信号与系统分析-18

合集下载

信号与线性系统分析吴大正习题答案1_2

信号与线性系统分析吴大正习题答案1_2

1-1画出下列各信号的波形【式中r(t) t (t)】为斜升函数。

(2) f(t) e N, t (4) f(t) (si nt) (7) f(t) 2k (k) 解:各信号波形为(2) f(t) e N, t (3) f(t) sin( t) (t) (5) f (t) r(sint) (10) f(k) [1 ( 1)k] (k)(hl(3) f(t) sin( t) (t)(4) f(t) (si nt)(d)(5) f(t) r(si nt)(7) f(t) 2k (k)(10) f(k) [1 ( 1)k] (k)2卜〔■■ 4* *0::2 3 4 5( 5 21-2画出下列各信号的波形[式中r(t)t (t)为斜升函数]。

(1) f(t) 2 (t 1) 3 (t1) (t 2)(2) f (t) r(t)2r(t1) r(t 2)(5) f(t)r(2t) (2 t)(8) f(k)k[ (k)(k 5)](11) f(k)k(k 7)](12) f(k)2k[ (3k) ( k)] sin( )[ (k)6解:各信号波形为⑴ f(t) 2 (t 1) 3 (t 1) (t 2)(5)f(t) r(2t) (2 t)r(t) 2r(t 1)r(t 2)j/O)Z\1 a7(b)⑵ f(t)4P -OF ■"■(8)f(k) k[ (k) (k 5)]O3)2 13,2<k(11)f(k) sin(~6)[ (k) (k 7)]fa)■MB -»r1.4 1 L_ K _o! 2 3 4 5 6(k)(12)f(k) 2k[ (3k) ( k)]g 8.I~o| 1 2 3 k(I)1-3写出图仁3所示各波形的表达式解图示各波形的表示式分别为:(a) /(f) — 2e(z — 1)—€(『一1) — F (t — 2.) (b)/ (t ) — (t —1)e (r — 1)—2(/—1)c ( f —1) — (t — 3)c ( / 一3)(= 10sint7rZ )_£(?) 一 M — 1 丿_= 1 — 2(r + 2) £(? + 2) — £(r + l)] + (r — 1) c(t H-l) —— 1)12.Ar>1.LIo i tb/(r)正菠函數—1 O l 23(b) I AO(d)1-4写出图1-4所示各序列的闭合形式表达式解图示各序列的闭台形式表示式分别为:(a)/(A)=讥+ 2) (b)/(A) = —3)——7)(c)/«) =e(-^+2) (d)f(k)= (一1)¥⑷1-5判别下列各序列是否为周期性的。

数字信号处理18-5.3线性相位系统

数字信号处理18-5.3线性相位系统

11
一、线性相位条件
3、时域特性
I型线性相位系统
N
h(n) N 1 偶对称中心

2

N=11

0
5
10
n
II型线性相位系统
N
h(n) N 1 偶对称中心
2

N=10


0
45
9
n
III型线性相位系统
h(n) N 1 奇对称中心
2
N=11
10
0
5
n
IV型线性相位系统
N 1
h(n)
2 奇对称中心
| H(e j) | 称为幅频响应
f () = arg [ H(e j)] 称为相频响应
的偶函数 的奇函数
| H(e j) | 、 ()都是以 2 为周期的周期函数
8
§5.3 线性相位系统
为了便于分析,当 h(n)是实序列时
H (ej ) H (ej ) ej() H ()ej ()
●理想低通在0~c的低频段内,传输信号无失真 。 2
失真的有关概念
线性系统引起的信号失真由两方面的因素造成
●幅度失真:
各频率分量幅度产生不同程度的衰减;
●相位失真:
各频率分量产生的相移不与频率成正比,
使响应的各频率分量在时间轴上的相对位置产生变化。 ●线性系统的失真——幅度,相位变化,不产生新的频 率成分; ●非线性系统产生非线性失真——产生新的频率成分。
N 1
z h(n)[ z z ]
(
N 1 2
)
(
N 1 2

n
)
(
N 1 2

自考信号与线性系统分析内部题库含答案

自考信号与线性系统分析内部题库含答案

单项选择题。

1. 已知序列3()cos()5f k k π=为周期序列,其周期为 () A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 ( )图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+- 3.已知sin()()()t f t t dt tπδ∞-∞=⎰,其值是 ()A .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 ( ) A . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 ( ) A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 ()A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,那么(3)f t +的傅里叶变换为 ( ) A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f k εα=,)2()(-=k k h δ,那么()()f k h k *的值为( ) A .)1(1--k k εα B.)2(2--k k εα C. )3(3--k k εα D. )4(4--k k εα10.持续系统的零输入响应的“零”是指( A ) A. 鼓励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列k j ek f 3)(π=为周期序列,其周期为 ( )A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为 ( )A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,那么 12()()f t f t *的值是 ( ) A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,那么其对应的原函数为 ( ) A .)(t δ B.)('t δ C. )(''t δ D. )('''t δ15.持续因果系统的充分必要条件是 ( ) A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为 ( )A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,那么其单位冲激响应()h t 为 ( )A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,那么)5(t f 的拉普拉斯变换为 ( ) A .)5(s F B.)5(31s F C. )5(51s F D. )5(71s Ft19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,那么()()f k h k *的值为( ) A .)1(1--k k εα B. )2(2--k k εαC.)3(3--k k εα D. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,那么)(jt F 的傅里叶变换为( ) A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 以下微分或差分方程所描述的系统是时变系统的是 ( ) A . )(2)()(2)(''t f t f t y t y -=+ B. )()(sin )('t f t ty t y =+ C. )()]([)(2't f t y t y =+ D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,那么)()(21t f t f *的值是 ( ) A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 ( )A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 4 24.持续系统是稳固系统的充分必要条件是 ( ) A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,那么原函数)(t f 的初值为 ( )A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,那么该系统的单位冲激响应为 ( ) A .)(t etε- B.)(2t e t ε- C.)(3t e t ε- D. )(4t e t ε-27.已知)2()(),1()(1-=-=-k k h k k f k δεα,那么)()(k h k f *的值为 ( )A .)(k kεαB.)1(1--k k εαC.)2(2--k k εαD. )3(3--k k εα28. 系统的零输入响应是指( ) A.系统无鼓励信号 B. 系统的初始状态为零C. 系统的鼓励为零,仅由系统的初始状态引发的响应D. 系统的初始状态为零,仅由系统的鼓励引发的响应 29.偶函数的傅里叶级数展开式中 ( )A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,那么)2(t f 的波形为 ( ) A .将()f t 以原点为基准,沿横轴紧缩到原先的12B. 将()f t 以原点为基准,沿横轴展宽到原先的2倍C. 将()f t 以原点为基准,沿横轴紧缩到原先的14D. 将()f t 以原点为基准,沿横轴展宽到原先的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________。

