皂苷提取

合集下载

提取人参皂苷并且检验以及在过程的一些注意事项

提取人参皂苷并且检验以及在过程的一些注意事项

1.人参皂苷提取人参为五加科植物人参(Panax ginseng C.A.Mey.)的干燥根,是传统名贵中药,始载于我国第一部本草专著《神农本草经》。

其栽培者称为“园参”,野生者称为“山参”。

人参具有大补元气、复脉固脱、补脾益肺、生津、安神之功能,用于体虚欲脱、肢冷脉微、脾虚食少、肺虚喘咳、津伤口渴、内热消渴、久病虚羸、惊悸失眠、阳痿宫冷、心力衰竭、心源性休克等的治疗。

人参皂甙和稀HCl在醇液中进行温和酸水解,可得到三种皂甙元,齐墩果酸、人参二醇和人参三醇。

而不能得到原人参二醇和原人参三醇,这是因为在酸水解过程中侧链的20-位碳原子上的羟基(-OH)与该链上的双键(C=C)易闭环,而形成带有三甲基四氢吡喃环的人参二醇和人参三醇。

水解后,除去醇、氯仿萃取物经硅胶柱层析分离即可得到三种单体皂甙元,经重结晶获得纯品,分别与已知皂甙的红外光谱相一致。

2.人参皂甙提取和甙元分离工艺流程①人参皂甙提取工艺:人参茎叶粗粉20g热水提取1小时,粗滤,(棉花)提取液药渣加0.6g是会乳沉淀,并调至PH9-10,放置10分钟,抽滤沉淀物滤液浓硫酸调PH7,放置10分钟。

中性提取液回收后,上大孔树脂柱,先用水洗至无色,再用70%氨性醇洗至绿色。

乙醇洗脱液回收乙醇人参总皂甙(黄白色)a)人参皂甙元的水解和甙元的分离流程人参总皂甙加含5%HCl的50%乙醇液,加热回流2小时沉淀水解液(酸性皂甙元部分)加水稀释,水浴蒸去醇,氯仿萃取3次(10,5,5ml)水层氯仿层干燥,无水NaSO4回收氯仿总皂甙元少量苯溶解,硅胶柱层析,用苯-乙酸乙脂(8:2)洗脱组分Ⅰ组分Ⅱ组分Ⅲ95%乙醇重95%乙醇重丙酮结晶结晶3次结晶3次2次齐墩果酸人参二醇人参三醇mp299-301℃mp245-250℃mp244-246℃1.操作方法人参总皂甙的提取:取人参茎叶粗粉20g,放入烧杯用热水(80℃-90℃)提取1小时,然后用棉花粗滤,在所得滤液中加入0.6g水石灰乳除杂并调PH9-10放置10分钟左右,过滤,再将滤液用浓硫酸(少量)调PH7,放置10分钟左右,回收提取液至少量(5-10ml),再上大孔树脂柱(注:此柱应提前洗好,清洗办法略)先用蒸馏水洗至无色,再用70%的乙醇洗至无色,分别用小瓶接收。

皂苷提取方法

皂苷提取方法

皂苷提取方法皂苷是一种活性物质,具有良好的药理作用,可用于治疗疾病。

由于其生物活性及其丰富的营养成分,皂苷被广泛用于药物研究和保健品开发。

然而,皂苷的合成过程复杂,因此,提取皂苷以及其他有效成分是一项重要的研究课题。

皂苷提取方法主要分为蒸馏、离子交换、抽提和活性炭等四大类。

其中,蒸馏法经常被用来从植物中提取皂苷,以及通过不同的溶剂洗脱皂苷。

离子交换技术,主要是通过离子交换体的吸附作用,实现皂苷的界面抽提。

抽提法以溶解度为基础,主要是通过溶剂抽提的方式,从植物中提取皂苷。

最后,活性炭是一种常用的抽提方法,它的原理是活性炭表面上由苯结构构成的吸附基团对物质构成了一种吸引力,从而吸引和抽提物质。

皂苷提取主要涉及以下几个方面:一是前处理,主要是调节植物本身的参数,如pH,以及加入提取溶剂,以在最佳条件下进行提取;二是提取技术,根据不同的提取要求,采用上述提取方法;三是分离纯化,主要是利用蒸馏法、抽提法、离子交换法等分离和纯化皂苷;四是测定,根据不同的需求,采用体外测定、紫外分光光度计、气相色谱法或高效液相色谱法等技术,测定提取物的含量。

皂苷提取方法一般分为溶剂抽提法、生物抽提法、气体萃取法、超声抽提法以及湿法抽取法等,根据不同的需求,选择合适的抽提方法进行提取,达到最佳效果。

溶剂抽提法则是利用溶剂抽取植物中的皂苷,例如热水抽提、乙醇抽提等。

其中,甘油、乙醇及其他类似溶剂常用于抽提皂苷,而温和的溶剂抽提操作条件,可以对植物有效成分的结构及性质最小化破坏。

生物抽提法则是利用酵素类或微生物,以酸或碱性溶液为基础,以酶分解而非溶解的方式,有效抽取质量好的皂苷。

气体萃取法是通过把液体中的溶质转变成气体溶质,然后通过空气流动,将溶质抽取出来,用于皂苷的抽取。

超声抽提法是通过超声波产生的振动,聚集植物材料中的活性物质,实现皂苷的有效提取。

最后,湿法抽取法是利用水溶性物质溶解度的不同,将植物材料分离,实现植物的有效分离和提取。

人参皂苷的提取与化学转化研究

人参皂苷的提取与化学转化研究

三、人参皂苷的应用前景展望
3、抗炎免疫:人参皂苷具有抗炎和免疫调节作用,可以改善类风湿性关节炎、 系统性红斑狼疮等炎症性疾病的症状。未来可以进一步探究人参皂苷在抗炎免疫 治疗中的应用,为抗炎免疫药物的研发提供新资源。
三、人参皂苷的应用前景展望
4、抗疲劳:人参皂苷具有明显的抗疲劳作用,可以增强体力和耐力。未来可 以研究人参皂苷在运动医学和康复治疗中的应用,为运动员和康复患者提供更好 的保健和治疗方案。
三、讨论与结论
三、讨论与结论
人参皂苷的提取工艺直接影响着最终产品的质量和产量。通过优化提取工艺, 可以提高人参皂苷的提取率和纯度,从而生产出更高质量的产品。此外,这种提 取工艺简单易行,适合大规模生产。因此,该工艺具有很好的工业应用前景。
三、讨论与结论
综上所述,本次演示详细介绍了人参皂苷的提取工艺,包括材料与方法、结 果与分析以及讨论与结论。通过优化提取工艺,我们可以提高人参皂苷的提取率 和纯度,从而生产出更高质量的产品。这种工艺简单易行,适合大规模生产,具 有很好的工业应用前景。
2、微生物种类
2、微生物种类
不同种类的微生物对人参皂苷的转化具有不同的效果。细菌和真菌是两种主 要的微生物类型,其中细菌具有较快的生长速度和较高的转化活性,而真菌具有 较大的耐受性和适应能力。因此,在选择微生物种类时,需要结合实际情况,综 合考虑各种因素,以选择最适宜的微生物进行转化。
三、人参皂苷微生物转化过程中 的基因调控和表达水平的变化
一、人参皂苷的提取加工流程
一、人参皂苷的提取加工流程
人参皂苷的提取加工流程主要包括以下步骤: 1、原料选择:选择品质优良的人参,去除杂质和无效部分,确保原料的纯净 度和有效性。
一、人参皂苷的提取加工流程

