初三数学圆及旋转题库 第9讲:圆全章测试

合集下载

初三数学圆测试题及答案

初三数学圆测试题及答案

初三数学圆测试题及答案初三数学圆测试题及答案一、填空题1、圆的位置由________决定,圆的大小决定于________的大小。

2、在平面上,到定点(0,0)和定直线x=-2的距离相等的所有点构成图形是________;在球面上,到定点(-1,-1,-1)和定直线x +y+z=0的距离相等的所有点构成图形是________.3、圆可以看作是所有到定点(0,0)和定直线x=+t,y=-t(t≥0)的距离相等的点的________.4、证明定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.5、木工椎木螺钉的螺纹是依据________制成的.6、计算公式=________.7、等腰三角形两底角的平分线相等.;反之,等腰三角形两底角的平分线相等的三角形是.二、选择题8、雨花台区实验中学准备在体育场举办校运会,现将跑道内侧(跑道的内侧即是与终点线重合的短线)的直道部分改造为塑胶跑道,如果用半径为rcm的圆钢煨制(每个半径为rcm的圆钢可以将直道部分煨制30cm),那么r为任意有理数时,所需的圆钢的总长度最少为( ) A. 60πcm B. 120πcm C. 75πcm D. 90πcm81、下列命题中正确的是( ) A. 平分弦的直径垂直于弦 B. 三角形的重心是其三条中线的交点 C. 能够完全重合的两个图形全等 D.一组对边平行且一组对角相等的四边形是平行四边形811、四边形ABCD内接于⊙O,则∠A,∠B,∠C,∠D这四个角之间的关系为( ) A. ∠A+∠B+∠C+∠D=360° B. ∠A+∠B+∠C+∠D=2π C. ∠A+∠B+∠C+∠D=π D. 无法确定三、解答题11、在Rt△ABC中,∠C=90°,AC=3,BC=4,以点C为圆心,r为半径的圆与线段AB只有一个公共点,则半径r的取值范围是什么?111、小红在学习本节时,根据初步的几何知识知道半径相等的两个圆全等.她发现所有的圆形纸片都只有一条对称轴(即通过圆心的直线),于是她大胆猜想:任何一个半径相等的圆都只有一条对称轴.你认为她的猜想正确吗?请说明理由.1111、等边三角形的半径为r,高为h,面积为S,根据已知条件填空:当等边三角形的半径为2时,高为________,面积为________;当等边三角形的半径为3时,高为________,面积为________;当等边三角形的半径为6时,高为________,面积为________.观察以上各题中半径、高和面积的数值关系,你发现了什么?。

初三数学《圆》全章测试及答案

初三数学《圆》全章测试及答案

北京市第八中学分校202010月初三数学总复习圆 全章测试题班级: 姓名: 分数: 一、选择题 (每题4分,共32分)1.如图,AB 是⊙O 的直径,CD 是弦,AB ⊥CD 于点E, 若AB=10,CD=6,则OE 的长是( ).A.4B.3C.2D.12.半径分别为3和7的两个圆的圆心距为d ,若4<d≤11,则这两个圆的位置关系一定是( )A .相交B .相切C .内切或相交D .外切或相交 3.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是( )A .AB ⊥CD B .∠AOB=4∠ACDC .AD=BD D .PO=PD 4. 一个扇形的圆心角为60°,它所对的弧长为2πcm,则这个扇形的半径为( )A .6cmB .12cmC .2cm D .cm5.O 是△ABC 的外心,且∠ABC+∠ACB=100°,则∠BOC=( ). A .100° B .120° C .130° D .160°6.下列语句中,正确的个数是( )个.①相等的圆心角所对的弧相等;②同圆或等圆中,相等的圆周角所对的弦相等;③一边上的中线等于这条边一半的三角形是直角三角形;第1题第3题④等弧所对的圆周角相等;⑤一条弧所对的圆心角等于它所对的圆周角的一半A.2B.3C.4D.57.如图已知⊙O 是以数轴的原点O 为圆心,半径为1的圆,∠AOB =45°,点P 在数轴上运动,若过点P 与OA 平行的直线与⊙O 有公共点,设OP =x ,则x 的取值范围是( )A .0≤x ≤2B .-2≤x ≤2C .-1≤x ≤1D .x >28.设计一个商标图案如图中阴影部分,矩形ABCD 中,AB =2BC ,且AB =8cm ,以点A 为圆心,AD 为半径作圆与BA 的延长线相交于点F ,则商标图案的面积等于( )A .(4π+8)cm 2B .(4π+16)cm 2C .(3π+8) cm 2D .(3π +16)cm 2 二.填空题(每小题3分,共24分)9.如图,AB 是⊙O 的直径,弦CD⊙AB ,若⊙ABD =65°,则⊙ADC =__________.10.如图,AB 为半圆O 的直径,∠BAC =31°,D 为AC 上任意一点,则∠D的度数为__________.11.圆所在平面上的一点到该圆上的最小距离为4cm ,最大距离为10cm ,则该圆的半径为___________.12. 四边形ABCD 是⊙O 的内接四边形,且∠A ∶∠B ∶∠C=2∶3∶4,则 ∠D= 度。

九年级数学圆 几何综合单元测试题(Word版 含解析)

九年级数学圆 几何综合单元测试题(Word版 含解析)

