专题09三角形(第05期)2016年中考数学试题(附解析)
2016中考数学试题及答案解析

2016中考数学试题及答案解析2016年中考数学已经结束,本文将对本次考试试题出现的知识点进行解析,帮助考生对数学考点更加清晰明确。
2016年中考数学试题及答案解析一、单项选择题1.斐波那契数列(第n项满足公式 Fn=Fn-1+Fn-2)中,第25项的值为(A. 1250B. 1280C. 1290D. 1300答案:D,解析:F1=1,F2=1,F3=2,那么F25=F24+F23=750+550=1300。
2.若复数z=(6-3i)*(2+i),z的共轭复数为(A. 8-3iB. 8+3iC. 6-iD. 6+i答案: B. 8+3i,解析:z的共轭复数即为z的根号共轭复数,即(6-3i)(2+i)的根号共轭复数为(6+3i)(2-i),得到结果8+3i。
3.下列函数中的值正确的连续12点的解析式是(A. y=x^2-3x+7B. y=3x^2+2x-1C. y=(x-2)^2-5x+7D. y=x^2+7答案: C,解析:根据函数y=(x-2)^2-5x+7,它的x取值为0,1,2,3,4,5,6,7,8,9,10,11,且y均为正数,因此其值正确。
二、解答题4.一家公司把罐装蜂蜜装入木箱,每个木箱里装有六个罐装蜂蜜,每罐蜂蜜重1.5Kg,请计算出20个木箱装蜂蜜重量是多少答案:20*6*1.5kg=180kg。
解析:每个木箱里装6个罐装蜂蜜,每个蜂蜜罐重1.5Kg,20个木箱装蜂蜜重量计算为:20*6*1.5kg=180kg。
5.若△ABC的面积为40,AB=4,BC=6,则BC角度数是(答案:60°. 解析:△ABC的面积为40,AB=4,BC=6,则AB:BC=2:3,可利用海伦公式求出其BC角α,即:α=arccos(2/3)=60°。
江苏省镇江市中考数学试题【专题09】三角形(含解析)

专题9:三角形一、选择题1. (2003江苏镇江3分)如图,Rt△ABC中,∠ACB=900,CD⊥AB,D为垂足,若AC=4,BC=3,则sin∠ACD的值为【】A、43B、34C、45D、352. (2005江苏镇江3分)如图DE是△ABC的中位线,F是DE的中点,CF的延长线交AB 于点G,则AG:GD等于【】A.2:1 B.3:1 C.3:2 D.4:3【答案】A。
【考点】三角形中位线定理,全等、相似三角形的判定和性质。
【分析】过E作EM∥AB与GC交于点M,构造全等三角形把DG转移到和AG有关的中位线处,可得所求线段3. (2006江苏镇江2分)锐角三角形的三个内角是∠A、∠B、∠C,如果A B α∠=∠∠+,B C β∠=∠∠+,C A γ∠=∠+∠,那么α∠、β∠、γ∠这三个角中【 】A .没有锐角B .有1个锐角C .有2个锐角D .有3个锐角4. (2009江苏省3分)如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,; ④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有【 】 A .1组B .2组C .3组D .4组因此能使ABC DEF △≌△的条件共有3组。
故选C 。
5. (2011江苏镇江2分)如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D 。
若AC=5,BC=2,则Sin∠ACD的值为【】A.35B.552C.25D.322. (2002江苏镇江2分)如图,AD∥BC,AB=AC,∠BAC=800,则∠B=▲ 度,∠DAC=▲ 度。
3. (2002江苏镇江2分)如图,DE是△ABC的中位线,则△ADE与△ABC的周长的比为▲ ,面积的比为▲ 。
4. (2002江苏镇江2分)如图,△ABC中,∠ABC=900,AC=6,BC=8,D是AB的中点,则AB=▲ ,CD=▲ 。
专题09 三角形(第01期)-2016年中考数学试题分项版解析汇编(解析版)

一、选择题1.(2016浙江宁波第16题)如图,在一次数学课外实践活动中,小聪在距离旗杆10m的A处测得旗杆顶端B的仰角为60°,测角仪高AD为1m,则旗杆高BC为m(结果保留根号)【答案】103+1.考点:解直角三角形的应用.2.(2016河南第6题)如图,在△ABC中,∠ACB=90°,AC=8,AB=10. DE垂直平分AC交AB于点E,则DE的长为【】(A)6 (B)5 (C)4 (D)3【答案】D.考点:勾股定理;三角形的中位线定理.3.(2016河北第10题)如图,已知钝角△ABC,依下列步骤尺规作图,并保留作图痕迹. 步骤1:以C为圆心,CA为半径画弧○1;步骤2:以B为圆心,BA为半径画弧○2,将弧○1于点D;步骤3:连接AD,交BC延长线于点H.下列叙述正确的是()第10题图A.BH垂直分分线段AD B.AC平分∠BADC.S△ABC=BC·AH D.AB=AD【答案】A.【解析】试题分析:由作法可得BH为线段AD的垂直平分线,故答案选A.考点:线段垂直平分线的性质.5.(2016河北第15题)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似...的是()第15题图【答案】C.考点:相似三角形的判定.6.(2016河北第16题)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()第16题图A.1个B.2个C.3个D.3个以上【答案】d.【解析】试题分析:M、N分别在AO、BO上,一个;M、N其中一个和O点重合,2个;反向延长线上,有一个,故答案选D.考点:等边三角形的判定.7.(2016四川达州第9题)如图,在△ABC中,BF平分∠ABC,AF⊥BF于点F,D为AB的中点,连接DF延长交AC于点E.若AB=10,BC=16,则线段EF的长为()A.2 B.3 C.4 D.5【答案】B.考点:直角三角形斜边上的中线;平行线的判定;相似三角形的判定与性质.8.(2016山东滨州第6题)如图,△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE,∠A=50°,则∠CDE的度数为()A.50°B.51°C.51.5° D.52.5°【答案】D.【解析】试题分析:根据等腰三角形的性质推出∠A=∠CDA=50°,∠B=∠DCB,∠BDE=∠BED,根据三角形的外角性质求出∠B=25°,由三角形的内角和定理求出∠BDE=∠BED=(180°﹣25°)=77.5°,,根据平角的定义即可求出∠CDE=180°﹣∠CDA﹣∠EDB=180°﹣50°﹣77.5°=52.5°,故答案选D.考点:等腰三角形的性质;三角形内角和定理;三角形的外角性质.9.(2016湖南长沙第7题)若一个三角形的两边长分别为3和7,则第三边长可能是()A.6 B.3 C.2 D.11【答案】A.【解析】试题分析:根据三角形三边关系,两边之和第三边,两边之差小于第三边可得4<第三边长<10,所以符合条件的整数为6,故答案选A.考点:三角形三边关系.10.(2016湖南长沙第11题)如图,热气球的探测器显示,从热气球A处看一栋楼顶部B处的仰角为30°,看这栋楼底部C处的俯角为60°,热气球A处与楼的水平距离为120m,则这栋楼的高度为()A.160m B.120m C.300m D.160m【答案】A.考点:解直角三角形的应用.11.(2016山东枣庄第4题)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D等于A.15°B.17.5°C.20°D.22.5°【答案】A.考点:等腰三角形的性质;三角形的内角和定理.12.(2016山东枣庄第7题)如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一点,则线段BP 的长不可能是 A .3 B .4 C .5.5 D .10【答案】A. 【解析】试题分析:由题意可知,△ABC ′是由△ABC 翻折得到的,所以△ABC ′的面积也为6,当BC ′⊥AD 时,BP 最短,因AC=AC ′=3,△ABC ′的面积为6,可求得BP=4,即BP 最短为4,所以线段BP 的长不可能是3,故答案选A.考点:点到直线的距离.13.(2016湖北黄石第4题)如图所示,线段AC 的垂直平分线交线段AB 于点D ,︒=∠50A ,则BDC ∠= A.︒50 B.︒100 C.︒120 D. ︒130B第4题图第7题图B【答案】B. 【解析】试题分析:已知线段AC 的垂直平分线交线段AB 于点D ,根据线段垂直平分线的性质可得AD=DC,由等腰三角形的性质可得︒=∠=∠50DCA A ,进而根据三角形外角的性质可得BDC ∠=︒=∠+∠100DCA A ,故答案选B.考点:线段垂直平分线的性质;三角形外角的性质.14.(2016山东淄博第3题)如图,AB ⊥AC ,AD ⊥BC ,垂足分别为A ,D ,则图中能表示点到直线距离的线段共有( )A .2条B .3条C .4条D .5条 【答案】D.考点:点到直线的距离.15.(2016山东淄博第9题)如图是由边长相同的小正方形组成的网格,A ,B ,P ,Q 四点均在正方形网格的格点上,线段AB ,PQ 相交于点M ,则图中∠QMB 的正切值是( )A .B .1C .D .2【答案】D. 【解析】试题分析:如图,连接AP ,QB ,可得∠PAB=∠QBA=90°,又∵∠AMP=∠BMQ ,∴△PAM ∽△QBM ,∴=,∵AP=3,BQ=,AB=2,∴=,解得:AM=,∴tan ∠QMB=tan ∠PMA===2.故答案选D .考点:相似三角形的判定及性质;勾股定理.16.(2016广东广州第7题)如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于D ,连接CD ,CD =( )A 、3B 、4C 、4.8D 、5图2A【答案】D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.17.(2016湖南岳阳第6题)下列长度的三根小木棒能构成三角形的是( )A .2cm ,3cm ,5cmB .7cm ,4cm ,2cmC .3cm ,4cm ,8cmD .3cm ,3cm ,4cm 【答案】D. 【解析】试题分析:根据三角形的三边关系可得,选项A ,因为2+3=5,所以不能构成三角形,错误;选项B ,因为2+4<6,所以不能构成三角形,错误;选项C ,因为3+4<8,所以不能构成三角形,错误;选项D ,因为3+3>4,所以能构成三角形,正确.故答案选D . 考点:三角形的三边关系.18.(2016湖南怀化第5题)如图,OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论错误的是( )A .PC=PDB .∠CPD=∠DOPC .∠CPO=∠DPOD .OC=OD 【答案】B.考点:角平分线的性质;全等三角形的判定及性质.19.(2016湖南怀化第8题)等腰三角形的两边长分别为4cm 和8cm ,则它的周长为( ) A .16cm B .17cm C .20cm D .16cm 或20cm 【答案】C. 【解析】试题分析:分当腰长为4cm 或是腰长为8cm 两种情况:①当腰长是4cm 时,则三角形的三边是4cm ,4cm ,8cm ,4cm+4cm=8cm 不满足三角形的三边关系;当腰长是8cm 时,三角形的三边是8cm ,8cm ,4cm ,三角形的周长是20cm .故答案选C .考点:等腰三角形的性质;三角形三边关系.20.(2016湖南怀化第10题)在Rt △ABC 中,∠C=90°,sinA=54,AC=6cm ,则BC 的长度为( ) A .6cm B .7cm C .8cm D .9cm 【答案】C . 【解析】试题分析:已知sinA=AB BC =54,设BC=4x ,AB=5x ,又因AC 2+BC 2=AB 2,即62+(4x )2=(5x )2,解得:x=2或x=﹣2(舍),所以BC=4x=8cm ,故答案选C . 考点:解直角三角形.21.(2016山东威海第10题)如图,在△ABC 中,∠B=∠C=36°,AB 的垂直平分线交BC 于点D ,交AB 于点H ,AC 的垂直平分线交BC 于点E ,交AC 于点G ,连接AD ,AE ,则下列结论错误的是( )A .=B .AD ,AE 将∠BAC 三等分C .△ABE ≌△ACD D .S △ADH =S △CEG 【答案】A .考点:黄金分割;全等三角形的判定与性质;线段的垂直平分线的综合运.22.(2016湖北襄阳第9题)如图,△ABC 的顶点是正方形网格的格点,则sinA 的值为( ) 21.A 55.B 1010.C 552.D【答案】B.【解析】试题分析:过C 作CD ⊥AB 于D ,BC =2,AB =,S △ABC =112322⨯⨯=⨯,解得:CD ,又AC sin CD A AC = B.考点:锐角三角函数函数;三角形面积公式;勾股定理.23.(2016山东济宁第7题)如图,将△ABE 向右平移2cm 得到△DCF ,如果△ABE 的周长是16cm ,那么四边形ABFD 的周长是( )A .16cmB .18cmC .20cmD .21cm【答案】C .考点:平移的性质.24.(2016新疆生产建设兵团第4题)如图,在△ABC 和△DEF 中,∠B=∠DEF ,AB=DE ,添加下列一个条件后,仍然不能证明△ABC ≌△DEF ,这个条件是( )A .∠A=∠DB .BC=EFC .∠ACB=∠FD .AC=DF【答案】D.【解析】试题分析:由∠B=∠DEF ,AB=DE ,添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;故答案选D .考点:全等三角形的判定.25.(2016新疆生产建设兵团第5题)如图所示,将一个含30°角的直角三角板ABC 绕点A 旋转,使得点B ,A ,C ′在同一条直线上,则三角板ABC 旋转的角度是( )A .60°B .90°C .120°D .150°【答案】D.考点:旋转的性质.26.(2016新疆生产建设兵团第7题)如图,在△ABC 中,D 、E 分别是AB 、AC 的中点,下列说法中不正确的是( )A .DE=BCB .ACAE AB AD C .△ADE ∽△ABC D .S △ADE :S △ABC =1:2 【答案】D.【解析】试题分析:已知D 、E 分别是AB 、AC 的中点,根据中位线的性质定理得到DE ∥BC ,DE=21BC ,再根据平行线分线段成比例定理可得21===BC DE AC AE AB AD ,所以△ADE ∽△ABC ,再由相似三角形的性质可得,所以A ,B ,C 正确,D 错误;故答案选D .考点:相似三角形的判定及性质.27.(2016湖南永州第9题)如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD【答案】D .考点:全等三角形的判定.28.(2016湖南永州第11题)下列式子错误的是( )A .cos40°=sin50°B .tan15°•tan75°=1C .sin 225°+cos 225°=1D .sin60°=2sin30°【答案】D .【解析】试题分析:选项A ,sin40°=sin (90°﹣50°)=cos50°,式子正确;选项Btan15°•tan75°=tan15°•cot15°=1,式子正确;选项C ,sin 225°+cos 225°=1正确;选项D ,sin60°=23,sin30°=21,则sin60°=2sin30°错误.故答案选D .考点:互余两角三角函数的关系;同角三角函数的关系;特殊角的三角函数值.29.(2016湖北十堰第5题)如图,以点O为位似中心,将△ABC缩小后得到△A′B′C′,已知OB=3OB′,则△A′B′C′与△ABC的面积比为()A.1:3 B.1:4 C.1:5 D.1:9【答案】D.考点:位似变换.30.(2016湖南娄底第10题)如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D 与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【答案】C.【解析】试题分析:已知BE⊥AD于E,CF⊥AD于F,可得CF∥BE,根据平行线的性质得∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,所以CF=DC•cosα,BE=DB•cosα,即可得BE+CF=(DB+DC)cosα=BC•cosα,因∠ABC=90°,所以O<α<90°,当点D从B→D运动时,α是逐渐增大的,cosα的值是逐渐减小的,所以BE+CF=BC•cos α的值是逐渐减小的.故答案选C.考点:锐角三角函数的增减性.二、填空题1.(2016四川达州第15题)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.【答案】24+93.考点:旋转的性质;等边三角形的性质;全等三角形的判定及性质.2.(2016湖南长沙第17题)如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为.【答案】13.【解析】试题分析:已知DE 是AB 的垂直平分线,根据线段的垂直平分线的性质得到EA=EB ,所以△BCE 的周长=BC+EC+EB=BC+EC+EA=BC+AC=13,考点:线段的垂直平分线的性质.3.(2016山东枣庄第14题)如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米(结果精确到0.1=1.41).【答案】2.9.考点:解直角三角形.4.(2016山东枣庄第17题)如图,已知△ABC 中,∠C =90°,AC =BC,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = .【答案】13 .【解析】试题分析:如图,连接CC ′,过点B 作BP ⊥CC ′于点P ,根据旋转的性质可得AC=AC ′,∠CAC ′=60°,可得△ACC ′为等边三角形,根据等边三角形的性质可得AC=CC ′,∠ACC ′=60°,由∠ACB=90°,可第14题图B 第17题图得∠BCP=30°.在Rt △BPC 中,∠BCP=30°,BP=22,CP=26,所以PC ′=CC ′-26;在Rt △BPC ′中,由勾股定理可得13)13()22()262(22222''-=-=+-=+=BP P C BC.考点:旋转的性质;勾股定理.5.(2016湖北黄石第13题)如图所示,一艘海轮位于灯塔P 的北偏东︒30方向,距离灯塔4海里的A 处,该海轮沿南偏东︒30方向航行__________海里后,到达位于灯塔P 的正东方向的B 处.【答案】4.第13题图考点:方位角;解直角三角形的应用.6.(2016湖北鄂州第15题)如图,AB=6,O是AB的中点,直线l经过点O,∠1=120°,P是直线l 上一点。
2016年中考数学三角形全等及三角形的性质(含答案).

23.( 2015?通辽)如图,四边形 ABCD 中, E 点在 AD 上,其中 ∠ BAE=∠ BCE=∠ACD=90 °,且 BC=CE,求证: △ABC 与△DEC 全等.
① ∠ABO 的度数是
;
② 当∠ BAD= ∠ ABD 时, x=
;当∠ BAD= ∠BDA 时,
x=
.
