§6实数复习
第六章 实数复习题---选择题(含解析)
人教版七下第六章实数复习题---选择题一.选择题(共50小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.812.(2018•贺州)4的平方根是()A.2 B.﹣2 C.±2 D.163.(2018秋•无锡期末)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x4.(2018秋•安岳县期末)若2m﹣4与3m﹣1是同一个数的两个不等的平方根,则这个数是()A.2 B.﹣2 C.4 D.15.(2018•黔西南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=56.(2018•南京)的值等于()A.B.﹣C.±D.7.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2 8.(2018•安顺)的算术平方根是()A.B.C.±2 D.29.(2018秋•海曙区期末)下列一组数:﹣1,0,﹣(﹣5),|﹣|,﹣22,﹣,其中负数的个数有()A.2个B.3个C.4个D.5个10.(2018秋•东阳市期末)已知一个数的平方是,则这个数的立方是()A.8 B.64 C.8或﹣8 D.64或﹣6411.(2018秋•长兴县期中)下列说法正确的是()①﹣是2的一个平方根②﹣4的算术平方根是2③的平方根是±2④0没有平方根A.①②③B.①④C.①③D.②③④12.(2018春•奉贤区期中)下列说法正确的是()A.﹣81平方根是﹣9B.的平方根是±9C.平方根等于它本身的数是1和0D.一定是正数13.(2018春•十堰期中)当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.114.(2017春•邹平县校级月考)若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对15.(2016秋•海淀区校级期中)代数式﹣a﹣2()A.有最小值为﹣1 B.有最大值为﹣1C.有最小值为﹣D.有最大值为﹣16.(2016秋•雁塔区校级月考)若a,b为实数,且满足=0,则b﹣a的值为()A.﹣1 B.1 C.7 D.﹣717.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣418.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=19.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣320.(2018秋•金东区期末)下列结论正确的是()A.﹣15÷3=5 B.=±3C.=﹣2 D.(﹣3)2=(+3)221.(2018秋•杭州期末)下列等式正确的是()A.±=2 B.=﹣2 C.=﹣2 D.=0.1 22.(2018秋•南海区期末)下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是023.(2018秋•安仁县期末)下列说法正确的是()A.25的平方根是5 B.﹣22的算术平方根是2C.0.8的立方根是0.2 D.是的一个平方根24.(2018•成都模拟)下列实数中是无理数的是()A.B.πC.D.25.(2018•鄂尔多斯)在,﹣2018,,π这四个数中,无理数是()A.B.﹣2018 C.D.π26.(2018•沙坪坝区)下列各数:π,,5,3.121212…,中无理数的个数为()A.1个B.2个C.3个D.4个27.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.128.(2018•沈阳)下列各数中是有理数的是()A.πB.0 C.D.29.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣130.(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.31.(2018•潍坊)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣32.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个33.(2018秋•鸡东县期末)下列说法正确的是()A.若=a,则a>0B.若a与b互为相反数,则与也互为相反数C.若=()2,则a=bD.若a>b>0,则>b34.(2018秋•金水区校级月考)下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者035.(2018•南岸区)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a>b B.|a|<|b| C.a+b<0 D.a<﹣b36.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上37.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0 38.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b 39.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0 40.(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣141.(2019•沙坪坝区)下列各数中,最小的实数是()A.1 B.0 C.﹣3 D.﹣142.(2018•辽阳)在实数﹣2,3,0,﹣中,最大的数是()A.﹣2 B.3 C.0 D.﹣43.(2018•攀枝花)如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q44.(2019•渝中区)若a<2<a+1,则整数a的值为()A.1 B.2 C.3 D.445.(2019•九龙坡区)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间46.(2018•沙坪坝区)佔计+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和947.(2018•沙坪坝区)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间48.(2018秋•西湖区期末)下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=7249.(2018秋•南安市期中)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,则i2018=()A.﹣1 B.1 C.i D.﹣i50.(2018秋•邓州市期中)现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.6人教版七下第六章实数复习题---选择题参考答案与试题解析一.选择题(共50小题)1.(2018•铜仁市)9的平方根是()A.3 B.﹣3 C.3和﹣3 D.81【分析】依据平方根的定义求解即可.【解答】解:9的平方根是±3,故选:C.2.(2018•贺州)4的平方根是()A.2 B.﹣2 C.±2 D.16【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:C.3.(2018秋•无锡期末)若2x﹣5没有平方根,则x的取值范围为()A.x B.x C.x D.x【分析】由负数没有平方根得出关于x的不等式,解之可得.【解答】解:由题意知2x﹣5<0,解得x<,故选:D.4.(2018秋•安岳县期末)若2m﹣4与3m﹣1是同一个数的两个不等的平方根,则这个数是()A.2 B.﹣2 C.4 D.1【分析】根据平方根的性质即可求出答案.【解答】解:由题意可知:2m﹣4+3m﹣1=0,解得:m=1,∴2m﹣4=﹣2所以这个数是4,故选:C.5.(2018•黔西南州)下列等式正确的是()A.=2 B.=3 C.=4 D.=5 【分析】根据算术平方根的定义逐一计算即可得.【解答】解:A、==2,此选项正确;B、==3,此选项错误;C、=42=16,此选项错误;D、=25,此选项错误;故选:A.6.(2018•南京)的值等于()A.B.﹣C.±D.【分析】根据算术平方根解答即可.【解答】解:,故选:A.7.(2018•杭州)下列计算正确的是()A.=2 B.=±2 C.=2 D.=±2 【分析】根据=|a|进行计算即可.【解答】解:A、=2,故原题计算正确;B、=2,故原题计算错误;C、=4,故原题计算错误;D、=4,故原题计算错误;故选:A.8.(2018•安顺)的算术平方根是()A.B.C.±2 D.2【分析】直接利用算术平方根的定义得出即可.【解答】解:=2,2的算术平方根是.故选:B.9.(2018秋•海曙区期末)下列一组数:﹣1,0,﹣(﹣5),|﹣|,﹣22,﹣,其中负数的个数有()A.2个B.3个C.4个D.5个【分析】各式计算得到结果,利用负数定义判断即可.【解答】解:因为﹣(﹣5)=5,|﹣|=,﹣22=﹣4,﹣,所以负数有﹣1,﹣22,﹣,故选:B.10.(2018秋•东阳市期末)已知一个数的平方是,则这个数的立方是()A.8 B.64 C.8或﹣8 D.64或﹣64【分析】首先求得平方是=4的数,然后求立方即可.【解答】解:=4,则这个数是±2,则立方是:±8.故选:C.11.(2018秋•长兴县期中)下列说法正确的是()①﹣是2的一个平方根②﹣4的算术平方根是2③的平方根是±2④0没有平方根A.①②③B.①④C.①③D.②③④【分析】根据平方根的定义和性质及算术平方根的定义逐一判断可得.【解答】解:①﹣是2的一个平方根,正确;②﹣4没有算术平方根,错误;③的平方根是±2,正确;④0有平方根,是0,错误;故选:C.12.(2018春•奉贤区期中)下列说法正确的是()A.﹣81平方根是﹣9B.的平方根是±9C.平方根等于它本身的数是1和0D.一定是正数【分析】根据一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根进行分析即可.【解答】解:A、﹣81没有平方根,故原题错误;B、=9的平方根是±3,故原题错误;C、平方根等于它本身的数是0,故原题错误;D、一定是正数,故原题正确;故选:D.13.(2018春•十堰期中)当式子的值取最小值时,a的取值为()A.0 B.C.﹣1 D.1【分析】根据2a+1≥0,求出当式子的值取最小值时,a的取值为多少即可.【解答】解:∵2a+1≥0,∴当式子的值取最小值时,2a+1=0,∴a的取值为﹣.故选:B.14.(2017春•邹平县校级月考)若a、b为实数,且满足,则b﹣a的值为()A.1 B.0 C.﹣1 D.以上都不对【分析】根据非负数的性质列出算式,求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a﹣2=0,3﹣b=0,解得,a=2,b=3,则b﹣a=1,故选:A.15.(2016秋•海淀区校级期中)代数式﹣a﹣2()A.有最小值为﹣1 B.有最大值为﹣1C.有最小值为﹣D.有最大值为﹣【分析】根据非负数的性质即可得到结论.【解答】解:原式=﹣(a+1+1)=﹣(a+1)﹣1=﹣()2﹣1=﹣[()2﹣+﹣]﹣1=﹣(﹣)2﹣,.当=时,有最大值﹣,故选:D.16.(2016秋•雁塔区校级月考)若a,b为实数,且满足=0,则b﹣a的值为()A.﹣1 B.1 C.7 D.﹣7【分析】依据非负数的性质可求得a、b的值,然后再代入计算即可.【解答】解:由题意可知:=0,∴a﹣3=0,b+4=0,解得:a=3,b=﹣4.∴b﹣a=﹣4﹣3=﹣7.故选:D.17.(2018•恩施州)64的立方根为()A.8 B.﹣8 C.4 D.﹣4【分析】利用立方根定义计算即可得到结果.【解答】解:64的立方根是4.故选:C.18.(2018•衡阳)下列各式中正确的是()A.=±3 B.=﹣3 C.=3 D.﹣=【分析】原式利用平方根、立方根定义计算即可求出值.【解答】解:A、原式=3,不符合题意;B、原式=|﹣3|=3,不符合题意;C、原式不能化简,不符合题意;D、原式=2﹣=,符合题意,故选:D.19.(2018•济宁)的值是()A.1 B.﹣1 C.3 D.﹣3【分析】直接利用立方根的定义化简得出答案.【解答】解:=﹣1.故选:B.20.(2018秋•金东区期末)下列结论正确的是()A.﹣15÷3=5 B.=±3C.=﹣2 D.(﹣3)2=(+3)2【分析】直接利用算术平方根以及立方根的性质以及有理数的乘方运算法则分别化简得出答案.【解答】解:A、﹣15÷3=﹣5,故此选项错误;B、=3,故此选项错误;C、无法化简,故此选项错误;D、(﹣3)2=(+3)2,正确.故选:D.21.(2018秋•杭州期末)下列等式正确的是()A.±=2 B.=﹣2 C.=﹣2 D.=0.1【分析】根据立方根、平方根和算术平方根计算判断即可.【解答】解:A、,错误;B、,错误;C、,正确;D、,错误;故选:C.22.(2018秋•南海区期末)下列说法错误的是()A.5是25的算术平方根B.1的立方根是±1C.﹣1没有平方根D.0的平方根与算术平方根都是0【分析】根据算术平方根和平方根及立方根的定义逐一求解可得.【解答】解:A.5是25的算术平方根,此选项说法正确;B.1的立方根是1,此选项说法错误;C.﹣1没有平方根,此选项说法正确;D.0的平方根与算术平方根都是0,此选项说法正确;故选:B.23.(2018秋•安仁县期末)下列说法正确的是()A.25的平方根是5 B.﹣22的算术平方根是2C.0.8的立方根是0.2 D.是的一个平方根【分析】A、根据平方根的定义即可判定;B、根据算术平方根的定义即可判定;C、根据立方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、25的平方根是±5,故选项错误;B、﹣22的算术平方根是2,负数没有平方根,故选项错误;C、0.008的立方根是0.2,故选项错误;D、是的一个平方根,故选项正确.故选:D.24.(2018•成都模拟)下列实数中是无理数的是()A.B.πC.D.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:A、是分数,属于有理数;B、π是无理数;C、=3,是整数,属于有理数;D、﹣是分数,属于有理数;故选:B.25.(2018•鄂尔多斯)在,﹣2018,,π这四个数中,无理数是()A.B.﹣2018 C.D.π【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【解答】解:在,﹣2018,,π这四个数中,无理数是π,故选:D.26.(2018•沙坪坝区)下列各数:π,,5,3.121212…,中无理数的个数为()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:π,,5,3.121212…,中无理数有π、,故选:B.27.(2018•菏泽)下列各数:﹣2,0,,0.020020002…,π,,其中无理数的个数是()A.4 B.3 C.2 D.1【分析】依据无理数的三种常见类型进行判断即可.【解答】解:在﹣2,0,,0.020020002…,π,中,无理数有0.020020002…,π这2个数,故选:C.28.(2018•沈阳)下列各数中是有理数的是()A.πB.0 C.D.【分析】根据有理数是有限小数或无限循环小,可得答案.