九年级数学圆几何综合单元测试题(Word版含解析)一、初三数学圆易错题压轴题(难)1.如图,抛物线的对称轴为轴,且经过(0,0),()两点,点P在抛物线上运动,以P为圆心的⊙P经过定点A(0,2),(1)求的值;(2)求证:点P在运动过程中,⊙P始终与轴相交;(3)设⊙P与轴相交于M,N(<)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.【答案】(1)a=,b=c=0;(2)证明见解析;(3)P的纵坐标为0或4+2或4﹣2.【解析】试题分析:(1)根据题意得出二次函数一般形式进而将已知点代入求出a,b,c的值即可;(2)设P(x,y),表示出⊙P的半径r,进而与x2比较得出答案即可;(3)分别表示出AM,AN的长,进而分别利用当AM=AN时,当AM=MN时,当AN=MN 时,求出a的值,进而得出圆心P的纵坐标即可.试题解析:(1)∵抛物线y=ax2+bx+c(a,b,c是常数,a≠0)的对称轴为y轴,且经过(0,0)和(,)两点,∴抛物线的一般式为:y=ax2,∴=a()2,解得:a=±,∵图象开口向上,∴a=,∴抛物线解析式为:y=x2,故a=,b=c=0;(2)设P(x,y),⊙P的半径r=,又∵y=x2,则r=,化简得:r=>x2,∴点P在运动过程中,⊙P始终与x轴相交;(3)设P(a,a2),∵PA=,作PH⊥MN于H,则PM=PN=,又∵PH=a2,则MH=NH==2,故MN=4,∴M(a﹣2,0),N(a+2,0),又∵A(0,2),∴AM=,AN=,当AM=AN时,=,解得:a=0,当AM=MN时,=4,解得:a=2±2(负数舍去),则a2=4+2;当AN=MN时,=4,解得:a=﹣2±2(负数舍去),则a2=4﹣2;综上所述,P的纵坐标为0或4+2或4﹣2.考点:二次函数综合题.2.已知圆O 的半径长为2,点A 、B 、C 为圆O 上三点,弦BC=AO ,点D 为BC 的中点,(1)如图,连接AC 、OD ,设∠OAC=α,请用α表示∠AOD ; (2)如图,当点B 为AC 的中点时,求点A 、D 之间的距离:(3)如果AD 的延长线与圆O 交于点E ,以O 为圆心,AD 为半径的圆与以BC 为直径的圆相切,求弦AE 的长.【答案】(1)1502AOD α∠=︒-;(2)7AD =3)33133122or【解析】 【分析】(1)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOC 等于30°,OA=OC 可得∠ACO=∠CAO=α,利用三角形的内角和定理即可表示出∠AOD 的值. (2)连接OB 、OC ,可证△OBC 是等边三角形,根据垂径定理可得∠DOB 等于30°,因为点D 为BC 的中点,则∠AOB=∠BOC=60°,所以∠AOD 等于90°,根据OA=OB=2,在直角三角形中用三角函数及勾股定理即可求得OD 、AD 的长.(3)分两种情况讨论:两圆外切,两圆内切.先根据两圆相切时圆心距与两圆半径的关系,求出AD 的长,再过O 点作AE 的垂线,利用勾股定理列出方程即可求解. 【详解】(1)如图1:连接OB 、OC. ∵BC=AO ∴OB=OC=BC∴△OBC 是等边三角形∴∠BOC=60°∵点D是BC的中点∴∠BOD=130 2BOC∠=︒∵OA=OC∴OAC OCA∠=∠=α∴∠AOD=180°-α-α-30︒=150°-2α(2)如图2:连接OB、OC、OD.由(1)可得:△OBC是等边三角形,∠BOD=130 2BOC∠=︒∵OB=2,∴OD=OB∙cos30︒=3∵B为AC的中点,∴∠AOB=∠BOC=60°∴∠AOD=90°根据勾股定理得:227AO OD+=(3)①如图3.圆O 与圆D 相内切时: 连接OB 、OC ,过O 点作OF ⊥AE ∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:OD=3,圆D 的半径为1 ∴AD=31+ 设AF=x在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=-+-解得:331x 4+=∴AE=3312AF +=②如图4.圆O 与圆D 相外切时: 连接OB 、OC ,过O 点作OF ⊥AE∵BC 是直径,D 是BC 的中点 ∴以BC 为直径的圆的圆心为D 点 由(2)可得:OD=3,圆D 的半径为1 ∴AD=31- 在Rt △AFO 和Rt △DOF 中,2222OA AF OD DF -=-即()2222331x x -=--+ 解得:331x -=∴AE=3312AF -=【点睛】本题主要考查圆的相关知识:垂径定理,圆与圆相切的条件,关键是能灵活运用垂径定理和勾股定理相结合思考问题,另外需注意圆相切要分内切与外切两种情况.3.如图所示,CD 为⊙O 的直径,点B 在⊙O 上,连接BC 、BD ,过点B 的切线AE 与CD 的延长线交于点A ,OE//BD ,交BC 于点F ,交AB 于点E. (1)求证:∠E=∠C ;(2)若⊙O 的半径为3,AD=2,试求AE 的长; (3)在(2)的条件下,求△ABC 的面积.【答案】(1)证明见解析;(2)10;(3)48 5.【解析】试题分析:(1)连接OB,利用已知条件和切线的性质证明:OE∥BD,即可证明:∠E=∠C;(2)根据题意求出AB的长,然后根据平行线分线段定理,可求解;(3)根据相似三角形的面积比等于相似比的平方可求解.试题解析:(1)如解图,连接OB,∵CD为⊙O的直径,∴∠CBD=∠CBO+∠OBD=90°,∵AB是⊙O的切线,∴∠ABO=∠ABD+∠OBD=90°,∴∠ABD=∠CBO.∵OB、OC是⊙O的半径,∴OB=OC,∴∠C=∠CBO.∵OE∥BD,∴∠E=∠ABD,∴∠E=∠C;(2)∵⊙O的半径为3,AD=2,∴AO=5,∴AB=4.∵BD∥OE,∴=,∴=,∴BE=6,AE=6+4=10(3)S △AOE==15,然后根据相似三角形面积比等于相似比的平方可得S△ABC= S△AOE==4.如图①,已知Rt△ABC中,∠ACB=90°,AC=8,AB=10,点D是AC边上一点(不与C 重合),以AD为直径作⊙O,过C作CE切⊙O于E,交AB于F.(1)若⊙O半径为2,求线段CE的长;(2)若AF=BF,求⊙O的半径;(3)如图②,若CE =CB ,点B 关于AC 的对称点为点G ,试求G 、E 两点之间的距离.【答案】(1)CE =42;(2)⊙O 的半径为3;(3)G 、E 两点之间的距离为9.6 【解析】 【分析】(1)根据切线的性质得出∠OEC=90°,然后根据勾股定理即可求得; (2)由勾股定理求得BC ,然后通过证得△OEC ∽△BCA ,得到OE OC BC BA =,即8610r r-= 解得即可;(3)证得D 和M 重合,E 和F 重合后,通过证得△GBE ∽△ABC ,GB GEAB AC=,即12108GE =,解得即可. 【详解】解:(1)如图①,连接OE ,∵CE 切⊙O 于E , ∴∠OEC =90°,∵AC =8,⊙O 的半径为2, ∴OC =6,OE =2,∴CE =2242OC OE -= ; (2)设⊙O 的半径为r ,在Rt △ABC 中,∠ACB =90°,AB =10,AC =8, ∴BC 22AB A C -=6,∵AF=BF,∴AF=CF=BF,∴∠ACF=∠CAF,∵CE切⊙O于E,∴∠OEC=90°,∴∠OEC=∠ACB,∴△OEC∽△BCA,∴OE OCBC BA=,即8610r r-=解得r=3,∴⊙O的半径为3;(3)如图②,连接BG,OE,设EG交AC于点M,由对称性可知,CB=CG,∵CE=CG,∴∠EGC=∠GEC,∵CE切⊙O于E,∴∠GEC+∠OEG=90°,∵∠EGC+∠GMC=90°,∴∠OEG=∠GMC,∵∠GMC=∠OME,∴∠OEG=∠OME,∴OM=OE,∴点M和点D重合,∴G、D、E三点在同一直线上,连接AE、BE,∵AD是直径,∴∠AED=90°,即∠AEG=90°,又CE=CB=CG,∴∠BEG=90°,∴∠AEB=∠AEG+∠BEG=180°,∴A、E、B三点在同一条直线上,∴E、F两点重合,∵∠GEB=∠ACB=90°,∠B=∠B,∴△GBE∽△ABC,∴GB GEAB AC=,即12108GE=∴GE=9.6,故G、E两点之间的距离为9.6.【点睛】本题考查了切线的判定,轴的性质,勾股定理的应用以及三角形相似的判定和性质,证得G、D、E三点共线以及A、E、B三点在同一条直线上是解题的关5.在平面直角坐标系xOy中,已知 A(-2,0),B(2,0),AC⊥AB于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【答案】(1)12;(2)判断△OCD是直角三角形,证明见解析;(3)连接OC,交半圆O于点P,这时点P的关联图形的面积最大,理由风解析,82+【解析】试题分析:(1)判断出四边形AOPC是正方形,得到正方形的面积是4,根据BD⊥AB,BD=6,求出梯形OPDB的面积=()(26)2822OP DB OB+⨯+⨯==,二者相加即为点P的关联图形的面积是12.(2)根据CF=DF=4,∠DCF=45°,求出∠OCD=90°,判断出△OCD是直角三角形.(3)要使点P的关联图形的面积最大,就要使△PCD的面积最小,确定关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积,根据此思路,进行解答.试题解析:(1)∵A (﹣2,0),∴OA=2,∵P 是半圆O 上的点,P 在y 轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC 是正方形,∴正方形的面积是4,又∵BD ⊥AB ,BD=6,∴梯形OPDB 的面积=()(26)2822OP DB OB +⨯+⨯==, ∴点P 的关联图形的面积是12.(2)判断△OCD 是直角三角形.证明:延长CP 交BD 于点F ,则四边形ACFB 为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC ⊥CD ,∴△OCD 是直角三角形.(3)连接OC 交半圆O 于点P ,则点P 即为所确定的点的位置.理由如下:连接CD ,梯形ACDB 的面积=()(26)41622AC DB AB +⨯+⨯==为定值, 要使点P 的关联图形的面积最大,就要使△PCD 的面积最小,∵CD 为定长,∴P 到CD 的距离就要最小,连接OC ,设交半圆O 于点P ,∵AC ⊥OA ,AC=OA ,∴∠AOC=45°,过C 作CF ⊥BD 于F ,则ACFB 为矩形, ∴CF=DF=4,∠DCF=45°,∴OC ⊥CD ,OC=2∴PC 在半圆外,设在半圆O 上的任意一点P′到CD 的距离为P′H ,则P′H+P′O >OH >OC , ∵OC=PC+OP ,∴P′H >PC ,∴当点P 运动到半圆O 与OC 的交点位置时,点P 的关联图形的面积最大.∵CD=42CP=222,∴△PCD 的面积=()(26)41622AC DB AB +⨯+⨯==, ∴点P 的关联图形的最大面积是梯形ACDB 的面积﹣△PCD 的面积=16(842)842--=+考点:圆的综合题.6.如图,点A 在直线l 上,点Q 沿着直线l 以3厘米/秒的速度由点A 向右运动,以AQ 为边作Rt△ABQ,使∠BAQ=90°,tan∠ABQ= 34,点C 在点Q 右侧,CQ=1厘米,过点C 作直线m⊥l,过△ABQ 的外接圆圆心O 作OD⊥m 于点D ,交AB 右侧的圆弧于点E .在射线CD 上取点F ,使DF=13CD ,以DE 、DF 为邻边作矩形DEGF .设运动时间为t 秒.(1)直接用含t 的代数式表示BQ 、DF ;(2)当0<t <1时,求矩形DEGF 的最大面积;(3)点Q 在整个运动过程中,当矩形DEGF 为正方形时,求t 的值.【答案】(1)BQ=5t ,DF=23t;(2)16;(3)t 的值为35或3. 【解析】试题分析:(1)AB 与OD 交于点H ,根据题中的比例关系和勾股定理可表示出BQ 的长;根据垂直于同一条直线的两直线平行和三角形的中位线定理可求得AH 的长,再根据矩形的判定定理和矩形的性质可求CD 的长,即可表示出FD ;(2)根据题意表示出矩形的长和宽,然后构造二次函数,通过二次函数的最值可求解; (3)当矩形为正方形时,分别让其长与宽相等,列方程求解即可.试题解析:(1)5t BQ =,2DF=t 3; (2)DE=OD-OE=32t+1-52t=1-t ,()22211·t 13326S DF DE t t ⎛⎫==-=--+ ⎪⎝⎭,∴当t=12时,矩形DEGF 的最大面积为16; (3)当矩形DEGF 为正方形时,221133t t t t -=-=或,解得335t t ==或.7.如图,在Rt △ABC 中,∠B=90°,∠BAC 的平分线交BC 于点D ,以D 为圆心,D 长为半径作作⊙D .⑴求证:AC 是⊙D 的切线.⑵设AC 与⊙D 切于点E ,DB=1,连接DE ,BF ,EF.①当∠BAD= 时,四边形BDEF 为菱形;②当AB= 时,△CDE 为等腰三角形.【答案】(1)见解析;(2)①30°2+1【解析】【分析】(1) 作DE ⊥AC 于M,由∠ABC=90°,进一步说明DM=DB ,即DB 是⊙D 的半径,即可完成证明;(2)①先说明△BDF 是等边三角形,再运用直角三角形的内角和定理解答即可;②先说明DE=CE=BD=1,再设AB=x ,则AE=x ,分别表示出AC 、BC 、AB 的长,然后再运用 勾股定理 解答即可.【详解】⑴证明:如图:作DE ⊥AC 于M ,∵∠ABC=90°,∠BAC的平分线交BC于点D,∴DE=DB.∴DM是⊙D的半径,∴AC是⊙D的切线;⑵①如图:∵四边形BDEF为菱形;∴△BDF是等边三角形∴∠ADB=60°∴∠BAD=90°-60°=30°∴当∠BAD=30°时,四边形BDEF为菱形;②∵△CDE为等腰三角形.∴DE=CE=BD=1,∴2设AB=x,则AE=x∴在Rt△ABC中,AB=x,AC=1+x,2∴()222+=+,解得2+1 x x(12)1∴当2+1时,△CDE为等腰三角形.【点睛】本题考查的是切线的判定、菱形的性质和判定、等腰三角形的判定与性质以及勾股定理的灵活运用;熟练掌握切线的判定方法和灵活应该勾股定理是解答本题的关键.8.如图①②,在平面直角坐标系中,边长为2的等边CDE ∆恰好与坐标系中的OAB ∆重合,现将CDE ∆绕边AB 的中点(G G 点也是DE 的中点),按顺时针方向旋转180︒到△1C DE 的位置.(1)求1C 点的坐标; (2)求经过三点O 、A 、1C 的抛物线的解析式;(3)如图③,G 是以AB 为直径的圆,过B 点作G 的切线与x 轴相交于点F ,求切线BF 的解析式;(4)抛物线上是否存在一点M ,使得:16:3AMF OAB S S ∆∆=.若存在,请求出点M 的坐标;若不存在,请说明理由.【答案】(1)13)C ;(2)2323y x x =;(3)323y x =;(4)128383,M M ⎛⎛- ⎝⎭⎝⎭. 【解析】【分析】(1)利用中心对称图形的性质和等边三角形的性质,可以求出.(2)运用待定系数法,代入二次函数解析式,即可求出.(3)借助切线的性质定理,直角三角形的性质,求出F ,B 的坐标即可求出解析式. (4)当M 在x 轴上方或下方,分两种情况讨论.【详解】解:(1)将等边CDE ∆绕边AB 的中点G 按顺时针方向旋转180︒到△1C DE , 则有,四边形'OAC B 是菱形,所以1C 的横坐标为3,根据等边CDE ∆的边长是2,利用等边三角形的性质可得13)C ;(2)抛物线过原点(0,0)O ,设抛物线解析式为2y ax bx =+,把(2,0)A,C '代入,得42093a b a b +=⎧⎪⎨+=⎪⎩解得3a =,b = ∴抛物线解析式为2y x x =-;(3)90ABF ∠=︒,60BAF ∠=︒,30AFB ∴∠=︒,又2AB =,4AF ∴=,2OF ∴=, (2,0)F ∴-,设直线BF 的解析式为y kx b =+,把B ,(2,0)F -代入,得20k b k b ⎧+=⎪⎨-+=⎪⎩,解得k =b = ∴直线BF的解析式为33y x =+; (4)①当M 在x轴上方时,存在2()M x ,211:[4)]:[216:322AMF OAB S S ∆∆=⨯⨯⨯=, 得2280x x --=,解得14x =,22x =-,当14x =时,244y , 当12x =-时,2(2)(2)y =--=1M ∴,2(M -; ②当M 在x轴下方时,不存在,设点2()M x x ,211:[4)]:[216:322AMF OAB S S ∆∆=-⨯⨯⨯=, 得2280x x -+=,240b ac -<无解,综上所述,存在点的坐标为183 (4,)M,283 (2,)M .【点睛】此题主要考查了旋转,等边三角形的性质,菱形的判定和性质,以及待定系数法求解二次函数解析式和切线的性质定理等,能熟练应用相关性质,是解题的关键.9.阅读材料:“最值问题”是数学中的一类较具挑战性的问题.其实,数学史上也有不少相关的故事,如下即为其中较为经典的一则:海伦是古希腊精通数学、物理的学者,相传有位将军曾向他请教一个问题﹣﹣如图1,从A点出发,到笔直的河岸l去饮马,然后再去B 地,走什么样的路线最短呢?海伦轻松地给出了答案:作点A关于直线l的对称点A′,连接A′B交l于点P,则PA+PB=A′B的值最小.解答问题:(1)如图2,⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值;(2)如图3,已知菱形ABCD的边长为6,∠DAB=60°.将此菱形放置于平面直角坐标系中,各顶点恰好在坐标轴上.现有一动点P从点A出发,以每秒2个单位的速度,沿A→C 的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动.当到达点B 时,整个运动停止.①为使点P能在最短的时间内到达点B处,则点M的位置应如何确定?②在①的条件下,设点P的运动时间为t(s),△PAB的面积为S,在整个运动过程中,试求S与t之间的函数关系式,并指出自变量t的取值范围.【答案】(1)PA+PC的最小值是32)①点M30)时,用时最少;②S与t之间的函数关系式是当3t3S=3﹣3t;当0<t3S =3t.当3t3S=﹣3t3【解析】【分析】(1)延长AO交圆O于M,连接CM交OB于P,连接AC,AP+PC=PC+PM=CM最小;(2)①根据运动速度不同以及运动距离,得出当PB⊥AB时,点P能在最短的时间内到达点B处;②根据三角形的面积公式求出从A到C时,s与t的关系式和从C3,0)以及到B的解析式.【详解】解:(1)延长AO交圆O于M,连接CM交OB于P,连接AC,则此时AP+PC=PC+PM=CM最小,∵AM是直径,∠AOC=60°,∴∠ACM=90°,∠AMC=30°,∴AC=12AM=2,AM=4,由勾股定理得:CM=22AM AC=23.答:PA+PC的最小值是23.(2)①根据动点P从点A出发,以每秒2个单位的速度,沿A→C的方向,向点C运动.当到达点C后,立即以相同的速度返回,返回途中,当运动到x轴上某一点M时,立即以每秒1个单位的速度,沿M→B的方向,向点B运动,即为使点P能在最短的时间内到达点B处,∴当PB⊥AB时,根据垂线段最短得出此时符合题意,∵菱形ABCD,AB=6,∠DAB=60°,∴∠BAO=30°,AB=AD,AC⊥BD,∴△ABD是等边三角形,∴BD=6,BO=3,由勾股定理得:AO=3在Rt△APB中,AB=6,∠BAP=30°,BP=12AP,由勾股定理得:AP=3,BP=3,∴点M30)时,用时最少.②当0<t3AP=2t,∵菱形ABCD,∴∠OAB=30°,∴OB=12AB=3,由勾股定理得:AO=CO=33,∴S=12AP×BO=12×2t×3=3t;③当33<t≤43时,AP=63﹣(2t﹣63)=123﹣2t,∴S=12AP×BO=12×(123﹣2t)×3=183﹣3t.当43<t≤63时,S=12AB×BP=12×6×[23﹣(t﹣43)]=﹣3t+183,答:S与t之间的函数关系式是当33<t≤43时,S=183﹣3t;当0<t≤33时,S=3t.当43<t≤63时,S=﹣3t+183.【点睛】本题主要考查对含30度角的直角三角形,勾股定理,三角形的面积,轴对称-最短问题,圆周角定理等知识点的理解和掌握,能综合运用性质进行计算是解此题的关键.10.如图,已知AB是⊙O的直径,C是⊙O上一点(不与A、B重合),D为的AC中点,过点D作弦DE⊥AB于F,P是BA延长线上一点,且∠PEA=∠B.(1)求证:PE是⊙O的切线;(2)连接CA与DE相交于点G,CA的延长线交PE于H,求证:HE=HG;(3)若tan∠P=512,试求AHAG的值.【答案】(1)证明见解析;(2)证明见解析;(3)1310 AHAG=.【解析】【分析】(1)连接OE,由圆周角定理证得∠EAB+∠B=90°,可得出∠OAE=∠AEO,则∠PEA+∠AEO=90°,即∠PEO=90°,则结论得证;(2)连接OD,证得∠AOD=∠AGF,∠B=∠AEF,可得出∠PEF=2∠B,∠AOD=2∠B,可证得∠PEF=∠AOD=∠AGF,则结论得证;(3)可得出tan∠P=tan∠ODF=512OFDF=,设OF=5x,则DF=12x,求出AE,BE,得出23AEBE=,证明△PEA∽△PBE,得出23PAPE=,过点H作HK⊥PA于点K,证明∠P=∠PAH,得出PH=AH,设HK=5a,PK=12a,得出PH=13a,可得出AH=13a,AG=10a,则可得出答案.【详解】解:(1)证明:如图1,连接OE,∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠B=90°,∵OA=OE,∴∠OAE=∠AEO,∴∠B+∠AEO=90°,∵∠PEA=∠B,∴∠PEA+∠AEO=90°,∴∠PEO=90°,又∵OE为半径,∴PE是⊙O的切线;(2)如图2,连接OD,∵D为AC的中点,∴OD⊥AC,设垂足为M,∴∠AMO=90°,∵DE⊥AB,∴∠AFD=90°,∴∠AOD+∠OAM=∠OAM+∠AGF=90°,∴∠AOD=∠AGF,∵∠AEB=∠EFB=90°,∴∠B=∠AEF,∵∠PEA=∠B,∴∠PEF=2∠B,∵DE⊥AB,∴AE AD=,∴∠AOD=2∠B,∴∠PEF=∠AOD=∠AGF,∴HE=HG;(3)解:如图3,∵∠PEF=∠AOD,∠PFE=∠DFO,∴∠P=∠ODF,∴tan∠P=tan∠ODF=512 OFDF=,设OF=5x,则DF=12x,∴OD22OF DF+13x,∴BF=OF+OB=5x+13x=18x,AF=OA﹣OF=13x﹣5x=8x,∵DE⊥OA,∴EF=DF=12x,∴AE22AF EF+13,BE22EF BF+13,∵∠PEA=∠B,∠EPA=∠BPE,∴△PEA∽△PBE,∴41323613PA AEPE BE===,∵∠P+∠PEF=∠FAG+∠AGF=90°,∴∠HEG=∠HGE,∴∠P=∠FAG,又∵∠FAG=∠PAH,∴∠P=∠PAH,∴PH=AH,过点H作HK⊥PA于点K,∴PK=AK,∴13 PKPE=,∵tan∠P=5 12,设HK=5a,PK=12a,∴PH=13a,∴AH=13a,PE=36a,∴HE=HG=36a﹣13a=23a,∴AG=GH﹣AH=23a﹣13a=10a,∴13131010 AH aAG a==.【点睛】本题是圆的综合题,考查了垂径定理,圆周角定理,相似三角形的判定和性质,切线的判定,解直角三角形,勾股定理,等腰三角形的性质等知识,掌握相似三角形的判定定和性质定理及方程思想是解题的关键.。