( 2)如图 2,若 AB ⊥OM ,则是否存在这样的 x 的值,使得 △ADB 中有两个相
等的角?若存在,求出 x 的值;若不存在,说明理由.
19.( 2014 春 ?雨花区校级期末)如图,已知: AD 是△ABC 的角平分线, CE 是
于结论 ① AC=AF ,② ∠ FAB=∠EAB ,③ EF=BC,④ ∠EAB= ∠ FAC,其中正
30.( 2015?恩施州)如图,四边形 ABCD 、BEFG 均为正方形,连接 AG 、CE. ( 1)求证: AG=CE; ( 2)求证: AG⊥ CE.
第 7 页(共 24 页)
第 8 页(共 24 页)
三角形全等及三角形的性质 参考答案与试题解析
一.选择题(共 15 小题)
1.如图,图中三角形的个数为(
第 6 页(共 24 页)
28.(2015?南充)如图, △ ABC 中,AB=AC ,AD ⊥BC,CE⊥AB ,AE=CE.求 证: ( 1) △AEF≌△ CEB ; ( 2) AF=2CD.
29.( 2016?金华模拟)如图,在 △ABC 中, AB=CB ,∠ ABC=90°,D 为 AB 延 长线上一点,点 E 在 BC 边上,且 BE=BD ,连结 AE、 DE、DC. ① 求证: △ABE ≌△ CBD ; ② 若∠ CAE=30°,求∠ BDC 的度数.
2016中考数学真题之 三角形(基础+分类)

1. (2016·四川达州·3分)如图,在5×5的正方形网格中,从在格点上的点A,B,C,D中任取三点,所构成的三角形恰好是直角三角形的概率为()A.B.C.D.2.(2016广州)如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于D,连接CD,CD=( )A、3B、4C、4.8D、53. (2016年浙江省台州市)如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是()A.B.C.D.4.(2016·山东烟台)如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80°D.80°或140°5.(2016.山东省威海市,3分)如图,在矩形ABCD中,AB=4,BC=6,点E为BC的中点,将△ABE沿AE折叠,使点B落在矩形内点F处,连接CF,则CF的长为()A.B.C.D.6.(2016·江苏连云港)如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为S1、S2、S3;如图2,分别以直角三角形三个顶点为圆心,三边长为半径向外作圆心角相等的扇形,面积分别为S4、S5、S6.其中S1=16,S2=45,S5=11,S6=14,则S3+S4=()A.86 B.64 C.54 D.48 7.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有()A.1 B.2 C.3 D.48.(2016•浙江省舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.9. (2016·湖北黄冈)如图,在矩形ABCD中,点E,F分别在边CD,BC上,且DC=3DE=3a,将矩形沿直线EF折叠,使点C恰好落在AD边上的点P处,则FP=_______.A P(C) DEB F C10.(2016·广东梅州)如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△A1B1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去….若点A(23,0),B(0,2),则点B2016的坐标为______________.图2DACEB11.(2016.山东省临沂市,3分)如图,将一矩形纸片ABCD折叠,使两个顶点A,C重合,折痕为FG.若AB=4,BC=8,则△ABF的面积为.12.(2016•淄博)如图,正方形ABCD的边长为10,AG=CH=8,BG=DH=6,连接GH,则线段GH的长为()A.B.2C.D.10﹣513.(2016•南京)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,714.(2015•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,,B.1,,C.6,7,8 D.2,3,415.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=,则BC的长为()A.﹣1 B.+1 C.﹣1 D.+116.(2015•淄博)如图,在Rt△ABC中,∠BAC=90°,∠ABC的平分线BD交AC于点D,DE是BC的垂直平分线,点E是垂足.已知DC=8,AD=4,则图中长为4的线段有()A.4条B.3条C.2条D.1条17.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8 B.4.8或3.8 C.3.8 D.5 15.(2015泰州)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD 相交于点O,且OE=OD,则AP的长为()A.4 B.4.5 C.4.8 D.524.(本小题满分10分)(2016福州)如图,矩形ABCD中,AB=4,AD=3,M是边CD上一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积;(3)当射线BN交线段CD于点F时,求DF的最大值.。
专题09 三角形-2017版[中考15年]黄冈市2002-2016年中考数学试题分项解析(解析版)
![专题09 三角形-2017版[中考15年]黄冈市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/419794572e3f5727a5e962b8.png)
一、选择题1. (湖北省黄冈市2002年3分)已知∠A 为锐角,且cosA≤21,那么【 】 (A ) 0°<A≤60° (B )60°≤A <90° (C )0°<A≤30° (D )30°≤A <90° 【答案】B 。
【考点】锐角三角函数的增减性,特殊角的三角函数值。
【分析】∵cos60°=12,余弦函数值随角增大而减小, ∴当cosA≤12时,∠A≥60°。
又∠A 是锐角,∴60°≤A <90°。
故选B 。
2. (湖北省黄冈市2003年3分)在△ABC 中,AB =AC =3,BC =2,则6 cosB 等于【 】. A .3 B .2 C . 33 D .323.(湖北省黄冈市2004年3分)若直角三角形的三边长分别为2,4,x ,则x 的可能值有【 】A 、1个B 、2个C 、3个D 、4个【答案】B 。
【考点】勾股定理,分类思想的应用。
【分析】x 可为斜边也可为直角边,因此解本题时要对x 的取值进行讨论:当x 为斜边时,x 2=22+42=20,所以x=错误!未找到引用源。
;当4为斜边时,x 2=16﹣4=12,x=。
故选B。
(2<4,不可能是斜边)4. (湖北省黄冈市大纲卷2005年4分)如图,△ABC中,AB = AC,D为BC中点,E为AD上任意一点,过C作CF∥AB交BE的延长线于F,交AC于G,连结CE。
下列结论中正确的有【】5. (湖北省黄冈市课标卷2005年3分)中,EF∥AB,DE∶EA = 2∶3,EF = 4,则CD的长为【】6. (湖北省黄冈市课标卷2005年4分)如图,△ABC 中,AB = AC ,D 为BC 中点,E 为AD 上任意一点,过C 作CF ∥AB 交BE 的延长线于F ,交AC 于G ,连结CE 。
下列结论中正确的有【 】∵∠ABE=∠ACE ,∴∠CFG=∠ACE=∠CFE 。
专题09 三角形-2017版[中考15年]广州市2002-2016年中考数学试题分项解析(解析版)
![专题09 三角形-2017版[中考15年]广州市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/2fb957a4f121dd36a32d82bc.png)
1. (2003年广东广州3分)如图,DE∥FG∥BC,图中相似三角形共有【】A.1对B.2对C.3对D.4对2. (2004年广东广州3分)如图,在△ABC中,三边a,b,c的大小关系是【】A.a<b<c B.c<a<b C.c<b<a D.b<a<c 【答案】D。
【考点】网格问题,勾股定理,无理数的大小比较。
【分析】根据勾股定理求出a,b,c的长:。
,∴b<a<c。
故选D。
3. (2004年广东广州3分)如图,在△ABC中,AB=3AD,DE∥BC,EF∥AB,若AB=9,DE=2,则线段FC的长度是【】A.6 B.5 C.4 D.34. (2010年广东广州3分)在△ABC中,D、E分别是边AB、AC的中点,若BC=5,则DE的长是【】A.2.5 B.5 C.10 D.155. (2012年广东广州3分)在Rt△ABC中,∠C=90°,AC=9,BC=12,则点C到AB的距离是【】A.B.C.D.的三个顶点均在格点上,6.(2014年中考广州3分)如图1,在边长为1的小正方形组成的网格中,ABC则tan A =( ).A53 B. 54 C. 43 D .34【答案】 D7.(2014年中考广州3分)将四根长度相等的细木条首尾相接,用钉子钉成四边形ABCD ,转动这个四边形,使它形状改变.当90B ∠=︒时,如图2-①,测得2AC =.当60B ∠=︒时,如图2-②,AC =( )A B .2 C . D .8.(2014年中考广州3分)如图3,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O .设AB a =,()CG b a b =>.下列结论:①BCG DCE ∆≅∆;②BG DE ⊥;③DG GOGC CE=;④22()EFO DGOa b S b S∆∆-⋅=⋅.其中结论正确的个数是( )A.4 个 B. 3个 C.2 个 D 1 个1. (2002年广东广州3分)过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是。
专题09 三角形-2017版[中考15年]徐州市2002-2016年中考数学试题分项解析(解析版)
![专题09 三角形-2017版[中考15年]徐州市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/5bce2751e45c3b3567ec8bb8.png)
2017版[中考15年]徐州市2002-2016年中考数学试题分项解析专题09三角形1. (2007年江苏徐州2分)等腰三角形的顶角为120°,腰长为2cm,则它的底边长为【】A cmB C.2cm D.cm2. (2009年江苏省3分)如图,给出下列四组条件:①AB=DE,BC=EF,AC=DF;②AB=DE,∠B=∠E,BC=EF;③∠B=∠E,BC=EF,∠C=∠F;④AB=DE,AC=DF,∠B=∠E.△≌△的条件共有【】其中,能使ABC DEFA.1组B.2组C.3组D.4组3. (2012年江苏徐州3分)如果等腰三角形的两边长分别为2和5,则它的周长为【】A.9 B.7 C.12D.9或124.(2013年江苏徐州3分)若等腰三角形的顶角为80°,则它的底角度数为【】A.80°B.50°C.40°D.20°1. (2002年江苏徐州2分)已知一个直角三角形的两条直角边分别为6cm,8cm,那么这个直角三角形斜边上的高为▲ cm.【答案】325。
【考点】勾股定理。
【分析】∵直角三角形的两条直角边分别为6cm ,8cm , ∴根据勾股定理得斜边为10 cm 。
设斜边上的高为xcm ,则由三角形面积公式,得1110x=6822⋅⋅⋅⋅,解得32x=5(cm )。
2. (2002年江苏徐州4分)如图,在△ABC 中,DE ∥BC ,且DE=2cm ,AD 1DB 2=,则BC= ▲ cm ,ADEABCS S ∆∆= ▲ .3. (2002年江苏徐州2分)正三角形的边长为a ,则它的面积为 ▲ .4. (2003年江苏徐州4分)在△ABC 中,∠C=90°,AC=4,BC=3,则sinA= ▲ ,cosA= ▲ .∴BC3AC4 sinA cosAAB5AB5====,。
5. (2004年江苏徐州2分)等腰三角形的顶角为80度,则一个底角= ▲ 度.6. (2004年江苏徐州2分)如图,在离地面高度5m处引拉线固定电线杆,拉线和地面成60°角,那么拉线AC的长约为▲ m.(精确到0.1m)7. (2008年江苏徐州3分)边长为a的正三角形的面积等于▲ .8. (2011年江苏徐州3分)若直角三角形的一个锐角为200,则另一个锐角等于▲ 0 .9. (2016年江苏徐州3分)在△ABC中,若D、E分别是AB、AC的中点,则△ADE与△ABC的面积之比是______________。
2016年中考数学试题(含答案)

XX ★启用前 [考试时间:6月13日上午9:00~11:00]2016年高中阶段教育学校招生统一考试数 学本试题卷分第一部分(选择题)和第二部分(非选择题).第一部分1至2页,第二部分3至6页,共6页.考生作答时,须将答案答在答题卡上,在本试题卷、草稿纸上答题无效.满分120分.考试时间120分钟.考试结束后,将本试题卷和答题卡一并交回.第一部分(选择题 共30分)注意事项:1.选择题必须使用2B 铅笔将答案标号填涂在答题卡上对应题目标号的位置上. 2.本部分共10小题,每小题3分,共30分.一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列各数中,不是负数的是()A .2-B . 3C .58-D .0.10- 2. 计算()32ab的结果,正确的是( )A .36a b B .35a b C .6ab D .5ab3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.下列说法中正确的是()A .“打开电视,正在播放《新闻联播》”是必然事件B .“20x <(x 是实数)”是随机事件C .掷一枚质地均匀的硬币10次,可能有5次正面向上D .为了了解夏季冷饮市场上冰淇淋的质量情况,宜采用普查方式调查5.化简22m n m n n m+--的结果是( ) A .m n +B .n m -C .m n -D .m n -- 6.下列关于矩形的说法中正确的是( )A .对角线相等的四边形是矩形B .矩形的对角线相等且互相平分C .对角线互相平分的四边形是矩形D .矩形的对角线互相垂直且平分2图7.若2x =-是关于x 的一元二次方程22302x ax a +-=的一个根,则a 的值为( ) A .1-或4 B .1-或4- C .1或4- D .1或48.如图1,点(0,3)D ,(0,0)O ,(4,0)C 在A 上,BD 是A 的一条弦,则sin OBD ∠=( )A .12B .34C .45D .359.如图2,二次函数2(0)y ax bx c a =++>图象的顶点为D , 其图象与x 轴的交点A 、B 的横坐标分别为1-和3,则下列结论 正确的是( )A . 20a b -=B . 0a b c ++>C . 30a c -=D . 当12a =时,ABD ∆是等腰直角三角形10.如图3,正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后折痕DE 分别交AB 、AC 于点E 、G ,连结GF .给出下列结论:①22.5ADG ∠=;②tan 2AED ∠=;③AGD OGD S S ∆∆=;④四边形AEFG 是菱形;⑤2BE OG =;⑥若1OGF S ∆=,则正方形ABCD 的面积是642+.其中正确的结论个数为( )A .2B .3C .4D .5第二部分(非选择题 共90分)注意事项:1.必须使用0.5毫米的黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米的黑色墨迹签字笔描清楚.答在试题卷上无效.2.本部分共14小题,共90分.二、填空题:本大题共6小题,每小题4分,共24分.11.月球的半径约为1 738 000米,1 738 000这个数用科学记数法表示为.3图BCxy DOA1图12.对部分参加夏令营的中学生的年龄(单位:岁)进行统计,结果如表:年龄 13 14 15 16 17 18 人数 4 5 6 6 7 2则这些学生年龄的众数是.13.如果一个正多边形的每个外角都是30,那么这个多边形的内角和为. 14.设12x x 、是方程25320x x --=的两个实数根,则1211x x +的值为. 15.已知关于x 的分式方程111k x k x x ++=+-的解为负数,则k 的取值范围是. 16. 如图4,ABC ∆中,90C ∠=,3AC =,5AB =,D 为BC 边的中点,以AD 上一点O 为圆心的O和AB 、BC 均相切,则O 的半径为.三、解答题:本大题共8小题,共66分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分60201621+18.(本小题满分6分)如图5,在平面直角坐标系中,直角ABC ∆的三个顶点分别是(3,1)A -,(0,3)B ,(0,1)C .(1)将ABC ∆以点C 为旋转中心旋转180(2)分别连结1AB 、1BA 后,求四边形11AB A B5图AO4图19.(本小题满分6分)中秋佳节我国有赏月和吃月饼的传统,某校数学兴趣小组为了了解本校学生喜爱月饼的情况,随机抽取了60名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(图6).(注:参与问卷调查的每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题: (1)在扇形统计图中,“很喜欢”的部分所对应的扇形圆心角为度;在条形统计图中,喜欢“豆沙”月饼的学生有人;(2)若该校共有学生900人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”月饼的共有人;(3)甲同学最爱吃云腿月饼,乙同学最爱吃豆沙月饼.现有重量、包装完全一样的云腿、豆沙、莲蓉、蛋黄四种月饼各一个,让甲、乙每人各选一个,请用画树状图法或列表法求出甲、乙两人中有且只有一人选中自己最爱吃的月饼的概率.20.(本小题满分8分)如图7,在平面直角坐标系中,O 为坐标原点,ABO ∆的边AB 垂直于x 轴,垂足为点B ,反比例函数(0)ky x x =>的图象经过AO 的中点C ,且与AB 相交于点D ,4OB =,3AD =.(1)求反比例函数ky x=的解析式; (2)求cos OAB ∠的值;(3)求经过C 、D 两点的一次函数解析式.喜爱月饼情况扇形统计图很喜欢不喜欢25%40%比较喜欢“很喜欢”月饼的同学最爱 吃的月饼品种条形统计图6图21.(本小题满分8分)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m 元收费;若每月用水量超过14吨,则超过部分每吨按市场价n 元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价分别是多少?(2)设每月用水量为x 吨,应交水费为y 元,请写出y 与x 之间的函数关系式; (3)小明家5月份用水26吨,则他家应交水费多少元?22.(本小题满分8分)如图8,在矩形ABCD 中,点F 在边BC 上,且AF AD =,过点D 作DE AF ⊥,垂足为点E . (1)求证:DE AB =;(2)以A 为圆心,AB 长为半径作圆弧交AF 于点G . 若1BF FC ==,求扇形ABG 的面积.(结果保留π)23.(本小题满分12分)如图9,在AOB ∆中,AOB ∠为直角,6OA =,8OB =.半径为2的动圆圆心Q 从点O 出发,沿着OA 方向以1个单位长度/秒的速度匀速运动,同时动点P 从点A 出发,沿着AB 方向也以1个单位长度/秒的速度匀速运动,设运动时间为t 秒(05)t <≤.以P 为圆心,PA 长为半径的P 与AB 、OA 的另一个交点分别为C 、D ,连结CD 、QC .(1)当t 为何值时,点Q 与点D 重合? (2)当Q 经过点A 时,求P 被OB 截得的弦长;(3)若P 与线段QC 只有一个公共点,求t 的取值范围.QP9图A D 8图24.(本小题满分12分)如图10,抛物线2y x bx c =++与x 轴交于A 、B 两点,B 点坐标为(3,0),与y 轴交于点(0,3)C -.(1)求抛物线的解析式;(2)点P 在抛物线位于第四象限的部分上运动,当四边形ABPC 的面积最大时,求点P 的坐标和四边形ABPC 的最大面积;(3)直线l 经过A 、C 两点,点Q 在抛物线位于y 轴左侧的部分上运动,直线m 经过点B 和点Q .是否存在直线m ,使得直线l 、m 与x 轴围成的三角形和直线l 、m 与y 轴围成的三角形相似?