高中数学 第三章 3.3.1二元一次不等式(组)与平面区域
课程资料:二元一次不等式(组)表示的平面区域
3.点 P(1,-1)在直线y=ax+b的上方,则a,b满足的 关系式:( B ) A. a+b>-1 B. a+b<-1 C. a+b>1 D. a-b<-1
7.确定m的范围,使点(1,2)和点(1,1)在y 3x m 0
的异侧.
5.若不等式组
y
≥
a,
表示的平面区域是一个三角
0 ≤ x ≤ 2
形,则 a 的取值范围是( C )
A. a 5
B. a≥7
C. 5≤a 7
D. a 5 或 a≥7
[例4] 画出不等式(x+2y+1)(x-y+4)>0表示 的区域.
[解] 原不等式等价于
①xx-+y2+y+4>1>0.0, 或
• §3.3.1二元一次不等式(组) 表示的平面区域
那么:x – y < 6或x – y形?
问题2
一条直线
直线将平面分成两部分,这与 x y ()6
有什么关联呢?
y
x –y =6
左上方区
O
域
x
右下方 区域
二元一次不等式x-y<6表示直 线x- y=6左上方的平面区域
2.有粮食和石油两种货物,可用轮船和飞机两种 方式运输,每天每艘轮船和每架飞机的运输量 如下表:
货物 轮船运输量 飞机运输量
粮食/t 300
150
石油/t 250
100
现在要在一天之内运输2 000 t粮食和1 500 t石
油,试用代数和几何两种方法表示运输工具和
运输数量满足的关系.
解:设需要 x 艘轮船,y 架飞机,代数关系式和几何描述(如
(3)
3.3.1二元一次不等式(组)与平面区域(一)
企业和个人贷款,希望这笔贷款至少可带来3万元的收益, 其中从企业贷款中获益12%,从个人贷款中获益10%.那 么,信贷部应如何分配资金呢?
x y 2500, 12 x 10 y 300 x 0, y0
1. 我们把含有两个未知数,并且未知数的次数是1的不
满足 x y 6 的点集在坐标平面上是怎样的图形?
l:x-y=6
问题一
满足 x y 6 的点集{( x, y) x y 6}在坐标平面上 是怎样的图形?
l:x-y=6
二元一次不等式 x-y<6所表示的图形.
在直角坐标系中,所有点被直线l : x-y<6分成三类: ①在直线l上的点;
确定.
一般地
C≠0时,常用点(0,0)确定.
C=0时,常用点(0,1)或(1,0)确定.
二元一次不等式Ax+By+C>0表示的平面区域常用 “直线定界,特殊点定域”的方法,即画线—取点—判 断.
例1. 画出x+4y<4表示的平面区域.
练习
教材P86练习第1、2题
x 3 y 6 0 例2. 画出 表示的平面区域. x y 2 0
l:x-y=6
问题一
满足 x y 6 的点集{( x, y) x y 6}在坐标平面上 是怎样的图形?
问题二
满足 Ax By C 0 的点集 {(x, y) Ax By C 0}
在坐标平面上是怎样的图形?
( A, B不同时为0)
问题三
满足 Ax 2 Bx C 0 的点集源自Ax 2 Bx C 0 的同
(1) x y 1
1.判断下列式子是不是二元一次不等式? 2
(2) x y 1
高中数学必修5课件:第3章3-3-1二元一次不等式(组)与平面区域
数学 必修5
第三章 不等式
(3)若直线 l:Ax+By+C=0,记 f(x,y)=Ax+By+C,M(x1, y1),N(x2,y2),则
点M,N在l的同侧 ⇔ fx1,y1·fx2,y2>0 点M,N在l的异侧 ⇔ fx1,y1·fx2,y2<0
数学 必修5
第三章 不等式
1.不等式x-2y≥0表示的平面区域是( )
() A.32 4 C.3
B.23 D.34
数学 必修5
第三章 不等式
解析: 如图所示为不等式表示的平 面区域,平面区域为一三角形,三个顶点 坐标分别为(4,0),43,0,(1,1),所以三角 形的面积为 S=12×4-43×1=43.
答案: C
数学 必修5
第三章 不等式
用二元一次不等式(组)表示实际问题
数学 必修5
第三章 不等式
答案:
4x+3y≤480, 2x+5y≤500, x≥0, y≥0, x,y∈N*
数学 必修5
第三章 不等式
4.画出不等式组x0-≤yx≤+1y0≤,20, 0≤y≤15,
表示的平面区域.
解析: 根据题意画出不等式组表示的平面区域,如图所
示.
数学 必修5
第三章 不等式
数学 必修5
第三章 不等式
3.一工厂生产甲、乙两种产品,生产每种1 t产品的资源 需求如下表:
品种 电力/kW·h 煤/t 工人/人
甲
2
3
5
乙ቤተ መጻሕፍቲ ባይዱ
8
5
2
该厂有工人200人,每天只能保证160 kW·h的用电额度, 每天用煤不得超过150 t,请在直角坐标系中画出每天甲、乙两 种产品允许的产量的范围.
高中数学第三章不等式3.3.1二元一次不等式组与平面区域课件新人教A版必修5
则有
该不等式组表示的平面区域如图阴影部分所示
≥ 0,
≥ 0.
(含边界).
-19-
二元一次不等式(组)与
平面区域
探究一
探究二
课前篇自主预习
探究三
思维辨析
课堂篇探究学习
课堂篇探究学习
当堂检测
反思感悟用二元一次不等式组表示实际问题的步骤
1.先根据问题的需要选取起关键作用且关联较多的两个量,并用字
(1)定义:我们把含有两个未知数,并且未知数的最高次数是1的不等
式称为二元一次不等式;把由几个二元一次不等式组成的不等式组
称为二元一次不等式组.
