速算秒杀技巧之通分放缩法

合集下载

放缩法的原理与规律

放缩法的原理与规律

放缩法的原理与规律
放缩法是一种常用的数学分析方法,用于确定一个问题的解的范围或性质。

该方法基于以下原理和规律。

1. 放缩原理:放缩法的核心原理是通过寻找一个上界和下界来限定问题的解。

通过确定解的上界和下界,可以缩小解的范围,从而更容易找到准确的解。

2. 放缩规律:放缩法中常用的规律有以下几种:
a. 奇偶性:对于某些问题,可以利用奇偶性来放缩解的范围。

例如,如果一个函数在某个区间上是增函数,那么只需计算区间的边界值就可以确定解的范围。

b. 不等式性质:通过分析不等式的性质,可以找到解的限制
条件,从而放缩解的范围。

例如,对于一个非负数的平方根,可以通过平方根的性质得到其解的上界和下界。

c. 极限性质:极限也是放缩法中常用的规律之一。

通过计算
一个函数在某个点的极限,可以推断出解的性质。

例如,如果一个函数在某个区间上的极限存在且有界,那么该函数在该区间上必定有解。

d. 归纳法:归纳法是一种将问题逐步分解的方法。

通过找到
问题的子问题,并将子问题的解应用于主问题,可以推断出主问题的解。

这种递归的方式可以放缩解的范围。

放缩法通常用于解决各种数学问题,如不等式的证明、最优化问题的求解等。

它通过确定解的上界和下界来限定解的范围,并通过不同的规律分析来推断解的性质。

放缩法技巧全总结

放缩法技巧全总结

高考数学备考-------放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k 12142的值; (2)求证:35112<∑=nk k .解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk Λ 技巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Trr rn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn Λ(5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n Λ(2)求证:nn412141361161412-<++++Λ(3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn ΛΛΛ(4) 求证:)112(2131211)11(2-+<++++<-+n nn Λ解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++ΛΛ(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ΛΛ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+Λ再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n nΛ例3.求证:35191411)12)(1(62<++++≤++n n n n Λ解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n nΛΛ当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++Λ,当2=n 时,2191411)12)(1(6nn n n ++++<++Λ,所以综上有35191411)12)(1(62<++++≤++n n n n Λ例4.设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk Λ于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+Λ321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1(Λ所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m nk m nk m m k k n nnn n k m k k111111111111111])1[(2)1()1(1)1()1(])1([Λ故只要证∑∑∑=++==++-+<+<--nk m m nk m n k m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nnna a a T +++=Λ212,求证:23321<++++nT T T T Λ.解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=ΛΛ所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n n n n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T ΛΛ例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ证明: nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+Λ二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++Λ.解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn +++--<++++ΛΛ因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121ΛΛΛ6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---Λ所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nnΛ例9.求证:(1)12ln 3ln 2ln 2≥--<+++≥n n n n ααααααΛ解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n Λ解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n Λ例14. 已知112111,(1).2n n na a a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n aln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n n n a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

政法干警考试行测备考技巧:资料分析之速算放缩法

政法干警考试行测备考技巧:资料分析之速算放缩法

政法干警考试行测备考技巧:资料分析之速算放缩法资料分析题目一直是公务员考试里面的重点,分值较大,题目简单,但是资料分析也是令大部分人头疼的题目:数据繁多,计算复杂。

而资料分析中的计算题绝大多数是不需要精算的,只要能够在四个备选答案中选出正确的答案即可。

所以,合理地运用计算技巧,对于提高计算速度、快速完成资料分析意义重大。

在这里,华图老师给大家讲解资料分析中常用的速算技巧之一——放缩法。

方法点睛当计算精度要求不高时,数字的计算可以采用放缩法。

常见形式两个数相乘,那么把两个数都变小,积就变小,两数都变大,积就变大;两个数相除,把分子变大分母变小,分数值就变大,把分子变小分母变大,分数值变小。

看到上图,很多考生觉得有一种似曾相识的感觉,好像跟前面说的估算法有点类似,但仔细一看又略有不同,华图专家提醒广大考生,放缩也是估算的一种,但是和前面说的估算的不同之处在于放缩是有方向的,也就是说通过放缩我能确定得到的值和真实值之间的一个关系,是大于还是小于,但是估算是不能确定方向的,不知道和真实值相比是放大了还是缩小了,所以这就是放缩的特点所在。

下面通过两个例题给大家讲解下放缩法的具体运用:【例1】下表为某公司四个部门2009年全年的营销总费用,以及营销总费用占总销售额的比例。

请问四个部门当中,哪个部门2009年全年的总销售额最高?( )A部门B部门C部门D部门营销总费用(万元)213.5194.9234.8165.3营销总费用占总销售额的比例 5.3%7.6% 5.2% 6.1%A.A部门B.B部门C.C部门D.D部门解析:正确答案为C。

本题如果一个一个将每个部门的总销售额算出来,然后再比较的话,是相当耗时间的,但是,如果大家在华图学过放缩法的话,这个题就会变得非常简单,像总销售额应辽宁公务员 | 国家公务员 | 事业单位 | 政法干警 | 公安招警 | 村官三支一扶 | 党政公选 |该等于营销的总费用/它的比重,根据放缩法的原则,如果要一个分数最大,分子一定要找那个大的,而其对应的分母应该是小的,那么整个分数肯定是大的,我们通过表格中A、B、C、D四个部门的数据可以发现,C部门的营销费用是最大的,也就是分子式最大的,而其相应的所占比例是最小的,也就是说分母是最小的,那么C部门的总销售额应该是最高的,所以本题的正确答案为C。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结在高中数学学习中,放缩法是一种常用的解题技巧,尤其在不等式证明和极限计算中应用广泛。