皂苷提取方法

皂苷提取方法

皂苷提取方法
皂苷是一类水溶性 Glycoside,它是植物的细胞质汁液的一部分,它通过糖作用可以抑制或激活特定化学反应,从而参与植物的生长发育和胁迫反应。

皂苷属于一类复杂的混合物,结构复杂,拓扑分布多样,很难用普通的分离方法进行提取。

因此,提取皂苷的方法有很多种,根据研究目的和需求的不同可选择不同的提取方式。

常用的皂苷提取方法有溶剂萃取法、水提取法和仪器分离法等。

溶剂萃取法是用适当的有机溶剂溶解植物组织中的活性物质,用油相和水相分离,从水相当中萃取所需成份的提取方法。

其优点是具体步骤简单,提取效率高,但操作条件及萃取时机均存在一定的依赖性。

水提取法是将植物原料添加适量的水提取,将水溶性成份进行分离的提取方法。

优点是易操作,投料量大,但提取的纯度较低。

仪器分离法是采用超声波萃取、离子交换、离子色谱分离、电离色谱仪等仪器技术对皂苷进行提取的方法,优点是提取过程可控性强、提取纯度高,复杂的结构类型也可以提取,适合大规模生产应用,但操作复杂耗时长,费用较高。

根据实际应用需要,可以采用喝上述提到的提取方法在一定条件下进行进行提取,也可以结合提取多种方法,以改善皂苷的提取效率和成分复杂度,实现更精细的成分提取,满足实际应用的需要。

人参中人参皂苷的提取、分离和测定

人参中人参皂苷的提取、分离和测定

人参中人参皂苷的提取、分离和测定一、本文概述二、人参皂苷的提取方法人参皂苷的提取是从人参原材料中分离和纯化目标化合物的重要步骤。

提取方法的选择直接影响皂苷的得率和纯度。

常用的提取方法包括溶剂提取法、微波辅助提取法、超声波辅助提取法以及超临界流体提取法等。

溶剂提取法:这是最常见且相对简单的方法,主要利用人参皂苷在不同溶剂中的溶解度差异进行提取。

常用的溶剂包括甲醇、乙醇、丙酮等。

通过浸泡、回流或渗漉等方式,使人参皂苷从原材料中溶解到溶剂中,再通过蒸发溶剂得到粗提物。

微波辅助提取法:微波提取是利用微波对溶剂和原材料的加热作用,提高提取效率和速度。

微波产生的热能可以使细胞壁破裂,加速溶剂对人参皂苷的渗透和溶解,从而缩短提取时间。

超声波辅助提取法:超声波提取是通过超声波产生的空化效应、机械效应和热效应等作用,增加溶剂对原材料的穿透力,提高人参皂苷的提取率。

同时,超声波还可以破坏细胞结构,使皂苷更容易释放到溶剂中。

超临界流体提取法:超临界流体提取是利用超临界状态下的流体(如二氧化碳)作为溶剂,通过调节压力和温度来控制流体的溶解能力,从而实现对人参皂苷的高效提取。

这种方法具有提取效率高、操作温度低、对原料破坏小等优点。

在实际应用中,可以根据人参原材料的性质、目标皂苷的特点以及实验条件等因素,选择最合适的提取方法。

为了提高提取效果,还可以结合使用多种提取方法,如先用溶剂提取法得到粗提物,再用超声波或微波辅助提取法进行进一步的纯化。

三、人参皂苷的分离技术人参皂苷的分离是提取过程后的关键步骤,其主要目标是从复杂的混合物中分离出单一或特定类型的人参皂苷。

这通常涉及到一系列的色谱技术,包括液-液分配色谱、固相萃取、柱色谱、薄层色谱以及高效液相色谱(HPLC)等。

液-液分配色谱,也称为液-液萃取,是基于不同物质在两种不相溶溶剂中的溶解度差异进行分离的。

这种方法对于初步分离人参皂苷和其他杂质非常有效。

固相萃取是一种基于吸附和解吸原理的分离技术。

皂苷提取方法

皂苷提取方法

皂苷提取方法皂苷是一类有效的植物化学物质,具有显著的药理活性,在药物、香料、香精、香料等领域有着广泛的应用。

它们主要存在于植物组织中,可以提取出添加到药物、化妆品、香料中,用于增强药效、改善药物香味等。

当前常用植物皂苷提取方法大致可分为以下几种:一、液体萃取法液体萃取法是一种常见的植物皂苷提取方法,主要是由植物组织中溶解皂苷分子,然后加入溶剂,经过萃取、精制处理,最终得到植物皂苷提取液。

二、气相色谱法气相色谱法是最常用的植物皂苷提取方法之一,通过将植物组织中提取出的皂苷分子与含有气体的溶剂配合分解,再通过高效液相色谱仪进行分析,最终获得高纯度的植物皂苷。

三、超临界流体萃取法超临界流体萃取法指的是使用超临界流体作为溶剂,将皂苷分子溶解出来,再经过各种精炼处理,最终得到高纯度的植物皂苷提取液。

这种方法的优点在于,采用超临界流体作为溶剂可以更好地抑制有机物的氧化,避免活性成分的破坏,并有利于后续的提纯处理。

四、共沉淀法共沉淀法用于提取溶解在冰醋酸中的细胞膜外皂苷成分,其基本操作流程为采用甘油-乙二醇混合溶剂,将所提取的溶解在冰醋酸中的植物皂苷与混合溶剂相混合,使含有水的解剂中的水分的溶解能力较弱,当将其混合物冻结后,水分将凝结而与植物皂苷分离,从而实现了植物皂苷的提取。

五、超声法超声法是近年来开发的一种植物皂苷提取方法,超声法以一定频率的超声为能源,可以有效地提取植物组织中的活性成分,也可以有效地消除有害物质,从而实现对植物皂苷的提取。