(2)解集:满足二元一次不等式(组)的x和y的取值构成有序数对(x,y),
所有这样的有序数对(x,y)构成的集合称为二元一次不等式(组)的
解集.有序数对可以看成直角坐标平面内点的坐标.于是,二元一次
课堂篇探究学习
当堂检测
用二元一次不等式(组)表示实际问题
例3投资生产A产品时,每生产100 吨需要资金200 万元,需场地200
平方米;投资生产B产品时,每生产100 吨需要资金300 万元,需场地
100 平方米.现某单位可使用资金1 400 万元,场地900 平方米,用数
学关系式和图形表示上述要求.
(1,0)作为测试点.
-6-
二元一次不等式(组)与
平面区域
课前篇自主预习
课堂篇探究学习
3.做一做:
(1)判断正误.
①不等式Ax+By+C>0是二元一次不等式.(
)
②点(1,3)在不等式2x-y-2<0所表示的平面区域内. (
)
3.3.1平面区域
高二数学必修五 编号:SX-05-113.3.1 二元一次不等式(组)与平面区域【学习目标】1.了解二元一次不等式表示的平面区域.2.会画出二元一次不等式(组)表示的平面区域.【基础知识】1.二元一次不等式(组)的概念①含有 未知数,并且未知数的次数是 的不等式叫做二元一次不等式. ②由几个二元一次不等式组成的不等式组称为 .2.二元一次不等式表示的平面区域①在平面直角坐标系中,二元一次不等式Ax +By +C>0表示直线 某一侧所有点组成的平面区域,把直线画成 ,以表示区域不包括边界.②不等式Ax +By +C≥0表示的平面区域包括边界,把边界画成 .探究点一 二元一次不等式表示的平面区域在平面直角坐标系中,画出直线x -y +2=0,并标出以下九点:O(0,0),A(0,2), B(-2,0),C(-1,1),D(1,0),E(0,-1),F(-3,0),G(-2,2),H(0,3).通过图象容易得出以下结论:(1)点A(0,2),B(-2,0),C(-1,1)的坐标满足方程 ,它们在直线x -y +2=0上;(2)点O(0,0),D(1,0),E(0,-1)的坐标满足不等式 ,它们在直线x -y +2=0的 ;(3)点F(-3,0),G(-2,2),H(0,3)的坐标满足不等式 ,它们在直线x -y +2=0的 .◆◆ 一般地,二元一次不等式Ax +By +C>0与Ax +By +C<0分别表示直线Ax +By +C =0 (A 2+B 2≠0)两侧的平面区域.例如,不等式 表示直线x +y +2=0右上方的平面区域; 表示直线x +y +2=0左下方的平面区域.即:同侧同号,同号同侧:异侧异号,异号异侧P(11,y x )、Q(22,y x )在直线Ax +By +C =0 同侧⇔P(11,y x )、Q(22,y x )在直线Ax +By +C =0 异侧⇔探究点二 二元一次不等式(组)表示平面区域的确定方法问题 在平面直角坐标系中,画出直线Ax +By +C =0以后,需要判断出不等式Ax +By+C>0与Ax +By +C<0分别表示直线Ax +By +C =0的哪一侧?方法1:特殊值代入法------------直线定界,特殊点定域第一步,直线定边界:画出直线Ax +By +C =0(如果原不等式中带等号,那么画成实线,否则,画成虚线).第二步:取特殊点定平面区域:一般地,当C ≠0时,常取原点(0,0);当C=0时,常取点(1,0)或(0,1).然后计算Ax 0+By 0+C 的值,得出Ax 0+By 0+C 的符号,则原点所在的区域和它同号,另外一侧异号。
高中数学3.3.1 二元一次不等式(组)与平面区域优秀教案
课时同步练3.3.1二元一次不等式〔组〕与平面区域一、单项选择题1.假设点(1,2)-在二元一次不等式10x my ++≤表示的区域中,则m 的取值范围为〔 〕 A .1m B .1m ≥ C .1m < D .1m 2.在平面直角坐标系xOy 中,与原点位于直线3x+2y+5=0同一侧的点是〔 〕 A .〔-3,4〕 B .〔-3,-2〕 C .〔-3,-4〕 D .〔0,-3〕3.不等式组4,0,0x y x y +≤⎧⎪>⎨⎪>⎩表示的平面区域为Ω,则以下坐标对应的点落在区域Ω内的是〔 〕 A .(1,1) B .(3,1)-- C .(0,5) D .(5,1)4.不等式组000x x x ≥⎧⎪≤⎨⎪+-≤⎩表示的平向区域为D ,则区域D 的面积为〔 〕A. B .2 CD5.假设不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩所表示的平面区域被直线43y kx =+分为面积相等的两局部,则k 的值是〔 〕A .73B .37C .43D .346.D 是由不等式组20,{30x y x y -≥+≥所确定的平面区域,则圆224x y +=在区域D 内的弧长为〔 〕A .4πB .2πC .34πD .32π 7.点()2,3A ,且点B 为不等式组00260y x y x y ⎧⎪-⎨⎪+-⎩,所表示平面区域内的任意一点,则||AB 的最小值为〔 〕A .12 B.2 CD .18.假设0,0a b ≥≥且当001x y x y ≥⎧⎪≥⎨⎪+≤⎩时,恒有1ax by +≤,则以,a b 为坐标的点(,)P a b 所形成的平面区域的面积是〔 〕A .12B .4πC .1D .2π 9.不等式||||3x y +<表示的平面区域内的整点个数为〔 〕A .10B .13C .14D .1710.假设不等式组1,10,20,x x ay x y ⎧⎪-+⎨⎪+-⎩可表示为由直线围成的三角形区域〔包括边界〕,则实数a 的范围是〔 〕A .()0,2B .()2,+∞C .()1,2-D .(),1-∞-11.在平面直角坐标系中,假设不等式组44021005220x y x y x y -+≤⎧⎪+-≤⎨⎪-+≥⎩所表示的平面区域被直线1y ax =+分为面积相等的两局部,则a 的值为〔 〕A .12B .1C .2D .9412.