《信号与系统(第四版)》习题详解图文

《信号与系统(第四版)》习题详解图文

故f(t)与{c0, c1, …, cN}一一对应。
7
3.3 设
第3章 连续信号与系统的频域分析
试问函数组{ξ1(t),ξ2(t),ξ3(t),ξ4(t)}在(0,4)区间上是否 为正交函数组,是否为归一化正交函数组,是否为完备正交函 数组,并用它们的线性组合精确地表示题图 3.2 所示函数f(t)。
题图 3.10
51
第3章 连续信号与系统的频域分析 52
第3章 连续信号与系统的频域分析 53
第3章 连续信号与系统的频域分析 54
第3章 连续信号与系统的频域分析 55
第3章 连续信号与系统的频域分析 56
第3章 连续信号与系统的频域分析 57
第3章 连续信号与系统的频域分析
题解图 3.19-1
8
第3章 连续信号与系统的频域分析
题图 3.2
9
第3章 连续信号与系统的频域分析
解 据ξi(t)的定义式可知ξ1(t)、ξ2(t)、ξ3(t)、ξ4(t)的波形如题 解图3.3-1所示。
题解图 3.3-1
10
不难得到:
第3章 连续信号与系统的频域分析
可知在(0,4)区间ξi(t)为归一化正交函数集,从而有
激励信号为f(t)。试证明系统的响应y(t)=-f(t)。
69
证 因为
第3章 连续信号与系统的频域分析
所以

70
系统函数
第3章 连续信号与系统的频域分析

因此
71
第3章 连续信号与系统的频域分析
3.23 设f(t)的傅里叶变换为F(jω),且 试在K≥ωm条件下化简下式:
72
第3章 连续信号与系统的频域分析 73
107

(完整版)信号与系统第一章答案

(完整版)信号与系统第一章答案

1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))(sin )(t t f ε=(5))f=rt)(sin(t(7))t=(kf kε(2)(10))f kεk=(k+-((])11[)1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k ---=εε1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f(5))sin(2cos 3)(5t t t f π+=解:1-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

《信号与系统分析基础》第二章部分习题参考答案

《信号与系统分析基础》第二章部分习题参考答案

第二章部分习题参考答案2-6 试求下列各函数1()f t 与2()f t 之卷积。

121212(-)01(1) ()() ()() (0) ()()()(-) ()(-)11(1) 0(2) ()t tt t tt t f t u t f t e u t f t f t f f t d u eu t d e e d e e e t f t ααταατααταατττττττααδ-+∞-∞+∞---∞--==>*===⋅=⋅=-≥=⎰⎰⎰,解:,2121212() ()cos(45)()()()cos[()45] cos(45)(3) ()(1)[()(1)] ()(1)(2) ()()t f t t f t f t t d t f t t u t u t f t u t u t f t f t ωδτωττω+∞-∞=+*=-+=+=+--=---*⎰,解:,解:ττ222221211211()(-1)(-1)-2(-2)(-2)(-1)(-1)-(-2)(-2)2211-(-2)(-2)(-3)(-3)-(-2)(-2)(-3)(-3)22()*()()1,()0123, (1-)(1)21(1)--(12ttf t t u t t u t t u t t u t t u t t u t t u t t u t f t f t f t t f t t t dt t ft t t t τττ=+++=<=<<+=+-=++⎰222-112222212111)-222123, (1-)(1)-221()2(1)-2(1-)(-1)211121---152223, ()*()0.t t t t t t d t f t t t t t t t t t t t f t f t ττττ-+=<<+=+=+++=+++=++>=⎰121221--(4) cos , (1)-(-1)()*()()(-) [(1)-(-1)][cos(-)] cos[(1)]-cos[(-1)]f t t f t t t f t f t f f t d t t t d t t ωδδτττδδωττωω+∞∞+∞∞==+==+⋅=+⎰⎰ -212-212--2-220(5) ()(), ()sin ()()()*()()sin(-)(-) sin(-)sin t t ttt tf t e u t f t t u t f t f t f t e u t u t d e t d ee d τττττττττ+∞∞==⋅==⋅⋅⋅=⋅=⋅⎰⎰⎰-12-(-)--0022-(-)-33-2-3(6) ()2[()-(-3)], ()4()-(-2)0, ()0.02,()2488-825, 88()8(-)5, ()0.t tt t t tt t t t t f t e u t u t f t u t u t t f t t f t e d e e e t ft ed ef t e e e t f t ττττττ-==<=<<==⋅=<<===>=⎰⎰2-8 求阶跃响应为32()(21)()t t s t e e u t --=-+的LTI (线性时不变)系统对输入()()t x t e u t =的响应。