若存在,求出直线m 的解析式;若不存在,请说明理由.2016年高中阶段教育学校招生统一考试数学参考答案与评分意见一、选择题(每题3分,共30分)1、B2、A3、D4、C5、A6、B7、C8、D9、D 10、B 二、填空题(每小题4分,共24分) 11、61.73810⨯;12、17;13、1800; 14、32-;15、102k k >-≠且;16、67三、解答题(本大题共8个小题,共66分)以下各题只提供参考解法,使用其它方法求解,按步骤相应给分.17、(6分)解:原式21(21=+--+…………………………3分(注:分项给分)42=-+5分10图2=+6分18、(6分)解:(1 (3)分(2)111111641222AB A B S AA BB =⋅⋅=⨯⨯=四.…………………………6分19、(6分)解:(1)126 ,4.…………………………………………2分 (2)675…………………………………………3分(3) 甲 云腿 莲蓉 豆沙 蛋黄乙 莲蓉 豆沙 蛋黄 云腿 豆沙 黄 云腿 莲蓉 蛋黄 云腿 莲蓉 豆沙…………………5分41123P ==.………………………6分 20、(8分)解:(1)设(4,)D a ,3AB a =+过点C 作CE x ⊥轴,垂足为E ,∵C 是AO 的中点, ∴CE 是AOB ∆的中位线,……………1分∴点3(2,)2aC +, ……………2由点C 和点D 都在反比例函数图象上得:3242aa +⨯=解得:1a =,点(4,1)D ……………3分反比例函数:4y x=……………4分(2)由4OB AB ==得,∴45OAB ∠=, cos 2OAB ∠=……………5分(3)设直线CD 的函数关系式:11(0)y k x b k =+≠∵(2,2)C ,(4,1)D 在直线上,得112214k bk b=+⎧⎨=+⎩………………………6分解得:1123k b ⎧=-⎪⎨⎪=⎩………………………7分直线CD 的函数关系式:132y x =-+………………………8分21、(8分)解:(1)由题意得:14(2014)4914(1814)42m n m n +-=⎧⎨+-=⎩………………………2分解得:23.5m n =⎧⎨=⎩………………………4分(2)当014x <≤时,2y x =;当14x >时,28(14) 3.5 3.521y x x =+-⨯=-所以2,0143.521,14x x y x x <≤⎧=⎨->⎩……………………7分(3)当26x =时, 3.5262170y =⨯-=(元) ……………………8分22、(8分)(1)证明:∵DE AF ⊥,∴90AED ∠=, 又∵四边形ABCD 是矩形, ∴90ABF ∠=, ∴90ABF AED ∠=∠=,……………………1分 又∵//AD BC∴DAE AFB ∠=∠,……………………2分 又∵AF AD =,∴ADE ∆≌()FAB AAS ∆,……………………3分∴DE AB =……………………4分(2)∵1BF FC ==,∴2AD BC BF FC ==+=,又∵ADE ∆≌FAB ∆,∴2AF AD ==,……………………5分 ∴在Rt ABF ∆中,12BF AF =,∴30BAF ∠=,……………………6分 又∵AB== ……………………7分∴扇形ABG 的面积230313603604n r πππ⨯===……………………8分A8图23、(12分)解:(1)在直角ABO ∆中,6AO =,8BO =,∴10AB =63cos 105AO BAO AB ∠===……………………1分 ∵AC P 是的直径, ∴90CDA ∠=在直角ACD ∆中,3cos 5AD CAD AC ∠== ∵OQ AP t ==,2AC t =, ∴65AD t =……………………2分∵点Q 与点D 重合,∴6OQ AD OA +==665t t +=,解得:3011t =当3011t =时,点Q 与点D 重合.……………………3分(2)∵Q 经过点A ,Q 的半径是2∴2AQ =,624OQ =-=,4t =∴4AP =,1046BP =-=……………………4分 设P 被OB 截得的弦为线段EF ,过点P 作PM EF M ⊥于点,//PM OA ,BPM ∆∽BAO ∆,BP PMBA OA=∴6106PM =,185PM =……………………5分 连结PE ,4PE =在直角PEM ∆中,EM ===……………………6分∴2EF EM ==7分 (3)当QC P 与相切时,AC QC ⊥在直角ACQ ∆中,3cos 5CAQ ∠=2AC t =,51033AQ AC t ==, ……………………8分 ∵6AQ OA OQ t =-=-∴1063t t =-,得:1813t =……………………9分 ∴当18013t <≤时,P 与线段QC 只有一个公共点 (10)分又∵当3011t =时,点Q 与点D 重合,P 与线段QC 有两个公共点 ∴当30511t <≤时,P 与线段QC 只有一个公共点 ……………………11分综上,当18013t <≤或30511t <≤时,P 与线段QC 只有一个公共点 ……………………12分24、(12分)解:(1)∵抛物线2y x bx c =++与x 轴交于B 点(3,0),与y 轴交于(0,3)C -. ∴9303b c c ++=⎧⎨=-⎩,∴2b =-……………………1分∴抛物线的解析式:223y x x =--……………………2分 (2)抛物线223y x x =--与x 轴的交点(1,0)A -,4AB = 连结BC ,ABC BCP ABPC S S S ∆∆=+四, 1143622ABC S AB OC ∆=⋅=⨯⨯= 当BCP S ∆最大时,四边形ABPC 的面积最大求出直线BC 的函数关系式:3y x =-……………………3分 平移直线BC ,当平移后直线与抛物线223y x x =--相切时,BC 边上的高最大,BCP S ∆最大.设平移后直线关系式为:3y x m =--联立2323y x m y x x =--⎧⎨=--⎩, 2233x x x m --=-- 当0∆=时,94m =∴平移后直线关系式为:214y x =-……………………4分 221423y x y x x ⎧=-⎪⎨⎪=--⎩ , 解得:32154x y ⎧=⎪⎪⎨⎪=-⎪⎩ ∴点315(,)24P -……………………5分过点P 向x 轴作垂线,与线段BC 交于点D 点33(,)22D -,3159()244PD =---= ∴BCP S ∆最大值91273428=⨯⨯=, ∴四边形ABPC 的最大面积2775688=+=……………………6分 (3)存在,设直线m 与y 轴交于点N ,与直线l 交于点M ,设点N 的坐标为(0,)t ① 当l m ⊥时, 90NOB NMC ∠=∠=∴90MCN MNC ∠+∠=, 90ONB OBN ∠+∠=又∵ONB MNC ∠=∠∴MCN OBN ∠=∠∵90AMB NMC ∠=∠=∴AMB ∆∽NMC ∆求出直线l 的函数关系式:33l y x =--∵l m ⊥,设直线m 的函数关系式:13m y x b =+ ∵直线m 经过点(3,0)B∴直线m 的函数关系式:113m y x =-,此时1t =-……………………7分 ② 当31t -<<-时,90,90AMB CMB ∠<∠>AMB ∆是一个锐角三角形,CMN ∆却是一个钝角三角形∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………8分③ 当10t -<<时,90,90AMB CMB ∠>∠< AMB ∆是一个钝角三角形,CMN ∆却是一个锐角三角形∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………9分④当01t <<时,1ON < ∴OA ON OC OB>, MCN MBA ∠>∠ 又∵CMN BMA ∠=∠(公共角)∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 (10)分⑤当1t =时,1ON = ∴13OAONOC OB ==, MCN MBA ∠=∠又∵CMN BMA ∠=∠(公共角)∴AMB ∆∽NMC ∆∵直线m 经过点(3,0)B 和(0,1)N∴直线m 的函数关系式:113m y x =-+……………………11分⑥当1t >时,1ON > ∴OA ONOC OB <, MCN MBA ∠<∠又∵CMN BMA ∠=∠(公共角)∴AMB ∆与CMN ∆不相似∴符合条件的直线m 不存在 ……………………12分综上,直线m 的函数关系式为:113m y x =-+或113m y x =-。
2016年中考数学真题及答案解析

2016年中考数学真题及答案解析一. 选择题1. 如果a 与3互为倒数,那么a 是( ) A. 3- B. 3 C. 13-D. 132. 下列单项式中,与2a b 是同类项的是( )A. 22a bB. 22a b C. 2ab D. 3ab3. 如果将抛物线22y x =+向下平移1个单位,那么所得新抛物线的表达式是( ) A. 2(1)2y x =-+ B. 2(1)2y x =++ C. 21y x =+ D. 23y x =+ 4. 某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男 生该周参加篮球运动次数的平均数是( )A. 3次B. 3.5次C. 4次D. 4.5次5. 已知在ABC ∆中,AB AC =,AD 是角平分线,点D 在边BC 上,设BC a =,AD b =, 那么向量AC 用向量a 、b 表示为( ) A.12a b + B. 12a b - C. 12a b -+ D. 12a b -- 6. 如图,在Rt ABC ∆中,90C ∠=︒,4AC =,7BC =,点D 在边BC 上,3CD =,⊙A 的半径长为3,⊙D 与⊙A 相交,且点B 在⊙D 外, 那么⊙D 的半径长r 的取值范围是( )A. 14r <<B. 24r <<C. 18r <<D. 28r <<二. 填空题7. 计算:3a a ÷= 8. 函数32y x =-的定义域是9. 2=的解是10. 如果12a =,3b =-,那么代数式2a b +的值为 11. 不等式组2510x x <⎧⎨-<⎩的解集是12. 如果关于x 的方程230x x k -+=有两个相等的实数根,那么实数k 的值是13. 已知反比例函数ky x=(0k ≠),如果在这个函数图像所在的每一个象限内,y 的值 随着x 的值增大而减小,那么k 的取值范围是14. 有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、⋅⋅⋅、6点的标记,掷 一次骰子,向上的一面出现的点数是3的倍数的概率是15. 在ABC ∆中,点D 、E 分别是AB 、AC 的中点,那么ADE ∆的面积与ABC ∆的面积的比是16. 今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图,根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是17. 如图,航拍无人机从A 处测得一幢建筑物顶部B 的仰角为30°,测得底部C 的俯角为 60°,此时航拍无人机与该建筑物的水平距离AD 为90米,那么该建筑物的高度BC 约为米(精确到1 1.73≈)18. 如图,矩形ABCD 中,2BC =,将矩形ABCD 绕点D 顺时针旋转90°,点A 、C 分 别落在点A '、C '处,如果点A '、C '、B 在同一条直线上,那么tan ABA '∠的值为三. 解答题19. 计算:12211|4()3---;20. 解方程:214124x x -=--;21. 如图,在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,点D 在边AC 上,且2AD CD =, DE AB ⊥,垂足为点E ,联结CE ,求:(1)线段BE 的长;(2)ECB ∠的余切值;22. 某物流公司引进A 、B 两种机器人用来搬运某种货物,这两种机器人充满电后可以连续 搬运5小时,A 种机器人于某日0时开始搬运,过了1小时,B 种机器人也开始搬运,如 图,线段OG 表示A 种机器人的搬运量A y (千克)与时间x (时)的函数图像,线段EF 表 示B 种机器人的搬运量B y (千克)与时间x (时)的函数图像,根据图像提供的信息,解 答下列问题:(1)求B y 关于x 的函数解析式;(2)如果A 、B 两种机器人各连续搬运5个小时, 那么B 种机器人比A 种机器人多搬运了多少千克?23. 已知,如图,⊙O 是ABC ∆的外接圆,AB AC =,点D 在边BC 上,AE ∥BC ,AE BD =;(1)求证:AD CE =;(2)如果点G 在线段DC 上(不与点D 重合),且AG AD =,求证:四边形AGCE 是平行四边形;24. 如图,抛物线25y ax bx =+-(0a ≠)经过点(4,5)A -,与x 轴的负半轴交于点B , 与y 轴交于点C ,且5OC OB =,抛物线的顶点为D ; (1)求这条抛物线的表达式;(2)联结AB 、BC 、CD 、DA ,求四边形ABCD 的面积;(3)如果点E 在y 轴的正半轴上,且BEO ABC ∠=∠,求点E 的坐标;25. 如图所示,梯形ABCD 中,AB ∥DC ,90B ∠=︒,15AD =,16AB =,12BC =, 点E 是边AB 上的动点,点F 是射线CD 上一点,射线ED 和射线AF 交于点G ,且AGE DAB ∠=∠;(1)求线段CD 的长;(2)如果AEG ∆是以EG 为腰的等腰三角形,求线段AE 的长;(3)如果点F 在边CD 上(不与点C 、D 重合),设AE x =,DF y =,求y 关于x 的函 数解析式,并写出x 的取值范围;参考答案一. 选择题1. D2. A3. C4. C5. A6. B二. 填空题7. 2a 8. 2x ≠ 9. 5x = 10. 2- 11. 1x < 12.94 13. 0k > 14. 13 15. 1416. 600017. 208 18. 12三. 解答题19. 解:原式1296=--= 20. 解:去分母,得2244x x +-=-; 移项、整理得220x x --=;经检验:12x =是增根,舍去;21x =-是原方程的根; 所以,原方程的根是1x =-;21. 解(1)∵2AD CD =,3AC = ∴2AD = 在Rt ABC ∆中,90ACB ∠=︒,3AC BC ==,∴45A ∠=︒,AB =;∵DE AB ⊥ ∴90AED ∠=︒,45ADE A ∠=∠=︒,∴cos 45AE AD =⋅︒=∴BE AB AE =-=BE 的长是 (2)过点E 作EH BC ⊥,垂足为点H ; 在Rt BEH ∆中,90EHB ∠=︒,45B ∠=︒,∴cos452EH BH EB ==⋅︒=,又3BC =, ∴1CH =; 在Rt ECH ∆中,1cot 2CH ECB EH ∠==,即ECB ∠的余切值是12; 22. 解:(1)设B y 关于x 的函数解析式为1B y k x b =+(10k ≠),由线段EF 过点(1,0)E 和点(3,180)P ,得1103180k b k b +=⎧⎨+=⎩,解得19090k b =⎧⎨=-⎩,所以B y 关于x 的函数解析式为9090B y x =-(16x ≤≤); (2)设A y 关于x 的函数解析式为2A y k x =(20k ≠), 由题意,得21803k =,即260k = ∴60A y x =; 当5x =时,560300A y =⨯=(千克), 当6x =时,90690450B y =⨯-=(千克), 450300150-=(千克);答:如果A 、B 两种机器人各连续搬运5小时,那么B 种机器人比A 种机器人多搬运了150千克23. 证明:(1)在⊙O 中,∵AB AC = ∴AB AC = ∴B ACB ∠=∠; ∵AE ∥BC ∴EAC ACB ∠=∠ ∴B EAC ∠=∠; 又∵BD AE = ∴ABD ∆≌CAE ∆ ∴AD CE =; (2)联结AO 并延长,交边BC 于点H ,∵AB AC =,OA 是半径 ∴AH BC ⊥ ∴BH CH =;∵AD AG = ∴DH HG = ∴BH DH CH GH -=-,即BD CG =; ∵BD AE = ∴CG AE =;又∵CG ∥AE ∴四边形AGCE 是平行四边形;24. 解:(1)∵抛物线25y ax bx =+-与y 轴交于点C ∴(0,5)C - ∴5OC =; ∵5OC OB = ∴1OB =;又点B 在x 轴的负半轴上 ∴(1,0)B -; ∵抛物线经过点(4,5)A -和点(1,0)B -, ∴1645550a b a b +-=-⎧⎨--=⎩,解得14a b =⎧⎨=-⎩;∴这条抛物线的表达式为245y x x =--;(2)由245y x x =--,得顶点D 的坐标是(2,9)-; 联结AC ,∵点A 的坐标是(4,5)-,点C 的坐标是(0,5)-,又145102ABC S ∆=⨯⨯=,14482ACD S ∆=⨯⨯=; ∴18ABC ACD ABCD S S S ∆∆=+=四边形;(3)过点C 作CH AB ⊥,垂足为点H ;∵1102ABC S AB CH ∆=⨯⨯=,AB = ∴CH =;在Rt BCH ∆中,90BHC ∠=︒,BC =BH ==∴2tan 3CH CBH BH ∠==;在Rt BOE ∆中,90BOE ∠=︒,tan BOBEO EO∠=; ∵BEO ABC ∠=∠ ∴23BO EO =,得32EO = ∴点E 的坐标为3(0,)2;25. 解:(1)过点D 作DH AB ⊥,垂足为点H ;在Rt DAH ∆中,90AHD ∠=︒,15AD =,12DH =;∴9AH ==;又∵16AB = ∴7CD BH AB AH ==-=;(2)∵AEG DEA ∠=∠,又AGE DAE ∠=∠ ∴AEG ∆∽DEA ∆; 由AEG ∆是以EG 为腰的等腰三角形,可得DEA ∆是以AE 为腰的等腰三角形; ① 若AE AD =,∵15AD = ∴15AE =;② 若AE DE =,过点E 作EQ AD ⊥,垂足为Q ∴11522AQ AD == 在Rt DAH ∆中,90AHD ∠=︒,3cos 5AH DAH AD ∠==; 在Rt AEQ ∆中,90AQE ∠=︒,3cos 5AQ QAE AE ∠== ∴252AE =; 综上所述:当AEG ∆是以EG 为腰的等腰三角形时,线段AE 的长为15或252;(3)在Rt DHE ∆中,90DHE ∠=︒,DE ==∵AEG ∆∽DEA ∆ ∴AE EGDE AE =∴2EG =∴2DG =∵DF ∥AE ∴DF DG AE EG =,222212(9)y x x xx +--=; ∴22518x y x -=,x 的取值范围为2592x <<;。
2016数学中考试题及答案

2016数学中考试题及答案2016年的数学中考试题目是许多学生所关注的焦点。
本文将为您提供2016年数学中考试题目的详细内容以及相应的答案。
以下是数学试题的题目和答案:1. 选择题1.1 问题:已知直角三角形 ABC 中,∠B = 90°,BC = 4 cm,AC = 3 cm,则∠A 的值是多少?选项:A. 30°B. 45°C. 60°D. 90°1.2 问题:已知 a + b = 7,a - b = 3,则 a 和 b 的值分别是多少?选项:A. a = 5,b = 2B. a = 2,b = 5C. a = 7,b = 0D. a = 0,b = 7答案:1.1 答案:C1.2 答案:A2. 填空题2.1 问题:将两个相邻的自然数的平方相加,结果为 365,这两个自然数分别是多少?答案:13 和 142.2 问题:已知 x = -2 是方程 3x - 4 = 5x + 2 的解,求另一个解。
答案:-33. 计算题3.1 问题:已知函数 f(x) = x^2 + 3x + 2,求 f(-1) 的值。
答案:23.2 问题:某商品原价为 80 元,现在打折 30%,请计算折扣后的价格。
答案:56 元4. 解答题4.1 问题:请解答如下等式,求出变量 x 的值:2(x + 3) = 4x + 6答案:x = 34.2 问题:请解答如下问题,计算三个连续自然数的和,其中最小的自然数是 x:x + (x + 1) + (x + 2) = 60答案:x = 19以上便是2016年数学中考试题目的详细内容以及相应的答案。
希望对您复习和准备考试有所帮助。
祝您取得好成绩!。
2016年各地中考数学解析版试卷精选汇编:全等三角形

