(文科)高中数学选修1-1、1-2、4-1、4-4、4-5重要知识点

合集下载

高考 必会 知识点:高中数学选修1-1知识点清单

高考 必会 知识点:高中数学选修1-1知识点清单

高考必会知识点:高中数学选修1-1知识点清单一、函数概念1、定义:函数是一种特殊的数学关系,它满足一定的规律,可以把它表示为“y=f(x)”,其中x叫做函数f的自变量,y叫做函数f的因变量。

2、一次函数的直线性:如果一个函数的结果与自变量之间的比例是恒定的,那么这个函数就称为一次函数,它的自变量与因变量都是一次的关系,又因它的图象是一条直线,所以也叫直线性函数。

3、函数的分类:根据因变量与自变量之间的函数关系,把一元函数分为三大类:一次函数、二次函数和多项式函数,其中一次和二次函数是常见的。

二、一次函数性质1、一次函数的真或假性:当一次函数中存在着两个方程,即可以表示成y=ax+b,其中a和b是实数时,则此方程为真,如果a或b不是实数,则此方程为假。

2、一次函数的性质:一次函数的性质是自变量x和因变量y的关系是“线性的”。

一次函数的的横轴值与纵轴值的比值是恒定的,即一次函数的变化是线性的,这也是一次函数的最重要的特点。

此外,一次函数图象的最高点和最低点分别是图象的极值点,其中y值比x值改变的幅度最大,x值改变不会引起y值的改变。

3、一次函数的导数:一次函数的导数是表示一次函数变化量的量,其定义是:当自变量x增加某个极小量Δx时,函数f(x)的变化量与Δx的比值,即函数的变化率,该比值的极限为一个定值,也就是函数的导数。

四、多项式函数1、定义:多项式函数是多元函数,它指的是自变量是指数不同的有理数的乘积和,也可以把它看做是一次及以上次方的有理数系数的乘积之和。

例如多项式函数y=ax2+bx+c 就是3次多项式函数。

2、多项式函数的性质:它具有正面积性、抛物线性等特点,正面积性指的是多项式函数的图象大致是向上开口的曲线,抛物线性指的是多项式函数的图象会有拐点,多项式函数的极值也因此产生。

3、多项式函数的导数:多项式函数的导数也叫次导数,它是指函数变化量与自变量增加量的比值,也就是函数的变化率,它的极限为一定值,也就是次导数。

高二数学选修1-1-2数学知识点文科

高二数学选修1-1-2数学知识点文科

第一局部 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“假设p ,那么q 〞形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“假设p ,那么q 〞 逆命题: “假设q ,那么p 〞 否命题:“假设p ⌝,那么q ⌝〞 逆否命题:“假设q⌝,那么p ⌝〞4、四种命题的真假性之间的关系:〔1〕两个命题互为逆否命题,它们有一样的真假性;〔2〕两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、假设p q ⇒,那么p 是q 的充分条件,q 是p 的必要条件. 假设p q ⇔,那么p 是q 的充要条件〔充分必要条件〕.利用集合间的包含关系:例如:假设B A ⊆,那么A 是B 的充分条件或B 是A 的必要条件;假设A=B ,那么A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或〔or 〕:命题形式p q ∨; ⑶非〔not 〕:命题形式p ⌝.7 全称命题p :)(,x p M x ∈∀; 全称命题p 的否认⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个〞、“至少有一个〞等,用“∃〞表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否认⌝p :)(,x p M x ⌝∈∀;第二局部 圆锥曲线1、平面与两个定点1F ,2F 的距离之和等于常数〔大于12F F 〕的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>> 围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面与两个定点1F ,2F 的距离之差的绝对值等于常数〔小于12F F 〕的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

(2021年整理)高中数学(文科)选修1-1、1-2知识点归纳

(2021年整理)高中数学(文科)选修1-1、1-2知识点归纳

高中数学(文科)选修1-1、1-2知识点归纳编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学(文科)选修1-1、1-2知识点归纳)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学(文科)选修1-1、1-2知识点归纳的全部内容。

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句。

假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p " 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝。