信号与系统实验教程只有答案

信号与系统实验教程只有答案

信号与系统实验教程(只有答案))(实验报告目录实验一信号与系统的时域分析 (2)三、实验内容及步骤 (2)实验二连续时间信号的频域分析 (14)三、实验内容及步骤 (14)实验三连续时间LTI系统的频域分析 (35)三、实验内容及步骤 (35)实验四通信系统仿真 (42)三、实验内容及步骤 (42)实验五连续时间LTI系统的复频域分析 (51)三、实验内容及步骤 (51)实验一信号与系统的时域分析三、实验内容及步骤实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。

实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。

并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

实验前,一定要针对下面的实验项目做好相应的实验准备工作,包括事先编写好相应的实验程序等事项。

Q1-1:修改程序Program1_1,将dt改为0.2,再执行该程序,保存图形,看看所得图形的效果如何?dt = 0.01时的信号波形dt = 0.2时的信号波形这两幅图形有什么区别,哪一幅图形看起来与实际信号波形更像?答:Q1-2:修改程序Program1_1,并以Q1_2为文件名存盘,产生实指数信号x(t)=e-0.5t。

要求在图形中加上网格线,并使用函数axis()控制图形的时间范围在0~2秒之间。

然后执行该程序,保存所的图形。

修改Program1_1后得到的程序Q1_2如下:信号x(t)=e-0.5t的波形图clear, % Clear all variablesclose all, % Close all figure windowsdt = 0.2; % Specify the step of time variablet = -2:dt:2; % Specify the interval of timex = exp(-0.5*t); % Generate the signalplot(t,x)grid on;axis ([0 2 0 1 ])title('Sinusoidal signal x(t)')xlabel('Time t (sec)')Q1-3:修改程序Program1_1,并以Q1_3为文件名存盘,使之能够仿真从键盘上任意输入的一个连续时间信号,并利用该程序仿真信号x(t)=e-2t。

第18讲 系统的频域分析法

第18讲 系统的频域分析法

5.线性系统无失真传输条件

无失真传输是指响应信号与激励信号相比,只 是幅度大小与出现时间先后不同,而无波形上 的变化。
5.线性系统无失真传输条件
如果输入信号为
f (t ) 无失真传输系统的输出信号应为
y(t ) Kf (t t0 )
对上式进行傅里叶变换,并根据时移特性,得到
Y ( j) KF ( j)e jt0
第3章 信号与系统的频域分析
•本章介绍系统的频域分析方法。首先给出系统频率特性的 概念和物理意义,从系统频率特性对输入信号频谱为达到特 定功能而进行调整的角度,讨论输出信号的频谱,进而求系 统对任意信号的响应。
•通过学习采样定理,进一步理解时域和频域的对应关系。
•本章还结合系统频域分析方法,介绍一些工程应用中非常 重要的概念,例如,无失真传输系统、理想低通滤波器、信 号的调制与解调等等。
本章主要内容


3.1 3.2 3.3 3.4 3.5
周期信号的分解与合成 周期信号的频谱及特点 非周期信号的频谱 傅氏变换的性质与应用(1) 傅氏变换的性质与应用(2)
本章主要内容


3.6 3.7 3.8 3.9 3.10
周期信号的频谱 系统的频域分析 无失真传输系统与理想低通滤波器 取样定理及其应用 频域分析用于通信系统
第3章 信号与系统的频域分析
•本章首先以正弦、余弦或复指数函数为基本信号,通过傅里叶级 数将信号分解为这些基本信号之和,引出周期信号频谱,并讨论 其特点。 •通过讨论周期信号周期趋于无穷大时频谱的变化,引出傅里叶变 换定义,并学习常用基本信号的频谱密度函数(频谱)。 •傅里叶变换建立了信号时域与频域表示之间的联系,而傅里叶变 换的性质则揭示了信号时域变化相应地引起频域变化关系。 •从频谱密度角度理解周期信号的频谱,使周期与非周期信号统一 用傅里叶变换作为分析工具。

信号与线性系统分析复习题及答案

信号与线性系统分析复习题及答案

信号与线性系统复习题单项选择题。

1. 已知序列3()cos()5f k k π=为周期序列,其周期为 ( C ) A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 ( B )图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 ( A )A .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 ( A )A . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 ( D ) A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 ( B )A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 ( C ) A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为( B ) A .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指( A ) A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为 ( )A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为 ( )A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 ( ) A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为 ( ) A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 ( ) A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为 ( )A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为 ( )A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为 ( )tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为( )A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为( ) A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 ( ) A . )(2)()(2)(''t f t f t y t y -=+ B. )()(sin )('t f t ty t y =+ C. )()]([)(2't f t y t y =+ D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 ( ) A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 ( )A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 ( ) A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为 ( )A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 ( ) A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε- 27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为 ( )A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指( ) A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中 ( )A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 ( ) A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________。

信号与线性系统名校真题解析及典型题精讲精练

信号与线性系统名校真题解析及典型题精讲精练

1.【北京理工大学】 已知 f(t)的波形如下图所示,试作出 f(-2t-1)的波形。
D.0 D.2f(1)
D.-3
2.【中国矿业大学】 已知 f(-0.5t)的波形如图所示,画出 y(t) =f(t+1)ε(-t)的波形。
— 2—
3.【中国矿业大学】
若 f(t)是已录制声音的磁带,则下列叙述错误的是( )
A.线性时不变系统
B.非线性时不变系统
C.线性时变系统
D.非线性时变系统
(2)某连续系统满足 y(t) =T[ f(t)] =tf(t),其中 f(t)为输入信号,则该系统为( )
A.线性时不变系统
B.非线性时不变系统
C.线性时变系统
D.非线性时变系统
3【北京航空航天大学】
判断下列叙述的正误,正确的打“√”,错误的打“×”。
A.对于有界激励信号产生有界响应的系统是稳定系统
B.系统稳定性是系统自身的性质之一。
C.系统是否稳定与激励信号有关
D.当 t趋于无穷大时,h(t)趋于有限值或 0,则系统可能稳定。
— 4—
第二章 连续时间系统的时域分析
【考情分析】
本章的考题主要涉及连续时间系统的时域分析。 重点考点: 1.LTI系统的零输入响应,零状态响应和全响应 2.单位冲激响应的求解 3.卷积积分的定义、性质及应用
t)e-j6t 3
的频谱
Y(jω)。
4.【江苏大学】
若实信号
f(t)的傅里叶变换为
F(jω) =R(jω)+jX(jω),则信号
y(t) =
1[ 2
f(t)+f(-t)]