全等三角形一、选择题1. (2016·新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【考点】全等三角形的判定.【分析】根据全等三角形的判定,利用ASA、SAS、AAS即可得答案.【解答】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.【点评】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.2. (2016·云南)如图,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是()A.AC=BD B.∠CAB=∠DBA C.∠C=∠D D.BC=AD【考点】全等三角形的判定.【分析】根据全等三角形的判定:SAS,AAS,ASA,可得答案.【解答】解:由题意,得∠ABC=∠BAD,AB=BA,A、∠ABC=∠BAD,AB=BA,AC=BD,(SSA)三角形不全等,故A错误;B、在△ABC与△BAD中,,△ABC≌△BAD(ASA),故B正确;C、在△ABC与△BAD中,,△ABC≌△BAD(AAS),故C正确;D、在△ABC与△BAD中,,△ABC≌△BAD(SAS),故D正确;故选:A.【点评】本题考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角3. (2016·四川广安·3分)下列说法:①三角形的三条高一定都在三角形内②有一个角是直角的四边形是矩形③有一组邻边相等的平行四边形是菱形④两边及一角对应相等的两个三角形全等⑤一组对边平行,另一组对边相等的四边形是平行四边形其中正确的个数有()A.1个B.2个C.3个D.4个【考点】矩形的判定;三角形的角平分线、中线和高;全等三角形的判定;平行四边形的判定与性质;菱形的判定.【分析】根据三角形高的性质、矩形的判定方法、菱形的判定方法、全等三角形的判定方法、平行四边形的判定方法即可解决问题.【解答】解:①错误,理由:钝角三角形有两条高在三角形外.②错误,理由:有一个角是直角的四边形是矩形不一定是矩形,有三个角是直角的四边形是矩形.③正确,有一组邻边相等的平行四边形是菱形.④错误,理由两边及一角对应相等的两个三角形不一定全等.⑤错误,理由:一组对边平行,另一组对边相等的四边形不一定是平行四边形有可能是等腰梯形.正确的只有③,故选A.4.(2016•浙江省舟山)如图,矩形ABCD中,AD=2,AB=3,过点A,C作相距为2的平行线段AE,CF,分别交CD,AB于点E,F,则DE的长是()A.B.C.1 D.【考点】矩形的性质;全等三角形的判定与性质;勾股定理.【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB∥CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到,于是得到AE=AF,列方程即可得到结论.【解答】解:过F作FH⊥AE于H,∵四边形ABCD是矩形,∴AB=CD,AB∥CD,∵AE∥CF,∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3﹣DE,∴AE=,∵∠FHA=∠D=∠DAF=90°,∴∠AFH+∠HAF=∠DAE+∠FAH=90°,∴∠DAE=∠AFH,∴△ADE∽△AFH,∴,∴AE=AF,∴=3﹣DE,∴DE=,故选D.二、填空题1. (2016·四川成都·4分)如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=120°.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠C的度数,根据三角形内角和定理计算即可.【解答】解:∵△ABC≌△A′B′C′,∴∠C=∠C′=24°,∴∠B=180°﹣∠A﹣∠B=120°,故答案为:120°.2 (2016·江苏南京)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO,下列结论①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC,其中正确结论的序号是_______.答案:①②③考点:三角形全等的判定与性质。
专题09 三角形-2017版[中考15年]上海市2002-2016年中考数学试题分项(原卷版)
![专题09 三角形-2017版[中考15年]上海市2002-2016年中考数学试题分项(原卷版)](https://img.taocdn.com/s3/m/4661681ecc175527072208bc.png)
2017版[中考15年]上海市2002-2016年中考数学试题分项解析专题*三角形**1.(上海市2003年3分)已知AC 平分∠PAQ ,如图,点B 、B’分别在边AP 、AQ 上,如果添加一个条件,即可推出AB =AB’,那么该条件可以是【 】(A )BB’⊥AC (B )BC = B’C (C )∠ACB =∠AC B’ (D )∠ABC =∠AB’ C2.(上海市2004年3分)如图所示,在△ABC 中,AB=AC ,∠=A 36°,BD 平分∠A B C D EB C ,//,那么在下列三角形中,与△ABC 相似的三角形是【 】A. △DBEB. △ADEC. △ABDD. △BDC3.(上海市2005年3分)已知Rt △ABC 中,∠C =90°,AC =2,BC =3,那么下列各式中,正确的 是【 】 A 、sin B 23=B 、cos B 23=C 、tan B 23=D 、2otB 3c = 4.(上海市2005年3分)在下列命题中,真命题是【 】A 、两个钝角三角形一定相似B 、两个等腰三角形一定相似C 、两个直角三角形一定相似D 、两个等边三角形一定相似5.(上海市2006年4分)在△ABC 中,AD 是BC 边上的中线,G 是重心,如果AG=6,那么线段DG 的长是【 】(A )2 (B ) 3 (C )6 (D )126.(上海市2010年4分)下列命题中,是真命题的为【 】A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似D.等边三角形都相似 7.(上海市2011年4分)下列命题中,真命题是【 】.(A)周长相等的锐角三角形都全等; (B) 周长相等的直角三角形都全等; (C)周长相等的钝角三角形都全等; (D) 周长相等的等腰直角三角形都全等.1.(上海市2002年2分)在离旗杆20米处的地方用测角仪测得旗杆顶的仰角为α,如果测角仪高为1.5米,那么旗杆的高为 ▲ _米,(用含α的三角比表示).2.(上海市2002年2分)在△ABC 中,如果AB =AC =5cm ,BC =8cm ,那么这个三角形的重心G 到BC 的距离是 ▲ _cm .4.(上海市2004年2分)在△ABC 中,点D 、E 分别在边AB 、AC 上,DE//BC ,AD=1,BD=2,则S S A D E A B C ∆∆:= ▲ 。
2016年中考数学试题分项版解析(第02期)专题09 三角形

专题09 三角形
一、选择题
1.(2016四川省巴中市)如图,点D、E分别为△ABC的边AB、AC上的中点,则△ADE的面积与四边形BCED 的面积的比为()
A.1:2 B.1:3 C.1:4 D.1:1
【答案】B.
考点:相似三角形的判定与性质.
2.(2016四川省巴中市)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()
A.斜坡AB的坡度是10° B.斜坡AB的坡度是tan10°
C.AC=1.2tan10°米D.AB=
1.2 cos10
米
【答案】B.【解析】
试题分析:斜坡AB的坡度是tan10°=BC
AC
,故B正确;故选B.
考点:解直角三角形的应用-坡度坡角问题.3.(2016四川省广安市)下列说法:
①三角形的三条高一定都在三角形内
②有一个角是直角的四边形是矩形
③有一组邻边相等的平行四边形是菱形
④两边及一角对应相等的两个三角形全等
⑤一组对边平行,另一组对边相等的四边形是平行四边形
其中正确的个数有()
A.1个B.2个C.3个D.4个
【答案】A.
考点:1.矩形的判定;2.三角形的角平分线、中线和高;3.全等三角形的判定;4.平行四边形的判定与性质;5.菱形的判定.
4.(2016四川省攀枝花市)如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则sin∠OBD=()
A.1
2
B.
3
4
C.
4
5
D.
3
5
【答案】D.。
专题09 三角形(第05期)-2016年中考数学试题分项版解析汇编(解析版)

一、选择题1.(2016四川甘孜州第9题)如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED 的周长为()A.2B.3C.4D.5【答案】C.考点:等腰三角形的判定与性质;平行线的性质.2.(2016贵州铜仁第9题)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B.2C.4D.8【答案】B.【解析】试题分析:过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PD.∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=12PC=2,∴PD=2.故选B.考点:角平分线的性质;含30度角的直角三角形.3.(2016湖南株洲第4题)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【答案】B.考点:旋转的性质.4.(2016广西来宾第9题)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF 的周长是()A.5B.7C.8D.10【答案】D.【解析】试题分析:∵AB =4,BC =6,DE 、DF 是△ABC 的中位线,∴DE =12AB =2,DF =12BC =3,DE ∥BF ,DF ∥BE ,∴四边形BEDF 为平行四边形,∴四边形BEDF 的周长为:2×2+3×2=10,故选D . 考点:三角形中位线定理.5.(2016福建莆田第6题)如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的选项是( )A .PC ⊥OA ,PD ⊥OB B .OC =OD C .∠OPC =∠OPD D .PC =PD 【答案】D .考点:角平分线的性质;全等三角形的判定.6.(2016福建莆田第9题)如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为( )A .13 B C D .35 【答案】A . 【解析】试题分析:∵在△ABC 中,∠ACB =90°,AC =BC =4,∴∠A =∠B ,由折叠的性质得到:△AEF ≌△DEF ,∴∠EDF =∠A ,∴∠EDF =∠B ,∴∠CDE +∠BDF +∠EDF =∠BFD +∠BDF +∠B =180°,∴∠CDE =∠BFD .又∵AE =DE =3,∴CE =4﹣3=1,∴在直角△ECD 中,sin ∠CDE =13CE ED .故选A .考点:翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.7.(2016广西河池第4题)下列长度的三条线段不能组成三角形的是()A.5,5,10B.4,5,6C.4,4,4D.3,4,5【答案】A.考点:三角形三边关系.8.(2016贵州贵阳第7题)如图,在△ABC中,DE∥BC,13ADAB=,BC=12,则DE的长是()A.3B.4C.5D.6【答案】B.【解析】试题分析:∵DE∥BC,∴△ADE∽△ABC,∴DEBC=13ADAB=,∵BC=12,∴DE=13BC=4.故选B.考点:相似三角形的判定与性质.9.(2016内蒙古呼伦贝尔市、兴安盟第12题)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【答案】C.【解析】试题分析:设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程x2+32=(9﹣x)2,解得x=4,所以线段BQ的长为4.故选C.考点:翻折变换(折叠问题).10.(2016辽宁葫芦岛第9题)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.D.【答案】D.考点:三角形中位线定理;直角三角形斜边上的中线.11.(2016辽宁营口第8题)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB 【答案】D.【解析】试题分析:∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.考点:作图—基本作图;线段垂直平分线的性质.12.(2016黑龙江绥化第6题)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.米C米D.米【答案】A.考点:解直角三角形的应用-方向角问题.a-=,则c的值可以为13.(2016江苏盐城第8题)若a、b、c为△ABC的三边长,且满足0()A.5B.6C.7D.8【答案】A.【解析】a-=,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条试题分析:∵0件;故选A.考点:三角形三边关系;非负数的性质:绝对值;非负数的性质:算术平方根.14.(2016江苏盐城第7题)如图,点F在平行四边形ABCD的边AB上,射线CF交DA的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【答案】C.考点:相似三角形的判定;平行四边形的性质.15.(2016江苏常州第5题)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A B.5cm C.6cm D.10cm【答案】B.【解析】试题分析:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN=10(cm),∴该圆玻璃镜的半径是:12MN=5cm.故选B.考点:圆周角定理;勾股定理.16.(2016江苏常州第7题)已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2B.4C.5D.7【答案】A.【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.17.(2016重庆A 卷第8题)△ABC 与△DEF 的相似比为1:4,则△ABC 与△DEF 的周长比为( ) A .1:2 B .1:3 C .1:4 D .1:16 【答案】C .考点:相似三角形的性质.18.(2016重庆A 卷第11题)某数学兴趣小组同学进行测量大树CD 高度的综合实践活动,如图,在点A 处测得直立于地面的大树顶端C 的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B 处,然后再沿水平方向行走6米至大树脚底点D 处,斜面AB 的坡度(或坡比)i =1:2.4,那么大树CD 的高度约为(参考数据:sin 36°≈0.59,cos 36°≈0.81,tan 36°≈0.73)( )A .8.1米B .17.2米C .19.7米D .25.5米 【答案】A . 【解析】试题分析:作BF ⊥AE 于F ,如图所示,则FE =BD =6米,DE =BF ,∵斜面AB 的坡度i =1:2.4,∴AF =2.4BF ,设BF =x 米,则AF =2.4x 米,在Rt △ABF 中,由勾股定理得:222(2.4)13x x +=,解得:x =5,∴DE =BF =5米,AF =12米,∴AE =AF +FE =18米,在Rt △ACE 中,CE =AE •tan 36°=18×0.73=13.14米,∴CD =CE ﹣DE =13.14米﹣5米≈8.1米;故选A .考点:解直角三角形的应用-仰角俯角问题.19.(2016四川南充第3题)如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM 【答案】B.考点:轴对称的性质.20.(2016四川南充第7题)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1B.2C D.【答案】A.【解析】试题分析:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是A C.BC的中点,∴DE是△ACB的中位线,∴DE=12AB=1.故选A.考点:三角形中位线定理;含30度角的直角三角形.21.(2016内蒙古巴彦淖尔第7题)如图,E为▱ABCD的边AB延长线上的一点,且BE:A B=2:3,△BEF 的面积为4,则▱ABCD的面积为()A.30B.27C.14D.32【答案】A.考点:相似三角形的判定与性质;平行四边形的性质.22.(2016内蒙古巴彦淖尔第8题)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m的高空C处时,测得A处渔政船的俯角为45°,测得B处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB是()A.m B.1)m C.1)-m D.m【答案】C.【解析】试题分析:如图,由题意可知CE∥BD,∴∠CBA=30°,∠CAD=45°,且CD=3000m,在Rt△ACD中,AD=CD=3000m,在Rt△BCD中,BD=tan CDCBA∠m,∴AB=BD﹣AD=﹣3000=1)-(m),故选C.考点:解直角三角形的应用-仰角俯角问题.23.(2016四川南充第10题)如图,正五边形的边长为2,连结对角线AD ,BE ,CE ,线段AD 分别与BE和CE 相交于点M ,N .给出下列结论:①∠AME =108°;②2AN AM AD =⋅;③MN =3;④1EBC S ∆=.其中正确结论的个数是( )A .1个B .2个C .3个D .4个 【答案】C .∵∠AEN =108°﹣36°=72°,∠ANE =36°+36°=72°,∴∠AEN =∠ANE ,∴AE =AN ,同理DE =DM ,∴AE =DM ,∵∠EAD =∠AEM =∠ADE =36°,∴△AEM ∽△ADE ,∴AE AM AD AE=,∴2AE =AM •AD ; ∴2AN AM AD =⋅;故②正确;∵2AE =AM •AD ,∴22=(2﹣MN )(4﹣MN ),∴MN =3;故③正确;在正五边形ABCDE 中,∵BE =CE =AD =1+,∴BH =12BC =1,∴EH ==,∴S △EBC =12BC •EH =122⨯,故④错误; 故选C .考点:相似三角形的判定与性质;正多边形和圆.二、填空题1.(2016贵州遵义第14题)如图,在△ABC中,AB=BC,∠ABC=110°,AB的垂直平分线DE交AC于点D,连接BD,则∠ABD= 度.【答案】35.考点:线段垂直平分线的性质.2.(2016四川甘孜州第13题)直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为.【答案】6.【解析】试题分析:∵直角三角形斜边长是5,一直角边的长是34.该直角三角形的面积S=12×3×4=6.故答案为:6.考点:勾股定理.3.(2016四川甘孜州第23题)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4,若点P1,P2的坐标分别为(0,﹣1),(﹣2,0),则点P4的坐标为.【答案】(8,0).考点:相似三角形的判定与性质;坐标与图形性质.4.(2016湖南株洲第18题)已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ),已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点,若P 就是△ABC 的费马点,若点P 的等腰直角三角形DEF 的费马点,则PD +PE +PF = .1. 【解析】试题分析:如图:等腰Rt △DEF 中,DE =DF ,过点D 作DM ⊥EF 于点M ,过E 、F 分别作∠MEP =∠MFP =30°,则EM =DM =1,故cos 30°=EMEP ,解得:PE =PF ,则PM ,故DP =1,则PD +PE +PF =2+111+.考点:解直角三角形;等腰直角三角形;新定义.5.(2016浙江台州第12题)如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC ′= .【答案】.【解析】试题分析:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,∴三角板向右平移了5个单位,∴顶点C平移的距离CC′=5.故答案为:5.考点:平移的性质.6.(2016福建莆田第16题)魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”,证明了勾股定理.若图中BF=1,CF=2,则AE的长为__________.【答案】.考点:勾股定理;相似三角形的判定与性质.7.(2016广西河池第18题)如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为EF,那么BF的长为cm.【答案】143.