【解答】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.29.(2018•温州)给出四个实数,2,0,﹣1,其中负数是()A.B.2 C.0 D.﹣1【分析】直接利用负数的定义分析得出答案.【解答】解:四个实数,2,0,﹣1,其中负数是:﹣1.故选:D.30.(2018•巴彦淖尔)的算术平方根的倒数是()A.B.C.D.【分析】直接利用实数的性质结合算术平方根以及倒数的定义分析得出答案.【解答】解:=4,则4的算术平方根为2,故2的倒数是:.故选:C.31.(2018•潍坊)|1﹣|=()A.1﹣B.﹣1 C.1+D.﹣1﹣【分析】直接利用绝对值的性质化简得出答案.【解答】解:|1﹣|=﹣1.故选:B.32.(2018•眉山)绝对值为1的实数共有()A.0个B.1个C.2个D.4个【分析】直接利用绝对值的性质得出答案.【解答】解:绝对值为1的实数共有:1,﹣1共2个.故选:C.33.(2018秋•鸡东县期末)下列说法正确的是()A.若=a,则a>0B.若a与b互为相反数,则与也互为相反数C.若=()2,则a=bD.若a>b>0,则>b【分析】根据实数的性质,相反数的意义,算术平方根的定义解答即可.【解答】解:A.若=a,则a≥0,故本选项错误;B、若a与b互为相反数,则与也互为相反数,故本选项正确;C、若=()2,则a为任意实数,b≥0,故本选项错误;D、若a>b>0,a=9,b=5时,则<b,故本选项错误;故选:B.34.(2018秋•金水区校级月考)下列说法正确的是()A.一个数的平方根有两个,它们互为相反数B.一个数的立方根,不是正数就是负数C.如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个D.如果一个数的平方根是这个数本身,那么这个数是1或者0【分析】根据立方根,平方根的定义选择即可.【解答】解:A、一个正数的平方根有两个,它们互为相反数,故本选项错误;B、一个非零数的立方根,不是正数就是负数,故本选项错误;C、如果一个数的立方根是这个数本身,那么这个数一定是﹣1,0,1中的一个,故本选项正确;D、如果一个数的平方根是这个数本身,那么这个数是0,故本选项错误;故选:C.35.(2018•南岸区)实数a,b在数轴上对应点的位置如图所示,则下列结论正确的是()A.a>b B.|a|<|b| C.a+b<0 D.a<﹣b【分析】根据绝对值的定义即可求解.【解答】解:由图可得:﹣1<a<0,1<b<2∴a<b,|a|<|b|,a+b>0,a>﹣b.故选:B.36.(2018•荆州)如图,两个实数互为相反数,在数轴上的对应点分别是点A、点B,则下列说法正确的是()A.原点在点A的左边B.原点在线段AB的中点处C.原点在点B的右边D.原点可以在点A或点B上【分析】根据表示互为相反数的两个数的点,它们分别在原点两旁且到原点距离相等解答.【解答】解:∵点A、点B表示的两个实数互为相反数,∴原点在到在线段AB上,且到点A、点B的距离相等,∴原点在线段AB的中点处,故选:B.37.(2018•北京)实数a,b,c在数轴上的对应点的位置如图所示,则正确的结论是()A.|a|>4 B.c﹣b>0 C.ac>0 D.a+c>0【分析】本题由图可知,a、b、c绝对值之间的大小关系,从而判断四个选项的对错.【解答】解:∵﹣4<a<﹣3∴|a|<4∴A不正确;又∵a<0 c>0∴ac<0∴C不正确;又∵a<﹣3 c<3∴a+c<0∴D不正确;又∵c>0 b<0∴c﹣b>0∴B正确;故选:B.38.(2018•湖北)点A,B在数轴上的位置如图所示,其对应的实数分别是a,b,下列结论错误的是()A.|b|<2<|a| B.1﹣2a>1﹣2b C.﹣a<b<2 D.a<﹣2<﹣b【分析】根据图示可以得到a、b的取值范围,结合绝对值的含义推知|b|、|a|的数量关系.【解答】解:A、如图所示,|b|<2<|a|,故本选项不符合题意;B、如图所示,a<b,则2a<2b,由不等式的性质知1﹣2a>1﹣2b,故本选项不符合题意;C、如图所示,a<﹣2<b<2,则﹣a>2>b,故本选项符合题意;D、如图所示,a<﹣2<b<2且|a|>2,|b|<2.则a<﹣2<﹣b,故本选项不符合题意;故选:C.39.(2018•枣庄)实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0【分析】本题利用实数与数轴的对应关系结合实数的运算法则计算即可解答.【解答】解:从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=﹣ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则a+d>0,故选项正确.故选:B.40.(2018•台湾)如图为O、A、B、C四点在数线上的位置图,其中O为原点,且AC=1,OA=OB,若C点所表示的数为x,则B点所表示的数与下列何者相等?()A.﹣(x+1)B.﹣(x﹣1)C.x+1 D.x﹣1【分析】首先根据AC=1,C点所表示的数为x,求出A表示的数是多少,然后根据OA=OB,求出B点所表示的数是多少即可.【解答】解:∵AC=1,C点所表示的数为x,∴A点表示的数是x﹣1,又∵OA=OB,∴B点和A点表示的数互为相反数,∴B点所表示的数是﹣(x﹣1).故选:B.41.(2019•沙坪坝区)下列各数中,最小的实数是()A.1 B.0 C.﹣3 D.﹣1【分析】由于正数大于0,0大于负数,要求最小实数,只需比较﹣3与﹣1即可.【解答】解:∵﹣3<﹣1<0<1,∴﹣3是最小的实数,故选:C.42.(2018•辽阳)在实数﹣2,3,0,﹣中,最大的数是()A.﹣2 B.3 C.0 D.﹣【分析】依据正数大于零,零大于负数,正数大于一切负数解答即可.【解答】解:﹣2<﹣<0<3,所以最大的数是3.故选:B.43.(2018•攀枝花)如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q【分析】先相反数确定原点的位置,再根据点的位置确定绝对值最大的数即可解答.【解答】解:∵实数﹣3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最小的数对应的点是点N,故选:B.44.(2019•渝中区)若a<2<a+1,则整数a的值为()A.1 B.2 C.3 D.4【分析】估算出的大小,即可求得a的值.【解答】解:∵4<8<9,∴2<2<3,∴a=2,a+1=3,故选:B.45.(2019•九龙坡区)估计1﹣的值在()A.0到﹣1之间B.﹣1到﹣2之间C.﹣2到﹣3之间D.﹣3到﹣4之间【分析】先估算出的范围,再求出1﹣的范围,即可得出选项.【解答】解:∵3<<4,∴﹣4<﹣<﹣3,∴﹣3<1﹣<﹣2,即1﹣在﹣2到﹣3之间,故选:C.46.(2018•沙坪坝区)佔计+的运算结果应在哪两个连续自然数之间()A.5和6 B.6和7 C.7和8 D.8和9【分析】先将+进行平方,然后估算得到即可.【解答】解:(+)2=39+2=39+,∵21<<23,∴60<39+<61,∴+的运算结果应在7和8之间,故选:C.47.(2018•沙坪坝区)估计÷﹣1的值应在()A.4.5和5之间B.5和5.5之间C.5.5和6之间D.6和6.5之间【分析】首先化简二次根式进而得出的取值范围进而得出答案.【解答】解:÷﹣1=﹣1=﹣1,∵7<<7.5,∴6<﹣1<6.5,故选:D.48.(2018秋•西湖区期末)下列计算正确的是()A.B.=﹣2C.D.(﹣2)3×(﹣3)2=72【分析】A、根据算术平方根的定义即可判定;B、根据立方根的定义即可判定;C、根据立方根的定义即可判定;D、根据乘方运算法则计算即可判定.【解答】解:A、=3,故选项A错误;B、=﹣2,故选项B正确;C、=,故选项C错误;D、(﹣2)3×(﹣3)2=﹣8×9=﹣72,故选项D错误.故选:B.49.(2018秋•南安市期中)我们知道,一元二次方程x2=﹣1没有实数根,即不存在一个实数的平方等于﹣1,若我们规定一个新数“i”,使其满足i2=﹣1(即方程x2=﹣1有一个根为i),并且进一步规定:一切实数可以与新数进行四则运算,且原有的运算律和运算法则仍然成立,于是有i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,则i2018=()A.﹣1 B.1 C.i D.﹣i【分析】直接利用已知得出变化规律,进而得出答案.【解答】解:∵i1=i,i2=﹣1,i3=i2•i=﹣1•i=﹣i,i4=(i2)2=(﹣1)2=1……,∴每4个一循环,∵2018÷4=504…2,∴i2018=i2=﹣1,故选:A.50.(2018秋•邓州市期中)现规定一种运算:a※b=ab+a﹣b,其中a,b为实数,则※等于()A.﹣6 B.﹣2 C.2 D.6【分析】先计算=4,=﹣2,再依据新定义规定的运算a※b=ab+a﹣b计算可得.【解答】解:※=4※(﹣2)=4×(﹣2)+4﹣(﹣2)=﹣8+4+2=﹣2,故选:B.中小学教育资源及组卷应用平台21世纪教育网。
期末复习第六章实数资料
9.一般来说,被开放数扩大(或缩小) 倍,算术平方根扩大(或缩小) 倍,例如 .
题型规律总结:
1、平方根是其本身的数是;算术平方根是其本身的数是和;立方根是其本身的数是和。
(5)应当要注意的是:带根号的数不一定是无理数,如: 等;无理数也不一定带根号,如:
(6)有理数与无理数的区别:(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看成是分母为1的分数),而无理数则不能写成分数形式。
例4.(1)下列各数:①3.141、②0.33333……、③ 、④π、⑤ 、⑥ 、⑦0.3030003000003……(相邻两个3之间0的个数逐次增加2)、其中是有理数的有_______;是无理数的有_______。(填序号)
8. ________
10.使式子 有意义的条件是。
11.当 时, 有意义。
12.若 有意义,则 的取值范围是。
13.已知 ,则 的取值范围是。
14.当 时,
。
15.如果一个数的平方根为a+1和2a-7,这个数为________
16、— 的绝对值是;
17.任何实数a,可用[a]表示不超过a的最大整数,如[4]=4,[ ]=1.现对72进行如下操作:
负分数____________________________
无理数____________________________
考点二:平方根、立方根、 的化简
1.判断下列说法是否正确
(1) 的算术平方根是-3;
(2) 的平方根是±15.
第6章 实数(复习课件)七年级数学下册(人教版)
③④⑦
随堂检测
人教版数学七年级下册
7.如图所示,数轴上与1,
对应的点分别是为A、B,点B关
于点A的对称点为C,设点C表示的数为x,则 x 2 = 2 2 2 .
0
C A B
1
2
随堂检测
人教版数学七年级下册
8.计算
(1) × × ;
=60
(2)− −( − ) .
-a (a<0)
随堂检测
1.在-7.5,
个数是(
A.1个
人教版数学七年级下册
, 4,
,
,
,中,无理数的
B )
B.2个
C.3个
D.4个
随堂检测
人教版数学七年级下册
2.实数a,b在数轴上的对应点的位置如图6-J-1所示,则正
确的结论是 (
D)
A. a>-2
B. a<-3
C. a>-b
D. a<-b
随堂检测
− =
;
所以这个数为 .
人教版数学七年级下册
谢谢聆听
,
随堂检测
人教版数学七年级下册
12.一个数的算术平方根为2-6,它的平方根为±( − ),
求这个数.
解:因为一个数的算术平方根为2-6,它的平方根为
± ( − )
① − = − ;解得 = ,
− = −(舍去);
② − = − + ;解得 = ,
B. − >
C. >
D. + >
随堂检测
5.下列说法中,不正确的有( B )
《第6章实数》知识清单含例题+期末专题复习试卷(含答案).doc
2018年七年级数学下册实数知识清单+经典例题+专题复习试卷1、 定义:如果一个正数X 的平方等于a,即工=。
那么,这正数x 叫做a 的算术平方根。
记作氐 读作“根号屮。
a 叫做被开 算术平方根*方数,规定0的算术平方根还是0o2、 性质:双重非员性(a h 0,需X 0 )。
负数没有算术平方根。
'3、J 产=\a\ (a是任意数力(7^)2 =a (B 是非员数)。
1、定义:如果一个数X 的平方等于4即乂2 =4。
那么,这个X叫做a 的平方根。
记作土需,读作“正、员根号屮。
a 叫做被幵 方数。
规定0的算术平方根还是0o2、 性质:(1)正数有两个平方根,它们互为相反数。
(2) 0的平方根是0。
员数没有平方根。
3、 未知数次数是两次的方程,结果一般都有两个值。
72^1.414, 73^1.732,少恐2.236, J7俎26461、走义:如果一个数x 的立方等于匕 即x 3 =a o 那么,这个x 叫做a 的立方根。
记作砺,读作“三次根号护。
a 叫做被开方数。
2、性质:(1)正数的立方根是正数,员数的立方根是员数,0的立方根是0。
(2)1卜a 取任意数(3) (佝=° J分数(有理数和分数是相同的概念)rI 无限循环小数'1、开方开不尽的方根无理数无限不循环小数彳2、圆周率兀以及含有兀、3、具有特定结构的数(0.010010001……)有理数』r 正整数员整数(可以看成分母是1的分数)正实数o员实数有限小数平方根立方根【经典例题1】1、下列说法错误的是()4、若 a 2=4, b 2=9,且 ab<0,B. ±55、 设边长为3的正方形的对角线长为a.下列关于a 的四种说法: ®a 是无理数; ②a 可以用数轴上的一个点來表示;③3<a<4; ④a 是18的算术平方根.其中,所有正确说法的序号是 ( )A.①④B.②③C.①②④D.①③④ 6、 已知实数x 、y 满足心- l+|y+3|=0,则x+y 的值为( ) A. -2B. 2C.4D. -4【经典例题3】7、 一个自然数的算术平方根为a,则和这个自然数相邻的下一个自然数是( )A. a+1B. a 2+lC.寸/+1Va+1f x 二 2f inx+ny=88、 已知■是二元一次方程组{、的解,则加・n 的算术平方根为( )\ y=l[nx - iny^lA. ±2B. V2C. 2D. 49、 有一个数值转换器,原理如下:A. 5是25的算术平方根 C. (-4)2的平方根是一4 2、下列各式中,正确的是()B. 1是1的一个平方根 D. 0的平方根与算术平方根都是0B.-佇二 _ 3C.寸(±3严二 ±3D.佇二 ±33、716的平方根是(A. ±2【经典例题2】B. 2C. — 2D. 16C. 5A. 2B. 8当输入的x=64时,输出的y 等于()【经典例题4】10、平方等于16的数是________ ;立方等于本身的数是_______________________ •11、一个数的立方根是4,这个数的平方根是______________ ,12、若一2x ra_n y2与3x7^是同类项,则m-3n的立方根是_____________ .【经典例题5】13、求x 的值:25(X+1)2=16;14、求y 的值:(2y-3) 2 - 64=0;15、计算:^4-23-|-2|X(-7+5) 16、计算:舗一血+ 乂-3)' -磁-2【经典例题6】17、已知实数a, b在数轴上的位置如图所示,化简:寸(fl) 4-1)并|a・b|. -------- ------- 1---------------- 1 ----- >・ 1^0 b 118、阅读理解7 >^<75 <79* 即2<V5<3» A1<V5-1<2-・••厉_1的整数部分为1,小数部分为厉_2・解决问题:己知a是JI7-3的整数部分,D是的小数部分,求(-a)"+(b + 4)2的平方根.