傅里叶变换为 ( )
— 9—
A.2R(jω)
B.R(jω)

信号与系统课后习题参考答案

信号与系统课后习题参考答案

信号与系统课后习题参考答案1试分别指出以下波形就是属于哪种信号?题图1-11-2试写出题1-1图中信号得函数表达式。

1-3已知信号与波形如题图1-3中所⽰,试作出下列各信号得波形图,并加以标注。

题图1-3⑴⑵⑶⑷⑸⑹⑺⑻⑼1-4已知信号与波形如题图1-4中所⽰,试作出下列各信号得波形图,并加以标注。

题图1-4⑴⑵⑶⑷⑸⑹⑺⑻⑼1-5已知信号得波形如题图1-5所⽰,试作出信号得波形图,并加以标注。

题图1-51-6试画出下列信号得波形图:⑴⑵⑶⑷1-7试画出下列信号得波形图:⑴⑵⑶⑷⑸⑹1-8试求出以下复变函数得模与幅⾓,并画出模与幅⾓得波形图。

⑴⑵⑶⑷1-9已知信号,求出下列信号,并画出它们得波形图。

1-10试作出下列波形得奇分量、偶分量与⾮零区间上得平均分量与交流分量。

题图1-101-11试求下列积分:⑴⑵⑶⑷⑸⑹1-12试求下列积分:⑴⑵⑴(均为常数)⑵⑶⑷⑸⑹⑺⑻1-14如题图1-14中已知⼀线性时不变系统当输⼊为时,响应为。

试做出当输⼊为时,响应得波形图。

题图1-14 1-15已知系统得信号流图如下,试写出各⾃系统得输⼊输出⽅程。

题图1-151-16已知系统⽅程如下,试分别画出她们得系统模拟框图。

⑴⑵⑶1-17已知⼀线性时不变系统⽆起始储能,当输⼊信号时,响应,试求出输⼊分别为与时得系统响应。

第⼆章习题2-1试计算下列各对信号得卷积积分:。

⑴(对与两种情况)⑵⑶⑷⑸⑹2-2试计算下列各对信号得卷积与:。

⑴(对与两种情况)⑵⑶⑷⑸⑹2-3试计算下图中各对信号得卷积积分:,并作出结果得图形。

题图2-32-4试计算下图中各对信号得卷积与:,并作出结果得图形。

题图2-42-5已知,试求:⑴⑵⑶2-7系统如题图2-7所⽰,试求系统得单位冲激响应。

已知其中各⼦系统得单位冲激响应分别为:题图2-72-8设已知LTI 系统得单位冲激响应,试求在激励作⽤下得零状态响应。

2-9⼀LTI 系统如题图2-9所⽰,由三个因果LTI ⼦系统级联⽽成,且已知系统得单位样值响应如图中。

信号与线性系统分析课后答案_吴大正

信号与线性系统分析课后答案_吴大正

信号与线性系统分析课后答案_吴大正第一章r(t),t,(t)1-1画出下列各信号的波形(式中)为斜升函数。

解:各信号波形为,t (2)f(t),e,,,,t,,(3) f(t),sin(,t),(t)(4) f(t),,(sint)(5) f(t),r(sint)k(7) f(t),2,(k)k(10) f(k),[1,(,1)],(k)r(t),t,(t)1-2 画出下列各信号的波形[为斜升函数]。

f(t),r(t),2r(t,1),r(t,2)f(t),2,(t,1),3,(t,1),,(t,2) (1) (2) f(k),k[,(k),,(k,5)]f(t),r(2t),(2,t) (5) (8),kkf(k),sin()[,(k),,(k,7)]f(k),2[,(3,k),,(,k)](11) (12) 6解:各信号波形为f(t),2,(t,1),3,(t,1),,(t,2) (1)f(t),r(t),2r(t,1),r(t,2) (2)f(t),r(2t),(2,t) (5)f(k),k[,(k),,(k,5)] (8),kf(k),sin()[,(k),,(k,7)](11) 6kf(k),2[,(3,k),,(,k)](12)1-3 写出图1-3所示各波形的表达式。

1-4 写出图1-4所示各序列的闭合形式表达式。

1-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

3,,,,f(t),3cost,2sin(,t)f(k),cos(k,),cos(k,) (2) (5) 524436 解:f(t)1-6 已知信号的波形如图1-5所示,画出下列各函数的波形。

f(0.5t,2)f(1,2t)f(t,1),(t)f(t,1),(t,1) (1) (2) (5) (6) tdf(t)f(x)dx (7) (8) ,,,dt解:各信号波形为f(t,1),(t) (1)f(t,1),(t,1) (2)f(1,2t) (5) f(0.5t,2) (6)df(t)(7) dttf(x)dx (8) ,,,f(k)1-7 已知序列的图形如图1-7所示,画出下列各序列的图形。

