(文科)高中数学选修 重要知识点

合集下载

高中数学文科笔记

高中数学文科笔记
n
x 18、指数函数 y a (a 0,且a 1)
①图像:在第一象限,越往上底数越大 ②定义域:R (0, ) ③值域 ④定点(0,1) ⑤单调性: 当a 1时,在 R上单调递增 当0 a 1时,在 R上单调递减
19、对数函数
y log a x ( a 0,且 a 1,x 0)
21、 a b x 1 x 2 y 1 y 2 a b cos











; a

x1 y1
2
2
22、 cos a b
x1 x 2 y 1 y 2 x1 y 1
2 2
y cos x
y tan x
1、正弦定理
a b
0,减函数 ③判断符号: f ( x1 ) f ( x2 ) ④下结论 0,增函数 8、判断函数 f ( x) 的奇偶性:①函数 f ( x) 的定义域关于原点对称 f ( x ) f ( x ),偶函数(关于 y轴对称) ② f ( x ) f ( x ),奇函数(关于原点对 称 )
1 2
26、两平行线间的距离公式 d
C1 C2
A2 B 2 27、圆的标准方程 ( x a ) 2 ( y b) 2 r 2 ,圆心( a, b ),半径 r
28、圆的一般方程 x 2 y 2 Dx Ey F 0 圆心(
其中 D 2 E 2 4 F 0 29、圆与圆的位置关系: d 为圆心距①外离 d R r ②外切 d R r ③内切 d R r ④相交 R r d R r ⑤内含 d R r 30、两圆公共弦所在的直线方程:两圆方程相减 (D1 D2)x (E1 E2)y F1 F2 0 直线与圆相交弦长公式 d 1 k 2 x1 x2 (1 k 2 )[( x1 x2 ) 2 4 x1 x2 ] 必修 3 笔记 1、秦九韶算法:多项式最高次数为 n,则需要 n 次乘法,n 次加法 2、进制数 3、由频率分布直方图求①众数:最高矩形上端中点横坐标 ②中位数:左右两侧的直方图的面积相等 ③平均数:每个小矩形的面积乘以小矩形底边中点的横坐标之和 、 31 4、用最小二乘法求线性回归方程

高中数学选修三知识点全总结

高中数学选修三知识点全总结

高中数学选修三知识点全总结【原创版】目录1.高中数学选修 3 简介2.选修 3 知识点分类3.选修 3 知识点详细内容3.1 逻辑用语3.2 圆锥曲线与方程3.3 导数及其应用正文【高中数学选修 3 简介】高中数学选修 3 是高中数学课程中的一个模块,主要面向对数学领域有兴趣和志向的学生。

这个模块的知识内容较为深入,需要学生具备一定的数学基础和自学能力。

在高考中,选修 3 的知识点通常是文科和理科都要考察的内容,但是具体的考察范围会根据不同的地区和年份有所不同。

【选修 3 知识点分类】高中数学选修 3 的知识点主要可以分为以下几个部分:1.逻辑用语:包括命题及其关系、简单的逻辑联结词、全称量词与存在量词。

2.圆锥曲线与方程:包括圆锥曲线的实际背景、椭圆的定义、标准方程、几何图形及简单性质、抛物线、双曲线的定义、几何图形和标准方程、圆锥曲线的简单应用。

3.导数及其应用:包括导数概念及其几何意义、导数的运算、导数在研究函数中的应用、生活中的优化问题举例、导数的实际背景和应用。

【选修 3 知识点详细内容】【逻辑用语】逻辑用语是数学中重要的基础知识,它包括命题及其关系、简单的逻辑联结词和全称量词与存在量词。

命题是能够判断真假的陈述句,而逻辑联结词则是用来连接命题的词语,例如“且”、“或”、“非”等。

全称量词和存在量词则是用来表示命题中的量词,例如“所有的”、“存在”等。

【圆锥曲线与方程】圆锥曲线是一个广泛的曲线类别,它包括椭圆、抛物线、双曲线等。

圆锥曲线的方程是描述其形状和位置的重要工具,它通常包括椭圆的标准方程、抛物线的标准方程、双曲线的标准方程等。

圆锥曲线在实际中有广泛的应用,例如在物理、工程、计算机图形学等领域都有重要的应用。

【导数及其应用】导数是微积分中的重要概念,它表示函数在某一点的变化率。

导数在研究函数的性质、解决实际问题中有广泛的应用。

例如,可以通过求导来找到函数的极值点、拐点,从而研究其单调性、凹凸性等性质;同时,导数也可以用来解决实际问题,例如求解速度、加速度、变化率等问题。

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点总结大全(精华版)

高中文科数学公式及知识点速记一、函数、导数1、函数的单调性(1)设2121],,[x x b a x x <∈、那么],[)(0)()(21b a x f x f x f 在⇔<-上是增函数; ],[)(0)()(21b a x f x f x f 在⇔>-上是减函数.(2)设函数)(x f y =在某个区间内可导,若0)(>'x f ,则)(x f 为增函数;若0)(<'x f ,则)(x f 为减函数.2、函数的奇偶性对于定义域内任意的x ,都有)()(x f x f =-,则)(x f 是偶函数; 对于定义域内任意的x ,都有)()(x f x f -=-,则)(x f 是奇函数。

奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。

3、函数)(x f y =在点0x 处的导数的几何意义函数)(x f y =在点0x 处的导数是曲线)(x f y =在))(,(00x f x P 处的切线的斜率)(0x f ',相应的切线方程是))((000x x x f y y -'=-.*二次函数: (1)顶点坐标为24(,)24b ac b a a --;(2)焦点的坐标为241(,)24b ac b a a-+- 4、几种常见函数的导数①'C 0=;②1')(-=n n nxx ; ③x x cos )(sin '=;④x x sin )(cos '-=;⑤a a a xx ln )('=;⑥x x e e =')(; ⑦a x x a ln 1)(log '=;⑧xx 1)(ln '= 5、导数的运算法则(1)'''()u v u v ±=±. (2)'''()uv u v uv =+. (3)'''2()(0)u u v uv v v v -=≠. 6、会用导数求单调区间、极值、最值7、求函数()y f x =的极值的方法是:解方程()0f x '=.当()00f x '=时: (1) 如果在0x 附近的左侧()0f x '>,右侧()0f x '<,那么()0f x 是极大值; (2) 如果在0x 附近的左侧()0f x '<,右侧()0f x '>,那么()0f x 是极小值. 指数函数、对数函数分数指数幂(1)m na =0,,a m n N *>∈,且1n >).(2)1m nm naa-==(0,,a m n N *>∈,且1n >).根式的性质(1)当na =; 当n,0||,0a a a a a ≥⎧==⎨-<⎩.有理指数幂的运算性质(1) (0,,)r s r sa a aa r s Q +⋅=>∈.(2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)rr rab a b a b r Q =>>∈.注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用..指数式与对数式的互化式: log b a N b a N =⇔=(0,1,0)a a N >≠>. .对数的换底公式 :log log log m a m NN a= (0a >,且1a ≠,0m >,且1m ≠, 0N >).对数恒等式:log a Na N =(0a >,且1a ≠, 0N >).推论 log log m n a a nb b m=(0a >,且1a ≠, 0N >). 常见的函数图象二、三角函数、三角变换、解三角形、平面向量8、同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin . 9、正弦、余弦的诱导公式(奇变偶不变,符号看象限)απ±k 的正弦、余弦,等于α的同名函数,前面加上把α看成锐角时该函数的符号;αππ±+2k 的正弦、余弦,等于α的余名函数,前面加上把α看成锐角时该函数的符号。

高中数学知识点总结大全(文科)

高中数学知识点总结大全(文科)

