。
第一章定量资料的统计描绘2一、单项选择题1、一批数据中各个不同数据值出现的次数情况是:AA.次数分布B.概率密度C.累积概率密度D.概率2、以下各种图形中,表示连续数据频次分布的是:CA.条图B.圆图C.直方图D.散点图3、特别适用于描绘具有百分比构造的分类数据的统计图:BA.散点图B.圆图C.条图D.线图5、以下各种统计图中,表示离散数据频次分布的:AA.圆图B.直方图C.散点图D.线形图6、相关变量的统计图是:AA.散点图B.圆图C.条图D.线图7、适用于描绘某种事物在时间上的变化趋势,以及一事物随另外一事物的开展变化的趋势,还适用于比较不同人物群体在心理或教育现象上的变化特征以及互相联络的统计图是:D A.散点图B.圆图C.条图D.线图二、多项选择题1、频次分布可以为:ABCDA.简单次数分布B.分组次数分布C.相对次数分布D.累积次数分布2、以下各种图形中,表示连续数据频次分布的是:BDA.圆图B.直方图C.条图D.线图3、累加曲线的形状大约有:ABDA.正偏态B.负偏态C.F分布D.正态分布4、统计图按照形状划分为:ABCDA.直方图B.曲线图C.圆图D.散点图三、简答题1、简述条图、直方图、圆图、线图、散点图的用途。
酒店公共关系模拟练习题(含参考答案)
酒店公共关系模拟练习题(含参考答案)一、单选题(共30题,每题1分,共30分)1、决定广告策划成败的关键是。
A、广告调查B、广告定位C、广告创意D、广告诉求正确答案:C2、公关谈判的第三个阶段是oA、交锋准则B、导入阶段C、妥协阶段D、概说阶段正确答案:A3、“公众优先的意识”,又可称为A、塑造形象的意识B、尊重公众的意识C、真诚互惠的意识D、创新审美的意识正确答案:B4、一个组织抽样调查了400人,其中200人知道组织,知道组织的200人中有80人对组织持认可态度,则其美誉度为。
A、40%B、20%C、50%D、60%正确答案:A5、组织的公关形象策划要对公众进行研究,其首先要做的工作是A、鉴别目标公众的权利要求B、研究目标公众对组织的特殊视角C、研究目标公众的类型D、建立有效的公众形象正确答案:A6、情调、风格、含义。
A、文化形象的内涵B、文化形象的外显C、标识形象的外显D、标识形象的内涵正确答案:D7、在酒店公关人员心理素质中,其最基本的要求是oA、热情心理B、创新心理C、自信心理D、开放心理正确答案:C8、职业水平高,看问题比较客观是oA、公共关系部的长处B、公关公司的长处C、公关公司的短处D、公共关系部的短处正确答案:B9、在一定时期内一定社会成员中流行的生活样式,指的是A、舆论B、性格C、价值观D、时尚正确答案:D10、中国最高的公共关系组织一一中国公关协会,成立的时间地点是A、1987年在北京B、1986年在上海C、1985年在广州D、1987年在天津正确答案:A11、酒店公共关系的主体要素是A^公众B、组织形象C、社会组织D、传播正确答案:C12、利用电子类传播媒介的传播方式属于传播类型中的A、自身传播B、组织传播C、大众传播D、人际传播正确答案:C13、公共关系学专门研究oA、组织与社区之间的传播沟通问题B、组织与公众之间关系的稳定问题C、组织与公众传播沟通问题D、组织内部运营问题正确答案:C14、广告定位的目的在于oA、明确广告的特点B、突出广告商品的个性C、确定广告商品的位置D、提高广告针对性正确答案:B15、我国大学中,第一个开办公共关系本科专业的是A、北京大学B、复旦大学C、深圳大学D、中山大学正确答案:D16、根据公众与组织之间是否具有隶属关系可分为A、内部公从与无关公众B、内部公众与外部公众C、顺意公众与随意公众D、主要公众与次要公众正确答案:B17、被誉为“企业的脸”的是A、MISB、AISC、VISD、BIS正确答案:C18、 _____ 年,公共关系职业载入我国“国家职业分类大典”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关关系练习题答案
1、设销售收入x 为自变量,销售成本y 为因变量。
现已根据某商场12个月的有关资料计算出以下数据:(单位:万元)
∑∑∑=--==-==-09
.334229))((;8.549;25.262855)(;88.647;73.425053)(22
y y x x
y y y x x x t t
t
t
要求:
1)拟合简单线性回归方程,并对方程中回归系数的经济意义做出解释; 2)计算可决系数和回归估计的标准误差;
3)假定明年 1月销售收入为800万元,利用拟合的回归方程预测相应的销售成本,并给出置信区间为95%(t=2.228)的预测区间。
1解:(1)拟合线性回归方程,并对方程中的回归系数的经济含义做出解释:
设:一元线性回归方程
bx a y +=∧
3577
.4088.64778632.08.54978632.073
.42505309
.334229)
())((2