设不等式组()221x y y k x ⎧+≤⎪⎨+≤+⎪⎩所表示的区域为D ,其面积为S ,以下命题不正确的是〔 〕 A .假设4S =,则k 的值唯一 B .假设12S =,则k 的值有2个 C .假设D 为三角形,则203k <≤ D .假设D 为五边形,则4k >二、填空题13.坐标原点和点()1,1在直线0x y a +-=的两侧,则实数a 的取值范围是______.14.不等式组3020x x y x y ⎧⎪+⎨⎪-+⎩,,表示的平面区域的面积等于____________.15.不等式组6011x y x y +-≤⎧⎪>⎨⎪>⎩所表示的平面区域内整点的个数是____________16.设不等式组03434x x y x y ⎧⎪+≥⎨⎪+⎩,,所表示的平面区域为D .假设直线1y a x =+()与D 有公共点,则实数a 的取值范围是_____________.17.不等式组04032140x x y x y ≥⎧⎪-⎨⎪+-≤⎩所表示的平面区域被直线y =kx 分成面积相等的两局部,则k 的值为________.18.假设实数x ,y 满足约束条件210200x y x y x -+≤⎧⎪+-≤⎨⎪≥⎩,则点(),A x y 构成的区域面积为________;点(),B x y x y +-构成的区域面积为________.三、解答题19.不等式组03434x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,〔1〕画出不等式组所表示的平面区域〔要求尺规作图,不用写出作图步骤,画草图不能得分〕; 〔2〕求平面区域的面积.20.求满足||||3x y +的整点x y (,)的个数.21.假设平面区域22(1)x y y k x ⎧+⎨++⎩,是一个三角形,求实数k 的取值范围.22.在平面直角坐标系xOy 中,点()1,1A 、()2,3B 、()3,2C ,点P 在ABC ∆三边围成的区域〔含边界〕上; 〔1〕假设0PA PB PC ++=,求OP ;〔2〕设OP mAB nAC =+,求动点(),Q m n 所构成的图形的面积;。
二元一次不等式(组)与平面区域
2.点(x0,y0)在直线Ax+By+C=0的右上方,则一定 有Ax0+By0+C>0吗?
提示:不一定.与系数B的符号有关.
3.若A(x1,y1),B(x2,y2)两点在直线Ax+By+C=0的 同侧或两侧应满足什么条件?
提示:同侧(Ax1+By1+C)(Ax2+By2+C)>0.异侧(Ax1+ By1+C)(Ax2+By2+C)<0.
课 堂 互 动 探 究
例 练 结 合 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·素 能 提 升
典例导悟
类型一 二元一次不等式(组)表示平面区域 [例1] 画出下列不等式(组)表示的平面区域.
变式训练1
如图所示的阴影部分表示的区域用二元一 )
x+y-1≤0 B. x-2y+2≤0 x+y-1≤0 D. x-2y+2≥0
次不等式组表示为(
x+y-1≥0 A. x-2y+2≥0 x+y-1≥0 C. x-2y+2≤0
答案:A
类型二 [例2]
(2)不等式组的解集是x+y≤5 ①,x-2y≥3 集的交集.
②的解
①式表示的区域是直线x+y-5=0左下方平面区域并 且包括直线x+y-5=0. ②式表示的区域是直线x-2y=3右下方平面区域并且 包括直线x-2y-3=0. 所以不等式组表示的区域是图(2)中的阴影部分(包括直 线).
【点评】 画直线时容易虚实不分,若含等号应画成 实线.区域容易弄反,要注意方法.
(1)2x+y-6<0;
x+y≤5 (2) x-2y≥3.
[分析]
解题的关键在于正确地描绘出边界直线,然
3.3.1二元一次不等式表示的平面区域
x 3 2 y x 2 3 x 2 y 6 3 y x 9
Y
o
4
-2
x
3
O
2 3
X
应该注意的几个问题:
1、若不等式中不含0,则边界应画成虚线,
否则应画成实线。
2、画图时应非常准确,否则将得不到正确结果。 3、熟记“直线定界、特殊点定域”方法的内涵。
0-0+1=1>0
1
-1
o
x
x-y+1>0
猜一猜:
(1)对直线L右下方的点(x, y), x-y+1>0 成立。 (2)对直线L左上方的点(x, y), x-y+1<0 成立。 y
1 -1
x-y+1<0
x-y+1>0
x
o
证一证:
y
y= y0
1 -1
在直线 x-y+1=0上取一点P(x0, y0), 过点 P做平行于x轴的直线y=y0 ,
在平面直角坐标系中,所有的点 被直线x+y-1=0分成三类:
y ②在直线 x-y+1=0 的左上方的平面区
域内
1 -1
x-y+1=0
①在直线 x-y+1=0上
问题是如何 判断呢??
o
?
③在直线 x-y+1=0 的右下方的平面区
域内;
x
在直线: x-y+1=0右下方取原点代入:x-y+1 y 尝试 x-y+1=0
巩固: 画出下列不等式表示的平面区域: (1) x-y+1<0 (2) 2x+3y-6>0 (3) 2x+5y-10≥0 (4) 4x-3y≤12
2014-2015学年 高中数学 人教A版必修五 第三章 3.3.1二元一次不等式(组)与平面区域
解 先画直线 x-y+6=0(画成实线), 不等式 x-y+6≥0 表 示直线 x-y+6=0 上及右下方的点的集合.画直线 x+y= 0(画成实线),不等式 x+y≥0 表示直线 x+y=0 上及右上方 的点的集合. 画直线 x=3(画成实线), 不等式 x≤3 表示直线 x=3 上及左方的点的集合.
研一研·问题探究、课堂更高效
3.3.1
小结
本 讲 栏 目 开 关
不等式组表示的平面区域是各个不等式所表示的平面
点集的交集,因而是各个不等式所表示的平面区域的公共部 分,但要注意是否包含边界.