初三旋转测试题卷子及答案

初三旋转测试题卷子及答案

初三旋转测试题卷子及答案一、选择题(每题3分,共15分)1. 一个点绕原点旋转90度后,其坐标变为原来的什么?A. 相反数B. 倒数C. 两倍D. 四倍2. 一个图形绕某点旋转180度后,与原图形的关系是?A. 完全重合B. 完全相反C. 部分重合D. 没有关系3. 一个图形绕某点旋转60度后,其面积和周长会如何变化?A. 面积不变,周长不变B. 面积变小,周长变小C. 面积不变,周长变长D. 面积变小,周长变大4. 一个图形绕其对称轴旋转180度后,图形的位置会如何变化?A. 完全重合B. 完全相反C. 部分重合D. 没有变化5. 如果一个图形绕某点旋转了θ度,那么它的旋转矩阵是什么?A. [cosθ -sinθ; sinθ cosθ]B. [cosθ sinθ; -sinθ cosθ]C. [sinθ cosθ; cosθ -sinθ]D. [sinθ -sinθ; cosθ cosθ]二、填空题(每题2分,共10分)6. 一个点P(x, y)绕原点旋转θ度后,其新坐标为_________。

7. 若一个图形绕点(a, b)旋转θ度,其旋转后的图形与原图形的对应点坐标变化关系为_________。

8. 一个正方形绕其中心点旋转45度后,其四个顶点的坐标变化情况是_________。

9. 一个圆绕其圆心旋转任意角度,其形状和大小_________。

10. 旋转矩阵可以表示为_________,其中θ为旋转角度。

三、解答题(每题5分,共20分)11. 给定一个点P(1, 2),求该点绕原点旋转120度后的坐标。

12. 一个矩形ABCD,其中A(-1, 1),B(1, 1),C(1, -1),D(-1, -1),求该矩形绕点A旋转90度后的顶点坐标。

13. 描述一个正方形绕其对称轴旋转90度后,四个顶点的坐标变化情况。

14. 解释旋转矩阵在图形旋转变换中的作用。

四、综合题(每题5分,共10分)15. 一个正六边形绕其中心点旋转60度后,求其顶点坐标的变化。

九年级数学圆的测试题及答案(全)

九年级数学圆的测试题及答案(全)

圆的有关概念与性质圆的有关概念与性质1.圆上各点到圆心的距离都等于半径。

2.圆是轴对称图形,任何一条直径所在的直线都是它的对称轴;圆又是中心对称图形,圆心是它的对称中心。

3.垂直于弦的直径平分这条弦,并且平分弦所对的弧;平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

4.在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量相等,那么它们所对应的其余各组量都分别相等。

5.同弧或等弧所对的圆周角相等,都等于它所对的圆心角的一半。

6.直径所对的圆周角是 90°,90°所对的弦是直径。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫外心,是三角形三边垂直平分线的交点。

8.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点的交点,叫做三角形的内心。

9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10.圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:①点在圆外,②点在圆上,③点在圆内;对应的点到圆心的距离d和半径r之间的数量关系分别为:①d > r,②d = r,③d < r.2.直线与圆的位置关系共有三种:①相交,②相切,③相离;对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为:①d < r,②d = r,③d > r.3.圆与圆的位置关系共有五种:①内含,②相内切,③相交,④相外切,⑤外离;两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为:①d < R-r,②d = R-r,③ R-r < d < R+ r,④d = R+r,⑤d > R+r.4.圆的切线垂直于过切点的半径;经过直径的一端,并且垂直于这条直径的直线是圆的切线.5.从圆外一点可以向圆引 2 条切线,切线长相等,这点与圆心之间的连线平分这两条切线的夹角。

初三旋转考试题及答案

初三旋转考试题及答案

初三旋转考试题及答案初三数学旋转考试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点P(3,4)绕原点O逆时针旋转90°后,新坐标为:A. (4,3)B. (-3,4)C. (3,-4)D. (4,-3)2. 一个正方形绕其中心点旋转45°后,其边长不变,面积不变,以下说法正确的是:A. 形状不变B. 形状改变C. 面积改变D. 形状和面积都改变3. 一个圆心在原点的圆,半径为r,绕原点旋转任意角度后,其半径:A. 变大B. 不变C. 变小D. 无法确定4. 若点A(1,2)绕点B(2,3)旋转30°,旋转后的点A'坐标为:A. (1.5, 3.5)B. (1.5, 2.5)C. (2.5, 3.5)D. 无法确定5. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状:A. 不变B. 变为等边三角形C. 变为等腰三角形D. 变为直角三角形二、填空题(每题2分,共10分)6. 一个矩形绕其中心点旋转180°后,其形状________。