掌握好放缩法的技巧,可以帮助我们更好地解决数学问题,提高解题效率。

下面,我将对高中数学放缩法的技巧进行全面总结,希望能够帮助大家更好地掌握这一技巧。

首先,放缩法的基本思想是通过构造一个比原来更容易处理的不等式或者关系式,从而简化原问题的解决过程。

在实际运用中,我们可以通过加减变形、乘除变形、配方等方式进行放缩,下面我们来看一些常用的放缩法技巧。

一、加减变形。

在不等式证明中,我们常常会遇到需要证明一个不等式成立的情况。

这时,我们可以通过在两边同时加上或者减去一个特定的数,来改变原不等式的形式,使得原不等式更容易证明。

例如,在证明数学归纳法中的不等式时,我们常常会通过加减变形来简化证明过程,这是一种常见的放缩法技巧。

二、乘除变形。

在极限计算中,我们常常需要通过放缩法来证明一个极限存在或者不存在。

这时,我们可以通过乘除变形,将原极限问题转化为一个更容易处理的形式。

例如,当我们需要证明一个函数的极限不存在时,可以通过乘除变形将原函数转化为一个更容易处理的形式,从而简化证明过程。

三、配方。

在解决数学问题中,有时我们需要通过配方来进行放缩。

例如,在证明三角函数不等式时,我们可以通过对不等式进行配方,将原不等式转化为一个更容易处理的形式。

这种放缩法技巧在解决三角函数不等式问题中应用广泛,可以帮助我们更好地解决这类问题。

总结起来,放缩法是高中数学学习中常用的解题技巧,通过加减变形、乘除变形、配方等方式进行放缩,可以帮助我们更好地解决数学问题,提高解题效率。

希望以上总结的放缩法技巧对大家有所帮助,能够在高中数学学习中更好地运用这一技巧,提高数学成绩。

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳) 教师版

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳) 教师版

放缩法在解答数列题中的应用技巧(十一种放缩方法全归纳)证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材.这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩.一、放缩技巧(1)1n2=44n2<44n2-1=212n-1-12n+1(2)1C1n+1C2n=2(n+1)n(n-1)=1n(n-1)-1n(n+1)(3)T r+1=C r n⋅1n r=n!r!(n-r)!⋅1n r<1r!<1r(r-1)=1r-1-1r(r≥2)(4)1+1 nn<1+1+12×1+13×2+⋯+1n(n-1)<3(5)12n(2n-1)=12n-1-12n(6)1n+2<n+2-n(7)2(n+1-n)<1n<2(n-n-1)(8)22n+1-12n+3⋅12n=1(2n+1)⋅2n-1-1(2n+3)⋅2n(9)1k(n+1-k)=1n+1-k+1k1n+1,1n(n+1+k)=1k+11n-1n+1+k(10)n(n+1)!=1n!-1(n+1)!(11)1n<2(2n+1-2n-1)=222n+1+2n-1=2n+12+n-12(11)2n(2n-1)2=2n(2n-1)(2n-1)<2n(2n-1)(2n-2)=2n-1(2n-1)(2n-1-1)=12n-1-1-12n-1(n≥2)(12)1n3=1n⋅n2<1n(n-1)(n+1)=1n(n-1)-1n(n+1)⋅1n+1-n-1=1n-1-1n+1⋅n+1+n-12n <1n-1-1n+1(13)2n +1=2⋅2n=(3-1)⋅2n>3⇒3(2n-1)>2n⇒2n-1>2n 3⇒12n -1<2n3(14)k +2k !+(k +1)!+(k +2)!=1(k +1)!-1(k +2)!(15)1n (n +1)<n -n -1(n ≥2)(16)i 2+1-j 2+1i -j =i 2-j 2(i -j )(i 2+1+j 2+1)=i +j i 2+1+j 2+1<1二、经典试题解析(一)、经典试题01、裂项放缩1.(1)求∑nk =124k 2-1的值;(2)求证:∑nk =11k2<53.【分析】(1)根据裂项相消求和即可;(2)根据1n 2<1n 2-14放缩再求和即可【详解】(1)因为24n 2-1=2(2n -1)(2n +1)=12n -1-12n +1,所以∑nk =124k 2-1=11-13+13-15+...+12n -1-12n +1=2n2n +1(2)因为1n 2<1n 2-14=44n 2-1=212n -1-12n +1 ,所以∑nk =11k2≤1+213-15+⋯+12n -1-12n +1 <1+23=532.求证:1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2).【分析】根据1(2n -1)2>1(2n -1)(2n +1)放缩后利用裂项相消求和即可【详解】因为1(2n -1)2>1(2n -1)(2n +1)=1212n -1-12n +1 ,(n ≥2)故∑nk =11(2k -1)2>1+1213-15+...+12n -1-12n +1 =1+1213-12n +1 =76-122n -1,故1+132+152+⋯+1(2n -1)2>76-12(2n -1)(n ≥2)3.求证:14+116+136+⋯+14n2<12-14n .【详解】由14+116+136+⋯+14n 2=141+122+⋯+1n 2<141+1-1n =12-14n 根据1n 2<1n ⋅n -1 得122+⋯+1n 2<1-12+12-13+⋯1n -1-1n =1-1n 所以141+122+⋯+1n2<141+1-1n =12-14n 4.求证:12+1⋅32⋅4+1⋅3⋅52⋅4⋅6+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<2n +1-1【分析】利用分式放缩法证明出1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,进而利用数学归纳法证明13+15+⋯+12n +1<2n +1-1即可.【详解】由1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n 2<12⋅23⋅34⋯2n -12n ⋅2n 2n +1=12n +1,得1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n<12n +1,所以12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <13+15+⋯+12n +1,要证12+1⋅32⋅4+⋯+1⋅3⋅5⋅⋯⋅(2n -1)2⋅4⋅6⋅⋯⋅2n <2n +1-1,只需证13+15+⋯+12n +1<2n +1-1,下面利用数学归纳法证明:当n =1时,左边=13,右边=3-1。