【解析】试题分析:过D作DH⊥BC,过点A作AN⊥BC于点N,∵AB=AC,∴∠B=∠C=30°,根据折叠可得:D F=BF,∠EDF=∠B=30°,∵AB=AC,BC=12cm,∴BN=NC=6cm,∵点B落在AC的中点D处,AN∥DH,∴NH =HC =3cm ,∴DH =3tan 30(cm ),设BF =DF =xcm ,则FH =12﹣x ﹣3=9﹣x (cm ),故在Rt △DFC中,222DF DH FH =+,故222(9)x x =+-,解得:x =143,即BF 的长为:143cm .故答案为:143.考点:翻折变换(折叠问题).8.(2016贵州贵阳第15题)如图,∠BAC =45°,AB =8,要使满足条件的△ABC 惟一确定,那么BC 的长度x 的取值范围是 .【答案】或x ≥8.综上所述,∠BAC =45°,AB =8,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是:x =或x 大于或等于8.故答案为:x ≥8.考点:全等三角形的判定;分类讨论.9.(2016福建泉州第11题)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=8,则DE= .【答案】4.【解析】1BC=4.试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到DE=2考点:三角形中位线定理.10.(2016福建泉州第14题)如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.【答案】5.【解析】1试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=AB=5.2考点:直角三角形斜边上的中线.11.(2016青海第6题)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC=.【答案】38°.考点:三角形的外角性质;平行线的性质.12.(2016内蒙古呼伦贝尔市、兴安盟第17题)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC 绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.【答案】3 2.考点:旋转的性质.13.(2016内蒙古通辽第14题)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.【答案】69°或21°.【解析】试题分析:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)÷2=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)÷2=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.考点:等腰三角形的性质;分类讨论.14.(2016黑龙江绥化第18题)如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD= (提示:可连接BE)【答案】5.考点:旋转的性质;推理填空题.15.(2016江苏盐城第17题)已知△ABC中,tanB=23,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:C D=2:1,则△ABC面积的所有可能值为.【答案】8或24.【解析】试题分析:如图1所示:∵BC=6,BD:C D=2:1,∴BD=4,∵AD⊥BC,tanB=23,∴ADBD=23,∴AD=23BD=83,∴S△ABC=12BC•AD=12×6×83=8; 如图2所示:∵BC =6,BD :C D =2:1,∴BD =12,∵AD ⊥BC ,tanB =23,∴AD BD =23,∴AD =23BD =8,∴S △ABC =12BC •AD =12×6×8=24; 综上,△ABC 面积的所有可能值为8或24,故答案为:8或24.考点:解直角三角形;分类讨论.16.(2016江苏常州第18题)如图,△APB 中,AB =2,∠APB =90°,在AB 的同侧作正△ABD 、正△APE 和正△BPC ,则四边形PCDE 面积的最大值是 .【答案】1.试题解析:延长EP 交BC 于点F ,∵∠APB =90°,∠AOE =∠BPC =60°,∴∠EPC =150°,∴∠CPF =180°﹣150°=30°,∴PF 平分∠BPC ,又∵PB =PC ,∴PF ⊥BC ,设Rt △ABP 中,AP =a ,BP =b ,则 C F =12CP =12b ,224a b +=,∵△APE 和△ABD 都是等边三角形,∴AE =AP ,AD =AB ,∠EAP =∠DAB =60°,∴∠EAD =∠PAB ,∴△EAD ≌△PAB (SAS ),∴ED =PB =CP ,同理可得:△APB ≌△DCB (SAS ),∴EP =AP =CP ,∴四边形CDEP 是平行四边形,∴四边形CDEP 的面积=EP ×CF =a ×12b =12ab ,又∵222()2a b a b ab -=+-≥0,∴2ab ≤224a b +=,∴12ab ≤1,即四边形PCDE 面积的最大值为1.故答案为:1.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质;最值问题.17.(2016福建南平第16题)如图,等腰△ABC 中,CA =CB =4,∠ACB =120°,点D 在线段AB 上运动(不与A 、B 重合),将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,给出下列结论: ①CD =CP =CQ ; ②∠PCQ 的大小不变;③△PCQ ; ④当点D 在AB 的中点时,△PDQ 是等边三角形,其中所有正确结论的序号是 .【答案】①②④.③如图,过点Q 作QE ⊥PC 交PC 延长线于E ,∵∠PCQ =120°,∴∠QCE =60°,在Rt △QCE 中,tan ∠QCE =QECQ,∴QE =CQ ×tan ∠QCE =CQ ×tan 60CQ ,∵CP =CD =CQ ,∴S △PCQ =12CP ×QE =12CP ×2,∴CD 最短时,S △PCQ 最小,即:C D ⊥AB 时,CD 最短,过点C 作CF ⊥AB ,此时CF 就是最短的CD ,∵AC =BC =4,∠ACB =120°,∴∠ABC =30°,∴CF =12BC =2,即:C D 最短为2,∴S △PCQ最小222=④∵将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,∴AD =AP ,∠DAC =∠P AC ,∵∠DAC =30°,∴∠APD =60°,∴△APD 是等边三角形,∴PD =AD ,∠ADP =60°,同理:△BDQ 是等边三角形,∴DQ =BD ,∠BDQ =60°,∴∠PDQ =60°,∵当点D 在AB 的中点,∴AD =BD ,∴PD =DQ ,∴△DPQ 是等边三角形,∴④正确,故答案为:①②④.考点:几何变换综合题;定值问题;最值问题;综合题;翻折变换(折叠问题).18.(2016内蒙古巴彦淖尔第16题)如图,在Rt △ABC 中,∠B =90°,AB =BC =2,将△ABC 绕点C 顺时针旋转60°,得到△DEC ,则AE 的长是_____________.+考点:旋转的性质.三、解答题1.(2016贵州遵义第21题)某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55≈1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】(1)1.5;(2)成人是安全的.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=OEOC,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.考点:解直角三角形的应用.2.(2016贵州遵义第24题)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.试题解析:(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,∵∠C=∠A,CF=AE,∠F=∠E,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE BP,∴EQ=PE+PQ=,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.考点:矩形的性质;全等三角形的判定与性质.3.(2016四川甘孜州第18题)如图,在一次测量活动中,小丽站在离树底部E处5m的B处仰望树顶C,仰角为30°,已知小丽的眼睛离地面的距离AB为1.65m,那么这棵树大约有多高?(结果精确到0.1m,1.73)【答案】4.5.试题解析:过点A作AD⊥CE于点D,如图所示.∵AB⊥BE,DE⊥BE,AD⊥DE,∴四边形ABED为矩形,∴AD=BE=5,DE=AB=1.65.在Rt△ACD中,AD=5,∠CAD=30°,∴CD=AD•tan∠CAD=5≈2.88,∴CE=CD+DE=2.88+1.65=4.53≈4.5.答:这棵树大约高4.5米.考点:解直角三角形的应用-仰角俯角问题.4.(2016贵州铜仁第22题)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=tan tan 1tan tanαβαβ±利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)=tan45tan301tan45tan30+-=2根据以上阅读材料,请选择适当的公式解答下面问题:(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C处,在D点测得纪念碑碑顶的仰角为75°,DC米,请你帮助李三求出纪念碑的高度.【答案】(1;(2)14+.(2)先根据锐角三角函数的定义求出BE的长,再根据AB=AE+BE即可得出结论.试题解析:(1)sin 15°=sin (45°﹣30°)=sin 45°cos 30°﹣cos 45°sin 3012; (2)在Rt △BDE 中,∵∠BED =90°,∠BDE =75°,DE =AC =7米,∴BE =DE •tan ∠BDE =DE •tan 75°.∵tan 75°=2+,∴BE =7(2+)=14+,∴AB =AE +BE 14+=14+(米).答:纪念碑的高度为(14+考点:解直角三角形的应用-仰角俯角问题;阅读型.5.(2016浙江台州第19题)如图,点P 在矩形ABCD 的对角线AC 上,且不与点A ,C 重合,过点P 分别作边AB ,AD 的平行线,交两组对边于点E ,F 和G ,H .(1)求证:△PHC ≌△CFP ;(2)证明四边形PEDH 和四边形PFBG 都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.试题解析:(1)∵四边形ABCD 为矩形,∴AB ∥CD ,AD ∥BC .∵PF ∥AB ,∴PF ∥CD ,∴∠CPF =∠PCH .∵PH ∥AD ,∴PH ∥BC ,∴∠PCF =∠CPH .在△PHC 和△CFP 中,∵∠CPF =∠PCH ,PC =CP ,∠PCF =∠CPH ,∴△PHC ≌△CFP (ASA ).(2)∵四边形ABCD 为矩形,∴∠D =∠B =90°.又∵EF ∥AB ∥CD ,GH ∥AD ∥BC ,∴四边形PEDH 和四边形PFBG 都是矩形.∵EF ∥AB ,∴∠CPF =∠CAB .在Rt △AGP 中,∠AGP =90°,PG =AG •tan ∠CAB .在Rt△CFP中,∠CFP=90°,CF=PF•tan∠CPF.S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.考点:矩形的判定与性质;全等三角形的判定与性质.6.(2016浙江台州第20题)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【答案】不符合.考点:解直角三角形的应用.7.(2016贵州铜仁第20题)如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:D E=DF.【答案】证明见解析.考点:全等三角形的判定与性质;等腰直角三角形.8.(2016湖南株洲第23题)已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.【答案】(1)证明见解析;(2)9 13.【解析】(2)过点A作AH⊥DE于点H,在Rt△ABE中,∵AB=BC=3,∵BE=1,∴AE ED5,∵S△AED=12AD×BA=92,S△ADE=12ED×AH=92,解出AH=1.8,在Rt△AHE中,EH=2.6,∴tan∠AED=AMEM=1.82.6=913.考点:正方形的性质;全等三角形的判定与性质.9.(2016广西来宾第23题)如图,在正方形ABCD中,点E(与点B、C不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.【答案】(1)证明见解析;(2)1.【解析】试题分析:(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出S EGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.考点:正方形的性质;全等三角形的判定与性质;旋转的性质.10.(2016福建莆田第20题)小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【答案】会.【解析】试题分析:过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin∠OAB=OEOA,求得OE,即可作出判断.试题解析:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA•sin∠OAB=140×sin59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.考点:解直角三角形的应用.11.(2016福建莆田第25题)若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC 中,设BC =a ,AC =b ,AB =c ,各边上的高分别记为a h ,b h ,c h ,各边上的内接正方形的边长分别记为a x ,b x ,c x . (1)模拟探究:如图,正方形EFGH 为△ABC 的BC 边上的内接正方形,求证:111a aa h x +=; (2)特殊应用:若∠BAC =90°,b x =c x =2,求11b c+的值; (3)拓展延伸:若△ABC 为锐角三角形,b <c ,请判断b x 与c x 的大小,并说明理由.【答案】(1)证明见解析;(2)12;(3)b x >c x .(3)先根据(1)中的结论得出111b b b h x +=和111c c c h x +=,变形得出b b b bh x b h =+,c c cch x c h =+,再根据△ABC 得到b b h =c c h , b h =csinA ,c h =bsinA ,最后代入代数式11b cx x -进行变形推导,即可得出b x 与c x 的大小关系.试题解析:∵正方形EFGH 中,EH ∥FG ,∴△AEH ∽△ABC ,∵AD ⊥BC ,∴EH AKBC AD =,即a a a ax h x a h -=,∴111a aa h x +=; (2)由(1)得:111b bb h x +=,∵∠A =90°,∴b h =c ,又∵b x =2,∴11b c +=12;(3)b x >c x . 证明:由(1)得:111b b b h x +=,111c c c h x +=,∴b b b bh x b h =+,c c cch x c h =+,∵S =12b b h =12c c h ,∴2S =b b h =c c h ,又∵b h =csinA ,c h =bsinA ,∴11b cx x -=()2b c b h c h S +-+=sin (sin )2b c A c b A S +-+ =()(1sin )2b c A S --,∵b <c ,sinA <1,∴()(1sin )2b c A S --<0,即11b cx x -<0,∴b x >c x .考点:三角形综合题;相似三角形的判定与性质;探究型;和差倍分;压轴题. 12.(2016广西河池第21题)如图,AE ∥BF ,AC 平分∠BAE ,交BF 于C .(1)尺规作图:过点B 作AC 的垂线,交AC 于O ,交AE 于D ,(保留作图痕迹,不写作法); (2)在(1)的图形中,找出两条相等的线段,并予以证明.【答案】(1)作图见解解析;(2)AB =AD =BC .(2)AB =AD =BC .证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD ⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.13.(2016贵州贵阳第18题)(10分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF 是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【答案】(1)证明见解析;(2)△CEF是直角三角形.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,∵AB=CB,∠ABF=∠CBE,BF=BE,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF是直角三角形.考点:正方形的性质;全等三角形的判定与性质;等腰直角三角形.14.(2016贵州贵阳第21题)(8分)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【答案】238.9m.考点:解直角三角形的应用-坡度坡角问题.15.(2016贵州贵阳第24题)(12分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:B E+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【答案】(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF.(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,∵BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:A B﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:B E+BM>EM,∴BE+CF>EF;(3)解:B E+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,∵BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,∵CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考点:三角形综合题;探究型;和差倍分.16.(2016福建泉州第20题)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.【答案】详见解析.考点:全等三角形的判定;等腰直角三角形.17.(2016青海第23题)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【答案】详见解析.在△ADE 和△CBF 中,AD CB DAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF , ∴DE=BF .(2)由(1),可得∴△ADE ≌△CBF , ∴∠ADE=∠CBF ,∵∠DEF=∠DAE+∠ADE ,∠BFE=∠BCF+∠CBF , ∴∠DEF=∠BFE , ∴DE ∥BF , 又∵DE=BF ,∴四边形DEBF 是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.18.(2016青海第24题)如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F 与墙角C 有25米的距离(B ,F ,C 在一条直线上). (1)求办公楼AB 的高度;(2)若要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离.(参考数据:sin22°≈38,cos22°1516≈,tan22°25≈)【答案】(1) 教学楼的高20m;(2)A 、E 之间的距离约为48m.过点E 作EM ⊥AB ,垂足为M . 设AB 为x .Rt △ABF 中,∠AFB=45°, ∴BF=AB=x , ∴BC=BF+FC=x+25,在Rt △AEM 中,∠AEM=22°,AM=AB ﹣BM=AB ﹣CE=x ﹣2, tan22°=AM ME,则22255x x -=+, 解得:x=20. 即教学楼的高20m .(2)由(1)可得ME=BC=x+25=20+25=45. 在Rt △AME 中,cos22°=ME AE.∴AE=cos22oME,即A、E之间的距离约为48m考点:解直角三角形的应用.19.(2016内蒙古呼伦贝尔市、兴安盟第20题)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=34,求sinC的值.【答案】12 13.考点:解直角三角形.20.(2016辽宁葫芦岛第22题)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)≈1.414≈1.732)【答案】A、B两个凉亭之间的距离约为283米.考点:解直角三角形的应用.21.(2016辽宁营口第22题)某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,.为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=20米.求斜坡BC的长是多少米?(结果精确到0.1米,≈1.41≈1.73)【答案】66.6.考点:解直角三角形的应用-坡度坡角问题;探究型.22.(2016内蒙古通辽第20题)在我市十个全覆盖工作的推动下,某乡镇准备在相距3千米的A、B两个工厂间修一条笔直的公路,在工厂A北偏东60°方向、工厂北偏西45°方向有一点P,以P点为圆心,1.2千米为半径的区域是一个村庄,问修筑公路时,这个村庄是否有居民需要搬迁?≈1.4≈1.7)【答案】修筑公路时,这个村庄有一些居民需要搬迁.考点:解直角三角形的应用-方向角问题.23.(2016内蒙古通辽第21题)如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),∴AE=EF.。