7. 点P(2,-1)绕原点O逆时针旋转45°后,新坐标的横坐标为________。

8. 若一个圆绕其圆心旋转任意角度,其周长________。

9. 一个平行四边形绕其对角线交点旋转90°后,其形状变为________。

10. 一个等边三角形绕其一边的中点旋转60°,旋转后的图形与原图形________。

三、解答题(共25分)11. (5分)若点M(-1,1)绕点N(1,1)旋转60°,求点M'的坐标。

12. (10分)一个边长为4的正方形ABCD,以点A为旋转中心,逆时针旋转30°,求旋转后正方形A'B'C'D'的顶点坐标。

13. (10分)一个圆心在原点,半径为5的圆,绕原点旋转60°,求旋转后圆上任意一点P(x,y)的新坐标。

初三圆形几何试题及答案

初三圆形几何试题及答案

初三圆形几何试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项不是圆的性质?A. 圆周角等于它所对的弧的一半B. 圆内任意两点的距离都相等C. 圆的直径是最长的弦D. 圆心到圆上任意一点的距离相等2. 已知圆的半径为5,圆心到直线的距离为3,那么直线与圆的位置关系是?A. 相离B. 相切C. 相交D. 无法确定3. 圆的切线与半径垂直,切点到圆心的距离等于?A. 半径的长度B. 直径的长度C. 切线的长度D. 不能确定4. 圆的内接四边形的对角线之间的关系是什么?A. 互相垂直B. 互相平分C. 相等D. 互为补角5. 已知圆的半径为r,圆心角为α,弧长为l,它们之间的关系是?A. l = rαB. l = r * sin(α)C. l = r * αD. l = r / α二、填空题(每题2分,共10分)1. 圆的面积公式为:________。

2. 圆的周长公式为:________。

3. 圆内接正六边形的边长等于半径的________倍。

4. 圆的外切正三角形的边长等于半径的________倍。

5. 圆的内切圆的半径等于外圆半径的________。

三、解答题(每题10分,共30分)1. 如图所示,圆O的半径为10,点A、B在圆上,且AB为圆的直径,点C在圆上,且∠AOC=30°,求弧AC的长度。

2. 已知圆的半径为r,圆心角为α,求扇形的面积和弧长。

3. 圆内接矩形的对角线长为20,求矩形的面积。

四、证明题(每题15分,共15分)1. 证明:圆内接四边形的对角线互相平分。

五、综合题(每题25分,共25分)1. 已知圆O的半径为r,圆外一点P到圆心O的距离为d,PA、PB为点P到圆上的两条切线,PA、PB的长度相等,求PA的长度。

答案:一、选择题1. B2. C3. A4. B5. C二、填空题1. 圆的面积公式为:πr²。

2. 圆的周长公式为:2πr。

3. 圆内接正六边形的边长等于半径的√3倍。

初三数学旋转试题及答案

初三数学旋转试题及答案

初三数学旋转试题及答案一、选择题(每题3分,共15分)1. 在平面直角坐标系中,点A(3,4)绕原点O(0,0)顺时针旋转90°后,新位置的坐标是:A. (4,3)B. (-4,3)B. (3,-4)D. (4,-3)2. 若点P(-1,2)绕点O(0,0)逆时针旋转30°后,点P的新坐标为:A. (-1,2)B. (-√3/2, 1/2)C. (√3/2, 1/2)D. (1/2, √3/2)3. 在平面直角坐标系中,直线y=2x绕原点O(0,0)顺时针旋转45°后,新的直线方程是:A. y=xB. y=x+1C. y=x-1D. y=-x4. 点A(2,1)绕点B(1,2)旋转30°后,点A的新坐标为:A. (3,2)B. (1,3)C. (1,1)D. (2,3)5. 若一个正方形的四个顶点分别绕其对角线的交点顺时针旋转45°,那么正方形的边将:A. 变长B. 变短C. 保持不变D. 无法确定二、填空题(每题2分,共10分)6. 点A(1,1)绕原点O(0,0)顺时针旋转45°后,其坐标变为________。

7. 已知点P(2,3)绕点Q(1,1)顺时针旋转90°,点P的新坐标为________。

8. 直线y=3x+1绕原点O(0,0)逆时针旋转90°后,新的直线方程为________。

9. 若点M(-2,-3)绕点N(0,0)顺时针旋转60°,点M的新坐标为________。

10. 已知直线y=-2x绕原点O(0,0)逆时针旋转30°后,新的直线方程为________。

三、解答题(每题5分,共20分)11. 在平面直角坐标系中,点A(4,3)绕原点O(0,0)顺时针旋转60°后,求点A的新坐标。

12. 已知直线y=4x在平面直角坐标系中绕原点O(0,0)顺时针旋转30°,求旋转后的直线方程。

初三旋转单元测试题及答案

初三旋转单元测试题及答案

初三旋转单元测试题及答案一、选择题(每题2分,共10分)1. 若点A(1,2)绕原点顺时针旋转90°后,其坐标变为:A. (2,1)B. (-2,1)C. (1,-2)D. (-2,-1)2. 一个正方形绕中心点旋转90°后,其形状:A. 变成圆形B. 变成长方形C. 保持不变D. 变成椭圆形3. 若一个图形绕某点旋转180°后,其形状和位置:A. 发生变化B. 形状不变,位置改变C. 形状和位置都不变D. 形状改变,位置不变4. 一个正六边形绕其中心点旋转多少度后,能与自身完全重合?A. 30°B. 45°C. 60°D. 90°5. 一个图形绕某点旋转后,其面积:A. 变大B. 变小C. 不变D. 无法确定二、填空题(每题2分,共10分)6. 若点P(-3,4)绕原点逆时针旋转180°后,其坐标变为______。

7. 一个等腰直角三角形绕其直角顶点旋转90°后,其形状变为______。

8. 一个圆绕圆心旋转任意角度,其______不变。

9. 若一个图形绕某点旋转后,其对应点的连线都经过该点,并且对应点到旋转中心的距离相等,则该图形绕该点旋转的角度为______。

10. 一个图形绕某点旋转后,其对应线段的夹角等于旋转角,该性质称为______。

三、解答题(每题5分,共20分)11. 已知点A(2,3),点B(-1,-2),求点A绕点B顺时针旋转45°后的坐标。

12. 一个边长为4的正方形,绕其中心点顺时针旋转45°后,求正方形的一个顶点的新坐标。

13. 已知一个等边三角形ABC,其中A(0,0),B(1,√3),C(-1,√3),求三角形绕点A逆时针旋转60°后的顶点坐标。

14. 解释什么是旋转对称图形,并给出一个例子。

四、综合题(每题10分,共20分)15. 若一个图形绕某点旋转θ度后,其面积和周长都不变,试证明该图形为圆。

北师大版九年级数学圆测试题及答案(K12教育文档)

北师大版九年级数学圆测试题及答案(K12教育文档)

(完整word版)北师大版九年级数学圆测试题及答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整word版)北师大版九年级数学圆测试题及答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整word版)北师大版九年级数学圆测试题及答案(word版可编辑修改)的全部内容。

九年级数学圆测试题一、选择题1.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a 〉b ),则此圆的半径为( )A .2ba + B .2ba - C.22b a b a-+或D .b ab a -+或2.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的距离OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°4.如图24—A —2,△ABC 内接于⊙O,若∠A=40°,则∠OBC 的度数为( ) A .20° B .40° C .50° D .70°5.如图24—A-3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A .12个单位 B .10个单位 C .1个单位 D .15个单位6.如图24-A-4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )图24—A —5图24—A —1图24—A —2 图24—A —3 图24—A —4A .80°B .50°C .40°D .30°7.如图24—A-5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD 切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( ) A .5 B .7 C .8 D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( ) A .26m B .26m π C .212m D .212m π 9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512C . 2D .3 11.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( )A .D 点B .E 点C .F 点D .G 点二、填空题12.如图24-A-8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C,则∠AOC= 。

初三圆练习题和答案

初三圆练习题和答案

初三圆练习题和答案在初三数学学习中,圆是一个非常重要的几何概念。

为了帮助同学们更好地掌握圆的相关知识,本文将提供一些初三圆练习题和答案。

一、选择题1. 已知圆的半径为4cm,求其直径是多少?A. 2cmB. 4cmC. 8cmD. 16cm答案:C. 8cm2. 如果一张圆形饼干的半径为6cm,那么它的周长是多少?A. 6cmB. 12cmC. 18cmD. 36cm答案:C. 18cm3. 已知圆的半径为2.5cm,求其面积是多少?A. 3.14 cm²B. 7.85 cm²C. 15.7 cm²D. 19.63 cm²答案:B. 7.85 cm²4. 若扇形的圆心角为60°,圆的半径为5cm,求扇形的面积是多少?A. 3.14 cm²B. 6.28 cm²C. 7.85 cm²D. 15.7 cm²答案:B. 6.28 cm²5. 已知圆的半径为3cm,求圆心角为120°的弧长是多少?A. 1.57 cmB. 3.14 cmC. 9.42 cmD. 18.85 cm答案:D. 18.85 cm二、填空题1. 已知圆的半径为8cm,求其周长是______cm。

答案:16π cm2. 若圆的周长为18π cm,求其半径的长是______cm。

答案:9 cm3. 已知圆心角为90°,圆的半径为6cm,求扇形的面积是______cm²。

答案:π·3² cm²4. 若扇形的半径为10cm,扇形面积为50π cm²,求圆心角的度数是______°。

答案:72°5. 若弧长为12π cm,圆心角的度数是______°。

答案:180°三、解答题1. 一个圆的直径为10cm,求其周长和面积。

解答:已知直径 d = 10cm则半径 r = 10 ÷ 2 = 5cm周长= 2πr = 2π × 5 = 10π cm面积= πr² = π × 5² = 25π cm²2. 计算一个圆心角为45°的扇形的面积,已知圆的半径为8cm。