参考答案1、c;2、B3、A4、B5、C6、A7、B8、C9、D10、±4, 0, ±111、&-812、213、x = -0. 2, x=-l. 8;14、y=5. 5 或y= - 2. 5;15、10 ;16、-2;17、解:由数轴上点的位置关系,得-l<a<0<b<l.原式二a+1+2 - 2b - b+a=2a - 3b+3.18、由题意,得幺=1,i = T17-4 所以(一幺尸 + 0+4)2 = (-1尸 + (何_4+4)2 = 16 即+ @ + 4)2的平方根为±牛2018年 七年级数学下册 实数 期末复习试卷一、选择题:1、下列语句中正确的是(C. 9的算术平方根是±3D. 9的算术平方根是3设边长为3的正方形的对角线长为a.下列关于a 的I 川种说法: ①a 是无理数; ②a 可以用数轴上的一个点來表示; @3<a<4;④a 是18的算术平方根.其中,所有正确说法的序号是() A.①④B.②③C.①②④ D.①③④7、负的算术平方根是( )A. ±6B. 6C. ±A /6D. V68、下列各数中,3. 14159,-饭,0.3131131113- (2016春•潮州期末)下列各式表示正确的是9、己知实数x 、y 满足Jx=l+1 y+31二0,则x+y 的值为()10、若正数a 的算术平方根比它本身大,则( )A.・9的平方根是・3B. 9的平方根是3 2、下列结论正确的是(A- -{(-6)2二-6 B.(~{5)2二9 C. 7(~16) 2=± 16 D.-(2,16 ^25A- 4、 下列关于祈的说法中,错误的是( 灵是8的算术平方根 B. 2<品<3 下列各组数中互为相反数的一组是()C. 78= ±2^2D.灵是无理数A. ■⑵与寻PB.・4与・{(-4)2C.D. P 与法5^如果际〒二2. 872, ^3700 =28.72,则勺0・023厂(A. 0. 2872B. 28. 72C. 2. 872D. 0.02872 6、 B. ±725=5A. - 2B. 2C. 4( )lk •估计— 1在()A. 0〜1之间•B. 1〜2之间C. 2〜3之间D. 3〜4之间12、实数纸b在数轴上对应点的位置如图,则|a-b| -肯的结果是()•••Aa b0A. 2a - bB. b - 2aC. bD. - b二、填空题:13、(-9)2的算术平方根是_.14、如图,在数轴上点A和点B之间的整数是_________ .15^ 己知(x - 1) 2二3,则x= _ .16、如杲丽二1.732, A/30 =5.477,那么0. 0003的平方根是________ .17、若3、b互为相反数,c、d互为负倒数,则石匸尹+畅= _______________ •18、已知a, b为两个连续的整数,且a<V8<b,则a+b二____________ .三、解答题:19、求x 的值:9(3x - 2尸二64. 20、求x 的值:(5- 3x?=—4921、计算:7132-12222、计算:(亦尸+旷爾一加2一炉.23、已知x・1的平方根为±2, 3x+y・1的平方根为±4,求3x+5y的算术平方根.24、已知2a-l的平方根是±3, 3a+b_9的立方根是2, c是妬的整数部分,求a + 2D+f的值•25、阅读下面的文字,解答问题:大家知道迈是无理数,而无理数是无限不循环小数,因此迈的小数部分我们不可能全部写出来,于是小明用屁-1来表示典的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,因为近的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:・・・2'<7<3,即2<听<3,・••听的整数部分为2,小数部分为听・2.请解答:(1)Vio的整数部分是__________ ,小数部分是 _________ .(2)如果衍的小数部分为a, 荷的整数部分为b,求a+br/^的值;(3)己知:x是3+^5的整数部分,y是其小数部分,请直接写出X- y的值的相反数.26、若实数a, b, c 在数轴上所对应点分别为A, B, C, a 为2的算术平方根,b 二3, C 点是A 点关 于B点的对称点,(1) 求数轴上AB 两点之间的距离; (2) 求c 点对应的数;27、已知字母a 、b 满足亦二+的_21 1 1 1~ab @ + 1)@ + 1)@+2)@ + 2)… @ + 2011)@ + 2001)第X 页共1()页(3) 3的整数部分为x, c 的小数部分为y,求2x^+2》的值(结果保留带根号的形式)的值.1、 D2、 A3、 C4、 C5、 A6、 C7、 D8、 C9、 A 10、 11、 12、 C 13、 9.14、 答案为:2. 15、 答案为:土近+1. 16、 ±0.01732. 17、 -118、 答案为:5.149 19、 开平方得:3 (3x-2)二±8 解得:Xi=—, x 2= - -T .9920、§或兰7 2116 T -10; 23、5 24、a=5, b 二2, c 二7, a + 2&+u 二 16・(2) V4<5<9,・・・2<任<3,即沪旋 ・2, V36<37<49, A6<V37<7,即 b 二6,贝lj a+b ・ 丽二4;(3) 根据题意得:x=5, y=3+{^ - 5二- 2,・;x - y=7 - 其相反数是A /5 - 7.26、(1) 3; (2) 6;72 ⑶尸2—屈.21、参考答案21、22、25、 解: (1) V10的整数部分是3,小数部分是V10- 3;故答案为:3; V10- 3;•解;、「7/o,丑-1~ o且-f 二o'弋鳥解得伫°b十@H"賊斗3化X昭十• • •十莎丽莎和 -丄丄亠」一-2 +A3十3*卩十・・・十二卜亍+土一土+》* +・・•十二 /_ Zo/27。
第六章 实数复习题含答案
第六章 实数复习题含答案一、选择题1.对于实数a ,我们规定,用符号a ⎡⎤⎣⎦表示不大于a 的最大整数,称a ⎡⎤⎣⎦为a 的根整数,例如:93⎡⎤=⎣⎦,103⎡⎤=⎣⎦.我们可以对一个数连续求根整数,如对5连续两次求根整数:5221.若对x 连续求两次根整数后的结果为1,则满足条件的整数x 的最大值为( ) A .5B .10C .15D .162.如图,网格中的每个小正方形的边长为1,则图中正方形ABCD 的边长是( )A .2B .5C .6D .33.有理数a ,b 在数轴上对应的位置如图所示,则下列结论成立的是( )A .a+b> 0B .a -b> 0C .ab>0D .0ab> 4.下列五个命题:①如果两个数的绝对值相等,那么这两个数的平方相等; ②内错角相等;③在同一平面内,垂直于同一条直线的两条直线互相平行; ④两个无理数的和一定是无理数;⑤坐标平面内的点与有序数对是一一对应的. 其中真命题的个数是( ) A .2个B .3个C .4个D .5个5.下列命题是假命题的是( )A .0的平方根是0B .无限小数都是无理数C .算术平方根最小的数是0D .最大的负整数是﹣16.若a 16b 64a+b 的值是( ) A .4B .4或0C .6或2D .67.330x y =,则x 和y 的关系是( )A .0x y ==B .0x y -=C .1xy =D .0x y +=8.2的平方根为( )A .4B .±4CD .9.在实数13-,0.734π )个. A .1B .2C .3D .410.下列运算中,正确的是( )A 3=±B 2=C 2=-D 8=-二、填空题11.a 是不为2的有理数,我们把2称为a 的“文峰数”如:3的“文峰数”是2223=--,-2的“文峰数”是()21222=--,已知a 1=3,a 2是a 1的“文峰数”, a 3是a 2的“文峰数”, a 4是a 3的“文峰数”,……,以此类推,则a 2020=______ 12.若()2320m n ++-=,则m n 的值为 ____.13.与0.5_____0.5.(填“>”、“=”、“<”)14.已知,x 、y 是有理数,且y 4,则2x +3y 的立方根为_____. 15.a※b 是新规定的这样一种运算法则:a※b=a+2b,例如3※(﹣2)=3+2×(﹣2)=﹣1.若(﹣2)※x=2+x,则x 的值是_____.16.若()22110a c --=,则a b c ++=__________. 17.高斯函数[]x ,也称为取整函数,即[]x 表示不超过x 的最大整数. 例如:[]2.32=,[]1.52-=-. 则下列结论:①[][]2.112-+=-;②[][]0x x +-=;③若[]13x +=,则x 的取值范围是23x ≤<;④当11x -≤<时,[][]11x x ++-+的值为0、1、2.其中正确的结论有_____(写出所有正确结论的序号).18. 1.105≈ 5.130≈≈________.19________.20.44.9444≈⋯14.21267≈⋯(精确到0.01)≈__________.三、解答题21.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文. 22.下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯,将以上三个等式两边分别相加得:1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)观察发现:1n(1)n =+__________1111122334n(1)n ++++=⨯⨯⨯+ .(2)初步应用:利用(1)的结论,解决以下问题“①把112拆成两个分子为1的正的真分数之差,即112= ;②把112拆成两个分子为1的正的真分数之和,即112= ;( 3 )定义“⊗”是一种新的运算,若1112126⊗=+,11113261220⊗=++,111114*********⊗=+++,求193⊗的值.23.规律探究,观察下列等式:第1个等式:111111434a ⎛⎫==⨯- ⎪⨯⎝⎭ 第2个等式:2111147347a ⎛⎫==⨯- ⎪⨯⎝⎭ 第3个等式:311117103710a ⎛⎫==⨯- ⎪⨯⎝⎭第4个等式:41111101331013a ⎛⎫==⨯- ⎪⨯⎝⎭请回答下列问题:(1)按以上规律写出第5个等式:= ___________ = ___________(2)用含n 的式子表示第n 个等式:= ___________ = ___________(n 为正整数) (3)求1234100a a a a a +++++24.先阅读内容,然后解答问题: 因为:111111111111,,12223233434910910=-=-=-=-⨯⨯⨯⨯ 所以:1111122334910+++⋯+⨯⨯⨯⨯=1111111122334910⎛⎫⎛⎫⎛⎫⎛⎫-+-+-++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ (1)111111122334910+-+-+- =1﹣191010= 问题:(1)请你猜想(化为两个数的差):120152016⨯= ;120142016⨯= ;(2)若a 、b 为有理数,且|a ﹣1|+(ab ﹣2)2=0,求111(1)(1)(2)(2)ab a b a b +++++++…+1(2018)(2018)a b ++的值. 25.定义:如果2b n =,那么称b 为n 的布谷数,记为()b g n =. 例如:因为328=,所以()3(8)23g g ==,因为1021024=, 所以()10(1024)210g g ==.(1)根据布谷数的定义填空:g (2)=________________,g (32)=___________________. (2)布谷数有如下运算性质:若m ,n 为正整数,则()()()=+g mn g m g n ,()()m g g m g n n ⎛⎫=- ⎪⎝⎭. 根据运算性质解答下列各题: ①已知(7) 2.807g =,求 (14)g 和74g ⎛⎫⎪⎝⎭的值; ②已知(3)g p =.求(18)g 和316g ⎛⎫⎪⎝⎭的值. 26.观察下列等式:①111122=-⨯, ②1112323=-⨯, ③1113434=-⨯. 将以上三个等式两边分别相加,得1111111113111223342233444++=-+-+-=-=⨯⨯⨯. (1)请写出第④个式子(2)猜想并写出:1n(n 1)+= .(3)探究并计算:111244668+++⨯⨯⨯ (1100102)⨯.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】对各选项中的数分别连续求根整数即可判断得出答案. 【详解】 解:当x=5时,5221,满足条件; 当x=10时,10331,满足条件; 当x=15时,15331,满足条件; 当x=16时,16442,不满足条件;∴满足条件的整数x 的最大值为15, 故答案为:C . 【点睛】本题考查了无理数估算的应用,主要考查学生的阅读能力和理解能力,解题的关键是读懂2.B解析:B【分析】由图可知;正方形面积为5.再由正方形的面积等于边长的平方依据算术平方根定义即可得出答案.【详解】解:由图可知,正方形面积=133-421=52⨯⨯⨯⨯,∴正方形边长故选:B.【点睛】本题考查勾股定理,无理数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B解析:B【解析】根据数轴的意义,由图示可知b<0<a,且|a|<|b|,因此根据有理数的加减乘除的法则,可知a+b<0,a-b>0,ab<0,ab<0.故选B.4.B解析:B【分析】根据平面直角坐标系的概念,在两直线平行的条件下,内错角相等,两个无理数的和可以是无理数也可以是有理数,进行判断即可.【详解】①正确;②在两直线平行的条件下,内错角相等,②错误;③正确;④反例:两个无理数π和-π,和是0,④错误;⑤坐标平面内的点与有序数对是一一对应的,正确;故选:B.【点睛】本题考查实数,平面内直线的位置;牢记概念和性质,能够灵活理解概念性质是解题的关键.5.B解析:B分别根据平方根的定义、无理数的定义、算术平方根的定义、负整数逐一判断即可.【详解】解:A、0的平方根为0,所以A选项为真命题;B、无限不循环小数是无理数,所以B选项为假命题;C、算术平方根最小的数是0,所以C选项为真命题;D、最大的负整数是﹣1,所以D选项为真命题.故选:B.【点睛】本题考查平方根的定义、无理数的定义、算术平方根和负整数,掌握无理数指的是无限不循环小数是解题的关键.6.C解析:C【分析】由a a=±2,由b b=4,由此即可求得a+b的值.【详解】∵a∴a=±2,∵b∴b=4,∴a+b=2+4=6或a+b=-2+4=2.故选C.【点睛】本题考查了平方根及立方根的定义,根据平方根及立方根的定义求得a=±2、 b=4是解决问题的关键.7.D解析:D【分析】根据立方根的性质得出x+y=0即可解答.【详解】+=,∴x+y=0故答案为D.【点睛】本题主要考查了立方根的性质,通过立方根的性质得到x+y=0是解答本题的关键.8.D解析:D利用平方根的定义求解即可.【详解】解:∵2的平方根是.故选D.【点睛】此题主要考查了平方根的定义,注意一个正数的平方根有2个,它们互为相反数.9.B解析:B【分析】根据无理数的定义判断即可.【详解】1-,0.716π是无理数,3故选:B.【点睛】本题主要考查无理数的定义,熟练掌握定义是关键.10.B解析:B【分析】根据平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项运算错误,=,故该选项运算正确,2=,故该选项运算错误,2=,故该选项运算错误,8故选:B.【点睛】本题考查平方根、算术平方根及立方根,一个正数的平方根有两个,它们互为相反数;其中正的平方根叫做这个数的算术平方根;一个数的立方根只有一个.二、填空题11..【分析】先根据题意求得、、、,发现规律即可求解.