高中数学知识点总结目录第一章一一集合与简易逻辑 (1)第二章一一函数 (4)第四章三角函数 (19)第六章不等式 (33)第七章直线和圆的方程 (38)第八章圆锥曲线 (48)第九章(B)直线、平面、简单几何体 (53)第十章排列、组台、二项式定理 (69)第三章导数 (78)第一章一一集合与简易逻辑集合一识点归纳:定义:一组对象的全体形成一个集合.特征:确定性、互异性、无序性.表示法:列举法{1,2,3,…}、描述法{x|P}.韦恩图分类:有限集、无限集.数集:自然数集N、整数集Z、有理数集Q、实数集R、正整数集N*、空集如关系:属于E、不属于£、包含于J(或U)、真包含于5、集合相等=・运算:交运算ACB={x|xEA且XEB};并运算AUB={x|xGA或xEB};补运算C u A={x\x^A且xCU},U为全集性质:ACA:<1)CA:若ACB.BJC,则AJC:AAA=AUA=A;AA4> =4>:AU4)=A:AAB=A<=>AUB=B<=>ACB;Anc t/A=4);AUC"A=I:C[7(C L rA)=A:C L-(AoB)=(C Lr A)n(C L.B).方法:韦恩示意图,数轴分析.注意:①区别6与W、乒与己、a与{a}、4>与{4)}.{(1,2)}与{1,2};②ACB时,A有两种情况:A=4>与AN4>・③若集合A中有n(WGAT)个元素,则集合A的所有不同的子集个数为2”,所有真子集的个数是2”-1,所有非空真子集的个数是2”-2.④区分集合中元素的形式:如A={x\y=x2+2x+l}^B={y\y=x2+2x+l}^ C={(x,y)|y=X:+2x+1}:D={x\x=x2+2x+]}i E=((x,y)|y=x2+2x+l,x e Z,y e Z}:F={(x,V)|y=尸+2x+1};G={z|y=[2+2x+l,z=与.X空集是指不含任何元素的集合.{0}、。

高一文科数学公式和知识点

高一文科数学公式和知识点

高一文科数学公式和知识点高一是我们进入高中的第一年,也是数学学科内容首次进入文科范围的一年。

在高中数学中,文科生需要学习一些基本的数学公式和知识点,以便为将来的学习和应用奠定基础。

在本文中,将介绍一些高一文科数学中常用的公式和知识点。

1. 几何公式高一的几何学是进一步学习平面几何的基础。

在几何学中,我们会学习到一些重要的几何公式,如平行线之间的基本关系:对应角相等,同位角相等,内错角互补等。

此外,还有一些常见的几何公式,如:- 三角形的面积公式:S = 1/2 ×底 ×高- 矩形的面积公式:S = 长 ×宽- 圆的面积公式:S = π × 半径²- 球的体积公式:V = 4/3 × π × 半径³2. 初等代数初等代数是高一数学的重要内容之一。

在这一部分中,我们需要掌握一些代数常识和运算技巧,如因式分解、分式运算等。

同时,还需要掌握一些基本的代数公式,如:- 二次方程的解公式:x = (-b±√(b²-4ac)) / 2a- 一元二次方程的因式分解公式:ax² + bx + c = a(x - α)(x - β),其中α, β 为方程的根3. 概率与统计概率与统计是高一文科数学的另一个主要分支。

在这一部分中,我们需要了解一些基本的概率与统计知识,如事件的概率计算、统计指标的计算等。

常见的概率计算公式包括:- 事件的概率:P(A) = 事件A发生的次数 / 总次数- 条件概率:P(A|B) = 事件A与事件B同时发生的次数 / 事件B发生的次数- 独立事件的概率:P(A∩B) = P(A) × P(B)4. 应用问题解决方法作为高中文科数学的一部分,我们还需要学习和掌握一些数学应用问题的解决方法。

在这个过程中,合理运用各种数学公式和知识点是非常重要的。

例如,在解决几何问题时,我们可以利用角的性质和几何公式来确定未知量;在解决代数问题时,我们可以利用代数公式和方程来建立和解决数学模型。

高中数学文科选修目录

高中数学文科选修目录

高中数学文科选修目录一、数学的基本概念和意义高中数学是文科生学习的重要课程之一。

数学作为一门科学,其基本概念和意义对于学生打下坚实的数学基础非常重要。

通过学习数学,可以培养学生的逻辑思维能力、分析问题的能力、解决问题的能力等。

二、函数与导数在数学文科选修课程中,函数与导数是重点内容之一。

通过学习函数与导数,可以帮助学生理解函数的概念,掌握导数的计算方法,提高问题解决能力。

三、集合与运算集合与运算是数学中的基础知识,也是高中数学文科选修课程的重要内容。

学习集合与运算可以帮助学生建立良好的抽象思维能力,理解集合的概念以及各种运算的方法。

四、概率与统计概率与统计是高中数学文科选修课程中的另一个重要内容。

通过学习概率与统计,可以帮助学生理解事件发生的可能性,掌握统计数据的分析方法,培养学生的数据思维能力。

五、数学建模数学建模是数学的应用领域之一,也是高中数学文科选修课程的一部分。

通过学习数学建模,可以帮助学生运用数学知识解决实际问题,提高学生的实际应用能力。

六、几何与向量几何与向量是高中数学文科选修课程中的另一个重点内容。

学习几何与向量可以帮助学生理解几何图形的性质,掌握向量的运算方法,提高学生的几何思维能力。

七、数学分析数学分析是高中数学文科选修课程中的一部分。

通过学习数学分析,可以帮助学生理解数学分析的基本原理,掌握数学分析的方法,提高问题解决的能力。

八、数论与代数数论与代数是数学的重要分支之一,也是高中数学文科选修课程的一部分。

通过学习数论与代数,可以帮助学生深入理解数学的抽象概念,掌握代数运算的方法,提高学生的数学思维能力。

总之,高中数学文科选修目录涵盖了数学的各个重要领域,通过系统学习这些内容,可以帮助学生建立扎实的数学基础,提高数学水平,为将来的学习和工作打下坚实的基础。

高三文科数学常考知识点整理归纳

高三文科数学常考知识点整理归纳

高三文科数学常考知识点整理归纳数学已成为许多国家及地区的教育范畴中的一部分。

它应用于不同领域中,包括科学、工程、医学、经济学和金融学等。

这次小编给大家整理了高三文科数学常考知识点,供大家阅读参考。

一、导数的应用1.用导数研究函数的最值确定函数在其确定的定义域内可导(通常为开区间),求出导函数在定义域内的零点,研究在零点左、右的函数的单调性,若左增,右减,则在该零点处,函数去极大值;若左边减少,右边增加,则该零点处函数取极小值。

学习了如何用导数研究函数的最值之后,可以做一个有关导数和函数的综合题来检验下学习成果。

2.生活中常见的函数优化问题1)费用、成本最省问题2)利润、收益问题3)面积、体积最(大)问题二、推理与证明1.归纳推理:归纳推理是高二数学的一个重点内容,其难点就是有部分结论得到一般结论,破解的方法是充分考虑部分结论提供的信息,从中发现一般规律;类比推理的难点是发现两类对象的相似特征,由其中一类对象的特征得出另一类对象的特征,破解的方法是利用已经掌握的数学知识,分析两类对象之间的关系,通过两类对象已知的相似特征得出所需要的相似特征。

2.类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理,简而言之,类比推理是由特殊到特殊的推理。

三、不等式对于含有参数的一元二次不等式解的讨论1)二次项系数:如果二次项系数含有字母,要分二次项系数是正数、零和负数三种情况进行讨论。

2)不等式对应方程的根:如果一元二次不等式对应的方程的根能够通过因式分解的方法求出来,则根据这两个根的大小进行分类讨论,这时,两个根的大小关系就是分类标准,如果一元二次不等式对应的方程根不能通过因式分解的方法求出来,则根据方程的判别式进行分类讨论。

通过不等式练习题能够帮助你更加熟练的运用不等式的知识点,例如用放缩法证明不等式这种技巧以及利用均值不等式求最值的九种技巧这样的解题思路需要再做题的过程中总结出来。