初三圆单元测试题及答案

初三圆单元测试题及答案

初三圆单元测试题及答案一、选择题(每题3分,共30分)1. 下列说法正确的是()。

A. 圆的直径是半径的2倍B. 圆的周长与直径的比值是一个常数πC. 圆心到圆上任意一点的距离都相等D. 圆的面积与半径的平方成正比2. 圆的面积公式是()。

A. S = πrB. S = πr²C. S = 2πrD. S = πr/23. 圆的周长公式是()。

A. C = 2πrB. C = πdC. C = 2πRD. C = πr + d4. 如果一个圆的半径是5cm,那么它的直径是()。

A. 10cmB. 5cmC. 2.5cmD. 15cm5. 一个圆的半径增加一倍,它的面积增加()。

A. 2倍B. 4倍C. 8倍D. 16倍6. 圆周率π的近似值是()。

A. 2.14B. 3.14C. 3.14159D. 3.141592657. 圆的内接四边形的对角线()。

A. 相等B. 垂直C. 互相平分D. 互相垂直8. 一个圆的周长是62.8cm,那么它的半径是()。

A. 10cmB. 5cmC. 20cmD. 15cm9. 圆的内接三角形的特点是()。

A. 至少有一个角是直角B. 至少有一个角是钝角C. 至少有一个角是锐角D. 所有角都是直角10. 圆的外切三角形的特点是()。

A. 至少有一个角是直角B. 至少有一个角是钝角C. 至少有一个角是锐角D. 所有角都是直角二、填空题(每题3分,共30分)1. 圆的直径是半径的________倍。

2. 圆的周长公式为C = _________。

3. 圆的面积公式为S = _________。

4. 如果圆的半径是3cm,那么它的周长是_________cm。

5. 圆的周长与直径的比值是圆周率,用符号________表示。

6. 圆的内接三角形的对边是圆的________。

7. 圆的外切三角形的对边是圆的________。

8. 圆的内接四边形的对角线互相________。

九年级数学旋转、圆知识点分类复习练习

九年级数学旋转、圆知识点分类复习练习

九年级数学旋转、圆知识点分类复习练习题型一:旋转对称图形1.将正五边形绕它的中心顺时针旋转α度与本身完全重合,α的最小值是()A.30°B.45°C.60°D.72°2.下列图形中,绕某个点旋转72度后能与自身重合的是()A.B.C.D.3.下列各图形分别绕某个点旋转120°后不能与自身重合的是()A.B.C.D.4.下列交通标志是中心对称图形的为()A. B. C. D.5.下列剪纸作品中是中心对称图形的是()A. B.C. D.6.下列图形是中心对称图形的是()A. B. C. D.题型二:旋转的性质1.如图,在△ABC中,∠B=90°,AB=BC=4,把△ABC绕点A逆时针旋转45°得到△ADE,过点C作CF⊥AE于F,DE交CF于G,则四边形ADGF的周长是()A.8 B.4+4C.8+D.82.如图,把△ABC绕点C顺时针旋转某个角度α得到△A′B′C,∠A=30°,∠1=50°,则旋转角∠BCB′等于()A.25°B.30°C.19°D.20°3.如图,在△ABC中,∠CAB=70°,∠B=30°,在同一平面内,将△ABC绕点A逆时针旋转40°到△A′B′C′的位置,则∠CC′B′=()A.10°B.15°C.20°D.30°4.如图,已知∠MAN=140°,将正方形ABCD绕点A顺时针方向旋转到正方形AEFG的位置,则旋转角的度数为______.5.如图,把矩形ABCD绕点A顺时针旋转,使点B的对应点B落在DA的延长线上,若AB =2,BC=4,则点C与其对应点C的距离为()A. 6B. 8C. 2D. 26.如图,圆P的半径为10,A、B是圆上任意两点,且AB=12,以AB为边作正方形ABCD(点D、P在直线AB的两侧),若AB边绕点P旋转一周,则CD边扫过的面积为()A.0 B.36πC.D.6π7.将直角边长为3cm的等腰直角三角形ABC绕点A逆时针旋转15°后得到AB'C',则图中阴影部分的面积()A.B.3C.2D.6cm28.如图,在平面直角坐标系中,将△ABO绕点A顺时针旋转到△AB1C1的位置,点B、O分别落在点B1、C1处,点B1在x轴上,再将△AB1C1绕点B1顺时针旋转到△AB1C2的位置,点C2在x轴上,将△A1B1C2绕点C2顺时针旋转到△A2B2C2的位置,点A2在x轴上,依次进行下去……,若点A(,0),B(0,2).则点B2019的坐标是()A.(6052,0)B.(6054,2)C.(6058,0)D.(6060,2)9.已知点E(x0,y0),F(x2,y2),点M(x1,y1)是线段EF的中点,则x1=,y1=.在平面直角坐标系中有三个点A(1,﹣1),B(﹣1,﹣1),C(0,1),点P(0,2)关于A的对称点为P1(即P,A,P1三点共线,且P A=P1A),P1关于B的对称点为P2,P2关于C的对称点为P3,按此规律继续以A,B,C为对称点重复前面的操作,依次得到P4,P5,P6,…,则点P2019的坐标是()A.(4,0)B.(﹣2,2)C.(2,﹣4)D.(﹣4,2)10.如图,Rt △ABC 中,∠ACB =90°,AC =BC = ,以AB 为斜边另作Rt △APB ,连接PC ,当点P 在AC 左侧时,下列结论正确的是( )A. 的度数不确定B. C. 当 时, D. 当 时,11.如图,在Rt △ABC 中,∠C =90°,AC =12,BC =5,将△ABC 绕AB 上的点O 顺时针旋转90°,得到△A 'B 'C ',连结BC '.若BC '∥A 'B ',则OB 的值为( )A.1360 B. 5 C. 1265 D. 52412.如图,在正方形ABCD 和正方形AEFG 中,边AE 在边AB 上,AB = ,AE =1.将正方形AEFG 绕点A 逆时针旋转,设BE 的延长线交直线DG 于点P ,当点P ,G 第一次重合时停止旋转.在这个过程中:(1)∠BPD =______度;(2)点P 所经过的路径长为______.13.如图,在△ABC中,∠ABC=60°,AB=2,BC=8,点A为顶点,AC为腰,作等腰△ACD,且∠DAC=120°,则BD的长为__________.题型三:旋转作图与计算1.如图,在平面直角坐标系xOy中,点A(3,3),B(4,0),C(0,﹣1).(1)以点C为旋转中心,把△ABC逆时针旋转90°,画出旋转后的△A'B'C;(2)在(1)的条件下,①点A经过的路径AA'的长度为(结果保留π);②点B'的坐标为.2.如图,在平面直角坐标系xOy中,△ABC的三个顶点坐标分别为A(1,1),B(4,0),C(4,4).(1)按下列要求作图:①将△ABC向左平移4个单位,得到△A1B1C1;②将△A1B1C1绕点B1逆时针旋转90°,得到△A2B2C2.(2)求点C1在旋转过程中所经过的路径长.3.如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点B的坐标为(0,1).(1)画出△ABC向右平移3个单位长度所得的△A1B1C1;写出C1点的坐标;(2)画出将△ABC绕点B按逆时针方向旋转90°所得的△A2B2C2;写出C2点的坐标;(3)在(2)的条件下求点A所经过路径的长度.4.如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(-3,3),B(-2,1),C(1,2).(1)把△ABC绕原点O旋转,使点C与点C1(2,-1)重合,画出旋转后的△A1B1C1,并写出点A1,B1的坐标;(2)在(1)的条件下,若△ABC是按顺时针方向旋转的,求点A到点A1经过的路径的长.5.如图,点O是等边三角形ABC三条角平分线的交点,试分别根据下列旋转中心与旋转角,将△AOC顺时针旋转,并画出旋转后的图形.(1)以点O为旋转中心,旋转角为120°;(2)以点A为旋转中心,旋转角为60°.题型四:旋转综合题1.(1)(操作发现)如图1,在边长为1个单位长度的小正方形组成的网格中,△ABC的三个顶点均在格点上.现将△ABC绕点A按顺时针方向旋转90°,点B的对应点为B′,点C的对应点为C′,连接BB′,如图所示,则∠AB′B=.(2)(解决问题)如图2,在等边△ABC内有一点P,且P A=2,PB=,PC=1,如果将△BPC绕点B逆时针旋转60°得出△ABP′,求∠BPC的度数和PP′的长;(3)(灵活运用)如图3,在Rt△ABC中,∠ACB=90°,AC=1,∠ABC=30°,点O为△ABC内一点,连接AO,BO,CO,∠AOC=∠COB=∠BOA=120°求OA+OB+OC的值.2.如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点F,G,H分别是BE,CD,BC的中点(1)观察猜想:图1中,△FGH的形状是.(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△FGH的形状是否发生改变?并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=2,AB=6,请直接写出△FGH 的周长的最大值.3.已知:在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转(旋转角度小于180°),得到△ADE,点B的对应点为点D,点C的对应点为点E.(1)如图1,连接BE,若∠DAB+∠ACB=180°,请判断四边形AEBC的形状,并说明理由;(2)如图2,设BE的延长线与AD交于点F,若AF=FD,求∠BAD的度数;(3)如图3,连接CD,若∠CAE=∠ACB,求CD的长.4.如图,在Rt△ABC中,∠C=90°,把Rt△ABC绕着B点逆时针旋转,得到Rt△DBE,点E 在AB上,连接AD.(1)若BC=8,AC=6,求△ABD的面积;(2)设∠BDA=x°,求∠BAC的度数(用含x的式子表示).5.已知Rt△ABC中,将∠ACB=90°,BC=6,∠A=30°,将△ABC绕点C逆时针旋转α,(0°<α≤60°),得到△DEC,设直线DE与直线AB相交于点P(1)如图1,连接PC,求证:PC平分∠EP A.(2)如图2,在△ABC旋转过程中,连接BE,当△BCE的面积为9时,求α的度数.(3)如图3,当点P在边AB上时,问:PE+PB是否为定值?如果是,请求出此定值;如果不是,请说明理由.6.问题发现在等腰三角形ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME.填空:线段AF,AG,AB之间的数量关系是;线段MD,ME之间的数量关系是.(2)拓展探究在任意三角形ABC中,分别以AB和AC为斜边向△ABC的外侧作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD与ME具有怎样的数量关系和位置关系?并说明理由;(3)解决问题在任意三角形ABC中,分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,若MD=2,请直接写出线段DE的长.圆:题型一:垂径定理的运用1.一条排水管的截面如图所示,已知排水管的半径OA=1m,水面宽AB=1.2m,某天下雨后,水管水面上升了1.4m,则此时排水管水面宽为()A.1.2m B.1.4m C.1.6m D.1.8m2.刻度尺与⊙O如图摆放时,有刻度的一边与⊙O的两个交点处的读数如图所示(单位:cm),圆的半径是5cm,那么圆心到刻度尺的最近距离为.3.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是mm.如图,一条公路的转弯处是一段圆弧(AB),点O是这段弧所在圆的圆心,AB=40 m,点C是AB的中点,且CD=10 m,则这段弯路所在圆的半径为A.25 m B.24 m C.30 m D.60 m5.如图是一位同学从照片上剪切下来的画面,“图上”太阳与海平线交于A、B两点,他测得“图上”圆的半径为5厘米,AB=8厘米,若从目前太阳所处位置到太阳完全跳出海面的时间为10分钟,则“图上”太阳升起的平均速度为()A.0.5厘米/分B.0.8厘米/分C.1.0厘米/分D.1.6厘米/分6.位于黄岩西城的五洞桥桥上老街目前正在修复,如图①是其中一处中式圆形门,图②是它的平面示意图,已知AB过圆心O,且垂直CD于点B,测得门洞高度AB为1.8米,门洞下沿CD宽为1.2米,则该圆形门洞的半径为题型二:圆弧、圆周角、弦之间的关系1.如图,AB是⊙O的弦,半径OC⊥AB,D是优弧AB上一点,若∠BOC=34°,则∠ADC 的大小是()A.10°B.17°C.30°D.34°2.如图,AB是半圆O的直径,∠BAC=40°,则∠D的度数是()A.140°B.130°C.120°D.110°3.如图,MN是⊙O的直径,A,B,C是⊙O上的三点,∠ACM=60°,B点是的中点,P点是MN上一动点,若⊙O的半径为1,则P A+PB的最小值为()A.1 B.C.D.﹣14.如图,将半径为2,圆心角为120°的扇形OAB绕点A逆时针旋转一个角度,使点O的对应点D落在弧上.点B的对应点为C.连接BC.则BC的长度是()A.4 B.C.2D.35.下列说法正确的是()A.相等的圆心角所对的弧相等B.在同圆中,等弧所对的圆心角相等C.在同圆中,相等的弦所对的弧相等D.相等的弦所对的弧相等6.如图,四边形ABCD内接于⊙O,AB=AD,BC=3.劣弧BC沿弦BC翻折,刚好经过圆心O.当对角线BD最大时,则弦AB的长是()A.B.2C.D.27.如图,AB是⊙O的直径,BC是⊙O的弦=.若BD=2,CD=6,则BC的长为()A.B.C.D.8.如图,分别以等边三角形的3个顶点为圆心,边长为半径画弧,三段弧围成的图形称为莱洛三角形.若等边三角形边长为3cm,则该莱洛三角形的周长为()A.2πB.9 C.3πD.6π9.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.B.C.2πD.2π10.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为.11.如图,点O为△ABC的外心,点I为△ABC的内心,若∠BIC=125°,则∠BOC的度数为( )A. 110°B. 125°C. 130°D. 140°12.如图,A,B是⊙O上的两点,C是⊙O上不与A,B重合的任意一点.如果∠AOB=130°,那么∠ACB的度数为题型三:圆中的计算1.如图,在平行四边形ABCD中,AB=4,AD=2,分别以A、B为圆心,AD、BC为半径画弧,交AB于点E,交CD于点F,则图中阴影部分图形的周长之和为()A.2+πB.4+πC.4+2πD.4+4π2.如图,每个圆的半径都是1cm,则图中的三个扇形(即阴影部分)的面积之和为()A.πB.πC.πD.π3.用一个半径为15、圆心角为120°的扇形围成一个圆锥,则这个圆锥的底面半径是()A.5 B.10 C.5πD.10π4.一个圆锥的侧面展开图是半径为8的半圆,则该圆锥的全面积是()A.48πB.45πC.36πD.32π5.如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD 后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm6.圆锥的母线长为10,侧面积为60π,则这个圆锥的底面周长为( ) A .10πB .12πC .16πD .20π7.一张半径为6cm 的扇形纸片卷成一个圆锥的侧面,要求圆锥底面圆的半径为4cm ,那么这张扇形纸片的圆心角度数是( ) A .150°B .240°C .200°D .180°8.如图,AB 是O 的一条弦,点C 是O 上一动点,且30ACB ∠=︒,点E 、F 分别是AC 、BC 的中点,直线EF 与O 交于G 、H 两点.若O 的半径为7,则GE +FH的最大值为__________.题型四:切线证明①有交点⇒作半径,证垂直1.如图3-ZT-6,在Rt△ABC中,∠ACB=90°,D是AB边上的一点,以BD为直径作☉O交AC于点E,连接DE并延长,与BC的延长线交于点F,且BD=BF.求证:AC与☉O相切.图3-ZT-62.如图3-ZT-7,四边形ABCD为矩形,E为BC边的中点,连接AE,以AD为直径的☉O交AE于点F,连接CF.求证:CF与☉O相切.图3-ZT-7②无交点⇒作垂直,证半径3.如图3-ZT-8,大圆的半径为8 cm,圆内的弦AB=8cm,以O为圆心,4 cm为半径作小圆.求证:小圆与直线AB相切.图3-ZT-84.如图3-ZT-9,△ABC为等腰三角形,O是底边BC的中点,腰AB与☉O相切于点D,OB与☉O 相交于点E.(1)求证:AC是☉O的切线;(2)若BD=,BE=1,求阴影部分的面积.图3-ZT-9③有切线(或切点),常连半径5.如图3-ZT-10所示,线段AB是☉O的直径,∠CDB=20°,过点C作☉O的切线交AB的延长线于点E,则∠E的度数为()图3-ZT-10A.50°B.40°C.60°D.70°6.如图3-ZT-11,在Rt△ABC中,∠C=90°,以BC为直径的☉O交AB于点D,切线DE交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.图3-ZT-11题型五:圆综合20.如图,⊙O是△ABC的外接圆,且AB=AC=5,延长AB至点E,使得BE=2,点D是上的一个动点,连结AD,BD,ED.(1)当DE∥BC时,求证:∠ADB=∠E;(2)若BC=6,则:①求⊙O的半径;②当△ABD为直角三角形时,求DE的长.21.如图,已知在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AE=6,劣弧DE的长为π,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).22.如图,AB是⊙O的直径,D是弦AC延长线上一点,且AB=BD,DB的延长线交⊙O于点E,过点C作CF⊥BD,垂足为点F.(1)CF与⊙O有怎样的位置关系?请说明理由;(2)若BF+CF=6,⊙O的半径为5,求BE的长度.23.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,CD为斜边AB的中线.过点D作AB 的垂线交AC于点E,再过A、D、E三点作⊙O.(1)确定⊙O的圆心O的位置,并证明CD为⊙O的切线;(2)若BC=3,求⊙O的直径.24.如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD 的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.25.如图,AB为⊙O的直径,点C,D在⊙O上,且点C是的中点,过点C作AD的垂线EF交直线AD于点E.(1)求证:EF是⊙O的切线;(2)连接BC,若AB=5,BC=3,求线段AE的长.26.如图,△ABC是⊙O的内接正三角形,点P在劣弧BC上(不与点B,C重合).(1)如图1,若PA是⊙O的直径,则PA______PB+PC(请填“>”,“=”或“<”)(2)如图2,若PA不是⊙O的直径,那么(1)中的结论是否仍成立?如果不成立,请说明理由:如果成立,请给出证明.(3)如图3,若四边形ACPB的面积是16.①求PA的长;②设y=S△PCB+S△PCA,求当PC为何值时,y的值最大?并直接写出此时⊙O的半径.1.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x称为P点的“坐标差”,记作Zp,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)①点A(3,1)的“坐标差”为________;②抛物线y=﹣x2+5x的“特征值”为________;(2)某二次函数y=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.①直接写出m=________;(用含c的式子表示)②求此二次函数的表达式.________(3)如图,在平面直角坐标系xOy中,点D(4,0),以OD为直径作⊙M,直线y=x+b与⊙M相交于点E、F.①比较点E、F的“坐标差”Z E、Z F的大小.________②请直接写出⊙M的“特征值”为________.2.如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.(1)求当t为何值时,点Q与点D重合?(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.3.在平面直角坐标系xOy中,给出如下定义:对于⊙C及⊙C外一点P,M、N是⊙C上任意两点,当∠MPN最大时,称这个角为点P 关于⊙C的“视角”.直线l与⊙C相离,点Q在直线l上运动,当点Q关于⊙C的“视角”最大时,称这个最大的“视角”为直线l关于⊙C的“视角”.(1)如图,⊙C的半径为1,①已知点A(1,1),直接写出点A关于⊙O的“视角”.已知直线y=2,直接写出直线y=2关于⊙O的“视角”.②若点B关于⊙O的“视角”为60°,直接写出一个符合条件的B点的坐标.(2)⊙C的半径为1.l关于⊙C的“视角”为60°,求k的值.出圆心C的横坐标x C的取值范围.。