7、⑴全称量词——“所有的”、“任意一个"等,用“∀”表示; 全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个"等,用“∃”表示; 特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:置图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称 离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距. 4、双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b -=>> ()222210,0y x a b a b-=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A ()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率 ()2211c b e e a a==+>渐近线方程b y x a=± a y x b=±5、实轴和虚轴等长的双曲线称为等轴双曲线.6、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.7、抛物线的几何性质:标准方程 22y px = ()0p > 22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴 x 轴y 轴8、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 9、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;第三部分 导数及其应用1、函数()f x 从1x 到2x 的平均变化率:()()2121f x f x x x --2、导数定义:()f x 在点0x 处的导数记作xx f x x f x f y x xx ∆-∆+='='→∆=)()(lim)(00000;.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.4、常见函数的导数公式:①'C 0=;②1')(-=n n nx x ; ③x x cos )(sin '=;④x x sin )(cos '-=; ⑤a a a x x ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.6、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.8、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.9、导数在实际问题中的应用:最优化问题。

新课标2013高考文科一轮复习知识点——高中数学选修1-1、1-2、4-4

新课标2013高考文科一轮复习知识点——高中数学选修1-1、1-2、4-4

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件.若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

高中数学选修1-1&1-2知识点

高中数学选修1-1&1-2知识点

选修1-1,1-2知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p q p q ∧ p q ∨ p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b +=>>范围a x a -≤≤且b y b -≤≤b x b -≤≤且a y a -≤≤ 顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

高中数学-1、1-2、4-1、4-4知识点归纳

高中数学-1、1-2、4-1、4-4知识点归纳

选修1-1、1-2数学知识点1.原命题:“若p ,则q ”;逆命题: “若q ,则p ”; 否命题:“若p ⌝,则q ⌝”;逆否命题:“若q ⌝,则p ⌝”2.四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性; (2)两个命题为互逆命题或互否命题,它们的真假性没有关系.3.若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).集合间的包含关系:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;4. ⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;1.概念: (1) z =a +bi 是虚数⇔b ≠0;(2) z =a+b i 是纯虚数⇔a =0且b ≠0;(3) a +b i=c +di ⇔a =c 且c =d ;2.复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di ,则:(1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1.z 2 = (a +bi )·(c +di )=(ac -bd )+ (ad +bc )i ;(3) z 1÷z 2 ==-+-+))(())((di c di c di c bi a i dc adbc d c bd ac 2222+-+++ (z 2≠0) ;第三部分 圆锥曲线1.椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210x y a b a b +=>> ()222210y x a b a b +=>> 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c离心率()22101c b e e a a==-<< 2.双曲线的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程 ()222210,0x y a b a b-=>> ()222210,0y x a b a b-=>> 轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c离心率()2211c b e e a a==+>渐近线方程b y x a=±a y x b=±注:实轴和虚轴等长的双曲线称为等轴双曲线.3.抛物线的几何性质:标准方程 22y px = 22y px =- 22x py= 22x py =-图形焦点 ,02p F ⎛⎫⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程 2px =-2p x =2p y =-2p y =离心率 1e =范围0x ≥0x ≤0y ≥0y ≤第四部分 导数及其应用1.函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.2.常见函数的导数公式:①'C 0=; ②1')(-=n n nx x ; ③x x cos )(sin '=; ④x x sin )(cos '-=;⑤a a a x x ln )('=;⑥xx e e =')(; ⑦ax x a ln 1)(log '=; ⑧x x 1)(ln '=3.导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦.4.在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.5.求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值;()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.6.求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.1.线性回归方程 注意:线性回归直线经过定点 ),(y x 。

高中数学选修1-1知识点归纳1#

高中数学选修1-1知识点归纳1#

高中数学选修1-1知识点归纳1#高中数学选修1-1知识点归纳高中数学选修1-1是数学学科的一部分,内容较为丰富,涉及到多个知识点。

下面将对这些知识点进行归纳和总结,具体内容如下:一、函数的概念和表示方法1、函数的定义:函数是一种描述因果关系的数学工具,将一个集合的每个元素都唯一地对应到另一个集合的元素上。