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结

高中数学放缩法技巧全总结高中数学中的放缩法是一种常用的解题技巧,它通过适当调整式子的形式,进行等价转化,从而简化计算或者明晰问题的关键点。

下面总结了一些常见的高中数学放缩法技巧。

1. 分子分母同乘:当分式的分子和分母中含有相同的因式时,可以将分子和分母同时乘以这个因式的倒数,从而得到一个等价的分式。

这样做的好处是可以简化分式,消去分子分母中的公因式。

2. 导数法:在解决函数极值问题时,可以利用导数的概念进行放缩。

通过求函数的导数,并研究导数的正负性,可以找到函数的极值点。

这种方法可以有效地缩小问题的范围,简化计算。

3. 均值不等式:均值不等式是一种常用的放缩方法,它通过寻找合适的均值来放缩不等式。

常见的均值不等式有算术-几何均值不等式、柯西-施瓦茨不等式等。

通过将不等式的两边同时取均值,可以得到一个更简单的等价不等式。

4. 三角函数变换:在解决三角函数相关的问题时,可以利用三角函数的性质进行放缩。

常见的三角函数变换有和差化积、倍角公式等。

通过适当的变换,可以将原问题转化为更容易处理的形式。

5. 幂函数变换:在解决幂函数相关的问题时,可以利用幂函数的性质进行放缩。

常见的幂函数变换有换元法、幂函数的反函数等。

通过适当的变换,可以使问题的形式更简单,更易于分析。

6. 递推关系式:在解决数列相关的问题时,可以利用递推关系式进行放缩。

通过找到数列的递推关系式,可以将原问题转化为递推问题。

递推关系式可以帮助我们找到数列的通项公式,从而简化问题的求解过程。

以上是一些高中数学中常用的放缩法技巧。

通过灵活运用这些技巧,可以在解题过程中简化计算、明晰问题的关键点,从而更高效地解决数学问题。

放缩法技巧全总结

放缩法技巧全总结

2011高考数学备考之 放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种:一、裂项放缩例1.(1)求∑=-n k k 12142的值; (2)求证:35112<∑=nk k . 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n n n (2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n(3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n nn(5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n nn n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+-(9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1 (10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11) )2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12)111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n nn n11112111111+--<-++⋅⎪⎭⎫⎝⎛+--=n n nn n n n(13) 3212132122)12(332)13(2221nn n n n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15))2(1)1(1≥--<+n n n n n (15) 111)11)((1122222222<++++=+++--=-+-+j i ji j i j i j i ji j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:n n412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni (2))111(41)1211(414136116141222nnn-+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析: 一方面: 因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以3532112112151312111=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面: 1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n当3≥n 时,)12)(1(61++>+n n n n n ,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例4.(2008年全国一卷)设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=. 设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析: 由数学归纳法可以证明{}n a 是递增数列, 故 若存在正整数k m ≤, 使b a m ≥, 则b a a k k ≥>+1,若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=km m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a akm m m<∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=n k m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([故只要证∑∑∑=++==++-+<+<--nk m m n k m nk m m k k k m k k1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kkm kkm 而正是成立的,所以原命题成立.例6.已知n n n a 24-=,nnna a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3211+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++nn n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+ 证明:nn n n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n nn∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln n n nn+++--<++++cause ⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.2ααα例10.所以有nn 1211)1ln(+++<+ ,所以综上有nn n 1211)1ln(113121+++<+<++++例11.求证:e n <+⋅⋅++)!11()!311)(!211( 和e <+⋅⋅++)311()8111)(911( .解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n 解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n n aa a n n +==+++证明2n a e <. 解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案) 放缩思路:⇒+++≤+n nn a nn a )2111(21⇒++++≤+n nn a nn a ln )2111ln(ln 21nn n n a 211ln 2+++≤。

放缩法技巧全总结

放缩法技巧全总结

2010高考数学备考之放缩技巧证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。