【详解】解:∵a1=3∴,,,,∴该数列为每4个数为一周期循环,∵∴a2020=.故答案为:.【点睛】此题主要考查规律的探索,解析:43.【分析】先根据题意求得2a、3a、4a、5a,发现规律即可求解.【详解】解:∵a1=3∴222 23a==--,()321222a==--,4241322a==-,523423a==-,∴该数列为每4个数为一周期循环,∵20204505÷=∴a2020=44 3a=.故答案为:43.【点睛】此题主要考查规律的探索,解题的关键是根据题意发现规律.12.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2,所以,mn=(-3)2=9.故答案为9.【解析:【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【详解】由题意得,m+3=0,n-2=0,解得m=-3,n=2, 所以,m n =(-3)2=9. 故答案为9. 【点睛】此题考查绝对值和算术平方根非负数的性质,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.13.> 【解析】∵ . , ∴ , ∴ ,故答案为>.解析:> 【解析】∵10.52-=-=20-> , ∴0> , ∴0.5> ,故答案为>.14.-2. 【分析】根据二次根式有意义的条件可得x =2,进而可得y 的值,然后计算出2x+3y 的值,进而可得立方根. 【详解】 解:由题意得:, 解得:x =2, 则y =﹣4, 2x+3y =2×2+3×(解析:-2. 【分析】根据二次根式有意义的条件可得x =2,进而可得y 的值,然后计算出2x +3y 的值,进而可得立方根. 【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,解得:x =2, 则y =﹣4,2x+3y =2×2+3×(﹣4)=4﹣12=﹣8.2=-. 故答案是:﹣2. 【点睛】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.15.4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4.故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根解析:4【解析】根据题意可得(﹣2)※x=﹣2+2x ,进而可得方程﹣2+2x=2+x ,解得:x=4. 故答案为:4.点睛:此题是一个阅读理解型的新运算法则题,解题关键是明确新运算法则的特点,然后直接根据新定义的代数式计算即可.16.【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:,解得,则,故答案为:.【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用 解析:12- 【分析】先根据绝对值、算术平方根、偶次方的非负性求出a 、b 、c 的值,再代入即可得.【详解】由题意得:2102010a b c -=⎧⎪+=⎨⎪-=⎩,解得1221a b c ⎧=⎪⎪=-⎨⎪=⎪⎩, 则()112122a b c ++=+-+=-, 故答案为:12-. 【点睛】本题考查了绝对值、算术平方根、偶次方的非负性的应用等知识点,熟练掌握绝对值、算术平方根、偶次方的非负性是解题关键.17.①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]解析:①③.【分析】根据[x]表示不超过x的最大整数,即可解答.【详解】由题意可知[-2.1]=-3,[1]=1,-3+1=-2,故①正确;②中,当x取小数时,显然不成立,例如x取2.6,[x]+[-x]=2-3=-1,故②错误;③中,若[x+1]=3,则x+1要满足x+1≥3,且x+1<4,解得x≥2,且x<3,故③正确;④中,当-1≤x<1时,在取值范围内验证此式的值为1,2.故④错误;所以正确的结论是①③.18.-0.0513【分析】根据立方根的意义,中,m的小数点每移动3位,n的小数点相应地移动1位.【详解】因为所以-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方解析:-0.0513【分析】=中,m的小数点每移动3位,n的小数点相应地移动1位.n【详解】5.130≈≈-0.0513故答案为:-0.0513【点睛】考核知识点:立方根.理解立方根的定义是关键.19.6【分析】求出在哪两个整数之间,从而判断的整数部分.【详解】∵,,又∵36<46<49∴6<<7∴的整数部分为6故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解解析:6【分析】的整数部分.【详解】∵246=,2636=,2749=又∵36<46<49∴6<76故答案为:6【点睛】本题考查无理数的估算,正确掌握整数的平方数是解题的关键.20.50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,∴应是的小数点向左移动一位得到的,∴,故答案为:4.50.【点睛】此题考查算术平解析:50【分析】根据算术平方根小数点移动的规律解答.【详解】∵20.2是2020的小数点向左移动了两位,的小数点向左移动一位得到的,04.5≈,故答案为:4.50.【点睛】此题考查算术平方根小数点的移动规律,熟记规律是解题的关键.三、解答题21.(1)N,E,T 密文为M,Q,P;(2)密文D,W,N 的明文为F,Y ,C .【分析】(1) 由图表找出N,E,T 对应的自然数,再根据变换公式变成密文.(2)由图表找出N=M,Q,P 对应的自然数,再根据变换.公式变成明文.【详解】解:(1)将明文NET 转换成密文:2522517263N M +→→+=→ 3313E Q →→=→ 5158103T P +→→+=→ 即N,E,T 密文为M,Q,P;(2)将密文D,W,N 转换成明文:()133138114D F →→⨯--=→2326W Y →→⨯=→253(2517)222N C →→⨯--=→即密文D,W,N 的明文为F,Y ,C .【点睛】本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.22.(1)111n n -+;1n n +;(2)①1341-;②112424+;( 3 )14. 【分析】(1)利用材料中的“拆项法”解答即可; (2)①先变形为111234=⨯,再利用(1)中的规律解题;②先变形为121224=,再逆用分数的加法法则即可分解; (3)按照定义“⊗”法则表示出193⊗,再利用(1)中的规律解题即可. 【详解】解:(1)观察发现:()11n n =+111n n -+, 1111122334(1)n n ++++⨯⨯⨯+ =11111111223341n n -+-+-+⋯+-+ =111n -+ =1n n +; 故答案是:111n n -+;1n n +. (2)初步应用: ①111234=⨯=1134-; ②121112242424==+; 故答案是:1134-;112424+. ( 3 )由定义可知: 193⊗=11111111112203042567290110132++++++++ =455111111611311412-+-+-+⋯+- =13211- =14. 故193⊗的值为14. 【点睛】考查了有理数运算中的规律型问题:数字的变化规律,有理数的混合运算.本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.(1)11316⨯;11131316⎛⎫⨯- ⎪⎝⎭;(2)[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦;(3)100301. 【分析】(1)观察前4个等式的分母先得出第5个式子的分母,再依照前4个等式即可得出答案;(2)根据前4个等式归纳类推出一般规律即可;(3)利用题(2)的结论,先写出1234100a a a a a +++++中各数的值,然后通过提取公因式、有理数加减法、乘法运算计算即可.【详解】(1)观察前4个等式的分母可知,第5个式子的分母为1316⨯则第5个式子为:51111131631316a ⎛⎫==⨯- ⎪⨯⎝⎭ 故应填:11316⨯;11131316⎛⎫⨯- ⎪⎝⎭; (2)第1个等式的分母为:14(130)(131)⨯=+⨯⨯+⨯第2个等式的分母为:47(131)(132)⨯=+⨯⨯+⨯第3个等式的分母为:710(132)(133)⨯=+⨯⨯+⨯第4个等式的分母为:1013(133)(134)⨯=+⨯⨯+⨯归纳类推得,第n 个等式的分母为:[]13(1)(13)n n +-⋅+则第n 个等式为:[]1111313(1)(13)13(1)13n a n n n n +-⋅++⎡⎤==-⎢⎥⎣-⎦+(n 为正整数) 故应填:[]13(1)(131)n n +-⋅+;13(3111311)n n ⎡⎤--+⎢⎣+⎥⎦; (3)由(2)的结论得:[]10013(1001)(13100)298301311111329801a ⎛⎫==+⨯-⨯+⨯⨯=⨯- ⎪⎝⎭则1234100a a a a a +++++ 1111144771010132983011+++++⨯⨯⨯⨯⨯= 111111111111343473711132981031013301⎛⎫⎛⎫⎛⎫⎛⎫⨯-+⨯-+⨯-+⨯-++ ⎪ ⎪ ⎛⎫=⨯-⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎪⎝⎭ 111111111++++344771*********3018=-⎛⎫⨯-+--- ⎪⎝⎭1330111⎛=⨯-⎫ ⎪⎝⎭30130103⨯= 110030=. 【点睛】本题考查了有理数运算的规律类问题,依据已知等式归纳总结出等式的一般规律是解题关键.24.(1)1120152016-,1140284032-;(2)20192020. 【分析】(1)根据题目中式子的特点可以写出猜想;(2)根据|a-1|+(ab-2)2=0,可以取得a 、b 的值,代入然后由规律对数进行拆分,从而可以求得所求式子的值.【详解】解:(1)1112015201620152016=-⨯, 111111()2014201622014201640284032=⨯-=-⨯, 故答案为:1120152016-,1140284032-; (2)∵|a ﹣1|+(ab ﹣2)2=0,∴a ﹣1=0,ab ﹣2=0,解得,a =1,b =2, ∴1111+(1)(1)(2)(2)(2018)(2018)ab a b a b a b +++++++++…… =111112233420192020+++⋯+⨯⨯⨯⨯ =1﹣1111111+2233420192020+-+-+- (1)12020 =20192020. 【点睛】本题考查数字的变化类、非负数的性质、有理数的混合运算,解答本题的关键是明确题意,求出所求式子的值.25.(1)1;5;(2)①3.807,0.807;②12p +;4p -.【分析】(1)根据布谷数的定义把2和32化为底数为2的幂即可得出答案;(2)①根据布谷数的运算性质, g (14)=g (2×7)=g (2)+g (7),7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭,再代入数值可得解; ②根据布谷数的运算性质, 先将两式化为2(18)(2)(3)g g g =+,3()(3)(16)16g g g =-,再代入求解.【详解】解:(1)g (2)=g (21)=1,g (32)=g (25)=5;故答案为1,32;(2)①g (14)=g (2×7)=g (2)+g (7),∵g (7)=2.807,g (2)=1,∴g (14)=3.807;7(7)(4)4g g g ⎛⎫=- ⎪⎝⎭g (4)=g (22)=2, ∴74g ⎛⎫ ⎪⎝⎭=g (7)-g (4)=2.807-2=0.807; 故答案为3.807,0.807;②∵()3g p =.∴22(18)(23)(2)(3)12g g g g p =⨯=+=+; 3()(3)(16)416g g g p =-=-. 【点睛】本题考查有理数的乘方运算,新定义;能够将新定义的运算转化为有理数的乘方运算是解题的关键.26.(1)1114545=-⨯;(2)111(1)1n n n n =-++;(3)2551. 【解析】试题分析:(1)规律:相邻的两个数的积的倒数等于它们的倒数的差,故第四个式子为:1114545=-⨯; (2)根据以上规律直接写出即可;(3)各项提出12之后即可应用(1)中的方法进行计算. 解:(1)答案为:1114545=-⨯; (2)答案为:()11111n n n n =-++; (3)111244668+++⨯⨯⨯…1100102⨯ =12×(111122334++⨯⨯⨯+…+15051⨯)=12×5051=25 51.点睛:本题是一道找规律问题.解题的重点要根据所给式子中的数字变化归纳出规律,而难点在于第(3)问中要灵活应用所总结出来的公式.。
第六章 实数(复习课件)七年级数学下册(人教版)
举一反三
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
解:不能.理由如下:因为大正方形纸片的面
积为( 18)2+( 18)2=36(cm2) ,
高频考点
高频考点七 实数的综合运用
(3)如果2+ 5的整数部分是a,小数部分是b,求出a-b的值.
(3)因为 4< 5< 9,即2< 5<3,
所以4<2+ 5<5,
所以2+ 5的整数部分为4,小数部分为2+ 5-4= 5-2,即a=4,b= 5-2,
所以a-b=4-( 5-2)= 6- 5.
举一反三
【7-1】若 2的整数部分为x,小数部分为y,则 2x-y的值是( C )
A.2 2-2
B.2
C.1
D. 2
【7-2】如图,用两个边长为 18cm的小正方形纸片拼成一个大的正方形纸
片,沿着大正方形纸片的边的方向截出一个长方形纸片,能否使截得的长
方形纸片长宽之比为3:2,且面积为30cm2?请说明理由.
0
一个,为负数
3
a
可以为任何数
知识梳理
四、实数及其运算
有理数包括整数和分数,它们都可以写成有限小数或者无限循环小数的形
式.
5 3 27 11 9
, , , , .
2 5 4 9 11
5
2.5
2
3
0.6
5
27
6.75
4
.
11
第六章实数复习
一个正数有一个正的立方根; 一个负数有一个负的立方根, 零的立方根是零。
区别
你知道算术平方根、平方根、立方根联 系和区别吗?
算术平方根 表示方法
平方根
立方根
3
a的取值
性 质
0 负数
a≥
0
a
0
a a≥ 0
0 没有 求一个数的平方根 的运算叫开平方
a
a 是任何数
正数(一个) 0 负数(一个) 求一个数的立方根 的运算叫开立方 0,1,-1
正数 正数(一个) 互为相反数(两个)
没有
开
方 是本身
0,1
0
1、
下列说法正确的是(
B
)
A. 16的平方根是 4
B. 6表示6的算术平方根的相反数
C.任何数都有平方根
D. a 一定没有平方根
2
1、
2、 3、
8是 64
的平方根
64的平方根是 ±8
64的值是
8
9的平方根是 3
-4
4、
64的立方根是
1 2x 1 1 2x 2
求2(x+y)的平方根
3.已知5+ 11的小数部分为m, 7为n,求m+n的值
23 的小数部分
4.已知满足 3 a a 4 a ,求a的值
通过这节课的学习,你有何收获?
通过这节课的复习,你有何收获?
3 2 的绝对值是2 _____ 3.
实数范围内相反数和绝对值 的意义与有理数范围内相同!
四、相关知识的综合运用 3. (1)已知
x
y 0,求x, y的值.