以上就是目前常用的植物皂苷提取方法,不同的方法在提取效果上也不尽相同,可以根据需要选择合适的提取方法来获得高质量的植物皂苷。

此外,在实施植物皂苷提取工艺时,还应根据具体情况,结合植物组织、溶剂特性和分离要求,进行合理的技术优化,以获得更高的提取效率。

三七总皂苷的提取分离和纯化实验方案

三七总皂苷的提取分离和纯化实验方案

三七总皂苷的提取分离和纯化实验方案三七总皂苷是一种具有药用价值的天然产物,其提取、分离和纯化是研究和开发其药用价值的重要环节。

下面是一个关于三七总皂苷的提取、分离和纯化实验方案的简要描述。

1. 原料准备:-采用鲜三七根茎为原料,首先进行清洗和切碎,以便提高提取效率。

-预先准备好一定量的有机溶剂(如乙醇、甲醇等),用于提取和分离。

2. 提取过程:-将切碎的三七根茎置于有机溶剂中,进行浸泡提取。

-选择适当的提取时间和温度,常规条件下可选择30-60分钟的提取时间,在温度范围为50-70摄氏度进行提取。

-可采用超声波辅助提取,以提高提取效率。

3. 过滤和浓缩:-提取液经过滤,去除悬浮物和固体颗粒。

-使用旋转蒸发器或其他适当的浓缩方法,将提取液浓缩至一定体积,以便后续的分离和纯化步骤。

4. 分离步骤:-可采用柱层析技术进行初步分离,选择合适的吸附剂和洗脱溶剂,以使目标化合物与其他杂质分离。

-通过调节洗脱溶剂的极性和流速,可以优化分离效果。

5. 纯化过程:-将初步分离得到的目标化合物溶解在适当的溶剂中,进行再结晶或凝胶柱层析等纯化操作。

-通过重复纯化步骤,可以获得更高纯度的三七总皂苷。

6. 分析与评价:-使用合适的分析方法(如高效液相色谱、质谱等),对提取和纯化得到的样品进行分析和评价,确定三七总皂苷的含量和纯度。

7. 结果记录和数据处理:-记录实验过程中的操作步骤、观察结果和实验数据。

-对实验结果进行统计和数据处理,计算提取率、分离纯度等指标。

8. 结果分析和优化:-对得到的三七总皂苷样品进行分析,如测定其含量、质量和纯度。

-根据结果进行优化,可对提取时间、溶剂比例、温度等参数进行调整,以提高提取和纯化效果。

9. 产品保存:-对纯化得到的三七总皂苷进行适当的保存和储存,避免光照和潮湿等有害因素对其质量的影响。

-建议将样品存放在干燥、密封的容器中,冷藏保存以延长其稳定性和有效期。

10. 安全注意事项:-在实验过程中,注意个人防护,佩戴适当的实验手套、护目镜和实验服。

人参皂苷的提取工艺

人参皂苷的提取工艺

人参皂苷的提取工艺
人参皂苷的提取工艺一般包括以下几个步骤:
1. 选材:选用质量优良的人参作为原料,一般选用生长3-6年的人参。

2. 清洗和初制:先将人参用凉水浸泡清洗,去除表面的杂质和土壤,然后去皮、去须、去心,将人参切成细片状。

3. 浸提:将切好的人参片放入溶剂中浸泡,在适当的条件下进行浸泡提取,常用的溶剂包括乙醇、水、乙醚等。

4. 过滤和浓缩:将提取液经过滤去除杂质,然后进行浓缩处理,去除多余的溶剂,得到浓缩后的人参皂苷溶液。

5. 结晶和干燥:将浓缩后的人参皂苷溶液进行结晶处理,可以通过调节温度和pH等条件来促进结晶形成。

然后将结晶后的人参皂苷进行干燥,去除余留的溶剂和水分,得到干燥的人参皂苷产品。

6. 产品精制和包装:对干燥的人参皂苷进行精制处理,去除杂质和不纯物质,确保产品质量。

最后将精制的人参皂苷产品进行包装,以便储存和使用。

需要注意的是,不同的生产厂家可能会根据自己的工艺和设备条件进行一定的调
整和改进,上述步骤仅作为一般参考。

同时,在提取过程中需要注意溶剂的选择和控制,温度、时间等条件的控制,以及对产品的质量监控等方面。

中药化学3.6 皂苷类化合物的提取分离技术

中药化学3.6 皂苷类化合物的提取分离技术



(四)研究进展与生物活性
2、三萜皂苷类

人参皂苷能促进RNA蛋白质的生物合成,调节机体代谢,增强免疫 功能。
柴胡皂苷能抑制中枢神经系统,有明显的抗炎作用,并能减低血 浆中胆固醇和甘油三酯的水平。 七叶皂苷具有明显的抗渗出、抗炎、抗淤血作用,能恢复毛细血 管的正常的渗透性,提高毛细血管张力,控制炎症,改善循环, 对脑外伤及心血管病有较好的治疗作用。
一、 结构与分类 二、 理化性质 三、 检识方法 四、 提取与分离方法
一、结构与分类
(一)定义 该类化合物溶于水后,形成的 水溶液经振摇后能产生大量持久性、 似肥皂样的泡沫,这类化合物称为 皂苷。
(二)分布
1、甾体皂苷
主要分布薯蓣科、百合科、玄参科、菝契科、龙舌兰科等单子叶植 物中。
2、三萜皂苷
狭叶柴胡以及同属植物的干燥根。
柴胡中皂苷类成分主要为:柴 胡皂苷A、C、D、E等。具有解热、 镇痛、镇咳、抗炎等作用。
R1
CH2OH R2 HO CH2R1
R2
柴胡皂苷元A 柴胡皂苷元B 柴胡皂苷元C
OH - OH OH - OH H - OH
2) α-香树脂烷型(乌苏烷型)
-香树脂烷型(α -amyrane),又称为熊果烷型,其分
无此活性。
COOH
O H
RO
H
甘草次酸 甘草酸 乌拉尔甘草皂苷A 乌拉尔甘草皂苷B 黄甘草皂苷
R H -D-gluA2 -D-gluA2 -D-gluA3 -D-gluA4 -D-glu A-D-glu A-D-glu A-D-glu A-
举例:(3)
柴胡为伞形科柴胡属植物柴胡、
HO H 薯蓣皂苷元 OH O glc O O O CH2OH 剑麻皂苷元