研一研·问题探究、课堂更高效
3.3.1
x<3, 2y≥x, 跟踪训练 1 画出不等式组 表示的平面区域. 3x+2y≥6, 3y<x+9
本 讲 栏 目 开 关
3.3.1
3.3.1
【学习目标】
二元一次不等式(组)与平面区域
1.了解二元一次不等式表示的平面区域.
本 讲 栏 目 开 关
2.会画出二元一次不等式(组)表示的平面区域. 【学法指导】 1.要善于从特例入手,探究二元一次不等式与对应平面区 域的关系.归纳总结出一般结论: “同侧同号,同号同 侧,异侧异号,异号异侧”. 2.准确、规范、熟练地画出二元一次不等式(组)所表示的平 面区域是学好本单元的关键所在.熟练掌握 “直线定边 界,特殊点定区域”的要领.
本 讲 栏 目 开 关
所有点组成的平面区域. 2.在画二元一次不等式表示的平面区域时,应用“直线定边 界、特殊点定区域”的方法来画区域.取点时,若直线不 过原点,一般用“原点定区域”;若直线过原点,则取点 (1,0)即可.总之,尽量减少运算量. 3.画平面区域时,注意边界线的虚实问题.
第一部分 第三章 3.3 3.3.1 二元一次不等式(组)与平面区域
设每天分别生产甲、乙两种产品x t和y t,生
产x t甲产品和y t乙产品的用电量是
(2x+8y) kW· h,根据条件,有2x+8y≤160;用煤量为
(3x+5y) t,根据条件有3x+5y≤150;用工人数为(5x+ 2y)≤200;另外,还有x≥0,y≥0.
2x+8y≤160, 3x+5y≤150, 综上所述,x、y 应满足不等式组 5x+2y≤200, x≥0,y≥0.
返回
将(1,0)代入 x+2y 得 1+2×0>0, 故所求的不等式为 x+2y≥0. 综上:①x+y-1≤0;②x-2y+2<0;③x+2y≥0.
返回
4.试用不等式组表示由x+y+2=0,x+2y+1=0和 2x+y+1=0围成的三角形区域(包括边界).
解:直线 x+y+2=0,x+2y+1 =0,2x+y+1=0 表示的三角形区域如图阴影部分所示. 3 取区域内的点(-2,0)验证:
2.二元一次不等式的解集是一些有序数对(x,y),
它的解集不能用数轴来表示,它是平面上的一个区
域.又因为有序数对可以看成直角坐标平面内点的坐
标,所以,二元一次不等式(组)的解集还可以看成直角
返回
坐标系内的点构成的集合,即
二元一次不等 直角坐标平面 ―→ 数对x、y ―→ 式组的解 内点的坐标
返回
[精解详析]
(1)先画出直线2x+y-10=0(画成虚线).
取原点(0,0),代入2x+y-10. ∵2×0+0-10<0, ∴原点在2x+y-10<0表示的平面区域内,不等式
2x+y-10<0表示的区域如图①所示.
返回
(2)不等式x-y+5≥0表示直线x-y+5=0上及右下方的 点的集合;x+y+1≥0表示直线x+y+1=0上及右上方 的点的集合;x≤3表示直线x=3上及左方的点的集 合.所以不等式组表示的平面区域如图②所示.
高三数学二元一次不等式(组)与平面区域(201911)
1
-1 O -1 -2
x+y-1=0 x 12
这使我们猜想:l同侧的点的坐标是否 使式子x+y-1的值具有相同的符号?要么 都大于零,要么都小于零。
事实上,不仅对这个具体的例子有此 性质,而且对坐标平面内的任意一条直 线都有此性质.
性质:
直线l:Ax+By+C=0把坐标平面内不在 直线l上的点分为两部分,直线l同一侧的点 的坐标使式子Ax+By+C的值具有相同的符 号,并且两侧的点的坐标使Ax+By+C的值 的符号相反,一侧都大于零,另一侧都小 于零。
不等式的解(x,y)为坐标的所有点构 成的集合,叫做不等式表示的平面区域 或不等式的图象。
我们如何求二元一次不等式在直角坐 标平面上表示的区域呢?
直角坐标平面内直线l的一般形式的方
程为Ax+By+C=0,
①
根据直线方程的意义,凡在l上的点的 坐标都满足方程①,而不在直线l上的点 的坐标都不满足方程①。
新课标人教版课件系列
《高中数学》
必修5
3.3.1《二元一次不等式(组) 与平面区域》
审校:王伟
教学目标
• 了解二元一次不等式(组) 表示平面区域
• 教学重点: • 二元一次不等式(组) • 表示平面区域
二元一次不等式的一般形式为 Ax+By+C>0 或 Ax+By+C<0,
现在我们来探求二元一次不等式解集 的几何意义。
直线l把坐标平面内不在l上的点分为两 部分,一部分在l的一侧,另一部分在l的 另一侧,我们用下面的例子来讨论在直 线的两侧点的坐标,所应满足的条件。
在直角坐标系xOy中,作直线l:x+y- 1=0。
3.3.1二元一次不等式(组)与平面区域(2)
y
5
C x-y+5=0
D
2A -5
B
2
y=2
o
x
x=2
x-y+5≥0
变式1 若二元一次不等式组 y≥a
0≤x≤2
所表示的平面区域是一个三角形, 求a的取值范围
变式训练 x-y+5≥0
变式: 若二元一次不等式组 y≥a
解:设x , y分别为计划生产甲、乙两种混合肥料的车皮 数,于是满足以下条件
4x+y≤10
18x+15y ≤66 x≥0,X∈N y ≥0,y∈N
y
10
5
4x+y=10
0
1
2 3 4 18x+15y =66
x
x-y+5≥0
例4、 求二元一次不等式组 y≥2
0≤x≤2
所表示的平面区域的面积
解析: 如图,平面区域为直角梯形,易得 A(0,2),B(2,2),C(2,7),D(0,5)
3.3.1 二元一次不等式 (组)与平面区域(2)
y
o
x
复习
⑴ 二元一次不等式表示平面区域: 直线某一侧所有点组成的平面区域。画图时
应非常准确,否则将得不到正确结果。
⑵ 判定方法: 直线定界,特殊点定域。
------若不等式中不含有等号时,则边界应画成虚线,
⑶ 二元一次不等式组表示平面区域: 各个不等式所表示平面区域的公共部分。
例2、要将两种大小不同的钢板截成A.B.C三种规格,每张钢板 可同时截得三种规格的小钢板的块数如下表所示:
第一种钢板 第二种钢板
二元一次不等式(组)的解法与平面区域
2、二元一次不等式(组)的解集表示的图形
(1)复习回顾 一元一次不等式(组)的解集所表示的图形
——数轴上的区间。
如:不等式组 xx
3 4
0 0
的解集为数轴上的一个区间(如图)。
-3≤x≤4
思考:在直角坐标系内,二元一次不等式(组)的解集
表示什么图形?