文科数学选修1-2

文科数学选修1-2

文科数学选修1-2
文科数学选修1-2是高中数学课程中的一门选修课程,主要涵盖的内容包括函数、微积分和统计学。

首先,函数是本课程的核心内容之一。

在这门课程中,我们将学习各种类型的函数,包括三角函数、指数函数、对数函数等。

我们将了解函数的图像、性质、基本变换和组合等方面。

另外,我们还将学习如何利用函数解决实际问题,例如用函数模型分析经济、医疗和社会等课题。

其次,微积分也是本课程的重要部分之一。

我们将学习微积分的基本概念、求导和积分的初步方法、函数的极值与最值等。

在学习过程中,我们还将结合大量的实际问题,深入探讨微积分在各个领域中的应用。

最后,统计学也是文科数学选修1-2的一部分。

我们将学习统计学的基本原理和方法,包括数据的收集和整理、数据的描述、统计推断和假设检验等。

我们将学会如何利用统计学方法来分析各种实际问题,加深对现实世界的认识和理解。

总之,文科数学选修1-2是一门内容丰富、实用性强的学科,在高中数学课程中具有重要的地位。

通过学习本课程,我们将不仅能够掌握各种数学理论和分析方法,还能够将所学内容应用于解决实际问题,培养出跨学科的思维和问题解决能力。

高中文科数学知识点归纳(完整版)

高中文科数学知识点归纳(完整版)

≠⊂最全版高中文科数学知识点必修1数学集合:1、集合的定义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。

集合中的每个对象叫做这个集合中的元素2、集合元素的特征:①确定性 ②互异性 ③无序性3、集合的分类:①有限集 ②无限集 ③空集,记作∅4、集合的表示法:①列举法 ②描述法 ③文氏图法 ④特殊集合 ⑤区间法常用数集及其记法:①自然数集(或非负整数集)记为N 正整数集记为*N 或+N②整数集记为Z ③实数集记为R ④有理数集记为Q5、元素与集合的关系:①属于关系,用“∈”表示;②不属于关系,用“∉”表示6、集合间的关系:①包含:用“⊆”表示 ②真包含:用“ ”表示 ③相等 ④不相等7、集合的交、并、补交集的定义:由所有属于集合A 且属于集合的元素组成的集合,叫做A 与B 的交集,记作B A I ,即{}B x A x x B A ∈∈=且I并集的定义:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作B A Y , 即{}B x A x x B A ∈∈=或Y8、全集与补集:对于一个集合A ,由全集UA 相对于集合U的补集,记作A C U ,即}A x A C U ∉且9、交集、并集、补集的运算:(1)交换律:B A AB B A Y I I == (2)结合律:)()()()(C B A C B A C B A C B A Y Y Y Y I I I I== (3)分配律:.)()()()()()(C A B A C B A C A B A C B A Y I Y I Y I Y I Y I== (4)0-1律:,,,A A A U A A U A U Φ=ΦΦ===IU I U (5)等幂律:A A A A A A ==Y I(6)求补律:A A C C U C U C U A C A A C A U U U U U U =====)(φφφY I(7)反演律:)()()(B C A C B A C U U U Y I = )()()(B C A C B A C U U U I Y =10、文氏图的应用:交集、并集、补集的文氏图表示11、重要的等价关系:B A B B A A B A ⊆⇔=⇔=Y I12、一个由n 个元素组成的集合有n 2个不同的子集,其中有12-n 个非空子集,也有12-n个真子集函数:1、映射:设B A 、是两个集合,如果按照某种对应法则f ,对于集合A 中的任何一个元素a ,在集合B 中都有唯一的元素b 和它对应,则这样的对应(包括集合B A 、以及A 到B 的对应法则f )叫做从集合A 到集合的映射,记作B A f →:,其中b 叫做a 的象,a 叫做b的原象如果在这个映射下,对于集合A 中的不同元素,在集合中有不同的象,而且B 中的每一个元素都有原象,那么这个映射叫做A 到B 上的一一映射2、 函数:设B A 、是两个非空数集,那么从A 到B 的映射B A f →:就叫做函数,记作)(x f y =,其中B y A x ∈∈,,x 叫做自变量,y 是x 的函数值.自变量的取值集合A 叫做函数的定义域,函数值的集合C 叫做函数的值域,值域B C ⊆,函数三要素:定义域、值域、对应法则;两个函数相同:定义域和对应关系都分别相同3、函数的表示方法:(1)列表法 (2)图象法 (3)解析法4、分段函数:在自变量的不同取值范围内,其解析式不同,分段函数不是几个函数,是一个函数5、(1)函数的定义域的常用求法:①分式的分母不等于零 ②偶次方根的被开方数大于等于零 ③对数的真数大于零④指数函数和对数函数的底数大于零且不等于1⑤三角函数正切函数tan y x =中()2x k k Z ππ≠+∈,余切函数cot y x =中,)(Z k k x ∈≠π⑥如果函数是由实际意义确定的解析式,应依据自变量的实际意义确定其取值范围(2)值域的求法:①直接法 ②分离常数法 ③图象法 ④换元法 ⑤判别式法 ⑥不等式与对勾函数6、求函数解析式的方法:①直代 ②凑配法 ③ 换元法 ④待定系数法 ⑤列方程组法 ⑥特殊值法7、增减函数的定义:对于函数)(x f 的定义域I 内某个区间上的任意两个自变量的值21,x x①若当21x x <时,都有)()(21x f x f <,则说)(x f 在这个区间上是增函数②若21x x <当时,都有)()(21x f x f >,则说)(x f 在这个区间上是减函数8、(1)单调性的证明:讨论函数的增减性应先确定单调区间, 用定义证明函数的增减性, 有“一设, 二差, 三判断”三个步骤(2)函数单调性的常用结论:①若(),()f x g x 均为某区间上的增(减)函数,则()()f x g x +在这个区间上也为增(减)函数②若()f x 为增(减)函数,则()f x -为减(增)函数③若()f x 与()g x 的单调性相同,则[()]y f g x =是增函数;若()f x 与()g x 的单调性不同,则[()]y f g x =是减函数,即复合函数的单调性是“同增异减”④奇函数在对称区间上的单调性相同,偶函数在对称区间上的单调性相反9、(1)奇、偶函数的定义:对于函数)(x f①如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数②如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数注意:①函数为奇偶函数的前提是定义域在数轴上关于原点对称②)()()()(x f x f x f x f =--=-或是定义域上的恒等式③若奇函数)(x f 在0=x 处有意义,则0)0(=f④奇函数的图像关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形(2)函数奇偶性的常用结论:①如果一个奇函数在0x =处有定义,则(0)0f =,如果一个函数()y f x =既是奇函数又是偶函数,则()0f x =(反之不成立)②两个奇(偶)函数之和(差)为奇(偶)函数;之积(商)为偶函数③一个奇函数与一个偶函数的积(商)为奇函数④两个函数()y f u =和()u g x =复合而成的函数,只要其中有一个是偶函数,那么该复合函数就是偶函数;当两个函数都是奇函数时,该复合函数是奇函数基本初等函数1、(1)一般地,如果a x n=,那么x 叫做a 的n 次方根。

文科数学选修重要吗都学什么

文科数学选修重要吗都学什么

文科数学选修重要吗都学什么文科数学选修也是非常重要的。

高中数学(文科):必学部分:必修1、必修2、必修3、必修4、必修5、选修1-1、选修1-2;选学部分:选修4-1(几何证明选讲)、选修4-2(矩阵与变换)、选修4-4(坐标系与参数方程)、选修4-5(不等式选讲)注:高考必学部分为必考题,选学部分为选考题(三选一).1.集合(必修1)与简易逻辑,复数(选修)。

分值在10分左右(一两道选择题,有时达到三道),考查的重点是计算能力,集合多考察交并补运算,简易逻辑多为考查“充分与必要条件”及命题真伪的判别,复数一般考察模及分式运算。

2.函数(必修1指数函数、对数函数)与导数(选修),一般在高考中,至少三个小题一个大压轴题,分值在30分左右。

以指数函数、对数函数、及扩展函数函数为载体结合图象的变换(平移、伸缩、对称变换)、四性问题(单调性、奇偶性、周期性、对称性)以选择题、填空题考查的主要内容,其中函数的单调性和奇偶性有向抽象函数发展的趋势。

压轴题,文科以三次函数为主,理科以含有ex,lnx的复杂函数为主,以切线问题、极值最值问题、单调性问题、恒成立零点为设置条件,求解范围或证明结论为主。

3立体几何(必修2):分值在22分左右(两小一大),两小题以基本位置关系的判定与体积,内外截球,三视图计算为主,一大题以证明空间线面的位置关系和夹角计算为主,试题的命制载体可能趋向于不规则几何体,但仍以“方便建系”为原则。