专题09 三角形(第04期)-2016年中考数学试题分项版汇编(原卷版)

一、选择题1.(2016海南省第14题)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6 2 C.2 3 D.3 22.(2016黑龙江哈尔滨第8题)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.320海里D.330海里3.(2016辽宁沈阳第9题)如图,在Rt△ABC中,∠C=90°,∠B=30°,AB=8,则BC的长是()A. B.4 C.83 D.434.(2016山东潍坊第7题)木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B 也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()5.(2016湖南张家界第11题)如图,在△ABC中,点D、E、F分别是边AB、BC、CA上的中点,且AB=6cm,AC=8cm,则四边形ADEF的周长等于cm.6.(2016江苏苏州第8题)如图,长4m的楼梯AB的倾斜角∠ABD为60°,为了改善楼梯的安全性能,准备重新建造楼梯,使其倾斜角∠ACD为45°,则调整后的楼梯AC的长为()A.23m B.26m C.(23﹣2)m D.(26﹣2)m7.(2016江苏苏州第9题)矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为()A.(3,1)B.(3,43)C.(3,53)D.(3,2)8.(2016江苏苏州第10题)如图,在四边形ABCD中,∠ABC=90°,AB=BC=22,E、F分别是AD、CD 的中点,连接BE、BF、EF.若四边形ABCD的面积为6,则△BEF的面积为()A.2 B.94C.52D.39.(2016新疆第8题)轮船从B处以每小时50海里的速度沿南偏东30°方向匀速航行,在B处观测灯塔A 位于南偏东75°方向上,轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60°方向上,则C处与灯塔A的距离是()海里.A.325B.225C.50 D.2510.(2016内蒙古包头第9题)如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA 的值为()A .B .C .D .11.(2016内蒙古包头第12题)如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°,E 是AB 上一点,且DE ⊥CE .若AD=1,BC=2,CD=3,则CE 与DE 的数量关系正确的是( )A .CE=DEB .CE=DEC .CE=3DED .CE=2DE12.(2016山东东营第9题)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则另一边BC 等于( )A .10B .8C .6或10D .8或1013.(2016山东东营第10题)如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为点F ,连接DF ,分析下列四个结论:①△AEF ∽△CAB ;②CF =2AF ;③DF =DC ;④tan ∠CAD =2.其中正确的结论有( )A.4个 B .3个 C .2个 D .1个第10题图F E DCA14.(2016湖北随州第7题)如图,D 、E 分别是△ABC 的边AB 、BC 上的点,且DE ∥AC ,AE 、CD 相交于点O ,若S △DOE :S △COA =1:25,则S △BDE与S △CDE的比是()A.1:3 B.1:4 C.1:5 D.1:2515.(2016湖南衡阳第16题)若△ABC与△DEF相似且面积之比为25:16,则△ABC与△DEF的周长之比为.16.(2016湖南湘西州第17题)如图,在△ABC中,DE∥BC,DB=2AD,△ADE的面积为1,则四边形DBCE的面积为()A.3 B.5 C.6 D.817.(2016湖南湘西州第14题)一个等腰三角形一边长为4cm,另一边长为5cm,那么这个等腰三角形的周长是()A.13cm B.14cm C.13cm或14cm D.以上都不对二、填空题,1(,则sin∠1=.1.(2016年福建龙岩第13题)如图,若点A的坐标为)32.(2016年福建龙岩第15题)如图,△ABC是等边三角形,BD平分∠ABC,点E在BC的延长线上,且CE=1,∠E=30°,则BC=.3.(2016黑龙江大庆第14题)如图,在△ABC中,∠A=40°,D点是∠ABC和∠ACB角平分线的交点,则∠BDC=.4.(2016黑龙江大庆第16题)一艘轮船在小岛A的北偏东60°方向距小岛80海里的B处,沿正西方向航行3小时后到达小岛的北偏西45°的C处,则该船行驶的速度为海里/小时.5.(2016黑龙江哈尔滨第17题)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.6.(2016辽宁沈阳第16题)如图,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,点M是边BC上一点,BM=3,点N是线段MC上的一个动点,连接DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是.7.(2016山东潍坊第17题)已知∠AOB=60°,点P是∠AOB的平分线OC上的动点,点M在边OA上,且OM=4,则点P到点M与到边OA的距离之和的最小值是.8.(2016江苏苏州第17题)如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为.9.(2016江苏苏州第18题)如图,在平面直角坐标系中,已知点A 、B 的坐标分别为(8,0)、(0,23),C 是AB 的中点,过点C 作y 轴的垂线,垂足为D ,动点P 从点D 出发,沿DC 向点C 匀速运动,过点P 作x 轴的垂线,垂足为E ,连接BP 、EC .当BP 所在直线与EC 所在直线第一次垂直时,点P 的坐标为 .10.(2016新疆第13题)如图所示,△ABC 中,E ,F 分别是边AB ,AC 上的点,且满足AE EB =AF FC =12,则△AEF与△ABC 的面积比是 .11.(2016湖南常德第11题)如图,OP 为∠AOB 的平分线,PC ⊥OB 于点C ,且PC=3,点P 到OA 的距离为 .12.(2016新疆第14题)如图,测量河宽AB (假设河的两岸平行),在C 点测得∠ACB=30°,D 点测得∠ADB=60°,又CD=60m ,则河宽AB 为 m (结果保留根号).13.(2016新疆第15题)如图,在平行四边形ABCD 中,P 是CD 边上一点,且AP 和BP 分别平分∠DAB 和∠CBA ,若AD=5,AP=8,则△APB 的周长是 .14.(2016湖北武汉第16题)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=55,则BD的长为_______.15.(2016湖北随州第12题)已知等腰三角形的一边长为9,另一边长为方程x2﹣8x+15=0的根,则该等腰三角形的周长为.16.(2016湖北随州第13题)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN=.17.(2016广西桂林第17题)如图,在Rt△ACB中,∠ACB=90°,AC=BC=3,CD=1,CH⊥BD于H,点O是AB中点,连接OH,则OH=.三、解答题1.(2016年福建龙岩第24题)已知△ABC是等腰三角形,AB=AC.(1)特殊情形:如图1,当DE∥BC时,有DB EC.(填“>”,“<”或“=”)(2)发现探究:若将图1中的△ADE绕点A顺时针旋转α(0°<α<180°)到图2位置,则(1)中的结论还成立吗?若成立,请给予证明;若不成立,请说明理由.(3)拓展运用:如图3,P是等腰直角三角形ABC内一点,∠ACB=90°,且PB=1,PC=2,PA=3,求∠BPC 的度数.2.(2016海南省第22题)如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B的仰角为45°,其中点A、C、E 在同一直线上.(1)求斜坡CD的高度DE;(2)求大楼AB的高度(结果保留根号)3.(2016黑龙江大庆第24题)如图,在菱形ABCD中,G是BD上一点,连接CG并延长交BA的延长线于点F,交AD于点E.(1)求证:AG=CG.(2)求证:AG2=GE•GF.4.(2016辽宁沈阳第19题)如图,△ABC≌△ABD,点E在边AB上,CE∥BD,连接DE.求证:(1)∠CEB=∠CBE;(2)四边形BCED是菱形.5.(2016山东潍坊第22题)如图,直立于地面上的电线杆AB,在阳光下落在水平地面和坡面上的影子分别是BC、CD,测得BC=6米,CD=4米,∠BCD=150°,在D处测得电线杆顶端A的仰角为30°,试求电线杆的高度(结果保留根号)6.(2016湖南张家界第19题)已知:如图,在四边形ABCD中,AB∥CD,E是BC的中点,直线AE交DC的延长线于点F.试判断四边形ABFC的形状,并证明你的结论.7.(2016湖南张家界第21题)如图,某建筑物AC顶部有一旗杆AB,且点A,B,C在同一条直线上,小明在地面D处观测旗杆顶端B的仰角为30°,然后他正对建筑物的方向前进了20米到达地面的E处,又测得旗杆顶端B的仰角为60°,已知建筑物的高度AC=12m,求旗杆AB的高度(结果精确到0.1米).参考数据:3≈1.73,2≈1.41.8.(2016新疆第19题)如图,四边形ABCD中,AD∥BC,AE⊥AD交BD于点E,CF⊥BC 交BD于点F,且AE=CF.求证:四边形ABCD是平行四边形.9.(2016湖北武汉第18题)(本题8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE =CF,求证:AB∥DE.10.(2016湖北武汉第23题)(本题10分)在△ABC中,P为边AB上一点.(1) 如图1,若∠ACP=∠B,求证:AC2=AP·AB;(2) 若M为CP的中点,AC=2,①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.11.(2016内蒙古包头第22题)如图,已知四边形ABCD中,∠ABC=90°,∠ADC=90°,AB=6,CD=4,BC的延长线与AD的延长线交于点E.(1)若∠A=60°,求BC的长;(2)若sinA=,求AD的长.(注意:本题中的计算过程和结果均保留根号)12.(2016内蒙古包头第25题)如图,已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,E、F分别是AC、AB边上点,连接EF.=3S△EDF,(1)图①,若将纸片ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,且使S四边形ECBF求AE的长;(2)如图②,若将纸片ACB的一角沿EF折叠,折叠后点A落在BC边上的点M处,且使MF∥CA.①试判断四边形AEMF的形状,并证明你的结论;②求EF的长;(3)如图③,若FE的延长线与BC的延长线交于点N,CN=1,CE=,求的值.13.(2016湖北随州第21题)某班数学兴趣小组利用数学活动课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.14.(2016湖北随州第24题)爱好思考的小茜在探究两条直线的位置关系查阅资料时,发现了“中垂三角形”,即两条中线互相垂直的三角形称为“中垂三角形”.如图(1)、图(2)、图(3)中,AM、BN是△ABC的中线,AN⊥BN于点P,像△ABC这样的三角形均为“中垂三角形”.设BC=a,AC=b,AB=c.【特例探究】(1)如图1,当tan∠PAB=1,c=4时,a=,b=;如图2,当∠PAB=30°,c=2时,a=,b=;【归纳证明】(2)请你观察(1)中的计算结果,猜想a2、b2、c2三者之间的关系,用等式表示出来,并利用图3证明你的结论.【拓展证明】(3)如图4,▱ABCD中,E、F分别是AD、BC的三等分点,且AD=3AE,BC=3BF,连接AF、BE、CE,且BE⊥CE于E,AF与BE相交点G,AD=3,AB=3,求AF的长.15.(2016广西桂林第21题)如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F分别是OA,OC的中点,连接BE,DF(1)根据题意,补全原形;(2)求证:BE=DF.16.(2016湖南常德第22题)南海是我国的南大门,如图所示,某天我国一艘海监执法船在南海海域正在进行常态化巡航,在A处测得北偏东30°方向上,距离为20海里的B处有一艘不明身份的船只正在向正东方向航行,便迅速沿北偏东75°的方向前往监视巡查,经过一段时间后,在C处成功拦截不明船只,问我海监执法船在前往监视巡查的过程中行驶了多少海里(最后结果保留整数)?(参考数据:cos75°=0.2588,sin75°=0.9659,tan75°=3.732,=1.732,=1.414)17.(2016湖南常德第25题)已知四边形ABCD中,AB=AD,AB⊥AD,连接AC,过点A作AE⊥AC,且使AE=AC,连接BE,过A作AH⊥CD于H交BE于F.(1)如图1,当E在CD的延长线上时,求证:①△ABC≌△ADE;②BF=EF;(2)如图2,当E不在CD的延长线上时,BF=EF还成立吗?请证明你的结论.18.(2016湖南衡阳第21题)如图,点A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF,求证:DE=CF.19.(2016湖南衡阳第24题)在某次海上军事学习期间,我军为确保△OBC海域内的安全,特派遣三艘军舰分别在O、B、C处监控△OBC海域,在雷达显示图上,军舰B在军舰O的正东方向80海里处,军舰C 在军舰B的正北方向60海里处,三艘军舰上装载有相同的探测雷达,雷达的有效探测范围是半径为r的圆形区域.(只考虑在海平面上的探测)(1)若三艘军舰要对△OBC海域进行无盲点监控,则雷达的有效探测半径r至少为多少海里?(2)现有一艘敌舰A从东部接近△OBC海域,在某一时刻军舰B测得A位于北偏东60°方向上,同时军舰C测得A位于南偏东30°方向上,求此时敌舰A离△OBC海域的最短距离为多少海里?(3)若敌舰A沿最短距离的路线以20海里/小时的速度靠近△OBC海域,我军军舰B沿北偏东15°的方向行进拦截,问B军舰速度至少为多少才能在此方向上拦截到敌舰A?20.(2016湖南湘西州第21题)如图,点O是线段AB和线段CD的中点.(1)求证:△AOD≌△BOC;(2)求证:AD∥BC.21.(2016湖南湘西州第24题)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°,(可用的参考数据:sin50°≈0.8,tan50°≈1.2)(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.。
2016年中考数学试题分项版解析(第03期)专题09 三角形

专题09 三角形一、选择题1.(2016广西省贺州市第7题)一个等腰三角形的两边长分别为4,8,则它的周长为()A.12 B.16 C.20 D.16或20【答案】C【解析】考点:(1)、等腰三角形的性质;(2)、三角形三边关系2.(2016广西省南宁市第5题)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米【答案】C【解析】试题分析:根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD 的长度.∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).考点:解直角三角形的应用.3.(2016湖北省荆州市第8题)如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E.若BC=3,则DE的长为()A.1 B.2 C.3 D.4【解析】试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质4.(2016湖南省邵阳市第8题)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【答案】A【解析】考点:等腰三角形的性质5.(2016山东省聊城市第12题)聊城“水城之眼”摩天轮是亚洲三大摩天轮之一,也是全球首座建筑与摩天轮相结合的城市地标,如图,点O是摩天轮的圆心,长为110米的AB是其垂直地面的直径,小莹在地面C 点处利用测角仪测得摩天轮的最高点A的仰角为33°,测得圆心O的仰角为21°,则小莹所在C点到直径AB所在直线的距离约为(tan33°≈0.65,tan21°≈0.38)()A.169米 B.204米 C.240米 D.407米【解析】考点:解直角三角形的应用-仰角俯角问题6.(2016山东省泰安市第16题)如图,轮船沿正南方向以30海里/时的速度匀速航行,在M处观测到灯塔P 在西偏南68°方向上,航行2小时后到达N处,观测灯塔P在西偏南46°方向上,若该船继续向南航行至离灯塔最近位置,则此时轮船离灯塔的距离约为(由科学计算器得到sin68°=0.9272,sin46°=0.7193,sin22°=0.3746,sin44°=0.6947)()A.22.48 B.41.68 C.43.16 D.55.63【答案】B【解析】∴PA=PN·sin∠PNA=60×0.6947≈41.68(海里)考点:锐角三角函数的应用7.(2016山东省泰安市第18题)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为()A.44°B.66°C.88°D.92°【答案】D【解析】考点:(1)、等腰三角形的性质;(2)、全等三角形的判定和性质;(3)、三角形的外角的性质8.(2016云南省第14题)如图,D 是△ABC 的边BC 上一点,AB=4,AD=2,∠DAC=∠B .