下面研究一个具体的二元一次不等式
x – y < 6 的解集所表示的图形。 作出x – y = 6的图像—— 一条直线
(注:由斜截式转化为一般式进行研究探讨或由一般式 化归为斜截式进行研究探讨,并作比较)
结论2:当B>0时 Ax+By+C>0表示直线上方区域 Ax+By+C<0表示直线下方区域
口诀:上正下负一般式 (B>0)
强调:若B<0时则恰好结论相反;若B=0则最易判断。
例题2:根据下列各图中的平面区域用不等式 表示出来(图1包含y轴)
结论1:y>kx+b表示直线上方的平面区域 y<kx+b表示直线下方的平面区域
口诀:上大下小斜截式
口诀:上大下小斜截式
• 例题1: 画出下列不等式所表示的平面区域
(1) y 2x 1
(2)x 2
(3) y 2
(4)x y 2 0
(5) 2x y 1 0
拓展引申
共同探讨:对于二元一次不等式Ax+By+C>0(A、B不同时为 0),如何确定其所表示的平面区域?
直线把平面内所有点分成三类:
a)在直线x – y = 6上的点
b)在直线x – y = 6左上方区域内的点
c)在直线x – y = 6右下方区域内
第三章3.3 3.3.1二元一次不等式(组)与平面区域
1.二元一次不等式(组) (1)定义 ①二元一次不等式:含有两个未知数,并且未知数的次数是 1 的不等式. ②二元一次不等式组:由几个二元一次不等式组成的不等式组. (2)解集 ①定义:满足二元一次不等式(组)的 x 和 y 的取值构成有序数对(x,y),所有这样的有 序数对(x,y)构成的集合称为二元一次不等式(组)的解集. ②几何意义:可以看成直角坐标系内满足二元一次不等式(组)的 x 和 y 组成的点构成的 集合. 2.二元一次不等式表示的平面区域 二元一次不等式 Ax+By+C>0 二元一次不等式 Ax+By+C≥0 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 虚线,以表示区域不包括边界 表示直线 Ax+By+C=0 某一侧所有点组成的平面区域, 我们把直线画成 实线,以表示区域包括边界 直线 Ax+By+C=0 同一侧的所有点,把它们的坐标(x,y)代入 依据 Ax+By+C 所得符号都相同 平面区域的确定 方法 在直线 Ax+By+C=0 的同一侧取某个特殊点(x0,y0)作为测试 点,由 Ax0+By0+C 的符号可以断定 Ax+By+C>0 表示的是直 线 Ax+By+C=0 哪一侧的平面区域
)
用平面区域来表示实际问题的基本方法 (1)根据问题的需要选取两个起关键作用的关联较多的量,用字母表示. (2)把问题中有关的量用这些字母表示. (3)把实际问题中有关的限制条件用不等式表示出来. (4)把这些不等式所组成的不等式组用平面区域表示出来. 3.配制 A、B 两种药品,需要甲、乙两种原料,已知配一剂 A 种药品需 甲料 3 mg,乙料 5 mg;配一剂 B 种药品需甲料 5 mg,乙料 4 mg.今有甲料 20 mg,乙料 25 mg,若 A、B 两种药品至少各配一剂,问共有多少种不同的配制方法? 解:设 A、B 两种药品分别配 x 剂、y 剂(x,y∈N*).由题意得, 甲料 A 药品/剂 B 药品/剂 共计 3 mg 5 mg 20 mg 乙料 5 mg 4 mg 25 mg
3.3.1二元一次不等式(组)与平面区域(第一课时)
学习目标
1、了解二元一次不等式的几何意义 、 2、会画二元一次不等式表示的平面区域 、
创设情境
一家银行的信贷部计划年初投入25000000元用于企业 元用于企业 一家银行的信贷部计划年初投入 和个人贷款,希望这笔资金至少可以带来30000元的收 和个人贷款,希望这笔资金至少可以带来 元的收 其中从企业贷款中获益12%,从个人贷款中获益 益,其中从企业贷款中获益 , 10%。那么,信贷部应该如何分配资金呢? 。那么,信贷部应该如何分配资金呢?