4.解析几何(必修2+选修):必修2直线与圆的方程、选修圆锥曲线统称为解析几何,高考对解析几何的考查一般是三个小题一个大题,所占分值约30分。

其规律是线性规划、直线与圆各一个小题,涉及圆锥曲线的图形、定义或简单几何性质的问题一个小题,直线与圆锥曲线的综合问题一个大题。

圆锥曲线核心:运算,超越课本结论。

5.算法程序框图(必修3):一道选择题,主要以循环结构为主。

6.概率统计(必修3),排列、组合、二项式定理、(选修):分值在22分左右(两小一大),排列组合与二项式定理一般一个小题,大题理科以概率统计、文科以求概率的应用题为主理科考查重点为随机变量的分布列及数学期望,概率计算;文科以等可能事件、互斥事件、相互独立事件的概率求法为主。

湖北高三文科数学知识点

湖北高三文科数学知识点

湖北高三文科数学知识点湖北高三文科学生对数学的学习十分重视,因为数学是高考中的一门重要科目。

在数学知识点中,有一些部分对于湖北高三文科学生来说尤为重要,下面就对其中几个知识点进行讨论。

一、函数的基本概念和性质函数是高中数学中的重要概念,也是湖北高三文科学生需要掌握的知识点之一。

函数的概念是指将一个集合与另一个集合建立起对应关系的规则。

通过函数,我们可以描述和研究现实世界中的各种关系和变化。

函数有多种形式,比如显函数、隐函数和参数方程等。

湖北高三文科学生需要理解它们的特点和表示方法,并能够运用函数的性质解决实际问题。

二、三角函数与图像变换三角函数是湖北高三文科学生在数学学习中的重要知识点之一。

三角函数有正弦、余弦、正切等多种形式,它们在几何学、物理学和工程学中有广泛的应用。

湖北高三文科学生需要掌握三角函数的基本性质,并能够运用它们解决几何问题和相关的计算题。

此外,图像变换也是湖北高三文科学生需要了解的内容之一。

通过对函数图像进行平移、伸缩和翻转等操作,可以得到新的函数图像,这对于解决实际问题非常有帮助。

三、导数与微分导数与微分是湖北高三文科学生需要重点掌握的知识点之一。

导数是函数在某一点上的变化率,也可以理解为函数的瞬时变化率。

微分则是导数的一种几何解释,它描述了函数的局部性质。

湖北高三文科学生需要了解导数的定义和性质,并能够计算函数的导数。

通过求导,可以研究函数的变化规律,进而解决一些实际问题。

四、函数的极限与连续性函数的极限与连续性也是湖北高三文科学生需要重点学习的内容。

极限是描述函数逐渐趋于某一值的概念,它在微积分中有重要的应用。

连续性则是函数在某一区间上没有间断的特征。

湖北高三文科学生需要理解极限的概念和性质,并能够计算函数的极限。

同时,他们还需要理解连续函数的定义和判定条件,并能够判断函数的连续性。

五、统计与概率统计与概率是湖北高三文科学生需要了解的另一个数学知识点。

统计学研究了收集、处理和解释数据的方法和原理。

人教A版高中数学知识点与公式大全(文科)

人教A版高中数学知识点与公式大全(文科)

高中(文科)数学知识点与公式大全(按照教学顺序)必修一第一章集合与函数概念1.集合1.1集合的概念及其表示⑴.集合中元素的三个特征:①.确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了.②.互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的.③.无序性:即集合中的元素无顺序,可以任意排列、调换。