初三数学圆及旋转题目库

初三数学圆及旋转题目库
4.已知:如图,Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.
如果CA=CB,求证:AE2+BF2=EF2;
如果CA<CB,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.
第2讲:旋转的应用(直击中考)
1、四边形ABCD中,∠ABC=60度,∠ADC=120度,求证:BD=AD+CD
四、综合题
1.已知:如图,四边形ABCD中,∠D=60°,∠B=30°,AD=CD.求证:BD2=AB2+BC2.
2.已知:如图,E是正方形ABCD的边CD上任意一点,F是边AD上的点,且FB平分∠ABE.
A.求证:BE=AF+CE.
3. 已知:如图,在四边形ABCD中,∠B+∠D=180°,AB=AD,E,F分别是线段BC,CD上的点,且BE+FD=EF.求证:
初三数学圆及旋转题目库
第1讲:旋转1
一、填空题
1.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.
2. 如图,△ABC绕着点O旋转到△DEF的位置,则旋转中心是______.旋转角是______.AO=______,AB=______,∠ACB=∠______.
5、(2010年朝阳一模) 23.(本小题满分7分)
请阅读下列材料:问题:如图1,在等边三角形ABC内有一点P,且PA=2, PB= , PC=1.求∠BPC度数的大小和等边三角形ABC的边长.
李明同学的思路是:将△BPC绕点B顺时针旋转60°,画出旋转后的图形(如图2).连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证).所以∠AP′B=150°,而∠BPC=∠AP′B=150°.进而求出等边△ABC的边长为 .问题得到解决. 请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA= ,BP= ,PC=1.求∠BPC度数的大小和正方形ABCD的边长.

(整理)九级数学圆及旋转题库

(整理)九级数学圆及旋转题库

第1讲:旋转1一、填空题1.如图,△AOB旋转到△A′OB′的位置.若∠AOA′=90°,则旋转中心是点______.旋转角是______.点A的对应点是______.线段AB的对应线段是______.∠B的对应角是______.∠BOB′=______.2.如图,△ABC绕着点O旋转到△DEF的位置,则旋转中心是______.旋转角是______.AO=______,AB=______,∠ACB=∠______.1题图 2题图 3题图3.如图,正三角形ABC绕其中心O至少旋转______度,可与其自身重合.4.一个平行四边形ABCD,如果绕其对角线的交点O旋转,至少要旋转______度,才可与其自身重合.5.钟表的运动可以看作是一种旋转现象,那么分针匀速旋转时,它的旋转中心是钟表的旋转轴的轴心,经过45分钟旋转了______度.6.旋转的性质是对应点到旋转中心的______相等;对应点与旋转中心所连线段的夹角等于______;旋转前、后的图形之间的关系是______.7.把一个图形绕着某一个点旋转______,如果它能够与另一个图形______,那么称这两个图形关于这个点对称或中心对称,这个点叫做______,这两个图形中的对应点叫做关于中心的______.8.关于中心对称的两个图形的性质是:(1)关于中心对称的两个图形,对称点所连______都经过______,而且被对称中心所______.(2)关于中心对称的两个图形是______.9.线段不仅是轴对称图形,而且是______图形,它的对称中心是______.10.平行四边形是______图形,它的对称中心是____________.11.圆不仅是轴对称图形,而且是______图形,它的对称中心是______.12.若线段AB、CD关于点P成中心对称,则线段AB、CD的关系是______.13.如图,若四边形ABCD与四边形CEFG成中心对称,则它们的对称中心是______,点A的对称点是______,E的对称点是______.BD∥______且BD=______.连结A,F的线段经过______,且被C点______,△ABD≌______.13题图 15题图14.若O点是□ABCD对角线AC、BD的交点,过O点作直线l交AD于E,交BC于F.则线段OF 与OE的关系是______,梯形ABFE与梯形CDEF是______图形.15.如图,用等腰直角三角板画∠AOB=45°,并将三角板沿OB方向平移到如图所示的虚线处后绕点M按逆时针方向旋转22°,则三角板的斜边与射线OA的夹角为______°.16.如图,把边长为1的正方形ABCD绕顶点A逆时针旋转30°到正方形A′B′C′D′,则它们的公共部分的面积等于______.17.在平面直角坐标系中,已知点P0的坐标为(1,0),将点P0绕着原点O按逆时针方向旋转60°得到P1,延长OP1到点P2,使OP2=2OP1,再将点P2绕着原点O按逆时针方向旋转60°,得点P3,则P3的坐标是______.18.如图,已知梯形ABCD中,AD∥BC,∠B=90°,AD=3,BC=5,AB=1,把线段CD绕点D逆时针旋转90°到DE位置,连结AE,则AE的长为______.16题图 18题图 19题图19.如图,以等腰直角三角形ABC的斜边AB为边作等边△ABD,连结DC,以DC为边作等边△DCE,B,E在C,D的同侧.若,2AB则BE=______.20.如图,已知D,E分别是正三角形的边BC和CA上的点,且AE=CD,AD与BE交于P,则∠BPD______°.20题图二、选择题1.下图中,不是旋转对称图形的是( ).2.有下列四个说法,其中正确说法的个数是( ).①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化A.1个B.2个C.3个D.4个3.如图,把菱形ABOC绕点O顺时针旋转得到菱形DFOE,则下列角中不是旋转角的为( ).A.A.∠BOF B.∠AODB.C.∠COE D.∠COF4.如图,若正方形DCEF旋转后能与正方形ABCD重合,则图形所在平面内可作为旋转中心的点共有( )个.A.1 B.2C.3 D.45.下面各图中,哪些绕一点旋转180°后能与原来的图形重合?( ).A.①、④、⑤B.①、③、⑤C.②、③、⑤D.②、④、⑤6.下列图形中,不是..中心对称图形的是( ).A.圆B.菱形C.矩形D.等边三角形7.以下四个图形中,既是轴对称图形又是中心对称图形的有( ).A.4个B.3个C.2个D.1个8.下列图形中,是中心对称图形的有( ).A.1个B.2个C.3个D.4个9.下列图形中,是轴对称图形而不是中心对称图形的是( ).10.下列图形中,既是中心对称图形又是轴对称图形的是( ).A.等边三角形B.菱形C.等腰梯形D.平行四边形11.数学课上,老师让同学们观察如图所示的图形,问:它绕着圆心O旋转多少度后和它自身重合?甲同学说:45°;乙同学说:60°;丙同学说:90°;丁同学说:135°.以上四位同学的回答中,错误的是( ).A.甲B.乙C.丙D.丁12.如图,在平面直角坐标系中,△ABC和△DEF为等边三角形,AB=DE,点B,C,D在x轴上,点A,E,F在y轴上,下面判断正确的是( ).A.△DEF是△ABC绕点O顺时针旋转90°得到的B.△DEF是△ABC绕点O逆时针旋转90°得到的C.△DEF是△ABC绕点O顺时针旋转60°得到的D.△DEF是△ABC绕点O顺时针旋转120°得到的13.以下图的边缘所在直线为轴将该图案向右翻折后,再绕中心旋转180°,所得到的图形是( ).三、解答题14.已知:如图,四边形ABCD及一点P.求作:四边形A′B′C′D′,使得它是由四边形ABCD绕P点顺时针旋转150°得到的.15.已知:如图,当半径为30cm的转动轮按顺时针方向转过120°角时,传送带上的物体A向哪个方向移动?移动的距离是多少?16.已知:如图,F是正方形ABCD中BC边上一点,延长AB到E,使得BE=BF,试用旋转的性质说明:AF=CE且AF⊥CE.17.已知:如图,若线段CD是由线段AB经过旋转变换得到的.A.求作:旋转中心O点.18.已知:如图,P为等边△ABC内一点,∠APB=113°,∠APC=123°,试说明:以AP、BP、CP为边长可以构成一个三角形,并确定所构成三角形的各内角的度数.19.已知:如图,四边形ABCD与四边形EFGH成中心对称,试画出它们的对称中心,并简要说明理由.20.如图,有一块长方形钢板,工人师傅想把它分成面积相等的两部分,请你在图中画出作图痕迹.21.已知:三点A(-1,1),B(-3,2),C(-4,-1).(1)作出与△ABC关于原点对称的△A1B1C1,并写出各顶点的坐标;(2)作出与△ABC关于P(1,-2)点对称的△A2B2C2,并写出各顶点的坐标.22.已知:直线l的解析式为y=2x+3,若先作直线l关于原点的对称直线l1,再作直线l1关于y轴的对称直线l2,最后将直线l2沿y轴向上平移4个单位长度得到直线l3,试求l3的解析式.23.如图,将给出的4张扑克牌摆成第一行的样子,然后将其中的1张牌旋转180°成第二行的样子,你能判断出被旋转过的1张牌是哪一张吗?为什么?四、综合题1.已知:如图,四边形ABCD 中,∠D =60°,∠B =30°,AD =CD .求证:BD 2=AB 2+BC 2.2.已知:如图,E 是正方形ABCD 的边CD 上任意一点,F 是边AD 上的点,且FB 平分∠ABE .A .求证:BE =AF +CE .3.已知:如图,在四边形ABCD 中,∠B +∠D =180°,AB =AD ,E ,F 分别是线段BC ,CD 上的点,且BE +FD =EF .求证:.21BAD EAF ∠=∠4.已知:如图,Rt△ABC中,∠ACB=90°,D为AB中点,DE、DF分别交AC于E,交BC于F,且DE⊥DF.如果CA=CB,求证:AE2+BF2=EF2;如果CA<CB,(1)中的结论还成立吗?若成立,请证明;若不成立,请说明理由.FED CBAA第2讲:旋转的应用(直击中考)1、四边形ABCD 中,∠ABC =60度,∠ADC =120度,求证:BD =AD+CD2、正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.3、D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