=⨯-=-====
---=∑∑x b y a L L x x y y x x b xx
xy
x y 78632.03577.40+=∴∧
回归系数的经济含义:
a ——如果销售收入为0,则该百货公司的销售成本也达40.3577万元;
b ——销售收入每增加1万元,销售成本就增加0.78632万元。
2)计算可决系数 解:
[]
9998.025.26285573.42505309
.334229)
()())((2
2
2
22
=⨯=----=
∑∑∑y y x x y y x x r
说明销售成本99.98%是由销售收入的变动决定的;该直线回归方程很好地模拟了两者的线性关系。
回归估计的标准误差: 解:
293
.22
12679
.262809262855025679.262802)(9998.0)(,
9998.0)
()(2
)()
(2
2
)(222
2
2
2
2
2
2
=--=
∴=-⨯=-∴=--=
----=
---=
--=∑∑∑∑∑∑∑∑∑∑
∧
∧
∧
∧
g g S y y y y y y y y r
n y y y y n xy
b y a y n y y S (3)假定明年1月销售收入为800万元。
利用拟合的回归方程预测响应的销售成本,并给出置信度95%的预测区间:解:
446
.2066665.1293.273
.425053)88.647800(1211293.2)()(1
14137.66980078632.03577.40,
8002
2
200
00=⨯=-+
+⨯=--+
+⋅==⨯+=∴=∑∧
x x x x n S S y x g y
查t 分布表,可得:
228
.2)212()2(2
05.02
=-=-t n t α
),(的置信区间:8627.674965.663449.54137.669446
.2228.24137.6690
0000⇒±=⨯±=±=∆±∴∧
∧
y y tS y y Y 即有95%的把握认为:当明年1月的销售收入为800万元时,相应的销售成本就落在663.965万元至674.8627万元之间。
2、已知某班学生的英语学习时数(x )与成绩分数(y )的回归方程为
x y c 2.55.20+=。
试解释式中回归系数的含义。
若学生所用的学习时数每周最低为6小时,最高为14小时,问该班学生英语成绩分数范围是多少?
答:回归系数b :周学习时数每增加1小时,英语成绩就增加5.2分; 系数a :英语如不花任何时间,则成绩只得20.5分。
最低x=6时:y0=20.5+5.2×6=51.7分;最高x=14时:y0=20.5+5.2×14=93.3分
所以:学习时数最低6小时,最高为14小时时,该班学生英语成绩分数范围在51.7至93.3分之间。
3、已知相关系数r=0.6,估计标准误差Sg=8,样本容量n=62,试计算:(1)剩余变差与回归变差;(2)总变差 解:已知r=0.6,估计标准误差=8,n=62 (1)求剩余变差与回归变差 则:
3840
)262(8)(,
82
)(222
=-⨯=-∴=--=
∑∑
∧
∧
y y n y y S g
2160
600036.0600064
.03840
384036.03840)(6.0)(,
6.0)
()()
)((2
22
22
2
2
2
2222
2
=⨯=-∴==
-∴+-=-∴+-=
-+-=--⨯=-∴=--=
--=
∑∑∑∑∑
∑
∑∑
∑∑∑∑
∑∧
∧
∧
∧
∧
∧
)(,
)(,)()()()()()(又:y y y y y y y y y y y y y y y y y y y y y y y y n y y x x r y
x σσ
另一方法:
36.06.0)()(222
2==--=
∑
∑∧
y y y y R
6000
64
.03840
)(,64.036.01)
()(2
2
2
==-∴=-=--∴
∑∑∑∧y y y y y y 由此,回归变差=6000-3840=2160
所以:剩余变差=3840;回归变差=2160 总变差=6000
4、对50个企业的横截面样本数据进行一元线性回归分析,因变量与其平均数的离差平方和为8000,而回归直线拟合的剩余变差为1500。
试求:(1)相关系数;(2)该方程的估计标准误差。
(1)求相关系数:解:
6500
15008000,1500)(,8000)(2
2
2
=-=-∴=-=-∑∑
∑∧
∧
)(回归变差y y y y y y
相关系数
9014.08000
6500
2
2
==
--=
∑
∑
∧
)()(y y y y r
(2)估计标准误差:
59.52
501500
2
2
=-=
--=
∑∧
n y y S g )(
降多少?
2)假定产量为6000件,单位成本是多少?相关系数?估计标准误差?3)以95%(t=2.776)把握程度估计单位成本的置信区间。