x 0, y 0
人教版七下数学《第6章 实数》章节复习资料【1】
人教版七下数学《第6章实数》章节复习资料【1】一.选择题(共10小题)1.的算术平方根是()A.2 B.±2 C.D.±2.的平方根是()A.±3 B.3 C.±9 D.93.(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.4.的算术平方根是()A.2 B.±2 C.D.5.如果一个有理数的平方根和立方根相同,那么这个数是()A.±1 B.0 C.1 D.0和16.若+|y+3|=0,则的值为()A.B.﹣C.D.﹣7.若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或18.下列运算正确的是()A.﹣=13 B.=﹣6 C.﹣=﹣5 D.=±39.下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣D.010.关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点二.填空题(共10小题)11.的平方根是.12.若两个连续整数x、y满足x<+1<y,则x+y的值是.13.实数﹣2的整数部分是.14.若2a+1=5,则(2a+1)2的平方根是.15.实数a在数轴的位置如图所示,则|a﹣1|=.16.若a<<b,且a、b是两个连续的整数,则a b=.17.若x2=16,则x=;若x3=﹣8,则x=;的平方根是.18.已知:(x2+y2+1)2﹣4=0,则x2+y2=.19.若一个数的立方根就是它本身,则这个数是.20.如果=1.732,=5.477,那么0.0003的平方根是.三.解答题(共10小题)21.一个正数的x的平方根是2a﹣3与5﹣a,求a和x的值.22.计算:|﹣3|﹣×+(﹣2)2.23.求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.24.若x、y都是实数,且y=++8,求x+3y的立方根.25.已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N的值.26.已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.27.已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.28.已知实数a、b、c在数轴上的位置如图,a、b到原点的距离相等,化简:﹣|a+b|++|b﹣c|.29.计算:=,=,=,=,=,(1)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.30.阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.请解答:(1)如果的小数部分为a,的整数部分为b,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.参考答案与试题解析一.选择题(共10小题)1.(2015•日照)的算术平方根是()A.2 B.±2 C.D.±【解答】解:∵=2,而2的算术平方根是,∴的算术平方根是,故选:C.2.(2014•东营)的平方根是()A.±3 B.3 C.±9 D.9【解答】解:∵,9的平方根是±3,故选:A.3.(2016•怀化)(﹣2)2的平方根是()A.2 B.﹣2 C.±2 D.【解答】解:∵(﹣2)2=4,∴4的平方根是:±2.故选:C.4.(2016•毕节市)的算术平方根是()A.2 B.±2 C.D.【解答】解:=2,2的算术平方根是.故选:C.5.(2015•深圳模拟)如果一个有理数的平方根和立方根相同,那么这个数是()A.±1 B.0 C.1 D.0和1【解答】解:0的平方根和立方根相同.故选:B.6.(2015•蓬溪县校级模拟)若+|y+3|=0,则的值为()A.B.﹣C.D.﹣【解答】解:∵+|y+3|=0,∴2x+1=0,y+3=0,解得x=﹣,y=﹣3,∴原式==.故选C.7.(2015秋•天水期末)若2m﹣4与3m﹣1是同一个正数的平方根,则m为()A.﹣3 B.1 C.﹣1 D.﹣3或1【解答】解:∵2m﹣4与3m﹣1是同一个正数的平方根,∴2m﹣4+3m﹣1=0,或2m﹣4=3m﹣1,解得:m=1或﹣3.故选D.8.(2016•赵县模拟)下列运算正确的是()A.﹣=13 B.=﹣6 C.﹣=﹣5 D.=±3【解答】解:A、=﹣13,故错误;B、=6,故错误;C、=﹣5,正确;D、=3,故错误;故选:C.9.(2016•宜昌)下列各数:1.414,,﹣,0,其中是无理数的为()A.1.414 B.C.﹣D.0【解答】解:是无理数.故选B.10.(2016•河北)关于的叙述,错误的是()A.是有理数B.面积为12的正方形边长是C.=2D.在数轴上可以找到表示的点【解答】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.二.填空题(共10小题)11.(2015•庆阳)的平方根是±2.【解答】解:的平方根是±2.故答案为:±212.(2015•自贡)若两个连续整数x、y满足x<+1<y,则x+y的值是7.【解答】解:∵,∴,∵x<+1<y,∴x=3,y=4,∴x+y=3+4=7.故答案为:7.13.(2015•百色)实数﹣2的整数部分是3.【解答】解:∵5<<6,∴﹣2的整数部分是:3.故答案为:3.14.(2015•会宁县一模)若2a+1=5,则(2a+1)2的平方根是±5.【解答】解:∵2a+1=5,∴(2a+1)2=25.∵25的平方根是±5.∴(2a+1)2的平方根是±5.故答案为±5.15.(2015•广安)实数a在数轴的位置如图所示,则|a﹣1|=1﹣a.【解答】解:∵a<﹣1,∴a﹣1<0,原式=|a﹣1|=﹣(a﹣1)=﹣a+1=1﹣a.故答案为:1﹣a.16.(2015•丹东)若a<<b,且a、b是两个连续的整数,则a b=8.【解答】解:∵2<<3,∴a=2,b=3,∴a b=8.故答案为:8.17.(2016春•秦皇岛期末)若x2=16,则x=±4;若x3=﹣8,则x=﹣2;的平方根是.【解答】解:若x2=16,则x=±4;若x3=﹣8,则x=﹣2;=3,3的平方根是±.故答案为:±4;﹣2;±.18.(2015秋•定州市期中)已知:(x2+y2+1)2﹣4=0,则x2+y2=1.【解答】解:∵(x2+y2+1)2﹣4=0,∴(x2+y2+1)2=4,∵x2+y2+1>0,∴x2+y2+1=2,∴x2+y2=1.故答案为:1.19.(2015春•霸州市期末)若一个数的立方根就是它本身,则这个数是1,﹣1,0.【解答】解:∵立方根是它本身有3个,分别是±1,0.故答案±1,0.20.(2016春•绵阳期中)如果=1.732,=5.477,那么0.0003的平方根是=±0.01732.【解答】解:∵0.0003=,∴±=±=±=±0.01732.三.解答题(共10小题)21.(2016春•河东区期末)一个正数x的平方根是2a﹣3与5﹣a,求a和x的值.【解答】解:∵一个正数的x的平方根是2a﹣3与5﹣a,∴2a﹣3+5﹣a=0,解得:a=﹣2,∴2a﹣3=﹣7,∴x=(﹣7)2=49.22.(2016•合肥校级一模)计算:|﹣3|﹣×+(﹣2)2.【解答】解:原式=3﹣4+×(﹣2)+4=3﹣4﹣1+4=2.23.(2016春•滑县期中)求下列各式中的x.(1)4x2﹣16=0(2)27(x﹣3)3=﹣64.【解答】解(1)4x2=16,x2=4x=±2;(2)(x﹣3)3=﹣,x﹣3=﹣x=.24.(2016秋•林甸县期末)若x、y都是实数,且y=++8,求x+3y的立方根.【解答】解:∵y=++8,∴解得:x=3,将x=3代入,得到y=8,∴x+3y=3+3×8=27,∴=3,即x+3y的立方根为3.25.(2016春•黄冈期中)已知M=是m+3的算术平方根,N=是n﹣2的立方根,试求M﹣N 的值.【解答】解:因为M=是m+3的算术平方根,N=是n﹣2的立方根,所以可得:m﹣4=2,2m﹣4n+3=3,解得:m=6,n=3,把m=6,n=3代入m+3=9,n﹣2=1,所以可得M=3,N=1,把M=3,N=1代入M﹣N=3﹣1=2.26.(2015春•无棣县期中)已知2a﹣1的平方根是±3,3a+2b+4的立方根是3,求a+b的平方根.【解答】解:由题意,有,解得.∴±==±3.故a+b的平方根为±3.27.(2015秋•抚州期末)已知:2a﹣7和a+4是某正数的平方根,b﹣7的立方根为﹣2.(1)求:a、b的值;(2)求a+b的算术平方根.【解答】解:(1)由题意得,2a﹣7+a+4=0,解得:a=1,b﹣7=﹣8,解得:b=﹣1;(2)a+b=0,0的算术平方根为0.28.(2016春•高安市期中)已知实数a、b、c在数轴上的位置如图所示,a、b 到原点的距离相等,化简:﹣|a+b |++|b﹣c|.【解答】解:由题意得:c<b<0<a,且|a|=|b|,则a+b=0,c﹣a<0,b﹣c>0,则原式=a﹣0+a﹣c+b﹣c=2a+b﹣2c.29.(2016春•南陵县期中)计算:=3,=0.7,=0,=6,=,(1)根据计算结果,回答:一定等于a吗?你发现其中的规律了吗?请你用自己的语言描述出来.(2)利用你总结的规律,计算:.【解答】解:=3,=0.7,=0,=6,=,(1)=|a|;(2)原式=|3.14﹣π|=π﹣3.14.故答案为:3;0.7;0;6;30.(2014春•嘉祥县期末)阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵,即,∴的整数部分为2,小数部分为.第11页请解答:(1)如果的小数部分为a ,的整数部分为b ,求的值;(2)已知:,其中x是整数,且0<y<1,求x﹣y的相反数.【解答】解:∵4<5<9,∴2<<3,∴的小数部分a=﹣2 ①∵9<13<16,∴3<<4,∴的整数部分为b=3 ②把①②代入,得﹣2+3=1,即.(2)∵1<3<9,∴1<<3,∴的整数部分是1、小数部分是,∴10+=10+1+(=11+(),又∵,∴11+()=x+y,又∵x是整数,且0<y<1,∴x=11,y=;∴x﹣y=11﹣()=12﹣,∴x﹣y的相反数y﹣x=﹣(x﹣y)=.第12页。
第六章 实数复习
(1)实数不是有理数就是无理数. ( )
(2)无理数都是无限不循环小数. (
)
(3)带根号的数都是无理数.
(× )
(4)无理数都是无限小数.
()
(5)无理数一定都带根号.
(× )
4.把下列各数填入相应的括号内:
9 35
64
π
•
3
0. 6
4
0 3 9
0.13
(1)有理数: { - 9
(2)无理数: { 3 5
7 8
【归纳拓展】解题时,要注意题目的要求,是求平方 根、立方根还是求算术平方根,要注意所求结果处理.
【迁移应用1】求下列各式的值:
① 400 ;
③ 49 100
② 16 81
④ 3 1 63 64
答案:①
20;②
4 9
;③
7 10
;④
1 4
.
专题二 实数的有关概念 【例2】在-7.5, , 4, , , 0.15, 中,无理数 的个数是( B )
2.因为0.53=0.125,所以0.125的立方根____0._5___.
3.因为(
2 3
)3=
8 27
,所以
8 27
2
的立方根是___3____.
4.因为(-2)3=-8,所以-8的立方根是____-_2__.
5.因为(-0.5)3=-0.125,所以-0.125的立方根是_-_0_.5__.
6.因为(
64
•0Βιβλιοθήκη 6343
0.13
π 3 9
3
}
}
(3)整数: { 9
(4)负数: { 3
4
(5)分数: { 0.6
人教版2021-2022学年度第二学期七年级数学第6章实数 期末复习测试卷附答案教师版
人教版2021-2022学年度第二学期七年级数学第6章实数期末复习测试卷附答案教师版一、单选题(共10题;共30分)1.(3分)(−3)2的平方根为()A.±3B.3C.±3D.3【答案】C2.(3分)以下代数式的值可以为负数的是()A.|3-x|B.x2+x C.D.x2-2x+1【答案】B3.(3分)下列算式与所计算出的结果相同的是()A B C D【答案】A4.(3分)下列等式正确的是().A=13B=113C.3−9=−3D=±34【答案】A5.(3分)下列说法错误的是()A.27的立方根是3B.−12是14的平方根C.平方根等于它本身的数只有0D.2的算术平方根是a【答案】D6.(3分)下列四种说法中:(1)负数没有立方根;(2)1的立方根与平方根都是1;(3)38的平方根是±2;(4= 2+12=212.共有()个是错误的.A.1B.2C.3D.4【答案】C7.(3分)下列各数是无理数的是()A.-2.5B.227C.D.4【答案】C8.(3分)实数2,0,-2,2中,最大的数是()A.2B.0C.-2D.2【答案】A9.(3分)设a,b,c为互不相等的实数,且23+13=,则下列结论正确的是()A.>>B.>>C.−=2(−p D.−=3(−p 【答案】D10.(3分)实数a,b在数轴上对应的点的位置如图所示,下列结论中正确的是()A.+>0B.B>0C.−>0D.|U>|U【答案】D二、填空题(共5题;共15分)11.(3分)若2≈1.414,则200≈.【答案】14.1412.(3分)一个正数的两个平方根分别是2+5和−1,则这个正数是.【答案】49913.(3分)若30.3=0.6694,33=1.442,则3300=.【答案】6.69414.(3分)若3=-7,则a=【答案】34315.(3分)计算:18−6cos45°+(12)−2=.【答案】4三、解答题(共8题;共55分)16.(7分)如图,一根细线上端固定,下端系一个小球,让这个小球来回自由摆动,来回摆动一次所用的时间(单位:)与细线的长度(单位:)之间满足关系=,当细线的长度为0.4时,小球来回摆动一次所用的时间是多少?(结果保留小数点后一位)【答案】解:把l=0.4m代入关系式=得,∴===2×15=0.4=1.3(秒).17.(6分)小明想用一块面积为400平方厘米的正方形纸片,沿着边的方向,裁出一块面积为360平方厘米的长方形纸片,使它的长宽之比为4:3,他不知道能否裁得出来,聪明的你帮他想想,他能裁得出来吗?(通过计算说明)【答案】解:设设所裁长方形的长、宽分别为4x厘米,3x厘米,由题意得,4×3=360,即2=30,∵>0∴=30∴长方形的长为430,∵正方形纸片的面积为400平方厘米,∴正方形的边长为400=20厘米,∵30>5,∴430>20,∴不能裁出符合要求的长方形.18.(7分)已知一个正数的平方根是3+1与3−,求和的值.【答案】解:∵一个正数a的两个平方根分别为3x+1和3﹣x,∴3x+1+3﹣x=0,解得x=﹣2,∴3﹣x=3﹣(﹣2)=5,∴a=52=25.∴x和a的值分别是﹣2,25.19.(7分)实数a,b互为相反数,c,d互为倒数,x的绝对值为3,求代数式2+++4−327n 的值.【答案】由题意知a+b=0,cd=1,x=±3,则原式=(±3)2+0+4−=3+2−3=2.20.(7分)已知一个正数的平方根是2−3和5−,求7−−1的立方根.【答案】解:∵正数b的平方根是2−3和5−∴(2−3)+(5−p=0∴=−2∴=(2−3)2=(−7)2=49∴7−−1=7×(−2)−49−1=−64而−64的立方根为−4故7−−1的立方根为−421.(7分)已知某正数的两个平方根分别是2m-3和5-m,n-1的算术平方根为2,求3m+n-7的立方根。
人教版初中七年级数学下册第六单元《实数》知识点复习(含答案解析)