这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: 一、裂项放缩 例1.(1)求∑=-nk k12142的值; (2)求证:35112<∑=nk k. 解析:(1)因为121121)12)(12(21422+--=+-=-n n n n n ,所以122121114212+=+-=-∑=n n n k n k (2)因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n k nk 奇巧积累:(1)⎪⎭⎫ ⎝⎛+--=-<=1211212144441222n n n nn(2))1(1)1(1)1()1(21211+--=-+=+n n n n n n n C C n n (3))2(111)1(1!11)!(!!11≥--=-<<⋅-=⋅=+r r r r r r n r n r n nC Tr rrn r (4)25)1(123112111)11(<-++⨯+⨯++<+n n n n (5)nn nn21121)12(21--=- (6)n n n -+<+221(7))1(21)1(2--<<-+n n n n n (8) nn n n n n n 2)32(12)12(1213211221⋅+-⋅+=⋅⎪⎭⎫ ⎝⎛+-+- (9)⎪⎭⎫ ⎝⎛++-+=+++⎪⎭⎫ ⎝⎛+-+=-+k n n k k n n n k k n k n k 11111)1(1,11111)1(1(10) !)1(1!1!)1(+-=+n n n n (11)21212121222)1212(21-++=-++=--+<n n n n n n n(11))2(121121)12)(12(2)22)(12(2)12)(12(2)12(21112≥---=--=--<--=----n n n n n n n n n n n n n n(12) 111)1(1)1(1)1)(1(11123--+⋅⎪⎪⎭⎫ ⎝⎛+--=+-<⋅=n n n n n n n n n n n n11112111111+--<-++⋅⎪⎭⎫ ⎝⎛+--=n n n n n n n(13) 3212132122)12(332)13(2221n n nn n n n n n <-⇒>-⇒>-⇒>⋅-=⋅=+(14)!)2(1!)1(1)!2()!1(!2+-+=+++++k k k k k k (15) )2(1)1(1≥--<+n n n n n(15)111)11)((1122222222<++++=+++--=-+-+j i j i j i j i j i j i j i例2.(1)求证:)2()12(2167)12(151311222≥-->-++++n n n (2)求证:nn 412141361161412-<++++ (3)求证:1122642)12(531642531423121-+<⋅⋅⋅⋅-⋅⋅⋅⋅++⋅⋅⋅⋅+⋅⋅+n nn(4) 求证:)112(2131211)11(2-+<++++<-+n nn解析:(1)因为⎪⎭⎫ ⎝⎛+--=+->-12112121)12)(12(1)12(12n n n n n ,所以 )12131(211)12131(211)12(112--+>+-+>-∑=n n i ni(2))111(41)1211(414136116141222nn n -+<+++=++++(3)先运用分式放缩法证明出1212642)12(531+<⋅⋅⋅⋅-⋅⋅⋅⋅n nn ,再结合nn n -+<+221进行裂项,最后就可以得到答案(4)首先nn n n n++=-+>12)1(21,所以容易经过裂项得到nn 131211)11(2++++<-+再证21212121222)1212(21-++=-++=--+<n n n n n n n而由均值不等式知道这是显然成立的,所以)112(2131211-+<++++n n例3.求证:35191411)12)(1(62<++++≤++n n n n解析:一方面:因为⎪⎭⎫ ⎝⎛+--=-=-<12112121444111222n n n n n ,所以35321121121513121112=+<⎪⎭⎫ ⎝⎛+--++-+<∑=n n knk 另一方面:1111)1(143132111914112+=+-=+++⨯+⨯+>++++n n n n n n 当3≥n 时,)12)(1(61++>+n n n n n,当1=n 时,2191411)12)(1(6n n n n ++++=++ ,当2=n 时,2191411)12)(1(6nn n n ++++<++ ,所以综上有35191411)12)(1(62<++++≤++n n n n例 4.(2008年全国一卷) 设函数()ln f x x x x =-.数列{}n a 满足101a <<.1()n n a f a +=.设1(1)b a ∈,,整数11ln a b k a b-≥.证明:1k a b +>.解析:由数学归纳法可以证明{}n a 是递增数列,故存在正整数k m ≤,使b a m ≥,则b a a k k ≥>+1,否则若)(k m b a m ≤<,则由101<<≤<b a a m 知0ln ln ln 11<<≤b a a a a a m m m ,∑=+-=-=k m m m k k k k a a a a a a a111ln ln ,因为)ln (ln 11b a k a a km m m <∑=,于是b a b a b a k a a k =-+≥+>+)(|ln |11111例5.已知m m m m m n S x N m n ++++=->∈+ 321,1,,,求证: 1)1()1(11-+<+<++m n m n S m n .解析:首先可以证明:nx x n +≥+1)1(∑=++++++++--=-++---+--=nk m m m m m m m m k k n n n n n 111111111])1([01)2()1()1( 所以要证1)1()1(11-+<+<++m n m n S m n 只要证:∑∑∑=+++++++++==++-+=-++--+-+=-+<+<--nk m m m m m m m m m n k m n k m m k k n n n n n k m k k 111111111111111])1[(2)1()1(1)1()1(])1([ 故只要证∑∑∑=++==++-+<+<--nk m m nk m nk m m k k k m k k 1111111])1[()1(])1([,即等价于m m m m m k k k m k k -+<+<--+++111)1()1()1(,即等价于11)11(11,)11(11++-<+-+<++m m kk m k k m而正是成立的,所以原命题成立. 例6.已知n n n a 24-=,nn na a a T +++=212,求证:23321<++++nT T T T .解析:)21(2)14(3421)21(241)41(4)222(444421321n n nn n n nT -+-=-----=+++-++++=所以123)2(22232234232323422234342)21(2)14(3422111111+⋅-⋅⋅=+⋅-⋅=-+=-+-=-+-=++++++n n nn n n n n n n n n n n nn T⎪⎭⎫ ⎝⎛---=--⋅⋅=+12112123)12)(122(2231n n nn n 从而231211217131311231321<⎪⎭⎫ ⎝⎛---++-+-=+++++n n nT T T T 例7.已知11=x ,⎩⎨⎧∈=-∈-==),2(1),12(Z k k n n Z k k n n x n,求证:*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+证明:nnn n n n x x n n 222141141)12)(12(11424244122=⋅=>-=+-=+,因为 12++<n n n ,所以)1(2122214122n n n n nx x n n -+=++>>+所以*))(11(21114122454432N n n x x x x x x n n ∈-+>++⋅+⋅+二、函数放缩例8.求证:)(665333ln 44ln 33ln 22ln *N n n n n n∈+-<++++ .解析:先构造函数有xxx x x 11ln 1ln -≤⇒-≤,从而)313121(1333ln 44ln 33ln 22ln nn n n +++--<++++因为⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛++++++⎪⎭⎫ ⎝⎛+=+++n n n n 31121219181716151413121313121 6533323279189936365111n n n n n =⎪⎪⎭⎫ ⎝⎛+⋅++⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛++>---所以6653651333ln 44ln 33ln 22ln +-=--<++++n n n n nn例9.求证:(1))2()1(212ln 33ln 22ln ,22≥+--<+++≥n n n n n n ααααααα解析:构造函数xx x f ln )(=,得到22ln ln n n n n≤αα,再进行裂项)1(1111ln 222+-<-≤n n n n n ,求和后可以得到答案解析:构造函数后即可证明例12.求证:32)]1(1[)321()211(->++⋅⋅⨯+⋅⨯+n e n n解析:1)1(32]1)1(ln[++->++n n n n ,叠加之后就可以得到答案 例13.证明:)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n 解析:构造函数)1(1)1()1ln()(>+---=x x x x f ,求导,可以得到:12111)('--=--=x x x x f ,令0)('>x f 有21<<x ,令0)('<x f 有2>x ,所以0)2()(=≤f x f ,所以2)1ln(-≤-x x ,令12+=n x 有,1ln 22-≤n n 所以211ln -≤+n n n,所以)1*,(4)1(1ln 54ln 43ln 32ln >∈-<+++++n N n n n n n例14. 已知112111,(1).2n n na a a n n+==+++证明2n a e <.解析:nn n n n a n n a n n a )21)1(11(21))1(11(1+++<+++=+, 然后两边取自然对数,可以得到nn n a n n a ln )21)1(11ln(ln 1++++<+ 然后运用x x <+)1ln(和裂项可以得到答案)放缩思路:⇒+++≤+n nn a n n a )2111(21⇒++++≤+n n n a n n a ln )2111ln(ln 21 nn n n a 211ln 2+++≤。