信号与系统的频域分析

信号与系统的频域分析

信号与系统的频域分析信号与系统是电子、通信、自动控制、计算机等领域的重要基础课程,频域分析是其中的重要内容之一。

频域分析是指将信号在频域上进行分析和处理,通过分析信号的频谱特性和频率分量来了解信号的频率成分和频率响应。

一、频域分析的基本概念和原理频域分析是将时域信号转换为频域信号的过程,可以通过傅里叶变换来实现。

傅里叶变换是一种将非周期信号或有限时长的周期信号分解为一系列基础频率分量的技术,可以将信号在频域上进行表达和处理。

在频域中,信号的频率成分和相对能量分布可以清晰地呈现出来,方便人们对信号进行分析和理解。

二、傅里叶级数和傅里叶变换傅里叶级数是用来分解周期信号为一系列余弦和正弦函数的技术,适用于周期信号的频域分析。

傅里叶级数展开后,通过求解各个频率分量的振幅和相位,可以得到该周期信号在频域中的频率成分和能量分布。

傅里叶变换是对非周期信号或有限时长的周期信号进行频域分析的方法。

傅里叶变换将信号从时域转换到频域,得到信号的频谱特性。

通过傅里叶变换,可以将时域中的信号分解为一系列基础频率分量,同时还可以得到每个频率分量的相位和振幅信息。

三、频域分析的应用频域分析在信号处理和系统分析中广泛应用。

在通信系统中,频域分析可以用于信号调制、解调和信道估计等方面。

在音频和视频信号处理中,频域分析可以用于音频和视频编码、去噪和增强等技术。

在自动控制系统中,频域分析可以用于系统的稳定性和响应特性分析。

四、常见的频域分析方法除了傅里叶变换外,还有一些常见的频域分析方法,如离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、功率谱密度分析(PSD)等。

这些方法在不同的领域和应用中有着各自的优缺点和适用范围。

熟练掌握这些方法的原理和使用技巧,可以更好地进行频域分析和信号处理。

五、总结频域分析是信号与系统领域中重要的理论和实践内容,通过分析信号在频域上的频率成分和能量分布,可以深入理解信号的特性和系统的行为。

傅里叶变换作为频域分析的核心工具,能够将信号在时域和频域之间进行转换,为信号处理和系统分析提供了强有力的工具。

信号与线性系统分析_(吴大正_第四版)第一章习题答案

信号与线性系统分析_(吴大正_第四版)第一章习题答案

专业课习题解析课程第1讲第一章信号与系统(一)专业课习题解析课程第2讲第一章信号与系统(二)1-1画出下列各信号的波形【式中r(t) = t; (t)】为斜升函数。

(2)f(t) t ::二(3)f(t)=sin「t);(t)(5) f(t)=r(s int) (10) f (k )=[1 (T )k ]"k)(4)f(t) = ;(Si nt) (7) f(t) =2k ;(k)解:各信号波形为(2) f (t) = e刊,—:: ::t ::::(3)f(t) =si n(p;(t)∕ω(4)f(t) _ ;(Sint)(5) f(t)=r(sint)/(/)—4 兀—3 Tt 一2κ —n O K 2κ 3 Ji t<e)(7) f(t) =2k;(k)(10) f(k)=[1 (_1)k];(k)/(»2・k彳__________ A i_____________I Λ-■0t 2 3 4 5(iCJ)1—2画出下列各信号的波形[式中r(t) = L(t)为斜升函数].(1) f(t) = 2 (t 1) - 3 (t T) (t — 2)(2) f (tp r(t) - 2r(t - 1) r(t -2)解:各信号波形为(1)f(t )= 2(t 1)— 3 (t - 1) (t — 2)(a ) (2) f (tp r (t ) 2r (t1) r (t 2)(5) f(t)τ(2t) (2-t) k 兀 (11) f(k) =sin( )[ (k)- ;(k-7)] 6 (8) f(k)= k[ (k)- (k-5)] (12) f (k 「2k [ (3- k)- (k)](8)f (k ). k[ (k ) -(k (5) f (t)= r (2t) (2 — t) (e )— 5)]I ∖fg1丁 ■ ~ι丨FrIΛI ∖。

d1 2 1L 5 S ⅛(k )(11)f(k)5(K2W7)]k(12)f(k)= 2k[ (3 - k)- (k)]Ifa)4∙J. A.,. JO∣ 1 2(I)1-3写出图1-3所示各波形的表达式(a) ∕(∕) = 2ε(Z + 1) —ε(∕ — 1)—ε(f— 2)(b) ∕(r)= (f÷l)ε(f÷l) - 2(z - l)ε(f — 1) + (f — 3)ε(z—3)(C)fit) = IoSin(T:/)_E(Z)-E(Z - 1)](d)∕(r) = 1 十2(r + 2)_E(I + 2) — E(r + 1)_ +(1 — l),(r +1) - E(T— 1)_1-4写出图仁4所示各序列的闭合形式表达式解图示各序列的闭合形式表示式分别为;(a)∕(⅛) = ε(⅛ + 2) (b)∕(⅛)= ε(⅛— 3) -ξ(k— 7)(c)∕(⅛) = e(-⅛ + 2) (d)∕(⅛) = (― l)*e(⅛)1—5判别下列各序列是否为周期性的.如果是,确定其周期解:⑵该序列的周期应为込(響 +于)和Cw(即+寺)的最小公倍数8 CoS⑸该序列不是周期的JX前的周期为2π,sin(πf)的周期为2,若序列周期为「则丁是2的整数倍厂也是%的整数彳氛这不成立…:不是周期的勺(2)3兀f2(k) = cos(-4πJEjlk ? C o S g k 6 (5) f5(tp 3cost 2si n( t)A该序列的周期为24.1—6已知信号f (t)的波形如图1-5所示,画出下列各函数的波形解:各信号波形为(1) f(t —1) (t )(1) f (t —1) (t )df(t )⑺—dT(2)⑹ f (0∙5t 2)t (8) 「f (χ)dx(2) f(t - 1) (t - 1)(5)f(12t)4■ /2IIO 1 3〈a)Cb)(6)f(0∙5t-2)df(t)⑺ dtI Iy(I- 2⅛)_ I _____ —11 3 ⅛2 2 2(E)t⑻“ f(x)dxJ 一 F/(Λ-2)KΛ)(Co—乂 二 二(9)(2 =);) (2-工r (逢(L2r (2 +>l ’4 (9)H寸 —〉1):0)I E4〉] 3∣2r1 2 3 4 5 6〈O/(Λ-2)KΛ) /(-⅛÷2⅛(—Λ÷J)/(Λ-2)KΛ)1—9已知信号的波形如图的波形解:由图1—11知,f(3-t)的波形如图1-12(a)所示(f(3-t)波形是由对f(3- 2t)的波形展宽为原来的两倍而得)。