⑵.元素与集合的关系有且只有两种:属于(用符号“∈”表示)和不属于(用符号“∉”表示).⑶.集合常用的表示方法有三种:列举法、Venn 图、描述法.(4).常见的数集及其表示符号名称自然数集正整数集整数集有理数集实数集表示符号N*N 或+N ZQR1.2集合间的基本关系性质符号表示空集空集是任何集合的子集A⊆∅空集是任何非空集合的真子集)(∅≠⊄∅A A 相等集合A 与集合B 所有元素相同A=B子集集合A 中的任何一个元素均是集合B 中的元素BA ⊆真子集集合A 中的任何一个元素均是集合B 中的元素,且B 中至少有一个元素在A 中没有1.3集合之间的基本运算符号表示集合表示并集B A ⋃}{B A x x ∈∈x |或交集B A ⋂}{B x A x x ∈∈且|补集AC U }{A U x x ∉∈x |且【重要提醒】1.若有限集A 中有n 个元素,则集合A 的子集个数为2n ,真子集的个数为2n -1.2.A ⊆B ⇔A ∩B =A ⇔A ∪B =B ()()UU A B A B U ⇔=∅⇔=.3.奇数集:{}{}{}21,21,4 1.x x n n x x n n x x n n =+∈==-∈==±∈Z Z Z .4.德▪摩根定律:①并集的补集等于补集的交集,即()=()()UUU A B A B ;②交集的补集等于补集的并集,即()=()()UUU A B A B .2.函数及其表示2.1函数与映射的相关概念函数映射两个集合A 、B设A 、B 是两个非空数集设A 、B 是两个非空集合对应关系按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应名称称f :A →B 为从集合A 到集合B 的一个函数称f :A →B 为从集合A 到集合B 的一个映射记法y =f (x ),x ∈Af :A →B注意:判断一个对应关系是否是函数关系,就看这个对应关系是否满足函数定义中“定义域内的任意一个自变量的值都有唯一确定的函数值”这个核心点.(2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.(3)构成函数的三要素:函数的三要素为定义域、值域、对应关系.(4)函数的表示方法函数的表示方法有三种:解析法、列表法、图象法.解析法:一般情况下,必须注明函数的定义域;列表法:选取的自变量要有代表性,应能反映定义域的特征;图象法:注意定义域对图象的影响.2.2函数的三要素(1).函数的定义域函数的定义域是使函数解析式有意义的自变量的取值范围,常见基本初等函数定义域的要求为:(1)分式函数中分母不等于零.(2)偶次根式函数的被开方式大于或等于0.(3)一次函数、二次函数的定义域均为R .(4)y =x 0的定义域是{x |x ≠0}.(2).函数的解析式(1)函数的解析式是表示函数的一种方式,对于不是y =f (x )的形式,可根据题目的条件转化为该形式.(2)求函数的解析式时,一定要注意函数定义域的变化,特别是利用换元法(或配凑法)求出的解析式,不注明定义域往往导致错误.(3).函数的值域函数的值域就是函数值构成的集合,熟练掌握以下四种常见初等函数的值域:(1)一次函数y =kx +b (k 为常数且k ≠0)的值域为R .(2)反比例函数ky x=(k 为常数且k ≠0)的值域为(−∞,0)∪(0,+∞).(3)二次函数y =ax 2+bx +c (a ,b ,c 为常数且a ≠0),当a >0时,二次函数的值域为24[,)4ac b a -+∞;当a <0时,二次函数的值域为24(,]4ac b a--∞.求二次函数的值域时,应掌握配方法:2224()24b ac b y ax bx c a x a a-=++=++.2.3分段函数分段函数的概念若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,则这种函数称为分段函数.分段函数虽由几个部分组成,但它表示的是一个函数.3.函数基本性质3.1函数的单调性单调函数的定义增函数减函数定义一般地,设函数f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2当x 1<x 2时,都有f (x 1)<f (x 2),那么就说函数f (x )在区间D 上是增函数当x 1<x 2时,都有f (x 1)>f (x 2),那么就说函数f (x )在区间D 上是减函数图象描述自左向右看图象是上升的自左向右看图象是下降的单调区间的定义如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.函数的最值前提设函数()y f x =的定义域为I ,如果存在实数M 满足条件(1)对于任意的x I ∈,都()f x M ≤;(2)存在0x I ∈,使得()0f x M=(3)对于任意的x I ∈,都()f x M ≥;(4)存在0x I ∈,使得()0f x M =结论M 为最大值M 为最小值注意:(1)函数的值域一定存在,而函数的最值不一定存在;(2)若函数的最值存在,则一定是值域中的元素;若函数的值域是开区间,则函数无最值,若函数的值域是闭区间,则闭区间的端点值就是函数的最值.函数单调性的常用结论(1)若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数;(2)若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 单调性相反;(3)函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反;(4)函数()()()0y f x f x =≥在公共定义域内与y =的单调性相同;(5)一些重要函数的单调性:①1y x x=+的单调性:在(],1-∞-和[)1,+∞上单调递增,在()1,0-和()0,1上单调递减;②by ax x =+(0a >,0b >)的单调性:在,⎛-∞ ⎝和⎫+∞⎪⎪⎭上单调递增,在⎛⎫ ⎪ ⎪⎝⎭和⎛ ⎝上单调递减.3.2函数的奇偶性(1).函数奇偶性的定义及图象特点奇偶性定义图象特点偶函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=,那么函数()f x 是偶函数图象关于y 轴对称奇函数如果对于函数()f x 的定义域内任意一个x ,都有()()f x f x -=-,那么函数()f x 是奇函数图象关于原点对称注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x ,x -也在定义域内(即定义域关于原点对称).(2).函数奇偶性的几个重要结论(1)奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.(2)()f x ,()g x 在它们的公共定义域上有下面的结论:()f x ()g x ()()f xg x +()()f xg x -()()f xg x (())f g x 偶函数偶函数偶函数偶函数偶函数偶函数偶函数奇函数不能确定不能确定奇函数偶函数奇函数偶函数不能确定不能确定奇函数偶函数奇函数奇函数奇函数奇函数偶函数奇函数(3)若奇函数的定义域包括0,则()00f =.(4)若函数()f x 是偶函数,则()()()f x f x fx -==.(5)定义在(),-∞+∞上的任意函数()f x 都可以唯一表示成一个奇函数与一个偶函数之和.(6)若函数()y f x =的定义域关于原点对称,则()()f x f x +-为偶函数,()()f x f x --为奇函数,()()f x f x ⋅-为偶函数.重难点复合函数的单调性①奇函数+奇函数=奇函数,偶函数+偶函数=偶函数;②奇函数×奇函数=偶函数,奇函数×偶函数=奇函数,偶函数×偶函数=偶函数;第二章基本初等函数2.1指数与指数函数(1)根式概念:式子na 叫做根式,其中n 叫做根指数,a 叫做被开方数.性质:(na )n=a (a 使na 有意义);当n 为奇数时,n a n =a ,当n 为偶数时,na n =|a |,a ≥0,a ,a <0.(2)分数指数幂规定:正数的正分数指数幂的意义是a mn =na m (a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -mn =1na m(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q.(3)指数函数及其性质概念:函数y =a x (a >0且a ≠1)叫做指数函数,x 是自变量,函数的定义域是R ,a 是底数.指数函数的图象与性质a >10<a <1图象定义域R 值域(0,+∞)性质过定点(0,1),即x =0时,y =1当x >0时,y >1;当x <0时,0<y <1当x <0时,y >1;当x >0时,0<y <1在(-∞,+∞)上是增函数在(-∞,+∞)上是减函数2.2对数与对数函数(1)对数的概念如果a x =N (a >0,且a ≠1),那么x 叫做以a 为底N 的对数,记作N x a log =,其中a 叫做对数的底数,N 叫做真数.(2)对数的性质、换底公式与运算性质(1)对数的性质:①a log a N =N ;②log a a b =b (a >0,且a ≠1).(2)对数的运算法则;如果a >0且a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=;②N M N Ma a alog log log -=;③M n M a na log log =(n ∈R);④b nm b a ma n log log =.(3)换底公式:abb c c a log log log =(a ,b 均大于零且不等于1).(3)对数函数及其性质(1)概念:y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,定义域是(0,+∞).(2)对数函数的图象与性质a >10<a <1图象性质定义域:(0,+∞)值域:R当x =1时,y =0,即过定点(1,0)当x >1时,y >0;当0<x <1时,y <0当x >1时,y <0;当0<x <1时,y >0在(0,+∞)上是增函数在(0,+∞)上是减函数2.3幂函数(1)幂函数的定义:一般地,形如y =x α的函数称为幂函数,其中x 是自变量,α为常数.(2)常见的5种幂函数的图象(3)幂函数的性质①幂函数在(0,+∞)上都有定义;②当α>0时,幂函数的图象都过点(1,1)和(0,0),且在(0,+∞)上单调递增;③当α<0时,幂函数的图象都过点(1,1),且在(0,+∞)上单调递减.第三章函数的应用1.函数零点的定义一般地,如果函数()y f x =在实数α处的值等于零,即()0f α=,则α叫做这个函数的零点.重点强调:零点不是点,是一个实数;2.零点存在性定理如果函数()y f x =在区间[a ,b ]上的图象是连续不断的一条曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(a ,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c也就是方程0)(=x f 的根.3.二分法二分法求零点:对于在区间a [,]b 上连续不断,且满足)(a f ·)(b f 0<的函数)(x f y =,通过不断地把函数)(x f 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.给定精度ε,用二分法求函数)(x f 的零点近似值的步骤如下:(1)确定区间a [,]b ,验证)(a f ·)(b f 0<,给定精度ε;(2)求区间a (,)b 的中点1x ;(3)计算)(1x f :①若)(1x f =0,则1x 就是函数的零点;②若)(a f ·)(1x f <0,则令b =1x (此时零点),(10x a x ∈);③若)(1x f ·)(b f <0,则令a =1x (此时零点),(10b x x ∈);(4)判断是否达到精度ε;即若ε<-||b a ,则得到零点零点值a (或b );否则重复步骤2~4.注意:二分法的条件)(a f ·)(b f 0<表明用二分法求函数的近似零点都是指变号零点.必修四第一章三角函数1.角的概念1.角的定义角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.2.角的分类按旋转方向不同分类正角:按逆时针方向旋转形成的角负角:按顺时针方向旋转形成的角零角:射线没有旋转按终边位置不同分类象限角:角的终边在第几象限,这个角就是第几象限角轴线角:角的终边落在坐标轴上3.终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合:S={β|β=α+k·360°,k∈Z}.2.弧度制及应用1.弧度制的定义把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad.2.弧度制下的有关公式3.任意角的三角函数三角函数正弦余弦正切定义设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦,记sinαx叫做α的余弦,记cosαyx叫做α的正切,记tanα各象限符号Ⅰ+++Ⅱ+--Ⅲ--+Ⅳ-+-三角函数线有向线段MP为正弦线有向线段OM为余弦线有向线段AT为正切线4.同角三角函数的基本关系1.同角三角函数的基本关系(1)平方关系:sin2α+cos2α=1(α∈R).(2)商数关系:tanα=sinαcosα2.同角三角函数基本关系式的应用技巧5.三角函数的诱导公式组数一二三四五六角2kπ+α(k∈Z)π+α-απ-απ2-απ2+α正弦sinα-sin_α-sin_αsin_αcos_αcos_α余弦cosα-cos_αcos_α-cos_αsin_α-sin_α正切tanαtan_α-tan_α-tan_α6.正弦、余弦、正切函数的图象与性质6.函数y=A sin(ωx+φ)的图象1.用五点法作正弦函数和余弦函数的简图(1)“五点法”作图原理:正弦函数y =sin x ,x ∈[0,2π]的图象上,五点是:(0,0)(π,0)(2π,0).余弦函数y =cos x ,x ∈[0,2π]的图象上,五点是:(0,1)(π,-1)(2π,1).(2)五点法作图的三步骤:列表、描点、连线(注意光滑).2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)振幅周期频率相位初相(A >0,ω>0)AT =2πωf =1T =ω2πωx +φφ3.用五点法画y =A sin(ωx +φ)一个周期内的简图用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示:x -φωπ2ω-φωπ-φω3π2ω-φω2π-φωωx +φ0π2π3π22πy =A sin(ωx +φ)A-A第二章平面向量1.向量的有关概念名称定义备注向量既有大小又有方向的量;向量的大小叫做向量的长度(或称模)平面向量是自由向量零向量长度为0的向量记作0,其方向是任意的单位向量长度等于1个单位的向量非零向量a 的单位向量为±a|a |平行向量方向相同或相反的非零向量(又叫做共线向量)0与任一向量平行或共线相等向量长度相等且方向相同的向量两向量只有相等或不相等,不能比较大小相反向量长度相等且方向相反的向量0的相反向量为02.向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算三角形法则(1)交换律:a +b =b +a ;(2)结合律:(a +b)+c =a +(b+c)平行四边形法则减法求a 与b 的相反向量-b 的和的运算叫做a 与b的差三角形法则a -b =a +(-b)数乘求实数λ与向量a 的积的运算|λa|=|λ||a|,当λ>0时,λa的方向与a 的方向相同;当λ<0时,λa 的方向与a 的方向相反;当λ=0时,λa =0λ(μa)=(λμ)a ;(λ+μ)a =λa +μa ;λ(a +b)=λa +λb 3.平面向量的坐标运算运算坐标表示和(差)a =(x 1,y 1),b =(x 2,y 2),a +b =(x 1+x 2,y 1+y 2),a -b =(x 1-x 2,y 1-y 2)数乘已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则AB ―→=(x 2-x 1,y 2-y 1)4.向量的夹角定义图示范围共线与垂直已知两个非零向量a 和b ,作OA ―→=a ,OB ―→=b ,则∠AOB 就是a 与b 的夹角设θ是a 与b 的夹角,则θ的取值范围是0°≤θ≤180°θ=0°或θ=180°⇔a ∥b ,θ=90°⇔a ⊥b5.平面向量的数量积定义设两个非零向量a ,b 的夹角为θ,则数量|a||b|cos θ叫做a 与b 的数量积,记作a·b投影|a|cos θ叫做向量a 在b 方向上的投影,|b|cos θ叫做向量b 在a 方向上的投影几何意义数量积a·b 等于a 的长度|a|与b 在a 的方向上的投影|b|cos θ的乘积6.向量数量积的运算律交换律a ·b =b ·a 分配律(a +b)·c =a ·c +b ·c 数乘结合律(λa)·b =λ(a ·b)=a ·(λb)第三章三角恒等变换1、同角三角函数的基本关系式:①22sin cos 1θθ+=,②tan θ=θθcos sin ,2、正弦、余弦的诱导公式(奇变偶不变,符号看象限)3、和角与差角公式sin()sin cos cos sin αβαβαβ±=±cos()cos cos sin sin αβαβαβ±= tan tan tan()1tan tan αβαβαβ±±= .ααααcos sin 21)cos (sin 2±=±4、二倍角公式及降幂公式sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-22tan tan 21tan ααα=-221cos 21cos 2sin ,cos 22αααα-+==必修五第一章解三角形【正弦定理】2sin sin sin a b cR A B C===(R 为ABC ∆外接圆的半径).【正弦定理的变形】①2sin ,2sin ,2sin a R A b R B c R C===②2sin sin sin sin sin sin a b c a b c R A B C A B C++====++【三角形常用结论】(1)B A B A B A b a cos cos sin sin <⇔>⇔>⇔>(2)在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+.(3)面积公式:①111222a b c S ah bh ch ===,②111sin sin sin 222S ab C bc A ca B ===.第二章数列2.1等差数列(1).等差数列的定义--------(证明或判断等差数列)①1(n n a a d d +-=为常数)或②11(2)n n n n a a a a n +--=-≥(2).等差数列的通项公式:1(1)n a a n d =+-或()n m a a n m d=+-①当0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的一次函数,且斜率为公差d ;(3).等差数列的前n 和:1()2n n n a a S +=,1(1)2n n n S na d -=+①前n 和211(1)()222n n n d dS na d n a n -=+=+-是关于n 的二次函数且常数项为0.(4)、等差中项:⑴若,,a A b 成等差数列,则A 叫做a 与b 的等差中项,且2a bA +=。