初三数学圆测试题及答案.doc

初三数学圆测试题及答案.doc

1. 下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心 在三角形的一条边上的三角形是直角三角形,其中真命题共冇()A. 0个B. 1个C. 2个D. 3个2. 同一平血内两圆的半径是R 和「圆心距是d,若以R 、r 、d 为边长,能围成一个三角形,则这两个3. 如图,四边形ABCD 内接于©0,若它的一个外角ZDCE=70° ,则ZB0D 二()单元测试的位置关系是()A.外离B.相切 C •相交 D •内含 A. 35° B. 70°6.如图, B.4W0MW5D.4<0M<5 5.如图, 00的直径AB 与弦CD 的延长线交于点E,若DE 二0B,ZA0C=84° ,则 ZE 等于() A. 42 °B. 28°C. 21°△ABC 内接于00, AD 丄BC 于点D,AC 二3cnb 则00的直径是()A. 2cmB. 4cmC. 6cmD. 8cm7.如图, 圆心角部是90°的扇形0AB与扇形OCD亞放在一起, 0A二3, 0C=b分别连结AC、BD,则图屮阴影部分的面积为()一打A. 2 8・已知OO :与OO2外切于点A,的半径R=2, OO2的半径一 1,若半径为4的OC 与。

0:、都相 切,则满足条件的。

(:冇()A. 2个B. 4个C. 5个D. 6个9. 设00的半径为2,鬪心0到直线?的距离0P 二m, 使得关于x 的方程2x 3 - = °有 实数根,则直线'与O0的位置关系为()A.相离或相切B.相切或相交C.相离或相交D.无法确定10. 如图,把直角AABC 的斜边AC 放在定直线/上,按顺时针的方向在直线•'上转动两次,使它转到A. 二、填空题(本大题共5小题,每小4分,共计20分)11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,同样乙已经助攻冲到B 点.有两种射门方式:笫一•种是甲直接射门;笫二种是甲将球传给乙,由乙射门.仅 从射门角度考虑,应选择 _________ 种射门方式.D.△A2B2C2的位置,设AB 二历,装侧面,则需BC 二 1, 点A 所经过的路线为()13.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为_____________ ・14.(北京)如图,直角坐标系屮一条圆弧经过网格点A、B、C,具中,B点坐标为(4, 4),则该圆弧所在圆的圆心坐标为 _____________ ・15. _________________________________________ 如图,两条互相垂直的弦将00分成四部分,相对的两部分而积Z和分别记为弘S2,若圆心到两弦的距离分别为2和3,则|S-S2|= .三、解答题(16〜21题,每题7分,22题8分,共计50分)16.(丽水)为了探究三角形的内切関半径r与周长?、面积SZ间的关系,在数学实验活动中,选取等边三角形(图甲)和在角三角形(图乙)进行研究.(D0是ZXABC的内切圆,切点分别为点D、E、F.⑴用刻度尺分别量出表屮未度量的AABC的长,填入空格处,并计算出周长•'和面积S.(结果精确到0.1厘米)AC BC AB r7S图甲0.6图乙1.0(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与?、SZ间关系,并证明这种关系对任意三角形(图丙)是否也成立?17. (成都)如图,以等腰三角形购7的一腰肋为直径的交底边于点二,交&于点三, 连结皿,并过点二作丄恥,垂足为三.根据以上条件写出三个正确结论(除 AB = AC 9 AO-BO.乙個C=Z J 4(JB 夕卜)是: (1) ____________________ ; (2) ____________________ ; (3) ___________________ .18. (黄冈)如图,要在直径为50 M 米的圆形木板上截出四个大小相同的圆形凳血.问怎样才能截出 直径最大的凳而,最大直径是多少厘米?19. (山西)如图是一纸杯,它的母线AC 和EF 延长后形成的立体图形是関锥,该|员]锥的侧面展开图 形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,卜•底面直径为4cm,母线长为EF=8cm.求扇形OAB 的 圆心饬及这个纸杯的表面积(面积计算结杲用并表示).图丙'讥B 图乙Ch图甲 E20.如图,在AABC中,ZBCA =90°,以BC为直径的00交AB于点P, Q是AC的中点•判断直线PQ 与O0的位置关系,并说明理由.21.(武汉)有这样一道习题:如图1,已知0A和0B是。