2、函数的表示方法:常见的函数表示方法有显式表示法、参数表示法和隐式表示法。

二、平方根函数1、平方根函数的定义:平方根函数是指以x为自变量,y为因变量的函数y = √x。

2、平方根函数的图像:平方根函数的图像为一条开口向上的抛物线曲线。

3、平方根函数的性质:平方根函数的定义域为非负实数集,值域为非负实数集。

三、指数函数1、指数函数的定义:指数函数是指以x为自变量,y为因变量的函数y = a^x,其中a是正常数且不等于1。

2、指数函数的图像:指数函数的图像为一条递增或递减的曲线。

3、指数函数的性质:(1)指数函数的定义域为全体实数集,值域为正实数集(当a>1时)或(0,1)区间上的实数集(当0<a<1时)。

(2)指数函数与底数a的关系:当a>1时,指数函数递增;当0<a<1时,指数函数递减。

四、对数函数1、对数函数的定义:对数函数是指以x为自变量,y为因变量的函数y = loga(x),其中a是一个正常数且不等于1。

2、对数函数的图像:对数函数的图像为一条递增或递减的曲线。

3、对数函数的性质:(1)对数函数的定义域为正实数集,值域为全体实数集。

(2)对数函数与底数a的关系:当a>1时,对数函数递增;当0<a<1时,对数函数递减。

五、指数方程和对数方程1、指数方程的定义:指数方程是指含有未知数的指数的等式。

2、求解指数方程的一般步骤:(1)移项(2)底数相等的条件3、对数方程的定义:对数方程是指含有未知数的对数的等式。

4、求解对数方程的一般步骤:(1)移项(2)底数相等的条件六、指数函数与对数函数的图像与性质1、指数函数与对数函数的关系:指数函数与对数函数是互为反函数的函数。

高二数学选修1-1、1-2数学知识点(文科)

高二数学选修1-1、1-2数学知识点(文科)

高二数学选修1-1、1-2数学知识点(文科)高二数学选修1-11、数列的性质与特征(一)数列概念:数列是列有次序的一组有限个或无限个数构成的数组,又称有序数列。

(二)有序数列比较:任意两个有序数列可以比较是否有序,已经大小关系。

(三)数列等比:如果一个数列中每一项都是等比的,则该数列为等比数列。

2、等比数列的性质(一)等比数列的公比:等比数列的前两项的比值称为公比,记为q,如果前两项之比为正数,则称为正比,公比q也为正数;反之,反比,公比q为负数。

(二)特定的等比数列:(1)等比数列的通项公式:设等比数列的公比为q,使得a1,a2,…,an均成等差数列,则数列中任一项,可以表示为an=a1qn-1(2)定积分数:一列等比数列或它们的和称为定积分数,也称为定量数列。

3、等差数列的性质(一)等差数列的公差:等差数列的前后项的差称为公差,记为d。

4、等比数列与等差数列的混合(一)等比等差数列:等比等差数列是指一个拥有等比性质和等差性质的数列。

高二数学选修1-21、数学归纳法数学归纳法是一种发现规律的方法,它可以帮助我们用有限个具体的实例对一般情况作出正确的推论。

它包括三个步骤:(一)假设它是真的先假设某一定理是正确的,设定一个最初的论据。

(二)证明它是正确的为了证明这个定理是正确的,我们可以分别从可能的情况开始,例如从最小的情况,再一步步推导出更大的情况,以此来证明它是正确的。

(三)总结出结论最后要通过将实例抽象,归纳得出结论,它一般归纳为一个公式,表示一般情况。

2、数学归纳法的应用(一)证明定理:数学归纳法可以用来证明一般性的定理,先从特殊情况进行证明,再以特殊情况为基础归纳出一般性的结论。

(二)导出公式:我们可以用数学归纳法来导出感性的认识变成理性的形式,即由具体的实例可以推出一般性的公式来表示具体情况。

3、数学归纳法的注意事项(一)假设的充分性:在使用数学归纳法前,要确定假设是完全充分的,不可以太过抽象,要尽量把可能性全部考虑到。

高中数学选修1-1、1-2、4-1、4-4知识点归纳

高中数学选修1-1、1-2、4-1、4-4知识点归纳
相似三角形的判定: ( 1)两角对应相等,两三角形相似; ( 2)两边对应成比例且夹角相等,两三角形相似; ( 3)三边对应成比例,两三角形相似。
射影定理:直角三角形斜边上的高是两直角边在斜边上射影的比例中项; 两直角边分别是它们在斜边上射影与斜边的比例中项。
圆周角定理:圆上一条弧所对的圆周角等于它所对的圆周角的一半。 圆心角定理:圆心角的度数等于它所对弧的度数。
选修 1- 1、 1-2 数学知识点
第一部分 简单逻辑用语
1. 原命题:“若 p ,则 q ”;逆命题: “若 q ,则 p ”; 否命题:“若 p ,则 q ”;逆否命题: “若 q ,则 p ”
2. 四种命题的真假性之间的关系: ( 1)两个命题互为逆否命题,它们有相同的真假性; ( 2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
3. 若 p 若p
q ,则 p 是 q 的充分条件, q 是 p 的必要条件. q ,则 p 是 q 的充要条件(充分必要条件) .
集合间的包含关系:若 A B ,则 A 是 B 的充分条件或 B 是 A 的必要条件;
若 A=B,则 A 是 B 的充要条件;
4. ⑴全称量词——“所有的” 、“任意一个”等,用“
3. 极坐标与直角坐标的互化:
2 x2 y2 , x y sin , tan
cos , y (x 0) x
3.圆 ( x a) 2 ( y b)2 r 2的参数方程可表示为
x a rcos , ( 为参数 ) .
y b rsin .
2
2
椭圆 x a2
y b2
1 (a b
0) 的参数方程可表示为
x acos , ( 为参数 ) .
nx n