中草药中皂苷类成分的提取方法

中草药中皂苷类成分的提取方法

中草药中皂苷类成分的提取方法
目录
✓ 中草药中皂苷类成分的传统提取方法 ✓ 中药皂苷类成分的现代提取方法 ✓ 中药传统提取方法的主要因素
皂苷(Saponin)
皂苷(Saponin)是苷元为三萜或螺旋甾烷类化合物的一 类糖苷,主要分布于陆地高等植物中,也量存在于海星和海 参等海洋生物中。 许多中草药如人参、远志、桔梗、甘草 、知母和柴胡等的主要有效成分都含有皂苷。有些皂苷还具 有抗菌的活性或解热、镇静、抗癌等有价值的生物活性。
1.中草药中皂苷类成分的传统提取方法
1.1 浸渍法 浸渍法适用于有效成分遇热易挥发和易破坏的中草药的提
取。按溶剂的温度分为热浸、温浸和冷浸等数种;按操作次 数不同,又分为单浸渍法和重浸渍法。 浸渍法的操作是先将 中草药粉或碎片装入适当的容器中,然后加入适当的溶 剂(如乙醇、烯醇或水等),浸渍药材以溶出其中有效成分 的方法。该方法简单易行,但提出率较低,如果提取溶剂为 水的话,其提取液易于发霉变质,需加入适当的防腐剂。此 外,最好采用 2 次或 3 次浸渍,以减少由于药渣吸附导致的 损失,提高提取率。
2.3 大孔树脂吸附法
中药提取分离是中成药生产过程中最关键的环节,也是 目前制药中药质量提高的关键问题,它直接影响到产品的质 量和临床疗效。与传统的除杂方法和工艺相比,采用大孔吸 附树脂技术分离纯化,有以下 3 个优点。 (1)能缩小剂量,提高中药产品质量和制剂水平。
(2) 能减少产品的吸潮性。 (3) 大孔吸附树脂技术能缩短生产周期、所需设备简单。
初步认识到酶的催化作用,开始了酶的研究。 酶在中药制剂 中的应用,都是利用其高效率的催化作用来达到目的的。
3.1 中药传统提取方法的主要因素
3.1 预浸泡
中药材的待加工状态多数是干燥状态,在正式浸取前予以 适当的浸泡,吸收溶媒,使之组织浸润膨胀,将有利于浸取 时溶质的加速溶解和扩散。因为浸取时大多数情况下温度较 高,如果中药材原料直接与热溶媒接触,会使表面的蛋白质 层受热凝固,从而妨碍后续溶媒对细胞组织的渗透浸润,因 此用冷溶媒浸泡待提取原料将会避免这一弊端。除上述之外, 还有浓度差、溶剂黏度、表面状态、药材的性质等因素都会 影响浸出过程。

一种人参皂苷提取方法

一种人参皂苷提取方法

一种人参皂苷提取方法
人参皂苷是从人参中提取出来的一种生物活性化合物,具有多种保健和药物作用。

以下是一种人参皂苷提取方法:
材料:
人参粉末,95%乙醇,蒸馏水,甲醇
步骤:
1、取适量的人参粉末,加入足量的95%乙醇,浸泡24小时。

2、过滤浸泡好的人参粉末,将滤液收集起来,备用。

3、将过滤后的残渣再次浸泡24小时,重复上述步骤,直至浸出液无色。

4、将收集好的浸出液进行对流干燥,得到人参皂苷粉末。

5、将得到的人参皂苷粉末加入足量的甲醇中,超声提取30分钟,然后离心收集提取液。

6、提取液进行浓缩,得到人参皂苷提取物。

以上就是一种简单的人参皂苷提取方法,可以根据实际需要进行调整和改进。

三七中皂苷的提取和分离课件

三七中皂苷的提取和分离课件
● 水提三七总皂苷生产工艺 从模式上改变了传统的 中药提取生产方式,建成日处理3000kg三七药材 的生产线。制得的产品无吸湿性,稳定性、流动 性好,无须添加任何辅料,可直接制成胶囊剂, 为将其开发为功能性保健食品和新药奠定了良好 基础。
分离纯化的方法
● 大孔吸附树脂法:DS-401树脂对三七皂苷 具有较高的吸附选择性.50%乙醇作为脱 附剂,大孔树脂成分低廉,可以再生,在 皂苷类成分的分离中较为常用。
分离纯化总结
● 与高速逆流色谱法相比大孔吸附树脂具有 吸附容量大、选择性好、易解吸、易再生 、成本低、效率高等优点。国内外学者已 广泛将其应用于生物碱、皂苷、黄酮等的 提取,在分离、富集、纯化中药材的主要 成分方面有较高的应用价值。
谢谢观赏
分离纯化的方法
● 高速逆流色谱法(HSCCC) :用正己烷一正 丁醇一水(3:4:7)作为分离溶荆系统,从 三七皂苷甲醇提取物中分离。 高速逆流色谱可在短时间内实现高效分离和 分析,无固体载体,可以避免分离样品与 固体载体表面产生化学反应而变性和不可 逆吸附,对样品的预处理要求较低,适用 于粗提取物的分离。
❖ 皂苷成分:皂苷是三七主要有效活性成分,也是 研究较为系统的化学物质。已从三七的不同部位 分离得到54种单体皂苷成分 。
❖黄酮类化合物 :从三七分离得到的有三七黄酮a 和三七黄酮b2种。
❖三七素: 是一种具有止血活性的成分,命名为三 七素。它其实是一种特殊的氨基酸。
❖ 氨基酸成分:三七含有19种以上的氨基酸,有8 种人体必需的氨基酸。
皂苷的提取
● 渗漉法:15倍量的75%乙醇以5ml/min的 速度渗漉为最佳提取方案。渗漉法是一种 较好的提取方法,设备简单,操作安全, 节能降耗,减少成分破坏,有煎煮法不可 比拟的优点。但是渗漉法耗时长,不适用 于工业化大生产。