典例分析
画出不等式x+4y<4表示的平面区域 例1 画出不等式 表示的平面区域 分析: 分析: 画出边界 y 代特殊点确定区域
1
x+4y-4=0 4
o
x+4y<4
x
练习:课本 页第 页第1题 练习:课本86页第 题,第2题 题
典例分析
例2 用平面区域表示不等式组
y < −3 x + 12 x < 2 y
新课探究
问题3:对于一般的二元一次不等式Ax+By+C >0, 问题 :对于一般的二元一次不等式 其解集所表示什么图形,如何画出? 其解集所表示什么图形,如何画出? Ax+By+C>0表示直线 表示直线Ax+By+C=0某一侧所有点组成的 表示直线 某一侧所有点组成的 平面区域,不包括边界 平面区域, Ax+By+C≥0表示直线 表示直线Ax+By+C=0某一侧所有点组成的 表示直线 某一侧所有点组成的 平面区域, 平面区域,包括边界 画法:直线定界, 画法:直线定界,特殊点定域
3.3.1二元一次不等式与平面区域
由几个二元一次不等式组成的不等式组;
(3 )二元一次不等式的解集: , 点的集合 思考:在平面直角坐标系中
满足二元一次不等式的有序实数对 (x,y)构成的集合; {(x,y)|x+y-1=0}表示什么图形?
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
回忆:一元一次不等式(组)的解集--数集 图形---数轴上的区间。
x 3 0 如:不等式组 的解集为数轴上的一个区间(如图)。 x 4 0
{x | 3 x 4}
问题3:在直角坐标系内,二元一次不等式的解集表示
什么图形?
二、新知探究:
(2)探究 特殊:二元一次不等式 x-y <6 的解集所表示的图形。
作出x-y =6的图像:一条直线
3.3.1
二元一次不等式(组) 与平面区域
重庆铁路中学 (400053) 何成宝
一、问题情境:
一只蚂蚁在地平面上寻找食物,蚂蚁的位置可由 坐标 (x,y) 确定,现知在直线 L : x+y-1=0 左下方 区域某处有一食物,如果蚂蚁运动的坐标始终满 足 x+y-1>0, 那 么 蚂 蚁 能 找 到 食 物 吗 ?
直线x-y=6的右下方的平面区域 y
x-y <6 O
-6 6
y
O
-6 6
x
x
x-y>6
直线叫做这两个区域的边界。
二、新知探究:
2、探究二元一次不等式(组)的解集表示的图形
从 特 殊 到 一 般
二元一次不等式Ax + By + C>0在平面直角坐标系中表 示直线Ax + By + C = 0某一侧所有点组成的平面区域。
3.3.1二元一次不等式(组)与平面区
>0表示的直线Ax+By+C=0哪一侧的平面区域。
4y < 例x1 4 画出 不等 式 表示 的平 < 面区 4 解 域.取 < 原 : 0 点 先 ( 做 0 出 , 边 0 界
y
1 (0 , 0 ) 0 1
4
x
1)用平面区域表 示下面不等式组的 2)画出不等式 解集 .
y 3 x 1 2 x 2 y
l:x y 6
O -3 -6
3
6
9
x
l:x y 6 研究平面内的点A,P可 6 以发现:在直角坐标系中, Ax, y2 以二元一次不等式x-y<6的 3 解为坐标的点都在直线l的左 3 6 9 O 上方;反过来,直线l左上方 x -3 P( x, y1 ) 点的坐标都满足不等式x-y< -6 6,因此在平面直角坐标系中, 不等式x-y<6表示直线x-y=6 左上方的平面区域,如图,类似地,二元一次不 等式x-y>6表示直线x-y=6右下方的平面区域,直线xy=6叫做这两个区域的边界,这里,我们把直线x-y=6画 成虚线,以表示区域不包括边界。
12 4 0 4 12
图形表示如右
20
x
例2、一个化肥厂生产甲、乙两种混合肥料,生产 1车皮甲种肥料的主要原料是磷酸盐4t,硝酸盐18;生 产1车皮乙种肥料需要的主要原料是磷酸盐1t,硝酸盐 15t。现库存磷酸盐10t,硝酸盐66t,在此基础上生产这 两种混合肥料。列出满足生产条件的数学关系式,并 画出相应的平面区域。
4.画平面区域时,要注意边界是画成实线还是虚线。
1.用不等式(组)表示下列阴影部分所对应的 区域. y y
3
y
-6 4 x 2
0
x
6x+5y=22
高一数学《二元一次不等式(组)与平面区域》课件与教案
高一数学《二元一次不等式(组)与平面区域》课件与教案3.3.1二元一次不等式(组)与平面区域厦大附中林秋林一、教学目标1、知识与技能:了解二元一次不等式的几何意义,会用二元一次不等式组表示平面区域;2、过程与方法:经历从实际情境中抽象出二元一次不等式组的过程,培养学生观察以及作图的能力,渗透集合、化归、数形结合的数学思想,提高学生“建模”和解决实际问题的能力;3、情感与价值:通过本节课的学习,着重培养学生掌握“数形结合”的数学思想,尽管侧重于用“数”研究“形”,但同时也用“形”去研究“数”,使学生体会到观察、联想、猜想、归纳等数学思想方法;另外结合教学内容使学生体会到数学来源于生活,提高他们学习数学的兴趣。
二、教学重点和难点1、教学重点会求二元一次不等式(组)表示的平面区域;2、教学难点准确画出二元一次不等式(组)所表示的平面区域;三、教学方法手段:1、教学方法:启发引导、讲练结合2、教具:多媒体课件四、教学过程设计(一)课题导入1、从实际问题中抽象出二元一次不等式(组)的数学模型以实际生活中的实例提出问题:一家银行的信贷部计划年初投入25 000 000元用于企业和个人贷款,希望这笔贷款资金至少可以带来30 000元的效益,其中从企业贷款中获益12%,从个人贷款中获益10%,那么,信贷部应该如何分配资金?2、教师引导学生思考、探究,让学生经历建立线性规划模型的过程。
在获得探究体验的基础上,通过交流形成共识。
(二)讲授新课1、建立二元一次不等式模型第二类:在直线x-y=6左上方的区域内的点;第三类:在直线x-y=6右下方的区域内的点。
设点P是直线x-y=6上的点,选取点A,使它的坐标满足不等式x-y<6,请同学们完成课本第83页的表格,横坐标x -3 -2 -1 0 1 2 3 点P的纵坐标y1点A的纵坐标y2并思考:当点A与点P有相同的横坐标时,它们的纵坐标有什么关系?根据此表格,直线x-y=6左上方的点的坐标与不等式x-y<6有什么关系?直线x-y=6右下方点的坐标呢?学生思考、讨论、交流,达成共识:在平面直角坐标系中,以二元一次不等式x-y<6的解为坐标的点都在直线x-y=6的左上方;反过来,直线x-y=6左上方的点的坐标都满足不等式x-y<6。
《二元一次不等式组与平面区域》
(4)二元一次不等式(组)的解集与平面直角 坐标系内的点之间的关系:
二元一次不等式(组)的解集是有序实数对, 而点的坐标也是有序实数对,因此,有序 实数对就可以看成是平面内点的坐标, 进而,二元一次不等式(组)的解集就 可以看成是直角坐标系内的点构成的集合。
(5)探究二元一次不等式(组)的解集表示的 图形 (1)回忆、思考 回忆:初中一元一次不等式(组)的解 集 所表示的图形 思考:在直角坐标系内,二元一次不 等式(组)的解集表示什么图形?