高中数学文科选修1-1知识点总结

高中数学文科选修1-1知识点总结

第一章:命题与逻辑结构知识点:1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句. 假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,则这两个命题称为互逆命题.其中一个命题称为原命题,另一个称为原命题的逆命题. 若原命题为“若p ,则q ”,它的逆命题为“若q ,则p ”.4、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,则这两个命题称为互否命题.中一个命题称为原命题,另一个称为原命题的否命题. 若原命题为“若p ,则q ”,则它的否命题为“若p ⌝,则q ⌝”.5、对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,则这两个命题称为互为逆否命题.其中一个命题称为原命题,另一个称为原命题的逆否命题.若原命题为“若p ,则q ”,则它的逆否命题为“若q ⌝,则p ⌝”.()1两个命题互为逆否命题,它们有相同的真假性;()2两个命题为互逆命题或互否命题,它们的真假性没有关系.7、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).8、用联结词“且”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∧. 当p 、q 都是真命题时,p q ∧是真命题;当p 、q 两个命题中有一个命题是假命题时,p q ∧是假命题.用联结词“或”把命题p 和命题q 联结起来,得到一个新命题,记作p q ∨.当p 、q 两个命题中有一个命题是真命题时,p q ∨是真命题;当p 、q 两个命题都是假命题时,p q ∨是假命题.对一个命题p 全盘否定,得到一个新命题,记作p ⌝.若p 是真命题,则p ⌝必是假命题;若p 是假命题,则p ⌝必是真命题.9、短语“对所有的”、“对任意一个”在逻辑中通常称为全称量词,用“∀”表示. 含有全称量词的命题称为全称命题.全称命题“对M 中任意一个x ,有()p x 成立”,记作“x ∀∈M ,()p x ”. 短语“存在一个”、“至少有一个”在逻辑中通常称为存在量词,用“∃”表示. 含有存在量词的命题称为特称命题.特称命题“存在M 中的一个x ,使()p x 成立”,记作“x ∃∈M ,()p x ”.10、全称命题p :x ∀∈M ,()p x ,它的否定p ⌝:x ∃∈M ,()p x ⌝.全称命题的否定 是特称命题.考点:1、充要条件的判定 2、命题之间的关系★1.命题“对任意的3210x x x ∈-+R ,≤”的否定是( ) A .不存在3210x R x x ∈-+,≤ B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>,D .对任意的3210x R x x ∈-+>,★2、给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是 (A)3(B)2(C)1(D)0★3. 已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件第二章:圆锥曲线 知识点: 1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质: 焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<准线方程2a x c=±2a y c=±3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.5、双曲线的几何性质:焦点的位置 焦点在x 轴上焦点在y 轴上 图形标准方程()222210,0x y a b a b -=>> ()222210,0y x a b a b -=>> 范围 x a ≤-或x a ≥,y R ∈ y a ≤-或y a ≥,x R ∈顶点 ()1,0a A -、()2,0a A()10,a A -、()20,a A轴长 虚轴的长2b = 实轴的长2a =焦点 ()1,0F c -、()2,0F c ()10,F c -、()20,F c焦距 ()222122F F c c a b ==+对称性 关于x 轴、y 轴对称,关于原点中心对称离心率()2211c b e e a a==+>准线方程2a x c=±2a y c=±渐近线方程b y x a=±a y x b=±6、实轴和虚轴等长的双曲线称为等轴双曲线.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线.9、抛物线的几何性质:标准方程22y px =()0p >22y px =- ()0p > 22x py = ()0p > 22x py =-()0p >图形顶点()0,0对称轴x 轴y 轴焦点,02p F ⎛⎫⎪⎝⎭ ,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭准线方程2px =-2p x =2p y =-2p y =离心率1e =范围0x ≥ 0x ≤0y ≥ 0y ≤10、过抛物线的焦点作垂直于对称轴且交抛物线于、两点的线段,称为抛物线的“通径”,即2p AB =.考点:1、圆锥曲线方程的求解2、直线与圆锥曲线综合性问题3、圆锥曲线的离心率问题典型例题:★★1.