藜麦皂苷的提取工艺流程

藜麦皂苷的提取工艺流程

藜麦皂苷的提取工艺流程下面是我把藜麦皂苷提取工艺流程用更通俗的语言解释一下:第一步:准备原材料挑选藜麦壳:找一些干燥、没病没虫的藜麦壳,确保原料质量杠杠的。

磨成粉:用粉碎机把藜麦壳磨成细细的粉末,这样里面的皂苷更容易被提取出来。

筛一筛:用筛子把磨好的粉末筛一下,选出那些细如面粉的部分,这样提取效果更好。

烘一烘:把筛好的粉末放进烤箱里,调个合适的温度(比如50℃),烘干到恒重,防止水汽影响后面的操作。

第二步:开始提取挑个好溶剂:选择能溶解皂苷、又安全易处理的溶剂,比如不同浓度的酒精。

拌匀:按比例把藜麦粉和配好的酒精溶液混在一起搅拌均匀,就像和面一样。

选个提取法:超高压提取:装瓶:把搅拌好的混合物装进结实、能承受高压的塑料瓶里。

设置参数:定好提取的时间(比如669秒)、压力(比如294MPa)。

开压:把瓶子放进高压锅一样的设备里,打开高压泵,让里面的压力升高、保持一会儿、再慢慢降下来,皂苷就被提取出来了。

回流或超声波提取:回流提取:把混合物倒进回流装置,调好时间和温度(比如煮94分钟、83℃),让它们在锅里咕嘟咕嘟煮着,皂苷就跑到了酒精里。

超声波提取:把混合物倒进有超声波的设备,设定好时间(比如震20分钟)、温度(比如45℃)和功率(比如400 W),让超声波帮我们把皂苷“震”出来。

第三步:提取物处理过滤:超高压提取结束后,打开瓶子,用减压抽滤的方式把提取液和剩下的渣滓分开,得到含有皂苷的液体。

浓缩和提纯(可能需要):把滤液浓缩一下,比如用旋转蒸发仪把多余酒精去掉,然后再用柱层析、高速逆流色谱、结晶等方法进一步提纯皂苷。

第四步:检查和保存测含量:用高级一点的仪器(比如高效液相色谱)测一下提取物里皂苷的含量,看有多少克皂苷在100克提取物里。

测活性:还要看看提取物的抗氧化能力怎么样,毕竟这是皂苷的一大作用。

包装存起来:根据测出来的结果,可能需要对提取物做一些标准化处理,然后装进密封好的容器,放阴凉干燥的地方保存,保证皂苷的稳定性。

中药三七皂苷提取工艺流程

中药三七皂苷提取工艺流程

中药三七皂苷提取工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!中药三七皂苷的提取工艺流程一般包括以下步骤:1. 原料准备:选择优质的三七药材,洗净、晾干备用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ORIGINAL ARTICLEOptimization of Microwave-Assisted Extraction of Tea Saponin and Its Application on Cleaning of Historic SilksJun He •Zi-ying Wu •Shuo Zhang •Yang Zhou •Feng Zhao •Zhi-qin Peng •Zhi-wen HuReceived:11March 2013/Accepted:7August 2013/Published online:20August 2013ÓAOCS 2013Abstract Microwave-assisted extraction (MAE)was utilized to extract tea saponin from oil-tea camellia seed cake.The factors influencing the extraction efficiency were studied,including the effects of microwave power,irradi-ation duration,temperature,ratio of solvent to material and aqueous ethanol concentration.By systematic orthogonal experiments,the optimal extraction technology was pared with a conventional extraction method,MAE shows great advantages with the extraction time reduced from 6h to 4min,50%organic solvent saved and about 14%extraction yield enhanced.Fourier transform infrared spectroscopy testing and high performance liquid chromatography analysis proved that the extracted resul-tants were tea saponin with similar compounds as a stan-dard tea saponin.The extracted tea saponin was applied onthe cleaning of historic silks and showed good removal effect on the stains.This work provides useful information for fully use of oil-tea camellia seed cake and new appli-cations of tea saponin at the protection of historic textiles.Keywords Microwave-assisted extraction ÁTea saponin ÁOil-tea camellia seed cake ÁCleaningIntroductionTea saponin is a kind of non-ionic surfactant which has good foaming,emulsifying and decontaminating properties [1,2].It plays important roles in daily chemical,food,pharmaceutical and agricultural industries [3,4].As a kind of natural source surfactant,it is mild,safe and pollution-free and efficient as detergent.Moreover,it shows quite faint yellow color,which is lighter than most of natural surfactants and could be a candidate to develop detergents for cleaning of old textiles with no or low color influencing and other damages.The oil tea tree is widely cultivated in Xiangxi,a southwest district in China where the Miao and Tujia minorities live.Every year,plenty of oil-tea camellia seed cakes are produced after the process of oil production and treated as waste residues.However,the residues contain a large amount of tea saponin (about 16wt%)and other ingredients including water,flavonoid,polysaccharide,etc.[3].In order to make full use of the wasted oil-tea camellia seed cake,it is important to separate tea saponin from the oil-tea camellia seed cake in an economical,efficient and pollution-free way and to develop its new applications.Although conventional extraction methods like macer-ation and stirring extraction,shaking extraction,and heat reflux extraction are widely applied in the separation of teaJ.He ÁZ.Wu ÁS.Zhang ÁZ.Peng ÁZ.HuKey Laboratory of Advanced Textile Materials and Manufacturing Technology,Ministry of Education,Zhejiang Sci-Tech University,Hangzhou 310018,China J.He ÁZ.Wu ÁS.Zhang ÁZ.Peng ÁZ.HuLaboratory of Cultural Relics Protection Materials,Zhejiang Sci-Tech University,Hangzhou 310018,China Z.Wu (&)Key Laboratory of Advanced Textile Materials andManufacturing Technology,Laboratory of Cultural Relics Protection Materials,Institute of Material and Textile,Zhejiang Sci-Tech University,Hangzhou 310018,China e-mail:zywu2007@Y.Zhou ÁF.ZhaoChina National Silk Museum,Hangzhou 310002,China Y.Zhou ÁF.ZhaoKey Scientific Research Base of Textile Conservation,State Administration for Cultural Heritage,Hangzhou 310002,ChinaJ Surfact Deterg (2014)17:919–928DOI 10.1007/s11743-013-1523-8saponin for their availability,large amount of organic solvents were utilized during these extraction processes[5, 6].These methods were considered as time-consuming, low efficient and expensive[7].Therefore,people still try tofind more available methods for the separation of tea saponin.For instance,Jin Yan and his co-workers[8] applied a two-stage foam fractionation technology to sep-arate tea saponin.Effects of temperature,initial pH,load-ing liquid volume and superficial airflow rate in the two-stage foam fractionation process were investigated.Microwave-assisted extraction(MAE)is a process of using microwave energy to heat the solvent in contact with a sample to partition compounds of analytical interest from the sample matrix into the solvent[9,10].In MAE,the solvent mixture is heated directly by microwaves,and the direct interaction of microwaves with the free water mol-ecules present in the plant cells,which results in the sub-sequent rupture of the plant tissue and the release of the active compounds into the organic solvent[11,12].Thus MAE has many advantages such as higher efficiency, shorter time,lower cost and environmental friendliness [13,14].Since1985,MAE had been applied in the extraction of compounds from different plants[15].In the past20years, MAE has been frequently used in analytical laboratories [16].Particularly,the speed of the extraction process using microwave energy and the quality of the extracted com-pounds make this technique a powerful tool for isolating important pharmaceutical compounds and in other new applications.For instance,the extraction of ginseng sapo-nins[5],volatile compounds[17],and total bioactive saponin fraction from Gymnema sylvestre[10]were reported.MAE was also applied in the extraction of tea saponin in China by several researchers[18–20].They carried out pilot studies on the effects of different factors on the extraction yield.However,in these studies,the authors only depicted the correlative relationship between the yields and some influencing factors.The effects of temperature and the aqueous ethanol concentration had not been discussed.No systematic analysis was being done to make the relationship clear and the highest yield reported was only12.16%.The ingredients of resultant extractives were not identified and no product application was reported.Therefore,we improved MAE in the extraction of tea saponin from waste oil-tea camellia seed cakes.Systematic orthogonal experiments(includingfive factors)were done