高中数学重难点知识点

高中数学重难点知识点

高中数学重难点知识点高中数学重难点知识点高中数学(文)包含5本必修、2本选修,(理)包含5本必修、3本选修,每学期学习两本书。

必修一:1、集合与函数的概念(这部分知识抽象,较难理解)2、基本的初等函数(指数函数、对数函数)3、函数的性质及应用(比较抽象,较难理解)必修二:1、立体几何(1)、证明:垂直(多考查面面垂直)、平行(2)、求解:主要是夹角问题,包括线面角和面面角这部分知识是高一学生的难点,比如:一个角实际上是一个锐角,但是在图中显示的钝角等等一些问题,需要学生的立体意识较强。

这部分知识高考占22---27分2、直线方程:高考时不单独命题,易和圆锥曲线结合命题3、圆方程:必修三:1、算法初步:高考必考内容,5分(选择或填空)2、统计:3、概率:高考必考内容,09年理科占到15分,文科数学占到5分必修四:1、三角函数:(图像、性质、高中重难点,)必考大题:15---20分,并且经常和其他函数混合起来考查2、平面向量:高考不单独命题,易和三角函数、圆锥曲线结合命题。

09年理科占到5分,文科占到13分必修五:1、解三角形:(正、余弦定理、三角恒等变换)高考中理科占到22分左右,文科数学占到13分左右2、数列:高考必考,17---22分3、不等式:(线性规划,听课时易理解,但做题较复杂,应掌握技巧。

高考必考5分)不等式不单独命题,一般和函数结合求最值、解集。

文科:选修1—1、1—2选修1--1:重点:高考占30分1、逻辑用语:一般不考,若考也是和集合放一块考2、圆锥曲线:3、导数、导数的应用(高考必考)选修1--2:1、统计:2、推理证明:一般不考,若考会是填空题3、复数:(新课标比老课本难的多,高考必考内容)理科:选修2—1、2—2、2—3选修2--1:1、逻辑用语2、圆锥曲线3、空间向量:(利用空间向量可以把立体几何做题简便化)选修2--2:1、导数与微积分2、推理证明:一般不考3、复数选修2--3:1、计数原理:(排列组合、二项式定理)掌握这部分知识点需要大量做题找规律,无技巧。

高中数学选修本(文科)数列的极限

高中数学选修本(文科)数列的极限

数列的极限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于.....某个常数a 〔即n a a -无限趋近于0〕,那么就说数列}{n a 以a 为极限,或者说a 是数列}{n a 的极限.记作lim n n a a →∞=,读作“当n 趋向于无穷大时,n a 的极限等于a 〞 “n →∞〞表示“n 趋向于无穷大〞,即n 无限增大的意思n a a →∞=有时也记作:当n →∞时,n a →a .2.几个重要极限:〔1〕01lim =∞→nn 〔2〕C C n =∞→lim 〔C 是常数〕 〔3〕无穷等比数列}{n q 〔1<q 〕的极限是0,即 )1(0lim <=∞→q q n n 3、数列极限的运算法那么如果lim ∞→n a n =A ,lim ∞→n b n =B ,那么(1)lim∞→n (a n ±b n )=A ±B(2)lim ∞→n (a n ·b n )=A ·B(3)lim ∞→n n n b a =B A (B ≠0)4。

特别注意:数列极限运算法那么运用的前提:(1)参与运算的各个数列均有极限;(2)运用法那么,只适用于有限个数列参与运算,当无限个数列参与运算时不能首先套用. 例1:求以下极限2227(1)57lim n n n n →∞+++(2))lim n n →∞222242.....)(3)lim(n n n n n →∞++ 11(1)(1)(1)(1)(1)(4)lim n n n n n a a a a a a a +-→∞-+-≠-+-解析:(1)原式=25 (2)原式=21 (3)1 4.当|a|>1时,原式=a aa a a n n n 21)1(2)1(121lim -+-+--∞→=a 当a=-1时极限不存在 例2:)413(22limn bnan cn n n -+++∞→=5,求常数a 、b 、c 的值。

高中数学选修知识点总结(全)

高中数学选修知识点总结(全)