设O 是坐标原点,F 是抛物线22(0)y px p =>的焦点,A 是抛物线上的一点,FA 与x 轴正向的夹角为60,则OA 为( )A .214pB 21pC 13p D .1336p★★2.与直线20x y +-=和曲线221212540x y x y +--+=都相切的半径最小的圆的标准方程是 .★★★3.(本小题满分14分) 已知椭圆C 的中心在坐标原点,焦点在x 轴上,椭圆C 上的点到焦点距离的最大值为3,最小值为1.(1)求椭圆C 的标准方程;(2)若直线:l y kx m =+与椭圆C 相交于A B ,两点(A B ,不是左右顶点),且以AB为直径的图过椭圆C 的右顶点.求证:直线l 过定点,并求出该定点的坐标.第三章:导数及其应用 知识点:1、若某个问题中的函数关系用()f x 表示,问题中的变化率用式子()()2121f x f x x x --fx ∆=∆表示,则式子()()2121f x f x x x --称为函数()f x 从1x 到2x 的平均变化率. 2、函数()f x 在0x x =处的瞬时变化率是()()210021limlimx x f x f x fx x x ∆→∆→-∆=-∆,则称它为函数()y f x =在0x x =处的导数,记作()0f x '或0x x y =',即()()()0000limx f x x f x f x x∆→+∆-'=∆.3、函数()y f x =在点0x 处的导数的几何意义是曲线()y f x =在点()()00,x f x P 处的切线的斜率.曲线()y f x =在点()()00,x f x P 处的切线的斜率是()0f x ',切线的方程为()()()000y f x f x x x '-=-.若函数在0x 处的导数不存在,则说明斜率不存在,切线的方程为0x x =.4、若当x 变化时,()f x '是x 的函数,则称它为()f x 的导函数(导数),记作()f x '或y ',即()()()limx f x x f x f x y x∆→+∆-''==∆.5、基本初等函数的导数公式:()1若()f x c =,则()0f x '=;()2若()()*n f x x x Q =∈,则()1n f x nx -'=; ()3若()sin f x x =,则()cos f x x '=;()4若()cos f x x =,则()sin f x x '=-; ()5若()x f x a =,则()ln x f x a a '=;()6若()x f x e =,则()x f x e '=;()7若()log a f x x =,则()1ln f x x a '=;()8若()ln f x x =,则()1f x x'=. 6、导数运算法则:()1 ()()()()f x g x f x g x '''±=±⎡⎤⎣⎦;()2 ()()()()()()f x g x f x g x f x g x '''⋅=+⎡⎤⎣⎦;()3()()()()()()()()()20f x f x g x f x g x g x g x g x '⎡⎤''-=≠⎢⎥⎡⎤⎣⎦⎣⎦. 7、对于两个函数()y f u =和()u g x =,若通过变量u ,y 可以表示成x 的函数,则称这个函数为函数()y f u =和()u f x =的复合函数,记作()()y f g x =. 复合函数()()y f g x =的导数与函数()y f u =,()u g x =的导数间的关系是x u x y y u '''=⋅.8、在某个区间(),a b 内,若()0f x '>,则函数()y f x =在这个区间内单调递增;若()0f x '<,则函数()y f x =在这个区间内单调递减.9、点a 称为函数()y f x =的极小值点,()f a 称为函数()y f x =的极小值;点b 称为函数()y f x =的极大值点,()f b 称为函数()y f x =的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.10、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时:()1如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; ()2如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值.11、求函数()y f x =在[],a b 上的最大值与最小值的步骤是:()1求函数()y f x =在(),a b 内的极值;()2将函数()y f x =的各极值与端点处的函数值()f a ,()f b 比较,其中最大的一个是最大值,最小的一个是最小值.考点:1、导数在切线方程中的应用2、导数在单调性中的应用3、导数在极值、最值中的应用4、导数在恒成立问题中的应用典型例题★1.(05全国卷Ⅰ)函数93)(23-++=x ax x x f ,已知)(x f 在3-=x 时取得极值,则a =( )A .2B. 3C. 4D.5★2.函数5123223+--=x x x y 在[0,3]上的最大值与最小值分别是( ) A.5 , - 15 B.5 , 4 C.- 4 , - 15 D.5 , - 16 ★★★3.(根据04年天津卷文21改编)已知函数)0()(3≠++=a d cx ax x f 是R 上的奇函数,当1=x 时)(x f 取得极值-2.(1)试求a 、c 、d 的值;(2)求)(x f 的单调区间和极大值;★★★4.(根据山东2008年文21改编)设函数2312)(bx ax e x x f x ++=-,已知12=-=x x 和为)(x f 的极值点。