after single factor experiments to determine the optimal extraction technology for tea saponin extraction by MAE. The results by the optimal extraction technology were compared with those by a conventional extraction.The contents of the extractives were calibrated.The chemical compositions of the extractives were compared with a standard tea saponin by Fourier transform infrared spec-troscopy.The ingredients of the extractives were tested by high performance liquid chromatography.The extracted tea saponin was applied for the cleaning of historic silks. Materials and MethodsReagents and MaterialsFat-extracted oil-tea camellia seed cakes were provided from Xiangxi(Hunan,China)and ground intofine powder (\250l m)in a mill before use.Ethanol(AR)was pur-chased from Hangzhou Gaojing Fine Chemical Industry Co.,Ltd(Hangzhou,China).Vanillin(AR)and standard tea saponin(purity of96wt%)were purchased from Aladdin Chemistry Co.,Ltd(Shanghai,China).30%(w/ w)hydrogen peroxide and95–98%(w/w)sulfuric acid were purchased from Sinopharm Chemical Reagent Co., Ltd(Shanghai,China).ApparatusRotary evaporator(RE-52CS,Yarong Bio-instrument Co., Ltd.Shanghai,China);Vacuum drying oven(DZF-6020, Shanghai Jing Hong Laboratory Instrument Co.,Ltd. Shanghai,China);High-speed centrifuge(TGL-16C, Shanghai Anting Scientific Instrument Factory,Shanghai, China);UV/Vis spectrophotometer(752S,Shanghai Lengguang Industrial Co.,Ltd.Shanghai,China);Micro-wave extraction system(MAS-II,Shanghai Sineo Micro-wave Chemistry Technology Co.,Ltd.Shanghai,China); Fourier transformed infrared spectroscope(VECTOR222, BRUKER,Germany);High performance liquid chromato-graph(1100series,Agilent,American).Extraction MethodsHeat Reflux Extraction of Tea SaponinAmong the conventional extraction methods like macera-tion and stirring extraction,shaking extraction and ultra-sonic extraction for the extraction of tea saponin,heat reflux extraction was adopted here to compare with MAE for its universality.In this experiment,heat reflux extrac-tion was performed as Mandal[10]described,with some parameters changed.Oil-tea camellia seed cake powder (10g)was extracted at75°C for6h under reflux with 200ml of85%(v/v)ethanol aqueous solution in a250-ml round-bottomflask heated in a water bath.After the extraction,the sample was centrifuged and the supernatant was evaporated for dryness under vacuum environment. Then the dried residue was decolorized by30%(w/w)H2O2aqueous solution for1h.Finally the dried and ground resultant powders(\250l m)were ready for quantitative analysis.Microwave-Assisted Extraction of Tea Saponin Microwave-assisted extraction was performed in a closed microwave extraction system equipped with a magnetron of2,450MHz with a nominal maximum power of 1,000W,a reflux unit,ten power levels,a time controller, a temperature sensor,an exhaust system,a liquid crystal display and a stirring device.Accurately weighed powder (10g)of fat-extracted oil-tea camellia seed cake was mixed with ethanol aqueous solution in a250-ml extraction vessel.Then the container was closed with a lid and a temperature sensor was inserted into the container to measure and control the internal temperature.The samples were irradiated with microwave energy under different experimental conditions,including changing microwave power,irradiation duration,temperature,ratio of solvent to material and aqueous ethanol concentration.After extrac-tion,the samples were centrifuged,decolorized(30%(w/ w)H2O2aqueous solution,1h),dried,ground(\250l m) and submitted to quantitative analysis.Vanillin Sulfuric Acid Colorimetry for Quantitative AnalysisCalibration Curve of Tea SaponinThe determination of the total content of tea saponin was performed as described by Xiang[21].The standard curve which was used as the benchmark for the extraction yield determination was obtained as follows.Accurately weighed dried standard tea saponin(100.00mg)was dis-solved in80%(v/v)ethanol aqueous solution in a100-ml volumetricflask.Standard tea saponin solutions with the concentration of1g/L and the amount of0,0.1,0.2,0.3, 0.4and0.5ml were accurately transferred into a5-ml test tube respectively.Then,80%(v/v)ethanol aqueous solu-tions were added to make the total volume being0.5ml.0.5ml vanillin anhydrous ethanol solution[8%(w/v)]was added into these test tubes respectively.These test tubes were transferred into an ice water bath,and concentrated sulfuric acid solutions[4ml,77%(w/w)]were added to the test tubes respectively,too.Then the tubes were transferred from the ice water bath into a water bath of 60°C for25min.After being cooled to room temperature, with a blank solution as reference,the absorbency was scanned by using a UV/Vis spectrophotometer.Scanning results showed that the maximum adsorption was at 550nm,so the absorbency at Vis550nm was determined with a quartz cuvette.Regression gives the linear relationship:C¼924:37AÀ0:015R2¼0:9973ÀÁð1Þwhere C(mg/ml)is the concentration of tea saponin of solution for colorimetric analysis.A is the absorbance at Vis550nm.R is the correlation coefficient. Determination of Total Extraction YieldThe accurately weighed tea saponin sample(100.00mg) extracted above was dissolved in80%(v/v)ethanol aqueous solution in a100-ml volumetricflask.The con-centration of the sample was1g/L.0.5ml the solution was transferred into a5-ml test tube.Then the absorbency of the sample was determined by the colorimetric method as described in2.4.1and the total extraction yield(Y)was calculated by Eq.(2)according to the standard curve.Y¼ðAÂ924:37À0:015ÞÂm1m2Â1000ð2Þm1(g)is the mass of the extracted tea saponin.m2(g)is the mass of oil-tea camellia seed cake powder.A is the same as in Eq.(1).Results and DiscussionAnalysis of Single Factor ExperimentsThe effects offive factors(microwave power,irradiation duration,temperature,ratio of solvent to material and aqueous ethanol concentration)were studied respectively to obtain the optimal parameters.In single factor experi-ments,only one parameter was changed,the other four parameters were constant.The constant parameters were set at a microwave power of400W,an irradiation duration of4min,a temperature of60°C,a ratio of solvent to material of10ml/g and an aqueous ethanol concentration of70%(v/v).The data around the parameter which cor-responded to the highest yield were chosen as optimal for next orthogonal experiments.Each experiment was per-formed four times.Effect of Microwave PowerFigure1shows the relationship between extraction yield and different microwave powers.In general,it shows that there is a sharp increase in extraction yield with the microwave power increasing from100to400W.How-ever,no obvious variation in extraction yield is shown at power levels between400and700W.A quick decrease in extraction yield with increasing microwave power is observed for power levels higher than700W.A similarobservation was made in the MAE of flavonoids from Saussurea medusa maxim cultured cells [22].During the process of MAE,microwave energy affects plant molecules directly by ionic conduction and dipole rotation which make the energy dissipate in a volumetric fashion inside