高中数学选修4-1知识点总结相似三角形的判定及性质。

由于从定义出发判断两个三角形是否相似,需考虑6个元素,即三组对应角是否分别相等,三组对应边是否分别成比例,显然比较麻烦。

所以我们曾经给出过如下几个判定两个三角形相似的简单方法:(1)两角对应相等,两三角形相似;(2)两边对应成比例且夹角相等,两三角形相似;(3)三边对应成比例,两三角形相似。

对于任意两个三角形,如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

简述为:两角对应相等,两三角形相似。

对于任意两个三角形,如果一个三角形的两边和另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似。

简述为:两边对应成比例且夹角相等,两三角形相似。

对于任意两个三角形,如果一个三角形的三条边和另一个三角形的三条边对应成比例,那么这两个三角形相似。

简述为:三边对应成比例,两三角形相似。

1)如果两个直角三角形有一个锐角对应相等,那么它们相似;(2)如果两个直角三角形的两条直角边对应成比例,那么它们相似。

似。

(1)相似三角形对应高的比、对应中线的比和对应平分线的比都等于相似比;(2)相似三角形周长的比等于相似比;(3)相似三角形面积的比等于相似比的平方。

相似三角形外接圆的直径比、周长比等于相似比,外接圆的面积比等于相似比的平方。

直角三角形的射影定理例中项。

90°的圆周角所对的弦是直径。

圆内接四边形判定定理:如果一个四边形的对角互补,那么这个四边形的四个顶点共圆。

切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。

弦切角的性质高中数学选修4-4知识点总结一、选考内容《坐标系与参数方程》高考考试大纲要求: 1.坐标系:① 理解坐标系的作用. ② 了解在平面直角坐标系伸缩变换作用下平面图形的变化情况.③ 能在极坐标系中用极坐标表示点的位置,理解在极坐标系和平面直角坐标系中表示点的位置的区别,能进行极坐标和直角坐标的互化.④ 能在极坐标系中给出简单图形(如过极点的直线、过极点或圆心在极点的圆)的方程.通过比较这些图形在极坐标系和平面直角坐标系中的方程,理解用方程表示平面图形时选择适当坐标系的意义. 2.参数方程:① 了解参数方程,了解参数的意义.② 能选择适当的参数写出直线、圆和圆锥曲线的参数方程. 二、知识归纳总结:1.伸缩变换:设点),(y x P 是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点),(y x P 对应到点),(y x P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

0.高中文科数学知识点总结

0.高中文科数学知识点总结

湘潭三人行教育高中文科数学必修+选修知识点总结新课标人教A版复习寄语:高中数学 必修1知识点 第一章 集合与函数概念【1.1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.1.2】集合间的基本关系(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n -非空真子集.【1.1.3】集合的基本运算B{x A A = ∅=∅ B A ⊆ B B ⊆ B{xA A = A ∅=B A ⊇ B B ⊇()U A =∅ð()U A U =ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法(20))()()U U B A B =?)()()U U B A B =?【1.2.1】函数的概念(1)函数的概念①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →.②函数的三要素:定义域、值域和对应法则.③只有定义域相同,且对应法则也相同的两个函数才是同一函数. (2)区间的概念及表示法①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ;满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ;满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做[,)a b ,(,]a b ;满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做[,),(,),(,],(a a b b +∞+∞-∞-∞.注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b <.(3)求函数的定义域时,一般遵循以下原则:①()f x 是整式时,定义域是全体实数.②()f x 是分式函数时,定义域是使分母不为零的一切实数.③()f x 是偶次根式时,定义域是使被开方式为非负值时的实数的集合.④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1. ⑤tan y x =中,()2x k k Z ππ≠+∈.⑥零(负)指数幂的底数不能为零.⑦若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.⑧对于求复合函数定义域问题,一般步骤是:若已知()f x 的定义域为[,]a b ,其复合函数[()]f g x 的定义域应由不等式()a g x b ≤≤解出.⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论. ⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.(4)求函数的值域或最值求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值.③判别式法:若函数()y f x =可以化成一个系数含有y 的关于x 的二次方程2()()()0a y x b y x c y ++=,则在()0a y ≠时,由于,x y 为实数,故必须有2()4()()0b y a y c y ∆=-⋅≥,从而确定函数的值域或最值.④不等式法:利用基本不等式确定函数的值域或最值.⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法.【1.2.2】函数的表示法(5)函数的表示方法表示函数的方法,常用的有解析法、列表法、图象法三种.解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系. (6)映射的概念①设A 、B 是两个集合,如果按照某种对应法则f ,对于集合A 中任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的映射,记作:f A B →.②给定一个集合A 到集合B 的映射,且,a A b B ∈∈.如果元素a 和元素b 对应,那么我们把元素b 叫做元素a 的象,元素a 叫做元素b 的原象.yxo 〖1.3〗函数的基本性质【1.3.1】单调性与最大(小)值(1)函数的单调性①定义及判定方法②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.③对于复合函数[()]y f g x =,令()u g x =,若()y f u =为增,()u g x =为增,则[()]y f g x =为增;若()y f u =为减,()u g x =为减,则[()]y f g x =为增;若()y f u =为增,()u g x =为减,则[()]y f g x =为减;若()y f u =为减,()u g x =为增,则[()]y f g x =为减.(2)打“√”函数()(0)af x x a x=+>的图象与性质()f x 分别在(,-∞、)+∞上为增函数,分别在[0)、上为减函数.(3)最大(小)值定义①一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤;(2)存在0x I ∈,使得0()f x M =.那么,我们称M 是函数()f x 的最大值,记作max ()f x M =.②一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足:(1)对于任意的x I ∈,都有()f x m ≥;(2)存在0x I ∈,使得0()f x m =.那么,我们称m 是函数()f x 的最小值,记作max ()f x m =.【1.3.2】奇偶性(4)函数的奇偶性①定义及判定方法②若函数()f x 为奇函数,且在0x =处有定义,则(0)0f =.③奇函数在y 轴两侧相对称的区间增减性相同,偶函数在y 轴两侧相对称的区间增减性相反. ④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.〖补充知识〗函数的图象(1)作图利用描点法作图:①确定函数的定义域; ②化解函数解析式; ③讨论函数的性质(奇偶性、单调性); ④画出函数的图象. 利用基本函数图象的变换作图:要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.①平移变换0,0,|()()h h h h y f x y f x h ><=−−−−−−−→=+左移个单位右移|个单位0,0,|()()k k k k y f x y f x k ><=−−−−−−−→=+上移个单位下移|个单位②伸缩变换01,1,()()y f x y f x ωωω<<>=−−−−→=伸缩 01,1,()()A A y f x y Af x <<>=−−−−→=缩伸③对称变换()()x y f x y f x =−−−→=-轴()()y y f x y f x =−−−→=-轴 ()()y f x y f x =−−−→=--原点1()()y x y f x y f x -==−−−−→=直线 ()(||)y y y y f x y f x =−−−−−−−−−−−−−−−→=去掉轴左边图象保留轴右边图象,并作其关于轴对称图象()|()|x x y f x y f x =−−−−−−−−−→=保留轴上方图象将轴下方图象翻折上去(2)识图对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系. (3)用图函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.第二章 基本初等函数(Ⅰ)〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nx a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次当n 是偶数时,正数a 的正的n 负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.n a =;当n a =;当n 为偶数时, (0)|| (0)a a a a a ≥⎧==⎨-<⎩.(2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m naa m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是:1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.注意口诀:底数取倒数,指数取相反数.(3)分数指数幂的运算性质①(0,,)rsr sa a aa r s R +⋅=>∈ ②()(0,,)r s rs a a a r s R =>∈③()(0,0,)r r rab a b a b r R =>>∈【2.1.2】指数函数及其性质(4〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈ ④log a N a N =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x fy -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()x fy -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质①原函数()y f x =与反函数1()y fx -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y fx -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x =是奇函数,若p 为奇数q 为偶数时,则q py x =是偶函数,若p 为偶数q 为奇数时,则qpy x =是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.〖补充知识〗二次函数(1)二次函数解析式的三种形式①一般式:2()(0)f x ax bx c a =++≠②顶点式:2()()(0)f x a x h k a =-+≠③两根式:12()()()(0)f x a x x x x a =--≠(2)求二次函数解析式的方法①已知三个点坐标时,宜用一般式.②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.(3)二次函数图象的性质①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2bx a=-顶点坐标是24(,)24b ac b a a--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-上递减,在[,)2b a -+∞上递增,当2bx a=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-上递增,在[,)2ba -+∞上递减,当2bx a=-时,2max 4()4ac b f x a -=. ③二次函数2()(0)f x ax bx c a =++≠当240b ac ∆=->时,图象与x 轴有两个交点11221212(,0),(,0),||||||M x M x M M x x a =-=. (4)一元二次方程20(0)ax bx c a ++=≠根的分布一元二次方程根的分布是二次函数中的重要内容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2()f x ax bx c =++,从以下四个方面来分析此类问题:①开口方向:a ②对称轴位置:2bx a=- ③判别式:∆ ④端点函数值符号.①k <x 1≤x 2 ⇔②x 1≤x 2<k ⇔③x 1<k <x 2 ⇔ af (k )<0④k 1<x 1≤x 2<k 2 ⇔⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ⇔ f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合⑥k 1<x 1<k 2≤p 1<x 2<p 2 ⇔ 此结论可直接由⑤推出.(5)二次函数2()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01()2x p q =+. (Ⅰ)当0a >时(开口向上) ①若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a =- ③若2b q a->,则()m f q =①若02b x a -≤,则()M f q = ②0x ->,则()M f p =)①若2b p a -<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a =- ③若2b q a->,则()M f q =xxxxx x(q)0x xfxfx①若02b x a -≤,则()m f q = ②02b x a->,则()m f p =.第三章 函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数))((D x x f y ∈=,把使0)(=x f 成立的实数x 叫做函数))((D x x f y ∈=的零点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.概念:
(1)z=a+bi∈R b=0 (a,b∈R) z= z2≥0;
(2)z=a+bi是虚数 b≠0(a,b∈R);
(3)z=a+bi是纯虚数 a=0且b≠0(a,b∈R) z+ =0(z≠0) z2<0;
(4)a+bi=c+di a=c且c=d(a,b,c,d∈R);
2.复数的代数形式及其运算:设z1=a+bi, z2=c+di(a,b,c,d∈R),则:
第一部分 简单逻辑用语
1、命题:用语言、符号或式子表达的,可以判断真假的陈述句.
真命题:判断为真的语句.假命题:判断为假的语句.
2、“若 ,则 ”形式的命题中的 称为命题的条件, 称为命题的结论.
3、原命题:“若 ,则 ” 逆命题: “若 ,则 ”
否命题:“若 ,则 ” 逆否命题:“若 ,则 ”
4、四种命题的真假性之间的关系:
二.证明
⒈直接证明
⑴综合法
一般地,利用已知条件和某些数学定义、定理、公理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。综合法又叫顺推法或由因导果法。
(1)z1±z2= (a+b)±(c+d)i;
(2)z1.z2= (a+bi)·(c+di)=(ac-bd)+ (ad+bc)i;
(3)z1÷z2= (z2≠0) ;
3.几个重要的结论:
(1) ;⑷
(2) 性质:T=4; ;
(3) 。
4.运算律:(1)
5.共轭的性质:⑴ ;⑵ ;⑶ ;⑷ 。
6.模的性质:⑴ ;⑵ ;⑶ ;⑷ ;
一.推理:
⑴合情推理:归纳推理和类比推理都是根据已有事实,经过观察、分析、比较、联想,在进行归纳、类比,然后提出猜想的推理,我们把它们称为合情推理。
①归纳推理:由某类食物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理,简称归纳。
注:归纳推理是由部分到整体,由个别到一般的推理。
即: 。
这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.
2、椭圆的几何性质:
焦点的位置
焦点在 轴上
焦点在 轴上
图形
标准方程
范围