一、选择题1.下列各式计算正确的是( )A B = ±2 C = ±2 D . A 解析:A【分析】根据平方根和立方根分别对四个选项进行计算即可.【详解】解:∵-1= 2= 2,,故只有A 计算正确;故选:A .【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.2.下列各组数中,互为相反数的是( )A .B .2-与12-C .()23-与23-D 解析:C【分析】根据绝对值运算、有理数的乘方运算、立方根、相反数的定义逐项判断即可得.【详解】A 、=不是相反数,此项不符题意;B 、2-与12-不是相反数,此项不符题意; C 、()223399,--=-=,则()23-与23-互为相反数,此项符合题意;D 2,2=-=-故选:C .【点睛】本题考查了绝对值运算、有理数的乘方运算、立方根、相反数的定义,熟记各运算法则和定义是解题关键.3.已知122=,224=,328=,4216=,5232=,……,根据这一规律,20192的个位数字是( )A .2B .4C .8D .6C解析:C【分析】通过观察122=,224=,328=,4216=,,5232=…知,他们的个位数是4个数一循环,2,4,8,6,…因为2019÷4=504…3,所以20192的个位数字与32的个位数字相同是8.【详解】解:仔细观察122=,224=,328=,4216=,,5232=…;可以发现他们的个位数是4个数一循环,2,4,8,6,…∵2019÷4=504…3,∴20192的个位数字与32的个位数字相同是8.故答案是:8.【点睛】本题考查了尾数特征,解题的关键是根据已知条件,找出规律:2的乘方的个位数是每4个数一循环,2,4,8,6,….4.下列实数220.010*******;; (相邻两个1之依次多一个0);2,其中无理数有( )A .2个B .3个C .4个D .5个B解析:B【分析】根据无理数、有理数的定义即可判定选择项.【详解】4=-,是有理数;3.14是有限小数,是有理数;227是分数,是有理数;,0.010010001(相邻两个1之依次多一个0)2,是无理数,共3个,故选:B .【点睛】本题考查了无理数的定义,注意无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.在0.010010001,3.14,π,1.51,27中无理数的个数是( ). A .5个B .4个C .3D .2个D解析:D【分析】 根据无理数的概念解题,找出无理数的个数即可,无限不循环小数称为无理数;【详解】在0.010010001,3.14,π,1.51,27中无理数有π共2个, 故选D .【点睛】本题考查了无理数的概念,正确掌握无理数的概念是解题的关键;6 )A .8B .8-C .D .± D 解析:D【分析】8=,再根据平方根的定义,即可解答.【详解】8=,8的平方根是±故选:D .【点睛】8=.7.若1a >,则a ,a -,1a 的大小关系正确的是( ) A .1a a a >->B .1a a a >->C .1a a a >>-D .1a a a ->> C 解析:C【分析】可以用取特殊值的方法,因为a >1,所以可设a=2,然后分别计算|a|,-a ,1a ,再比较即可求得它们的关系.【详解】解:设a=2,则|a|=2,-a=-2,112a =, ∵2>12>-2, ∴|a|>1a>-a ; 故选:C .【点睛】 此类问题运用取特殊值的方法做比较简单.8.下列各数中,属于无理数的是( )A .227B .3.1415926C .2.010010001D .π3- D 解析:D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:A 、227是有理数,故选项A 不符合题意; B 、3.1415926是有理数,故选项B 不符合题意;C 、2.010010001是有理数,故选项C 不符合题意;D 、π3-是无理数,故选项D 题意; 故选:D .【点睛】 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.下列等式成立的是( )A .±1B =±2C 6D 3A 解析:A【分析】分别根据算术平方根、立方根的定义逐一判断即可.【详解】A .书写规范,故本选项符合题意;B.算术平方根只能是正数不能是负数,故本选项不合题意;C.立方根与被开方数符号一致,故本选项符合题意;D.33=27,27的立方根才等于3,故本选项不合题意.故选:A .【点睛】本题主要考查了算术平方根与立方根的定义,熟练掌握算术平方根的性质是解答本题的关键.10.下列说法中:①0是最小的整数;②有理数不是正数就是负数;③﹣2π不仅是有理数,而且是分数;④237是无限不循环小数,所以不是有理数;⑤无限小数不一定都是有理数;⑥正数中没有最小的数,负数中没有最大的数;⑦非负数就是正数;⑧正整数、负整数、正分数、负分数统称为有理数;其中错误的说法的个数为( )A .7个B .6个C .5个D .4个B解析:B【分析】根据有理数的分类依此作出判断,即可得出答案.【详解】解:①没有最小的整数,所以原说法错误;②有理数包括正数、0和负数,所以原说法错误;③﹣2π是无理数,所以原说法错误; ④237是无限循环小数,是分数,所以是有理数,所以原说法错误; ⑤无限小数不都是有理数,所以原说法正确; ⑥正数中没有最小的数,负数中没有最大的数,所以原说法正确;⑦非负数就是正数和0,所以原说法错误;⑧正整数、负整数、正分数、负分数和0统称为有理数,所以原说法错误; 故其中错误的说法的个数为6个.故选:B .【点睛】本题考查了有理数的分类,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点是解题的关键.注意整数和正数的区别,注意0是整数,但不是正数.二、填空题11.把下列各数表示在数轴上,并把这些数按从大到小的顺序用“>”连接起来. 0,327-,()2--,1--,9,22-画图见解析【分析】先把各数化简在数轴上表示出各数再根据在数轴上右边的数总比左边的数大把这些数按从大到小的顺序用>连接起来【详解】解:在数轴上表示为:按从大到小的顺序用>连接为:【点睛】本题主要考查了解析:画图见解析,()239201272>-->>-->->- 【分析】先把各数化简,在数轴上表示出各数,再根据“在数轴上,右边的数总比左边的数大”把这些数按从大到小的顺序用“>”连接起来.【详解】解:3273-=-,()22--=,11--=-,93=,224-=-,在数轴上表示为:按从大到小的顺序用>()239201272>-->>-->->-. 【点睛】本题主要考查了实数的大小比较,解题的关键是准确在数轴上表示实数,并利用数轴对实数的大小进行比较.12.把下列各数的序号填入相应的括号内①-3,②π,,④-3.14,,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …}, 无理数集合{ …}.见解析【分析】先求出立方根再根据整数负分数正有理数无理数的定义即可得【详解】解析:见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3=-,13.求下列各式中x 的值(1)21(1)64x +-=; (2)3(1)125x -=.(1);(2)【分析】(1)方程整理后利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)解得:或;(2)解得:【点睛】本题主要考查解方程涉及到立方根平方根解解析:(1)132x =,272x =-;(2)6x = 【分析】(1)方程整理后,利用平方根的性质开平方即可求解;(2)方程直接利用立方根的性质开立方即可求解;【详解】(1)21(1)64x +-= 225(1)4x += 512x +=± 解得:32x =或72x =-; (2)3(1)125x -=15x -=解得:6x =.【点睛】本题主要考查解方程,涉及到立方根、平方根,解题的关键是熟练掌握开平方、开立方根的方法.14.定义:如果将一个正整数a 写在每一个正整数的右边,所得到的新的正整数能被a 整除,则这个正整数a 称为“魔术数”.例如:将2写在1的右边得到12,写在2的右边得到22,……,所得到的新的正整数的个位数字均为2,即为偶数,由于偶数能被2整除,所以2是“魔术数”.根据定义,在正整数3,4,5中,“魔术数”为____________;若“魔术数”是一个两位数,我们可设这个两位数的“魔术数”为x ,将这个数写在正整数n 的右边,得到的新的正整数可表示为()100n x +,请你找出所有的两位数中的“魔术数”是_____________.10202550【分析】①由魔术数的定义分别对345三个数进行判断即可得到5为魔术数;②由题意根据魔术数的定义通过分析即可得到答案【详解】解:根据题意①把3写在1的右边得13由于13不能被3整除故3 解析:10、20、25、50.【分析】①由“魔术数”的定义,分别对3、4、5三个数进行判断,即可得到5为“魔术数”; ②由题意,根据“魔术数”的定义通过分析,即可得到答案.【详解】解:根据题意,①把3写在1的右边,得13,由于13不能被3整除,故3不是魔术数;把4写在1的右边,得14,由于14不能被4整除,故4不是魔术数;把5写在1的右边,得15,写在2的右边得25,……由于个位上是5的数都能被5整除,故5是魔术数;故答案为:5;②根据题意,这个两位数的“魔术数”为x ,则1001001n x n x x+=+, ∴100n x为整数, ∵n 为整数, ∴100x为整数, ∴x 的可能值为:10、20、25、50; 故答案为:10、20、25、50.【点睛】本题考查了新定义的应用和整数的特点,解题的关键是熟练掌握新定义进行解题.15.已知5的整数部分为a ,5-b ,则2ab b +=_________.【分析】求出的大小推出7<<8求出a 同理求出求出b 代入求出即可【详解】解:∵∴∴∴∴故答案为:【点睛】此题考查了无理数的大小的应用关键是确定和的范围解析:37-【分析】的大小,推出7<5<8,求出a ,同理求出253<-<,求出b ,代入求出即可.【详解】解:∵479<<, ∴23<<,32-<<- ∴758<+<,253<-<,∴7a =,523b =--=-,∴()(237337ab b b a b +=+=+=-.故答案为:37-【点睛】此题考查了无理数的大小的应用,关键是确定5和5-16.一个正数的两个平方根分别为27a -与34a -+,则这个正数为_______.169【分析】根据一个正数的两个平方根互为相反数求出a 的值就可以算出这个正数【详解】解:解得∴这个正数是故答案是:169【点睛】本题考查平方根解题的关键是掌握平方根的性质解析:169【分析】根据一个正数的两个平方根互为相反数,求出a 的值,就可以算出这个正数.【详解】解:()27340a a -+-+=,解得3a =-,()23713⨯--=-,∴这个正数是()213169-=. 故答案是:169.【点睛】本题考查平方根,解题的关键是掌握平方根的性质.17.定义一种新运算;观察下列各式;131437=⨯+=()3134111-=⨯-=5454424=⨯+= ()4344313-=⨯-=(1)请你想一想:ab = ;(2)若a b ,那么a b b a (填“=”或“≠” );(3)先化简,再求值:()()2a b a b -+,其中1a =-,2b =.(1)4a+b ;(2);(3)6a-3b-12【分析】(1)观察得到新运算等于第一个数乘以4加上第二个数据此列式即可;(2)根据新运算分别计算出与即可得到答案;(3)根据新运算分别化简再将ab 的值代解析:(1)4a+b ;(2)≠;(3)6a-3b ,-12【分析】(1)观察得到新运算等于第一个数乘以4,加上第二个数,据此列式即可;(2)根据新运算分别计算出a b 与b a 即可得到答案; (3)根据新运算分别化简再将a 、b 的值代入计算. 【详解】(1)ab =4a+b , 故答案为:4a+b ; (2)a b =4a+b ,b a =4b+a , ∵a b , ∴a b ≠b a ,故答案为:≠;(3)()()2a b a b -+ =4(a-b )+(2a+b )=4a-4b+2a+b=6a-3b ,当1a =-,2b =时,原式=-6-6=-12.【点睛】此题考查新定义运算,整式的加减混合运算,正确理解新定义的运算规律并解决问题是解题的关键.18.若求若干个相同的不为零的有理数的除法运算叫做除方,如()()()()2223333÷÷-÷-÷-÷-,等。
第六章实数复习课
你能根据 3 3 1.442,直接说出它们的值吗?
3 0.003, 3 0.03, 3 0.3, 3 30, 3 300, 3 3000
4,已知一个立方体的棱长是4cm,再作一个立方体, 使它的体积是原立方体体积的8倍,求所作的立方体 与原立方体的表面积之比。
5,估计 13 在哪两个相邻整数之间。
扩展:
已知 7 的整数部分和小数部分分别是a和b,
求2a+b的值
6,写出一个在 2和 3 之间的无理数。
7,在如图所示的方格网中,你能画出面积为5的格点 正方形吗?一共能画几个?
6,若 3 2x 1与3 4-5y算表中上一行各数,并将结果填在 表中下一行相应的格里(结果保留4个有效数字)
原式 0.003 0.03 0.3 3 30 300 3000
结果
(2)你能根据 3 1.732,直接说出 0.003, 0.03, 0.3, 30, 300, 3000 的值吗?
实数的有关 概念及应用
概念 分类 绝对值、相反数、倒数 实数与数轴上的点的点一一对应 实数的运算和大小比较
四、合作探究:
1,概念串讲: (1)平方根定义及其符号语言, (2)算术平方根定义 (3) a, a, a 之间的区别与联系 (4)立方根定义及其符号语言, (5)平方根、立方根的性质. (6)有理数、无理数、实数概念, (7)实数的两种分类, (8)数轴上的点与实数一一对应.
(二),书本上第20页第6章总复习A,B,C选讲 1,把一个正方形的面积扩大为原来的4倍,扩大后的 正方形的边长是原来边长的多少倍?若面积扩大为 原来面积的n倍呢?
2,把两个半径分别是3cm和5cm的铅球熔化后做 成一个更大的铅球,这个大铅球的半径是多少? (精确到0.1cm)?
第六章实数复习(公开课)
1、把下列各数分别填入相应的集合内:
检测:
3 2,
1, 4
7,
,
5, 2
2,
20 , 3
4, 9
0,
5, 3 8,
0.373773777 3(相邻两个3之间的7的个数逐次加1)
有理数集合
.
无理数集合
计算卷
.
一、有关算术平方根的计算
检测
例:求下列各数的算术平方根。 (1)4 (2)0.25 (3)6 1
.
5、掌握规律
已知17.2014.147,
那么0.001720的1平方根是0.04147
已知 2.361.53,623.64.85,8
若x0.485,则 8x是 0.236
已知 3 5.251.73,385.253.74,4
则3 52的 50值是17.38
.
6、选择
1.已知 x和 a 2 的和为0,则x的范围是为( B )
.
检测:
若 8与(b-27) 2互为相反数, 求3 -3 b的立方根。
.
三、平方根、立方根在生活中的实际应用
例:一个长方体的长为5 cm、宽为2 cm、高为3 cm,而一个正方体的体积是它的3倍.求这个正方 体的棱长(结果精确到0.01 cm).
3
90
.
检测:
一个正方体的体积为64立方厘米,他的边长 是多少厘米?如果它的边长扩大到原来的2倍, 它的体积是原正方体的多少倍?若正方体的体 积改为原来的正方体的一半,它的边长是多少 厘米?(结果保留一位小数)
检测:
1 1、(1) 3 的倒数是 3 ;
(2) 3 -2的绝对值是 2 3 ;
。 (3)下列各组数中,互为相反数的是( )
第六章实数复习课
绝对值
二、知识点分解--数
每个实数都可以用数轴上的一个点来表示;反过 来,数轴上的每一个点都表示一个实数。即实数和数
轴上点是一一对应的。
性质:在数轴上,右边的点表示的数比左边的点表示 的数大.
牛刀三试
填空
5 5 1、 5 的相反数是_____, 绝对值是_____; 没有倒数的实数是_____. 0
即:若x3 = a,则x =
3
a
开平方:求一个数的平方根的运算,叫做开平方。 开立方:求一个数的立方根的运算,叫做开立方。
二、知识点分解--三种根的对比
算术平方根
平方根
立方根
3
表示方法
a
a0
a
a0
a
a 的取 值
性 质 正数 0 负数
a 为任意数
正数(一个) 互为相反数(两个) 正数(一个)
3 (6) 3 (3)3 _____.
三、知识点应用
计算题:
(1) 144 16 1 8
3 3
(2)2 2 3( 3 2)
(3) (2)
2
2 1 ( 2 1)
四、课堂小结
1、请同学们谈谈这节课你们收获了什么?
2、请同学们谈谈这节课你们有什么疑惑?