the samples and solvents.Then molecular movement and heat are generated,and therefore the extractive is separated from the matrix [10,23].With the power increased from 100to 400W,more electromagnetic energy was transmitted to the solvents and samples,which resulted in more violent molecular movement and heating,and therefore more extractives were separated from the matrix.Thereby the extraction yield was gradually improved.At 400–700W,evaporation of the solvent was speeded up by the rapid increase of electromagnetic energy and temperature resulting from the higher microwave power.Thus,although the microwave power was stronger,the solvent participating in the extraction system was limited,which consequently resulted in the extraction yield showing little change.At 700–1,000W,the evaporation of the solvent was so violent under the influencing of high microwave energy that more and more solvent was released from the extraction system.As a result,the extraction yield showed a pronounced decrease.In con-clusion,400–700W microwave power was considered as the optimum.Effect of Irradiation DurationThe effects of irradiation duration on the yield of tea saponin are shown in Fig.2.Three phases are observed in the extraction process.In the first phase (from 2to 3min),about 85%of the total yield is obtained.In the second phase (from 3to 5min),the increase in the extraction yield tends to be slower.In the third phase (after 5min),theyield of tea saponin decreases a little and there is no sig-nificant difference in yield with a longer duration.It seems that most tea saponins were extracted in the first 5min.After 5min,extraction almost ended and the extracted tea saponins were decomposed partially by being kept at high temperature for a long period of time.Similar tendencies were observed in the MAE of artemisinin [24]and of tri-terpenoid saponins from Ganoderma atrum [7].Conse-quently,4–7min was chosen as the optimal irradiation duration.Effect of TemperatureThe effects of temperature on the yield of tea saponin were studied with eight levels at intervals of 5°C from 40to 75°C.The results are shown in Fig.3.In the range of 40–55°C,the extraction yield improves with increasing temperature.On the one hand,molecular movement was enhanced with the increasing temperature.The inside of the plant matrix was easier immersed in solvent molecules.On the other hand,the dissolving capacity of the solvent was improved at higher temperatures [25].Both of the factors favored the extraction of tea saponin.At 55–75°C,the extraction yield decreases gradually with the increase in temperature.This is due to the rapid evaporation of solvent at higher temperatures and less solvent participated in the extraction system.From the above,50–65°C was consid-ered optimal for the extraction of tea saponin.Effect of Ratio of Solvent to MaterialFigure 4shows the relationship between extraction yield and the ratio of solvent (water–ethanol mixture)to the material.At 4–13ml/g,the yield increases straightly with the increasing ratio of solvent to material.This isincurredFig.1Effect of microwave power on yield of teasaponin Fig.2Effect of irradiation duration on yield of tea saponinby the gradually increasing immersion of the sample in the solvent.At low ratios of solvent to material,the solvents were insufficient to immerse the samples.Therefore,the samples were not dissolved or heated enough to release tea saponin sufficiently.At higher ratios,the samples were fully dissolved by sufficient immersion.Consequently,microwave energy was well absorbed and functioned on the separation.At 13–19ml/g,the yield drops sharply.This is probably due to insufficient stirring of the samples when solvent was in large volumes [25,26].As a consequence,some powders were still conglomerated with each other and could not be fully brought into contact with the sol-vent.Moreover,microwave energy was dispersed through larger volumes of solvent so that the samples could not absorb enough energy to break cells and release target substances.It is worth noting that at 19–25ml/g the yield increases again.It is known that extraction is a process in which extractive molecules are separated with the matrixand diffused into the mixed rge amounts of solvent might facilitate the diffusion of tea saponin mole-cules from the matrix to the solution,which resulted in more gathering of tea saponin and therefore a higher yield.However,when the amount of solvent was too large,the mixtures of sample and solvent were difficult to heat to the desired temperature in a short time.Consequently,the extraction yield decreased,as shown with more than 25ml/g.In consideration of cost,within the range of 7–16ml/g was considered to be the optimal ratio.Effect of the Concentration of Aqueous EthanolThe effects of different aqueous ethanol concentrations (11levels at intervals of 5%from 40to 90%)on yield are shown in Fig.5.It shows that the yield of tea saponin is greatly influenced by the aqueous ethanol concentration.At 40–50%,the increase in ethanol concentration resulted in a significant increase in extraction yield.This is probably due to the decrease in solvent polarity with the increasing ethanol concentration.It was found that high ethanol content will decrease the polarity of the mixture to a degree favorable for extraction [27].At 50–65%,the yield increases a little and starts to decrease.But there is no big change in the extraction yield.After 70%,the extraction yield reduces rapidly.One possible reason is that a higher ethanol content would result in a lower solvent boiling point.As a consequence,ethanol evaporated extensively and the solubility in the solvent decreased.Another reason is that high ethanol content would facilitate the rapid solidification of impurities such as proteins,soluble poly-saccharides,etc.,which was not favorable for MAE.From the above results,50–65%was optimal aqueous ethanolconcentration.Fig.3Effect of temperature on yield of teasaponinFig.4Effect of ratio of solvent to material on yield of teasaponinFig.5Effect of aqueous ethanol concentration on yield of tea saponinAnalysis of Orthogonal ExperimentsAfter the single factor experiments,the results of single effects offive factors on extraction yield were obtained.In order to determine the optimal parameters,a45orthogonal array was designed to investigate the synergistic effects of thefive factors on extraction yield,as shown in Table1. Each experiment was performed four times.Table2gives the average extraction yields of sixteen groups,and the lastfive rows list the average extraction yields and the ranges of average extraction yields of each level forfive parameters.The average extraction yield of Group13is14.64%,the highest of all.And its parameters are A4B1C4D2E3(aqueous ethanol concentration of65%, temperature of50°C,irradiation time of7min,microwave power of500W and ratio of solvent to material of13ml/g).However,the results of orthogonal experiments should be analyzed to identify the optimal parameters.In Table2,the ranges of each level forfive parameters are represented.The ranges of average extraction yields of each microwave