信号与线性系统分析课后答案吴大正

信号与线性系统分析课后答案吴大正

1第一章1-1画出下列各信号的波形(式中)()(t t t r ε=)为斜升函数。

解:各信号波形为 (2)∞<<-∞=-t e t f t ,)((3))()sin()(t t t f επ=(4))fε=t(t(sin)(5))tf=(sinr(t)2(7))tf kε(k=(2)(10))f kεk-=(k+]()1()1[341-2 画出下列各信号的波形[)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f(5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ (12))]()3([2)(k k k f k---=εε 解:各信号波形为 (1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε56(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε71-3 写出图1-3所示各波形的表达式。

81-4 写出图1-4所示各序列的闭合形式表达式。

9101-5 判别下列各序列是否为周期性的。

如果是,确定其周期。

(2))63cos()443cos()(2ππππ+++=k k k f (5))sin(2cos 3)(5t t t f π+=解:111-6 已知信号)(t f 的波形如图1-5所示,画出下列各函数的波形。

(1))()1(t t f ε- (2))1()1(--t t f ε (5))21(t f - (6))25.0(-t f(7)dtt df )( (8)dx x f t ⎰∞-)(解:各信号波形为 (1))()1(t t f ε-12(2))1()1(--t t f ε(5))21(t f -13(6))25.0( t f(7)dt t df )((8)dxxft⎰∞-)(14151-7 已知序列)(k f 的图形如图1-7所示,画出下列各序列的图形。

信号与系统(郑君里)课后答案 第一章习题解答

信号与系统(郑君里)课后答案  第一章习题解答

1-4 分析过程:(1)例1-1的方法:()()()()23232f t f t f t f t →−→−→−− (2)方法二:()()()233323f t f t f t f t ⎡⎤⎛⎞→→−→−−⎜⎟⎢⎥⎝⎠⎣⎦(3)方法三:()()()()232f t f t f t f t →−→−+→−−⎡⎤⎣⎦ 解题过程:(1)方法一:方法二:(1)()−f at 左移0t :()()()000−+=−−≠−⎡⎤⎣⎦f a t t f at at f t at (2)()f at 右移0t :()()()000−=−≠−⎡⎤⎣⎦f a t t f at at f t at (3)()f at 左移0t a :()()000⎡⎤⎛⎞+=+≠−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a (4)()f at 右移0t a :()()000⎡⎤⎛⎞−−=−+=−⎜⎟⎢⎥⎝⎠⎣⎦t f a t f at t f t at a 故(4)运算可以得到正确结果。

注:1-4、1-5题考察信号时域运算:1-4题说明采用不同的运算次序可以得到一致的结果;1-5题提醒所有的运算是针对自变量t 进行的。

如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。

1-9 解题过程: (1)()()()2tf t eu t −=− (2)()()()232tt f t ee u t −−=+(3)()()()255ttf t e eu t −−=− (4)()()()()cos 1012tf t et u t u t π−=−−−⎡⎤⎣⎦1-12 解题过程:((((注:1-9、1-12题中的时域信号均为实因果信号,即()()()=f t f t u t 1-18 分析过程:任何信号均可分解为奇分量与偶分量之和的形式,即()()()()1e o f t f t f t =+其中,()e f t 为偶分量,()o f t 为奇分量,二者性质如下:()()()()()()23e e o o f t f t f t f t =−=−−()()13∼式联立得()()()12e f t f t f t =+−⎡⎤⎣⎦ ()()()12o f t f t f t =−−⎡⎤⎣⎦ 解题过程:(a-1) (a-2)(a-3)(a-4)f t为偶函数,故只有偶分量,为其本身(b) ()(c-1)(c-2)(c-3)(c-4)(d-1)(d-2)(d-3)(d-4)1-20 分析过程:本题为判断系统性质:线性、时不变性、因果性(1)线性(Linearity):基本含义为叠加性和均匀性即输入()1x t ,()2x t 得到的输出分别为()1y t ,()2y t ,()()11T x t y t =⎡⎤⎣⎦,()()22T x t y t =⎡⎤⎣⎦,则()()()()11221122T c x t c x t c y t c y t +=+⎡⎤⎣⎦(1c ,2c 为常数)。

信号与线性系统分析吴大正习题答案

信号与线性系统分析吴大正习题答案

专业课习题解析课程西安电子科技大学844信号与系统精选专业课习题解析课程第2讲第一章信号与系统(二)精选精选1-1画出下列各信号的波形【式中)()(t t t r ε=】为斜升函数。

(2)∞<<-∞=-t et f t,)( (3))()sin()(t t t f επ=(4))(sin )(t t f ε= (5))(sin )(t r t f = (7))(2)(k t f kε= (10))(])1(1[)(k k f kε-+=解:各信号波形为 (2)∞<<-∞=-t et f t,)((3))()sin()(t t t f επ=(4))fε=t)(sin(t(5))tf=r(t)(sin精选(7))t(kf kε=)(2(10))f kεk-=(k+(])1()1[精选精选1-2 画出下列各信号的波形[式中)()(t t t r ε=为斜升函数]。

(1))2()1(3)1(2)(-+--+=t t t t f εεε (2))2()1(2)()(-+--=t r t r t r t f (5))2()2()(t t r t f -=ε (8))]5()([)(--=k k k k f εε (11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(k k k f k---=εε 解:各信号波形为(1))2()1(3)1(2)(-+--+=t t t t f εεε(2))2()1(2)()(-+--=t rt rt rtf(5))2()2()(ttrtf-=ε精选精选(8))]5()([)(--=k k k k f εε(11))]7()()[6sin()(--=k k k k f εεπ(12))]()3([2)(kkkf k---=εε精选1-3 写出图1-3所示各波形的表达式。