如果△ABD 的面积为15,那么△ACD 的面积为( )A .15B .10C .215 D .5 【答案】D【解析】 试题分析:首先证明△ACD ∽△BCA ,由相似三角形的性质可得:△ACD 的面积:△ABC 的面积为1:4,因为△ABD 的面积为9,进而求出△ACD 的面积. ∵∠DAC=∠B ,∠C=∠C , ∴△ACD ∽△BCA ,∵AB=4,AD=2, ∴△ACD 的面积:△ABC 的面积为1:4, ∴△ACD 的面积:△ABD 的面积=1:3, ∵△ABD 的面积为15, ∴△ACD 的面积∴△ACD 的面积=5.考点:相似三角形的判定与性质9.(2016浙江省温州市第9题)如图,一张三角形纸片ABC ,其中∠C=90°,AC=4,BC=3.现小林将纸片做三次折叠:第一次使点A 落在C 处;将纸片展平做第二次折叠,使点B 落在C 处;再将纸片展平做第三次折叠,使点A 落在B 处.这三次折叠的折痕长依次记为a ,b ,c ,则a ,b ,c 的大小关系是( )A .c >a >bB .b >a >cC .c >b >aD .b >c >a【答案】D【解析】第一次折叠如图1,折痕为DE , 由折叠得:AE=EC=AC=×4=2,DE ⊥AC ∵∠ACB=90° ∴DE ∥BC∴a=DE=BC=×3=第二次折叠如图2,折痕为MN , 由折叠得:BN=NC=BC=×3=,MN ⊥BC ∵∠ACB=90° ∴MN ∥AC∴b=MN=AC=×4=2第三次折叠如图3,折痕为GH ,由勾股定理得:AB==5由折叠得:AG=BG=AB=×5=,GH ⊥AB ∴∠AGH=90° ∵∠A=∠A ,∠AGH=∠ACB∴△ACB ∽△AGH ∴= ∴= ∴GH=,即c= ∵2>> ∴b >c >a考点:翻折变换(折叠问题)10.(2016重庆市第11题)如图所示,某办公大楼正前方有一根高度是15米的旗杆ED ,从办公大楼顶端A 测得旗杆顶端E 的俯角α是45°,旗杆低端D 到大楼前梯砍底边的距离DC 是20米,梯坎坡长BC 是12米,梯坎坡度i=1:3,则大楼AB 的高度约为(精确到0.1米,参考数据:45.2673.1341.12≈≈≈,,) ( ) A.30.6米 B.32.1 米 C.37.9米 D.39.4米【答案】D【解析】考点:三角函数的实际应用.二、填空题1.(2016四川省乐山市第14题)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC= °.【答案】15.【解析】试题分析:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=12(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.考点:1.线段垂直平分线的性质;2.等腰三角形的性质.2.(2016广西省贺州市第16题)如图,在△ABC中,分别以AC、BC为边作等边三角形ACD和等边三角形BCE,连接AE、BD交于点O,则∠AOB的度数为.【答案】120°【解析】考点:(1)、全等三角形的判定与性质;(2)、等边三角形的性质3.(2016贵州省毕节市第19题)在△ABC 中,D 为AB 边上一点,且∠BCD=∠A,已知BC=22,AB=3则BD= 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题09 三角形(第05期)-2016年中考数学试题一、选择题1.(2016四川甘孜州第9题)如图,在△ABC中,BD平分∠ABC,ED∥BC,已知AB=3,AD=1,则△AED的周长为()A.2B.3C.4D.5【答案】C.考点:等腰三角形的判定与性质;平行线的性质.2.(2016贵州铜仁第9题)如图,已知∠AOB=30°,P是∠AOB平分线上一点,CP∥OB,交OA于点C,PD⊥OB,垂足为点D,且PC=4,则PD等于()A.1B. 2 C.4D.8【答案】B.【解析】试题分析:过点P作PE⊥OA于点E,∵OP是∠AOB的平分线,∴PE=PD.∵PC∥OB,∴∠POD=∠OPC,∴∠PCE=∠POC+∠OPC=∠POC+∠POD=∠AOB=30°,∴PE=12PC=2,∴PD=2.故选B.考点:角平分线的性质;含30度角的直角三角形.3.(2016湖南株洲第4题)如图,在三角形ABC中,∠ACB=90°,∠B=50°,将此三角形绕点C沿顺时针方向旋转后得到三角形A′B′C,若点B′恰好落在线段AB上,AC、A′B′交于点O,则∠COA′的度数是()A.50°B.60°C.70°D.80°【答案】B.考点:旋转的性质.4.(2016广西来宾第9题)如图,在△ABC中,AB=4,BC=6,DE、DF是△ABC的中位线,则四边形BEDF的周长是()A.5B.7C.8D.10【答案】D.【解析】试题分析:∵AB=4,BC=6,DE、DF是△ABC的中位线,∴DE=12AB=2,DF=12BC=3,DE ∥BF ,DF ∥BE ,∴四边形BEDF 为平行四边形,∴四边形BEDF 的周长为:2×2+3×2=10,故选D .考点:三角形中位线定理.5.(2016福建莆田第6题)如图,OP 是∠AOB 的平分线,点C ,D 分别在角的两边OA ,OB 上,添加下列条件,不能判定△POC ≌△POD 的选项是( )A .PC ⊥OA ,PD ⊥OB B .OC =OD C .∠OPC =∠OPD D .PC =PD 【答案】D .考点:角平分线的性质;全等三角形的判定.6.(2016福建莆田第9题)如图,在△ABC 中,∠ACB =90°,AC =BC =4,将△ABC 折叠,使点A 落在BC 边上的点D 处,EF 为折痕,若AE =3,则sin ∠BFD 的值为( )A .13 B C D .35 【答案】A . 【解析】试题分析:∵在△ABC 中,∠ACB =90°,AC =BC =4,∴∠A =∠B ,由折叠的性质得到:△AEF ≌△DEF ,∴∠EDF =∠A ,∴∠EDF =∠B ,∴∠CDE +∠BDF +∠EDF =∠BFD +∠BDF +∠B =180°,∴∠CDE =∠BFD .又∵AE =DE =3,∴CE =4﹣3=1,∴在直角△ECD 中,sin ∠CDE=13CEED=.故选A.考点:翻折变换(折叠问题);等腰直角三角形;锐角三角函数的定义.7.(2016广西河池第4题)下列长度的三条线段不能组成三角形的是()A.5,5,10B.4,5,6C.4,4,4D.3,4,5 【答案】A.考点:三角形三边关系.8.(2016贵州贵阳第7题)如图,在△ABC中,DE∥BC,13ADAB=,BC=12,则DE的长是()A.3B.4C.5D.6 【答案】B.【解析】试题分析:∵DE∥BC,∴△ADE∽△ABC,∴DEBC=13ADAB=,∵BC=12,∴DE=13BC=4.故选B.考点:相似三角形的判定与性质.9.(2016内蒙古呼伦贝尔市、兴安盟第12题)如图,Rt△ABC中,AB=9,BC=6,∠B=90°,将△ABC折叠,使A点与BC的中点D重合,折痕为PQ,则线段BQ的长度为()A.B.C.4 D.5【答案】C.【解析】试题分析:设BQ=x,则由折叠的性质可得DQ=AQ=9﹣x,根据中点的定义可得BD=3,在Rt△BQD中,根据勾股定理可得关于x的方程x2+32=(9﹣x)2,解得x=4,所以线段BQ 的长为4.故选C.考点:翻折变换(折叠问题).10.(2016辽宁葫芦岛第9题)如图,在△ABC中,点D,E分别是边AB,AC的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=4,则BF的长为()A.4 B.8 C.D.【答案】D.考点:三角形中位线定理;直角三角形斜边上的中线.11.(2016辽宁营口第8题)如图,在△ABC中,∠ACB=90°,分别以点A和点C为圆心,以相同的长(大于12AC)为半径作弧,两弧相交于点M和点N,作直线MN交AB于点D,交AC于点E,连接CD.下列结论错误的是()A.AD=CD B.∠A=∠DCE C.∠ADE=∠DCB D.∠A=2∠DCB【答案】D.【解析】试题分析:∵DE是AC的垂直平分线,∴DA=DC,AE=EC,故A正确,∴DE∥BC,∠A=∠DCE,故B正确,∴∠ADE=∠CDE=∠DCB,故C正确,故选D.考点:作图—基本作图;线段垂直平分线的性质.12.(2016黑龙江绥化第6题)如图,小雅家(图中点O处)门前有一条东西走向的公路,经测得有一水塔(图中点A处)在距她家北偏东60°方向的500米处,那么水塔所在的位置到公路的距离AB是()A.250米B.C米D.米【答案】A.考点:解直角三角形的应用-方向角问题.a-+=,13.(2016江苏盐城第8题)若a、b、c为△ABC的三边长,且满足40则c的值可以为()A.5B.6C.7D.8【答案】A.【解析】试题分析:∵40a-+=,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选A.考点:三角形三边关系;非负数的性质:绝对值;非负数的性质:算术平方根.14.(2016江苏盐城第7题)如图,点F在平行四边形ABCD的边AB上,射线CF交DA 的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【答案】C.考点:相似三角形的判定;平行四边形的性质.15.(2016江苏常州第5题)如图,把直角三角板的直角顶点O放在破损玻璃镜的圆周上,两直角边与圆弧分别交于点M、N,量得OM=8cm,ON=6cm,则该圆玻璃镜的半径是()A B.5cm C.6cm D.10cm【答案】B.【解析】试题分析:如图,连接MN,∵∠O=90°,∴MN是直径,又OM=8cm,ON=6cm,∴MN(cm),∴该圆玻璃镜的半径是:12MN=5cm.故选B.考点:圆周角定理;勾股定理.16.(2016江苏常州第7题)已知△ABC中,BC=6,AC=3,CP⊥AB,垂足为P,则CP的长可能是()A.2B.4C.5D.7【答案】A.【解析】试题分析:如图,根据垂线段最短可知:PC<3,∴CP的长可能是2,故选A.考点:垂线段最短.17.(2016重庆A卷第8题)△ABC与△DEF的相似比为1:4,则△ABC与△DEF的周长比为()A.1:2B.1:3C.1:4D.1:16【答案】C.考点:相似三角形的性质.18.(2016重庆A卷第11题)某数学兴趣小组同学进行测量大树CD高度的综合实践活动,如图,在点A处测得直立于地面的大树顶端C的仰角为36°,然后沿在同一剖面的斜坡AB 行走13米至坡顶B处,然后再沿水平方向行走6米至大树脚底点D处,斜面AB的坡度(或坡比)i=1:2.4,那么大树CD的高度约为(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73)()A.8.1米B.17.2米C.19.7米D.25.5米【答案】A.【解析】试题分析:作BF⊥AE于F,如图所示,则FE=BD=6米,DE=BF,∵斜面AB的坡度i=1:2.4,∴AF=2.4BF,设BF=x米,则AF=2.4x米,在Rt△ABF中,由勾股定理得:222+=,解得:x=5,∴DE=BF=5米,AF=12米,∴AE=AF+FE=18米,在Rt△ACE(2.4)13x x中,CE=AE•tan36°=18×0.73=13.14米,∴CD=CE﹣DE=13.14米﹣5米≈8.1米;故选A.考点:解直角三角形的应用-仰角俯角问题.19.(2016四川南充第3题)如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【答案】B.考点:轴对称的性质.20.(2016四川南充第7题)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1B.2C D.【答案】A.【解析】试题分析:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是A C.BC的中点,∴DE是△ACB的中位线,∴DE=12AB=1.故选A.考点:三角形中位线定理;含30度角的直角三角形.21.(2016内蒙古巴彦淖尔第7题)如图,E为▱ABCD的边AB延长线上的一点,且BE:A B=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30B.27C.14D.32【答案】A.考点:相似三角形的判定与性质;平行四边形的性质.22.(2016内蒙古巴彦淖尔第8题)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A. B.1)m C.1)m D. 【答案】C . 【解析】 试题分析:如图,由题意可知CE ∥BD ,∴∠CBA =30°,∠CAD =45°,且CD =3000m ,在Rt △ACD 中,AD =CD =3000m ,在Rt △BCD 中,BD =tan CD CBA ∠==m ,∴AB =BD ﹣AD=3000=1)(m ),故选C .考点:解直角三角形的应用-仰角俯角问题.23.(2016四川南充第10题)如图,正五边形的边长为2,连结对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N .给出下列结论:①∠AME =108°;②2AN AM AD =⋅;③MN=3④1EBC S ∆=.其中正确结论的个数是( )A .1个B .2个C .3个D .4个 【答案】C .∵∠AEN =108°﹣36°=72°,∠ANE =36°+36°=72°,∴∠AEN =∠ANE ,∴AE =AN ,同理DE =DM ,∴AE =DM ,∵∠EAD =∠AEM =∠ADE =36°,∴△AEM ∽△ADE ,∴AE AMAD AE=,∴2AE =AM •AD ;∴2AN AM AD =⋅;故②正确;∵2AE =AM •AD ,∴22=(2﹣MN )(4﹣MN ),∴MN =3在正五边形ABCDE中,∵BE =CE =AD =1,∴BH =12BC =1,∴EH =,∴S △EBC =12BC •EH =122⨯,故④错误; 故选C .考点:相似三角形的判定与性质;正多边形和圆. 二、填空题1.(2016贵州遵义第14题)如图,在△ABC 中,AB =BC ,∠ABC =110°,AB 的垂直平分线DE 交AC 于点D ,连接BD ,则∠ABD = 度.【答案】35.考点:线段垂直平分线的性质.2.(2016四川甘孜州第13题)直角三角形斜边长是5,一直角边的长是3,则此直角三角形的面积为.【答案】6.【解析】试题分析:∵直角三角形斜边长是5,一直角边的长是3,.该直角三角形的面积S=12×3×4=6.故答案为:6.考点:勾股定理.3.(2016四川甘孜州第23题)如图,点P1,P2,P3,P4均在坐标轴上,且P1P2⊥P2P3,P2P3⊥P3P4,若点P1,P2的坐标分别为(0,﹣1),(﹣2,0),则点P4的坐标为.【答案】(8,0).考点:相似三角形的判定与性质;坐标与图形性质.4.(2016湖南株洲第18题)已知点P 是△ABC 内一点,且它到三角形的三个顶点距离之和最小,则P 点叫△ABC 的费马点(Fermat point ),已经证明:在三个内角均小于120°的△ABC 中,当∠APB =∠APC =∠BPC =120°时,P 就是△ABC 的费马点,若P 就是△ABC 的费马点,若点P DEF 的费马点,则PD +PE +PF = .1. 【解析】试题分析:如图:等腰Rt △DEF 中,DE =DF D 作DM ⊥EF 于点M ,过E 、F分别作∠MEP =∠MFP =30°,则EM =DM =1,故cos 30°=EMEP ,解得:PE =PF 3,则PM =3,故DP =1﹣3,则PD +PE +PF =2×3+1﹣31.1.考点:解直角三角形;等腰直角三角形;新定义.5.(2016浙江台州第12题)如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C 平移的距离CC ′= .【答案】.【解析】试题分析:∵把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,∴三角板向右平移了5个单位,∴顶点C平移的距离CC′=5.故答案为:5.考点:平移的性质.6.(2016福建莆田第16题)魏朝时期,刘徽利用下图通过“以盈补虚,出入相补”的方法,即“勾自乘为朱方,股自乘为青方,令出入相补,各从其类”,证明了勾股定理.若图中BF =1,CF=2,则AE的长为__________.【答案】考点:勾股定理;相似三角形的判定与性质.7.(2016广西河池第18题)如图的三角形纸片中,AB=AC,BC=12cm,∠C=30°,折叠这个三角形,使点B落在AC的中点D处,折痕为EF,那么BF的长为cm.【答案】143.【解析】试题分析:过D作DH⊥BC,过点A作AN⊥BC于点N,∵AB=AC,∴∠B=∠C=30°,根据折叠可得:D F=BF,∠EDF=∠B=30°,∵AB=AC,BC=12cm,∴BN=NC=6cm,∵点B落在AC的中点D处,AN∥DH,∴NH=HC=3cm,∴DH=3tan30°cm),设BF=DF=xcm,则FH =12﹣x ﹣3=9﹣x (cm ),故在Rt △DFC 中,222D F D H F H =+,故222)(9)x x =+-,解得:x =143,即BF 的长为:143cm .故答案为:143.考点:翻折变换(折叠问题).8.(2016贵州贵阳第15题)如图,∠BAC =45°,AB =8,要使满足条件的△ABC 惟一确定,那么BC 的长度x 的取值范围是 .【答案】x ≥8.综上所述,∠BAC =45°,AB =8,要使△ABC 唯一确定,那么BC 的长度x 满足的条件是:x =或x 大于或等于8.故答案为:x ≥8.考点:全等三角形的判定;分类讨论.9.(2016福建泉州第11题)如图,在△ABC 中,D 、E 分别是边AB 、AC 的中点,BC=8,则DE= .【答案】4.【解析】试题分析:已知D、E分别是边AB、AC的中点,BC=8,根据三角形的中位线定理得到BC=4.DE=12考点:三角形中位线定理.10.(2016福建泉州第14题)如图,在Rt△ABC中,E是斜边AB的中点,若AB=10,则CE=.【答案】5.【解析】1AB=5.试题分析:根据直角三角形斜边上的中线等于斜边的一半,可得CE=2考点:直角三角形斜边上的中线.11.(2016青海第6题)如图,已知∠CAE是△ABC的外角,AD∥BC,且AD是∠EAC的平分线,若∠B=71°,则∠BAC=.【答案】38°.考点:三角形的外角性质;平行线的性质.12.(2016内蒙古呼伦贝尔市、兴安盟第17题)如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,把△ABC绕AB边上的点D顺时针旋转90°得到△A′B′C′,A′C′交AB于点E,若AD=BE,则△A′DE的面积是.【答案】3 2.考点:旋转的性质.13.(2016内蒙古通辽第14题)等腰三角形一腰上的高与另一腰的夹角为48°,则该等腰三角形的底角的度数为.【答案】69°或21°.【解析】试题分析:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,∴∠A+∠ABD=90°,∵∠ABD=48°,∴∠A=90°﹣48°=42°,∵AB=AC,∴∠ABC=∠C=(180°﹣42°)÷2=69°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°﹣48°=42°,∴∠BAC=180°﹣42°=138°,∵AB=AC,∴∠ABC=∠C=(180°﹣138°)÷2=21°;综上所述:等腰三角形底角的度数为69°或21°.故答案为:69°或21°.考点:等腰三角形的性质;分类讨论.14.(2016黑龙江绥化第18题)如图,在四边形ABCD中,∠ABC=30°,将△DCB绕点C 顺时针旋转60°后,点D的对应点恰好与点A重合,得到△ACE,若AB=3,BC=4,则BD= (提示:可连接BE)【答案】5.考点:旋转的性质;推理填空题.15.(2016江苏盐城第17题)已知△ABC中,tanB=23,BC=6,过点A作BC边上的高,垂足为点D,且满足BD:C D=2:1,则△ABC面积的所有可能值为.【答案】8或24.【解析】试题分析:如图1所示:∵BC=6,BD:C D=2:1,∴BD=4,∵AD⊥BC,tanB=23,∴ADBD=23,∴AD=23BD=83,∴S△ABC=12BC•AD=12×6×83=8;如图2所示:∵BC=6,BD:C D=2:1,∴BD=12,∵AD⊥BC,tanB=23,∴ADBD=23,∴AD=23BD=8,∴S△ABC=12BC•AD=12×6×8=24;综上,△ABC面积的所有可能值为8或24,故答案为:8或24.考点:解直角三角形;分类讨论.16.(2016江苏常州第18题)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是.【答案】1.试题解析:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则C F=12CP=12b,224a b+=,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×12b=12ab,又∵222()2a b a b ab-=+-≥0,∴2ab≤224a b+=,∴12ab≤1,即四边形PCDE面积的最大值为1.