初三数学圆测试题和答案

初三数学圆测试题和答案

、选择题1.下列命题:①长度相等的弧是等弧②任意三点确定一个圆 在三角形的一条边上的三角形是直角三角形,其中真命题共有A. 0个B. 1个C. 2个D. 3个3. 如图,四边形 ABCD 内接于O O 若它的一个外角/ DCE=704. 如图,O O 的直径为10,弦AB 的长为8, M 是弦AB 上的动点,贝U OM 的长的取值范围() A.3 < OMS 5B.4 < OMC 5C.3 V OM k 5D.4 V OM k 55. 如图,O O 的直径 AB 与弦CD 的延长线交于点 E ,若DE=OB / AOC=84,则/ E 等于()&已知O O 与O Q 外切于点 A , O O 的半径R=2, O O 的半径r=1 ,若半径为 4的O C 与O O 、O O 都相 切,则满足条件的O C 有() A.2个B.4个C.5个D.6个9•设O O 的半径为2,圆心O 到直线的距离OP=m 且m 使得关于x 的方程「丄 - ■:-" - '■有实数根,则直线「与O O 的位置关系为()圆练习2.同一平面内两圆的半径是R 和r ,圆心距是d ,若以R 、r 、d 为边长,能围成一个三角形,则这两个圆A.外离 的位置关系是()B.相切C.相交D.内含 A.35C.110OOB.70(3题图) (4题图) ③相等的圆心角所对的弦相等 ④外心,则/ BOD=()A.42B.28C.216.如图, O, AD 丄 BC 于点 D, AD=2cm AB=4cm AC=3cm 则 O O 的直径是() A.2cmB.4cmC.6cmD.8cm7.如图, 影部分的面积为圆心角都是 90 的扇形OAB 与扇形OCD 叠放在一起,OA=3 OC=1分别连结 AC BD,则图中阴1— JIA. 1C.--D.-ox J D△ ABC 内接于O (5题图) (6题图)10 .如图,把直角厶ABC 的斜边AC 放在定直线上,按顺时针的方向在直线 J 上转动两次,使它转到△ A 2B 2C 2的位置,设AB= -,BC=1,则顶点A 运动到点 A 的位置时,点 A 所经过的路线为()、填空题11. 某圆柱形网球筒,其底面直径是 10cm,长为80cm,将七个这样的网球筒如图所示放置并包装侧面,则需 _________________ 液'的包装膜(不计接缝,洱取3).12.如图,在“世界杯”足球比赛中,甲带球向对方球门 PQ 进攻,当他带球冲到 A 点时,同样乙已经助攻冲到B 点.有两种射门方式:第一种是甲直接射门;第二种是甲将球传给乙,由乙射门 •仅从射门角度考虑,应选择 _________种射门方式•13. 如果圆的内接正六边形的边长为 __________ 6cm,则其外接圆的半径为14如图,直角坐标系中一条圆弧经过网格点在圆的圆心坐标为 _______________.15•如图,两条互相垂直的弦将O O 分成四部分,相对的两部分面积之和分别记为S 、S 2,若圆心到两弦的距离分别为 2和3,则|S 1-S 2|= _____________ .A.相离或相切B.相切或相交C.相离或相交D.无法确定£回A.I 八丿71C."A 、B 、C,其中,B 点坐标为(4 , 4),则该圆弧所(15题图)(11题图)... .... 」..亠,: 丄—L —■ (14 题图)、解答题16.为了探究三角形的内切圆半径r与周长■'、面积S之间的关系,在数学实验活动中,选取等边三角形(图甲)和直角三角形(图乙)进行研究• O O 是厶ABC 的内切圆,切点分别为点D E 、F.(1)用刻度尺分别量出表中未度量的△ ABC 的长,填入空格处,并计算出周长」和面积S.(结果精确到0.1厘米)ACBCAB rIS图甲0.6图乙1.0(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r 与.、S 之间关系,并证明这种关系对任意三角形 (图 丙)是否也成立17•如图,以等腰三角形」二匚的一腰-兀为直径的O O 交底边占二于点匸,交于点了,连结-迄,并过 点丄-作二匸丄…-,垂足为三.根据以上条件写出三个正确结论 (除-匸—丄-----_-- -- __-外)是:(1) ____________ ;⑵ _________________ ;⑶ _________________19•如图是一纸杯,它的母线AC 和 EF 延长后形成的立体图形是圆锥, 该圆锥的侧面展开图形是扇形 OAB 经测 量,纸杯上开口圆的直径是 6cm,下底面直径为4cm 母线长为EF=8cm.求扇形OAB 的圆心角及这个纸杯的表面积 (面 积计算结果用 表示).18•如图,要在直径为 50厘米的圆形木板上截出四个大小相同的圆形凳面 .问怎样才能截出直径最大的凳面,最大直径是多少厘米? C20. 如图,在△ ABC 中,/ BCA =90°,以BC 为直径的O 位置关系,并说明理由•21. 有这样一道习题:如图 1,已知OA 和OB 是O O 的半径,并且 OAL OB P 是OA 上任一点(不与O A 重合), BP 的延长线交O O 于Q,过Q 点作O O 的切线交OA 的延长线于 R.说明:RP=RQ.请探究下列变化:变化一:交换题设与结论•已知:如图1, OA 和 OB 是O O 的半径,并且 OALOB P 是OA 上任一点(不与 O A 重合),BP 的延长线交O O 于Q R 是OA 的延长线上一点,且 RP=RQ.说明:RQ 为O O 的切线•变化二:运动探求•⑴ 如图2,若0A 向上平移,变化一中的结论还成立吗?(只需交待判断)答: ___________ .⑵如图3,如果P 在0A 的延长线上时,BP 交O 0于Q,过点Q 作O 0的切线交0A 的延长线于R,原题中的结 论还成立吗?为什么?PQ 与O O的22. (深圳南山区)如图,在平面直角坐标系中,矩形A BC0的面积为15,边0A比0C大2.E为BC的中点,以0E为直径的O 0'交芒轴于D点,过点D作DF丄AE于点F.(1) 求0A 0C的长;(2) 求证:DF为O 0'的切线;(3) 小明在解答本题时,发现△ A0E是等腰三角形•由此,他断定:“直线BC上一定存在除点E以外的点卩,使厶A0P也是等腰三角形,且点P一定在O 0'夕卜”.你同意他的看法吗?请充分说明理由•答案与解析:一、选择题1.B2.C3.D4.A5.B6.C7.C提示:易证得△ AOC^A BOD屯~^QA£ +儿创-_^aoco =鴻如-徭OCT =Q次(F 1 八)二2酒8.D 9.B 10.B、填空题11.12000 12.第二种13.6cm 14.(2 , 0)4X 6=24)ED二DC , (2) / BAD2 CAD ⑶ DE是°° 的切线(以及ADL BC,弧BD=M DG等).18. 设计方案如左图所示,在右图中,易证四边形OAO C为正方形,00 +0' B=25,所以圆形凳面的最大直径为25^ -1)厘米.15.24(提示:如图,由圆的对称性可知'一•「一'- L等于e的面积,即为三、解答题16.(1) I 略;由图表信息猜测,得并且对一般三角形都成立•连接OA OB OC运用面积法证明:亡~ £」处十十脸丄胆OD十十丄AB~OF2 2 217.(1)19. 扇形OAB的圆心角为45°,纸杯的表面积为44打. 解:设扇形OAB的圆心角为n°弧长AB等于纸杯上开口圆周长:弧长CD等于纸杯下底面圆周长: MT OF180=2TV -12丿可列方程组180珂■ OF *------- =4L 180,解得(9F = 16所以扇形OAB的圆心角为45°, OF等于16cm纸杯表面积=纸杯侧面积+纸杯底面积=扇形OAB的面积-扇形OCD的面积+纸杯底面积即S纸杯表面积=-x 6TT x 0^4 — x OF2 21 1 <4— x67rx(8 + 16) — x4zrxl6 + 7T 一2v 2 1220.连接OR CP 则/ OPC M OCP.由题意知厶ACR是直角三角形,又Q是AC的中点,因此QP=QC / QPC M QCR. 而/ OCP y QCP=90,所以/ OPC+/ QPC=90 即OPL PQ PQ与O O相切.21.解:连接OQ•/ OQ=OB •••/ OBP2 OQP 为O O的切线,• OQL QROQP/ PQR=90OBP+Z OPB=90PQR/ OPB/ OPB与/ QPR为对顶角OPB2 QPR PQR/ QPRRP=RQ一、连接OQ证明OQL QR •/ QR 即/ 而/ 故/ 又•••• /变化变化、(1)结论成立(2)结论成立,连接OQ 证明/ B=/ OQB则/ P=/ PQR所以RQ=PR.22.(1)在矩形OAB(中,设OC=x则OA=x+2依题意得x(x+2) = 15解得:叫二巧(不合题意,舍去)•••0C=3 0A=55(2) 连结O D,在矩形OABC中,OC=AB / 0CB2 ABC=90 , CE=BE=••• △ OCE^A ABE • EA=EO「./ 仁/2在O O'中,•/ O ' O= O' D 1 = / 3•••/ 3= / 2 • O' D// AE, •/ DF丄AE • DF 丄O' D又•••点D在O O'上,O' D为O O'的半径,• DF为O O'切线.(3) 不同意.理由如下:①当AO=AF时,以点A为圆心,以AO为半径画弧交BC于P i和P4两点过P i 点作P i H丄OA于点H, P i H=OC=3 T AP=OA=5• AH=4, • OH =1求得点P i(1 , 3)同理可得:F4(9 , 3)②当OA=OP寸,同上可求得:P2(4 , 3) , P3( 4, 3)因此,在直线BC上,除了E点外,既存在O O'内的点P i,又存在O O'外的点P2、P3、P4, 它们分别使△ AOP为等腰三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆及旋转题库第9讲:圆全章测试
圆全章测试
一、选择题
cm C cm D.cm
C D.
5.⊙O中,∠AOB=100°,若C是上一点,则∠ACB等于()
7.如图,A是半径为2的⊙O外的一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,则的长为()
.C.
8.(2002•吉林)在图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点.甲虫沿弧ADA1、A1EB1、B1FC1、C1GB路线爬行,乙虫沿路线爬行,则下列结论正确的是()
9.(2003•辽宁)如图,在同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分的面积为()
D
10.(2002•河北)某工件形状如图所示,的度数为60°,AB=6cm,点B到点C的距离等于AB,∠BAC=30°,则工件的面积等于()
11.如图,⊙O1的弦AB是⊙O2的切线,且AB∥O1O2,如果AB=12cm,那么阴影部分的面积为()
二、填空题
12.(2008•广安)如图,在⊙O中,AB为⊙O的直径,弦CD⊥AB,∠AOC=60°,则∠B=_________度.
13.如图,边长为1的菱形ABCD绕点A旋转,当B,C两点恰好落在扇形AEF的上时,的长度等于
_________.
14.(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为_________
15.(2009•西宁)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是_________cm2(结果保留π).
16.(2013•梅州)如图,在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与边BC相切,则∠BAC的度数是_________度.
17.Rt△ABC中,∠C=90°,AC=4,BC=3,则以直线AB为轴旋转一周所得的几何体的表面积为_________.
18.已知半径为2cm的两圆外切,半径为4cm且和这两个圆都相切的圆共有_________个.
三、解答题
19.已知:如图,P是△ABC的内心,过P点作△ABC的外接圆的弦AE,交BC于D点.求证:BE=PE.
20.如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径;求证:∠BAM=∠CAP.
21.如图,⊙O中,=,点C在上,BH⊥AC于H.求证:AH=DC+CH.
22.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB的长.23.已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB=12cm.求两个圆之间的圆环面积.
24.(2009•宣武区一模)如图,⊙O的直径AB=6cm,点P是AB延长线上的动点,过点P作⊙O的切线,切点为C,连接AC.若∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP的度数.
25.(2009•西城区二模)如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为上一点,CE⊥AD于E,求
证:AE=BD+DE.
初三数学圆及旋转题库第9讲:圆全章测试
参考答案与试题解析
一、选择题
cm C cm D.cm
AP===4
AB=8
cm
C D.AD=4cm
ED=×FB=AB=
=
=
ED=×FB=AB=
=
=
5.⊙O中,∠AOB=100°,若C是上一点,则∠ACB等于()
上取点
解:如图:在优弧

7.如图,A是半径为2的⊙O外的一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,则的长为()
.C.
=.
8.(2002•吉林)在图中的五个半圆,邻近的两半圆相切,两只小虫同时出发,以相同的速度从A点到B点.甲虫沿弧ADA1、A1EB1、B1FC1、C1GB路线爬行,乙虫沿路线爬行,则下列结论正确的是()
π
ππ×
9.(2003•辽宁)如图,在同心圆中,两圆半径分别为2,1,∠AOB=120°,则阴影部分的面积为()
D
=
10.(2002•河北)某工件形状如图所示,的度数为60°,AB=6cm,点B到点C的距离等于AB,∠BAC=30°,则工件的面积等于()
的度数为
11.如图,⊙O1的弦AB是⊙O2的切线,且AB∥O1O2,如果AB=12cm,那么阴影部分的面积为()
AC=BC=AB=6cm

二、填空题
12.(2008•广安)如图,在⊙O中,AB为⊙O的直径,弦CD⊥AB,∠AOC=60°,则∠B=30度.
B=∠
13.如图,边长为1的菱形ABCD绕点A旋转,当B,C两点恰好落在扇形AEF的上时,的长度等于.
上,即
的圆心角的度数,然后利用弧长公式即可求解.
∴的长是:=,
故答案是:

14.(2013•宁夏)如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为2cm.
AD===
AB=2AD=
15.(2009•西宁)已知圆锥的底面半径为2cm,母线长是4cm,则圆锥的侧面积是8πcm2(结果保留π).
×
16.(2013•梅州)如图,在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与边BC相切,则∠BAC的度数是105度.
17.Rt△ABC中,∠C=90°,AC=4,BC=3,则以直线AB为轴旋转一周所得的几何体的表面积为π.

故答案为:
18.已知半径为2cm的两圆外切,半径为4cm且和这两个圆都相切的圆共有5个.
三、解答题
19.已知:如图,P是△ABC的内心,过P点作△ABC的外接圆的弦AE,交BC于D点.求证:BE=PE.
20.如图,△ABC的三个顶点都在⊙O上,AP⊥BC于P,AM为⊙O的直径;求证:∠BAM=∠CAP.
21.如图,⊙O中,=,点C在上,BH⊥AC于H.求证:AH=DC+CH.
∵,
22.已知:等腰△ABC内接于半径为6cm的⊙O,AB=AC,点O到BC的距离OD的长等于2cm.求AB的长.
==4
==4
AB==
cm
23.已知:如图,在两个同心圆中,大圆的弦AB切小圆于C点,AB=12cm.求两个圆之间的圆环面积.
AB=6cm
24.(2009•宣武区一模)如图,⊙O的直径AB=6cm,点P是AB延长线上的动点,过点P作⊙O的切线,切点为C,连接AC.若∠CPA的平分线交AC于点M,你认为∠CMP的大小是否发生变化?若变化,请说明理由;若不变,求出∠CMP的度数.
25.(2009•西城区二模)如图,等腰△ABC中,AC=BC,⊙O为△ABC的外接圆,D为上一点,CE⊥AD于E,求
证:AE=BD+DE.
菁优网
©2010-2013 菁优网 21
参与本试卷答题和审题的老师有:lbz ;zhehe ;sks ;zcx ;开心;zhjh ;lanchong ;xiu ;MMCH ;sd2011;zxw ;ZJX ;sjzx ;zjx111;CJX ;zhxl ;ljj ;caicl ;蓝月梦(排名不分先后)
菁优网
2013年11月5日。

相关文档
最新文档