精选1-4 写出图1-4所示各序列的闭合形式表达式。

信号与系统第1至8章习题参考解答

信号与系统第1至8章习题参考解答

《信号与系统》第1~8章习题参考解答第一章 (2)第二章 (13)第三章 (22)第四章 (35)第五章 (48)第六章(无) (56)第七章 (57)第八章 (65)第一章1-4 对于例1-1所示信号,由f (t )求f (−3t − 2),但改变运算顺序,先求f (3t )或先求f (−t ),讨论所得结果是否与原例之结果一致。

解:(1). 例1-1的方法: f (t )→ f (t − 2)→ f (3t − 2)→ f (−3t − 2) (2). 方法二:f (t )→ f (3t )→ 2[3()]3f t − →f (−3t − 2) (3). 方法三:f (t )→f (−t ) →[(2)]f t −+ →f (−3t − 2)方法三:1-5 已知()f t ,为求0()f t at −应按下列哪种运算求得正确结果(式中0t ,a 都为正值)?(1)()f at −左移0t (2)()f at 右移0t (3)()f at 左移0t a (4)()f at −右移0ta解:(4)()f at −右移t a:故(4)运算可以得到正确结果。

注:1-4、1-5 题考察信号时域运算:1-4 题说明采用不同的运算次序可以得到一致的结果; 1-5 题提醒所有的运算是针对自变量t 进行的。

如果先进行尺度变换或者反转变换,再进行移位变换,一定要注意移位量和移位的方向。

1-9 粗略绘出下列各函数式的波形图: (1)()(2)()t f t e u t −=− (2)2()(36)()t t f t e e u t −−=+ (3)3()(55)()t t f t e e u t −−=−(4)()cos(10)[(1)(2)]t f t e t u t u t π−=−−− 解:(1)()(2)()tf t e u t −=−(2)2()(36)()ttf t e eu t −−=+(3)3()(55)()ttf t e eu t −−=−(4)()cos(10)[(1)(2)]tf t e t u t u t π−=−−−1-12 绘出下列各时间函数的波形图,注意它们的区别:(1)[()(1)]−−;t u t u t(2)(1)�;t u t−(3)[()(1)](1)−−+−;t u t u t u t(4)(1)(1)−−;t u t(5)(1)[()(1)]−−−−;t u t u t(6)[(2)(3)]−−−;t u t u t(7)(2)[(2)(3)]t u t u t−−−−。

信号与线性系统分析 第18讲 系统函数

信号与线性系统分析 第18讲 系统函数

s int
t
2 2 et cost t
其中: 0 ,
arctan
衰减振荡,α 愈小,极点离纵
轴愈近,衰减愈慢;ω 表示振荡
共轭极点时的性质也是如此。
上一页
2021/4/26
信号与线性系统分析——系统函数
13
总之,极点在 s 左平面所对应的时间函数当 t 时都趋于零 ,具有这样的 H(s) 的系统都是稳定系统;该种系统的冲激响应
s
二阶(及以上): K K t n t , lim K t n 不稳定
s n1
n!
t n!
上一页
2021/4/26
信号与线性系统分析——系统函数
14
② 共轭极点 一阶: arctan
j
j
s 2 2 cost t
s2 2
o
t 时,仍为等幅振荡,其幅度
j
由零极点 , 决定,而振荡频率由ω
信号与线性系统分析——系统函数
8
系统的自由频率、零极点及零极点图
由一个描述线性时不变系统特性的的微分方程很容易得到 其 H(s) ,如: ynt a0 yt bm f mt b0 f t
∵ yt Y s , f t Fs 并由微分特性:
ynt snY s , f mt smF s (设初值为零)
单极点:
yzi t
C es t 1 1
C2e
st 2
Cne
st n
上一页
r 重极点:则该部分为
K1 K 2t K rt r 1
es t i
2021/4/26
信号与线性系统分析——系统函数
6
s 域中系统函数的重要作用
⑵ 由 H(s) 可直接写出系统的微分方程(因 H(s) 也可
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第20页
三、Z变换的方法
求离散时间函数及连续信号离散后的z变换有多种 方法,下面介绍两种常用的方法:级数求和法和 部分分式法。 (一)级数求和法
级数求和法是直接根据Z变换的定义,将式 1 2 k X z x (0) x (1) z x (2) z x ( k ) z 展开
第4页
一、z变换的定义
Z变换的定义可以借助抽样信号的拉氏变换引出。 若连续信号经均匀冲激取样后,就得到离散信号,
即抽样信号: xs (t ) x(t )T (t ) x(kTs ) (t kTs )
如果考虑取样信号为单边函数,则
xs (t ) x(t )T (t kTs )
X ( z)
k N1 k x ( k ) z ( ROC : 0 z ) N2
X ( z ) 的收敛域为以原点为中心, (2)x(k )为右边序列, 为半径 R1 的圆外部分 R1 z
X ( z)
k N1
k x ( k ) z ( ROC : R1 z )
at
第24页
(k ) 与 e ak分别为常用的序列,易得
z (k ) ROC : z 1 z 1 z aTs aTs e ROC : z e z e aTs z z z (1 e aTs ) 2 故: X ( Z ) aTs z 1 z e z (1 e aTs ) e aTs
n
an1 令 lim n a n
则: <1:收敛 =1:可能收敛也可能发散 >1:发散
第9页
2) 根值判定法
即令正项级数的一般项 an 的n次根的极限等于,
lim n an
n

<1:收敛 =1:可能收敛也可能发散 >1:发散
第10页
(1) x(k ) 为有限长序列,X ( z ) 的收敛域为全平面 0 z
k 0


第5页
两边取单边拉普拉斯变换,将积分与求和的次序对 调,并利用冲激函数的特性,就可以得到抽样信号 的拉氏变换
st st X s ( s) x(t ) (t kTs )e dt x(t ) (t kTs )e dt k 0 0 0 k 0