高中数学选修1-1知识点

高中数学选修1-1知识点

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,能够判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没相关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.p qp q ∧ p q ∨ p ⌝ 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存有量词——“存有一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 2、椭圆的几何性质:焦点的位置焦点在x 轴上焦点在y 轴上图形标准方程()222210x y a b a b +=>> ()222210y x a b a b+=>> 范围a x a -≤≤且b y b -≤≤ b x b -≤≤且a y a -≤≤顶点()1,0a A -、()2,0a A()10,b B -、()20,b B()10,a A -、()20,a A ()1,0b B -、()2,0b B 轴长 短轴的长2b = 长轴的长2a =焦点 ()1,0F c -、()2,0F c()10,F c -、()20,F c焦距 ()222122F F c c a b ==-对称性 关于x 轴、y 轴、原点对称离心率()22101c b e e a a==-<<3、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

高二数学选修1-1-2数学知识点(文科)

高二数学选修1-1-2数学知识点(文科)

选修1-1、1-2数学知识点第一部分 简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.7、⑴全称量词——“所有的”、“任意一个”等,用“”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。

⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;第二部分 圆锥曲线1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆. 即:|)|2(,2||||2121F F a a MF MF >=+。

这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距. 23、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.即:|)|2(,2||||||2121F F a a MF MF <=-。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修1-2数学知识点 第一部分 统计案例1.线性回归方程①变量之间的两类关系:函数关系与相关关系; ②制作散点图,判断线性相关关系③线性回归方程:a bx y +=∧(最小二乘法) 1221n i i i n i i x y nx y b x nx a y bx==⎧-⎪⎪=⎪⎨-⎪⎪=-⎪⎩∑∑ 注意:线性回归直线经过定点),(y x 。

2.相关系数(判定两个变量线性相关性): ∑∑∑===----=n i n i i i n i i i y y x xy y x x r 11221)()())(( 注:⑴r >0时,变量y x ,正相关;r <0时,变量y x ,负相关;⑵||r 越接近于1,两个变量的线性相关性越强;||r 接近于0时,两个变量之间几乎不存在线性相关关系。

3.回归效果的判定:⑴残差:∧∧-=i i i y y e ;⑵残差平方和:21)(∑=∧-n i yi yi ;⑶相关指数∑∑==∧---=n i i i n i i i y yy y R 12122)()(1 。