故答案为:1.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质;最值问题.17.(2016福建南平第16题)如图,等腰△ABC中,CA=CB=4,∠ACB=120°,点D在线段AB上运动(不与A、B重合),将△CAD与△CBD分别沿直线CA、CB翻折得到△CAP 与△CBQ,给出下列结论:①CD=CP=CQ;②∠PCQ的大小不变;③△PCQ④当点D在AB的中点时,△PDQ是等边三角形,其中所有正确结论的序号是.【答案】①②④.③如图,过点Q 作QE ⊥PC 交PC 延长线于E ,∵∠PCQ =120°,∴∠QCE =60°,在Rt △QCE中,tan ∠QCE =QE CQ,∴QE =CQ ×tan ∠QCE =CQ ×tan 60°=CQ ,∵CP =CD =CQ ,∴S △PCQ =12CP ×QE =12CP 2,∴CD 最短时,S △PCQ 最小,即:C D ⊥AB 时,CD 最短,过点C 作CF ⊥AB ,此时CF 就是最短的CD ,∵AC =BC =4,∠ACB =120°,∴∠ABC =30°,∴CF =12BC =2,即:C D 最短为2,∴S △PCQ 最小=22=222=错误;④∵将△CAD 与△CBD 分别沿直线CA 、CB 翻折得到△CAP 与△CBQ ,∴AD =AP ,∠DAC =∠P AC ,∵∠DAC =30°,∴∠APD =60°,∴△APD 是等边三角形,∴PD =AD ,∠ADP =60°,同理:△BDQ 是等边三角形,∴DQ =BD ,∠BDQ =60°,∴∠PDQ =60°,∵当点D 在AB 的中点,∴AD =BD ,∴PD =DQ ,∴△DPQ 是等边三角形,∴④正确,故答案为:①②④. 考点:几何变换综合题;定值问题;最值问题;综合题;翻折变换(折叠问题).18.(2016内蒙古巴彦淖尔第16题)如图,在Rt △ABC 中,∠B =90°,AB =BC =2,将△ABC 绕点C 顺时针旋转60°,得到△DEC ,则AE 的长是_____________.考点:旋转的性质.三、解答题1.(2016贵州遵义第21题)某新农村乐园设置了一个秋千场所,如图所,秋千拉绳OB的长为3m,静止时,踏板到地面距离BD的长为0.6m(踏板厚度忽略不计).为安全起见,乐园管理处规定:儿童的“安全高度”为hm,成人的“安全高度”为2m(计算结果精确到0.1m)(1)当摆绳OA与OB成45°夹角时,恰为儿童的安全高度,则h= m(2)某成人在玩秋千时,摆绳OC与OB的最大夹角为55°,问此人是否安全?(参考数据:1.41,sin55°≈0.82,cos55°≈0.57,tan55°≈1.43)【答案】(1)1.5;(2)成人是安全的.(2)如图,过C点作CM⊥DF,交DF于点M,在Rt△CEO中,∠CEO=90°,∴cos∠COE=OEOC,∴OE=OC•cos∠COF,∵OB=OC=3m,∠CON=55°,∴OE=3cos55°≈1.72m,∴ED=3+0.6﹣1.72≈1.9m,∴CM=ED≈1.9m,∵成人的“安全高度”为2m,∴成人是安全的.考点:解直角三角形的应用.2.(2016贵州遵义第24题)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE得出EQ=PE+PQ=由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE ﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.试题解析:(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,∵∠C=∠A,CF=AE,∠F=∠E,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE EQ=PE+PQ==,∴AQ=AE=3,∴AB=AE﹣BE=2,∵CP=AQ,AD=BC,∴DQ=BP=1,∴AD=AQ+DQ=3+1=4,∴矩形ABCD的面积=AB•AD=2×4=8.考点:矩形的性质;全等三角形的判定与性质.3.(2016四川甘孜州第18题)如图,在一次测量活动中,小丽站在离树底部E处5m的B 处仰望树顶C,仰角为30°,已知小丽的眼睛离地面的距离AB为1.65m,那么这棵树大约有多高?(结果精确到0.1m 1.73)【答案】4.5.试题解析:过点A作AD⊥CE于点D,如图所示.∵AB⊥BE,DE⊥BE,AD⊥DE,∴四边形ABED为矩形,∴AD=BE=5,DE=AB=1.65.在Rt△ACD中,AD=5,∠CAD=30°,∴CD=AD•tan∠CAD=5 2.88,∴CE=CD+DE=2.88+1.65=4.53≈4.5.答:这棵树大约高4.5米.考点:解直角三角形的应用-仰角俯角问题.4.(2016贵州铜仁第22题)阅读材料:关于三角函数还有如下的公式:sin(α±β)=sinαcosβ±cosαsinβtan(α±β)=tan tan 1tan tanαβαβ±利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值.例:tan75°=tan(45°+30°)=tan45tan301tan45tan30+-1=2根据以上阅读材料,请选择适当的公式解答下面问题:(1)计算:sin15°;(2)某校在开展爱国主义教育活动中,来到烈士纪念碑前缅怀和纪念为国捐躯的红军战士.李三同学想用所学知识来测量如图纪念碑的高度.已知李三站在离纪念碑底7米的C 处,在D点测得纪念碑碑顶的仰角为75°,DC【答案】(1)4;(2)14+(2)先根据锐角三角函数的定义求出BE的长,再根据AB=AE+BE即可得出结论.试题解析:(1)sin15°=sin(45°﹣30°)=sin45°cos30°﹣cos45°sin30°1 2(2)在Rt△BDE中,∵∠BED=90°,∠BDE=75°,DE=AC=7米,∴BE=DE•tan∠BDE=DE•tan75°.∵tan75°=2+∴BE=7(2=14+∴AB=AE+BE14+14+(米).答:纪念碑的高度为(14考点:解直角三角形的应用-仰角俯角问题;阅读型.5.(2016浙江台州第19题)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.试题解析:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.∵PH∥AD,∴PH∥BC,∴∠PCF=∠CPH.在△PHC和△CFP中,∵∠CPF=∠PCH,PC=CP,∠PCF=∠CPH,∴△PHC≌△CFP(ASA).(2)∵四边形ABCD为矩形,∴∠D=∠B=90°.又∵EF∥AB∥CD,GH∥AD∥BC,∴四边形PEDH和四边形PFBG都是矩形.∵EF∥AB,∴∠CPF=∠CAB.在Rt△AGP中,∠AGP=90°,PG=AG•tan∠CAB.在Rt△CFP中,∠CFP=90°,CF=PF•tan∠CPF.S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.考点:矩形的判定与性质;全等三角形的判定与性质.6.(2016浙江台州第20题)保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)【答案】不符合.考点:解直角三角形的应用.7.(2016贵州铜仁第20题)如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:D E=DF.【答案】证明见解析.考点:全等三角形的判定与性质;等腰直角三角形.8.(2016湖南株洲第23题)已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.【答案】(1)证明见解析;(2)9 13.【解析】(2)过点A作AH⊥DE于点H,在Rt△ABE中,∵AB=BC=3,∵BE=1,∴AEED,∵S△AED=12AD×BA=92,S△ADE=12ED×AH=92,解出AH=1.8,在Rt△AHE中,EH=2.6,∴tan∠AED=AMEM=1.82.6=913.考点:正方形的性质;全等三角形的判定与性质.9.(2016广西来宾第23题)如图,在正方形ABCD中,点E(与点B、C不重合)是BC 边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.【答案】(1)证明见解析;(2)1.【解析】试题分析:(1)根据同角的余角相等得到一对角相等,再由一对直角相等,且AE=EF,利用AAS得到三角形ABE与三角形EFG全等;(2)利用全等三角形的性质得出AB=EG=2,S△ABE=S△EGF,求出S EGF=2S△ECF,根据三角形面积得出EC=CG=1,根据正方形的性质得出BC=AB=2,即可求出答案.考点:正方形的性质;全等三角形的判定与性质;旋转的性质.10.(2016福建莆田第20题)小梅家的阳台上放置了一个晒衣架如图1,图2是晒衣架的侧面示意图,A,B两点立于地面,将晒衣架稳固张开,测得张角∠AOB=62°,立杆OA=OB=140cm,小梅的连衣裙穿在衣架后的总长度为122cm,问将这件连衣裙垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由(参考数据:sin59°≈0.86,cos59°≈0.52,tan59°≈1.66)【答案】会.【解析】试题分析:过点O作OE⊥AB,根据等腰三角形的性质求得∠OAB,再在Rt△AEO中,利用三角函数sin∠OAB=OEOA,求得OE,即可作出判断.试题解析:过点O作OE⊥AB于点E,∵OA=OB,∠AOB=62°,∴∠OAB=∠OBA=59°,在Rt△AEO中,OE=OA•sin∠OAB=140×sin59°≈140×0.86=120.4,∵120.4<122,∴这件连衣裙垂挂在晒衣架上会拖落到地面.考点:解直角三角形的应用.11.(2016福建莆田第25题)若正方形有两个相邻顶点在三角形的同一条边上,其余两个顶点分别在三角形的另两条边上,则正方形称为三角形该边上的内接正方形,△ABC 中,设BC =a ,AC =b ,AB =c ,各边上的高分别记为a h ,b h ,c h ,各边上的内接正方形的边长分别记为a x ,b x ,c x .(1)模拟探究:如图,正方形EFGH 为△ABC 的BC 边上的内接正方形,求证:111a aa h x +=; (2)特殊应用:若∠BAC =90°,b x =c x =2,求11b c+的值; (3)拓展延伸:若△ABC 为锐角三角形,b <c ,请判断b x 与c x 的大小,并说明理由.【答案】(1)证明见解析;(2)12;(3)b x >c x .(3)先根据(1)中的结论得出111b b b h x +=和111c c c h x +=,变形得出b b bbh x b h =+,c c c ch x c h =+,再根据△ABC 得到b b h =c c h , b h =csinA ,c h =bsinA ,最后代入代数式11b c x x -进行变形推导,即可得出b x 与c x 的大小关系.试题解析:∵正方形EFGH 中,EH ∥FG ,∴△AEH ∽△ABC ,∵AD ⊥BC ,∴EH AK BC AD =,即a a a a x h x a h -=,∴111a aa h x +=; (2)由(1)得:111b b b h x +=,∵∠A =90°,∴b h =c ,又∵b x =2,∴11b c +=12; (3)b x >c x .证明:由(1)得:111b b b h x +=,111c c c h x +=,∴b b b bh x b h =+,c c c ch x c h =+,∵S =12b b h =12c c h ,∴2S =b b h =c c h ,又∵b h =csinA ,c h =bsinA ,∴11b cx x -=()2b c b h c h S +-+=sin (sin )2b c A c b A S +-+ =()(1sin )2b c A S --,∵b <c ,sinA <1,∴()(1sin )2b c A S --<0,即11b cx x -<0,∴b x >c x . 考点:三角形综合题;相似三角形的判定与性质;探究型;和差倍分;压轴题.12.(2016广西河池第21题)如图,AE ∥BF ,AC 平分∠BAE ,交BF 于C .(1)尺规作图:过点B 作AC 的垂线,交AC 于O ,交AE 于D ,(保留作图痕迹,不写作法);(2)在(1)的图形中,找出两条相等的线段,并予以证明.【答案】(1)作图见解解析;(2)AB =AD =BC .(2)AB=AD=BC.证明如下:∵AE∥BF,∴∠EAC=∠BCA,∵AC平分∠BAE,∴∠EAC=∠BAC,∴∠BCA=∠BAC,∴BA=BC,∵BD⊥AO,AO平分∠BAD,∴AB=AD,∴AB=AD=BC.考点:作图—基本作图;作图题.13.(2016贵州贵阳第18题)(10分)如图,点E正方形ABCD外一点,点F是线段AE上一点,△EBF是等腰直角三角形,其中∠EBF=90°,连接CE、CF.(1)求证:△ABF≌△CBE;(2)判断△CEF的形状,并说明理由.【答案】(1)证明见解析;(2)△CEF是直角三角形.试题解析:(1)证明:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∵△EBF是等腰直角三角形,其中∠EBF=90°,∴BE=BF,∴∠ABC﹣∠CBF=∠EBF﹣∠CBF,∴∠ABF=∠CBE.在△ABF和△CBE中,∵AB=CB,∠ABF=∠CBE,BF=BE,∴△ABF≌△CBE(SAS).(2)解:△CEF是直角三角形.理由如下:∵△EBF是等腰直角三角形,∴∠BFE=∠FEB=45°,∴∠AFB=180°﹣∠BFE=135°,又∵△ABF≌△CBE,∴∠CEB=∠AFB=135°,∴∠CEF=∠CEB﹣∠FEB=135°﹣45°=90°,∴△CEF 是直角三角形.考点:正方形的性质;全等三角形的判定与性质;等腰直角三角形.14.(2016贵州贵阳第21题)(8分)“蘑菇石”是我省著名自然保护区梵净山的标志,小明从山脚B点先乘坐缆车到达观景平台DE观景,然后再沿着坡脚为29°的斜坡由E点步行到达“蘑菇石”A点,“蘑菇石”A点到水平面BC的垂直距离为1790m.如图,DE∥BC,BD=1700m,∠DBC=80°,求斜坡AE的长度.(结果精确到0.1m)【答案】238.9m.考点:解直角三角形的应用-坡度坡角问题.15.(2016贵州贵阳第24题)(12分)(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D 逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC 于点F,连接EF,求证:B E+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【答案】(1)2<AD<8;(2)证明见解析;(3)BE+DF=EF.(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.试题解析:(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,∵BD=CD,∠BDE=∠CDA,DE=AD,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:A B﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:B E+BM>EM,∴BE+CF>EF;(3)解:B E+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,∵BN=DF,∠NBC=∠D,BC=DC,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,∵CN=CF,∠ECN=∠ECF,CE=CE,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.考点:三角形综合题;探究型;和差倍分.16.(2016福建泉州第20题)如图,△ABC、△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,点E在AB上.求证:△CDA≌△CEB.【答案】详见解析.考点:全等三角形的判定;等腰直角三角形.17.(2016青海第23题)如图,在▱ABCD中,点E,F在对角线AC上,且AE=CF.求证:(1)DE=BF;(2)四边形DEBF是平行四边形.【答案】详见解析.在△ADE 和△CBF 中,AD CB DAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF ,∴DE=BF .(2)由(1),可得∴△ADE ≌△CBF ,∴∠ADE=∠CBF ,∵∠DEF=∠DAE+∠ADE ,∠BFE=∠BCF+∠CBF ,∴∠DEF=∠BFE ,∴DE ∥BF ,又∵DE=BF ,∴四边形DEBF 是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.18.(2016青海第24题)如图,某办公楼AB 的后面有一建筑物CD ,当光线与地面的夹角是22°时,办公楼在建筑物的墙上留下高2米的影子CE ,而当光线与地面夹角是45°时,办公楼顶A 在地面上的影子F 与墙角C 有25米的距离(B ,F ,C 在一条直线上). (1)求办公楼AB 的高度;(2)若要在A ,E 之间挂一些彩旗,请你求出A ,E 之间的距离.(参考数据:sin22°≈38,cos22°1516≈,tan22°25≈)【答案】(1) 教学楼的高20m;(2)A、E之间的距离约为48m.过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+25,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2,tan22°=AMME,则22255xx-=+,解得:x=20.即教学楼的高20m.(2)由(1)可得ME=BC=x+25=20+25=45.在Rt△AME中,cos22°=ME AE.∴AE=cos22oME,即A、E之间的距离约为48m考点:解直角三角形的应用.19.(2016内蒙古呼伦贝尔市、兴安盟第20题)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=34,求sinC的值.【答案】12 13.考点:解直角三角形.20.(2016辽宁葫芦岛第22题)在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.如图,现测得∠ABC=30°,∠CBA=15°,AC=200米,请计算A,B两个凉亭之间的距离(结果精确到1米)1.414 1.732)【答案】A、B两个凉亭之间的距离约为283米.考点:解直角三角形的应用.21.(2016辽宁营口第22题)某居民楼紧挨一座山坡AB,经过地质人员勘测,当坡度不超过45°时,可以确保山体不滑坡,如图所示,已知AE∥BD,斜坡AB的坡角∠ABD=60°,.为防止滑坡,现对山坡进行改造,改造后,斜坡BC与地面BD成45°角,AC=20米.求斜坡BC的长是多少米?(结果精确到0.1 1.41 1.73)【答案】66.6.考点:解直角三角形的应用-坡度坡角问题;探究型.22.(2016内蒙古通辽第20题)在我市十个全覆盖工作的推动下,某乡镇准备在相距3千米的A、B两个工厂间修一条笔直的公路,在工厂A北偏东60°方向、工厂北偏西45°方向有一点P,以P点为圆心,1.2千米为半径的区域是一个村庄,问修筑公路时,这个村庄是否1.4 1.7)【答案】修筑公路时,这个村庄有一些居民需要搬迁.考点:解直角三角形的应用-方向角问题.23.(2016内蒙古通辽第21题)如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.求证:A E=EF.【答案】证明见解析.【解析】试题分析:先取AB的中点H,连接EH,根据∠AEF=90°和ABCD是正方形,得出∠1=∠2,再根据E是BC的中点,H是AB的中点,得出BH=BE,AH=CE,最后根据CF是∠DCG 的角平分线,得出∠AHE=∠ECF=135°,从而证出△AHE≌△ECF,即可得出AE=EF.试题解析:取AB的中点H,连接EH.∵∠AEF=90°,∴∠2+∠AEB=90°,∵四边形ABCD 是正方形,∴∠1+∠AEB=90°,∴∠1=∠2,∵E是BC的中点,H是AB的中点,∴BH=BE,AH=CE,∴∠BHE=45°,∵CF是∠DCG的角平分线,∴∠FCG=45°,∴∠AHE=∠ECF=135°,在△AHE和△ECF中,∵∠1=∠2,AH=EC,∠AHE=∠ECF,∴△AHE≌△ECF(ASA),。