放缩法技巧全总结

放缩法技巧全总结

放缩法技巧全总结放缩法是一种在求解数学问题时经常使用的技巧之一、它主要是通过对问题进行放大或缩小,从而转换为更简单或更熟悉的形式来解决。

放缩法可以用于各种数学领域,如代数、几何和计算等。

在本文中,我将总结一些常用的放缩法技巧。

一、代数放缩法1.替换变量:通过替换变量,将原始问题转化为更容易求解的问题。

例如,可以通过令一些变量等于另一个变量的一些表达式来简化问题。

2.提取公因式:将多项式中的公因式提取出来,可以简化计算过程。

3.移项:将方程中的项移动到一边,可以使问题更加清晰。

4.分式放缩:对于有分式形式的问题,可以通过放缩分母或分子来简化问题。

二、几何放缩法1.类比三角形:如果一个问题中涉及到一个复杂的三角形,可以通过找到类似形状但更简单的三角形来放缩问题。

2.重心放缩:对于一个几何体,可以通过移动几何体的重心来简化问题。

例如,在求解三角形面积时,可以通过将三角形平移到一个更简单的位置来计算。

3.缩放比例:通过按比例缩放一个几何体,可以简化问题。

例如,求解复杂图形的面积时,可以将图形按比例缩小到一个更易计算的大小。

三、计算放缩法1.近似计算:当遇到一个复杂的数学计算时,可以通过近似计算来简化问题。

例如,可以使用泰勒级数近似一个函数的值。

2.递归放缩:将一个复杂的计算问题分解为多个简单的计算问题,并将得到的结果组合起来。

例如,在求解一个复杂的积分时,可以将其拆分为多个简单的积分来计算。

3.迭代放缩:通过迭代计算的方式,逐步接近问题的解。

例如,在求解方程的根时,可以逐步逼近根的值。

四、实例分析以以下问题为例,展示放缩法在实际问题的应用。

假设有一个需要排队购买电影票的场景,共有n个人等待购票,每个人需要等待的时间为ti,求解n个人等待时间的平均值。

使用放缩法求解该问题的步骤如下:1. 将n个人的等待时间求和得到总的等待时间sum。

2. 将总的等待时间sum除以n,得到平均等待时间average。

通过放缩法求解,可以将原始问题转化为简单的求和和除法操作,从而简化了计算过程。

放缩法技巧全总结

放缩法技巧全总结

放缩法技巧全总结放缩法(Scaling)是一种常用的数学技巧,用于将数学问题转化为更简单、更易解决的形式。

这种技巧广泛应用于数学竞赛和问题求解中。

以下是放缩法的几个常见技巧和应用总结。

1.强化不等关系:放缩法的核心思想是通过比较大小来改变问题的形式。

如果已知a>b,那么可以通过加减乘除等操作将问题转化为a的形式,从而简化计算过程。

例如,要求证明a+2b>0,可以通过乘法得到2a+4b>0,进一步可得3a+6b>0。

这样可以将问题转化为证明3a+6b>0的形式,而这个不等式更容易证明。

2. 运用恒等变形:放缩法还可以通过变换等式或不等式的形式来简化问题。

常用的恒等变形包括平方恒等式(a+b)^2=a^2+2ab+b^2和倒数恒等式1/(ab)=(1/a)(1/b)等。

应用这些恒等变形,可以将问题转化为更简单的形式,进而解决问题。

3.递推放缩:递推放缩是一种通过递推关系来简化问题的方法。

通过找到问题的递推关系,可以将问题规模进行放缩,从而降低问题的复杂度。

例如,要求证明一些等式成立,可以通过将等式两边代入等式左边或右边的形式,利用递推关系将问题简化。

4.红蓝染色:红蓝染色是一种通过对元素染色来放缩问题的方法。

通过给问题中的元素染色,可以将问题转化为简化的形式,从而解决问题。

例如,在一个n×n的方格中,要求选择一些相互不在同一行、同一列的方格,并使这些方格能够覆盖所有的行和列。

可以将行和列分别染成红色和蓝色,问题转化为在红色和蓝色方格中选择不同行和列的方格并覆盖所有的红色和蓝色方格的问题。

5.数学归纳法:数学归纳法是一种通过递推关系来证明数学性质的方法。

通过对问题进行归纳假设,可以按照递推步骤逐步证明问题的性质。

例如,要证明对于任意正整数n,都有n(n+1)(n+2)能被6整除,可以通过数学归纳法来证明:当n=1时,1×2×3=6能被6整除;假设当n=k时成立,即k(k+1)(k+2)能被6整除;则当n=k+1时,(k+1)(k+2)(k+3)=(k(k+1)(k+2))+(k+1)(k+2)也能被6整除,即对于任意正整数n都有n(n+1)(n+2)能被6整除。

2014年上海市行测:十大速算技巧之放缩法

2014年上海市行测:十大速算技巧之放缩法

2014上海市行测:十大速算技巧之放缩法华图教育朱满在公务员考试行政职业能力测验科目中资料分析部分涉及速算技巧比较多,其中“放缩法”就是常见的速算技巧之一。

何为“放缩法”呢?“放缩法”是指在计算过程当中,将中间数据通过放大放小而影响结果变大变小,并结合选项做选择,从而简化计算的速算方式。

“放缩法”在计算过程中主要包括两种情况:一是两个数相乘,那么把两个数都变小,积就变小,两数都变大,积就变大;二是两个数相除,把分子变大分母变小,分数值就变大,把分子变小分母变大,分数值变小。

【例1】2004年财政科技拨款额为1095.3亿元,其中,科研基建费占8.7%,科研基建费为多少亿元?()A.76.3B.64.2C.95.29D.85.6【解析】本题考查比重问题,根据公式计算科研基建费为:1095.3×8.7%>1000×8.7%=87,结合选项,只有C答案满足要求,因此,本题答案为C选项。

【名师点拨】本题考查乘法的计算,在计算过程中考生可以结合选项作分析,适当运用放缩法可以避免不必要的复杂计算。

【例2】2009年,某地农村居民全年人均纯收入为7285元,较上一年增长10.6%。

如果增长速度不变,预计2010年该地农村居民全年人均纯收入将达到多少?()A.7914B.7976C.8012D.8057【解析】本题考查现期的计算,2010年该地农村居民全年人均纯收入为:7285×(1+10.6%)=7285×1.106>7285×1.1=7285+728.5=8013.5,因此本题答案选择D选项。

【名师点拨】本题一个因子不变,将另一个因子放小,积变小。

因子放小的过程中注意结合选项分析。

【例3】下表为某公司四个部门2009年全年的营销总费用,以及营销总费用占总销售额的比例。

请问四个部门当中,哪个部门2009年全年的总销售额最高?()A 部门B 部门C 部门D 部门 营销总费用(万元)213.5 194.9 234.8 165.3 营销总费用占总销售额的比例5.3% 7.6% 5.2%6.1% A.A 部门 B.B 部门 C.C 部门 D.D 部门 【解析】本题考查比重问题,根据比重公式,整体销售额=所占比重部分销售额,观察表格数据,很明显C 部门分子最大而分母最小,除后商最大,因此本题答案为C 选项。

放缩法技巧全总结[借鉴]

放缩法技巧全总结[借鉴]