power,irradiation time,temperature,sol-vent-to-material ratio,and aqueous ethanol concentration level are0.36,0.51,0.39,0.77and1.05%,respectively. Therefore,the influence rank of each factor is as follows: aqueous ethanol concentration[ratio of solvent to material [irradiation time[temperature[microwave power. Aqueous ethanol concentration and ratio of solvent to material are the most two influential factors.Considering yield,efficiency and cost,A4B1C1D1E3(microwave power of400W,irradiation duration of4min,temperature of 50°C,ratio of solvent to material of13ml/g,aqueous ethanol concentration of65%)was chosen as thefinalTable1The factor levels in orthogonal experiment Level Factor A Factor B Factor C Factor D Factor E Aqueous ethanolconcentration(%)Temperature(°C)Irradiationduration(min)Microwavepower(W)Ratio of solventto material(ml/g) 1505044007 25555550010 36060660013 46565770016Table2The results of orthogonal experiment and range analysisGroup A B C D E Extraction yield(%)Standard deviation(n=4)11111113.100.2121222213.090.2431333313.140.1841444413.080.2352123413.550.2962214313.330.2372341212.530.1382432112.840.1593134212.830.11103243112.520.22113312413.810.21123421314.150.25134142314.640.19144231414.100.24154324113.990.18164413213.730.17k1(%)13.2413.6613.6313.6113.25//k2(%)13.0613.2613.6913.6013.04//k3(%)13.3313.3713.2313.2313.82//k4(%)14.1113.4513.1913.3113.64//R(%) 1.050.390.510.360.77//optimal parameters.The average extraction yield under this condition is14.73%,which is slightly higher than the average extraction yield14.64%under A4B1C4D2E3.Comparison of MAE and Heat Reflux ExtractionAs described above,a conventional extraction(heat reflux extraction)and MAE of tea saponin from oil-tea camellia seed cake(under the conditions of A4B1C1D1E3)were conducted respectively and the relevant results are listed in Table3.It can be seen that MAE has great advantages on extraction time,solvent consumption,ethanol concentra-tion and extraction yield.At present,conventional extractions like heat reflux extraction are widely used in many plants for active sub-stance extraction.The two biggest disadvantages of con-ventional extractions are the high solvent and time consumption.Moreover,many conventional extractions use methanol and n-butanol as solvent.It is well known that methanol and n-butanol are much more toxic than ethanol to human being or the environment.Since extrac-tion yield,efficiency,cost and most importantly,environ-mental friendliness and safety should be considered in the selection of extraction method,we believe that conven-tional extractions are not favorable in modern industry. MAE is a relatively new method,which is gaining popu-larity mainly by its efficiency.As shown in Table3,the extraction time was reduced from6h(conventional extraction)to4min(MAE).About50%ethanol was saved and the extraction yield was enhanced by about14% in MAE.These results prove that MAE is quite suitable for the extraction of tea saponin from oil-tea camellia seed cake.With the advancement in MAE technology,it may replace conventional extractions someday.FTIR Comparison of the Extracted Tea Saponinand Standard Tea SaponinFTIR spectra supplied information about molecular func-tional groups with which some chemical compounds can be identified.Figure6shows the FTIR comparison of the tea saponin extracted above and the standard tea saponin. Compared with the spectra of the standard tea saponin (Fig.6a),characteristic peaks at3,426cm-1attributed to the stretching vibration of O–H,2,927cm-1presenting the antisymmetric stretching vibration of saturated–CH2, 1,717and1,623cm-1indicating the existence of–CO–, 1,384cm-1contributed by the absorption of symmetrical formation vibration of–CH3,and the band from900to 1,150cm-1presenting the absorption of C–O–C are all present in the spectra of the extracted tea saponin(Fig.6b). Therefore,the resultant substance extracted above is tea saponin with compounds similar to the standard tea saponin.HPLC Comparison of the Extracted Tea Saponinand Standard Tea SaponinHPLC is a chromatographic technique used to separate the components in a mixture,to identify each component,as well as to quantify each component.Figure7shows the HPLC comparison of(a)standard tea saponin(b)extracted tea saponin and(c)non-discolored extracted tea saponin. There are two main peaks(Peak I,II)in the three curves(a, b,c).According to Liu’s research[28],the HPLC curve of tea saponin contains two main peaks,similar to the Peak I and Peak II shown in Fig.7,which present the character-istic peaks of theasaponin(effective component of tea saponin as a surfactant)andflavonoid(the coloring com-ponent for its yellow color),respectively.From the peak strength,which is the highest for Peak I,onefinds that theasaponin is the main ingredient in the tea saponin extracted above and the standard tea saponin.The peak strength of Peak II in Fig.7b is higher than that in Fig.7a, which indicates that the amount offlavonoid is higher inTable3Comparison of MAE with heat reflux extraction method Extraction method ExtractiontimeSolventconsumption(ml)Ethanolconcentration(%)Extractionyield(%) MAE4min1306514.73 Heat reflux extraction6h2008512.88 Fig.6FTIR comparison of(a)extracted tea saponin and(b)standardtea saponinthe extracted tea saponin than that of the standard tea saponin.But compared with the non-discolored extracted tea saponin,the amount of flavonoid is much lower,which is discernible from the much lower peak strength of Peak II in Fig.7b compared with Fig.7c.From these results,it can be said that the main ingredient of the extracted tea saponin is theasaponin,effective component of tea saponin as surfactant,with some loadings of flavonoid,the component giving it its yellow color.It needs to be further purified for application.Application to the Cleaning of Historic SilksMany cultural relics,especially those of contaminated historic textiles,need to be cleaned before further protec-tion and conservation.But as we know,there is no spe-cialized detergent that is designated for the cleaning of old textiles.In the cleaning of old textiles,it should be effec-tive at stain removal and safe [29].The safety includes no damage to the color,handle,strength etc.of the old tex-tiles,and the friendliness to human beings and the envi-ronment,too.Therefore,it is important and urgent to develop effective and safe detergents for cleaning old textiles.Therefore,the tea saponin extracted in this study was applied to the cleaning of old silks with further purification according to the description of Liu [30].Table 4shows the surface tension of purified tea saponin solutions at 20°C.From this Table,one can see that the surfacetensionFig.7HPLC comparison of (a )standard tea saponin (b )extracted tea saponin and (c )non-discolored extracted tea saponinTable 4Surface tension of different concentration tea saponin Tea saponin concentration [%(w/w)]Surface tension (Nm/m)0.071.890.255.210.440.280.638.820.838.951.038.002.037.703.037.74Fig.8Photographs of a whole contaminated window shade silk and contaminated partial side,b before cleaning,and c after cleaning。

相关文档
最新文档