顶点


、ቤተ መጻሕፍቲ ባይዱ

轴长
短轴的长 长轴的长
焦点


焦距
对称性
关于 轴、 轴、原点对称
离心率
3、平面内与两个定点 , 的距离之差的绝对值等于常数(小于 )的点的轨迹称为双曲线.即: 。
(1)两个命题互为逆否命题,它们有相同的真假性;
(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
5、若 ,则 是 的充分条件, 是 的必要条件.
若 ,则 是 的充要条件(充分必要条件).
利用集合间的包含关系:例如:若 ,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;
6、逻辑联结词:⑴且(and):命题形式 ;⑵或(or):命题形式 ;
第五部分 统计案例
1.线性回归方程
①变量之间的两类关系:函数关系与相关关系;
②制作散点图,判断线性相关关系
③线性回归方程: (最小二乘法)
注意:线性回归直线经过定点 。
2.相关系数(判定两个变量线性相关性):
注:⑴ >0时,变量 正相关; <0时,变量 负相关;
⑵① 越接近于1,两个变量的线性相关性越强;② 接近于0时,两个变量之间几乎不存在线性相关关系。
这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.
4、双曲线的几何性质:
焦点的位置
焦点在 轴上
焦点在 轴上
图形
标准方程
范围
或 ,
或 ,
顶点


轴长
虚轴的长 实轴的长
焦点


焦距
对称性
关于 轴、 轴对称,关于原点中心对称
离心率
渐近线方程
5、实轴和虚轴等长的双曲线称为等轴双曲线.
6、平面内与一个定点 和一条定直线 的距离相等的点的轨迹称为抛物线.定点 称为抛物线的焦点,定直线 称为抛物线的准线.
2、导数定义: 在点 处的导数记作 ;.
3、函数 在点 处的导数的几何意义是曲线 在点 处的切线的斜率.
4、常见函数的导数公式:
① ;② ;③ ;④ ;
⑤ ;⑥ ;⑦ ;⑧
5、导数运算法则:



6、在某个区间 内,若 ,则函数 在这个区间内单调递增;
若 ,则函数 在这个区间内单调递减.
7、求函数 的极值的方法是:解方程 .当 时:
⑶非(not):命题形式 .




















7、⑴全称量词——“所有的”、“任意一个”等,用“ ”表示;
全称命题p: ;全称命题p的否定 p: 。
⑵存在量词——“存在一个”、“至少有一个”等,用“ ”表示;
特称命题p: ;特称命题p的否定 p: ;
第二部分 圆锥曲线
1、平面内与两个定点 , 的距离之和等于常数(大于 )的点的轨迹称为椭圆.
②类比推理:由两类对象具有类似和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理,称为类比推理,简称类比。
注:类比推理是特殊到特殊的推理。
⑵演绎推理:从一般的原理出发,推出某个特殊情况下的结论,这种推理叫演绎推理。
注:演绎推理是由一般到特殊的推理。
“三段论”是演绎推理的一般模式,包括:⑴大前提---------已知的一般结论;⑵小前提---------所研究的特殊情况;⑶结论---------根据一般原理,对特殊情况得出的判断。
3.回归分析中回归效果的判定:
⑴总偏差平方和: ⑵残差: ;⑶残差平方和: ;⑷回归平方和: - ;⑸相关指数 。
注:① 得知越大,说明残差平方和越小,则模型拟合效果越好;
② 越接近于1,,则回归效果越好。
4.独立性检验(分类变量关系):
随机变量 越大,说明两个分类变量,关系越强,反之,越弱。
第六部分 推理与证明
如果在 附近的左侧 ,右侧 ,那么 是极大值;
如果在 附近的左侧 ,右侧 ,那么 是极小值.
8、求函数 在 上的最大值与最小值的步骤是:
求函数 在 内的极值;
将函数 的各极值与端点处的函数值 , 比较,其中最大的一个是最大值,最小的一个是最小值.
9、导数在实际问题中的应用:最优化问题。
第四部分 复数
7、抛物线的几何性质:
标准方程
图形
顶点
对称轴


焦点
准线方程
离心率
范围
8、过抛物线的焦点作垂直于对称轴且交抛物线于 、 两点的线段 ,称为抛物线的“通径”,即 .
9、焦半径公式:
若点 在抛物线 上,焦点为 ,则 ;
若点 在抛物线 上,焦点为 ,则 ;
第三部分 导数及其应用
1、函数 从 到 的平均变化率:
相关文档
最新文档