注:①2R 得知越大,说明残差平方和越小,则模型拟合效果越好; ②2R 越接近于1,,则回归效果越好。

4.独立性检验(分类变量关系): 随机变量2K 越大,说明两个分类变量,关系越强,反之,越弱。

第二部分 推理与证明 一.推理:⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。

①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理。

简称归纳。

注:归纳推理是由部分到整体,由个别到一般的推理。

②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。

注:类比推理是特殊到特殊的推理。

⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论。

演绎推理是由一般到特殊的推理。

“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。

二.证明 ⒈直接证明 ⑴综合法: 一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。

综合法又叫顺推法或由因导果法。

⑵分析法 一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等),这种证明的方法叫分析法。

分析法又叫逆推证法或执果索因法。

2.间接证明------反证法 一般地,假设原命题不成立,经过正确的推理,最后得出矛盾,因此说明假设错误,从而证明原命题成立,这种证明方法叫反证法。

第三部分 复数1.概念:z =a +bi ,a,b ∈R )(1) z 为实数⇔b =0 (a,b ∈R ); (2) z 是虚数⇔b ≠0(a ,b ∈R ); z 是纯虚数⇔a =0且b ≠0(a,b ∈R );(3) a +b i=c +di ⇔a =c 且c =d (a,b,c,d ∈R );2.复数的代数形式及其运算:设z 1= a + bi , z 2 = c + di (a,b,c,d ∈R ),则:(1) z 1±z 2 = (a + b )± (c + d )i ;(2) z 1.z 2 = (a +bi ) (c +di )=(ac -bd )+ (ad +bc )i ;(3)21z z ==-+-+))(())((di c di c di c bi a i d c ad bc d c bd ac 2222+-+++ (z 2≠0) ; 3.几个重要的结论: (1) i i 2)1(2±=±;⑷;11;11i ii i i i -=+-=-+ (2) i 性质:T=4;i i i i i i n n n n -=-===+++3424144,1,,1;;03424144=++++++n n n i i i i4.运算律:(1));,())(3(;))(2(;2121N n m z z z z z z z z z mm m mn n m n m n m ∈=⋅==⋅+ 5.模的性质:||||||||||||212121z z z z z z +≤±≤-; 选修4-1数学知识点平行线等分线段定理平分线分线段成比例定理相似三角形的判定及性质对应边成比例的两个三角形叫做相似三角形。

相似三角形对应边的比值叫做相似比(或相似系数)。

由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。

所以我们曾经给出过如下几个判定两个三角形相似的简单方法:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似。

角形相似。

简述为:两角对应相等,两三角形相似。

那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

三角形相似。

简述为:三边对应成比例,两三角形相似。

如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边。

1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

那么这两个直角三角形相似。

(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

直角三角形的射影定理直角三角形斜边上的高是两直角边在斜边上射影的比例中项;两直角边分别是它们在斜边上射影与斜边的比例中项。

圆周定理90°的圆周角所对的弦是直径。

圆内接四边形的性质与判定定理圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

圆的切线的性质及判定定理切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

弦切角的性质与圆有关的比例线段选修4-5数学知识点1、不等式的基本性质①(对称性); ②(传递性)③(可加性)a b a c b c >⇔+>+(同向可加性)d b c a d c b a +>+⇒>>, ④(可积性)bc ac c b a >⇒>>0,;bc ac c b a <⇒<>0,(同向正数可乘性)0,0a b c d ac bd >>>>⇒> ⑤(平方法则)0(,1)n n a b a b n N n >>⇒>∈>且; (开方法则)0,1)a b n N n >>∈>且⑥(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>> 2、几个重要不等式①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22.2a b ab +≤ ②(基本不等式)2a b +≥ ()a b R +∈,,(当且仅当a b =时取到等号).变形公式:a b +≥ 2.2a b ab +⎛⎫≤ ⎪⎝⎭求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、三相等”. ③(三个正数的算术—几何平均不等式)3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤绝对值三角不等式.a b a b a b -≤±≤+⑥几个著名不等式①平均不等式:1122a b a b --+≤≤≤+,,a b R +∈(,当且仅当a b =时取""=). (即调和平均≤几何平均≤算术平均≤平方平均). 变形公式:222;22a b a b ab ++⎛⎫≤≤ ⎪⎝⎭ 222().2a b a b ++≥ 3、不等式证明的几种常用方法 常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.4、一元二次不等式的解法: 求一元二次不等式20(0)ax bx c ++><或 2(0,40)a b ac ≠∆=->解集的步骤:一化:化二次项前的系数为正数. 二判:判断对应方程的根. 三求:求对应方程的根.四画:画出对应函数的图象. 五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.5、指数不等式的解法:⑴1a >时,()()()()f x g x a a f x g x >⇔>;⑵01a <<时, ()()()()f x g x aa f x g x >⇔< 6、对数不等式的解法⑴1a >, ()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩⑵01a <<, ()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩7、含绝对值不等式的解法:⑴定义法:(0).(0)a a a a a ≥⎧=⎨-<⎩⑵平方法:22()()()().f x g x f x g x ≤⇔≤ ⑶同解变形法,其同解定理有: ①(0);x a a x a a ≤⇔-≤≤≥②(0);x a x a x a a ≥⇔≥≤-≥或③()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥ ④()()()()()()(()0)f x g x f x g x f x g x g x ≥⇔≥≤-≥或 规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如20ax bx c ++>且含参数的不等式时,要对参数进行分类讨论,分类讨论的标准有: ⑴讨论a 与0的大小;⑵讨论∆与0的大小;⑶讨论两根的大小.。

相关文档
最新文档