3.3.1《二元一次不等式 (组)与平面区域》
二元一次不等式和二元一次不等式组的定义
(1)二元一次不等式:
含有两个未知数,并且未知数的最高次数是1的 不等式叫做二元一次不等式 ;
(2)二元一次不等式组:
由几个二元一次不等式组成的不等式组 称为二元一次不等式组。
(3)二元一次不等式(组)的解集:
满足二元一次不等式(组)的x和y的取 值构成有序实数对(x,y),所有这样的 有序实数(x,y)构成的集合称为二元一 次不等式(组)的解集。
归纳:不等式组表示的平面区域是各 个不等式所表示的平面点集的交集, 因而是各个不等式所表示的平面区域 的公共部分。
2.画出下列不等式组所表示的平面区域: (1)2 x y 1 0 解:(1)在同一个直角坐标系中,
x y 1≥ 0
作出直线2x-y+1=0(虚线),
x+y-1=0(实线)。 用例1的选点方法,分别作出不等式2x- y+1>0,x+y-1≥0所表示的平面区域,
则它们的交集就是已知不等式组所 表示的区域。
y 3 2 1 -1 O 2y+1=0 -1 -2 1 2 3 x-3=0 2x-3y+2=0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.3.1 二元一次不等式(组)与平面区域课时目标1.了解二元一次不等式表示的平面区域.2.会画出二元一次不等式(组)表示的平面区域.1.二元一次不等式(组)的概念含有两个未知数,并且未知数的次数是1的不等式叫做二元一次不等式. 由几个二元一次不等式组成的不等式组称为二元一次不等式组. 2.二元一次不等式表示的平面区域在平面直角坐标系中,二元一次不等式Ax +By +C >0表示直线Ax +By +C =0某一侧所有点组成的平面区域,把直线画成虚线以表示区域不包括边界.不等式Ax +By +C ≥0表示的平面区域包括边界,把边界画成实线. 3.二元一次不等式(组)表示平面区域的确定 (1)直线Ax +By +C =0同一侧的所有点的坐标(x ,y )代入Ax +By +C 所得的符号都相同. (2)在直线Ax +By +C =0的一侧取某个特殊点(x 0,y 0),由Ax 0+By 0+C 的符号可以断定Ax +By +C >0表示的是直线Ax +By +C =0哪一侧的平面区域.一、选择题1.如图所示,表示阴影部分的二元一次不等式组是( )A.⎩⎪⎨⎪⎧ y ≥-23x -2y +6>0x <0 B.⎩⎪⎨⎪⎧ y ≥-23x -2y +6≥0x ≤0C.⎩⎪⎨⎪⎧y >-23x -2y +6>0x ≤0D.⎩⎪⎨⎪⎧y >-23x -2y +6<0x <0答案 C解析 可结合图形,根据确定二元一次不等式组表示的平面区域的方法逆着进行.由图知所给区域的三个边界中,有两个是虚的,所以C 正确.2.已知点(-1,2)和(3,-3)在直线3x +y -a =0的两侧,则a 的取值范围是( ) A .(-1,6) B .(-6,1)C .(-∞,-1)∪(6,+∞)D .(-∞,-6)∪(1,+∞) 答案 A解析 由题意知,(-3+2-a )(9-3-a )<0, 即(a +1)(a -6)<0,∴-1<a <6.3.如图所示,表示满足不等式(x -y )(x +2y -2)>0的点(x ,y )所在的区域为( )答案 B解析 不等式(x -y )(x +2y -2)>0等价于不等式组(Ⅰ)⎩⎪⎨⎪⎧x -y >0,x +2y -2>0或不等式组(Ⅱ)⎩⎪⎨⎪⎧x -y <0,x +2y -2<0.分别画出不等式组(Ⅰ)和(Ⅱ)所表示的平面区域,再求并集,可得正确答案为B.4.不等式组⎩⎪⎨⎪⎧4x +3y ≤12,x -y >-1,y ≥0表示的平面区域内整点的个数是( )A .2个B .4个C .6个D .8个答案 C解析 画出可行域后,可按x =0,x =1,x =2,x =3分类代入检验,符合要求的点有(0,0),(1,0),(2,0),(3,0),(1,1),(2,1)共6个.5.在平面直角坐标系中,不等式组⎩⎪⎨⎪⎧x +y ≥0,x -y +4≥0,x ≤a(a 为常数)表示的平面区域的面积是9,那么实数a 的值为( )A .32+2B .-32+2C .-5D .1 答案 D解析 区域如图,易求得A (-2,2),B (a ,a +4), C (a ,-a ).S △ABC =12|BC |·|a +2|=(a +2)2=9,由题意得a =1.6.若不等式组⎩⎪⎨⎪⎧x ≥0,x +3y ≥4,3x +y ≤4所表示的平面区域被直线y =kx +43分为面积相等的两部分,则k 的值是( )A.73B.37C.43D.34 答案 A解析 不等式组表示的平面区域如图所示.由于直线y =kx +43过定点⎝ ⎛⎭⎪⎫0,43.因此只有直线过AB 中点时,直线y =kx +43能平分平面区域.因为A (1,1),B (0,4),所以AB 中点M ⎝ ⎛⎭⎪⎫12,52. 当y =kx +43过点⎝ ⎛⎭⎪⎫12,52时,52=k 2+43, 所以k =73.二、填空题7.△ABC 的三个顶点坐标为A (3,-1),B (-1,1),C (1,3),则△ABC 的内部及边界所对应的二元一次不等式组是________________.