放缩法技巧全总结[借鉴] 放缩法是一种常用的数学求解方法,可以用来求解各种问题,包括优化问题、最大最小值问题等。

在放缩法中,通过对问题进行适当的放大或缩小,可以使问题的求解变得更加简单和直观。

下面是关于放缩法的一些技巧总结:1. 利用函数的性质进行放缩。

对于一个函数,我们可以利用它的性质来进行放缩。

例如,对于一个凸函数,我们可以使用切线来对函数进行放缩,从而得到函数的上界或下界。

同样,对于一个凹函数,我们可以使用切线来对函数进行放缩,从而得到函数的下界或上界。

2. 利用不等式进行放缩。

对于一个复杂的式子,我们可以通过引入合适的不等式来进行放缩。

例如,对于一个多项式,我们可以使用齐次不等式或者柯西不等式等来对它进行放缩。

同样,对于一个分式,我们可以使用分子分母的关系来进行放缩。

3. 利用对称性进行放缩。

对于一个具有对称性的问题,我们可以利用对称性来进行放缩。

例如,对于一个几何问题,如果我们发现问题具有镜像对称性或旋转对称性,我们可以将问题放缩到一个更简单的情况进行求解。

4. 利用局部极值进行放缩。

对于一个函数,我们可以通过求解它的一阶导数或二阶导数来找到它的极值点,并利用极值点对函数进行放缩。

例如,对于一个凸函数,它的极小值点就是函数的下界;对于一个凹函数,它的极大值点就是函数的上界。

5. 利用特殊点进行放缩。

对于一个函数,我们可以通过找到它的特殊点来进行放缩。

例如,对于一个分式,我们可以找到它的极值点或者零点来进行放缩。

同样,对于一个多项式,我们可以找到它的根或者切点来进行放缩。

6. 利用数学恒等式进行放缩。

对于一个复杂的式子,我们可以通过使用数学恒等式来进行放缩。

例如,对于一个三角函数,我们可以使用三角恒等式来对它进行放缩。

同样,对于一个指数函数,我们可以使用指数恒等式来对它进行放缩。

7. 利用数学变换进行放缩。

对于一个复杂的式子,我们可以通过使用数学变换来进行放缩。

例如,对于一个指数函数,我们可以使用对数变换来对它进行放缩。

放缩法技巧全总结

放缩法技巧全总结

放缩法技巧全总结放缩法是数学问题解决中常用的一种方法,它通过缩小问题的范围或改变问题的形式来简化解决过程。

在数学建模、优化问题以及算法设计中,放缩法经常被应用于求解复杂的问题。

本文将对放缩法的原理、应用以及常见的技巧进行全面总结。

1. 放缩法的原理及基本思想放缩法的基本思想是通过限制问题的变量范围或者构造合适的上下界,从而将原问题转化为一个可以更容易解决的子问题。

主要包括以下步骤:首先,确定问题的数学模型和目标函数。

根据问题的特点,选择合适的变量和约束条件,明确问题的求解目标。

其次,根据问题的特点,通过观察和分析将问题进行简化。

可以通过限制变量范围、引入新的限制条件或者改变问题的形式等方式进行问题的放缩。

然后,进行放缩求解。

根据问题的特点,选择合适的求解方法和算法来求解放缩后的子问题。

最后,将子问题的解进行扩展和还原,得到原问题的解。

2. 放缩法的应用领域放缩法是一种通用的方法,可以应用于多个领域,如数学建模、优化问题以及算法设计等。

以下列举几个应用场景:2.1 数学建模放缩法在数学建模中经常用于减少问题的复杂性,简化模型的求解过程。

通过放缩变量的范围,可以缩小求解空间,提高求解效率。

2.2 优化问题放缩法在优化问题中的应用非常广泛。

通过引入适当的上下界限制,可以将原问题转化为一个更容易求解的子问题。

例如,在整数规划中,可以通过放缩法来将问题转化为一个线性规划问题,然后使用线性规划算法求解。

2.3 算法设计在算法设计中,放缩法可以用于改进算法的时间复杂度和空间复杂度。

通过限制算法中的某些变量范围,可以减少算法的搜索空间,提高算法的效率。

3. 放缩法的常见技巧3.1 二分搜索二分搜索是放缩法中常用的技巧之一。

通过确定问题的上下界,不断将问题的搜索空间缩小一半,直到找到满足条件的解。

二分搜索可以应用于各种离散问题,如查找有序数组中的元素、搜索图中的路径等。

3.2 引入辅助变量引入辅助变量是放缩法中常用的技巧之一。

数学放缩法技巧

数学放缩法技巧

放缩法是一种有意识地对相关的数或者式子的取值进行放大或缩小的方法,技巧如下:
1、舍掉(或加进)一些项。

2、在分式中放大或缩小分子或分母。

3、应用基本不等式放缩(例如均值不等式)。

4、应用函数的单调性进行放缩。

5、根据题目条件进行放缩。

6、构造等比数列进行放缩。

7、构造裂项条件进行放缩。

8、利用函数切线、割线逼近进行放缩。

9、利用裂项法进行放缩。

10、利用错位相减法进行放缩。

放缩法概念
放缩法是指要让不等式A<B成立,有时可以将它的一边放大或缩小,寻找一个中间量,如将A放大成C,即A<C,后证C<B,这种方法便是放缩法。

如果能够灵活掌握运用这种方法,对比较大小,不等式的证明等部分数学试题的解题能起到拨云见日的效果,尤其针对竞赛问题,是一种解决问题的很好方法。

所谓放缩法就是利用不等式的传递性,对照证题目标进行合情合理的放大和缩小的过程,在使用放缩法证题时要注意放和缩的"度",否则就不能同向传递了,此法既可以单独用来证明不等式,也可以是其他方法证题时的一个重要步骤。

分数的放缩法

分数的放缩法

分数的放缩法
分数的放缩法是一种常用的数学技巧,用于比较两个分数的大小或处理与分数相关的不等式问题。

通过放缩法,我们可以将一个复杂的分数表达式简化为一个更容易处理的形式,从而更容易地得出所需的结论。

放缩法的基本思想是通过增加或减少分子或分母的值来改变分数的大小,但保持其不等关系或趋势不变。

这种方法的关键在于找到一个适当的放缩因子,使得放缩后的分数能够方便地用于比较或推导。

以下是一些常见的分数放缩法的应用:
1. 放大法:当我们需要证明一个分数大于另一个分数时,可以尝试将较小的分数的分子和分母同时乘以一个正数,使得它变得更大。

这样,放缩后的分数将保持大于原分数的关系。

2. 缩小法:与放大法相反,当我们需要证明一个分数小于另一个分数时,可以尝试将较大的分数的分子和分母同时除以一个正数,使得它变得更小。

这样,放缩后的分数将保持小于原分数的关系。

需要注意的是,放缩法虽然可以简化问题,但也可能引入一些误差。

因此,在使用放缩法时,我们需要谨慎选择放缩因子,并验证放缩后的不等式是否仍然成立。

此外,还有一些其他的放缩技巧,如利用已知的不等式关系进行放缩,或根据题目的具体特点选择适当的放缩策略。

在实际应用
中,我们需要根据具体情况灵活运用这些方法。

总之,分数的放缩法是一种重要的数学工具,可以帮助我们解决与分数相关的问题。

通过合理地选择放缩因子和运用放缩技巧,我们可以更有效地处理分数表达式,并得出所需的结论。

2014年天津公务员考试行测数量资料分析之速算技巧(三)

2014年天津公务员考试行测数量资料分析之速算技巧(三)

华图网校: 2014年天津公务员考试行测数量资料分析之速算技巧(三)天津公务员考试资料分析部分题目的难度并不高,只是由于必须在有限的时间内完成,所以造成失分。

如果考生能够熟练地掌握几种运算技巧,并且学会在试题中运用,那么想要在这一部分拿到高分并非难事。

这一节依然详细介绍几种天津公务员行测考试速算技巧。

速算技巧之五:插值法"插值法"是指在计算数值或者比较数的大小的时候,运用了一个中间值进行"参照比较"的速算方式,一般情况下包括两种基本形式:一、在比较两个数大小时,直接比较相对困难,但这两个数中间明显插了一个可以进行参照比较并且易于计算的数,由此中间数可以迅速得出这两个数的大小关系。

比如说A与B的比较,如果可以找到一个数C,并且容易得到A>C,而BB。

二、在计算一个数值f的时候,选项给出两个较近的数A与B难以判断,但我们可以容易的找到A 与B之间的一个数C,比如说AC,则我们可以知道f=B(另外一种情况类比可得)。

速算技巧之六:凑整法"凑整法"是指在计算过程当中,将中间结果凑成一个"整数"(整百、整千等其它方便计算形式的数),从而简化计算的速算方式。

"凑整法"包括加/减法的凑整,也包括乘/除法的凑整。

在资料分析的计算当中,真正意义上的完全凑成"整数"基本上是不可能的,但由于资料分析不要求绝对的精度,所以凑成与"整数"相近的数是资料分析"凑整法"所真正包括的主要内容。

速算技巧之七:放缩法"放缩法"是指在数字的比较计算当中,如果精度要求并不高,我们可以将中间结果进行大胆的"放"(扩大)或者"缩"(缩小),从而迅速得到待比较数字大小关系的速算方式。