第11页
x(k )为左边序列的收敛域, ( 3) X ( z )的收敛域为以 原点为圆心, R2 为半径的圆内部分, 0 z R2
X ( z)
k

N2
x(k ) z k ( ROC : 0 z R2 )
X ( z ) 的收敛域为以圆点为 (4)x(k ) 为双边序列, 原心, R1, R2 为半径的圆环部分 R1 z R2
a 对应的拉氏变换为 X (s) s s a
试求将连续信号 x(t ) 离散后变成离散序列 x(k ) 的 Z变换 x( z ) 。
1 1 X ( s ) 解:将 X ( s ) 展开成分式: s sa
x(t ) 1 e 对上式逐项取拉氏反变换,可得:
ak x ( k ) ( k ) e 则
解:
X (Z )
k
b z b z
k k k k 0 k k k 0 k 0
1

k
1 b z 1 b z
1
k
1 b 如果 z 1 或 z b ,则该级数收敛,因此有
1 z X (Z ) 1 ( ROC : z b ) 1 1 b z z b
X (Z )
n


x(k ) z k
n

1
b k z k a k z k
n0

a b 2z z z 2 z b z a z a z b
这个双边序列的z变换为一个有理式,其收敛域为
azb
即 (k j) z j ( ROC : z >0)
第29页
(五)斜边序列 x(k ) k
k kz k z kz k 1
k 0 k 0
d k d k z z z z dz k 0 k 0 dz
第6 章
离散系统的Z域分析
第1页
1. Z变换 2. Z逆变换 3. Z变换与傅氏变换和拉氏变换的关系 4. 差分方程Z变换解法 5. 离散系统的系统函数 6. 离散系统的频率响应
第2页
§6.1
离散信号的z变换
主要内容:
Z变换的定义 Z变换的收敛域 常用离散信号的单边Z变换
第3页
线性连续系统的动态及稳态性能可以应用拉氏变 换的方法进行分析。 与此相似,线性离散系统的性能,可以采用Z变 换的方法进行分析。
(ROC : z 0)
第13页
例题6-2:
k x ( k ) a (k 0)是一个因果序列,试求 指数序列 其Z变换。
解:X (Z ) a k z k az 1 1 az 1 a 2 z 2
k 0 k 0


k
1 az 1 ,即 z a 时z变换才收敛, 显然,只有
k 0

即 (k ) 1
(ROC :全平面 )
第28页
1 (k j ) (四)单位延时序列 (k j ) 0 (k j )
得 (k j ) (k j ) z k
k 0

0 0 z 1 1z j 0 z j 1
(k ) (k ) z
k 0

k
1 1 1 1 2 3 z z z
这是一个等比级数,当 z 1 时,此级数发散,当
1 z 1 时,此级数收敛于 1 z 1 ,故得: 1 z (k ) ROC : z 1 1 1 z z 1
k k k
k
1 z r r z 1 1 rz z r k 0 1 z 则收敛域为 1时,此级数收敛于 1 ,故 1 rz r 1 z k r ( ROC : z r ) 1 1 rz zr
z k 0 r

式中, z
k 0

ห้องสมุดไป่ตู้k
1 1 1 2 也是等比级数,该级数 z z
1 收敛于 1 z 1 ,收敛域为 z 1,则
k
z
1 z
2
(ROC : z 1)
第30页
收敛的所有z 值之集合为收敛域,简写为ROC。 级数收敛的充分条件是满足绝对可和条件,
即要求
k


f (k ) z k
不同的f(k)进行z变换,由于收敛域不同,可能对应于相同
的z 变换表达式,故在确定 z 变换时,必须指明收敛域。
第8页
1) 比值判定法
若有一个正项级数, an
1
a 1 z
k
let m k z 1 = a z 1 1 1 a z za m 1
1 m
显然,只有 a 1 z 1 ,即 z a 时 z 变换才收敛, jIm[z] 即:
1 z X (Z ) ( ROC : z a ) 1 1 a z z a
1 z 即:X ( Z ) ( ROC : z a ) 1 1 az za
jIm[z]
|a|
o
第14页
Re[z
例题6-3:
k x ( k ) a (k 0)是一个反因果序列的z变换 试求序列
解: X ( Z )
k

1
a k z k
k

|a|
o Re[z]
第15页
例题6-3:
k x ( k ) a (k 0)是一个反因果序列的z变换 试求序列
第16页
练习:
k x ( k ) b ( k 1) 的z变换 试求左边序列
第17页
例题6-4:
试求左边序列 x(k ) bk ( k 1) 的z变换
第18页
练习:
k a (k 0) a b 的z变换及收敛域。 试求 x(k ) k b (k 0)
第19页
例题6-5:
k a (k 0) a b 的z变换及收敛域。 试求 x(k ) k b (k 0)
解: x(k ) 为双边z变换,根据z变换的定义有
z e sT 1 s ln z T
该式是离散时间函数 x(k )的一种无穷级数表达式。 显然只要给定理想取样输入信号 x(k ) ,由上式即 可得到Z变换的级数展开式。
第21页
例题6-6:试求阶跃序列的z变换。
1 (k 0) 解: (k ) 0 (k 0)
根据冲激函数的筛选特性,得
X s ( s) x(kTs )e skTs (6 4)
k 0
第6页
skT 令 Z e s , 取 Ts 1, 上式将成为复变量z的函数, 用X(z)表示,即
X ( z ) x(k ) z k 称为序列x(k)的单边z变换
k 0
X ( z)
k


x(k ) z k ( ROC : R1 z R2 )
第12页
例题6-1:
1 (0 k N 1) 试求有限序列 x(k ) 的z变换及 0 (other )
相关文档
最新文档