答案 ⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0解析如图直线AB 的方程为x +2y -1=0(可用两点式或点斜式写出). 直线AC 的方程为2x +y -5=0, 直线BC 的方程为x -y +2=0, 把(0,0)代入2x +y -5=-5<0, ∴AC 左下方的区域为2x +y -5<0.∴同理可得△ABC 区域(含边界)为⎩⎪⎨⎪⎧x +2y -1≥0x -y +2≥02x +y -5≤0.8.已知x ,y 为非负整数,则满足x +y ≤2的点(x ,y )共有________个.答案 6解析 由题意点(x ,y )的坐标应满足⎩⎪⎨⎪⎧x ∈N y ∈Nx +y ≤2,由图可知,整数点有(0,0),(1,0),(2,0)(0,1)(0,2)(1,1)6个.9.原点与点(1,1)有且仅有一个点在不等式2x -y +a >0表示的平面区域内,则a 的取值范围为________.答案 -1<a ≤0解析 根据题意,分以下两种情况:①原点(0,0)在该区域内,点(1,1)不在该区域内.则⎩⎪⎨⎪⎧a >0a +1≤0.无解.②原点(0,0)不在该区域内,点(1,1)在该区域内,则⎩⎪⎨⎪⎧a ≤0a +1>0,∴-1<a ≤0.综上所述,-1<a ≤0.10.若A 为不等式组⎩⎪⎨⎪⎧x ≤0,y ≥0,y -x ≤2表示的平面区域,则当a 从-2连续变化到1时,动直线x +y =a 扫过A 中的那部分区域的面积为________.答案 74解析如图所示,区域A 表示的平面区域为△OBC 内部及其边界组成的图形,当a 从-2连续变化到1时扫过的区域为四边形ODEC 所围成的区域.又D (0,1),B (0,2), E ⎝ ⎛⎭⎪⎫-12,32,C (-2,0). S 四边形ODEC =S △OBC -S △BDE =2-14=74.三、解答题11.利用平面区域求不等式组⎩⎪⎨⎪⎧x ≥3y ≥26x +7y ≤50的整数解.解 先画出平面区域,再用代入法逐个验证.把x =3代入6x +7y ≤50,得y ≤327,又∵y ≥2,∴整点有:(3,2)(3,3)(3,4); 把x =4代入6x +7y ≤50,得y ≤267,∴整点有:(4,2)(4,3).把x =5代入6x +7y ≤50,得y ≤207,∴整点有:(5,2);把x =6代入6x +7y ≤50,得y ≤2,整点有(6,2);把x =7代入6x +7y ≤50,得y ≤87,与y ≥2不符.∴整数解共有7个为(3,2),(3,3),(3,4),(4,2),(4,3),(5,2),(6,2).12.若直线y =kx +1与圆x 2+y 2+kx +my -4=0相交于P 、Q 两点,且P 、Q 关于直线x +y =0对称,则不等式组⎩⎪⎨⎪⎧kx -y +1≥0kx -my ≤0y ≥0表示的平面区域的面积是多少?解 P 、Q 关于直线x +y =0对称,故PQ 与直线x +y =0垂直,直线PQ 即是直线y =kx +1,故k =1;又线段PQ 为圆x 2+y 2+kx +my -4=0的一条弦,故该圆的圆心在线段PQ 的垂直平分线上,即为直线x +y =0,又圆心为(-k2,-m2),∴m =-k =-1,∴不等式组为⎩⎪⎨⎪⎧x -y +1≥0x +y ≤0y ≥0,它表示的区域如图所示,直线x -y +1=0与x +y =0的交点为(-12,12),∴S △=12×1×12=14.故面积为14. 能力提升13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x的图象上存在区域D 上的点,则a 的取值范围是( )A .(1,3]B .[2,3]C .(1,2]D .[3,+∞) 答案 A解析 作出不等式组表示的平面区域D ,如图阴影部分所示.由⎩⎪⎨⎪⎧x +y -11=0,3x -y +3=0,得交点A (2,9).对y =a x的图象,当0<a <1时,没有点在区域D 上.当a >1,y =a x 恰好经过A 点时,由a 2=9,得a =3. 要满足题意,需满足a 2≤9,解得1<a ≤3.14.若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a表示的平面区域是一个三角形,则a 的取值范围是______________.答案 0<a ≤1或a≥43解析不等式表示的平面区域如图所示,当x +y =a 过A ⎝ ⎛⎭⎪⎫23,23时表示的区域是△AOB ,此时a =43; 当a >43时,表示区域是△AOB ;当x +y =a 过B (1,0)时表示的区域是△DOB ,此时a =1; 当0<a <1时可表示三角形;当a <0时不表示任何区域,当1<a <43时,区域是四边形.故当0<a ≤1或a ≥43时表示的平面区域为三角形.1.二元一次不等式(组)的解集对应着坐标平面的一个区域,该区域内每一个点的坐标均满足不等式(组).常用特殊点法确定二元一次不等式表示的是直线哪一侧的部分.2.画平面区域时,注意边界线的虚实问题.3.求平面区域内的整点个数时,要有一个明确的思路不可马虎大意,常先确定x 的范围,再逐一代入不等式组,求出y 的范围最后确定整数解的个数.。