实 数
无理数
正无理数 , 2, 3 3,0.010010001 负无理数 , 2, 3 3, 0.010010001
无限不循环小数
牛刀二试
填空:将下列各数分别填入下列的集合括号中
3
9,
7,
4 , 9
3
5 , 7
2,
1 , 3
16, 5,
3
第六章 实数全章复习
第六章 实数全章复习知识点1 算术平方根算术平方根的定义:.一般的,如果一个________的平方等于a ,即______,那么这个______叫做a 的算术平方根.a 的算术平方根记为______,a 叫做______.规定:0的算术平方根是______.算术平方根的表示方法: (用含a 的式子表示)算术平方根具有 性,即⑴被开方数a 0,⑵a 本身 0,必须同时成立[练习]1 . 9的算术平方根可表示为 ,即 =2. -3有算术平方根吗?8的算术平方根是-2吗3式子5-x 有意义,x 的取值范围4已知:y=5-x +x -5+3,求xy 的值① 043=-+-b a ,求a+b 的值4、已知11的小数部分为m ,4-11的小数部分为n ,则=+n m的平方根, _.平方根的表示方法 (用含a 的式子表示)平方根的性质:一个正数有______个平方根,它们______;0的平方根是______;负数______.[练习]1 .3的平方根是 ,它的平方根可表示为 ;2、9的平方根是 . ;______是9的平方根;16的平方根是______.3、表示并求出下列各式的平方根|-5| (-9)24、如果一个数的平方根是1+a 和72-a ,求这个数5.用平方根定义解方程⑴16(x+2)2=49 ⑵4x 2-25=06、下列说法正确的是( )A 、16的平方根是4±B 、6-表示6的算术平方根的相反数C 、 任何数都有平方根D 、2a -一定没有平方根7.下列说法正确的是( )A .169的平方根是13B .1.69的平方根是±1.3C .(-13)2的平方根是-13D .-(-13)没有平方根8.求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______;(3)若,492=x ,则x =______; (4)若x 2=(-2)2,则x =______.叫做a 的立方根,立方根的表示方法: (用含a 的式子表示)立方根的性质:正数的立方根是______数;负数的立方根是______数;0的立方根是______.[练习]1. -27的立方根是 ,表示为2.说出下列各式表示的意义并求值: -3729-= ⑶33)2(-=3.如果32-x 有意义,x 的取值范围为4立方根的定义解方程⑴x 3-27 =0 ⑵2(x+3)3=5125.计算:(1)=-3008.0______;(2)=364611______; (3)=--312719______. 6.体积是64m 3的立方体,它的棱长是______m .7.64的立方根是______;364的平方根是______.8、已知732.13≈,477.530≈,(1)≈300 ;(2)≈3.0 ;(3)0.03的平方根约为 ;(4)若77.54≈x ,则=x9、已知442.133≈,107.3303≈,694.63003≈,求(1)≈33.0 ;(2)3000的立方根约为 ;(3)07.313≈x ,则=x10.(-1)2的立方根是______;一个数的立方根是101,则这个数是______. 11.下列结论正确的是( )A .6427的立方根是43±B .1251-没有立方根 C .有理数一定有立方根D .(-1)6的立方根是-1知识点4:重要公式公式一:2a = 有关练习: 1.2)71(-= 2.如果2)3(-a =a-3,则a 的取值范围是 ; 如果2)3(-a =3-a,则a 的取值范围是3.数a,b 在数轴上的位置如图:化简:2)(b a -+|b-c|公式二: 2)(a = (a ≥0) 综合公式一和二,可知,当满足a 条件时,2a =2)(a公式三: 33a = ;随堂练习4:化简:当1<a <3时,2)1(a - +33)3(-a公式四: 33)(a = 公式五:3a -=5.比较大小:(1);11______1033(2);2______23(3).27______936.求出下列各式中的a :(1)若a 3=0.343,则a =______;(2)若a 3-3=213,则a =______;(3)若a 3+125=0,则a =______;(4)若(a -1)3=8,则a =______.7.若382-x 是2x -8的立方根,则x 的取值范围是______.知识点五:实数定义及分类无理数的定义:实数的定义:实数与 上的点是一一对应的1、判断下列说法是否正确:(1)实数不是有理数就是无理数。
人教版七年级数学下册课件第六章《实数》单元复习
②按正负分类:
正实数
正有理数
正无理数
实数 0
负实数
负有理数
负无理数
(3)实数与数轴上的点是一一对应的.
6.把下列各数填入相应的大括号中(只填序号):
①-3,②
·
,③ ,④0,⑤0.7,⑥ ,⑦π,⑧-1..
(1)整数:{ ②③④ …};
(2)负分数:{ ①⑧ …};
(3)无理数:{ ⑥⑦ …}.
所示:
化简:2 (b-a)2 +|b+c|- (a-c)2 -2|a|.
解:原式=2(b-a)+b+c+a-c+2a
=2b-2a+b+c+a-c+2a
=3b+a.
A.0.09 的平方根是 0.3
B. 16=±4
C.0 的立方根是 0
D.1 的立方根是±1
3
5.计算: -8= -2
.
知识点三:实数
(1)实数的概念:有理数和 无理
数统称为实数.
(2)实数的分类
①按定义分类:
实数
正有理数
有理数 0
有限小数或无限循环小数
负有理数
无理数
正无理数
负无理数
无限不循环小数
第六章
实数
单元复习
知识要点
知识点一:算术平方根与平方根
(1)算术平方根:a 的算术平方根记为 a.
①正数有 1
②负数 没有
个算术平方根;
算术平方根;
③0的算术平方根是 0 .
(2)平方根:正数 a 的平方根记为± a.
①一个正数有 2
②负数 没有
个平方根,它们互为 相反
平方根;
③0的平方根是 0 .
(1)实数之间不仅可以进行加、减、乘、除(除数不为0)、乘
第六章 实数复习题及答案
第六章 实数复习题及答案一、选择题1.设记号*表示求a 、b 算术平均数的运算,即*2a ba b +=,则下列等式中对于任意实数a ,b ,c 都成立的是( ).①(*)()*()a b c a b a c +=++;②*()()*a b c a b c +=+; ③*()(*)(*)a b c a b a c +=+;④(*)(*2)aa b c b c c+=+. A .①②③B .①②④C .①③④D .②④ 2.已知4a ++(b ﹣3)2=0,则(a +b )2019等于( ) A .1B .﹣1C .﹣2019D .20193.下列计算正确的是( ) A .42=±B .1193±= C .2(5)5-= D .382=±4.下列各数-(-3),0,221(-)--2--42π,,,中,负数有( ) A .1个B .2个C .3个D .4个5.我们规定一种运算“★”,其意义为a ★b =a 2﹣ab ,如2★3=22﹣2×3=﹣2.若实数x 满足(x +2)★(x ﹣3)=5,则x 的值为( ) A .1B .﹣1C .5D .﹣56.下列命题中,是真命题的有( )①两条直线被第三条直线所截,同位角的角平分线互相平行; ②立方根等于它本身的数只有0; ③两条边分别平行的两个角相等; ④互为邻补角的两个角的平分线互相垂直 A .4个B .3个C .2个D .1个7.如图,数轴上,A B 两点表示的数分别为1,2--,点B 关于点A 的对称点为点C ,则点C 所表示的数是( )A .12B 21C .22D 228.在实数227-911π38中,无理数的个数是( ) A .1个 B .2个 C .3个 D .4个 9.4的平方根是( ) A .±16B .2C .﹣2D .±210.下列判断正确的有几个( )①一个数的平方根等于它本身,这个数是0和1;②实数包括无理数和有理数;333的立方根;④无理数是带根号的数;⑤2的算术平方根是2. A .2个 B .3个 C .4个 D .5个 二、填空题11.如图所示,把半径为2个单位长度的圆形纸片放在数轴上,圆形纸片上的A 点对应原点,将圆形纸片沿着数轴无滑动地逆时针滚动一周,点A 到达点A′的位置,则点A′表示的数是_______.12.下面是按一定规律排列的一列数:14,37,512,719,928…,那么第n 个数是__. 13.如果一个数的平方根和它的立方根相等,则这个数是______.14.对任意两个实数a ,b 定义新运算:a ⊕b=()()a a b b a b ≥⎧⎨⎩若若<,并且定义新运算程序仍然是先做括号内的,那么(5⊕2)⊕3=___. 15.为了求2310012222+++++的值,令2310012222S =+++++,则234101222222S =+++++,因此101221S S -=-,所以10121S =-,即231001*********+++++=-,仿照以下推理计算23202013333+++++的值是____________.16.规定用符号[]x 表示一个实数的整数部分,如[3.65]3,31⎡⎤==⎣⎦,按此规定113⎡⎤-=⎣⎦_____.17.对于任意有理数a ,b ,定义新运算:a ⊗b =a 2﹣2b +1,则2⊗(﹣6)=____. 18.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.19.如图,数轴上的点A 能与实数15,3,,22---对应的是_____________20.如果36a =b 7的整数部分,那么ab =_______.三、解答题21.(阅读材料)数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:10=100=,1000593191000000<<,∴10100<<.∴能确定59319的立方根是个两位数. 第二步:∵59319的个位数是9,39729= ∴能确定59319的立方根的个位数是9.第三步:如果划去59319后面的三位319得到数59,<<34<<,可得3040<<,由此能确定59319的立方根的十位数是3,因此59319的立方根是39. (解答问题)根据上面材料,解答下面的问题 (1)求110592的立方根,写出步骤. (2=__________. 22.先阅读下面的材料,再解答后面的各题:现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中,,,,,Q W E N M 这26个字母依次对应1,2,3,,25,26这26个自然数(见下表).给出一个变换公式:(126,3)3217(126,31)318(126,32)3J J J xx x x x x x x x x x x x x x ⎧=≤≤⎪⎪+⎪=+≤≤⎨⎪+⎪=+≤≤⎪⎩是自然数,被整除是自然数,被除余是自然数,被除余 将明文转成密文,如4+24+17=193⇒,即R 变为L :11+111+8=123⇒,即A 变为S .将密文转成成明文,如213(2117)210⇒⨯--=,即X 变为P :133(138)114⇒⨯--=,即D 变为F .(1)按上述方法将明文NET 译为密文.(2)若按上方法将明文译成的密文为DWN ,请找出它的明文.23.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.小白在草稿纸上画了一条数轴进行操作探究: 操作一:(1)折叠纸面,若使表示的点1与﹣1表示的点重合,则﹣2表示的点与 表示的点重合; 操作二:(2)折叠纸面,若使1表示的点与﹣3表示的点重合,回答以下问题: ①3表示的点与数 表示的点重合;②若数轴上A 、B 两点之间距离为8(A 在B 的左侧),且A 、B 两点经折叠后重合,则A 、B 两点表示的数分别是__________________; 操作三:(3)在数轴上剪下9个单位长度(从﹣1到8)的一条线段,并把这条线段沿某点折叠,然后在重叠部分某处剪一刀得到三条线段(如图). 若这三条线段的长度之比为1:1:2,则折痕处对应的点所表示的数可能是_________________________.24.已知32x y --的算术平方根是3,26x y +-的立方根是37的整数部分是z ,求42x y z ++的平方根.25.规律探究计算:123499100++++⋅⋅⋅++如果一个个顺次相加显然太繁杂,我们仔细观察这个式子的特点,发现运用加法的的运算律,可简化计算, 提高计算速度.()()()12349910011002995051101505050++++⋅⋅⋅++=++++⋅⋅⋅++=⨯=计算:(1)246898100++++⋅⋅⋅++(2)()()()()22334100101a m a m a m a m ++++++⋅⋅⋅++26.给定一个十进制下的自然数x ,对于x 每个数位上的数,求出它除以2的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数x 的“模二数”,记为()2M x .如()()22735111, 561101M M ==.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定: 0与 0相加得 0; 0与1相加得1;1与1相加得 0,并向左边一位进1.如735561、的“模二数”111101、相加的运算过程如下图所示.根据以上材料,解决下列问题:(1)()29653M 的值为______ ,()()22589653M M +的值为_(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如()()22124100,630010M M ==,因为()()()222124630110,124630110M M M +=+=,所以()()()222124*********M M M +=+,即124与630满足“模二相加不变”.①判断126597,,这三个数中哪些与23“模二相加不变”,并说明理由; ②与23“模二相加不变”的两位数有______个【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】①中(*)2b c a b c a ++=+,()*()22a b a c b ca b a c a ++++++==+,所以①成立;②中*()2a b c a b c +++=,()*2a b c a b c +++=,所以②成立; ③中()()*(*)*222a b a c b ca b a c a a b c ++++=+=+=+,所以③不成立; ④中(*)2a b a b c c ++=+,22(*2)22222a abc a b c a b b c c +++++=+==+,所以④成立. 故选B.2.B解析:B 【分析】根据非负数的性质,非负数的和为0,即每个数都为0,可求得a 、b 的值,代入所求式子【详解】根据题意得,a +4=0,b ﹣3=0, 解得a =﹣4,b =3,∴(a +b )2019=(﹣4+3)2019=﹣1, 故选:B . 【点睛】本题考查了非负数的性质,以及-1的奇次方是-1,理解非负数的性质是解题关键.3.C解析:C 【分析】A 、根据算术平方根的定义即可判定;B 、根据平方根的定义即可判定;C 、根据平方根的性质计算即可判定;D 、根据立方根的定义即可判定. 【详解】A 2=,故选项错误;B 、13=±,故选项错误;C 、2(=5,故选项正确;D 2,故选项错误. 故选:C . 【点睛】此题考查平方根,立方根,解题关键在于掌握运算法则.4.C解析:C 【分析】根据相反数的定义,有理数的乘方,绝对值的性质分别化简,再根据正负数的定义进行判断即可得解 【详解】解:-(-3)=3;211()24-=;224-=-;44--=-; 所以2-2-4π--,,是负数,共3个。
第六章 实数复习一-教师用卷