若A>B>0,且C>D>0,则有:1) A+C>B+D 2) A-D>B-C 3) A×C>B×D 4) A/D>B/C这四个关系式即上述四个例子所想要阐述的四个数学不等关系,是我们在做题当中经常需要用到的非常简单、非常基础的不等关系,但却是考生容易忽略,或者在考场之上容易漏掉的数学关系,其本质可以用"放缩法"来解释。

分数放缩法技巧全总结

分数放缩法技巧全总结

分数放缩法技巧全总结
1. 哎呀呀,分数放缩法技巧之一就是要学会观察呀!比如说,在比较
1/3 和 1/4 谁大时,就可以把 1/3 放缩成 2/6,把 1/4 放缩成 2/8,这样
不就一目了然啦,1/3 大呗!这多简单啊!
2. 嘿!还有一个技巧就是找中间数哟!比如要判断 3/7 和 4/9 谁大,就可
以找个中间数 1/2 呀,3/7 小于 1/2,4/9 大于 1/2,那不就清楚了嘛,
4/9 大呀!你说妙不妙?
3. 哇塞,放大或缩小分子分母也是常用的办法呀!就像比较 5/8 和 7/10,把 5/8 的分子分母同时扩大,变成 25/40,把 7/10 变成 28/40,这下不就知道 7/10 大咯!是不是很有意思呀?
4. 嘿呀,遇到复杂点的分数可别怕呀!例如判断 101/200 和 302/600 谁大,把 302/600 约分一下变成 151/300,再和 101/200 一比,这不就得出
101/200 小嘛!你学会了没?
5. 哇哦,有时候可以利用分数的性质呀!像比较 2/5 和 3/7,把 2/5 变成
14/35,把 3/7 变成 15/35,很明显 3/7 大啦!这多神奇呀!
6. 哎呀,还可以结合实际呀!比如说分蛋糕,给你 1/2 块蛋糕和给他 2/3
块蛋糕,谁的多不就清楚明白了嘛!这就是分数放缩法的厉害之处呢!
7. 嘿,有些题目得灵活运用多种技巧呀!就好像解方程里面有分数,就得用这些技巧去化简呀!想想是不是这个理?
8. 哟呵,分数放缩法的技巧真的好多呀!多练习多掌握,以后遇到分数问题都不是事儿啦!总之,学会这些技巧,就能在分数的世界里畅游啦!。

放缩法基本概念

放缩法基本概念

放缩法基本概念嗨,朋友们!今天咱们来聊聊一个超有趣的数学方法——放缩法。

这放缩法啊,就像是一把神奇的钥匙,能帮咱们打开很多数学难题的大门呢。

我有个同学叫小李,他以前一看到那种证明不等式的题目就头疼得不行。

有一次,他拿着一道题来问我,那题看起来真的很棘手。

题目大概是要证明一个很复杂的不等式关系,小李愁眉苦脸地说:“这可咋整啊?感觉完全没有头绪。

”我就跟他说:“嘿,这时候放缩法就该登场啦!”那什么是放缩法呢?简单来说,放缩法就是对要研究的式子进行适当的放大或者缩小。

这就好比你要把一个东西放进一个盒子里,这个东西的大小可能不太好直接判断能不能放进去,那咱们就把这个东西变得大一点或者小一点,再去看能不能放进盒子里。

如果放大之后都能放进去,那原来的东西肯定也能放进去;要是缩小之后都放不进去,那原来的东西肯定也不行。

咱们举个特别简单的例子吧。

比如说要证明1 + 1/2 + 1/3 + 1/4 > 2。

直接算这几个数相加有点麻烦,这时候咱们就可以用放缩法。

我们知道1/3 > 1/4,1/2 > 1/4,那我们把式子变成1+1/2+(1/4 + 1/4)+(1/4 + 1/4),这样算出来就是1 + 1/2+1/2+1/2 = 2.5,很明显2.5>2,那原来的式子1 + 1/2 + 1/3 + 1/4肯定也是大于2的。

这就像是把一群小动物分组,本来不好数它们的数量,我们把一些小动物合并到一起,就容易比较数量的多少了。

再比如说在数列问题里,放缩法也特别有用。

我记得有次数学竞赛培训,老师给我们出了一道关于数列求和与不等式证明的题。

数列是那种很复杂的形式,通项公式看起来就让人眼花缭乱。

当时大家都在苦思冥想,有个学霸小张突然站起来说:“我感觉可以用放缩法试试。

”他就开始在黑板上写,他把数列的每一项都进行了巧妙的放大或者缩小,就像一个魔术师在变戏法一样。

他把原来很复杂的数列转化成了我们熟悉的形式,然后很轻松地就证明出了不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析一、整体解读试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。

试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。

1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。

2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。

3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。

包括函数,三角函数,数列、立体几何、概率统计、解析几何、导数等几大版块问题。

这些问题都是以知识为载体,立意于能力,让数学思想方法和数学思维方式贯穿于整个试题的解答过程之中。

二、亮点试题分析1.【试卷原题】11.已知,,A B C 是单位圆上互不相同的三点,且满足AB AC →→=,则AB AC →→⋅的最小值为( )A .14-B .12-C .34-D .1-【考查方向】本题主要考查了平面向量的线性运算及向量的数量积等知识,是向量与三角的典型综合题。

解法较多,属于较难题,得分率较低。

【易错点】1.不能正确用OA ,OB ,OC 表示其它向量。

2.找不出OB 与OA 的夹角和OB 与OC 的夹角的倍数关系。

【解题思路】1.把向量用OA ,OB ,OC 表示出来。

2.把求最值问题转化为三角函数的最值求解。

【解析】设单位圆的圆心为O ,由AB AC →→=得,22()()OB OA OC OA -=-,因为1OA OB OC ===,所以有,OB OA OC OA ⋅=⋅则()()AB AC OB OA OC OA ⋅=-⋅-2OB OC OB OA OA OC OA =⋅-⋅-⋅+ 21OB OC OB OA =⋅-⋅+设OB 与OA 的夹角为α,则OB 与OC 的夹角为2α所以,cos 22cos 1AB AC αα⋅=-+2112(cos )22α=--即,AB AC ⋅的最小值为12-,故选B 。