第六章实数复习一班级: 姓名: 学号:一、全章知识梳理1. 算术平方根、平方根和立方根: 算术平方根平方根立方根定义 x 2=a (x >0), x 叫a 的算术平方根x 2=a, x 叫a 的平方根x 3=a, x 叫a 的立方根符号性质正数有两个平方根,它们互为相反数 0的平方根是0 负数没有平方根为任意数正数的立方根是正数.负数的立方根为负数. 0的立方根是0.2. 开方与乘方互为逆运算3. 被开方数的小数点向右或者向左移动2n (3n )位,它的算术平方根(立方根)的小数点就相应地向右或者向左移动n 位.4.实数 (1) 分类①按符号分类 ⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正有理数正实数正无理数实数零负有理数负实数负无理数①按属性分类⎧⎧⎫⎪⎪⎪⎨⎬⎪⎪⎪⎪⎨⎩⎭⎪⎧⎫⎪⎨⎬⎪⎩⎭⎩正有理数有理数零有限小数或无限循环小数负有理数实数正无理数无理数无限不循环小数负无理数 (2)实数的连续性.实数和数轴上的点是一一对应关系. (3 实数的有序性任何两个实数都可以比较大小,常用方法:估算法、平方法、作差比较法等(4)实数的稠密性任何两个实数之间,都有无数多个实数. (5)实数四则运算的封闭性任何两个实数进行加、减、乘、除的结果都是实数. 数系扩充后原有的运算法则、运算律仍然成立. 二、全章知识结构三、典型习题1. 下列说法中,正确的有( )①只有正数才有平方根;②a 一定有立方根;③√−a 没有意义;④√−a 3=−√a 3;⑤只有正数才有立方根.A. 1个B. 2个C. 3个D. 4个【答案】B 【解析】 【分析】本题考查平方根和立方根的性质.利用平方根与立方根的性质,对各个选项一一判断即可. 【解答】解:非负数都有平方根,所以①是错误的; 任何数的立方根都只有一个,所以②是正确的; a >0时,√−a 没意义,所以所以③是错误的;√−a 3=−√a 3,所以④是正确的.所以正确的有2个. 故选B .2. 下列各式成立的是A. √(−2)2=−2B. √52=−5C. √x 2=xD. √(−6)2=6【答案】D 【解析】 【分析】本题主要考查算术平方根,根据算术平方根的性质可逐项计算,进而判断求解.【解答】解:A.√(−2)2=2,故错误;B.√52=5,故错误;C.√x2=x(x≥0),故错误;D.√(−6)2=6,故正确;故选D.3.在以下数0.3,0,π−3,π,0.123456…(小数部分由相继的正整数组成),20.1001001001…中,其中无理数的个数是()A. 2B. 3C. 4D. 5【答案】B【解析】【分析】本题考查无理数的概念.无理数就是无限不循环小数.根据无理数的定义求解即可.【解答】解:无理数有:π−3,,0.123456…(小数部分由相继的正整数组成),共有3个.故选B.4.如图所示,数轴上表示2,√5的点分别为C,B,点C是AB的中点,则点A表示的数是()A. −√5B. 2−√5C. 4−√5D. √5−2【答案】C【解析】【分析】本题主要考查了数轴上两点之间中点的计算方法.首先可以求出线段BC的长度,然后利用中点的性质即可解答.【解答】解:∵表示2,√5的对应点分别为C,B,∴CB=√5−2,∵点C是AB的中点,则设点A表示的数是x,则x=4−√5,∴点A表示的数是4−√5.故选C.5.有资料表明,一粒废旧的纽扣电池大约会污染60万升水.某校七年级(1)班有50名学生,若每名学生都丢弃一粒纽扣电池,污染的水大约为A. 3×103万升B. 3×102万升C. 6×105万升D. 3×107万升【答案】A【解析】【分析】本题主要考查了科学计数法的应用,根据题意,一个纽扣电池会污染60万升水,则50个学生会每人丢弃一颗纽扣电池会污染50×60万升水,再用科学技术法表示即可,属于基础题;【解答】解:根据题意50个学生会每人丢弃一颗纽扣电池会污染50×60万升水,50×60=3000=3×103(万升),故选A.6.①倒数等于本身的数为1;②若a、b互为相反数,那么a、b的商必定等于−1;③对于任意实数x,|x|+x一定是非负数;④一个数前面带有“−”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0和1;⑧平方等于自身的数为0和1;其中正确的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《实数》自测一、填空题:(本题共10小题,每小题2分,共20分) 1、()26-的算术平方根是__________。
2、ππ-+-43= _____________。
3、2的平方根是__________。
4、实数a ,b ,c 在数轴上的对应点,如图所示,化简c b c b a a ---++2=_____________。
5、若m 、n 互为相反数,则n m +-5=_________。
6、若2)2(1-+-n m =0,则m =________,n =_________。
7、若 a a -=2,则a______0。
8、12-的相反数是_________。
9、 38-=________,38-=_________。
10、绝对值小于π的正整数有__________________________。
二、选择题:(本题共10小题,每小题3分,共30分)11、代数式12+x ,x ,y ,2)1(-m ,33x 中一定是正数的有( )。
A 、1个B 、2个C 、3个D 、4个 12、若73-x 有意义,则x 的取值范围是( )。
A 、x >37-B 、x ≥ 37- C 、x >37 D 、x ≥3713、若x ,y 都是实数,且42112=+-+-y x x ,则xy 的值( )。
A 、0B 、 21C 、2D 、不能确定14、下列说法中,错误的是( )。
A 、 4的算术平方根是2B 、 81的平方根是±3C 、 8的立方根是±2 D、 立方根等于-1的实数是-115、64的立方根是( ) A 、±4 B 、4 C 、-4 D 、1616、已知04)3(2=-+-b a ,则b a 3的值是( )。
A 、 41 B 、- 41 C 、433D 、4317、计算33841627-+-+的值是( )。
A 、1 B 、±1 C 、2 D 、718、有一个数的相反数、平方根、立方根都等于它本身,这个数是( )。
A 、-1 B 、1 C 、0 D 、±1 19、下列命题中,正确的是( )。
A 、无理数包括正无理数、0和负无理数B 、无理数不是实数C 、无理数是带根号的数D 、无理数是无限不循环小数 20、下列命题中,正确的是( )。
A 、两个无理数的和是无理数B 、两个无理数的积是实数C 、无理数是开方开不尽的数D 、两个有理数的商有可能是无理数 三、解答题:(本题共6小题,每小题5分,共30分)21、求972的平方根和算术平方根。
22、计算)2528(226-+的值。
23、解方程x 3-8=0。
24、若0)13(12=-++-y x x ,求25y x +的值。
25、计算)515(5-26、若13223+-+-=x x y ,求3x +y 的值。
四、综合应用:(本题共10小题,每小题2分,共20分) 27、若a 、b 、c 满足01)5(32=-+++-c b a ,求代数式acb -的值。
28、已知052522=--+-xx x y , 求7(x+y)-20的立方根。
实数单元测试二、填空题:1. 2)4(±的算术平方根是 ,36的平方根是 . 327-=2. 比较大小:3 1.7 ; 23-23-; 39 23. 若52=x ,则=x ;若22)3(-=x ,则=x ;若16)1(2=-x ,=x ; 4. 37-的相反数是 , 绝对值等于3的数是5. 若a =20, 则=2.0 ;289.114.23≈,且89.123=-x ,则=x .6. 如果正方体的体积扩大为原来的27倍,则边长扩大为原来的 倍;若体积扩大为原来的2n 倍,则边长扩大为原来的 倍.7. 如果a ,b 都是有理数,且2232-=+b a ,则a = ,b =8. 已知1042=-++y x ,则3=+y x9. 若41<<x ,则化简22)1()4(-+-x x 的结果是10.若a ,b 都是无理数,且2=+b a ,则a ,b 的值可以是 .(填一组) 二、选择题11.下列说法正确的是 ( ) A .无限小数是无理数 B.带根号的数都是无理数 C .无理数是无限小数 D.无理数是开方开不尽的数12.2)2(-的平方根是 ( )A .±2 B. ±1.414 C. ±2 D.-2 13.下列式子中,正确的是 ( )A .3355-=- B.6.06.3-=- C. 13)13(2-=- D. 636±=14.有下列说法:①有理数和数轴上的点一一对应;②不带根号的数一定是有理数;③负数没有立方根;④无理数包括正无理数、负无理数和零.其中正确的有 ( ) A .0个 B.1个 C. 2个 D.3个15.若式子33112xx -+-有意义,则x 得取值范围是 ( ) A .2≥x B.3≤x C.32≤≤x D.以上都不对16.下列说法正确的有 ( )①一个数的立方根的相反数等于这个数的相反数的立方根;②64的平方根是±8,立方根是±4;③a ±表示a 的平方根,3a 表示a 的立方根;④a -一定是负数A. ①③B. ①③④C. ②④D. ①④17.-27的立方根与81的平方根之和为 ( ) A.0 B.6 C.0或-6 D.-12或618.若数轴上表示数x 的点在原点左边,则化简23x x +的结果是 ( )A.-4xB.4xC.-2xD.2x19.在实数范围内,下列判断正确的是 ( ) A.若m=n,则n m = B.若22b a >, 则b a >C.若2a =2)(b ,则b a =D.若3a =3b ,则b a =20.有个数值转换器,原理如下:当输入x 为64时,输出y 的值是 ( )A. 4B. 43C.3D.32三、解答题(60分)21.将下列各数的序号填在相应的集合里.(8分)①3512,②π,③3.1415926,④-0.456,⑤3.030030003……(每相邻两个3之间0的个数逐渐多1),⑥0,⑦115,⑧-39,⑨2)7(-,⑩1.0有理数集合:{ ……};是有理数无理数集合:{ ……}; 正实数集合:{ ……}; 整数集合: { ……}; 22.计算(10分)⑪π++221 (414.12≈ 精确到0.01) ⑫33325533++--解: 解:23.(5分)已知12-a 的平方根是3±,13-+b a 的算术平方根是4,求b a 2+的平方根.24.(5分)已知a ,b 为实数,且满足01)1(1=---+b b a ,则20092009b a-的值时多少?25.(5分)已知x ,y 满足x x x y 289161622---+-=,求xy 的平方根.26.(5分)已知aa a =-+-20092008,求22008-a 的值.27.(10分)阅读下面的文字,解答问题.大家知道2是无理数,而无理数是无限不循环小数,因此2的小数部分我们不可能全部地写出来,于是小明用12-来表示2的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分。
请解答:已知:y x +=+310,其中x 是整数,且10<<y ,求y x -的相反数.实数单元测试(一)填空1.16的平方根是________.3.49的平方根是_______.5.4的平方根是_______.7.81的平方根是________.8.25的算术平方根是_________. 9.49的算术平方根是_________.11.62的平方根是_________.12.0.0196的算术平方根是________.13.4的算术平方根是________;9的平方根是________. 14.64的算术平方根是________.15.36的平方根是________;4.41的算术平方根是_______.18.4的平方根是_______,4的算术平方根是________.19.256的平方根是_______.35.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是[ ] A.a与b互为相反数; B.a+b<0; C.-a<0; D.b-a<0 37.与数轴上的点一一对应的数是________.38.________统称整数;有理数和无理数统称_________.0.1010010001…各数中,属于有理数的有________;属于无理数的有________.40.把下列各数中的无理数填在表示无理数集合的大括号里:无理数集合:{ }41.绝对值最小的实数是________.44.无限不循环小数叫做________数.(二)选择46.36的平方根是[ ]48.在实数范围内,数0,7,-81,(-5)2中,有平方根的有 [ ] A.1个; B.2个; C.3个; D.4个.A.-36; B.36; C.±6; D.±36.50.下列语句中,正确的是 [ ]51. 0是 [ ]A.最小的有理数 B.绝对值最小的实数; C.最小的自然数 D.最小的整数.52.以下四种命题,正确的命题是 [ ] A.0是自然数; B.0是正数; C.0是无理数; D.0是整数.53.和数轴上的点一一对应的数为[ ]A.整数;B.有理数;C.无理数;D.实数.54.和数轴上的点一一对应的数是[ ]A.有理数; B.无理数; C.实数; D.不存在这样的数.55.全体小数所在的集合是 [ ]A.分数集合; B.有理数集合; C.无理数集合; D.实数集合.56.下列三个命题:(1)两个无理数的和一定是无理数;(2)两个无理数的积一定是无理数;(3)一个有理数与一个无理数的和一定是无理数.其中真命题是 [ ]A.(1),(2)和(3); B.(1)和(3); C.只有(1); D.只有(3).数是 [ ] A.4; B.3; C.6; D.5.59.数轴上全部的点表示的数是 [ ]A.自然数; B.整数; C.实数; D.无理数;60.和数轴上的点成一一对应关系的数是 [ ]A.无理数; B.有理数; C.实数; D.自然数.61.数轴上全部的点表示的数是 [ ]A.有理数; B.无理数; C.实数.[ ]63.和数轴上的点是一一对应的数是 [ ]A.自然数; B.整数; C.有理数; D.实数.A.1个; B.2个; C.3个; D.5个.65.不论x,y为什么实数,x2+y2+40-2x+12y的值总是 [ ]A.正数; B.负数; C.0; D.非负数.数为 [ ]A.2; B.3; C.4; D.5.A.1; B.是一个无理数; C.3; D.无法确定.A.n为正整数,a为实数; B.n为正整数,a为非负数;C.n为奇数,a为实数; D.n为偶数,a为非负数.69.下列命题中,真命题是 [ ] A.绝对值最小的实数不存在; B.无理数在数轴上的对应点不存在;C.与本身的平方根相等的实数不存在; D.最大的负数不存在.[ ]A.0.0140; B.0.1410; C.4.459; D.0.4459.A.1.525; B.15.25; C.152.5; D.1525.A.4858; B.485.8; C.48.58; D.4.858.A.0.04858; B.485.8; C.0.000485 D.48580.35.a,b是两个实数,在数轴上的位置如图10-1所示,下面正确的命题是[ ]A.a与b互为相反数; B.a+b<0; C.-a<0; D.b-a<0面积为8面积为213.3 实数一、填空:1.若无理数a 满足:1<a<4,请写出两个你熟悉的无理数:•_____,•______.2._________.________.π|=________.5.比较大小,-163 6.大于_______.7.设a 是最小的自然数数,b 是最大负整数,c 是绝对值最小的实数,则a+b+c=______. 二、选择:8.(2003年上海市)下列命题中正确的是( )A.有限小数不是有理数B.无限小数是无理数C.数轴上的点与有理数一一对应D.数轴上的点与实数一一对应 9.(2004年安徽省)下列四个实数中是无理数的是( ) A.2.5 B.103C.πD.1.414 10.(2004年杭州市)有下列说法:①带根号的数是无理数;•②不带根号的数一定是有理数;③负数没有立方根;④17的平方根,其中正确的有( ) A.0个 B.1个 C.2个 D.3个11.-53、-2π四个数中,最大的数是( ) A.532π12.在实数范围内,下列各式一定不成立的有( )12a -=0. A.1个 B.2个 C.3个 D.4个三、解答:13.把下列各数分别填在相应的集合中:-1112.4π,..0.23,3.14有理数集合 无理数集合14.根据右图拼图的启示:(1)=________;(2)(3)15.已知坐标平面内一点A(-2,3),将点A个单位,个单位,得到A ′,则A ′的坐标为________. 16.阅读下面的文字,解答问题.是无理数,而无理数是无限不循环小数,出来,-1的小数部分,你同意小明的表示方法吗?事实上,小明的表示方法是有道理的,的整数部分是1,•将这个数减去其整数部分,差就是小数部分.请解答:已知其中x 是整数,且0<y<1,求x-y 的相反数.1. 4的值是()A .4B .2C .-2D .±22. 9等于()A .1B .2C .3D .43.已知实数x ,y 满足2-x +(y+1)2=0,则x-y 等于()A .3B .-3C .1D .-14. 4的算术平方根是( )5.已知|a-1|+ b +7=0,则a+b=()A .-8B .-6C .6D .89.9的平方根是() A .3 B .±3 C .3 D .±38.16的平方根是( )A .8B .4C .±4D .±27.(-2)2的算术平方根是( ) A .2 B .±2C .-2D .26.若x ,y 为实数,且|x+1|+ 1-y =0,则(yx)2011的值是( )A .0B .1C .-1D .-20115.(1)按照上述两个等式及其验证过程的基本思路,猜想4 154的变形结果并进行验证;(2)针对上述各式反映的规律,写出用n (n 为任意自然数,且n≥2)表示的等式,并给出证明.)观察下列各式及其验证过程:1.一个正方形的面积是15,估计它的边长大小在( ) A .2与3之间B .3与4之间C .4与5之间D .5与6之间2.下面四个实数中,是无理数的为( ) A .0 B .3 C .-2D .724.给出四个数,-1,0,0.5,7 ,其中为无理数的是()A .-1B .0C .0.5D .76.(2012•天津)估计7+1的值在()A .2到3之间B .3到4之间C .4到5之间D .5到6之间.下列各数中比0小的数是( )A .-3B .31C .3D .315.在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和-1,则点C 所对应的实数是()A .1+3 B .2+ 3 C .2 3-1 D .23+116.下列实数中,无理数是( ) A .-31 B .π C .9D .|-2|20.在实数0,-π,3,-4中,最小的数是()A .0B .-πC .3 D .-423.实数a 、b 在数轴上对应点的位置如图所示,则下列各式正确的是( ) A .a >bB .a=bC .|a|>|b|D .|a|<|b|30.如图,在数轴上表示实数14的点可能是( )A .点MB .点NC .点PD .点Q。