【举一反三】【相似较难试题】【2015高考天津,理14】在等腰梯形ABCD 中,已知//,2,1,60AB DC AB BC ABC ==∠= ,动点E 和F 分别在线段BC 和DC 上,且,1,,9BE BC DF DC λλ==则AE AF ⋅的最小值为 .【试题分析】本题主要考查向量的几何运算、向量的数量积与基本不等式.运用向量的几何运算求,AE AF ,体现了数形结合的基本思想,再运用向量数量积的定义计算AE AF ⋅,体现了数学定义的运用,再利用基本不等式求最小值,体现了数学知识的综合应用能力.是思维能力与计算能力的综合体现. 【答案】2918【解析】因为1,9DF DC λ=12DC AB =,119199918CF DF DC DC DC DC AB λλλλλ--=-=-==, AE AB BE AB BC λ=+=+,19191818AF AB BC CF AB BC AB AB BC λλλλ-+=++=++=+,()221919191181818AE AF AB BC AB BC AB BC AB BCλλλλλλλλλ+++⎛⎫⎛⎫⋅=+⋅+=+++⋅⋅ ⎪ ⎪⎝⎭⎝⎭19199421cos1201818λλλλ++=⨯++⨯⨯⨯︒2117172992181818λλ=++≥+= 当且仅当2192λλ=即23λ=时AE AF ⋅的最小值为2918. 2.【试卷原题】20. (本小题满分12分)已知抛物线C 的焦点()1,0F ,其准线与x 轴的交点为K ,过点K 的直线l 与C 交于,A B 两点,点A 关于x 轴的对称点为D . (Ⅰ)证明:点F 在直线BD 上; (Ⅱ)设89FA FB →→⋅=,求BDK ∆内切圆M 的方程. 【考查方向】本题主要考查抛物线的标准方程和性质,直线与抛物线的位置关系,圆的标准方程,韦达定理,点到直线距离公式等知识,考查了解析几何设而不求和化归与转化的数学思想方法,是直线与圆锥曲线的综合问题,属于较难题。

【易错点】1.设直线l 的方程为(1)y m x =+,致使解法不严密。

2.不能正确运用韦达定理,设而不求,使得运算繁琐,最后得不到正确答案。

【解题思路】1.设出点的坐标,列出方程。

2.利用韦达定理,设而不求,简化运算过程。

3.根据圆的性质,巧用点到直线的距离公式求解。

【解析】(Ⅰ)由题可知()1,0K -,抛物线的方程为24y x =则可设直线l 的方程为1x my =-,()()()112211,,,,,A x y B x y D x y -,故214x my y x =-⎧⎨=⎩整理得2440y my -+=,故121244y y m y y +=⎧⎨=⎩则直线BD 的方程为()212221y y y y x x x x +-=--即2222144y y y x y y ⎛⎫-=- ⎪-⎝⎭令0y =,得1214y yx ==,所以()1,0F 在直线BD 上.(Ⅱ)由(Ⅰ)可知121244y y m y y +=⎧⎨=⎩,所以()()212121142x x my my m +=-+-=-,()()1211111x x my my =--= 又()111,FA x y →=-,()221,FB x y →=-故()()()21212121211584FA FB x x y y x x x x m →→⋅=--+=-++=-,则28484,93m m -=∴=±,故直线l 的方程为3430x y ++=或3430x y -+=213y y -===±,故直线BD 的方程330x -=或330x -=,又KF 为BKD ∠的平分线,故可设圆心()(),011M t t -<<,(),0M t 到直线l 及BD 的距离分别为3131,54t t +--------------10分 由313154t t +-=得19t =或9t =(舍去).故圆M 的半径为31253t r +== 所以圆M 的方程为221499x y ⎛⎫-+= ⎪⎝⎭【举一反三】【相似较难试题】【2014高考全国,22】 已知抛物线C :y 2=2px(p>0)的焦点为F ,直线y =4与y 轴的交点为P ,与C 的交点为Q ,且|QF|=54|PQ|.(1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.【试题分析】本题主要考查求抛物线的标准方程,直线和圆锥曲线的位置关系的应用,韦达定理,弦长公式的应用,解法及所涉及的知识和上题基本相同. 【答案】(1)y 2=4x. (2)x -y -1=0或x +y -1=0. 【解析】(1)设Q(x 0,4),代入y 2=2px ,得x 0=8p,所以|PQ|=8p ,|QF|=p 2+x 0=p 2+8p.由题设得p 2+8p =54×8p ,解得p =-2(舍去)或p =2,所以C 的方程为y 2=4x.(2)依题意知l 与坐标轴不垂直,故可设l 的方程为x =my +1(m≠0). 代入y 2=4x ,得y 2-4my -4=0. 设A(x 1,y 1),B(x 2,y 2), 则y 1+y 2=4m ,y 1y 2=-4.故线段的AB 的中点为D(2m 2+1,2m), |AB|=m 2+1|y 1-y 2|=4(m 2+1).又直线l ′的斜率为-m ,所以l ′的方程为x =-1m y +2m 2+3.将上式代入y 2=4x ,并整理得y 2+4m y -4(2m 2+3)=0.设M(x 3,y 3),N(x 4,y 4),则y 3+y 4=-4m,y 3y 4=-4(2m 2+3).故线段MN 的中点为E ⎝ ⎛⎭⎪⎫2m2+2m 2+3,-2m ,|MN|=1+1m 2|y 3-y 4|=4(m 2+1)2m 2+1m 2.由于线段MN 垂直平分线段AB ,故A ,M ,B ,N 四点在同一圆上等价于|AE|=|BE|=12|MN|,从而14|AB|2+|DE|2=14|MN|2,即 4(m 2+1)2+⎝ ⎛⎭⎪⎫2m +2m 2+⎝ ⎛⎭⎪⎫2m 2+22=4(m 2+1)2(2m 2+1)m 4,化简得m 2-1=0,解得m =1或m =-1, 故所求直线l 的方程为x -y -1=0或x +y -1=0.三、考卷比较本试卷新课标全国卷Ⅰ相比较,基本相似,具体表现在以下方面: 1. 对学生的考查要求上完全一致。

即在考查基础知识的同时,注重考查能力的原则,确立以能力立意命题的指导思想,将知识、能力和素质融为一体,全面检测考生的数学素养,既考查了考生对中学数学的基础知识、基本技能的掌握程度,又考查了对数学思想方法和数学本质的理解水平,符合考试大纲所提倡的“高考应有较高的信度、效度、必要的区分度和适当的难度”的原则. 2. 试题结构形式大体相同,即选择题12个,每题5分,填空题4 个,每题5分,解答题8个(必做题5个),其中第22,23,24题是三选一题。

题型分值完全一样。

选择题、填空题考查了复数、三角函数、简易逻辑、概率、解析几何、向量、框图、二项式定理、线性规划等知识点,大部分属于常规题型,是学生在平时训练中常见的类型.解答题中仍涵盖了数列,三角函数,立体何,解析几何,导数等重点内容。

3. 在考查范围上略有不同,如本试卷第3题,是一个积分题,尽管简单,但全国卷已经不考查了。

四、本考试卷考点分析表(考点/知识点,难易程度、分值、解题方式、易错点、是否区分度题)。

相关文档
最新文档